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ABSTRACT 

Complex systems comprise interconnected elements that follow simple rules 

without central controls and give rise to unpredictable behavior (Mitchell, 2009); 

characteristics of complex systems are called components. If understood, complex 

systems components may serve as unifying principles that help students understand 

systems across domains such as biology, economics, or engineering. Nevertheless, 

complex systems are difficult to understand because of the variety of changing 

interactions of their elements as well as the non-linear effects of such interactions. Such 

non-linear effects are often removed from causes through both time and distance. The 

purpose of this study was to examine adult understanding of complex systems 

components, to investigate whether an agent-based participatory simulation, with one of 

two types of scaffolding, might improve this understanding, and finally to determine if 

either simulation or scaffolding would help students transfer their new understanding to 

another context.  

The study took place at a mid-sized, public university in the Mid-Atlantic region 

of the United States. Participants included 96 undergraduate and graduate students 

enrolled in a class about complex systems in the School of Architecture. The study and 

intervention were informed by a pilot study, as well as previous research by the study 

author. A 2x2 pretest-posttest quasi-experimental design was employed to test whether 

participation in an intervention improved students’ complex systems understanding and 

whether participation in one of either two scaffolding treatment groups helped improve 



this understanding. As part of their class, participants attended one of two workshops that 

served as treatment conditions (Self-Monitoring or Ontological Scaffolding) and 

participated in a gameplay of the UVA Bay Game, an agent-based participatory 

simulation. Students completed identical pretest and posttest assessments of complex 

system component understanding and an open-ended essay-style posttest transfer prompt. 

 Student understanding of complex systems components was analyzed using 

descriptive statistics, non-parametric tests, as well as coding for emergent themes 

amongst student responses. Non-parametric quantitative analyses revealed that student 

understanding significantly improved for Agent Actions (r = .17, p = .02) and Processes-

based Causality (r = .13, p = .045) components while Action Effects understanding 

decreased (r = -.19, p = .01); 3 other components showed no changes. Student 

understanding differed by scaffolding condition only for the component Order (r = .24, p 

= .02), with Self-Monitoring students’ scores decreasing non-significantly while 

Ontological Scaffolding students’ scores increased non-significantly. Finally, no 

differences between treatment groups were found on transfer items, though all students’ 

scores increased for Action Effects and Order over other components, which varied 

depending on the type of system students chose as the topic of their essay. 

 This study is the first to use a quasi-experimental design to investigate the 

effectiveness of agent-participatory simulations in teaching college students complex 

systems understanding. Although most effects were small, the study shows promise for 

how such a classroom-based intervention might help students learn such a difficult topic.
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CHAPTER 1: INTRODUCTION 

 Changes in computational power have transformed science, with modeling and 

simulations emerging as a third pillar of science alongside traditional pillars of theory and 

experimentation (Jackson, 1996; Sabelli, 2006). The ability to propose theories and then 

test them with computer models allows researchers to go beyond constraints such as time 

or physical scale. Modeling also allows scientists to account for increasingly complex 

behaviors and processes within systems such as ecosystems. As a result of technological 

advances, people can now investigate how the parts or agents of a system interact to give 

rise to the often unpredictable macro outcomes, or behavior of a system. With non-linear 

interactions and emergent behavior among large numbers of variables, modeling of 

complex systems was previously underdeveloped (Bar-Yam, 1997; Kauffman, 1995). 

Technological and computational advances have made it possible to study phenomena of 

greater complexity, and therefore to determine which problems are surmountable at a 

given time (Mainzer, 2007). For example, increased computing power now allows 

researchers to study events that have multiple causes and outcomes (Jacobson & 

Wilensky, 2006), a process that would be too taxing for a person to reason theoretically 

through induction. Disciplines such as economics (P. W. Anderson, Arrow, & Pines, 

1988; Farmer & Foley, 2009); climate science (West & Dowlatabadi, 1999); business 

(Axelrod & Cohen, 2000); education (Maroulis et al., 2010) as well as genetics; the 

internet; and meteorology (Jacobson & Wilensky, 2006) now use complex computational 

models to explain much of their phenomena (Penner, 2000). 
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Complex Systems and Unifying Principles 

Complex systems consist of interconnected elements, without central control, that 

follow simple rules and give rise to complex and often adaptable behavior (Mitchell, 

2009). For example, ant colonies demonstrate order and adapt without leaders because 

their individuals follow simple rules such as “bring food back to the colony, when a food 

supply is exhausted search for a new one.” Examples such as honeybee behavior, traffic 

jams, and weather represent the variety and breadth of these systems.  

Complex systems comprise several important components or unifying principles. 

One deep principle in complex systems is emergence, which occurs when “local 

interactions of elements in a complex systems at a microlevel can contribute to higher 

order macrolevel patterns that may have qualitatively different characteristics than the 

individual elements at the microlevel” (Jacobson & Wilensky, 2006, p. 16). In other 

words, the sum is substantially and qualitatively different than the parts. A second 

principle is decentralized control where order arises not from a top-down leader, but from 

the local goals and behavior of the agents. Ecosystems thrive without leaders because 

parts adapt to fit their local needs. Finally, complex systems have nonlinear interactions 

and effects where small actions through causal chains may result in large effects (i.e., 

non-linear effects), such as the introduction of an invasive species into an ecosystem.  

Complex system concepts crosscut multiple domains. For example, self-

organization and adaptation apply to biological systems (Resnick, 1994); economics 

(Epstein & Axtell, 1996); and engineering (Amaral & Ottino, 2004; Ottino, 2004). In 

biological systems, diet may change depending on environmental conditions or animals 

may migrate without directions from leaders. Within economics, markets organize and 
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adapt around available goods, consumer preferences, and a variety of other parameters. 

Even within engineering, it is proposed that the design of effective systems not only 

allows for adaptation during design phases, but that adaptation should be built into the 

system (Ottino, 2004). 

Understanding Complex Systems  

To become scientifically literate as citizens or as future scientists, students need to 

understand the principles behind complex systems and behavior (Jacobson & Wilensky, 

2006) and to develop new skills and ways of thinking (Klopfer & Yoon, 2004). Scientists 

and educational groups have advocated a movement towards explicitly teaching students 

about complex systems (Kaput et al., 1999; National Research Council, 1996, 2012; 

NGSS Lead States, 2013). For example, the Next Generation Science Standards explicitly 

call for students to understand cross-cutting concepts of systems and system models, 

stability and change within systems, as well as cause and effect within systems (Achieve 

Inc., 2013). 

Because the principles of complex systems apply across many domains, explicitly 

teaching students about complex systems may help them build conceptual links to 

understand their increasingly complex world (Lemke & Sabelli, 2008). For example, 

comprehending and learning to recognize a deep principle such as emergence in ecology 

may help a student to understand and recognize this behavior when they encounter it in 

economics. Applying an understanding of a deep principle in a new context is an example 

of far transfer, which is difficult to achieve in education (Detterman, 1993; Gick & 

Holyoak, 1980; National Research Council, 2000). By explicitly teaching students about 

complex systems and phenomena, students might be able to learn to interpret situations 
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according to underlying principles and use these for navigating subsequent encounters 

(e.g. Slotta & Chi, 2006). Additionally, explicitly teaching students about complex 

systems may help engender an interdisciplinary way of thinking, which may help 

students see things differently in other domains than they might have without this 

underlying knowledge (Jacobson & Wilensky, 2006; Shen, Liu, & Sung, 2014). 

Complex systems comprise many interacting parts that function across different 

time scales and have effects in multiple places. Thus, although teaching about complex 

systems is necessary to understand much of how the world works, such systems are 

complicated, counterintuitive, and often require more than experience or knowledge to 

understand (Abrahamson & Wilensky, 2005; Goldstone & Wilensky, 2008). Students of 

all ages have difficulty learning about complex systems. Both students and pre-service 

teachers have been shown to focus on the superficial structure of systems (Hmelo-Silver, 

Marathe, & Liu, 2007). For example, novices identified visible components of an 

aquarium system such as rocks and fish, yet they failed to identify the more meaningful 

less tangible behaviors and functions of the system. In a different study of seven 

engineering students, Jacobson and colleagues (2001) found that novices had difficulty 

recognizing (a) where control existed in systems, (b) that there were multiple causes 

(non-linear effects), (c) that agents acted randomly, and (d) the processes within systems. 

Barriers also arise due to the nature of schooling. K-12 education has often been 

criticized for covering too many topics at a superficial level, so that students never reach 

a deep understanding of any domain (National Research Council, 1996, 2000). Although 

some complex systems concepts are commonly taught in science classes (e.g., natural 

selection, homeostasis, and equilibrium) and less explicitly in economics and sociology 
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classes, connections are not made across subjects. In order to become scientists and 

informed citizens, students will need to recognize and know how these underlying 

concepts occur in the world and what these patterns mean.  

Complex Systems Instruction 

Meaningful learning involves understanding underlying deep principles as 

opposed to superficial shared features. In classrooms, complex systems are either not 

taught formally; or examples of systems, such as ecosystems, are taught using outdated 

paradigms that fragment systems and ignore the dynamic interactions of the parts 

(Koppal & Caldwell, 2004). Often instruction relies on textbooks that cannot convey the 

important elements and interactions of complex systems (Weiss, Pasley, Smith, 

Banilower, & Heck, 2003). Static, simplified representations of complex systems 

preclude students from making connections between parts and from experiencing what is 

most important about complex systems—the often dynamic, invisible, or time delayed 

interactions and effects (Feltovich, Spiro, & Coulson, 1993).  

Although we are constantly surrounded by complex systems, components of these 

systems are difficult to visualize. For example, even though fish may die off suddenly in 

a river, the cause of this die off may not be an event but an invisible process that has 

occurred over a long period of time such as chemicals leaching into the ground from a 

nearby factory. Furthermore, the source of this change may occur far away from the 

effect such as distant traffic causing acid rain over a pond (Grotzer, 2012). Other 

processes such as crystallization or diffusion may be invisible to the naked eye (Blikstein 

& Wilensky, 2009), while others such as climate change may occur over periods of time 

that are too prolonged to observe in a classroom setting.  
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Simulations and models enable students to experience and visualize the true 

characteristics of complex systems. Simulations such as NetLogo (Wilensky, 1999) allow 

students to change inputs at the micro level of systems and to observe resulting changes 

in outputs at the macro level.  Another simulation, EcoMUVE, allows participants to 

explore an actual ecosystem and move through time to determine cause and effect within 

this complex system (Grotzer, Kamarainen, Tutwiler, Metcalf, & Dede, 2013).  

Simulations can also help make unobservable components of complex systems visible 

(e.g. Honey & Hilton, 2011). 

An especially promising kind of simulation to help students understand complex 

systems are agent-based participatory simulations (Pahl-Wostl, 2002).  Participatory 

simulations allow students to take the role of the parts within complex systems and then 

to witness the macro outcomes from their behavior (Colella, 2000).  With participatory 

simulations, students not only observe complex systems, but they also experience the 

opportunities and constraints by taking on the roles of component parts (Wilensky & 

Stroup, 2000b).  As an agent in the complex system, students can investigate how their 

actions can affect the overall system.  Perspective taking, social interaction, and 

experimentation within the simulated complex system may help students to better and 

more vividly understand certain difficult components of complex systems such as 

decentralization and non-linear interactions. 

Despite their advantages, simulations do not mean students will not struggle with 

learning complex system components.  For example, although research demonstrates that 

computer models can help secondary students recognize and understand the function of 

components of complex systems, students still had difficulty identifying the behavior of 
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these components (Hmelo-Silver, Marathe, et al., 2007; Vattam et al., 2011).  Similarly, 

when using agent-based models and hypermedia, post-secondary students had difficulty 

with problem solving tasks that required complex systems understanding (Jacobson, 

Kapur, So, & Lee, 2011).  In other words, computer-based simulations may allow 

students to be able to study and investigate phenomena they could not otherwise, yet the 

use of simulations does not guarantee deep learning.   

Scaffolding Complex Systems Understanding 

Given the inherent difficulty of learning about complex system behaviors, even 

after using simulations, students need support when learning about complex systems from 

simulations.  Research demonstrates that providing scaffolding, i.e., learning supports 

within simulations, can benefit learning (McElhaney, Chang, Chiu, & Linn, 2015). Two 

main types of scaffolding may be particularly beneficial for students who are learning 

about complex systems.  First, ontological support in the form of explicitly teaching 

about components may help students to deepen their understanding from simulations.  

Ontological scaffolding benefitted students using simulations to learn about electricity as 

an emergent process (Slotta & Chi, 2006). Providing ontological scaffolding before using 

a simulation may help students to better recognize and understand complex systems 

components.  Students may create “conceptual rigging” (Goldstone, 2006, p. 41) to help 

them correctly interpret what they experience during the simulation.  The practice of 

looking for and recognizing these specific components may help students to create more 

complete and distinct categories of systems, and possibly to transfer this understanding to 

a new situation.   
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Second, self-monitoring scaffolds, which assist sense making; process 

management; and reflection, may also benefit students by helping them manage a 

complicated amount of information during the simulation.  Students must attend to both 

micro-level actions, shifting interactions, and the often invisible and time-delayed effects 

these have.  Self-monitoring scaffolds may help students more effectively plan and guide 

their investigations (Sandoval, 2003) and reflect on what they are learning (Chi, Bassok, 

Lewis, Reimann, & Glaser, 1989; Recker & Pirolli, 1995).  

Creating support for students to manage and guide learning in a complex 

environment may help students to better deal with the difficult content they are learning. 

Therefore appropriate scaffolding is crucial (Hmelo-Silver, Duncan, & Clark, 2007), both 

to help students create categories for complex systems components and to recognize 

them, as well as to help them manage the large amount of complex information they must 

process. Designing effective scaffolding for complex systems has nevertheless proven 

difficult.  In a study using NetLogo simulations and a hypermedia system with 

ontological scaffolding, students made some gains in understanding complex systems, yet 

differences between scaffolding conditions were largely mixed (Jacobson et al., 2011).  

Students who were able to use the scaffolding to develop ontologies about complex 

systems performed better.  However, not all students benefitted from the scaffolding.  

Research is needed to investigate what kinds of scaffolds may be beneficial for learning 

about complex systems with simulations. 

Purpose 

While research into complex systems understanding has been done within 

confined ecological environments such as aquaria (Hmelo-Silver, Marathe, et al., 2007), 
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little research has examined larger ecosystems (Assaraf & Orion, 2005; Eilam, 2012; 

Grotzer et al., 2013).  More importantly, there have been no investigations on simulations 

that allow students to take part in an ecosystem as agents or to observe how people 

interact with and affect these systems. Another limitation is that the majority of research 

on student understanding is at the secondary level (Chi, Roscoe, Slotta, Roy, & Chase, 

2012; Grotzer et al., 2013; Hmelo-Silver, Duncan, et al., 2007; Wilensky & Stroup, 

1999).  Both Hmelo-Silver, Marathe, & Liu (2007) and Jacobson (2001) have shown that 

even adults hold alternative understandings and novice ways of thinking about complex 

systems. There has only been one study with mixed results (Jacobson et al., 2011) 

showing whether older students can enrich their ontological understanding of complex 

systems or for which components alternative understandings are more robust (Jacobson, 

2001). A better understanding of how adults in post-secondary education and beyond 

view complex systems is therefore needed. Finally, scaffolding approaches to date are not 

explicit about categories of complex systems, and do not address far transfer.  Therefore 

the research questions of this study are the following: 

 

1) Can interactive instruction using an agent-based participatory simulation of the 

Chesapeake Bay watershed improve student understanding of complex systems?  

a) For what components of complex systems (e.g., decentralization, nonlinear action 

effects, and Agents) do students demonstrate improved or limited understanding?  

b) Can students transfer their understanding of complex systems to another context 

of architecture?  
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2) How does ontological scaffolding versus self-monitoring scaffolding during 

instruction using an agent-based participatory simulation of the Chesapeake Bay 

affect student understanding of complex systems?  

a) How does understanding of complex systems components compare for students 

receiving ontological scaffolding versus students receiving self-monitoring 

scaffolding?  

b) How does the ability to transfer understanding of complex systems to another 

context of architecture compare for students receiving ontological scaffolding 

versus students receiving self-monitoring scaffolding?  

 

If students are able to able to improve their complex systems understanding through an 

agent-based participatory simulation, this study may illuminate more effective ways to 

teach complex systems.  Whereas previous studies have shown promise with agent-based 

models, a participatory simulation that allows students to take the role of agents in the 

system might facilitate understanding of concepts such as self-organization, emergence, 

and non-linear effects.  Second, by having concepts scaffolded before their experience 

with the complex system, students will practice recognizing and perceiving complex 

systems components, and thus may be better suited to perceive these components in other 

systems.  Thus this instructional approach may point to a possible way to improve 

students’ far transfer of complex systems understanding.  
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CHAPTER 2: LITERATURE REVIEW 

 This chapter begins with an overview of theories of conceptual change that guides 

the study.  Second, a review of complex systems and their components provides an 

overall picture of expert understanding.  Third, a closer examination details why these 

components are difficult to learn and presents an ontological categories framework with 

which to understand student understanding of complex systems concepts.  Fourth, this 

chapter reviews studies of simulations that have illuminated both the promise and 

difficulties in teaching these concepts to students.  Finally, an overview of scaffolding 

provides insight into how to help students learn about complex systems concepts through 

the use of simulations with ontological and self-regulatory (self-monitoring) support. 

Theoretical Framework 

 To understand how to improve student understanding of complex systems, I use a 

conceptual change framework.  Conceptual change refers to learning as building new 

ideas in the context of old ideas (diSessa, 2006).  Many existing approaches try to capture 

and describe how conceptual change happens in learners (diSessa, 2006; Posner, Strike, 

Hewson, & Gertzog, 1982; Vosniadou, 2009).  One approach posits that children have 

coherent theories with which they make sense of the world (C. W. Anderson & Smith, 

1987; Vosniadou, 2002).  For example, when children reason about the shape of the 

earth, they may begin with simple models which they adjust to cohere to more accepted 

adult models (Vosniadou & Brewer, 1992). The main focus of coherent theories is that 

they are largely not context specific and focus on larger grain sizes.  Another approach, 
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Knowledge in Pieces, asserts that knowledge consists of highly contextualized and 

fragmented elements called P-prims (diSessa, 1988, 1993, 2006) that are elicited in 

response to different situations.  Instead of having overarching models that organize 

knowledge, a knowledge-in pieces perspective holds that these elements apply in highly 

contextualized situations.  

 A third approach posits that real difficulty in learning happens when learners 

conceive of processes across ontological kinds (Chi, 2005). Learners do not just have 

incorrect details about a concept, but misunderstand it at a deeper, ontological level.  For 

example, Chi proposed that there are direct processes such as blood flow where 

movement is directly caused by movement of the heart, and emergent processes, such as 

diffusion, where movement is explained by the interactive outcomes of all components 

(i.e. both dye and water molecules) (2005).  Robust misconceptions occur when students 

conceive of diffusion as a direct process similar to blood flow, giving diffusion the 

properties of this incorrect ontological category (Chi, 2005).  

 A final approach considers all learning as a process of transfer (Bransford & 

Schwartz, 1999; National Research Council, 2000).  This approach asserts that although 

content knowledge is important and necessary, it is not sufficient for learning.  Instead of 

just remembering disconnected facts, learners must apply this understanding to new 

contexts, beyond those in which they learned the concepts (National Research Council, 

2000).  When students are able to solve novel problems, they will have shown evidence 

of transfer. 

 The conceptual change approach that guides this study aligns largely with Chi’s 

research on ontological kinds as well as Jacobson’s research describing novice and expert 
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differences across ontological categories (Jacobson, 2001; Jacobson et al., 2011). This is 

reflected in the study’s focus on specific complex system components and ontological 

differences between types of systems.  Finally, the importance of transfer influences the 

design of this study through the investigation of student understanding of ontological 

categories outside the domain in which they are learned. 

Complex Systems 

A system is an interconnected set of elements organized in a way that achieves 

something (Meadows, 2008).  There are many kinds of systems, and for the scope of this 

study we will deal with only two kinds of systems: Clockwork and Complex Systems.  

Clockwork systems refer to complicated systems that have multiple elements with set 

roles, and whose interactions do not change.  Examples of clockwork systems are clocks, 

airplanes, and computers.  Complex systems vary in nature, but overall can be described 

as systems without central control that follow simple rules, give rise to complex behavior, 

and adapt through learning or evolution (Mitchell, 2009).  Elements or components in 

complex systems self-organize. Through non-linear interactions, the system shows 

emergent and complex properties not exhibited by the individual elements (Jacobson, 

2001).  For example, in traffic jams, cars move according to their own individual goals to 

reach their destination.  As drivers self-organize and switch lanes, hoping to choose a 

faster path, cars behind them brake and this accumulating braking action spreads 

backwards to the rest of the cars.  As cars move ever more slowly forward, the traffic jam 

itself emerges and spreads backwards (Resnick, 1996).  

Many of today’s most pressing problems involve recognizing and understanding 

complex systems.  Whether trying to understand how to address the declining health of 
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ecosystems, how to improve communication or delivery networks, or how to understand 

and stop the spread of diseases, a complex systems lens is needed if actions are to be 

effective (Meadows, 2008).   

Complex Systems vs. Clockwork Systems 

In the following section, I outline the differences between complex systems and 

clockwork systems.  To understand complex systems and student perceptions, it is 

necessary to know which components are important in defining these systems and 

therefore the components that students may confuse across ontological categories.  While 

categories are discussed below as distinct, several studies have assessed students’ overall 

understanding of these components as reflecting complex systems understanding (Goh, 

Yoon, Wang, Yang, & Klopfer, 2012; Yoon, 2008, 2011). Furthermore, learners may not 

hold distinct or mutually exclusive understandings of these components.  

Understanding 

The first important difference between clockwork and complex systems is that 

clockwork systems are reductive or, the sum of their parts.  For example, the overall 

functioning of a clock can be understood by looking at its gears and inner parts.  One can 

predict what the clock will do and how it will function based on the fixed relationships 

and interactions between these parts.  In contrast, in a complex system, the system is non-

reductive.  For example, within ecosystems, patterns of weather emerge and although we 

understand the parts and how they interact, we cannot predict the macro outcomes from 

an understanding of the individual parts.  Because of these emergent outcomes, we can 

neither fully predict how the system will change nor can we see these larger system 
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properties from just the parts.  Similarly, by looking at the individual cars in a traffic jam 

the larger phenomenon of the traffic jam is not observable. 

Action Effects 

One of the reasons it is difficult if not impossible to predict the macro outcomes 

of complex systems is because parts within systems often have non-linear effects on other 

parts of the system.  In this way, small actions may lead to large effects, often called the 

Butterfly Effect. This idea was first popularized by Ray Bradbury in 1952 and the term 

was coined by Edward Lorenz in 1963.  It means that changes in one part of a system 

may have unpredictable and non-proportional effects in other parts of the system.  In 

contrast, within clockwork systems, effects are proportional and small actions have small 

effects with no potential for non-linear effects.  Complex systems have linear effects as 

well, but one of their defining features is the potential for non-linear effects.  

Order 

Within a complex system like an ecosystem, order is decentralized and arises 

from the interactions within the system.  Organisms within an ecosystem make their own 

individual choices and from these choices and interactions between micro parts, order 

arises in the system.  In contrast, in a clockwork system, order is either centralized within 

the system, or an external agent imposes order.  In man-made machines, order is designed 

into the system.  In companies, order is centralized in a top-down manner where 

employees (agents, defined as single actors within the system) are controlled by a central 

authority through levels of rank (e.g. chain of command).  
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Causes 

In complex systems, effects have multiple causes whereas in clockwork systems, 

causes are singular.  For example, in a car, the same components will always interact and 

cause the desired behavior (unless the system malfunctions): when a brake pedal is 

pushed, the brake pad will clamp down on the tire and cause the car to stop.  Even if there 

are multiple parts, the cause is still the same.  Within a complex system, a variety of 

causes may give rise to a macro behavior.  There may be cyclic causality, where a cause 

can be an effect and vice-versa (Grotzer, 2012).  Cyclic causality may involve feedback 

loops that reinforce a behavior such as in symbiotic relationships within ecosystems.  

Agent Actions/Adaptation 

Within clockwork systems, agents’ actions are not predictable.  In an ecosystem 

we may know that bears will eat fish, but we do not know which fish, or if one day the 

bears might choose a different species of fish.  Further, because agents can adapt as their 

environment changes, we cannot predict which parts will interact as the system changes.  

Perhaps if fish become scarce, bears will begin eating squirrels.  In contrast, within 

clockwork systems, agent actions are predictable and non-adaptive.  We can predict 

which parts will interact because this is designed into the system.  Because parts do not 

adapt, these systems are vulnerable to failures of parts.  If a gear breaks in a clock, the 

whole clock ceases to function.  Because of this vulnerability, backup measures are often 

built into clockwork systems such as emergency brakes, or extra engines on airplanes.   

Purpose 

The purpose of complex systems is non-teleological.  This means that parts within 

the system are not acting in order to create the system but out of local goals and desires.  
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In ecosystems, bears do not eat fish because the ecosystem will function better but 

because they have their own needs to consume energy.  Clockwork systems have a 

teleological end purpose to their existence.  The parts are assembled and the system is 

designed to accomplish a larger goal.  The parts exist for the system.  This can be seen in 

the anecdote that the main function of a bureaucracy, an example of top-down centralized 

control, is to perpetuate itself.   

Processes 

Finally, complex systems are composed of processes that do not have distinct 

beginning or end points (Grotzer, 2012; Meadows, 2008).  Although relationships and 

interactions may be determined, they do not have starting points.  In clockwork systems, 

interactions can be described as static events that exist in an order (Grotzer, 2012; 

Jacobson et al., 2011).  For example, a person winds a clock, and then one gear turns 

another, which turns another, which turns the minute hand.  Although parts may function 

simultaneously, these interactions can be broken down into static events. 

Complex Systems Learning Difficulties 

This section describes alternative and inaccurate ideas that people have about 

complex systems, examines why properties of complex systems are so difficult to learn, 

and then explores the importance of ontological categories.   

Alternative Ideas & Biases 

Learners of all ages have alternative ideas about complex systems that indicate 

they see complex phenomena incorrectly as clockwork systems.  People believe 

evolutionary changes are acquired and passed through trait use, such as giraffe necks 

becoming longer because they are stretched during life (Bishop & Anderson, 1990); that 
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ant colonies are directed by leaders (Resnick, 1996); that chemical reactions stop at 

equilibrium (Stieff & Wilensky, 2003); or that electricity is a substance (Chi, 2005).  

Students also tend to assume explanations that involve central control and deterministic 

causality (Wilensky & Resnick, 1999) and to resist explanations that invoke self-

organization, random, or decentralized processes (Feltovich, Spiro, & Coulson, 1989; 

Resnick, 1996; Wilensky & Resnick, 1999). 

Although alternative ideas probably arise from multiple sources of difficulty 

(diSessa, 2006), a large cause might be due to our intuition and common beliefs, which 

complex systems often contradict.  In general, learners’ intuitive knowledge of natural 

phenomena can clash with scientific explanations of phenomena and these intuitive ideas 

tend to be robust and resistant to change (Vosniadou & Brewer, 1992).  Learners’ prior 

experience can often lead to a misunderstanding of complex systems (Feltovich et al., 

1989).  One example is the centralized-deterministic mindset, where having experience 

with top-down systems can lead learners to assume the same top-down control for all 

systems (Resnick & Wilensky, 1998).  Because complex systems are bottom-up systems 

with decentralized control, students who assume the presence of leadership will 

misconceive the system and its qualities.  Another example is that students often believe 

that there is a linear relationship between the size of an action and the subsequent effect 

(Casti, 1994) because they often encounter linear relationships in the world. 

Explaining complex systems by applying ideas from clockwork experiences can 

create alternative ideas.  Because of biases such as centralized control (Resnick, 1996) 

students cannot simply observe to create deeper understanding.  Students also do not 

recognize or consciously experience complex systems on their own, and thus do not 
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create analogs from which to reason about complex phenomena (Abrahamson & 

Wilensky, 2005; Goldstone & Wilensky, 2008).  Therefore, when students begin learning 

about complex systems, they often start with a base of alternative ideas that may lead 

them to make incorrect assumptions. 

Novices may incorrectly perceive complex systems as clockwork systems because 

they focus on the more tangible and superficial features shared by both systems.  Studies 

of novice middle school students’ understanding of aquaria compared to experts’ 

understanding have found that novices focus on the visible structural features of systems, 

while experts are able to focus on the behavioral and functional features as well (Hmelo, 

Holton, & Kolodner, 2000; Hmelo-Silver, Marathe, et al., 2007; Hmelo-Silver & Pfeffer, 

2004).  One study by Hmelo-Silver, Marathe, and Liu (2007) examined students’ mental 

models for a circulatory system as well as aquaria.  Results demonstrated that novices 

focused on the visible structure, because the dynamic and invisible processes of 

behavioral mechanisms were difficult to comprehend.  In contrast, experts understood 

relationships between parts of a system, could articulate how emergent properties arise, 

and used an understanding of complex systems to think about the system as a whole 

(Hmelo-Silver, Marathe, et al., 2007).  In other words, knowing the function and behavior 

of a system means more elaborate understanding of the interrelationships in the system 

and a better understanding of the type of system.   

In complex systems, causality is often both time-delayed and invisible (Feltovich, 

Spiro, Coulson, & Adami, 1994; Grotzer, 2012).  When something happens at one part of 

an ecosystem, it is not obvious where the original cause of the behavior originated.  For 

example, a fish die-off might occur from runoff from a factory on the shore, or from a 
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farm upstream that has slowly been adding nitrogen runoff to the river.  Because of the 

time-delayed and invisible nature of many complex systems, behavior can be the hardest 

part for students to understand in a system (Hmelo et al., 2000).   

Complex systems have multiple levels, such as the micro level, where parts 

interact, and the macro level, where overall system behavior can be observed. Alternative 

ideas about levels in complex systems are especially pernicious, because 

misunderstanding at one level can have adverse effects on understanding at other levels 

(Chi, 2000; Feltovich, Coulson, & Spiro, 2001).  Level slippage (confusion between 

levels) is responsible for many deep misunderstandings about phenomena in the world 

(Wilensky & Resnick, 1999), and to understand complex systems students need to be 

able to shift through levels.  Further, these multicomponent phenomena are extremely 

taxing for working memory.  Students must be able to process simultaneous interactions 

that are often invisible, time delayed, and dynamic while working against assumptions 

gathered from their everyday experiences (Feltovich et al., 2001).  Often, behavior at 

multiple levels may not be similar, and even when students understand micro and macro 

relationships they wrongly place causes within the system at the macro level (Penner, 

2000, 2001).  For instance, if a student sees an orderly line of ants, they may assume from 

this macro behavior that the ants are being directed and then make untrue assumptions 

about these micro parts.  The organized line may suggest that the ants are themselves 

following orders or have a preference for whether the overall pattern (the line) exists, 

which they do not. 
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Ontological Categories 

Finally, studies suggest that creating separate and distinct ontological categories 

for complex systems can help students develop deeper understanding about complex 

systems (Slotta & Chi, 2006).  Students may misconceive complex systems as having 

incorrect properties because systems are understood by their membership within a 

generic system category that more accurately represents clockwork systems.  Thus 

concepts inherit features of categories and concepts that are categorized into the wrong 

ontological category may wrongly take on the attributes of that category (Chi, 2005; Chi 

& Roscoe, 2002).  For example, if a student believes that electricity is a substance instead 

of a process, he would believe that electricity can be stored in a battery since physical 

presence or mass is an attribute of a substance (Chi & Roscoe, 2002).  Students who 

incorrectly attribute characteristics of categories fundamentally misunderstand the 

concepts. 

Because students may not consciously encounter and experience complex systems 

at multiple levels, or correctly make connections between levels, they may lack a 

category for these systems and their emergent processes.  Without an emergent category, 

students may have difficulty conceptually shifting complex systems’ concepts into a 

correct category, making these misunderstandings robust (Chi, 2005; Chi & Roscoe, 

2002).  Simply telling a student of the existence of the category or its properties may not 

be enough to create this new concept.  Emergent categories have interactions which are 

uniform, simultaneous, independent, continuous, and decentralized; while causal 

categories have interactions that are distinct, sequential, dependent, finite (meaning they 

terminate), and global (Chi & Roscoe, 2002).  While a student may look at a list and see 
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that categories are different, the learner may still not be able to make meaning.  As 

discussed above, to understand an element such as emergence, students must attend to the 

collective interactions, and focus on the overall consequence of these interactions across 

time (Chi & Roscoe, 2002). 

Studies show differences in how novices and experts construct solutions to 

complex system problems (Jacobson, 2000, 2001). Novices fail to use the correct 

ontological category by trying to make sense of an emergent process using a causal (or 

direct) category.  This domain-general explanation of misunderstanding, where students 

categorize across ontological kinds, means it may be helpful to teach students about the 

causal structure that underlies emergent processes. Such an approach may enable students 

to recognize a variety of emergent processes (Chi, 2005).  Novice ontological 

miscategorization can also help explain why alternative ideas are robust and how an 

instructional intervention that generalizes across domains might be effective (Chi, 2005). 

Some research points to ways to effectively convey these system categories.  

Slotta and Chi (2006) found that directly teaching students about schemas led to 

increased learning about diffusion.  In a subsequent study that explained ontology and 

emergent processes, students created deeper understandings of electrical current (Chi et 

al., 2012).  Addressing students’ ontological and epistemological beliefs is important 

because they may constrain (or aid) learners’ ability to understand certain higher order 

concepts (Chi, 2005; Vosniadou, 1994; Vosniadou & Brewer, 1992).  By definition, 

novices need to undergo radical conceptual change, and require curricula drawing 

attention to the network of beliefs and alternative ideas they have about the world that 

conflict with complex understandings (Jacobson & Wilensky, 2006). 
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In sum, to understand a complex system, students must correctly recognize and 

understand the behaviors of a variety of components that make up the system.  This 

study’s intervention conditions first aims to focus students on the more fundamental 

aspects of complex systems.  A second goal is to help students recognize complex 

systems when they encounter them and correctly identify which type of system—

complex or clockwork—they are investigating.  It does not help students to theoretically 

know what a complex system is, and how it works, if they continue to miscategorize 

systems because they do not recognize them.  This difficult cognitive task represents far 

transfer, where learners recognize underlying principles and are able to apply this 

understanding to new domains.  To do this, students need to practice “building an 

interpretation” (Goldstone, 2006, p. 40) where their prior experience influences their 

perception and enables them to generalize by “rigging up a perceptual system to interpret 

a situation according to a principle, leaving this rigging in place for subsequently 

encountered situations” (p.41). 

Simulations: Current Approaches & Studies 

Computer modeling and computer-assisted instruction have facilitated progress in 

some of science’s most difficult issues, including complex systems (Wilensky & Resnick, 

1999).  Simulations, or computer-based representations of phenomena, have engaged 

students to explore multi-level thinking, and studies have used simulations to allow 

people of all ages to engage in difficult topics, such as multilevel thinking and the 

concept of emergence (Wilensky & Resnick, 1999), as well as difficult causal issues 

within ecosystems (Grotzer et al., 2013).  



24 

 

 

 

The next section reviews two main strands of research that use simulations or 

computer-based instruction to help learners understand complex systems.  One area of 

complex systems research uses simulations and agent-based models to help students 

understand complex systems with visualizations.  A second area of research has used 

agent-based models in a variety of countries to help stakeholders better understand the 

complex systems they operate in, facilitate participation among these agents, and shape 

policy.  

Agent-Based Models and Participatory Simulations in Education 

Several classroom-based studies of computer-simulated learning environments 

demonstrate that simulations can help middle school through undergraduate-age students 

learn about complex systems.  Studies have used agent-based models (e.g. NetLogo, 

StarLogo), where students are able to manipulate parameters and observe resulting micro-

level interactions (Abrahamson & Wilensky, 2005; Colella, Borovoy, & Resnick, 1998; 

Resnick & Wilensky, 1998; Wilensky & Stroup, 1999); immersive simulations (e.g. 

EcoMUVE), where students move around in virtual environments (Grotzer et al., 2013); 

or participatory simulations (e.g. HubNet, Thinking Tags), which allow students to 

interact with each other in virtual worlds (Colella, 2000; Wilensky & Stroup, 1999).  

Studies typically target two forms of reasoning: agent-based reasoning, where students 

reason about properties and behaviors of elements within a system, and aggregate 

reasoning, where students reason about the properties and behaviors of the macro system 

(Levy, Kim, & Wilensky, 2004; Stroup et al., 2002). The next section discusses studies 

with several prominent agent-based and participatory simulations. 
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NetLogo/StarLogo.  The first educational studies of computer-simulated 

complex systems such as traffic jams and ant behavior were conducted with an agent-

based modeling program called StarLogo (Resnick & Wilensky, 1993).  Although 

research demonstrated that students’ decentralized thinking increased after experience 

with the simulation (Resnick, 1996), students often reverted to previous ways of thinking 

about complex systems when they applied their understanding to novel situations 

(Jacobson & Wilensky, 2006).   

From these initial studies, Wilensky (1999) developed Net Logo, an agent-based 

modeling suite of simulations that allows students to manipulate complex systems.  

NetLogo allows students to actively manipulate elements at the micro-level and to 

observe the emergent effects of those manipulations at both the micro and macro levels 

(Jacobson & Wilensky, 2006). The agent-based approach has proven effective in many 

disciplines, where students demonstrate enhanced complex systems understanding after 

(1) exploring chemical reactions derived from behavioral rules of individual molecules 

(Stieff & Wilensky, 2003); (2) creating and testing individual-level models of predator-

prey interactions (Wilensky & Reisman, 2006); (3) figuring out probability distributions 

from rules of elements (Abrahamson & Wilensky, 2004); and (4) deriving the ideal gas 

law from observing micro interactions (Wilensky, 2003; Wilensky, Hazzard, & Froemke, 

1999).  NetLogo simulations and accompanying curricula were designed to focus student 

attention on making connections between levels and understand emergent properties 

(Wilensky & Resnick, 1999).  

ACT Model.  The ACT project teaches middle school students about complex 

systems through aquaria using the Aquarium Construction Toolkit (ACT) (Vattam et al., 
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2011).  The toolkit uses a Structure, Behavior, and Function focus of complex systems 

and allows students to design systems.  Structures are how parts are physically related in 

a system, Behaviors are how parts are able to act, and Functions are the roles of these 

parts (Hmelo-Silver & Pfeffer, 2004)  Previous research has shown that students have 

difficulty understanding the causal behaviors and functions of complex systems (Hmelo 

et al., 2000; Hmelo-Silver, Marathe, et al., 2007; Hmelo-Silver & Pfeffer, 2004).  The 

ACT environment allows students to interact with a complex system and focuses their 

attention specifically on what is occurring at the structural, behavioral, and functional 

levels.  Students are able to create models and make connections between parts of the 

system and label how they interact.  Researchers report that students are also able to 

make connections between different levels of abstraction within the system (Hmelo-

Silver, Jordan, Eberbach, Rugaber, & Goel, 2011) and express more behavioral and 

functional components of the system (Goel et al., 2010, 2013; Sinha et al., 2010; Vattam 

et al., 2011), which are signs of more expert thinking about complex systems.  There is 

also some evidence that teaching complex systems with Structure, Behavior, and 

Function modeling in the ACT environment focuses students on the invisible components 

of complex systems as well as non-linear relationships (Honwad et al., 2010).  Future 

research is now being done using MILA-S, a system that combines both the ACT 

modeling system and NetLogo to bridge the causal model students create with a NetLogo 

simulation (Joyner, Goel, & Papin, 2014). 

EcoMUVE.  The EcoMUVE project addresses issues with causal reasoning, 

which can cause learners to misconceive the properties of complex systems (Grotzer, 

2012).  EcoMUVE was designed by researchers at Harvard and is a multiuse virtual 
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environment (MUVE) that allows students to explore two different ecosystems.  For 

example, in one of the simulations, a fish die-off occurs and students are tasked with 

investigating the causes of the event.  Students are given tools to explore and change both 

the microscopic level in the system as well as to explore the macroscopic environment 

because emergent features of complex systems occur across levels (Wilensky & Resnick, 

1999).  Learners are also able to move forward and backwards through time to experience 

the non-linear interactions that are important to the ecosystem.  Research suggests this 

learning environment not only shifts students’ causal understanding from more novice, 

event-based causes to more expert, process-based causes (Grotzer et al., 2013) but 

increases their ecosystem understanding (Metcalf, Tutwiler, Kamarainen, Grotzer, & 

Dede, 2013). While students participate by exploring within the environment of a 

complex system, they do not take the role of agents within the system, however. 

HubNet.  Only a few studies have explored agent-based participatory simulations 

to aid complex systems understanding. An early example is HubNet (Wilensky & Stroup, 

1999), which allows students to take the roles of the micro-parts in complex systems in a 

variety of NetLogo simulations (Wilensky & Stroup, 2000a). For example, students can 

act as traffic lights trying to control gridlocked traffic with each student as a node in the 

system (Wilensky & Stroup, 2000b). In another activity, students take the role of 

molecules to better understand the interaction and movement within gases. These initial 

experiments suggested role-playing activities were both engaging and helpful for 

students, yet only anecdotal evidence was collected (Wilensky & Stroup, 2000a). HubNet 

is one of the first simulations where students can become agents participating in the 
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model to experience how their micro actions turn into macro outcomes.  The simulation 

has not been studied or updated in over a decade, however. 

Thinking Tags.  As computers have become smaller, technology has helped 

facilitate the participatory nature of simulations by making them mobile.  One of the first 

mobile participatory simulations was created at MIT and involved the use of Thinking 

Tags (Colella et al., 1998). Thinking Tags are wearable, programmable devices that use 

infrared communication to make students agents within the simulation (Colella, 2000). 

For example, students can model the spread of a virus by becoming agents in the system.  

In one study, students used Thinking Tags as public displays to project students’ beliefs 

while talking about genetic engineering (Yoon, 2008). Grade 9 students learned about the 

content of evolution while simultaneously using an evolutionary approach to understand 

complex systems. Methods included promoting variation, selection and interaction of 

ideas to help student ideas evolve.  Through taking the roles of agents in this system, 

students both successfully functioned as a complex system as well as shifted their 

understanding of systems from clockwork to complex (Yoon, 2008). 

These foundational studies highlighted several important factors for participatory 

simulations.  First, results demonstrated that students were able to discuss, hypothesize 

and then test their ideas about the underlying system they represented (Colella, 2000).  

Second, students were able to create a shared and meaningful experience through the 

participatory experience.  Third, students had different experiences within the simulation, 

and by making understanding overt and aggregating these different experiences, the 

simulation helped students collectively construct group understanding.  Collaborative 
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learning was accomplished through positive interdependence and by promoting 

interactions and group processing (Klopfer, Perry, Squire, & Jan, 2005). 

Overall, participatory simulations can help learners visualize abstract concepts 

associated with complex systems (Wilensky & Stroup, 2000a) as well as directly 

experience what happens in a system (Colella et al., 1998).  Through direct experience or 

modeling of the system, learners can develop understanding of the assumptions and 

develop connections between micro and macro behaviors (Wilensky & Resnick, 1999). 

Simulations can also serve as a shared representation that facilitates development of 

shared understanding and collaborative learning (Yoon, 2008).  Although these 

simulations are a powerful way of allowing students to interact with complex systems, 

understanding and transferring understanding of complex systems has proven difficult 

(e.g. Grotzer et al., 2013; Jacobson, et al., 2011). Even though students may be able to 

develop more expert process-based explanations of causality, students still hold many 

alternative, incorrect ideas, such as focusing on event-based responses when explaining 

causality in complex systems (Grotzer et al., 2013; Hmelo-Silver, Marathe, et al., 2007).   

Stakeholder Modeling 

Research on agent-based participatory simulations of complex systems also 

models the actions and interactions of human agents and stakeholders to inform policy 

makers within complex systems (Pahl-Wostl, 2002). These simulations take a variety of 

approaches from using computers to complex board games to model systems.  

Simulations such as SAMBA-Week (Boissau & Castella, 2003), CORMAS (Bousquet, 

Bakam, Proton, & Le Page, 1998), and MAS (Bousquet & Le Page, 2004) allow 

stakeholders and policy makers to test their assumptions and use experiences to discuss 
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and help guide policy making (Learmonth Sr. & Plank, 2015). Stakeholder modeling 

simulations can also be used to facilitate a shared and iterative decision-making process 

for creating resource management policy (D'Aquino, Le Page, Bousquet, & Bah, 2003). 

Studies using stakeholder simulations are discussed next. 

 Sylvopast.  Sylvopast is a Role Playing Game as well as a Multi-Agent 

Simulation that was originally used to represent farmers and foresters as agents in 

southern France (Etienne, 2003). The simulation uses a companion modeling approach 

where stakeholders are interviewed and the variety of viewpoints are used to build a 

shared model.  Over 32 games have been run and Sylvopast has been adapted to model 

fire hazards on the edge of forests (e.g. NimetPaLeFeu), as well as phenomena such as 

water usage, pollution, and disease in a village (e.g. AtollGame Simulator) (Barreteau, 

Bots, & Daniell, 2010). In all of these studies, stakeholders gave input throughout the 

iterative development process and simulations were used to increase knowledge, facilitate 

effective policy making, and support communication among actors. 

Shadoc.  Shadoc is a hydro-agricultural multi-agent simulation originally 

designed as a tool for simulating different scenarios around irrigation (Barreteau & 

Bousquet, 2000). Shadoc was created to allow learning by simulating instead of learning 

by doing, so institutions can test hypotheses before implementing them in the real world.  

Shadoc has had several experiments in the Senegal River Valley (Barreteau, Bousquet, & 

Attonaty, 2001; Daré & Barreteau, 2003; Lynam et al., 2002) as well as Thailand and the 

Philippines (Barreteau & Bousquet, 2000). The multi-agent simulation was designed with 

a companion modeling approach that allows input from stakeholders in the model.  By 

discussing the assumptions of the model, stakeholders can (a) decide if their assumptions 
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match the model’s, (b) possibly alter their choices, and (c) use the model’s outcomes 

during negotiation (Barreteau et al., 2001). From several case studies, researchers posit 

that as an agent-based model, Shadoc facilitated a common understanding of a problem 

because it was developed with and incorporated multiple viewpoints (Lynam et al., 

2002). The model became a shared representation of a problem, which in turn facilitated 

negotiation.  Through several implementations, researchers have also learned that 

participants in workshops have sensitivities to social hierarchies and these sensitivities 

affect their openness to participate in gameplay (Barreteau et al., 2001). Further, it is 

extremely important that the methodology of game development through involvement of 

stakeholders leads to an acceptance that the role-playing reality represents stakeholders’ 

own social reality, which researchers confirmed through interviews (Daré & Barreteau, 

2003).  

CORMAS.  CORMAS (COmmon-pool Resource and Multi-Agent System) is a 

multi-agent framework that has been used to simulate the interactions of a group of 

agents within a shared environment (Bousquet et al., 1998; Le Page, Becu, Bommel, & 

Bousquet, 2012). From this underlying framework, many scenarios can be built on top of 

it, such as herd mobility in Sahel (Bousquet, Barreteau, Le Page, Mullon, & Weber, 

1999); fuelwood consumption and landscape dynamics in Burundi (Le Page, Bousquet, 

Bakam, Bah, & Baron, 2000); pine encroachment in southern France (Etienne, Le Page, 

& Cohen, 2003); and an irrigation water simulation in Bhutan (Gurung, Bousquet, & 

Trébuil, 2006). All simulations are based around natural resource management. 

Implementations often begin with a role playing game that stakeholders use to decide on 
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rules for the system before constructing the computerized multi-agent simulation, which 

stakeholders then validate (D’Aquino et al., 2002).  

A large focus of the CORMAS framework has been in companion modeling as 

illustrated in the Bhutan application (Gurung et al., 2006). In Bhutan, stakeholders were 

conflicted over water resources and a model was built to represent the situation.  

Stakeholders were invited to participate in a role-playing game and then semi-structured 

interviews were conducted to find out if the game represented their reality and what 

would need to be modified.  This information was then used to create a multi-agent 

simulation using the CORMAS framework and several scenarios were proposed and 

tested with participants.  Surveys showed that farmers felt the model was representative 

and that it helped them better understand the benefits of sharing water (Gurung et al., 

2006). They also found that the model effectively facilitated discussion among the 

players, as well as increased knowledge and understanding of water sharing. Some 

participants even used information from the gameplay to alter when they released water.  

This goal of companion modeling was also labeled Self-CORMAS and further involved 

participants in earlier design stages so that the agent-based simulation could best serve as 

a mediating support for dialogue (D’Aquino, Le Page, Bousquet, & Bah, 2003). 

Scaffolding Understanding of Complex Systems 

Several computer-based simulation studies demonstrate that with the right 

guidance, students are able to develop a more sophisticated understanding of complex 

systems (Stieff & Wilensky, 2003; Vattam et al., 2011). In addition, role-playing 

participatory simulations can also increase awareness and understanding of different 

perspectives and stakeholders (Barreteau et al., 2001; D’Aquino et al., 2003). Although 
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simulations offer powerful visualizations of complex processes and phenomena, students 

continue to encounter difficulties in learning about complex systems (Grotzer et al., 2013; 

Jacobson et al., 2011).  Taken together, these studies point to a need to support 

individuals when learning about complex systems using simulations.  

Scaffolding 

Definition and History 

Scaffolding is both a noun that refers to structures that are tailored to help learners 

until they can produce the behavior on their own, and a verb referring to the process of 

using scaffolds in a learning activity until independent performance is achieved (Pea, 

2004).  Scaffolding is the just-in-time support that allows students to gain skills in 

problem solving which unaided, would have been beyond their ability.  Introduced by 

Wood, Bruner, & Ross (1976), its original conception referred to the scaffolding that 

occurs in the world in everyday learning situations between parents and their children, or 

between experts and novices; such situations are neither formal nor designed.  Since this 

inception, the term scaffolding has been used for an increasingly diverse amount of 

applications with a large range of scaffolding types (Pea, 2004).  Scaffolding is also 

increasingly used to refer to features of computer programs and less often for one-to-one 

scaffolding (Puntambekar & Hubscher, 2005). 

Although not originally informed by Vygotsky, scholars have since used the zone 

of proximal development to inform and specify effective scaffolding, including through 

incorporating the learner’s need for social interaction into scaffolding (Pea, 2004).  The 

Zone of Proximal Development represent the boundaries of activity within which a 

learner can succeed at a task when under more capable guidance (Vygotsky, 1978).  
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Scaffolding helps span the distance between a child’s current ability level, and that which 

he or she can achieve but only with help. 

Scaffolding is a critical component of student learning (Chi, De Leeuw, Chiu, & 

LaVancher, 1994; Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001) that makes 

accessible and manageable many topics that students would be unable to learn on their 

own. Scaffolding also makes learning more efficient (Hmelo-Silver, Duncan, et al., 

2007).  Good scaffolding shows students how and why to do individual tasks (Hmelo-

Silver, 2006), by helping motivate them to understand why a task is important while 

reducing cognitive load created by their lack of procedural knowledge (Sweller, 1998).  It 

includes diagnosis, calibrated support, and individualization.  Support may consist of pre-

stocked questions, dynamic support that adapts to student understanding, or tools that 

guide student thinking (Azevedo & Hadwin, 2005).  By structuring tasks to focus 

students on those that are relevant to learning goals, scaffolding helps reduce cognitive 

load by removing distractions and reducing non fruitful pathways (Salomon, Perkins, & 

Globerson, 1991). 

Scaffolding works by “enlisting student interest, controlling frustration, providing 

feedback, indicating important task or problem elements to consider, modeling expert 

processes, and allowing questions” (Belland, 2014, p. 507).  These mechanisms help to 

engage and focus students by reducing cognitive load, and correcting mistakes while also 

demonstrating correct procedural knowledge.  Reiser (2002, 2004) characterized 

scaffolding as having two competing mechanisms: structuring and problematizing.  

Structuring guides and supports learners in planning and performance to make learning 



35 

 

 

 

easier, while problematizing helps shape performance and understanding by pointing 

students to important content and creating conflict, if needed, with current student beliefs. 

Despite the broad usage of the term scaffolding, it is meant to differ in several 

ways from simple aids like calculators.  First, scaffolding both simplifies and highlights 

complexity instead of just simplifying or facilitating a procedure (Belland, 2014).  

Relatedly, scaffolding can address complex knowledge and processes instead of just 

simple procedures because more knowledgeable mentors or computer-based instruction 

typically enact scaffolding.  Within Computer Based Learning Environments (CBLEs) 

scaffolding is defined as “a layer of supportive features that lies on top of software and 

that acts on learners directly and straightforwardly” (Quintana et al., 2004, p. 341). 

Some controversy exists over whether fading, defined as the removal of support 

as students learn, is necessary to be considered scaffolding (Belland, 2014; Pea, 2004), or 

whether some scaffolds support critical thinking and active learner engagement while not 

being removed.  Technology scaffolds have become more prevalent in learning situations 

and are not always expected to be removed (Puntambekar & Hubscher, 2005). In this 

study, scaffolding is considered as supports for learning and do not necessarily fade over 

time. 

Benefits 

Research on scaffolding indicates many benefits for learners.  Scaffolding can 

help build critical thinking skills, support student engagement in active and complex 

processes such as scientific inquiry, and allow mentors to teach students to use critical 

thinking abilities instead of just lecturing the content before a task (Linn, 2000).  

Scaffolding has been used for a variety of learning goals in CBLEs.  It has been applied 
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to improving higher order thinking abilities (Wood et al., 1976); content understanding 

(Azevedo, 2005; Linn, 2000); and metacognition (Azevedo, 2005; Quintana, Zhang, & 

Krajcik, 2005). Scaffolds for learning also improve skills such as argumentation (Belland, 

Glazewski, & Richardson, 2008), and motivation (Belland, Kim, & Hannafin, 2010). 

Computer-based Scaffolding 

For the past 20 years or so, computers and simulations have been proposed as a 

way to scaffold learning difficult topics.  For example, science visualization technology 

was expected to aid learning through scientific inquiry (Edelson, Gordin, & Pea, 1999).  

Many have argued that software can support learning by providing structure for difficult 

tasks (Guzdial, 1994; Toth, Suthers, & Lesgold, 2002) and that learners could engage in 

activities that share key features of expert practice yet are either simplified or aided in 

such a way that they are carrying out key parts of the process (Lave & Wenger, 1991).  In 

a push for science inquiry, facilitated with computer-based technology, Roschelle and 

colleagues (Roschelle, Pea, Hoadley, Gordin, & Means, 2000) argued that technology 

could aid fundamental characteristics of effective learning, ranging from active 

engagement including participation in groups and frequent interaction and feedback, to 

increased connections to real-world contexts.  

Scaffolding Difficult Concepts 

In the following section I discuss the problem of scaffolding in ill-structured 

environments.  Studies demonstrate that differences in student outcomes can be attributed 

to scaffolding and how the scaffolding helps (or does not help) students learn from 

simulations (Honey & Hilton, 2011; Linn & Eylon, 2011).  Given the difficulty of 
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complex systems, scaffolding is crucial to help students learn about complex systems 

from simulations.  

Ill-Structured Environments 

Scaffolding helps students learning not only well-structured tasks such as algebra 

(Aleven & Koedinger, 2002; Koedinger, 2001; Lajoie & Derry, 2013), but also more 

open-ended investigations that require students to apply high levels of both domain 

knowledge and metacognitive skills.  Numerous studies demonstrate that scaffolding can 

help students use simulations (Chiu & Linn, 2011; Honey & Hilton, 2011; Linn & Eylon, 

2011; Linn, Lee, Tinker, Husic, & Chiu, 2006).  Because these learning tasks are more 

ambitious than rote tasks, they consequently require greater support for learners 

(Quintana et al., 2004).  Further, although open-ended learning environments such as 

simulations may help students visualize processes, these environments also pose many 

challenges to scaffolding (Pea, 2004; Puntambekar & Hubscher, 2005; Reiser, 2004).  

CBLEs with poor scaffolding can even be detrimental to student learning because they 

add confusing non-germane information that students must attend to (Azevedo & 

Hadwin, 2005).  Ill-structured environments, such as complex systems simulations, pose 

challenges for traditional learning instruction.  Spiro, Feltovich, Jacobson, and Coulson 

(1992) argue that neglecting these difficulties has led to predictable failures in learning, 

exhibited by, for example, oversimplification in student answers and the failure to 

transfer ideas into other domains.  

To address these issues, Quintana et al. (2004) provide a framework for 

scaffolding inquiry projects in science.  The framework focuses on the three interactive 

processes of sense making, process management, and articulation and reflection.  Sense 
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making takes place when students generate hypotheses, analyze data, collect 

observations, and carry out a variety of other scientific tasks.  Process management refers 

to how students manage sense making tasks and make decisions about how to proceed in 

their investigations.  Finally, articulation and reflection are how students review and 

evaluate and then communicate their findings (Quintana et al., 2004). These comprise 

tasks students must perform in scientific inquiry 

More directly related to complex systems, Jacobson and Wilensky (2006) 

proposed five design principles for learning about complex systems with CBLEs.  First, 

students should learn about complex systems through experience.  Because important 

aspects of complex systems occur over different time scales of time and place, 

simulations and agent-based models are needed for students to experience these 

important elements and make them visible (Hmelo-Silver, Marathe, et al., 2007).  

Second, the organizing framework of complex systems needs to be made explicit because 

students do not just understand complex systems from observation (Goldstone, 2006; 

Jacobson, 2001).  Third, students should be encouraged to collaborate, discuss, and 

reflect.  Because knowledge and beliefs are constructed in socially mediated contexts 

(Brown, Collins, & Duguid, 1989), students need to collaborate and make sense of 

complex systems information together (Liu & Hmelo-Silver, 2010).  Fourth, students 

should construct theories, models, and experiments, consistent with the tenets of 

scientific inquiry (Hmelo-Silver, Duncan, et al., 2007; Lederman, 1998) and working 

with complex systems models has proven an effective way to teach students 

(Abrahamson & Wilensky, 2005; Wilensky & Resnick, 1999).  Finally, researchers 
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should study learning trajectories for deeper understandings that students may develop 

(Jacobson & Wilensky, 2006).  

Scaffolding Complex Systems 

Scaffolding with simulations of complex systems has been shown to help students 

deepen their understanding of emergent processes in regards to electricity (Slotta & Chi, 

2006). This study used direct ontological training for university undergraduate students to 

promote understanding of the emergent processes of electricity.  Students with training 

showed improved performance on conceptual problems in electricity whereas control 

students showed no improvement.  Undergraduate students who enrich their ontological 

understanding have also shown some improvement on transfer problem solving tasks 

(Jacobson et al., 2011). In the Jacobson study, two types of text-based scaffolding for 

complex systems ontologies were employed with a hypermedia simulation.  Students who 

received the most scaffolding showed declarative knowledge gains.  There was no 

difference between the two scaffolding groups for the more difficult problem solving 

tasks, which required students to explain, for example, how birds form flocks, or how 

termites store food.    

Both self-monitoring scaffolds and ontological scaffolding may facilitate 

students’ complex systems understanding in the context of participatory simulations.  

Self-monitoring scaffolds include both those that help students reflect on their progress 

and understanding, and scaffolds that help students plan next steps during inquiry 

(Quintana et al., 2004). A combination of process management and articulation and 

reflection scaffolds (McElhaney et al., 2015) shall be referred to as self-monitoring 

scaffolds in this study.  Research demonstrates that students who plan and reflect on their 
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understanding perform better than students who do not (Chi et al., 1989; Recker & 

Pirolli, 1995). Engaging in reflection can also help students improve their content 

understanding (White & Frederiksen, 1998). An example of a reflection scaffold is a 

“Checking Our Understanding” prompt, which encourages students to reflect on their 

understanding (Davis & Linn, 2000). An example of a planning scaffold can be seen in 

simulation ExplanationConstructor, which asks students to create questions to guide their 

investigations (Sandoval, 2003). This study investigates how self-monitoring scaffolding 

may help students learn about complex systems with simulations. 

Ontological scaffolding may also help understanding and transfer by creating a 

framework from which students can organize complex systems concepts.  Scaffolding 

with ontology training (Slotta & Chi, 2006) is meant to help students create a separate 

and distinct ontological category for complex systems (Chi, 2005). Chi’s Framework 

(1992) suggests that students will make less faulty ontological categorizations if they 

have sufficient knowledge of the appropriate categories beforehand.  Whereas ontology 

training suggested for addressing alternative ideas, such training may also help for either 

conceptual change or subordination of misconceptions as well (Slotta & Chi, 2006). By 

comparing and talking about the differences of several key components of complex 

systems (Jacobson, 2001; Jacobson et al., 2011), and making explicit the organizing 

framework of complex systems (Goldstone, 2006; Jacobson, 2001), students may be able 

to more accurately perceive and understand these components when encountered.  For 

example, one study of ontological scaffolding placed NetLogo within hypermedia to 

explicitly visualize and explain complex systems to students (Jacobson et al., 2011). 

Students improved their declarative knowledge, and those with more expert complex 
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systems ontologies did better on a transfer task (Jacobson et al., 2011). There are no 

studies to date that have investigated whether scaffolding with an agent-based 

participatory simulation can effectively help students better understand complex systems, 

however.  Therefore it is important to understand what kinds of supports are most 

beneficial to understanding within this environment as well as which components of 

complex systems students find most difficult. 

Purpose of Present Study 

Because complex systems are inherently difficult, scaffolding student learning is 

integral to success.  Core challenges to understanding complex systems, such as their 

hierarchical nature and multiple interacting levels, means a large burden on working 

memory for learners (Hmelo-Silver & Azevedo, 2006).  Because learners have robust 

misconceptions (Chi, 2005), students will need help constructing a richer conceptual 

ecology embracing non-reductive & decentralized thinking, multiple causality, non-

linearity, and randomness (Jacobson, 2000, 2001).  A variety of agent-based models and 

simulations have shown both promise and difficulties in teaching students about complex 

systems.  

The aims of this study were to investigate whether a combination of scaffolding 

and agent-based participatory simulation could help students’ improve their 

understanding of complex systems components, and whether they could transfer their 

understanding to a new complex system.  Specifically, this study asked the following 

research questions: 
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1) Can interactive instruction using an agent-based participatory simulation of the 

Chesapeake Bay watershed improve student understanding of complex systems?  

a) For what components of complex systems (e.g., decentralization, nonlinear action 

effects, and Agents) do students demonstrate improved or limited understanding?  

b) Can students transfer their understanding of complex systems to another context 

of architecture?  

2) How does ontological scaffolding versus self-monitoring scaffolding during 

instruction using an agent-based participatory simulation of the Chesapeake Bay 

affect student understanding of complex systems?  

a) How does understanding of complex systems components compare for students 

receiving ontological scaffolding versus students receiving self-monitoring 

scaffolding?  

b) How does the ability to transfer understanding of complex systems to another 

context of architecture compare for students receiving ontological scaffolding 

versus students receiving self-monitoring scaffolding?  

I hypothesized that students would show improvement for most components, although I 

expected their understanding of more difficult components (e.g., Agent Effects, Order) to 

show less improvement (Goh et al., 2012). Causal claims cannot be made about the 

transfer task but students were expected to display similar relative ability to transfer their 

understanding of components within an urban context.  Finally, I hypothesized that given 

the difficulty of understanding complex systems concepts, the ontological scaffolding 

group would demonstrate a better understanding of these concepts after the intervention 

for both the non-transfer and transfer tasks.  
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Currently, very few studies have researched complex systems understanding in 

adults. Little is known about which components and which parts adults find difficult both 

within the domains in which they have learned them as well as transfer to new domains.  

Further, the use of agent-based participatory simulations is relatively limited to 

experiments without control groups and with small sample sizes.  This study will build on 

these findings with experimental methods.  Finally, given the difficulty students have in 

learning about complex systems a better understanding of which scaffolds helps students 

learn about complex system components would point to better future methods for 

teaching students.  
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CHAPTER 3: METHODS 

 Understanding complex systems in science is critically important to solving 

pressing problems in the world today.  Given the inherent difficulty of teaching students 

about complex systems, and the lack of systematic knowledge about how post-secondary 

students acquire and use their understanding of complex systems, additional research in 

the educational setting is needed.  This quasi-experimental study was designed to 

investigate the following overarching aims: (1) whether types of scaffolding within an 

intervention helped students improve their understanding of complex systems 

components through agent-based simulations and (2) whether scaffolding within an 

intervention helped students transfer their understanding of complex systems to another 

unrelated context.  

In the following section, I first describe the study’s research framework and 

methodology.  I then describe the participants and the sampling design used to select and 

place students into one of two experimental conditions.  Third, I describe data collection, 

including the instrumentation used to gather data, important characteristics of each 

measure, and the procedures for data analysis.  Finally, I discuss limitations of the study 

as well as internal and external validity concerns.  

Framework  

The framework that was used in this investigation of student complex systems 

understanding is the Complex Systems Ontology Framework (CSOF) (Jacobson et al., 

2011).  The CSOF framework posits that novices and experts think about complex
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systems differently in regards to five different components (also known as ontological 

categories) of complex systems (see Table 1).  Jacobson’s ordering of ontological 

components builds on his earlier research (2001) demonstrating how novices wrongly 

apply certain clockwork systems attributes to complex systems and showing what more 

expert understanding looks like.  Expert thinking means students recognize the correct 

attributes of components for appropriate systems.  For example, a person may believe an 

ecosystem is a complex system, but also incorrectly believe that order from the system is 

imposed from the top-down, applying the incorrect clockwork attribute of Order to a 

complex system.  Determining whether a learner actually understands a complex system 

means they must correctly recognized and understand how a number of components of 

the system operate.  This framework is used to determine student understanding of 

complex systems in this study. 

 

Table 1 

Ontological Categories for Complex Systems 

Ontologies Types of Ontological Attributes 

 Clockwork Complexity 

Actions Linear Nonlinear 

Order Centralized De-centralized 

Causes Single Multiple 

Agents Predictable Stochastic/Random 

Processes Static or Temporal Event Equilibration or Emergent 

 

 

Research Design 

This study uses a 2x2 pretest-posttest quasi experimental design.  Independent 

variables were whether students participate in a simulation and workshop intervention 

(within-subjects), and whether they receive either self-monitoring or ontological scaffolds 

for their treatment condition (between-subjects).  Dependent variables were student 
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understanding of adapted CSOF components in pretest, posttest, and transfer questions.  

This research design is optimal because randomized block sampling enables analyses 

indicating whether changes in student understanding were caused by treatment 

conditions. 

 This study also controlled for demographic variables.  Before intervention, 

information was collected on student gender, age, college major, and weekly time spent 

playing video games.  Although there is no literature suggesting that socio-demographic 

variables would affect outcomes, they were used to ensure statistically equivalent groups; 

exploratory analyses of descriptives confirmed similar gender, age, major, and video 

game use across all groups.  Time spent playing video games was hypothesized to 

possibly contribute to how well students understood the simulation; this variable was 

used during randomized block sampling to ensure equivalence between groups. 

Context & Participants 

Sample 

 The sample for this study included 96 students from an architecture class focused 

on the interplay of architecture and larger systems.  This class was a mid-level 

undergraduate course offered at a large tier-one research university and is required for 

architecture majors.  The majority of students in this class were architecture majors 

(92%) with the other 8 students majoring in 7 different programs.  The majority of the 

class was female (67%) and between 19 to 20 years old (73%).  

The only criterion for selection for this study was enrollment in the host class.  

Therefore, although students were randomly assigned while controlling for demographic 

variables to treatment conditions, they were not randomly selected into the study.  Access 
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to the class was granted by the instructor and students were given information sheets with 

the option to have their data removed from the study, which no students chose to do.  All 

undergraduate students (88%) and graduate students were included in this study, although 

graduate students did not participate in the transfer question because it was not a normal 

part of their class requirements.  

Data Collection (Sources & Procedure) 

Context 

Next, I discuss the context of the intervention.  First, I describe the simulation 

itself and gameplay during the simulation.  Then I describe the workshops during which 

students received separate treatments before the simulation. 

The Bay Game.  The UVA Bay Game is a simulation in which players enact the 

role of stakeholders within a model of the Chesapeake Bay watershed ecosystem, an 

important example of a complex system.  The simulation uses over 55,000 differential 

equations that support its extremely accurate behavioral fidelity (Plank, Feldon, Sherman, 

& Elliot, 2011).  When tested with real world U.S.  Geological Society [USGS] data from 

2000 to 2008, the Bay Game simulation accurately accounted for 97% of the real world 

data.  The Bay Game has a generalizable template using Java, R, PostGRES, and HTML 

5.  It can be run in any computer lab with internet access from a server.  Full simulation 

gameplay, which takes about 5 hours, is considered to be ten rounds, with each round 

representing two years.   

The simulation is participatory in that players are assigned the role of agents in 

the system such as crab fishermen, animal farmers, crop farmers, policy makers, land 

developers and regulators. Similar to role-playing games students become the characters 
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in the simulation while also creating the system. Agent-based models simulate micro-

level components and interactions and allow these parts to have local information and 

agency (Learmonth Sr. & Plank, 2015). The UVA Bay Game uses player decisions and 

interactions as well as nonhuman system components to influence system outcomes.  

Players witness the macro-level system outcomes as well as the individual (i.e. micro-

level) interactions (Scholl, 2001).  Players are grouped into teams by state, with states 

competing with each other for the best economic growth and ecological sustainability.  

Individual players attempt to improve the health of the ecosystem while also attending to 

their own economic needs.  Players interact and negotiate with each other to develop an 

understanding of the different behaviors and functions of other students and nonhuman 

system components.  For example, crop farmers need to decide whether to invest in high 

yield farming methods (more revenue and nitrogen runoff) or lower yield farming 

methods (lower revenue and nitrogen runoff).  Impacting this decision are other 

stakeholders including policy makers, who decide whether or not to subsidize more 

environmentally friendly farming methods. Gameplay may help to promote student 

understanding of interactions between components and the emergent behaviors of the 

system as a whole that develop from these interactions. 

In the UVA Bay Game simulation, players make decisions as they enact their 

roles as stakeholders in the watershed ecosystem.  These decisions are entered into the 

simulation, and once all players have entered their decisions, the round ends.  Then, 

players are given feedback on their individual and state results after each round on 

economic and ecological outcomes.  This feedback includes information about a player’s 

net worth (taking into account cash, any equipment value, debt and interest on debt, for 
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example) and Bay health using indicators such as nitrogen and phosphorus 

concentrations.  Feedback also includes a presentation of decisions the player needs to 

make.  Players compete by state for the greatest net income gains and the least 

contribution to nutrient runoff in the watershed.  To support this competition, players are 

presented with an overall display of ranked state (regional) standings after each round.  

Here, players see the cumulative effects of their choices.  This commonly sparks region 

discussions about what choices led to the most positive outcomes, what strategies might 

be reconsidered, and development of theories of why players’ actions may have caused 

these outcomes.  Because students playing the game are vested in succeeding as a group, 

and thus in making sense of the complex system together, students may support each 

other in the conceptual change process (Liu & Hmelo-Silver, 2010). 

 Player and regional decisions do not result in consistently predictable outcomes.  

This is complicated by the tension between economic and environmental needs at the 

individual, region, and system levels as well as by nonhuman system components such as 

weather that are not controllable.  Flexible and adaptive responses by human stakeholders 

are essential for both the environment and the economy.  Further supporting players’ 

reflection, players can compare their outcomes to actual United States Geological Survey 

(USGS) data-based real world outcomes during the first five rounds of gameplay 

(equivalent of 10 years).  The second set of five rounds begins after the current year 

simulating real world data. 

 Because of the setup of the simulation and need for students to learn from and 

communicate with each success in the UVA Bay Game relies on working with other 

students. In previous gameplays students often begin by learning about their roles and the 
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current state of the watershed at individual computers (Plank et al., 2011; Rates, Mulvey, 

Carson, & Feldon, 2013). After students begin to understand their roles and who can help 

them with their goals they must reach out to policy makers for better financial incentives, 

students within their region to coordinate their strategy, as well as students in similar 

roles across regions to find out what strategies have worked for more successful 

participants. Therefore gameplay goals are aligned with those that foster student 

interactions (Wolfe, 1997), an important process in promoting conceptual change (Liu & 

Hmelo-Silver, 2010) 

The interactive nature of the simulation has the potential to increase motivation in 

such a difficult subject by placing students within the context of what they are studying 

(Cordova & Lepper, 1996).  This context is authentic and meaningful, with success 

requiring understandings of the system at both the micro and macro levels.  The 

integration of cooperation within regions and competition between regions also may 

increase motivation.  The simulation places complex systems within a real world problem 

of the Chesapeake Bay (as recommended by Brown et al., 1989), giving players a 

concrete example of a complex system as well as how it can affect their lives.  Gameplay 

also models, visualizes, and confronts students with the macro effects of their micro 

decisions. 

Treatment 1: Self-Monitoring Scaffolding.  The self-monitoring scaffolding 

that was used for the Self-Monitoring groups consisted of consisted of process 

management, articulation, and reflection scaffolds. During the Self-Monitoring workshop 

students were fist given an explanation of how the game works and were then randomly 

assigned to practice roles for the duration of the workshop.  Students worked in groups 
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similar to those they would need to collaborate in within the simulation and asked to 

brainstorm strategies to succeed at gameplay. Because the simulation requires that 

students balance the parameters of making money individually as well as reducing 

pollution students were asked how they would do each of these separately, and then how 

they would optimize the needs of both parameters (See Appendix J). Students were then 

asked in small groups to plan out what information they’d need to know about the 

ecosystem as well as their own roles for the upcoming gameplay. Students both planned 

strategies for the simulation (process management) as well as discussed their ideas and 

understandings as a group (articulation). During the simulation, students were instructed 

with worksheets to think about their strategies and how to improve them (reflection, see 

Appendix H). 

Treatment 2: Ontological Scaffolding.  The ontological scaffolding that was 

used for the Ontological groups consisted of both the presentation of complex systems 

components as well as activities requiring students to apply these concepts to an 

ecological complex system.  Components consist of emergence and the irreducibility of 

complex systems, non-linear action effects, decentralized order, adaptation, equilibration 

processes, and agent behavior.  Students were taught each separate component as a group 

and for each component, students were given an explanation and a non-ecological 

example. For each example students asked questions and with the moderator 

brainstormed examples of these components they’d previously encountered. Then, in 

small groups (2-3 students), students were asked to discuss where in the simulation they 

might expect to encounter each component and to share their ideas with the class.  

Finally, students were also given an information sheet with these concepts as well as an 
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assignment sheet with each concept.  Students were then tasked with finding examples of 

each complex system component during the simulation that occurred later that week and 

filling out component examples on the assignment sheet (see Appendix H). 

Instrumentation 

A variety of instruments were used to collect data for this study.  Demographic 

Data (see Appendix A) consisted of 8 questions designed to gather potentially important 

characteristics about students such as age, gender, or major.  Identical pretest and posttest 

questions (see Appendix B) were posed to the students asking them to write short answer 

responses. Each question elicited understanding of a different complex systems 

component and one question was used to elicit understanding of three causation 

components. Each set of responses was only coded for the matching component the 

question was meant to elicit.  Students were told the content of their responses would not 

affect their class grade but would be part of their participation grade.  Finally, students 

responded to a longer transfer prompt (see Appendix C) in the form of a blog-post asking 

students to apply their understanding of complex systems to design a system (e.g., 

sewage, food, water, transportation) within a city.   

Appropriateness.  Because of the nature of complex systems, it is not appropriate 

to ask students multiple-choice questions.  Complex systems understanding consists of 

several elements, their interactions, and the outcomes of these interactions, which are 

difficult to assess without more elaborate student responses.  Therefore, data were 

collected through open-ended questions which first needed to be coded and then analyzed 

using quantitative methods.   
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Pilot Study.  A pilot study was conducted a year earlier with a similar population 

taking the same class.  This study was used to inform both instrument development as 

well as the study design.  The pilot study uncovered issues with student response and 

implementation of the simulation.  First, because of timing, there was severe attrition in 

posttest completion.  Second, the length of time needed for the simulation was 

determined to be the entire class period.  This initial study indicated that intervention and 

data gathering would need to take place over several weeks, and that pre and posttest 

completion should be a required part of the class.  Finally, the format of the instrument 

used during the pilot study failed to gather rich data about student complex systems 

understanding.  Because of this, the present study posed several short answer open-ended 

questions. 

Measurement Characteristics. 

Demographic Questionnaire.  The demographic questionnaire consisted of 8 

questions (see Appendix A).  Seven of these questions were forced-choice responses 

while the final questions asked how many hours a week a student plays video games as a 

multiple choice question.  The survey was meant to be relatively short and was completed 

electronically by the students before the intervention. 

Pretest and Posttest Measure.  Pretest and posttest measures were identical to 

ensure that response differences did not arise because of questions that measured 

different things (see Appendix B).  Questions 3 through 5 measured causation and were 

taken directly from Grotzer and colleagues (Grotzer et al., 2013) and have been used in 

multiple studies of causation.  Questions 6 and 8 were adapted from questions used in 

Jacobson’s (2001) initial study of novice/expert differences.  The remaining questions 
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were developed with the help of complex systems and science education experts.  These 

questions were used to query students about their understanding of feedback loops as 

well as unpredictability within systems.  All questions were short answer. 

Transfer Question.  All undergraduate students kept a blog as part of their normal 

classwork and blog assignments usually consisted of prompts with 500 to 700 word 

responses.  The students’ fourth blog prompt asked them to design a system within a 

hypothetical city related to either energy, water, food, transportation, or waste.  Students 

were asked to design a system using both a clockwork systems model, as well as a 

complex systems model.  This prompt was designed for students to apply their complex 

systems understanding from an ecosystem to a city.  Further, this measure sought to 

determine whether students were able to talk about system type differences (clockwork 

vs. complex) in clear and distinct ways, representing distinct ontological categories.  

Administration & Scoring of Measures.  The demographic survey was 

administered a week before the intervention via Google Forms during class (see 

Appendix F).  Students who were absent or failed to respond were emailed a separate link 

to the form.  The pretest occurred during the first 25 to 30 minutes of four separate but 

concurrent workshops.  Pretests were also administered electronically through Google 

Forms.  The posttest was administered during class on the following week.  The blog post 

prompt was then sent a few days later by email from the professor and students 

responded using WordPress to create blog posts within a week.   

Procedures  

Demographic Sampling & Randomization.  At the start of class, the 

demographic survey link was projected on the class screen.  Students were asked to 
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answer all questions and those who did not respond were sent an email with the link the 

same day.  Students were then randomly assigned as participants into one of four 

workshops using randomized block sampling on demographic variables (gender, major, 

and videogame experience).  

Treatment Groups.  Two workshops were assigned as Treatment 1: Self-

Monitoring Scaffold groups and two were assigned as Treatment 2: Ontological Scaffold 

groups (see Appendix F).  Each workshop was taught concurrently during the normal 

class period using a PowerPoint presentation (see Appendix J) to ensure consistency 

across workshops.  In the Self-Monitoring condition, students were taught by two TAs 

and began class by spending 30 minutes completing the pretest questionnaire online.  

After this, students were given information about the Bay Game and the simulation that 

would take place 2 days later.  Students were then asked to break into groups and develop 

strategies for how they might win at the game.   

In the second condition, Ontological groups were taught by the professor of the 

class and the study author to ensure that information about complex systems was 

delivered consistently and competently by experts able to provide accurate answers to 

student questions.  At the beginning of class, students in the Ontological groups took the 

pretest questionnaire for 30 minutes in the same manner as the Self-Monitoring groups.  

For the remainder of the class, students received ontological scaffolding that 1) taught 

about important complex systems components, 2) had students answer questions about 

and generate with examples of these components, and 3) attempted to explain where 

students might see these components within a virtual ecosystem represented by the UVA 

Bay Game.  
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After the initial questionnaire, all groups were given information sheets (see 

Appendix I) describing the important complex systems components, to ensure that both 

groups saw the same information.  Further, both groups were given worksheets to be used 

during the simulation that Thursday (see Appendix H).  Both groups were told not to 

share their responses. 

Self-Monitoring groups were given a sheet with questions about what they liked 

and did not like about the game and which strategies they felt worked well.  In contrast, 

the Ontological group was given question sheets asking them to list examples of the 

complex systems components they discussed during workshop.  Of note, the Ontological 

groups actively discussed these topics and elaborated on what components of the 

Chesapeake Bay watershed represented these concepts.   

The Self-Monitoring workshops were taught by two teaching assistants for the 

class and the Ontological workshops were taught by the class professor and the author 

because the Ontological workshop required content knowledge of complex systems. In 

order to help ensure that type of instructor did not play a role in student outcomes all 

instructors taught their workshops using two identical presentations. Further, because 

teaching assistants had less teaching experience the Self-Monitoring workshops were 

designed to be largely student led discussions and brainstorming and not dependent on 

teaching assistant content knowledge or teaching experience. 

Gameplay.  Gameplay took place in a large ballroom with groups set up with ten 

people to a table.  This site allowed students freedom of movement to talk to other 

players in this largely interactive simulation.  At the beginning of the gameplay session, 

students were given instructions about the goals of the game and were then largely left to 
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ask questions and make their initial choices.  Each round was punctuated by a 5-minute 

period when students waited to find out the results of their choices during gameplay.  

During this period, the presenter explained what the rankings and statistics meant on the 

main screen and explained to the group important changes in metrics and rankings.  Five 

rounds of the simulation were completed, at which point final answers were locked in and 

the game was cycled to the end to see who won.  At multiple points throughout the 

simulation, students were reminded to fill out their question sheets, which were collected 

at the end of the class period.   

Posttest Questionnaire.  At the start of class the following week, students were 

given the same questionnaire they took for the pretest.  They were told that although 

these questions were the same ones they answered the previous week, it was important to 

respond a second time, even if their ideas had not changed.  Students were told to write 

for 30 minutes and then class proceeded as normal.  

Transfer Prompt.  Students were emailed the transfer prompt (Appendix C) with 

instructions to complete the prompt within a week after the game play. 

Data Analysis  

Items and Rubrics for scoring were developed concurrently.  The main source for 

complex system components came from the complex systems ontology framework 

(Jacobson et al., 2011, see Appendix D), adaptations made by Susan Yoon (Yoon, 2008; 

2011; Goh et al., 2012), Tina Grotzer’s work in causation understanding in complex 

systems (Grotzer et al., 2013; Grotzer, Tutwiler, Dede, Kamarainen, & Metcalf, 2011) 

and the author’s previous work in developing a rubric to measure complex systems 

understanding in an ecosystem (Rates et al., 2013). During question development, I and a 
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colleague determined which components we felt best represented student understanding 

of complex systems.  For example, although Jacobson’s work measures whether students 

focus on events vs. processes, Grotzer (Grotzer et al., 2011) developed more detailed 

causation rubrics that also measure whether students focus on non-obvious causes as well 

as distant causes, which represent more expert complex systems understanding.  

For this experiment, several adaptations were made to the CSMM. First, 

following the lead of Susan Yoon and colleagues (Goh et al., 2012; Yoon, 2008; 2001) 

the levels for complex systems components were expanded from the novice expert binary 

levels to a more nuanced three levels. This choice was based on the author’s previous 

work (Rates et al., 2013) where students showed more gradual understanding of 

complexity rather than an either clockwork or complex understanding. For example, 

students often gave a mix of centralized and decentralized order for an ecosystem, not 

one or the other. Levels were then developed using a combination of the above 

mentioned rubrics, and then tested on a subsample of student responses to make sure that 

coders agreed that these levels represented distinct, appropriate, and cohesive groups of 

students based on their component understanding. The three components used directly 

from the CSMM framework are Actions, Agents, and Order (see Appendix D).  

The second set of adaptations involved altering the components of Causes and 

Processes. These were altered slightly to align with Tina Grotzer’s work on Causation 

understanding in complex systems (Grotzer, 2012; Grotzer et al., 2013, 2011) because her 

work offers a more nuanced and elaborated understanding of the components of Causes 

and Processes. These two causation components were expanded to three components with 

two levels: Obvious vs. Non-Obvious, Local vs. Distant, and Event vs. Processes 
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representing clockwork vs complex focus, respectively (see Appendix E). The rubric 

used for these three causation components was borrowed directly from a previously 

validated rubric developed by Grotzer, et al., (2011). 

Through discussion and comparing the merits of the above mentioned rubrics, we 

determined the following components to best represent complex systems understanding: 

Causation: Event vs.  Process focus, Causation: Non-Obvious vs. Obvious Causes, 

Causation: Local vs. Distant Causes, Order, Action Effects, and Agents (see Appendix 

E). The author then met with and discussed with an expert in complex systems 

understanding to adapt questions previously developed by Jacobson and colleagues 

(2011) to capture Order, Action Effects, and Agents components (see Appendix D).  

Scoring Measures 

The three causation components were scored using the same methods used by 

Grotzer and colleagues (2011; 2013).  For the remaining three components, the author 

and the second rater developed rubrics for each component by first determining which 

characteristics of each component were salient and what represented low, medium, and 

high levels of understanding using previous rubrics in this field (Goh et al. 2012; 

Jacobson, 2001; Jacobson et al., 2011; Yoon, 208; 2011). Each rater then applied the 

rubric to ten responses, compared scores, and then adjusted the rubric when necessary to 

make sure that the three categories of responses represented distinct answers.  We then 

repeated this procedure until we felt confident enough to move on to test inter-rater 

reliability. 

 To ensure inter-rater reliability, 20% of the items were coded by the author and 

the other rater.  Both coders coded five complete sets of student data and compared 



60 

 

 

 

answers and discussed coding interpretation after each set marking which we had 

disagreed on.  This was then repeated until 20% of the data was coded, compared, and 

discussed for inter-rater reliability.  A satisfactory inter-rater reliability score of above 

80% was achieved for all rubrics (Table 2) and then the author coded the remainder of the 

data. The same rubric was used to code transfer responses. Both coders coded small sets 

of student responses, compared scores and discussed coding concerns. This was repeated 

until 20% of the data was coded and a satisfactory inter-rater reliability score of above 

80% was achieved (Table 3). Both coders then coded separate sets of the remaining data. 

Table 2  

Inter-rater Reliability Scores for 

Pretest and Posttest Responses 

Category Alpha 

Action Effects .85 

Agents .94 

Order .91 

Causation: Obvious .88 

Causation: Local .92 

Causation: Event .93 

 

 

Table 3  

Inter-rater Reliability Scores for 

Transfer Responses 

Category Alpha 

Action Effects .83 

Agents .83 

Order .90 

Causation: Obvious .90 

Causation: Local .93 

Causation: Event 1.00 

 

 

 

Tests 

Pretest Group Differences. Although participants were randomly assigned to 

groups pretest component scores were compared between treatment groups in order to 
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ensure that no differences existed before the intervention. Because these scores violated 

normality Mann-Whitney tests were used to determine if there were significant 

differences. No significant pretest differences were found by treatment group (Table 4)  

Table 4 

Pretest Component Means by Treatment Group 

 SM OS    

 Pre (SD) Pre (SD) Mann U Sig. Z 

Action 2.35(.74) 2.51(.55) 981.00 .18 .86 

Agent 1.64(.78) 1.59(.82) 924.00 .37 -.41 

Order 2.19(.76) 2.21(.71) 915.50 .49 .08 

CS-Obv .56(.24) .55(.28) 1049.00 .40 -.25 

CS-Local .11(.21) .18(.28) 902.00 .054 1.61 

CS-Event .16(.21) .17(.21) 1038.00 .36 .36 

 

 

Normality.  All participant data were tested for normality to ensure inferential 

statistics could be used.  Shapiro-Wilks test of normality for pretest and posttest variables 

were significant indicating non-normality for all pretest and posttest dependent variables 

(Table 5) as well as for all pretest and posttest dependent variables by treatment condition 

(Tables 6 and 7)  and gain scores (Table 8) except for the category of Causation: 

Obvious/Non-Obvious (p = .053). Because all but one dependent variable violated 

normality, non-parametric tests were used to analyze all data. 
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Table 5    

Tests of Normality: All Groups    

 Shapiro Wilk 

Statistic 

df Sig. 

Pre Action  .74 86 .01* 

Post Action  .79 86 .01* 

Pre Agent  .71 81 .01* 

Post Agent  .79 81 .01* 

Pre Order  .80 79 .01* 

Post Order  .79 79 .01* 

Pre Causation: Obvious Mean .95 89 .01* 

Post Causation: Obvious Mean .95 89 .01* 

Pre Causation: Local Mean .67 89 .01* 

Post Causation: Local Mean .71 89 .01* 

Pre Causation: Event Mean .77 89 .01* 

Post Causation: Event Mean .80 89 .01* 

Note. *Indicates Significant Violation of Normality (p<.05) 

 

 

Table 6    

Tests of Normality: Self-Monitoring Group 

 Shapiro Wilk 

Statistic 

df Sig. 

Pre Action  .75 44 .01* 

Post Action  .79 44 .01* 

Pre Agent  .73 41 .01* 

Post Agent  .79 41 .01* 

Pre Order  .79 39 .01* 

Post Order  .81 39 .01* 

Pre Causation: Obvious Mean .95 45 .05 

Post Causation: Obvious Mean .95 45 .03* 

Pre Causation: Local Mean .59 45 .01* 

Post Causation: Local Mean .72 45 .01* 

Pre Causation: Event Mean .73 45 .01* 

Post Causation: Event Mean .80 45 .01* 

Note. *Indicates Significant Violation of Normality (p < .05) 
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Table 7    

Tests of Normality: Ontological Group 

 Shapiro Wilk 

Statistic 

df Sig. 

Pre Action  .69 42 .01* 

Post Action .79 42 .01* 

Pre Agent  .70 40 .01* 

Post Agent  .77 40 .01* 

Pre Order  .80 40 .01* 

Post Order  .77 40 .01* 

Pre Causation: Obvious Mean .94 44 .03* 

Post Causation: Obvious Mean .93 44 .01* 

Pre Causation: Local Mean .73 44 .01* 

Post Causation: Local Mean .71 44 .01* 

Pre Causation: Event Mean .79 44 .01* 

Post Causation: Event Mean .82 44 .01* 

Note. *Indicates Significant Violation of Normality (p<.05) 

 

 

Table 8    

Tests of Normality: Gain Scores 

 Shapiro Wilk 

Statistic 

df Sig. 

Action .85 84 .01* 

Agent  .82 81 .01* 

Order  .82 79 .01* 

Causation: Obvious .94 89 .01* 

Causation: Local .86 89 .01* 

Causation: Event .92 89 .01* 

Note. *Indicates Significant Violation of Normality (p<.05) 

 

 

Descriptive and Non-Parametric Tests. 

 Research Question 1a. Descriptive tests were used to explore differences 

between student pretest and posttest scores (Research Question 1a). Because all but one 

component violated normality, Wilcoxon signed-rank tests were used to determine if 

there were significant differences between pretest and posttest scores for all components.  

 For all three Causation components analyses differed from those by Grotzer and 

colleagues (2011; 2013). In their original study, all student responses to the prompt 
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“What might have caused the fish die off?” were pooled together and analyses were run 

on this entire set of responses. However, students are allowed to write as many responses 

as they like and verbose students were therefore given more weight within these analyses. 

To give all students equal weight, an average score for each student’s total number of 

responses was used for all analyses. 

 Research Question 1b. Descriptive tests were used to explore differences 

between components and system types for Far Transfer responses. 

 Research Question 2a. A Wilcoxon signed-rank test was used to determine if 

there were significant differences between pretest and posttest component scores for each 

separate treatment group. A Mann-Whitney test was used to determine if there were 

significant differences between treatment conditions for gains in component 

understanding. Gain scores were calculated by subtracting pretest scores from posttest 

scores in both treatment groups.   

 Research Question 2b. A Mann-Whitney test was used to determine if there were 

significant differences by treatment condition for individual component understanding. 

Overall component scores were then created by aggregating all component scores for 

each participant.  A Mann-Whitney test was used to determine if there was a significant 

difference for the mean number of complex systems components used by treatment 

condition on the far transfer item.  

Effect Sizes 

Effect sizes were calculated for all variables using the following equation 

recommended by Rosenthal (1991) to convert z-scores into effect sizes:  

𝑟 =
𝑍

√𝑁
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where N is the total number of observations compared. 

Coding 

All student responses were first coded for whether their responses demonstrated 

either clockwork or complex systems understanding for each causation component, or 

whether responses represented one of three levels of complex systems understanding for 

Order, Action Effects, or Agents.  Qualitative coding was conducted after quantitative 

analyses to better understand why certain changes occurred among student responses. 

After determining which student scores changed from pretest to posttest student 

responses were grouped by identical numeric changes (e.g., those who changed from a 

score of one to two were grouped separately from those whose scores changed from two 

to three). Groups were then read holistically to look for emergent themes and trends to 

describe similarities of pretest scores, posttest scores, and changes in scores. Coding 

focused not only on explaining significant quantitative changes, but also movement in 

scores that may have canceled out changes (i.e., if a large group of students improved 

understanding of a component while another group exhibited reduced posttest scores.) If 

patterns emerged student responses were then coded individual for its presence to help 

determine the magnitude of the effect.  

Validity and Trustworthiness of Data 

 To ensure validity and trustworthiness of data, several methods were employed.  

First, almost all parts of the experiment were audio recorded.  All four workshops were 

audio recorded as well as the Bay Game intervention.  The lecture before the simulation 

that deals with complex systems as well as after in which students review what they had 

done were also recorded.  These were done in case inconsistencies were found in the data 
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between each pair of treatment groups.  Although identical Power Point presentations 

were used for each pair of groups, if we found different outcomes for these group pairs 

the audio data may offer some reasons for this discrepancy.  

Both treatment groups were split into two separate classrooms to capture whether 

differences were due to the condition or something about the room, presenter, or group.  

Before comparing treatment conditions on outcome variables, within group comparisons 

were conducted to ensure that both classrooms of Self-Monitoring groups and both 

classrooms of Ontological groups did not differ on any important outcome variables.  

This was done to help ensure that changes in student outcomes are due to treatment 

condition instead of any other causes. 

Limitations 

There are several limitations of the design of this study.  First, although 

participants were randomly sampled into groups, the pool from which they were chosen 

was a single class within the architecture school.  Although there were a variety of 

students within this group, this limits the generalizability of the sample studied.  Another 

limitation is the dosage of the intervention.  Although the time was expanded greatly 

from the original pilot study of 1 day, results may be limited by the length of time 

students had to interact with the simulation.  

Role of Researcher & Ethical Concerns 

As the main researcher in this study, I had two roles.  First, I collected data.  

Students were briefly introduced to me at the start of the semester and told that data 

would be collected later in the semester to better understand whether they were learning 

complex systems content.  Before data collection began, students were informed again of 
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this data collection and that 1) data would be used to improve the class and 2) their 

responses would be confidential.  During class, I sat in the back of the room with the TAs 

of the class and did not interact with students.  My second role occurred during the 

intervention when I taught a workshop.  I introduced myself to the group and explained 

that I would be helping teach one of the four workshops in order to prepare students for 

the simulation that week (all other TAs were out of country that week).  Students were 

informed that their responses would be kept confidential and that they could have their 

data removed from the study without consequence (no students made this request).   

Ethical concerns in this study were also minimized as much as possible.  First, I 

collected as little sensitive information as possible which was anonymized and stored on 

a secure server.  Second, interventions and data collection occurred during classroom 

times.  Students were not asked to do more work than was already part of their class. 
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CHAPTER 4: RESULTS 

Introduction 

The results are organized by research questions below.  First, changes for students 

on component scores from pretest to posttest question are discussed.  Then, overall 

descriptions of student responses to the transfer question are shown to understand which 

components students were able to apply in the architectural (city systems) context.  

Finally, comparisons are made between the Self-Monitoring treatment condition and 

Ontological Scaffolding treatment condition to see which conditions best helped 

component understanding.  Finally, these conditions are compared to see if they 

contributed to transfer. 

Overall Component Differences between Pretest and Posttest Scores 

 The first research question to be analyzed was: For what components of complex 

systems do students demonstrate improved or limited understanding?  First, descriptive 

statistics and student examples are shown for each component individually.  Significance 

testing is discussed overall, and then student examples are provided for components that 

demonstrated significant changes.   

Descriptive Statistics 

Because the components Action Effects, Agents, and Order are interpreted on the 

same scale, I discuss these first and then move on to the three causal components of Non-

Obvious, Distant, and Process Causes.  Although both sets of components use different 

scales, they both represent a range of more novice understanding (describing complex 
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systems using clockworks system characteristics) to more expert understanding 

(describing complex systems and their properties using complex system characteristics). 

For Action Effects, Agents, and Order, student descriptions were rated as either 1) 

Novice, 2) Medium, or 3) Expert understanding while for the Causal characteristics they 

were rated as either 0) Novice or 1) Expert.  

Action Effects.  On average, students demonstrated a medium-expert 

understanding of Action Effects during the pretest (M = 2.43, SD = .65), and decreased 

after the intervention by .17 points (M = 2.26, SD = .69) (Table 9). Most student 

responses represented the highest level of understanding in the pretest by both agreeing 

that large effects can come from small causes while also explaining how this can happen 

through cascading (nonlinear) effects or chain reactions.  During the pretest, 57% of 

students (Table 10) gave expert level responses similar to the following: 

Since so much of the world is interconnected at various levels, it makes sense that 

a small change in one element of a system would immediately affect other 

elements that they have relationships with.  This develops into a chain reaction, as 

each element responds to changes occurring in the many elements around it.  

(Participant 31) 

 

Small changes can cause large effects in the ecosystem.  This holds true for the 

process of food chains.  If an organism at the bottom of the food chain goes 

extinct, then the next organism that relies on that which died out either has no 

food or has to compensate by eating too much of another organism in which that 

goes extinct.  Both possibilities then effect the next two levels in either direction 

and so on and so forth.  (Participant 11) 

 

In these responses students gave clear reasons for how small causes might turn into large 

effects.  
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Table 9 

Component Differences between Pretest and Posttest Scores 

 Pre (SD)  Post (SD) 

Action Effects 2.43(.65) 2.26(.69) 

Agent 1.61(.80) 1.81(.78) 

Order 2.20(.73) 2.18(.74) 

Causation: Obvious vs. Non-Obvious .55(.26) .59(.23) 

Causation: Local vs. Distant .15(.24) .18(.27) 

Causation: Event vs. Process .16(.21) .21(.25) 

 

 

Table 10 

Percent of Student Responses by Level 

 Pretest Posttest 

 1 2 3 1 2 3 

Action Effects 8.6% 39.8% 51.6% 13.8% 46.0% 40.2% 

Agent Actions 58.0% 22.7% 19.3% 41.6% 36.0% 22.5% 

Order 18.6% 43.0% 38.4% 19.5% 42.5% 37.9% 

 

 

Many students in the pretest (40%) and the posttest (46%) gave responses that fell 

into the second level.  Students in these responses did not demonstrate that they 

understood how such large effects would occur, as seen in the following examples: 

I believe that small changes can lead to large effects in the ecosystem, and that 

this is mostly observable over a period of time (not instantaneous). The slightest 

change in a system could cross the boundary between what an organism can live 

and thrive in and what it would quickly die in, and the death or life of many of 

these organisms would impact the death and life of other organisms dependent on 

them.  (Participant 27) 

 

It’s True, small changes can lead to large effects.  this is true because everything i 

connected in the ecosystem.  EX: food chain.  (Participant 62) 

 

Whereas these students may understand how large effects might grow from small causes 

they did not give enough information in their responses to show more than agreement.  

Very few students showed a novice level of understanding (9% in the pretest and 

14% in the posttest, Table 10). These students gave responses that either explicitly 

disagreed with large effects growing out of small causes, or felt that these could only 
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happen through an aggregation of several small causes.  For example, one student 

responded as follows:  

I think that one sole small change will not lead to a large effect, but that many of 

the same small changes together will.  An ecosystem is huge and full of many 

connections, one person turning off the faucet while brushing their teeth, will not 

lead us to conserving massive amount of water over night.  But if everyone 

decided to make the same change in their lives, I could see it leading to potential 

change on the larger scale of the ecosystem.  (Participant 57) 

 

This student denied that non-linear effects might happen, but felt that only through 

aggregating many small actions could a large effect occur. Although small causes can 

aggregate into large effects, this student is incorrect to state that this is the only way for 

large effects to occur. These responses were not common.  

Agents.  On average, students began with a novice-medium understanding of 

Agents on the pretest (M = 1.61, SD = .80), and increased by 0.2 points after the 

intervention (Table 9). In both pretest and posttest responses, students understood Agents 

the least of the three components.  This component requires students not only 1) to 

understand that although it is possible to understand rules of behavior, one cannot 

completely predict behavior but also that 2) actions cannot be reliably predicted due to 

randomness or chance factors in the environment.  Student responses on the pretest were 

largely at the lowest level (58% of responses) with around 20% of students in the mid-

level and 20% in the high-level categories.  By the posttest, a shift occurred out of the 

lowest level with the highest gains in the mid-level of the component (an increase of 

13.3% of students) and only a slight increase of the highest level of understanding for this 

category (3.2%) (Table 10). This means that most students who improved went from 

indicating that they believed the actions of agents in a complex system are largely 
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predictable to understanding that they are not wholly predictable.  There was little 

increase in explanation of how Agent actions are not predictable in student responses.  

For example, the pretest asked students if they could predict the movement of a single 

fish based on the movement of the school of fish.  The majority of students gave Level 1 

responses similar to the following: “you could predict the movement of an individual fish 

based off of knowledge of how larger groups of fish swim about in various instances.  

Essentially extrapolating behavior from a greater population” (Participant 89); “If you 

know the single fish's location and the path of movement of surrounding fish, yes I think 

so.  Again, he will probably follow at least a similar path to whoever moved before him” 

(Participant 21); and “Yes.  As there is only one thought process to consider, you could 

predict that they will react to an object in a certain manner, or tend to swim towards one 

side more often” (Participant 71). These responses showed that students largely felt the 

individual in the system is predictable and future behavior can be calculated with enough 

knowledge.  

Students who gave responses that fell within the second (medium) level gave 

responses that showed they believed one could not predict an agent’s future movements: 

“Their behavior might follow a certain pattern but I do not think it is possible to 

completely say what a fish definitely will or will not do” (Participant 38); “Yes you 

could, with a reasonable amount of error.  You could track the path of the school, but the 

fish might weave in and out within that school and that individual motion would be 

almost impossible to track” (Participant 20); and finally  

I think it depends on the time to predict the movement of an individual fish with 

enough knowledge.  If for example there is food provided to the fish you could 

predict that the fish would move to this area.  Or if there is cold water coming 

from one side of the water side then you might predict it would move away.  In 



73 

 

 

 

other words, I think that in some situations we might predict the movement of an 

individual fish but I do not think that in general that is possible.  (Participant 46) 

 

These students indicated that prediction is not fully possible but they did not give enough 

information to show that they understand randomness or chance factors needed to 

demonstrate the highest level of understanding (level 3).  

Only a few students demonstrated the highest level of understanding as 

exemplified by the following responses: “No, because an individual fish may have 

changed a lot due to the environment it is put in.  Thus, having enough knowledge of the 

individual fish is not enough to predict the movement” (Participant 16); “No because the 

movement of a single fish can be affect not only by the qualities of the fish itself but also 

largely depends on the whole system of the living space that the fish lives in” (Participant 

29); and “No.  The movement of an individual fish cannot be predicted.  There are always 

too many possibilities that people cannot control” (Participant 36). These students 

demonstrated that they not only understood that movement and actions of agents cannot 

be fully predicted, even with enough knowledge, but also that unpredictability is due to 

randomness or chance factors within the environment.  

Order.  On average, students began with a medium understanding of Order (M = 

2.20, SD = .73), which stayed virtually the same in the posttest, decreasing by .02 points 

(Table 9). The average student response (about 43%) started and stayed at a mid-level, 

which meant that students gave a mix of both top-down and bottom-up examples for how 

ants organize themselves in the search for food.  For example, the following responses 

represented this mid-level of understanding in describing how ants find food: 

They probably have sense to know where there are picnics or garbage to eat.  It is 

not a coincidence to have 30 ants in one area around a leftover sandwich.  I 

assume in the colony they have hierarchies where certain ants are assigned to food 
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duty.  I often see ants carrying food in teams of two or three so they most likely 

hunt and come back to the ant holes and share what they got with the rest of the 

ants.  (Participant 32) 

 

I do not think there is an order to it initially.  I think ants go about searching for 

food.  Finally when food is found they report to the colony and an order is created 

to retrieve the food.  (Participant 10) 

 

Both pretest and posttest scores for the highest level of understanding of Order 

also stayed around 38% (Table 10). Students representing this level of understanding 

stated how ants find food in a bottom-up way exclusively.  For example, 

I suspect it begins as a random search (perhaps with a rudimentary procedure 

involved), so initially, many ants will search unsuccessfully.  But when one finds 

food, they have a mechanism for communicating its location (perhaps with a 

pheromone trail?) such that it can guide the behavior of other ants who have not 

yet found food.  If, for example, something like a pheromone trail overrides an 

ant's initial search procedure, so that it follows a trail if it crosses one, eventually 

a large number of ants could end up following the trail between their hive and the 

food.  (Participant 50) 

 

I think ants go about finding food in an order.  The order is emergence and 

basically come naturally.  Because there is no one control the ants, or lead the ants 

of finding food in an order.  The ants basically are trying to keep the same 

distance with one another, not to be so close and not to be so far, thus that causes 

ants go finding food in an order.  (Participant 24) 

 

In these responses, Order was not described with either leaders or a chain of command 

but in a bottom-up and emergent way.  

Relatively few students (19%) spoke of ants finding food in a novice way by 

exclusively describing a top-down search, such as the following: 

I believe there is an order in the way that ants collect their food.  Maybe there is a 

queen ant in a colony that gives the instruction on how to collect the food.  

(Participant 75) 

 

There seems to be an order in which ants go on to finding food.  I am not exactly 

sure how it works, but I am sure that it is not random.  There might have an 

"alpha" in their crew that leads them to specific places and tells them what to do.  

Like any other creature that is abundant on earth, there has to be some kind of 

leader.  (Participant 15) 
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In these examples, students demonstrated that they have a difficult time conceiving how 

order could arise without a leader.  

Obvious vs. Non-Obvious Causes.  The item assessing this component asked 

whether students would attribute the causes of an effect in a river (a fish die off) to causes 

that were easily perceptible or if they would go beyond these to think about less tangible 

causes.  Responses to this question consisted of causes described in very few words.  

Non-obvious causes students gave were largely variations of disease (e.g., viruses, 

bacteria, a sickness spreading in the pond); pollution (e.g., air pollution, water pollution 

due to a factory); poor water quality (e.g., less oxygen available, eutrophication); and 

runoff (e.g., nutrients from agricultural runoff, increased runoff from adjacent lands). 

Obvious causes students gave were about population increase (e.g., spawning and dying, 

overpopulations leads to a shortage of food); predators (e.g., new fish predator, over 

fishing); low food supplies (e.g., lack of food, loss of food supply); visible pollution (e.g., 

oil spill, trash in water), weather (e.g., hurricanes, drought), and water issues such as 

changing tides or lack of vegetation.  Before the intervention, a little over half of the 

causes that students gave for a fish die-off were non-obvious (M = 0.55, SD = 0.26) with 

a slight improvement after the intervention (M = 0.59, SD = 0.23) (Table 9). This meant 

that students gave slightly more non-obvious responses than obvious responses 

throughout.  

Local vs. Distant Causes.  Students relied heavily on using local causes to 

explain the fish die-off.  Responses to this question consisted of causes described in very 

few words.  Local causes focused on animals (e.g., fishing, predators); disease (e.g., 

bacteria, viruses, a sickness spreading in the pond); food (e.g., loss of food, food 
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shortage); pollution (e.g., chemical water pollution, toxins); weather (e.g., red tide, 

storm); and water issues such as changes in river current or salinity.  Distant causes 

students gave were mainly about pollution (e.g., pollutants from a factory, careless 

pollution by people living nearby) and runoff (e.g., runoff from nearby factories, runoff 

from adjacent lands) that happened outside the river.  On average students gave distant 

causes only 15% (SD = 24%) of the time during the pretest, which increased to 18% (SD 

= 27%) in the posttest (Table 9).  A large number of students (33% in the pretest and 26% 

in the posttest) listed only local causes, resulting in large standard deviations and overall 

means that skewed right. The change in ratio of local to distant causes occurred because 

the average number of distant causes given by students increased from 0.53 distant causes 

per person in the pretest to 0.62 distant causes in the posttest per person, while the 

average number of local causes per person in the pretest (M = 3.30, SD = 1.77) essentially 

stayed the same (M = 3.29, SD = 1.86).  

Event vs. Process Based Causes.  Students began with a relatively small average 

of process-based causes (M = 16%, SD = 21%) but made a small increase to 21% (SD = 

25%) of responses consisting of process-based causes after the intervention (Table 9). A 

large number of students (25% during pretest and 24% during posttest) gave only event 

based causes, resulting in large standard deviations and overall means that skewed right.  

Responses to this question consisted of causes described in very few words.  The event-

based causes students gave were largely about pollution (e.g. oil spills, dumping of 

waste); disease (e.g., disease from bacterial infection, virus killing fish); animals (e.g., 

over hunting, a predator has killed the fish); low food supplies (e.g., lack of adequate 

food, lack of nutrition); and weather (e.g., extreme tidal change, storm). Process-based 
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causes that students gave also focused on similar topics, but students talked about these 

as either occurring over longer periods of time, or in regards to balance within a system.  

For example, some students talked about increased soil levels eventually destroying 

vegetation” (Participant 9) or “Fertilizer run-off creating too many plants, starving the 

fish for oxygen” (Participant 3). These were not one-off events but longer-term processes 

within the system. 

Significance Testing 

A Wilcoxon Signed Ranks test was used to investigate whether students made 

improvements from their pretest to posttest component scores (Table 11). Student 

understanding of Agents significantly improved by 0.2 points (z = 2.18, p = .02) and 

understanding of Causation: Event vs. Process significantly improved by .05 points (z = 

1.70, p = .045) while student understanding of Action Effects decreased by .17 points (z = 

-2.43, p = .01). The effect size for the increase in Agents understanding is r = .17 and for 

Causation: Event vs. Process is r = .13 while the decrease in Action Effect understanding 

is r = -.19.  Although all other components improved from pretest to posttest, changes 

were not significant.  

 

Table 11 

Significant Component Differences between Pretest and Posttest Scores 

 Pre (SD)  Post (SD) Wilcoxon Z Sig. Effect Size R 

Action 2.43(.65) 2.26(.69) -2.43 .01* -.19 

Agent 1.61(.80) 1.81(.78) 2.18 .02* .17 

Order 2.20(.73) 2.18(.74) -.03 .45 .00 

C: Obv. .55(.26) .59(.23) .97 .17 .07 

C: Local .15(.24) .18(.27) .95 .17 .07 

C: Event .16(.21) .21(.25) 1.70 .045* .13 

Note. * indicates Wilcoxon Signed Ranks test was significant (p<.05) 
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Next I discuss what changes occurred for the components of Action Effects and 

Agents, and give examples of changes that students made.  Components that did not 

exhibit change are not discussed. 

Action Effects.  Because the mean of Action Effects started high (M = 2.43, SD = 

.65) it might have been expected that an increase in understanding would have been more 

limited than the other components, but I did not expect that this component would 

decrease.  To make sense of this, I conducted several further analyses to explore what 

might have changed for the worse about student understanding and student responses.  

For the 27 student responses that showed a decrease in student understanding, 

results fell into two patterns.  First, the majority of students (18) dropped one level from 

more expert non-linear understanding (level 3 out of 3) to a mix of understanding (level 2 

out of 3).  Further analysis revealed that these 18 students did not show misconceptions in 

their posttest responses, but instead exhibited shorter and simpler responses than in their 

pretest answers.  The following are three examples of these shortened posttest responses: 

“I believe so.  Everything in the world is somehow related.  A change in one thing can 

have effect on others and so on” (Participant 87), “yes, this happens because of chain 

reactions and feedback loops” (Participant 54), and “yes, small changes do lead to large 

effects in the ecosystem, because ecosystem for most times acts as a complex system 

rather than a clockwise system.  The impact is non-linear” (Participant 24). In all three of 

these responses, students failed to demonstrate that they understand how or why they 

might happen, a necessary characteristic, which they all demonstrated in their pretest 

essays.  In other words, students whose scores decreased initially wrote more words and 

went further to demonstrate their understanding, an indication of possible test fatigue. 
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The other theme that arose from the qualitative analysis showed four other 

students who dropped either 1 or 2 levels for what was coded as an “additive” 

misconception.  This occurred when students responded that non-linear effects could 

occur, but only through the accumulation of several small effects either through time or 

by number.  For example, one student responded that “Yes.  Many slight effects can 

create a large effect.  Even if there is no notable change in the system after a small 

change, as time goes on, these changes build up to become very apparent” (Participant 

73). Another student said, “Carbon emissions are one example.  While each individual 

automobile may be producing only a small amount of emissions the sum of all those 

small parts actually adds up to something quite large” (Participant 19). Neither of these 

are incorrect ideas, but they did not represent the non-linear effects that are created 

through cascading effects, which the rubric coded for. Students may have understood 

how these occurred, but they do not provide evidence of understanding. 

Agents.  The significant improvement of student understanding of Agents largely 

came from students who initially believed that the actions of agents in a complex system 

are largely predictable but later understood that actions are not wholly predictable (Table 

11). For example, one student responded to whether one could predict the movement of 

an individual fish in the pretest that “With enough knowledge of a fish's general path, 

food sourcing, and “comfort zones” you could potentially predict the path of a fish” 

(Participant 96), an example of a novice response.  After the intervention, this student 

said, “you cannot predict the movement of the individual because it is less predictable 

than an entire school.  Emergence of the pack does not exist here.” Here the student now 

believes that an agents’ actions are less predictable.  Another student initially felt that 
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“Yes, you could predict the movement of an individual fish if you studied its past 

behavior, defense mechanisms, diet, preferred environment, etc.” (Participant 69) while 

after the intervention said:  

If you knew the past behavior, priorities, necessities, habitat, tendencies, etc. of a 

species of fish you could to some degree predict where they would travel to in 

relation to time.  You could not predict the more subtle and spontaneous 

movements of a single fish though.  If you knew they had a school they travelled 

with you could predict that they would join them. 

 

This student also demonstrated a change in understanding agent actions as unpredictable, 

but still did not go far enough to explain how chance factors or unpredictable 

environmental factors cause this unpredictability.  Similar changes in student responses, 

from a novice to a medium level response, were largely responsible for the significant 

improvement in understanding this component. 

Event vs. Process-Based Causes.  Similar to the other causal components, this 

change in proportion occurred not because the number of event-based causes per student 

decreased from pretest to posttest (M = 3.01, SD = 1.46 to M = 2.98, SD = 1.36) but 

because students increased the overall number of process-based causes they gave from 

pretest to posttest (M = 0.60, SD = 0.77 to M = 0.79, SD = 0.94). Students wrote about 

relatively more process based causes such as “Overpopulation lead to a shortage of food, 

and these fish starved” (Participant 78) and “nutrients allow for excessive algae growth, 

and such growth depletes the water from oxygen, leaving fish with conditions not 

supportive of life” (Participant 4). 

Far Transfer 

 The second part of the first research question asked the following: Can students 

transfer their understanding of complex systems to another context of their architecture 
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course?  Blog-post responses were coded for whether students demonstrated an 

understanding of or used a complex systems component in describing a system within an 

architectural context.  Components that were represented in clockwork ways were not 

coded because the goal was for students to demonstrate an understanding of the more 

difficult complex systems level of each component.  In the following section, descriptive 

statistics are described for overall components; then examples of student responses to the 

transfer question illustrate how students represented each of these components.   

Descriptive Statistics 

On average, students demonstrated an understanding of Order and Action Effects 

more often than Agents, Non-Obvious and Distant Causes on the transfer item (Table 

12). Due to the nature of the task, all students talked about the process of a system and 

therefore this was represented in all transfer responses.  The Order component (Table 12) 

was written about by the most students (51.3%) and Action was mentioned by almost as 

many (48.7%), while Non-Obvious causes (24.4%), Distant Causes (21.8%) and Agents 

(29.5%) were all written about in the transfer topic by less than a third of students.  

Twelve students in the sample were graduate students and therefore were exempt from 

the transfer question, and 6 students failed to turn in a response.  

 

Table 12 

Transfer Frequency for Components 

 N 

# of 

Responses 

% of 

Responses 

Action 78 38 48.7 

Order 78 40 51.3 

Agent 78 23 29.5 

Causation: Non-Obvious 78 19 24.4 

Causation: Distant 78 17 21.8 

Causation: Process 78 78 100 
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Students were given the option of writing about energy, food, transportation, waste, or 

water for their transfer response.  By far the most popular topic to write about was food 

(41%), followed by water and energy (14.1%), waste (11.5%) and transportation (10.3%, 

Table 13). Seven students (9%) talked about systems generically and did not choose one 

of the given choices. 

Table 13 

Transfer Topic Frequency 

 Frequency Percent 

 Food 32 41.0% 

Energy 11 14.1% 

Water 11 14.1% 

Waste 9 11.5% 

Transportation 8 10.3% 

No Topic 7 9.0% 

Total 78 100% 

 

 

 

 Different complex system components were represented more often depending on 

the topic that students wrote about (Table 14). Overall, students who wrote about 

Transportation talked the most often about Agent Effects (62.5%), those who wrote about 

Food talked about Order the most (65.6%), and those who wrote about Water systems 

wrote about Action the most (63.6%). Distant Causes were somewhat represented when 

writing about Food (40.6%), and in general students did not write about Non-Obvious 

Causes very much.  
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Table 14 

Percent of Components Present by Topic 

 Action Agent Order Causation: 

Non-

Obvious 

Causation: 

Distant 

Causation: 

Process 

 Percent Percent Percent Percent Percent Percent 

Energy 45.5% 27.3% 54.5% 9.1% 9.1% 100% 

Food 43.8% 34.4% 65.6% 31.1% 40.6% 100% 

Transportation 37.5% 62.5% 50% 25% 0% 100% 

Waste 55.6% 0% 44.4% 22.2% 11.1% 100% 

Water 63.6% 27.3% 18.2% 27.3% 18.2% 100% 

No Topic 57.1% 14.3% 42.9 14.3% 0% 100% 

 

 

Finally, students who chose Food as a system for their transfer response wrote about 

more components (M = 3.16, SD = 1.13) than those who chose other topics (Table 15, 

while those who failed to pick a topic demonstrated the least understanding of complex 

systems components (M = 2.29, SD = .95). 

 

Table 15 

Average Number of Components by System Type 

 N Mean Std. Deviation 

Energy 11 2.45 1.13 

Food 32 3.16 1.22 

Transportation 8 2.75 .89 

Waste 9 2.33 .71 

Water 11 2.55 1.04 

No Topic 7 2.29 .95 

 

The following section discusses examples of how components were represented in 

transfer topics. 

Action Effects.  The component Action Effects was highly represented in almost 

all of the systems students chose.  Students discussed this component the most in the 

design of a water system (63.6%). The following are some examples of designs 

demonstrating an understanding of these non-linear effects: 
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Landa goes ahead and describes the process in which a system like this works 

alone and just triggers one thing to another, eventually leading them to a greater 

output: “A trigger of one energy form sets off a flow in another which, in turn, 

triggers a release of a flow in the first; the insertion of more parties creates a chain 

of trigger-flow interactions that may go in a series, in parallel or both…. The 

trigger-flow interactions specifically create an interdependent reproduction among 

the participating dissipative structures.  It interlocks a series of separately 

reproductive systems into a single, interactive reproductive system” (De Landa 

77). These small changes would result in a more sustainable output later in time.  

(Participant 15) 

 

On the other hand, a complex approach would involve a web of solutions that are 

independent of each other.  These small changes would turn into big outcomes.  

(Participant 8) 

 

A healthier ecosystem will create a feedback loop of improved water quality; once 

the river become a public water source, restrictions on boat traffic will improve 

health of the river, allowing water habitats to grow, increasing natural filtration, 

improving water quality.  (Participant 9) 

 

As the price tag on fresh water goes up, the local economy begins to suffer and 

there is a decrease in state revenue, and federal financial aid must be sought in 

order to keep up this rather linear system.  This also has ramifications for social 

equity, with poorer areas in both urban and rural environments less likely to 

receive quality freshwater or to have systems that can collect and distribute a 

freshwater supply efficiently.  (Participant 27) 

 

If one of these steps were to suddenly fail, a pressure pump, a transportation car 

or even if the lake were to suddenly pollute the whole process would be affected.  

As Author Donella H. Meadows states in his work “Thinking in systems”; 

“Reinforcing Feedback loops are sources of growth, explosion, erosion, and 

collapse in systems” (155), meaning that if these failures were to occur and 

reinforced either negative or positive effects could occur.  For example the failure 

of a pressure pump in a specific building would result in no water on the fourth 

floor of such specific building in which no citizen would be able to take a shower, 

go to the bathroom, clean their home, etc.  Which would result in the over 

accumulation of dirt and waste and further more beginning of these citizens to 

search for new water sources, such as friends apartments, common bathrooms, 

etc.  (Participant 48) 

 

In all of these instances, participants wrote about how small causes could lead to large 

effects and in some cases explained why these were important to consider within the 

design of these systems.  
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Agents.  Students who chose to design a transportation system often demonstrated 

an understanding that agent actions are unpredictable (63%) (Table 14). The following 

are a few examples of students representing an understanding of Agent effects as they 

talk about designing a transportation system in a city. 

Patterns may also emerge from interactions within the city.  For example, if taxi 

drivers notice that they are getting many calls from a certain location on a 

particular day or time, then they will likely drive by the area at that time in hopes 

of finding customers.  Vice versa, if customers know that many taxis often drive 

down a particular street, then they will gravitate towards that street in hopes of 

finding quick transportation.  This system is reliant upon the needs and behaviors 

of many variables and is highly variant and reactive.  (Participant 69) 

 

Essentially, within a city, there are hundreds of thousands of different systems and 

they all are effected by the occupants of the city uniquely and therefore effect the 

city in different ways.  (Participant 35) 

 

One of the main problems of city transportation is that, especially in big cities like 

NYC, there are millions of drivers, pedestrians, and bicyclists who each have an 

individual agenda and are constantly fighting for space on the road.  This 

individualistic nature makes road behavior unpredictable and chaotic.  (Participant 

37) 

 

These students demonstrated an understanding of the unpredictability of agent actions 

and that emergent outcomes may happen due to the many chance factors within these 

systems.  

Order.  Students who chose to design an agricultural system were the most likely 

to mention that organization came from a bottom-up process (66%) (Table 14). The 

following are a few examples of students representing an understanding of order coming 

from bottom-up organization as they write about designing an agricultural system in a 

city. 

Fifteen years ago in my home city in Shijiazhuang, you could see individual 

farmers selling products from their own land in the city on streets.  People viewed 

themselves as part of the city organism instead of the dominator.  The food supply 

was a local closed web with the participation of multiple factors.  There was no 
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leading factor so not a single factor can destroy the whole system.  Also, the 

detrimental side effects were reduced because the food is locally served without 

much transportation.  (Participant 14) 

 

The first modification I want to make in city food chain is to localized the food 

production and efficiently reapply the by-products which are often treated as pure 

waste in system.  The urban roof-top farmer is one practical option.  Individuals, 

communities or neighborhoods could cultivate in nearby living space.  And the 

community garden or personal farmers in one hand can greatly improve food 

quality, providing fresh and organic healthy food to citizen, in another hand, can 

reduce the energy needed for transportation (Participant 24) 

The management of this system should be bottom-up, or rather, it should be 

dictated by the source farms.  Local markets and grocery stores should only stock 

produce that is seasonally available and produced by regional farmers, rather than 

shipping products across the country or even greater distances.  All homes should 

be outfitted or have easy access to composting facilities.  A weekly/biweekly 

collection should take place to guarantee that people actually use the system (no 

one actually wants compost sitting in a bin for years outside of their house). I 

believe that in the implementation of these three basic management principles, the 

food system will run itself sustainably in a closed cycle.  (Participant 26) 

In these examples, students demonstrated an understanding that order in agricultural 

systems in cities can be emergent through the individual actions of people such as in 

garden rooftops, local markets, and using more regional farmers instead of single large 

farms.  

Students who chose to design an energy system for a city were also highly likely 

to mention that order came from a bottom-up process (54.5%; Table 14). The following 

are a few examples of students representing an understanding of order as they talk about 

designing an energy system in a city.  

Different parts that form the city interact with each other and display certain kinds 

of overall order.  Because the city is not an artificial machine that functions 

perfectly with everything working together with a certain goal, it is really 

important to think carefully about the different systems in the city that influence 

people’s everyday life.  (Participant 36) 

 

Urban energy system can also be viewed in a complex system, which resembles 

the ecosystem.  Compare to the top-down approach in clockwork system, a 
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complex system is a decentralized bottom-up approach, where sub-systems can 

give rise to a more complex system.  In this case, each member of the community 

is both producer and consumer of the renewable energy liberated by 

technology- electromagnetic (photovoltaic materials), thermal (radiant solar 

collectors and geothermal systems) and kinetic (turbines for harnessing the wind 

and the tides). As a result, sources of energy become diverse and sustainable.  The 

flow of energy shifts from a directional stream into a field of intense, dynamic 

lateral connections.  (Participant 99) 

 

In these examples, students demonstrated that Order can be emergent through the 

individual actions of people such as in buying solar panels or installing their own 

turbines.  

Causation: Non-Obvious.  The focus on non-obvious causes was also not well 

represented in almost all of the systems that students designed, with only 24% (Table 14) 

of student responses mentioning causes that were not visible by the naked eye.  One 

system where more students were able to represent this component (22%) was in 

designing a waste system (Table 14). The following are some examples of these designs: 

It is inherent in our nature to think about problem solving in a linear path, as if we 

wanted to reach from point A to point B right away.  What if there is a third point 

C and is a much better choice than B?  If we had taken into account the different 

possible variables in our problem, maybe we would have saved energy and time 

rather than trying to think for a second or third solution.  Every problem we 

confront, either day to day or design struggles, has multi-faced components.  They 

all belong to a complex system, where the whole is more than the sum of its parts.  

(Participant 45) 

 

The top-down approach of the major waste management systems maintaining and 

regulating the inputs and outputs on the large scale works wonders for individual 

neighborhoods.  However, what is not discussed is what exactly can be recycled 

and made into useful resources.  There is no dialogue between the waste 

management companies and the community about new ways of recycling nor the 

expansion of the list of recyclable materials.  (Participant 55) 

 

Participants, when they did write about non-obvious causes, usually focused on solutions 

and the non-obvious problems they attempted to remedy by emphasizing what was being 
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overlooked. Students noted that these problems remained because the real causes were 

not readily perceived or acted upon in these systems. 

Causation: Distant Causes.  The focus on distant causes was not well 

represented in any of the systems that students designed.  The one system where almost 

half of students were able to represent this component (41%) was in designing a food 

system (Table 14). The following are some examples of these designs: 

And then there is another centralized stock-feeding base thousands of miles away.  

This is, in reality, the practice of most cities in developed and some rising 

undeveloped countries.  Yet it is not necessarily the smart choice as transportation 

of food generated huge cost and equally huge pollution to our city.  (Participant 

14) 

 

The whole process from food growing to final consumption of citizens is always 

pictured as a linear web.  Or from another conventional view of energy, food that 

is grown outside the city or even sometimes across the world is brought to tables 

in city by planes, trucks and railways.  All of these transportation require an 

enormous amount of energy and then release similar amounts of harmful toxins 

into the atmosphere.  (Participant 24) 

 

The transportation of produce from farms to the city is particularly important, 

noting efforts to reduce carbon emissions and footprints during the entire process.  

The main way to help mitigate these environmental impacts is to source local – 

within 100, 150 miles.  This limitation helps to reduce the number of large scale, 

mass production farms that serve the city.  (Participant 26) 

 

Food is grown (or raised) outside the city, sometimes nearby, but often halfway 

across the world.  These resources are then transported to the city in planes, trains, 

and automobiles, all of which consume enormous amounts of energy and release 

similar amounts of harmful toxins into the air as they crawl across our counties, 

states, and countries.  (Participant 31) 

 

In nearly all of the agricultural responses that mentioned distant causes of problems, 

transportation of food was mentioned.  This suggests that some systems make it easier for 

students to focus on more distant causes.  No students discussed distant causes for 

transportation systems, and barely any discussed distant causes for energy, waste, or 

water systems.  
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Change in Component Understanding by Treatment Condition 

The second research question asked: How does understanding of components of 

complex systems compare for students receiving self-monitoring scaffolding versus 

students receiving ontological scaffolding? A Mann-Whitney test was first used to 

determine if there were significant differences for individual component scores between 

treatment conditions to ensure equivalence between groups. There were no significant 

differences for any pretest components (Table 4). To investigate if students showed 

improvements on component scores within treatment conditions, a Wilcoxon Signed 

Ranks test was used for each condition separately (Table 16). No components for the 

Self-Monitoring group changed significantly from pretest to posttest (Table 16). The 

Ontological group showed significant improvement for Agents by 0.23 points (z = 1.79, p 

= .04) and Process vs. Event Causes by .09 points (z = 1.81, p = .04) while there was also 

a significant reduction of Action Effects score by 0.18 points (z = -1.97, p = .03). The 

effect size for the increase in Agents understanding was r = .20 and for Causation: Event 

vs. Process is r = .19 while the decrease in Action Effects understanding was r = -.22.  

All other component changes were not significant.  

 

Table 16 

Comparisons of Pretest and Posttest Scores by Treatment Condition 
 Self-monitoring  Ontological 

 Pre (SD) Post (SD) Z Sig. Pre (SD) Post (SD) Z Sig. 

Action 2.35(.74) 2.20(.76) -1.49 .07 2.51(.55) 2.33(.61) -1.97 .03* 

Agent 1.64(.78) 1.80(.73) 1.33 .12 1.59(.82) 1.82(.84) 1.79 .04* 

Order 2.19(.76) 2.05(.76) -1.47 .09 2.21(.71) 2.31(.70) 1.53 .10 

C: Obv .56(.24) .59(.25) .69 .25 .55(.28) .59(.22) .67 .25 

C: Lcl. .11(.21) .17(.25) 1.59 .06 .18(.26) .20(.29) .15 .45 

C: Evt. .16(.21) .17(.19) .48 .32 .17(.21) .26(.30) 1.81 .04* 

 

 

Mean gain scores were used to determine if there was a difference for change in 

scores from pretest to posttest.  Because these scores violated normality (Tables 4 & 5) a 
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non-parametric Mann-Whitney test was conducted to determine if there were significant 

differences between treatment groups on gains for each component.  Only one 

component, Order, showed a significant difference between treatment groups (z = 2.17, p 

= .02) with the Self-Monitoring group showing reduced understanding (M=-.18, SD=.76), 

while the Ontological group showed improvement (M= .18, SD=.71), an effect size of r = 

.24 (Table 17).  

 

Table 17 

Mean Gain Score Differences by Treatment Type 

 SM OS    

 Gain (SD) Gain (SD) Mann U Sig. Z 

Action -.19(.82) -.24(.77) 837.00 .34 .43 

Agent .17(.17) .23(.83) 808.50 .45 .12 

Order -.18(.76) .18(.71) 581.00 .02* 2.17 

CS-Obv .02(.28) .02(.29) 982.00 .48 .07 

CS-Local .07(.29) .00(.30) 894.50 .20 .84 

CS-Event .02(.25) .08(.29) 886.50 .19 .89 

 

 

The trend found between treatment conditions was that there was a significant 

difference on gain scores for the Order component.  Interestingly, this occurred because 

there was a non-significant decrease in understanding of Order for the Self-monitoring 

group while there was a non-significant increase of understanding for the Ontological 

group.  This appears to have happened because more students fell one level of 

understanding in the Self-monitoring group (23.1% as opposed to 10% in the Ontological 

group). For example, the following Self-monitoring students went from a medium 

understanding of Order (a mix of bottom-up and top-down causes of order for ants 

finding food) to more novice top-down responses. 

Pretest: ants travel in colonies to hunt for food & the ants mimic each others' 

behaviors and movement patterns 
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Posttest: the ants follow a leader and mimic each other's behaviors as they search 

for food.  (Participant 8) 

 

Pretest: I think there is no particular order to how ants find food.  I think they 

look for it and when they come across it they attack.  But if there are multiple 

options I think they just go with whatever will be the most beneficial to them.  If 

someone left out a bunch of cookies in one area, compared to a few cookie 

crumbs, I think the ants are more likely to go to the source that will benefit them 

most. 

Posttest: There is probably order.  Food is such a necessity that ants would not 

leave that to randomness.  They probably search for it in terms of what would 

benefit them the most.  (Participant 57) 

 

Students also decreased one level from a high level of bottom-up understanding to a 

medium level of bottom-up and top-down: 

Pretest: I believe that ants go about finding food by means of organized 

excursions that collect food and bring it back to their primary dwelling where the 

queen resides.  I believe that the order is instinctual and that, for the most part, 

even what may seem to be a lone and wandering ant is most likely fulfilling its 

role in this complex system of hunting and gathering. 

Posttest: I believe that there is a stringent and organized method in ant colonies' 

food collection.  I believe that the order is instinctual and that different ants are 

bred to perform different roles to benefit the system as a whole.  (Participant 43) 

 

Pretest: I think it is sort of like the flocking example we have seen in class.  One 

ant stumbles upon food (they wander aimlessly until then) which leads other ants 

to the source until there is a group of them feeding off of one location.  It is fairly 

random but instinctual. 

Posttest: one ant stumbles upon food, brings some back to the ant hill, returns to 

where the food was first found and other ants follow, slowing gathering.  

However, the first ant does not stay the leader; once an ant has found the source 

of food, they are just as knowledge able as the first ant and thus are equal again 

(Participant 71) 

 

Pretest: Ants use their senses to locate food sources (sight, smell, etc.), then they 

release pheromones along the path to the food so that the rest of their colony can 

locate the food.  They also probably learn by experience of knowing where food 

is frequently found.  Natural selection has also played a role in only allowing the 

ants capable of finding food to survive and reproduce. 

Posttest: Ants have an order that ha come from instinct, trial & error, natural 

selection.  Through evolution, ants have developed the most efficient system for 

locating food sources that is highly dependent on their senses and pheromones.  

(Participant 69) 
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The opposite trend happened in the Ontological scaffolding group, which had a larger 

number of students increasing their understanding by one level (32.5% as opposed to 

15.4% for the Self-monitoring group). The following are examples of improvement from 

novice to a medium level of understanding for the Ontological group:  

Pretest: I honestly do not know if ants have a sense of smell or not, but I do know 

that when one ant finds a source of food, it brings its little bastard friends with it 

on a second trip and this huge conga line starts where they continuously go to the 

food source and bring it back. 

Posttest: There is some kind of order to it.  One ant finds the food source and it's 

been proven that things almost always take the path of least resistance, therefore 

ants shuffle in line towards the food.  (Participant 65) 

 

Pretest: I think there is an order.  There is a leading ant and the rest of the group 

follows it. 

Posttest: I think there is an order.  The order comes from the system in the ant 

group.  Ants have a system in the group when they try to find food.  (Participant 

99) 

 

Pretest: I think ants find food as a colony, maybe delegating specific group of 

ants to find this food.  Therefore I think there is an order and it comes from the 

ants themselves.  They probably try to create colonies near large sources.  They 

also work together to conquer large sources of food like large decaying insects. 

Posttest: They find food through what seems like a random search but once food 

it spotted, they use their senses to communicate with each other about 

collaboration.  They are then able to form order to line up and collect the food.  

This order comes from their ability to adapt and a linear system.  (Participant 91) 

 

Pretest: I am not sure about how ants find food but when they sense it they form 

a single path and follow only the ant at the front.  When one gets lost, it seeks for 

a different path and all the ants right behind him follow him 

 Posttest: I think there is an order but I am not sure how it exactly works.  

From my observations, when a group of ants capture food nearby, they organize 

in a single line and form a path leading to the food.  Apparently, the each 

individual ant only follows the one in from of him and when one gets lost and 

forms a new path to the food all the ants behind him follow him.  (Participant 45) 

 

And for the Ontological group examples of a medium level of understanding to a more 

expert level:  

Pretest: I speculate that ants go about finding food through their sense of smell.  

They can track the food down by smelling it and find their way back to the colony 
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by retracing their own scent.  The first ant can notify other ants who will follow 

the trail and set up at pathway between the food and the colony.  The simple rules 

of the for the ants would be to follow the scent of the ants in front of them, collect 

the food, and return to the colony following the scent along the way. 

Posttest: The ants search for food is random, but once they find something an 

ordered system is created to retrieve the food and bring it back to the ant hill.  A 

lone ant stumbles onto some food source and brings some of it back to the hill 

leaving a trail of scent for the other ants to follow to get to the food and back to 

the hill.  The order comes from the ants’ simple rule to follow the scent.  

(Participant 13) 

 

Pretest: one or a small number of ants goes out using some sort of sense most 

likely smell, to scout food, then once it finds it it goes back to get additional ants 

to help collect and transport the food back to the ant hill to consume.  Ants often 

work as teams carrying food or supplies 

Posttest: scouts spread out from the ant hill individually, when they find a food 

sources they send a pheromone signal back to alert the rest of the ants, who then 

come to help collect the food in a system similar to an assembly line.  (Participant 

9) 

 

Pretest: There is some order.  Every ant will leave a specific kind of chemical, 

which other ants can trace, on its path.  When an ant finds some food and returns 

to the hive, other ants will follow its path to the food. 

Posttest: They leave chemicals along their paths.  Individually random, but some 

order in the whole (Participant 85) 

 

Treatment Type Differences for Transfer 

The second part of the second research question asked the following: How does 

the ability to transfer understanding of complex systems to another context of architecture 

compare for students receiving Ontological scaffolding versus students receiving Self-

monitoring scaffolding?  To determine if there were differences on transfer between 

conditions, a Mann-Whitney test was used to compare mean differences for each 

component (Table 18). Although the Self-Monitoring condition earned higher means for 

all components, there were not significant differences between conditions. 
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Table 18 

Transfer Task Differences by Treatment Type 

 SM 

(SD) 

OS 

(SD) 

Sig. Z U 

Action .51(.51) .46(.51) .42 .44 720.50 

Agent .30(.46) .29(.46) .58 .04 755.00 

Order .54(.51) .49(.51) .41 .46 718.50 

CS: Non-

Obvious 

.30(.46) .2(.40) .22 1.04 681.00 

CS: Distant .24(.44) .2(.40) .41 .51 722.00 

CS: Process 1.00(0) 1.00(0) 1.00 0.00 758.50 

 

 

A Mann-Whitney test, using overall sum scores, determined that there were no significant 

differences by treatment group, although descriptively, the Self-Monitoring group had a 

higher mean number of components mentioned (M = 2.89, SD = 1.10) than the 

Ontological group (M = 2.63, SD = 1.11).  

Summary 

 Overall, students in both scaffolding conditions demonstrated a small significant 

decrease in understanding of the component Action Effects from pre-to posttest and a 

small significant increase of understanding of the components Agents and Event vs. 

Process based Causation.  The ontological scaffolding group had the same significant 

increases in Agents and Events and decrease for Action.  The self-monitoring group 

demonstrated only non-significant similar trends for all components except Order.  There 

was a significant difference between treatment groups for the component Order with a 

small, non-significant increase in understanding for the ontological group and a small, not 

significant decrease in understanding for the self-monitoring group.  

 Overall, nearly half of the students were able to demonstrate understanding of the 

components Action Effects and Order in a different domain (an architectural setting), 
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with the Agent Actions, Non-Obvious Causes, and Distant Causes appearing less 

frequently.  Whether students demonstrated understanding of a component varied 

depending on what type of system they wrote about, however.  For example, students 

who wrote about transportation more readily showed an understanding of Agent Actions, 

while only those who wrote about food showed an understanding of Distant Causation.  

There was no difference between treatment groups on the ability to transfer this 

understanding. 
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CHAPTER 5: DISCUSSION 

In this chapter I return to the original research questions and discuss findings.  I 

then explore how this work contributes to the literature, describe limitations of the study, 

and suggest future directions for research. 

 School science standards as well as science education researchers (Jacobson & 

Wilensky, 2006) have called for students to learn complex systems (Achieve Inc., 2013; 

National Research Council, 1996, 2012). Previous studies have examined difficulties 

students have in learning complex systems (Assaraf & Orion, 2005; Hmelo-Silver, 

Duncan, et al., 2007; Jacobson, 2001; Resnick, 1996; Stroup & Wilensky, 2000; 

Wilensky & Resnick, 1999) for a variety of age groups.  

 The results of this dissertation build upon previous research (Goh et al., 2012; 

Grotzer et al., 2013; Jacobson et al., 2011; Yoon, 2008, 2011), and address limitations of 

previous studies.  Despite the number of studies investigating how to help students 

understand complex systems with simulations (Barreteau & Bousquet, 2000; Boissau & 

Castella, 2003; Grotzer et al., 2013; Jacobson et al., 2011; Vattam et al., 2011), none of 

these place students in the role of agents that are a part of and create the systems under 

investigation.  Studies that have put students in the role of agents either have not focused 

on student understanding of complex systems components (Colella, 2000) or have done 

no experimental investigations (Wilensky & Stroup, 2000a). The present study explicitly 

investigates whether participating in and experiencing being an agent in a complex 

system simulation helps students better understand system components.  Extending other 
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research that investigates how to support understanding of simulations and complex 

systems (Jacobson et al., 2011; Slotta & Chi, 2006), this study contributes to the literature 

by comparing the effect of self-monitoring and ontological scaffolds to help students 

understand an inherently difficult topic.  Finally, this study builds upon a view that 

learning encompasses transfer (Bransford & Schwartz, 1999; National Research Council, 

2000) by addressing whether students can transfer their understanding of components 

outside of the domain of the simulation.  

Student Understanding of Complex System Components 

 This section examines the first research aim of whether an agent-based 

participatory simulation intervention could help students understand complex system 

components.  Results are discussed in the context of previous literature.  

Change in Understanding of Complex System Components  

Action Effects.  Most students began with a medium-high understanding of 

Action Effects, and a significant decrease in understanding occurred after the intervention 

(Appendix K).  Interestingly, there are conflicting findings from previous research about 

how difficult students find this component.  Small studies of undergraduate 

understanding indicated none of them understood how small causes can lead to big 

effects (Jacobson, 2001); after a hypermedia intervention with another sample of 

undergraduates, this was the only component on which participants did not improve 

(Jacobson et al., 2011). In contrast, a study in grades 8-12 found that this was the easiest 

category for students to understand (Goh et al., 2012). The findings from this study found 

that overall, undergraduate students found this category to be the least difficult and they 

also did not improve their understanding, possibly because of their initially high scores.  
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The assessment for Action Effects required participants to demonstrate not just a 

type of understanding (i.e. non-linear vs. linear) but explain how they believed this 

understanding works.  Students wrote shorter and less involved responses on the posttest, 

and scores significantly decreased, despite the treatment. A possible reason for why 

students demonstrated worse understanding of Action Effects after the intervention may 

have been that the intervention did not help students understand how small causes can 

create large effects.  Students began with a medium-high understanding of Action Effects 

and fell to a medium understanding after the intervention.  During the simulation students 

worked together as a large group, made their own choices during rounds, and then saw 

these summed effects displayed for both territorial groups, and the Bay as a whole.  It 

may have been that students interpreted the overall effect on the system as an aggregated 

effect of everyone’s equally weighted choices.  

There were two main ways students could have explained how small causes create 

large effects.  The first is that small causes can spread through systems through growing 

chain reactions or cascading effects.  For example, if a species of fish dies, and then 

several species of predators that depend on that fish die, and then the ecosystem 

collapses, and thus a relatively small initial change can grow into a much larger, non-

linear effect.  The second is that a small cause does not have a large effect on its own, but 

many small causes add up to creating a large cause.  For example, a single individual who 

wastes water is unimportant, but if everyone acts like that person, the effect becomes 

devastating.  In the first example, a small cause can lead to a large effect; in the second 

example, many small causes lead to a large effect.  These two understandings are not 

mutually exclusive, and a student who believes the latter does not necessarily disagree 



99 

 

 

 

with the former unless explicitly stating so.  However, students tended to respond with 

answers that focused only on the aggregation of small causes.  Therefore the item used to 

elicit student responses may not have fully captured whether students understood non-

linear effects and how they may emanate from small causes.  

Both the intervention and the simulation might be improved for future studies.  

First, given the sharp decrease in student response length, and their tendency to skip the 

second part of the question, future development of items should not have multiple 

questions embedded in a single item.  Second, because students were able to give 

multiple reasons for how large effects occur that other than cascading growth and chain 

reactions, items should be adjusted to ensure students focus on these processes.  Finally, 

during the simulation, discussion should be focused at different points to elicit students’ 

beliefs about causes of the system effects.  This may mean directly asking about whether 

effects are occurring from everyone making small changes or if key stakeholders are 

having a non-linear effect on the system.  It may also benefit students to disaggregate 

their individual effects on the system so they can see exact impacts of their actions.  

Students may find that making a large change may have small impacts, or that possibly 

small but important individual changes affect the Bay disproportionately compared to 

other changes.  

Agents.  Students understood the Agents component the least well of these three 

components but notably, made small but significant improvements (Appendix K).  One 

possible explanation for these results may have been the unpredictability that students 

witnessed during the simulation.  Because students take the roles of agents in the 

simulation, they were able to personally experience how random changes in the 
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environment changed their own behaviors.  Students may also have experienced how 

their own actions may not always have had the intended or hoped for effect.    

These findings are somewhat in keeping with previous research findings.  

Jacobson’s original study of undergraduate novices (2001) showed that most of their 

responses viewed agent actions as completely predictable, while a later study showed 

they could improve their understanding (Jacobson et al., 2011).  A study of middle school 

understanding for the predictability of the effects of agents (slightly different than agent 

actions) found this to be the most difficult category for students to understand (Goh et al., 

2012). The findings from this study extend these middle school findings to show that 

even at the undergraduate level, this appears to be the most difficult component for 

students to understand.  

 Changes in the design of the simulation may help facilitate improved student 

understanding.  Discussion between rounds might make emergent behavior and 

randomness within the system tangible by focusing on why students made choices they 

made and whether the choices of others were as predicted.  Focusing students on the 

chance factors in the environment that may have altered their decisions or led to new 

behaviors may help focus students on the inherent randomness that exists within the 

system. 

Order.  Overall, student understanding of Order remained at a medium level 

throughout the study (Appendix K).  Previous research has shown that Order is a difficult 

component for grade 8-12 students (Goh et al., 2012) and that even gifted students have 

difficulty with bottom-up order ideas such as evolution and self-organization (Jacobson 
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& Archodidou, 2000; Settlage, 1994). Similarly, students had a moderate understanding 

of bottom-up order and did not improve in this college-age sample.  

During the simulation students encountered bottom-up examples of organization 

(e.g., students were not told what to do but self-organized however they saw fit) while 

also experiencing top-down organization (e.g., regulators could give tax incentives for 

different behaviors from players) (Appendix K). Order in the simulation, as in the real 

world, comes from a mixture of top-down and bottom-up processes that are not explicitly 

addressed during the simulation.  Although students may understand both types of 

organization, the simulation did not explicitly highlight either type for students. 

Thus modifications may help students to explicitly address what types of 

organization they see and how they might be occurring in the simulation.  There are 

multiple instances of top-down organization from a variety of regulators as well as 

bottom-up organization from individual students.  Discussing and comparing these in 

between rounds or adding prompts within the simulation may help focus students on what 

these may have in common or how they interact.  

 A final pattern that developed was that student responses that fell into the expert 

range either specifically mentioned the use of pheromone trails or a variation of how ants 

might use chemicals to signal other ants. Although neither treatment condition instructed 

students about ants and food gathering behavior, students who appear to have increased 

their content knowledge with more specific terms were more able to demonstrate expert 

understanding of bottom up organization. This points to the importance of domain 

specific content knowledge for students to have concrete material to apply and think 

through how their more domain general understanding of complex systems components 
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function in the transfer context. Although this study did not focus on increasing domain 

specific content knowledge to aid transfer students would most likely benefit from a 

combination of domain general complex system component understanding and domain 

specific content knowledge in the transfer context to apply these higher level concepts to. 

Obvious vs. Non-Obvious Causes.  Students’ responses did not significantly 

shift for this component (Appendix K).  Previous research has not investigated whether 

older post-secondary students attend to non-obvious causes more than obvious causes but 

several studies have focused on middle school understanding of non-obvious causes.  In 

one study, 8th grade students had difficulty focusing on nonobvious causes in a unit on 

pressure (Basca & Grotzer, 2001). However, there is some limited evidence that 

discussion of non-obvious causes might benefit which causes students attend to.  In other 

studies, 6th grade students had difficulty focusing on nonobvious microbial causes of 

decay (Grotzer, 2009) and demonstrated mixed abilities to focus on nonobvious causes 

related to pressure (Grotzer, 2003). 

In a study related to ecosystems, Grotzer and colleagues (2011; 2013) investigated 

the same fish die-off question used in this experiment as well as coding scheme.  Students 

surprisingly focused on significantly more non-obvious causes in both pretest and 

posttest responses (Grotzer et al., 2013, 2011). After a two week intervention, the number 

of obvious causes decreased significantly while the number of nonobvious causes given 

stayed about the same.  Similarly, participants in this study proposed more non-obvious 

causes on average, with 55% of pretest and 59% of posttest causes being non-obvious.  

However, the results from Grotzer’s 2013 study showed a changing ratio due to a 

reduction of obvious causes from pretest to posttest while the number of nonobvious 
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causes stayed about the same.  In contrast, in the current study, the ratio changed because 

the number of obvious causes that students gave stayed the same while the number of 

non-obvious causes given increased.  

A few conclusions can be drawn from this.  First, the findings from this study 

support previous work done on nonobvious causes for middle school aged students.  This 

is unsurprising for two reasons.  First, there is no reason to believe that as students get 

older, their focus would move away from nonobvious causes towards obvious causes.  

Second, the criteria for coding an obvious cause was that it is visible to the naked eye.  

Although this is probably a good metric for younger students, it may not be as 

appropriate for postsecondary adults.  For example, chemicals are considered nonobvious 

because we cannot see them when added to water.  However, to claim that chemicals 

would not be obvious to an adult as a possible cause for the death of fish in a river rings 

false.  Although chemicals are not physically visible, they are salient within our culture as 

part of the broader discussion about pollution and health for many decades now.  

Nonobvious causes are by definition causes that are hidden from view and 

without their consideration, a person would have an incomplete understanding of how a 

system works (Basca & Grotzer, 2001). Within ecosystems, causes are often nonobvious 

and absent these, an accurate understanding of system dynamics is not possible.  There is 

evidence to suggest that the default assumption students often make is to construct causal 

reasoning from obvious perceptible causes (Grotzer, 2005, 2009) and that even adults are 

unlikely to look for further causes when obvious ones already exist (Grotzer, 2012). This 

is important because if we get stuck on a more obvious but incorrect cause, we may 

neglect to consider less visible but more important causes.  Encouragingly, the results 
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from this study support that students beyond middle school do attend to non-obvious 

causes.  

 During the simulation, students were largely left to discover how the system 

works through their own trial and error. They also learned by asking questions of 

moderators and discussing with peers what they tried.  Students were by definition likely 

to encounter obvious causes within the system and only through further searching, 

discussion, and trial and error were they able to learn about non-obvious causes for 

behavior in the system.  Because the simulation neither highlighted all possible causes for 

students nor were discussions specifically focused on getting students to think through all 

possible causes, students may have settled for more obvious causes and then moved on to 

understanding other parts of the simulation.  

Although the increase from pretest to posttest in non-obvious causes was not 

significant, this positive trend might be improved with a more explicit discussion of 

nonobvious causes during the simulation.  A focus on pushing students to think beyond 

the initial, possibly more obvious causes they suggest might help focus students to think 

about nonobvious causes.  Still, students have shown that they already attend to 

nonobvious causes, and problems for systems thinking are not that students think about 

obvious causes, but that they fail to think about non-obvious causes.  An incomplete 

understanding would also exist if students gave only nonobvious causes while ignoring 

obvious causes.  Therefore the goal for understanding is to make sure both types of 

causes are considered, which our findings show to be true, even before the intervention 

occurred.  
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Local vs. Distant Causes.  This component assessed whether participants focused 

on causes that were physically close to the effect (a fish die-off) or further away from the 

effect (Appendix K).  Because we have limited information when we assess causal 

connections, and because most of this information is often local and immediate, people 

often limit the causal models they create to interpret systems and events (Grotzer, 2012). 

This default of attending to local causes prevents students from having full 

understandings of issues in ecosystems such as acid rain and global warming whose 

causes are necessarily far away.  It is this “Action at a distance” mindset that we want to 

cultivate for better systems thinking because the exclusive focus on easier to comprehend 

local causes often prevents students from looking to potentially important distal causes.  

Further, this effect is shown in adults (Grotzer, 2004) as well as children (Lesser, 1977) 

and infants (Spelke, Ann, & Woodward, 1995).  

 This study found that students relied heavily on using local causes to explain the 

fish die-off.  During the simulation, students were not told which causes have which 

effect on the system.  Because of this students may have focused on the more immediate 

causes around them.  Given the short amount of time for the simulation, students may not 

have had time to search for more distant causes. During the pretest, very few students 

talked about distant causes and improvement in the posttest occurred because more 

distant causes were given while the number of local causes stayed about the same.  In a 

study of middle school students, from which this measure was adapted, Grotzer and 

colleagues (2011) found students included significantly more local explanations than 

distant explanations in their pretest.  This number turns out to be quite similar to this 

study’s findings with an average of 3.45 local causes given per student and .59 distant 
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causes given in the pretest.  This suggests that student focus on distant vs. local causes 

remains about the same for both age groups.  

 Furthermore, these findings converge with other studies of middle school 

students.  In one pilot study researchers also found students gave more local than distant 

causes for complex ecological phenomena and were able to improve the number of 

distant causes they gave after an attention at a distance intervention (Gramling, Solis, 

Derbiszewska, & Grotzer, 2014). Interestingly, students assigned local causes as being 

more important than distant causes.  In a different study of elementary through middle 

school age students they also gave more local responses yet when asked did not express a 

preference for either (Grotzer & Solis, 2014). Their findings point to factors that enable 

increased distal responses as prior knowledge in general, prior knowledge of science 

concepts, as well as prior mechanisms knowledge.  

The increase in distant causes for this study from pre to posttest was not 

significant, but it was in the right direction.  This study converges with previous work 

and extends the pattern of local and distant causal thinking found in elementary and 

middle school students to those in post-secondary education.  Though we did not query 

whether there was a difference in whether students found distant or local causes more 

important, there was a definite focus on more local than distant causes in students’ 

responses. 

 Students might have improved their focus on distant causes with prompts built 

into the simulation to focus students on alternative causes.  This might also be 

accomplished during discussion between rounds by having students brainstorm causes for 

either improvement or degradation of the system and then categorizing whether these 
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were local or distant causes.  Students could then be challenged to generate further distant 

causes and discuss why they might be important or why it might always be important to 

stop and think about what distant causes might be affecting any system.  

Event vs. Process Based Causes.  This component assessed whether students 

focused on causes that were events, or if they were able to focus on the more long-term 

processes that eventually led to the effect (a fish die-off) (Appendix K). The distinction 

between these within the framework of ontological categories (Ferrari & Chi, 1998) is 

important because a focus on causes as events represents a clockwork way of thinking, 

while a focus on process represents more expert complex systems understanding 

(Jacobson, 2001; Jacobson et al., 2011). Without an understanding and focus on the 

causal forces that occur in complex systems, students will only focus on dynamics when 

events occur (Grotzer, 2012). 

 Students in this study began with a small number of process causes and 

significantly improved by increasing this number while the number of event causes 

remained the same, shifting the overall proportion.  These results confirm several other 

findings from the literature examining student focus on processes.  First, a previous study 

from which this protocol was adapted found that middle school students also heavily 

favored event-based explanations over process based explanations for a fish die off 

(Grotzer et al., 2011; 2013). In that study, using a simulation meant to help students 

improve understanding causal understanding in complex systems, the only significant 

change found for student responses was a reduction of event based causes given after the 

intervention.  Although the population was younger than in this study, the mean number 
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of process based causes given for these students of 1.41 started much higher than in this 

sample (M = .60, SD = .77).  

 Similar results have been found for other age groups measuring a focus on 

processes.  A small group of undergraduate students were shown to focus less on 

processes in complex systems than experts (Jacobson, 2001) and after a hypermedia 

intervention undergraduate students were able to focus more on processes over events, 

though the size of this increase was not given (Jacobson et al., 2011). Similarly, middle 

school students also demonstrated a more novice event-based focus when learning about 

genetic engineering and complex systems, which increased through a 10-day workshop 

(Yoon, 2008). More recent work measured data from grade 8-12 students (N=44) and 

measured how difficult different complex systems components in biology were for this 

age group to understand (Goh et al., 2012). Results showed that students found 

understanding complex system processes to be one of the most difficult components, 

after Order and Agent Effects.  

 Overall these studies show that students of all ages have difficulty focusing on 

processes in complex systems and that through a variety of interventions (hypermedia, 

interactive workshops, or participatory simulations), students are able to move their focus 

and explanations towards this ontological category.  The results from this study show that 

these students were also firmly entrenched in an event-based focus when enumerating 

ideas for why a fish die-off might have occurred.  However, they did significantly 

improve their focus on the processes behind this effect after the intervention.  

Because students take the role of agents within this simulation during rounds, they 

witness the behind the scenes processes that lead up to the events at the end of rounds.  
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After each round ended, students saw the results of the processes as sudden changes in 

bay health and their own finances.  Because of this incremental updating, students took 

part in the processes within the ecosystem and then witnessed the events that arose from 

these causes.  This back and forth might possibly explain why students improved their 

understanding,  

Although students did improve their focus towards a more complex systems 

process view, it should be noted that this was a small effect.  Future scaffolding might 

improve understanding by focusing students during the simulation on what causal 

processes they believe are giving rise to the results in between rounds.  Both through 

reflection and group discussion students might be directed to focus on which processes 

are having which effects in the system and how these effects are manifested. 

Transfer of Component Understanding 

This section looks at how well students transfer their understanding of 

components of complex systems to another domain.  First, I will discuss what student 

responses looked like and then compare these to a previous study of transfer for complex 

systems.  

The components Order and Action Effects were the most understood by students 

matching pretest and posttest findings. For the transfer question used in this study 

(Appendix C) students were allowed to choose the system they would design or alter for 

a city, with food being the most popular system by a large margin.  There was a large 

amount of variability for how often a component was mentioned depending on the system 

a student chose to write about. For example, no students who chose the topic of waste 
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expressed understanding of Agents, while students who wrote about energy mentioned 

this component frequently.  

This suggests at least two possible scenarios for transfer.  First, there is the 

possibility that certain systems better facilitate students’ understanding of certain 

components of transfer.  For example, the majority of students who talked about food 

gave bottom-up examples of order.  Students talked about the need for bottom-up 

organization of individual farming and local farms to counteract negative effects from 

more top-down industrial farms.  They also gave many responses for distant causes by 

talking about the negative local effects of transportation and distant farms unconnected 

from the community.  Similar understanding of bottom-up order, however, occurred 

much less often (18% of responses) when students discussed designing a water system 

for a city.   

A second explanation would be that students have more prior knowledge of 

different systems, or parts of systems, which is then represented in variation of their 

understanding of components in each system.  One could imagine that in talking about 

bottom-up order for water systems, that individual water catchment systems is no more 

difficult to understand or design than individual farm plots.  However, less than a quarter 

of students who wrote about water systems demonstrated understanding of this complex 

systems type of organization.  This may be a reflection of greater prior knowledge (more 

knowledge of types of agricultural systems) or simply more exposure (greater salience of 

agriculture in day to day life or past experience).  

Students demonstrated differing abilities to talk about different components 

overall, with half of students talking about Order and Action, although there was 
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variation in understanding of components by type of system.  This warrants further 

exploration because previous research in learning progressions (Goh et al., 2012) 

suggests an order of difficulty for complex systems component understanding for 

students.  Whereas Goh et al. found Order to be the second most difficult topic for high 

school students, Order was the component students in this study most readily 

demonstrated their understanding for in this transfer question.  However, within Order, 

there was great variation depending on which system students chose to talk about. 

Student Understanding of Complex System Components by Treatment Condition 

Students received two different scaffolding treatments meant to help them better 

understand complex system components.  The group in the self-monitoring condition 

took part in scaffolds meant to help them both plan and reflect on their understanding of 

the simulation of the Chesapeake Bay watershed and on which factors they felt were 

important.  The group in the ontological scaffold condition took part in scaffolds meant to 

explicitly teach them about complex system components in ecosystems.  

Two interesting trends developed between scaffolding treatment conditions.  First, 

the significant gains in Agents and Causation: Events vs. Processes, as well as the 

significant decrease in Action Effects occurred only in the ontological scaffolding group.  

Although the self-monitoring scaffolding group showed similar trends in five of the six 

components, these gains were not significant from pretest to posttest. Further, although 

these gains were significant for the ontological group, they were not significantly 

different between groups. The increase in two components is not surprising, as other 

research demonstrates that ontological scaffolding can help students make sense of 

simulations of complex phenomena (Chi & Slotta, 2006; Jacobson et al., 2011).  The 
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ontological scaffolding may have helped students develop a framework about Agents and 

Process-based causes that they may have used to interpret the phenomena of the 

simulation.  

Results suggest that self-monitoring prompts may not have the same benefit for 

Agents and Process-based Causes.  Guiding students to plan and reflect upon their 

understanding within the simulation may not be adequate to help students engage in 

knowledge building about complex systems. It is important to note, however, that these 

effects were small and that for the other components, except Order, no significant 

differences exist. There are a few possible reasons for this. First, scaffolding may not 

have helped students engage in beneficial processes for learning. Students in one 

treatment may not have self-monitored, and in the other they may not have learned much 

about ontological components. Second, they may have engaged in these processes but 

they weren’t enough to help students make sense of the simulation. Finally, they may 

have indeed engaged in these processes and learned from the simulation but the 

assessments were not sensitive enough to distinguish this. For all three of these cases, 

future research is needed to provide more information to rule out these possibilities.  

The second trend found between treatment conditions is that there was a 

significant difference on gain scores for the Order component which overall did not 

significantly change.  This is because there was a non-significant decrease in 

understanding for the self-monitoring group while there was a non-significant increase of 

understanding for the ontological group.  This largely happened because more students 

decreased one level of understanding in the self-monitoring group while the ontological 
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group had a larger number of students increasing their understanding by one level 

(mainly from a medium level of understanding to an expert level of understanding).  

Because the Bay Game is a coupling of multiple systems (aquatic ecosystems, 

human systems, etc.) and order comes from a mix of top-down and bottom-up 

organization.  Students are presented with bottom-up examples of order (e.g. all players 

have local goals and organize on their own) as well as top-down aspects represented by 

regulators.  For example, if a farm regulator in a region wants to encourage more green 

farming she subsidizes this type of farming and tries to control how farmers will grow 

their crops.  Although both scaffolding conditions encounter these types of Order only the 

ontological group discussed and was reminded to pay attention to bottom-up types of 

organization.  Although they did not significantly improve their understanding, there 

were positive trends of improvement.  However, when students were not explicitly taught 

this in the self-monitoring condition they appear to have shifted their focus in the 

opposite direction towards top-down organization.   

Similar to Resnick and Wilensky’s assertion of the centralized mindset (1999) and 

Jacobson’s findings (2001) that novices focus mainly on centralized order the self-

monitoring students appear to have shifted towards this top-down way of thinking.  In 

contrast, the ontological scaffolding students actually increased their focus on bottom-up 

order.  This component is suggested to be one of the most difficult components for high 

school students to understand (Goh et al., 2012) and although both treatment conditions 

started at a mid-level of understanding they soon diverged.  The bias towards a 

centralized way of thinking may have been partially reinforced for the treatment that was 

not guided towards focusing on bottom-up order due to the prevalence of top-down 
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regulators within the simulation.  The ontological scaffolding condition, may have 

focused student attention on more examples of this organization during the intervention.  

Given the differences between these treatment conditions and the tendency 

towards the centralized mindset in the literature, explicit scaffolding of bottom-up 

organization for all students seems necessary.  Students appear to naturally attend to 

simpler top-down instances of organization and need to be redirected to pay attention to 

the more diffuse and complex bottom-up instances in the simulation.  This might take the 

form of group discussions around the different types of organization students are noticing 

as well as their characteristics. 

Differences between Treatment Groups on Transfer 

 There were no differences for transfer based on treatment types.  This is largely to 

be expected as there was only a small difference between treatment groups for their gain 

in understanding of components after the intervention.  Because the transfer task was not 

given before the simulation, no causal claims can be made about the effect of the 

simulation on transfer.  However, because students had difficulty with several 

components (Agent Actions, Non-Obvious Causes, and Distant Causes) during the 

posttest transfer task, the experience of the simulation was unable to bring these students 

up to a more expert understanding regardless of where they started from.  Because both 

scaffolding groups showed no differences in ability to transfer their understanding, this 

demonstrates just how difficult certain components of complex systems understanding 

are for transfer.  This may mean that a simulation that does not simulate multiple domains 

and therefore does not allow students to practice transfer of their understanding may not 

be enough.  It may also mean that although ontological scaffolding was helpful for 
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students to significantly increase their understanding a small amount, that other types of 

scaffolding may be necessary for transfer.   

Limitations 

One of the largest limitations of this study is the amount of time students had for 

the scaffolding workshop as well as for the simulation intervention.  Both occurred in 

classes that are 75 minutes long and after taking the pretest in the workshop and getting 

logged in and set up for the simulation participants had only about 50 minutes for 

workshop discussion as well as the simulation.  Given that this was an ongoing class this 

was a generous amount of time for the instructor to give but this severely limits both the 

dosage as well as time for reflection, which is one of the most important activities for 

conceptual change (Davis & Linn, 2000).  

A limitation for generalizability is the sample used in this study.  All students 

were selected because they attended an architecture class teaching systems thinking for 

architecture.  Students were largely in their early twenties, female, and undergraduates.  

Further, students self-selected into this class.  Therefore generalizations from this 

experiment are limited to similar populations from which this data was gathered.  Further, 

because the focus of the class was systems thinking in architectures student 

understanding may be higher than the general population.  Therefore, pretest scores of 

component understanding may not be representative of other students of the same age. 

Although no experiment runs perfectly, one large problem arose during the 

simulation.  During the last 15 minutes of the simulation intervention, a glitch in the 

simulation caused one group’s results to display incorrectly.  Although group selection 

was randomized separately from randomization for treatment groups, this issue may have 
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caused some students to have an even shorter dosage than the rest of the class.  Students 

continued to play the game aware that their results were probably not accurate.   

Finally, a main limitation for understanding systems thinking has to do with how 

student understanding is elicited.  One major difficulty is that systems themselves are 

nonlinear although we must speak, and write, in a linear way.  This means that students 

are asked to explain, in a linear way, systems without a beginning, middle or end and 

with constantly changing interactions at multiple time scales.  This is a challenging task, 

and one that is even harder when asked to do it in short answer form.  However, without 

some structure, students may wander in their responses and avoid talking about the 

specific components we want to know about.  One solution would be to first ask more 

open ended questions and then to narrow students to either short answer or multiple 

choice responses (Metcalf, Tutwiler, Kamarainen, Grotzer, & Dede, 2011). While this 

may be more ideal than just short answer questions, it requires considerably more time 

and good will from the students, a problem found during the posttest responses in this 

study.  Further, it is not necessarily clear how to combine student responses from more 

open ended essays and more narrow multiple choice questions, especially if students give 

conflicting responses.  

Implications 

There are three broad categories of implications for this study. The first category 

deals with the effectiveness of the simulation as well as representation of components. 

The second category discusses the effectiveness of scaffolding agent-based participatory 

simulations of complex systems. Finally, I discuss difficulties with assessing 

understanding of complex systems.  
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Effectiveness of Simulations 

Based on the overall pattern of results, participatory agent-based simulations may 

not significantly help students understand complex systems, even with scaffolding.  

While in this instance the Bay Game is a simplified version of a very complex ecosystem, 

it is still complex and students still have a lot of information to attend to.  Even when 

explicitly scaffolded to pay attention to complex system components, students may be too 

occupied with understanding the system as a whole to do so.  The complexity of the 

simulation may also prevent students from recognizing instantiations of components 

when they encounter them.  Further, the goals of the simulation may not be 

commensurate with focusing on complex system components.  That is, during the 

simulation, students are told to learn about their roles, learn how their actions affect the 

system, and learn strategies to improve their intended effects.  These goals may focus 

students away from understanding complex system components as students focus more 

narrowly on their own individual situations. Therefore, students may need to experience a 

variety of roles in agent-based participatory simulations in order focus more widely on 

the system. Because it is cognitively challenging to focus on the dual tasks of gameplay 

and reflecting on the system, it may be more effective to allow students to have a variety 

of experiences and for these experiences to contribute to a broader overall understanding 

of the system.  

 Alternately, students might simply require more time than was available in this 

study to orient themselves to the simulation before being able to focus on complex 

system components.  Students may eventually come to understand the system’s 

underlying behaviors, but only after they have first made sense of the structural features 
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for their given role.  This is supported by the mainly positive though non-significant 

change in student understanding for most components in this study. This possibility 

points to the need not only for more time with the simulation but also for debriefing and 

reflection after the experience which is a component of self-monitoring that was not used 

in this study.   

 Improving complex systems understanding may also depend on the system that is 

represented within the simulation.  Student responses for the transfer question largely 

reflected the same difficulties they demonstrated in their pretest and posttest responses.  

However, there were intriguing differences in component understanding depending on 

which type of system students wrote about (e.g., those who wrote about water systems 

more often understood Action Effects). Certain complex system components, such as 

Order or Agents, may be more salient and readily understood depending on the type of 

system represented within a simulation. This may be due to inherent characteristics of 

specific systems that make certain components more easily recognizable or intelligible.  

Therefore, it may be that any simulation is more effective at improving understanding of 

system components depending on which type of system is represented in the simulation. 

If true, using a variety of simulations or specific simulations that use systems that match 

the components to be taught would be preferable to extended time with one simulation.  

 Alternately, differences in component understanding in systems may be a 

reflection of greater prior knowledge or salience of the topic for students. Although 

students increased understanding of some components without directly being taught 

domain specific content students would almost certainly benefit from a combination of 
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domain specific content knowledge and domain general complex systems focused 

instruction. 

 Finally, because students made small but significant improvements in 

understanding for some but not all components this suggests that experience and not just 

visualization may be important for helping students learn about specific complex systems 

components. Experiencing the needs and choices of agents that lead to Order from 

bottom-up organization may be more effective than just seeing the order occur.  

Effectiveness of Scaffolding 

Although ontological scaffolding caused small but significant improvements for a 

few components, scaffolding did not seem to matter overall.  It is possible that 

scaffolding might have the potential to help but was applied incorrectly.  For example, 

some students were given worksheets to help them focus on complex systems 

components during gameplay, but perhaps informative packets or access to experts to 

field questions would have been more effective.  Although students received passive 

guidance in the form of worksheets during the simulation, they still needed to choose to 

use these scaffolds to monitor and reflect on their understanding. Many may have not 

chosen to do so, and designing scaffolds that actively engage students in these processes 

may increase their effectiveness in helping guide students in these metacognitive tasks. 

In the specific instance of Order the type of scaffolding did have an effect on 

student understanding. In this case students who might naturally have a bias towards a 

centralized mindset showed lower understanding after interacting with a simulated 

complex system while those with ontological scaffolding showed a positive though non-

significant increase in their understanding. This suggests that for components that 
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students find counterintuitive that simply more experience with a complex systems not 

only didn’t improve understanding but might allow students to further miscategorize the 

complex system as having properties of a clockwork system. This supports Chi’s 

conjecture of the importance of ontological training and the need to create distinct 

ontological categories, especially for components that may be counterintuitive. 

Effectiveness of Assessment 

 Because complex systems are characterized by numerous parts and changing 

interactions, and because these may happen over a variety of time periods, behaviors of 

these systems are difficult for students to talk about.  During this intervention, many of 

the measures used to capture student understanding revealed limitations.  Other 

researchers have attempted to deal with this issue by first giving student more open ended 

questions, and then focusing them with multiple choice questions in an attempt to not 

lose nuance in student understanding while also making sure students address specific 

components being researched (see Metcalf et al., 2011).  In this study, similar problems 

arose.  Questions were short answer (a compromise between essay and multiple choice) 

but still did not elicit the correct focus from students.  In other words, student responses 

were sometimes vague, or did not fully answer the question that was asked. 

 Because of these difficulties, scholars in this area need to find a better way to 

assess complex thinking.  Students may understand parts of systems in a non-linear way, 

and the process of writing out linear explanations or being encouraged to do so may 

prove too difficult or even contradictory for students.  Other researchers have collected 

multiple outcome measures (e.g., concept maps, interviews, essays) (see Assaraf & 

Orion, 2005; Yoon, 2011) to provide students a variety of ways to express their complex 
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systems understanding.  How these data sources are combined and whether it is practical 

to collect and analyze this variety of data, at multiple time points, with a larger number of 

students needs to be further studied.  

Future Research 

 The findings from this study point to several productive areas for future research.   

Further studies using agent-based participatory simulations are needed.  Although this 

study showed that students made small improvements in their understanding of some 

components, further learning may follow from increased dosage, curriculum development 

within which to better situate the simulation, or more effective scaffolding.  The current 

study shows some promise for some components.  These suggestive effects could be 

confirmed and expanded with either studies incorporating the findings from this one, or 

with a combination of agent-based simulations such as NetLogo and agent-based 

participatory simulations such as the UVA Bay Game. 

 Adjustments to the simulation as well as how gameplay is conducted need to be 

studied (Appendix K). An important aspect for gameplay is between round group 

discussions.  Although ontological scaffolding prior to gameplay helped students better 

understand some components, timing of scaffolding needs to be investigated.  In game 

group discussions may also be just as important (Liu & Hmelo-Silver, 2010) as well as 

post-intervention reflection (Davis & Linn, 2000) and combinations of scaffold timing 

may prove more effective in helping students  better understand complex systems 

components. 

Further research should be conducted to determine what types of scaffolding are 

effective within agent-based participatory simulations as well as how these should be 
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implemented. Process management may be more important during a simulation as 

students navigate the complex system while reflection after a simulation is ineffective 

without this. Therefore a combination of types of scaffolding may be needed.  

Research should also be conducted to better understand component difficulty in 

context. Although there are beginning attempts to measure which components are more 

difficult (Goh et al., 2012) this may vary depending on the context in which students are 

discussing these components. Therefore component difficulty needs to be measured in a 

variety of contexts in order to more accurately inform both which components might 

need more pedagogical support as well as which environments these components might 

best be presented to students in. The importance of domain specific content knowledge 

also needs to be investigated. 

Both the items used in this study as well as the rubric need refinement.  To more 

completely elicit the indicators measured by the rubric, items should align more with the 

rubric. For example, when eliciting understanding for Action Effects, items should 

require students to explain the role of randomness and chance factors in systems. There 

were also a variety of components, such as feedback loops, that were elicited but not 

analyzed in this study.  Expansion of the items and associated rubric should incorporate 

these complex systems components. 

 Although there is some convergence between this study and previous findings for 

which components are most difficult, little is known about why students find particular 

components difficult or what they find effective in helping them understand these 

concepts.  Qualitative studies to better understand why students have difficulties with 

individual components as well as what they find difficult or effective with this simulation 
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are needed. Interviews with students could help determine both what they find difficult 

about complex system components and what they find effective in learning about these 

components.  Additionally, other types of data such as concept maps and essays should 

be collected and analyzed as students often do not know why topics are difficult.  Only 

with an understanding of what students specifically do not understand, why these 

components are difficult, and when students need the most help in learning about them 

can the correct scaffolding be designed and implemented. 

 Overall this study demonstrates that agent-based participatory simulations and 

experiencing complex systems can help students learn certain complex systems 

components. It adds evidence to the need for ontological scaffolding and Chi’s theory of 

ontological categorization and Jacobson’s delineation of complex and clockwork 

systems. Finally, it points to the need to better understand complex system components in 

context and whether the types of systems they are understood in may affect student 

ability to transfer their understanding. 
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APPENDICES 

Appendix A 

Demographic Questionnaire 

 

In order to create groups for the gameplay on Thursday (Oct. 23rd) we need the following 

information. If you are not comfortable answering any question (besides the first three 

questions which will be necessary for assigning groups) you may indicate this.  

1. What is your name? 

2. What is your UVA email address?  

3. What is your gender?  

4. How old are you?  

5. Are you a graduate or undergraduate student?  

6. What is your Major/area of study?  

7. What year in school are you?  

8. How many hours a week do you play video games? 

0 hours a week 

1-4 hours a week 

5-10 hours a week 

11-20 hours a week 

More than 20 hours a week 
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Appendix B 

Pretest & Posttest Questionnaire 

1. Name:____________________ 

2. ID:_________________________ 

3. You’re walking by a river and realize there are a large amount of dead fish on the 

shore.  

4. Please make a list of possible causes for the fish die off. 

5. What information might you need to help explain why the fish have died? 

6. How do you think ants go about finding food?  

7. Is there any order to this or is it random? If you believe there is order where does 

it come from? If not, how might it work? 

8. The butterfly effect was written about by Ray Bradbury in 1952. It proposes that 

small changes can lead to large effects. Do you believe that small changes can 

lead to large effects in ecosystems? If so how might this happen and what might 

be the mechanisms? If not why is it unlikely that small changes can cause large 

effects in ecosystems?  

9. Please give an example of a positive feedback loop in a complex system and 

explain why? Do the same for a negative feedback loop in a complex system and 

explain why. 

10. What happens to the complex system if you remove the positive feedback loop in 

the previous question from a complex system and explain why this effect/non-

effect might happen? What happens if you remove the negative feedback loop 

from a complex system and explain why this effect/non-effect might happen?  

11. Could you predict the movement of a school of fish if you had enough knowledge 

about the individual fish? If yes explain how. If not, explain why not.  

12. Could you predict the movement of individual fish with enough knowledge?  
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Appendix C 

Blog Transfer Question 

The goal for this week's blog post is to apply your understanding of complex systems, 

and their distinction from more mechanistic or "clockwork" approaches to systems to a 

situation other than the Bay Game. Use the example of a city needing to provide for its 

needs with energy, water, food, and waste – choose one of these systems and describe 

how you might improve it: 

 

Prompt:  How would you design a system for the efficient provision of services in a city 

using a complex systems model? How would you do this using a clockwork model?"  Be 

sure to talk about which factors you would focus on, how it would be implemented, how 

it would be managed, how long you would need in order to know if it was successful and 

what would you measure for this success. 

As with all blog posts, your post should be 500-700 words. Use the lessons from the bay 

game, the class lectures and discussions, as well as the readings to demonstrate your 

understanding of these types of systems. The choice of a specific topic within the range 

of urban systems is up to you, so please apply this blog to an issue that is of great interest 

to you. Be specific in your reference to the characteristics of the systems. 
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Appendix D 

Complex Systems Coding Rubric (Jacobson et al., 2011) 
Belief Category Coding Characteristics Examples for Rater Training 

Understand

ing 

Reductive 

Whole is sum of parts Try to Understand a forest by analyzing 

the parts of the plants, animals, and 

insects. 
Isolated parts or step-wise 

sequences 

No mention of part or agent 

interactions 

Non-Reductive 

Whole is different than sum of 

parts (new patterns or 

structures) 

A traffic jam, looked at from above, 

propagates backwards, even though cars 

in a traffic jam speed up, slow down, 

change lanes, stop, but rarely go 

backwards 
Interaction between parts or 

agents 

Action 

Effects 

Linear 

Interaction between parts or 

agents are proportional  

small action -> small effect, 

Large action -> large effect 

The movement of pool balls when hit 

easy or hard by pool stick.  

Nonlinear 

Interactions between parts or 

agents are not proportional:  

 

Small action -> Large effect;  

 

Effects of actions may not be 

repeatable 

Small temperature changes in Pacific 

ocean (El Nino) lead to heavy rains in 

South America and can cause droughts 

in southeastern Asia, India, and 

southern Africa and unusual weather in 

North America 

Order 

Centralized 

Linear physical interactions 

between parts of system 

Gears in a mechanical clock 

Agent or part has a power or 

force that imposes order on 

the system 

King Controls his Country 

Chain of command or 

authority links controlling 

agent or part to other agents or 

parts of system  

Planned socialist economies 

De-centralized 

Interactions distributed across 

parts or agents results in an 

ordered system 

Ecosystem of a rain forest 

Interactions may be linear or 

nonlinear 

Goods and services in a city 

Weather 

Agents 

Predictable 

Actions of parts or agents may 

be predicted based on 

knowledge of rules or 

characteristics of the part or 

agent 

The movement of pool balls when hit 

easy or hard by pool stick. 

Movement of gears in a clock or 

machine 

Not Predictable 

Actions of parts or agents 

cannot be predicted based on 

knowledge of rules or 

characteristics of the part or 

agent 

Weather 

Randomness or chance factors Flip of coins or shuffling of cards 

Processes 

Event 

System is an “event” with a 

beginning, middle, and end 

Going to school to get an education or a 

credential 

Playing jacks or soccer 

Equilibration—

emergent process 

System is an on-going, 

dynamic process 

The ongoing, dynamic interaction of 

electron bonds when hydrogen and 

oxygen interact to form water 

System self-organizes through 

information flows and 

feedback 

Interactions of plants, animals, insects, 

and environment in an ecosystem such 

as a forest. 
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Appendix E 

 

Final Coding Rubric 

Category Description Level 1 L1 Examples Level 2 L2 Examples Level 3 L3 Examples 

Causation: 

Obvious vs. 

Non-

Obvious 

Causes that 

can or cannot 

be seen with 

the naked eye. 

Can be seen 

with the 

naked eye. 

People dump 

trash into river; 

No food for fish 

Cannot be 

seen with 

the naked 

eye 

Low oxygen; 

High toxin 

levels;  

X X 

Causation: 

Local vs. 

Distant 

Location of 

where causes 

originate 

Causes 

originate 

where 

effect is 

located 

Bacteria 

spreads in the 

river; Over 

fishing 

Causes 

originate 

away from 

effects 

Toxins in 

water from 

factory 

upstream; 

runoff from 

nearby farms 

X X 

Causation: 

Event vs. 

Process 

Whether a 

cause is a 

specific 

moment in 

time or 

ongoing 

Causes are 

discrete 

events 

Lack of food; 

Predator; Low 

tide 

Cause are 

processes 

in a larger 

pattern, 

longer 

period of 

time; refer 

to balance.  

Farm toxins 

leak into river 

over time; 

overfishing 

slowly ruins 

health of  

river 

X X 

Order Organization 

of system 

Top-down; 

Chain of 

Command; 

Individual 

leaders 

impose 

order  

The queen 

orders the ants 

to find food; 

Ants follow 

direction from 

leaders 

A mix of 

top-down 

and bottom 

up order 

Ants 

randomly 

look for food, 

when it is 

found they 

order other 

ants to bring 

it back 

Bottom-up: 

Multiple 

groups create 

order; Local 

Interactions 

Ants randomly 

search for food; 

When ants find 

food they leave a 

pheromone trail 

and other ants 

follow the trail 

when they find it 

Agent 

Actions 

Predictability 

of actions of 

agents in 

system 

Actions of 

agents are 

predictable 

You could 

predict the 

movement of a 

fish if you knew 

about the school 

Actions of 

agents are 

not 

predictable 

You cannot 

predict the 

movement of 

a fish 

Actions of 

agents are not 

predictable 

due to chance 

factors/rando

mness 

You cannot 

predict the 

movement of a 

fish because of 

random 

environmental 

variables 

Action 

Effects 

The 

relationship 

between 

actions and 

effects 

Small 

actions 

create small 

effects; 

Large 

effects only 

from large 

causes or 

many small 

causes 

Small changes 

by individuals 

only make a 

difference if 

everyone does it 

Large 

effects 

possible 

from small 

actions; Do 

not explain 

how 

Butterflies 

can cause 

storms across 

the world 

Small actions 

can lead to 

large effects; 

Explain 

through 

cascading 

chain 

reactions 

The dying of this 

organism will 

begin a chain of 

events leading to 

loss of food 

higher up in the 

food chain 

disturbing the 

balance of the 

ecosystem 
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Appendix F 

 

Study Design 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

 

 

Appendix G 

Logic Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUTS 

 Gameplay 

 Role-Playing 

 Negotiation 

 Discussion 

 Brainstorming 

 Reflection 

 Generate 

Questions 

STUDENT ACTIVITIES 

Bay Game 

Intervention 

 Simulation 

 Group Discussion 

 Worksheets 

Scaffolding 

Workshops 

 Presentation 

 Instructor 

Support for 

Students 

 Group Activities 

OUTPUTS 

 Student Pretest & 

Posttest 

Assessments 

 Gameplay 

Worksheets 

 Transfer Blog 

Post 

 Observational 

Notes/Audio 

Recordings 

OUTCOMES 

 Increased 

Complex 

Systems 

Component 

Understanding 

 Transfer of 

Complex 

Systems 

Understanding 

  

  

 To be scientifically 

literate students will 

need to understand 

complex systems 

(Jacobson & Wilensky, 

2006; Achieve Inc. 

2013) 

 However, complex 

systems are difficult 

to learn (Hmelo-Silver 

et al., 2007) 

 Participatory 

Simulations (Grotzer 

et al.., 2013) and 

Scaffolding (Slotta & 

Chi, 2006) may help. 

SITUATION 
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Appendix H 

Self-Monitoring Gameplay Form 

 

Name:_____________________________   Computing 

ID:_____________________________ 
At different points during gameplay, when you have free time (e.g. after you’ve made your choice for that 

round), please attempt to fill in this sheet as best as you can.  

 

Successful Strategies you’ve seen? 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________ 

 

Biggest mistakes you’ve made? (Explain/give details) 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________ 

Biggest mistakes you think other people are making? (Explain/give details) 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________ 

What don’t you understand as you’re playing? (Explain/give details) 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________ 

Anything new you’ve learned? (Explain/give details) 

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________ 
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Ontological Scaffolding Gameplay Form 

 

Name:_____________________________   Computing 

ID:_____________________________ 
At different points during gameplay, when you have free time (e.g. after you’ve made your choice for that 

round), please attempt to fill in this sheet as best as you can.  

Examples of Feedback Loops during gameplay? (Explain/give details) 

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________ 

 

Examples of Decentralized Order during gameplay? (Explain/give details) 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 

_________________________________________________________________ 

Examples of Unexpected Behavior during gameplay? (Explain/give details) 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________ 

 

Examples of Emergence during gameplay? (Explain/give details) 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________ 

Examples of Non-Linear Effects during gameplay? (Explain/give details) 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________ 

__________________________________________________________________

__________________________________________________________________ 

Examples of Multiple Drivers during gameplay? (Explain/give details) 

__________________________________________________________________

__________________________________________________________________ 
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Appendix I 

Take Home Fact Sheet 

Complex Systems Components 

If you were wondering, here are some of the components of complex systems we are 

studying: 

1.) Whole vs. Parts 

a. Complex systems are more than the sum of their parts. For example, in a 

traffic jam the parts of the traffic jam are the cars which are moving 

forward. However, at the “macro” level is the traffic jam which “emerges” 

and spreads backwards on the highway. 

2.) Non-Linear Actions 

a. In complex systems actions may be linear (small causes have small 

effects) or non-linear (small causes may have large effects) and occur 

further away in time or space. Because of feedback loops small changes 

may be amplified throughout a system.  

3.) Decentralized Order 

a. In complex systems order may be decentralized and order results from 

these interactions across the parts, as opposed to a top down actor (such as 

a president or prime minister) imposing order on the system. For example, 

in a free market system order arises from people buying and selling goods 

and prices shifting accordingly due to supply and demand.  

4.) Adaptation 

a. In complex systems parts adapt to their changing environment. For 

example, in an ecosystem if a predator eats a species of fish, and that fish 

dies off another species may take its place and the predator may then adapt 

its diet to this new species.  

5.) Processes 

a. In complex systems processes do not have a beginning, middle, and end. 

The system is an ongoing and dynamic process with constant interactions 

between parts. Further, these interactions of parts at the micro level give 

rise to a macro level that may look different as was seen in the traffic jam 

example in part 1. 

6.) Predictability 

a. In complex systems it is impossible to predict what happens at the micro-

level due to randomness and chance, even though the parts follow simple 

rules. However, at the macro level, even though things aren’t predictable 

there may be somewhat reliable conditions. For example, you may not 

know when it will rain, but it’s fairly predictable that it will rain in the 

spring.  



149 

 

 

 

Appendix J 

Self-Monitoring Example Activity 

 

 

 

Ontological Scaffolding Example Activity  
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Appendix K 

Overall Results 

 

 


