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Introduction 
Abstract 
Rats serve an integral role in drug development and biomarker discovery, and understanding metabolic 

differences between rats and humans is critically important to minimize unexpected toxicities in clinical trials. 

Despite a high degree of physiologic and genomic similarities between rats and humans, several metabolic 

differences have been described that could affect whether a biomarker is elevated or whether a compound is 

toxic to the liver. A comprehensive knowledgebase of functional differences between rat and human metabolism 

would dramatically improve the translation of preclinical studies to human trials.  

A genome-scale network reconstruction of metabolism serves as a repository for all known biochemical and 

transport reactions for an organism. In this dissertation, I have built the first genome-scale reconstruction of 

Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of Homo sapiens metabolism, 

iHsa. Comparative analyses with these models captured functional features known to distinguish rats from 

humans within purine, glycan, ascorbate, and bile acid metabolic pathways. Using reconciled biomass 

formulations, iRno and iHsa recapitulated realistic cellular growth rates under physiological constraints.  

After extensive manual curation and network reconciliation, I demonstrated the use of iRno and iHsa in systems 

toxicology by generating biomarker predictions for rat and human hepatocytes treated with 76 pharmaceutical 

compounds and environmental toxicants from a comparative toxicogenomics database. I developed a novel 

gene expression integration algorithm to generate biomarker predictions that can be evaluated across 

metabolites, treatments, and organisms. Biomarker predictions were validated with literature-based evidence for 

antipyretic and antigout medicines. Comparative analyses provided mechanistic insights into the selection of 

metabolite biomarkers common to rats and humans. Using metabolomics and transcriptomics profiles from rat 

hepatocytes, I performed high-throughput validation of biomarker predictions. In the future, I anticipate that these 

models will serve as powerful computational platforms for contextualizing experimental data and making 

functional predictions consistent with rat and human biology for clinical and basic science applications. 

Background and Significance 
Pharmaceutical drug candidates often fail in preclinical or clinical trials due to unexpected drug-induced liver 

injury (DILI)1. The liver is a vital organ serving a variety of important functions in the body including carbohydrate, 

protein and fat metabolism, as well as diverse metabolic, vascular, immunological, secretory and excretory 
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functions. Several liver metabolic tasks are known to be disrupted in response to DILI, resulting in abnormal 

clinical chemistry values: gluconeogenesis (hypoglycemia), albumin synthesis (hypoalbuminemia), detoxification 

of ammonia (hyperammonemia), and bilirubin efflux (jaundice)1-4. In this dissertation research, we applied 

computational methods to investigate treatment-induced changes within rat and human metabolism. 

Novel biomarkers of DILI are needed to facilitate the translation of preclinical studies in rats to clinical trials in 

humans. Candidate drugs are commonly screened in rats to identify potential biomarkers of therapeutic efficacy 

and toxicity. Traditional biomarkers used in preclinical drug development include proteins such as albumin, 

aspartate aminotransferase, and alkaline phosphatase and metabolites such as bilirubin, creatinine, and 

triglycerides5. Although these biomarkers can effectively diagnose DILI, traditional biomarkers are limited in 

scope to accurately predict future onset of DILI6. High-throughput metabolomics methods have the potential to 

significantly improve both diagnostic and predictive biomarkers of DILI by expanding the potential pool of 

biomarkers from a few dozen to thousands of metabolites7-9. In contrast to biomarkers like aspartate 

aminotransferase, which are released into the blood after hepatocellular membrane disintegration6, we anticipate 

that metabolite biomarkers will require less catastrophic perturbations to be detected and will be more sensitive 

to the direct mechanisms of hepatocyte injury6.  

Preclinical efforts to identify biomarkers associated with toxicity typically use statistical methods that correlate 

changes in metabolite concentrations with toxicant exposure7-13. A major limitation of this conventional approach 

is that the metabolic response of rat hepatocytes will not necessarily reflect that of human hepatocytes. We 

anticipate that mechanistic modeling of metabolism with GENREs will substantially improve the ability to identify 

biomarkers that are predictive of toxicity. Human GENREs have provided mechanistic insights into metabolic 

biomarkers for inborn errors of metabolism and therapeutic strategies based on genomic alterations in 

cancers14,15. Constraint-based modeling algorithms have been successfully applied to human GENREs to study 

various aspects of human physiology and disease16-21. Other studies have utilized gene and protein expression 

measurements to create and analyze tissue-specific models19,22. A high-quality GENRE of rat metabolism would 

be a valuable resource for contextualizing high-throughput genomic datasets and bridging the knowledge gap 

that exists between humans and rats in clinical and basic science applications. 

Using computational methods GENREs can be: 1) systematically perturbed using drugs and manipulation of 

growth conditions to predict essential or growth-reducing genes23,24, 2) interrogated with high-throughput data to 
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provide an understanding of metabolic off-target effects, 3) used to predict metabolite biomarkers indicative of 

the underlying metabolic state of a cell or tissue in response to an environmental toxin or the toxicological 

response to a drug compound25. Furthermore, with physiological constraints from experiments, GENREs can be 

used to make quantitative predictions of growth rates and byproduct secretion profiles26,27.  

Dissertation Aims 
Specific Aim 1: Develop a method for constructing reconciled mammalian metabolic networks. We have 

constructed the first GENRE of Rattus norvegicus metabolism, iRno, based on a newly improved GENRE of 

Homo sapiens metabolism, iHsa. We developed an improved semi-automated method to generate a high-quality 

draft of iRno from iHsa using orthology annotations between human and rat genes (Specific Aim A). As a result, 

these draft GENREs were more suitable for comparative analyses and had fewer differences in the numbers of 

genes assigned to each reaction. We anticipate that this method will facilitate the construction of high-quality 

drafts for organisms. 

Specific Aim 2: Capture known functional differences using rat and human metabolic networks. To better 

characterize the limitations of rats as a model of human biology, we assembled a compendium of known 

metabolic differences between rats and humans (Specific Aim B). We comprehensively captured known 

species-specific functions that could be distinguished within the computational frameworks of iRno and iHsa. As 

the first pair of reconciled mammalian GENREs, iRno and iHsa will be highly valuable resources for improving 

drug development from bench to bedside.  

Specific Aim 3. Validate treatment-induced metabolic biomarkers predictions for hepatocytes. We 

developed a novel algorithm, TIMBR (Transcriptionally-Inferred Metabolic Biomarker Response), to predict 

potential biomarkers by integrating gene expression data into metabolic networks. We applied this algorithm to 

generate biomarker predictions in response to various treatments from a toxicogenomics database for rat and 

human hepatocytes which we validated with literature support (Specific Aim C). Additionally, we generated 

metabolomics and transcriptomics profiles of rat hepatocytes to perform high-throughput validation of TIMBR 

predictions. We anticipate that the computational framework developed here will provide mechanistic insights 

into hepatocyte metabolism and facilitate drug development and biomarker discovery.  
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Specific Aims – Dissertation Outcomes. (A) An automated method for converting a human GENRE (iHsa) into a draft rat 

GENRE (iRno). (B) A compendium of species-specific reactions that functionally distinguish iRno from iHsa. (C) A novel 

algorithm for predicting metabolic biomarkers in response to treatments using iRno and iHsa. 

Dissertation Preview 
In Chapter 1 of this dissertation, we provided an overview of basic principles of genome-scale network 

reconstructions and demonstrated the use of metabolic modeling methods with a toy metabolic network of energy 

metabolism named Toycon1. In Chapter 2, we created a draft GENRE of rat metabolism (iRno) based on an 

existing human GENRE (iHsa) using a new metabolic network conversion method that maintains consistent 

network properties between the new and original models. In Chapter 3, we further resolved differences between 

iRno and iHsa through the process of manual curation and network reconciliation. In Chapter 4, we defined 

physiological constraints and comparative biomass formulations for rat and human hepatocytes and 

quantitatively captured realistic cellular growth rates and ATP yields with iRno and iHsa. In Chapter 5, we 

describe detailed methods for applying metabolic network modeling methods to guide genome annotation 

improvements and provide examples of annotation refinements for the rat genome based on iRno.  

The reconstruction and reconciliation of rat and human metabolic networks described in Chapters 1-5 provided 

a foundation for the comparative toxicogenomics analyses and biomarker predictions described in Chapters 6-

8. In Chapter 6, we integrated gene expression data from a comparative toxicogenomics database into iRno 

and iHsa to better understand the functional response of hepatocytes to various compounds. In Chapter 7, we 

developed a new algorithm called TIMBR to generate biomarker predictions based on gene expression changes 

from comparative toxicogenomics data. In Chapter 8, we applied the TIMBR algorithm to validate biomarker 

predictions for rat hepatocytes using a high-throughput metabolomics dataset.  
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Chapter 1: Systems applications of metabolic networks 
 

Synopsis 
A genome-scale network reconstruction (GENRE) of metabolism consists of two major components: the 

stoichiometric matrix (S-matrix) and gene-protein-reaction (GPR) relationships. The S-matrix is comprised of 

stoichiometric relationships between metabolites and the reactions that occur in an organism (Figure 1.1). GPR 

relationships use Boolean logic to define rules between genes and reactions in the S-matrix (Figure 1.2). In 

Chapters 2-5 of this dissertation, we describe the reconstruction of rat and human metabolic networks with 

species-specific GPR rules and a unified S-matrix that enables comparative analyses. Through the process of 

network reconciliation, we resolved differences between the numbers of genes in GPR rules for individual 

reactions and accounted for species-specific reactions within the S-matrix. In Chapters 6-8, we integrated 

comparative toxicogenomics data to analyze the physiological responses of rat and human hepatocytes to 

various pharmaceutical compounds and environmental toxicants (Figure 1.3A). To interrogate the use these 

models in biomarker discovery, we developed a novel algorithm to generate comparative biomarker predictions 

for rat and human hepatocytes (Figure 1.3B). We anticipate that these rat and human GENREs, collectively 

referred to as the Ratcon1 database, can improve the translation of preclinical studies into successful clinical 

trials. In this chapter, we provide an overview of fundamental methods, assumptions, and considerations that 

will be applied extensively throughout this dissertation. To promote the understanding of these methods in a 

biologically-relevant context, we created a toy metabolic network named Toycon1 that functionally captures 

central energy metabolism with a thousand-fold fewer reactions than Ratcon1.  
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Figure 1.1 – The stoichiometric matrix describes relationships between reactions and metabolites. (A) 

Visual representation of the reaction, glutathione peroxidase, catalyzing the conversion of one unit of hydrogen 

peroxide and two units of reduced glutathione into two water molecules and one unit of glutathione disulfide 

(oxidized). (B) Stoichiometric coefficients describing the amounts of metabolites consumed (blue) and produced 

(red) by glutathione peroxidase. (C) The stoichiometric matrix (S-matrix) is a mathematical collection of reactions 

like the example in A formatted as a sparse matrix where each column represents a reaction and each row 

represents a metabolite. Each point in the sparse matrix accounts for the stoichiometric coefficient of each 

reaction-metabolite pair. The S-matrix in C represents thousands of reactions within the rat and human metabolic 

networks that will be discussed extensively throughout this dissertation. 

 

Constraint-based modeling and flux balance analysis 
Constraint-based methods have been developed to functionally interrogate metabolic networks. as mathematical 

models. A constraint-based method used extensively in the metabolic modeling community is flux balance 

analysis (FBA). By applying constraints to reaction fluxes known as reaction bounds, FBA determines the 

maximum possible flux through a specified reaction known as the objective function. Given a stoichiometric 

matrix (S), lower and upper bound (vlb and vub) constraints for reaction fluxes (v), and an objective (vobj), FBA 

uses linear programming software to solve the following optimization problem:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  Equation 1.1 

𝑣𝑙𝑏 ≤ 𝑣 ≤ 𝑣𝑢𝑏   Equation 1.2 

𝑆 ∙ 𝑣 =
𝑑𝐶

𝑑𝑡
= 0   Equation 1.3 
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Equation 1.1 describes the objective function for the FBA problem, where vobjective is the flux vector (v) multiplied 

by a vector of objective coefficients which are zero for all reactions except the objective reaction. As we will 

discuss in Chapter 7, advanced methods based on FBA principles can modify vobjective to assign non-zero 

objective coefficients to multiple reactions at a time. Equation 1.2 describes reaction constraints applied to the 

FBA problem. Arbitrarily large lower and upper bound values (e.g. -103 to 103 or -106 to 106) are typically assigned 

as constraints to all reactions except for exchange reactions. Equation 1.3 describes the steady-state 

assumption made during FBA simulations which is critically important in formulating a linear programming 

problem that can be solved by optimization software. Kinetic parameters for enzyme reaction rates are not 

necessary to perform FBA because the rate of change in concentration for a metabolite with respect to time is 

zero. Thus, all FBA solutions provide feasible solutions to the problem described by Equations 1.1-1.3 with 

requirement that metabolites cannot accumulate or be depleted. Furthermore, because of the law of mass action, 

all matter entering the metabolic network via metabolic exchange reactions must also exit the system in some 

form, assuming that no reactions create or destroy matter. 

Figure 1.2 – Gene-protein-reaction (GPR) relationship rules describe the relationship between genotype 

and phenotype. (A) Example of a GPR rule representing an enzymatic reaction catalyzed by the protein-product 

of a single gene. Although GPR rules are represented with Entrez gene identifiers in this dissertation, Ensembl 

transcripts, UniProt proteins, and Enzyme Commission numbers would be suitable alternatives. (B) Example of 

a redundant GPR rule where either B1 or B2 can independently catalyze the same function. In this case, these 

isozymes are separated by an “or” statement in the GPR rule. (C) Example of a complex GPR rule where both 
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C1 and C2 are required for this catalytic reaction to occur. In this case, two non-redundant subunits that form a 

protein complex are separated by an “and” statement. (D) Example of a complex GPR with redundancies where 

D1 can form a protein complex with either D2a or D2b. In this case, the GPR rule can be separated by unique 

protein complexes or first by subunits then by redundancies as represented in E. (E) Table summarizing 

genotype-phenotype relationships from A-D as Boolean GPR rules.  

 

Figure 1.3 – A genome-scale rat metabolic network is needed to facilitate preclinical discovery of 

metabolic biomarkers. (A) Rats serve an integral role in preclinical drug development and biomarker discovery. 

Furthermore, understanding physiological responses to therapies in rats and humans can facilitate the rational 

selection of biomarkers that are indicators of a clinical outcome such as efficacy or toxicity. (B) Metabolic 

biomarkers generated by rats and human can be compared directly whereas genomic biomarkers rely on 

nucleotide and amino acid sequences that can vary across species and between individuals. 
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Toycon1: a simple metabolic network for educational purposes 
We created a toy metabolic network reconstruction named Toycon1 that captures core aspects of central 

metabolism (Figure 1.4A). Toycon1 includes 4 metabolic reactions and 9 unique metabolites within cytosolic 

and mitochondrial compartments (Figure 1.4B). At the cellular boundary, five exchange reactions facilitate the 

consumption or secretion of glucose, lactate, O2, H2O, and CO2. The first metabolic reaction, glycolysis, 

represents the net process of glucose fermentation to form lactate which also drives the phosphorylation of ADP 

to regenerate ATP. The second reaction, respiration, represents the net process of glucose oxidation via 

glycolysis and the tricarboxylic acid (TCA) cycle to form CO2 and H2O which also drives ATP regeneration and 

the shuttling of protons out of the mitochondria via the electron transport chain. The third reaction, ATP synthase, 

utilizes the proton gradient generated by the electron transport chain (ETC) to regenerate ATP. The fourth 

reaction, ATP demand, represents the process of spending energy stored as ATP via hydrolysis to ADP. The 

default objective of Toycon1 was set to maximize flux through the ATP demand reaction. It is important to note 

that the other three metabolic reactions facilitate the regeneration of ATP to fuel the ATP demand reaction. 

Throughout this chapter, we analyze Toycon1 to illustrate various methods that can be applied to metabolic 

networks. Unlike most toy networks based on hypothetical reactions, Toycon1 captures two commonly taught 

core biochemical pathways within central metabolism using stoichiometric relationships that are mass balanced, 

albeit in a simplified manner that bypasses many intermediate steps. 
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Figure 1.4 – Toycon1, a toy metabolic network that captures energy metabolism. (A) Toycon1 represents 

two major catabolic pathways for glucose that generate cellular energy via rephosphorylation of ADP to ATP: 

glucose fermentation to lactate via glycolysis and lactate dehydrogenase (LDH) and glucose oxidation to carbon 

dioxide via glycolysis, the tricarboxylic acid cycle (TCA cycle), and the electron transport chain (ETC). (B) 

Stoichiometric matrix for Toycon1, where each column represents a reaction and each row represents a 

metabolite. Within the matrix, negative values (blue) represent the relative amount of metabolite consumed and 

positive values (red) represent the relative amount of metabolite produced by each reaction. The first 4 columns 

represent biochemical reactions while the last 5 columns represent exchange reactions that allow metabolites to 

enter or leave the cell. (C) Flux variability analysis (FVA) was performed requirement increasing amounts of ATP 

demand flux along the y-axis. As ATP production yields requirements increased, maximum possible flux values 

for glucose fermentation decreased while minimum required flux values for glucose oxidation increased.  

Recapitulating biological functions with metabolic tasks 
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Metabolic tasks can be formulated to capture a known biological processes such as glycolysis. In mammalian 

cells, glycolysis consumes glucose and produces pyruvate which can be secreted out of the cell as lactate. This 

process can be formulated as a metabolite task by allowing 1 unit of glucose to enter the metabolic network via 

the glucose exchange reaction and by setting the lactate exchange reaction as the objective function. Using 

FBA, we can predict that the maximum amount of lactate that can be produced by 1 unit of glucose. As a result, 

we found that 2 units of lactate can be secreted with 1 unit of glucose entering the system. To formulate a 

metabolic task based on this information, we can set exchange reaction parameters that allow uptake of 1 unit 

of glucose and require secretion of 2 units of lactate. This simple example highlights how glycolysis could be 

represented in the form of a metabolic task; however, we also know that cells often utilize glycolysis to produce 

energy. To more comprehensively capture glycolysis in the form of a task, we can also require minimum activity 

through the ATP demand reaction that consumes energy generated by glycolysis. Based on the directionality of 

each reaction in Toycon1, we can represent glycolysis as a task by setting the lower bound values of glucose 

exchange to -1, lactate exchange to +2, and ATP demand to +2. 19.  

Metabolic tasks can also be used to specify functions that should not be possible to perform in a metabolic 

network. By modifying the glycolysis task described above to require 10 units of flux through the ATP demand 

reaction, Toycon1 would no longer be able to complete the task. If we relaxed the requirement for the secretion 

of lactate and allowed O2 to enter the system, Toycon1 could redirect glucose to fuel the electron transport train 

that drives ATP synthase, producing more energy to satisfy the ATP demand requirement.  

It is important to note that complete oxidation of glucose in the respiration pathway also requires secretion of 

CO2 and H2O. When using the RAVEN toolbox, this can be done explicitly by setting large positive upper bound 

values for CO2 and H2O exchange reactions or by specifying ALLMETS as an output parameter in the task. In 

Table 1.1, we provide examples of the types of parameters that can be used to formulate metabolic tasks related 

to glucose fermentation and glucose oxidation. Tasks that could not successfully be completed by Toycon1 were 

described as infeasible due to unrealistic expectations of energy production. Using Toycon1, we estimated that 

the maximum possible energy production yields given 1 unit of glucose were 2 in the absence of oxygen and 32 

in the presence of oxygen. The yield for cellular respiration can be increased by adjusted by requiring fewer 

protons to drive the ATP synthase reaction based on the estimated efficiency of ATP synthase. 
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Table 1.1 – Toycon1 metabolic tasks that simulate cellular functions by specifying lower bound values 

(vlb) and upper bound values (vub) for individual reactions. (*) Minimum required ATP yields for feasible 

metabolic tasks are sub-optimal (less than maximum). (**) Infeasible metabolic tasks require unrealistic ATP 

yields that should fail when simulated. 

metabolic task reaction vlb vub 

anaerobic 
glycolysis 

glucose exchange -1 ∞ 

lactate exchange 2 ∞ 

ATP demand* 1 ∞ 

anaerobic 
glycolysis 
(infeasible) 

glucose exchange -1 ∞ 

lactate exchange 2 ∞ 

ATP demand** 10 ∞ 

cellular 
respiration 

glucose exchange -1 ∞ 

O2 exchange -∞ ∞ 

CO2 exchange 0 ∞ 

H2O exchange 0 ∞ 

ATP demand* 10 ∞ 

cellular 
respiration 
(infeasible) 

glucose exchange -1 ∞ 

O2 exchange -∞ ∞ 

CO2 exchange 0 ∞ 

H2O exchange 0 ∞ 

ATP demand** 100 ∞ 

Genetic perturbations and gene essentiality 
Constraint-based methods can be used to simulate the consequence of inhibiting an enzyme or deleting a gene 

within a metabolic network. Computational perturbations can be performed more rapidly than conventional 

experimental methods, providing the ability to screen identify all genes that are essential for a specific function. 

Using the ATP demand reaction as the objective, we simulated a genome-wide essentiality screen by deleting 

each reaction one-by-one. After each reaction was disabled, we performed FBA to determine the importance of 

that reaction on ATP production from one unit of glucose. Maximum possible flux values for the ATP demand 
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reaction after deleting individual reactions are shown in Table 1.2. Disabling glucose exchange completely 

blocked ATP production in Toycon1 which was expected considering glucose was the only fuel source entering 

the system. Inhibiting respiratory enzymes (TCA cycle and ETC) decreased the ATP production rate from 32 to 

2. Although disabling the glycolytic fermentation pathway had no effect on ATP production, the importance of 

glycolysis in glucose catabolism via respiration was not captured because Toycon1 does not separate lactate 

dehydrogenase from the rest of glycolysis.  

Table 1.2 – Maximum possible flux through the ATP demand reaction predicted by FBA after deleting 

individual reactions from Toycon1.  

reaction deletion ATP demand 
glucose exchange 0 
lactate exchange 32 
O2 exchange 2 
H2O exchange 2 
CO2 exchange 2 
glucose fermentation 32 
glucose oxidation 2 
ATP synthase 2 
ATP demand 0 
 

Metabolic networks enable systems-wide screening of genetic perturbations. Predicting the importance of 

individual reactions for a biological objective like ATP demand can be easily extended to the genome-scale with 

computational modeling. Furthermore, single, double, or triple knock-out simulations might reveal potential 

combinatorial effects that would otherwise be too resource-intensive to examine experimentally. None of the 

reactions in Toycon1 reduced ATP demand flux to 0 with the exception of glucose uptake and the ATP demand 

reaction itself (Table 1.2). To identify potential combinatorial strategies that abolish ATP production, we 

simulated a systems-wide double-knockout screen for 36 unique pairs of reactions. By comparing double versus 

single knockout predictions, we identified 10 double knockout strategies that reduced ATP production more than 

either single knockout simulation (Table 1.3). As expected, inhibiting critical components within both the 

glycolytic fermentation and the cellular respiration pathways more significantly reduced ATP production than the 

inhibition of either pathway alone. While the examples from Toycon1 were designed to be simple and intuitive to 

understand, predicting the consequences of single, double, and triple knockout strategies becomes exceedingly 

difficult for metabolic networks consisting of thousands of reactions.  
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Table 1.3 – Maximum possible flux through the ATP demand reaction predicted by FBA after performing 

a pairwise reaction deletion screen with Toycon1. Of the 36 possible reaction pairs (9 choose 2), 10 double 

reaction knockouts strategies that inhibited ATP production more than either single knockout strategy are shown.  

deletion A deletion B A B A+B 
fermentation ATP synthase 32 2 0 
fermentation CO2 exchange 32 2 0 
fermentation H2O exchange 32 2 0 
fermentation O2 exchange 32 2 0 
fermentation respiration 32 2 0 
lactate exchange ATP synthase 32 2 0 
lactate exchange CO2 exchange 32 2 0 
lactate exchange H2O exchange 32 2 0 
lactate exchange O2 exchange 32 2 0 
lactate exchange respiration 32 2 0 
 

Flux variability analysis 
Flux variability analysis (FVA) is constraint-based technique that can be easily implemented in two steps. In the 

first step, FVA constraints a metabolic network to require a minimum amount of flux through an objective function, 

which is usually a percentage of the maximum value determined by running FBA. In the second step, FVA 

performs FBA to identify minimum and maximum flux values for other reactions in the network, providing feasible 

flux ranges that are consistent with the constraints imposed in the first step of FVA. Using the ATP demand 

reaction from Toycon1 as the primary objective (Figure 1.4B), we obtained a maximum value ATP turnover yield 

of 32 per unit of glucose entering the network. By requiring 16 units of flux (50% of the maximum value) through 

the ATP demand reaction, we determined feasible flux ranges for each of the 8 other reactions in the network. 

As a result, the fermentation reaction was capable of carrying between 0.000 and 0.533 units of flux while the 

respiration reaction was required to maintain flux values between 0.467 and 1.000. Interestingly, these values 

were not necessarily obvious despite the simplicity of Toycon1.  

To further delineate the relationships between ATP production yields and glucose catabolic pathways, we 

performed FVA using incremental requirements of flux through the ATP demand reaction (Figure 1.4). As a 

result, we found that flux variability decreased for both glycolytic and oxidative catabolism of glucose when ATP 

yield requirements were larger than 2. As the ATP yield requirement increased to 32, the ability to convert 

glucose into lactate decreased to 0, completely disabling any activity through the glycolytic pathway. It is 

important to note that FVA can provide additional information compared to the methods described in the previous 
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section of this chapter where we mentioned that 32 flux through the ATP demand objective was feasible after 

knocking out the fermentation reaction (Table 1.2). In general, FVA can determine feasible flux ranges for any 

constrained network, providing the ability to explore other questions. For example, performing FVA after deleting 

the fermentation reaction would reveal which other reactions are affected by this knockout strategy. Overall, FVA 

is a powerful tool within the systems biologist’s toolbox that can be used to interrogate the global impact of 

performing and/or perturbing metabolic functions. 

Minimization of total flux principle 
When maximizing an objective function, flux values returned for individual reactions from FBA are not necessarily 

useful because they represent a single possible solution of many feasible solutions that meet the maximum 

objective flux (Figure 1.5A). The constraint-based method called parsimonious flux balance analysis28 (pFBA) 

can be used to identify a solution vector of reaction fluxes that meets the objective requirement and also meets 

a second requirement to further restrict the feasible solution space. Like FVA, pFBA first uses FBA to identify a 

maximum flux value through the objective and forces the objective to require at least a specified percentage 

(typically 80%) of the maximum. Second, pFBA minimizes the sum of fluxes across all reactions while also 

maintaining flux through the objective, providing a single value for the minimized total flux and a vector of fluxes 

that satisfy the solution (Figure 1.5B). Although multiple solutions can exist that satisfy the minimum total flux 

constraint, a pFBA solution vector represents the simplest solution that meets the demands of the original 

objective function whereas FBA solution vectors often include arbitrary values that may not necessarily be related 

to the objective function. Compared to FVA, pFBA provides a single vector of fluxes instead of minimum and 

maximum possible flux values that may not be informative if redundant routes are available. 

 

Figure 1.5 – Comparison of optimization problems defined by FBA, pFBA, and TIMBR. (A) Flux balance 

analysis (FBA) determines the maximum feasible flux through an objective reaction (vobjective) while adhering to 
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upper (vub) and lower bound (vlb) constraints for all reactions. In ToxExchange, default constraints include 

physiologically-relevant hepatocyte-specific flux ranges for metabolites that are available for consumption. (B) 

Parsimonious enzyme usage flux balance analysis (pFBA) first requires that the objective reaction is set to a 

percentage of the maximum possible value (vobjective_pct) determined by FBA. Second, pFBA minimizes the sum 

of fluxes through all enzymatic reactions to obtain a value that can be interpreted as the total cost to perform a 

function (note that the model must be in an irreversible format so that no flux values are negative; this is 

equivalent to minimizing the sum of the absolute flux values). (C) TIMBR (Transcriptionally-Inferred Metabolic 

Biomarker Response) extends pFBA by assigning reactions weights based on gene expression changes 

(wexpression), which will be discussed in Chapter 7. Higher expression generally translates into a lower reaction 

weight, decreasing the contribution of flux through the reaction to the total sum of weighted fluxes. In some 

cases, pFBA can also incorporate reaction weights based on the gene length, minimizing the total amount of 

protein used, hence the name, parsimonious enzyme usage FBA. However, the novel feature introduced by 

TIMBR is the ability to summarize relative gene expression changes into reaction weights instead of absolute 

values like gene length or transcript counts per million.  

 

Metabolic biomarker prediction strategies 
Constraint-based modeling approaches have been developed that can predict known biomarkers for inborn 

errors of metabolism (IEMs) using previous human metabolic networks14. To simulate healthy conditions, FVA 

can be used to determine feasible flux ranges for exchange reactions while forcing non-zero flux through 

reactions (Figure 1.6A). To simulate metabolic deficiencies, FVA can be used to determine feasible flux ranges 

for exchange reactions while disabling genes associated with an IEM (Figure 1.6B). Directional changes can be 

determined by comparing how flux ranges changed between the two conditions. Although this strategy is useful 

for predicting biomarkers of IEMs, we are interested in predicting biomarkers in response to therapies with the 

rat and human metabolic networks discussed in this dissertation. With knowledge of specific genes targeted by 

a drug, FVA can be used to simulate biomarkers by treating drug targets like IEMs (Figure 1.6C-D). However, 

FVA-based biomarker predictions are not necessarily applicable to high-throughput toxicogenomics datasets 

when many genes are differentially expressed in response to a treatment, especially when mechanisms of action 

are not known. 
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Figure 1.6 – Metabolic network modeling strategies for predicting biomarkers discussed in this 

dissertation. (A) In healthy patients, a potential biomarker metabolite is removed from the blood via a series of 

degradation reactions performed by the liver. (B) Accumulation of this metabolite in a patient’s blood could serve 

as a biomarker of an inactivating mutation within the degradation pathway (or by a treatment that disrupts one 

or more steps in this pathway). (C) Under normal physiological conditions, a potential biomarker metabolite is 

produced in moderate quantities by the liver. (D) In response to a treatment, enzymes that synthesize this 

biomarker metabolite could be upregulated, increasing the production of this metabolite leading to accumulation 

detectable in the blood. Interestingly, biomarker levels were increased for both scenarios despite decreased 

enzymatic activity in B and increased enzymatic activity in D. It is important to note that levels of the non-

biomarker metabolite in D will not necessarily change if its blood concentration is more tightly regulated than the 

biomarker metabolite. 

 



28 
 

Figure 1.7 – Different classes and subclasses of reactions that can be included in a metabolic network.  

(A) The biochemical class of reactions facilitates that interconversion of metabolites that are not identical on both 

sides of the reactions. Metabolic reactions can be considered to include all biochemical reactions, although we 

added the isomeric subclass to describe reactions that involve the consumption of one metabolite to produce 

another metabolite. (B) Transport reactions include uniporters, symporters, antiporters, and active transporters. 

Although active transport reactions are technically biochemical reactions, we classify them as transporters due 

to their transport activity. (C) Bulk transfer reactions represent the aggregation of multiple metabolites into one 

metabolite or vice versa. Because these reactions typically do not occur in biology as a single step, bulk reactions 

are useful for summarizing relative ratios of metabolites such as the nucleotide composition of DNA as a 

component of biomass (see Chapter 4 for biomass formulations that utilize bulk transfer reactions). (D) At the 

outermost boundary of the cell, exchange reactions represent the accrual or removal of metabolites from the 

system and are technically the reactions that should violate mass balance rules within the S-matrix. Boundary 

reactions also include demand reactions that function like exchange reactions but occur within cellular 

compartments. While exchange reactions can represent the uptake of nutrients and secretion of waste, demand 

reactions should only remove metabolites from the system in order to provide a sink for a metabolite that is 

consumed within the cell for a specific biological process such as cellular growth via the biomass sink reaction. 
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In Chapter 7, we describe a novel algorithm named Transcriptionally-Inferred Metabolic Biomarker Response 

(TIMBR) that expands on the minimization of total flux principle from pFBA to generate biomarker predictions. 

The primary objective of TIMBR is to calculate the minimum total flux needed to simulates the synthesis and 

secretion of a metabolic biomarker. By multiplying the reaction fluxes by reaction weights based on relative 

changes in gene expression (see Figure 1.6C), we can interrogate whether the minimum total weighted flux 

needed to produce a biomarker is increased or decreased in treatment versus control conditions. To integrate 

gene expression with TIMBR, reaction weights contribute a less to the total flux if genes are upregulated in the 

treatment condition. In Chapter 7, we discuss biomarker predictions generated by integrating comparative 

toxicogenomics data into rat and human metabolic networks with TIMBR. In Chapter 8, we integrate RNA-seq 

data in response to toxicants and attempt to validate biomarker predictions in a high-throughput manner. 
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Chapter 2: Reconstruction of a rat metabolic network based on a 
human metabolic network 
 

Synopsis 
In this dissertation, we present the first genome-scale network reconstruction (GENRE) of Rattus Norvegicus 

metabolism (iRno). In this chapter, we developed a computational method to generate a draft GENRE of rat 

metabolism based on a GENRE of Homo sapiens metabolism (iHsa). As a result, our approach provided initial 

drafts of iRno and iHsa that maintained consistent metabolic network properties that were introduced in the 

previous chapter. In the next chapter, we will describe the manual curation process used to reconcile differences 

between the initial rat and human metabolic networks created using our automated approach. 

Prior to manual curation, we assembled a draft of iRno based on a draft of iHsa using orthology information 

(Figure 2.1). Inferring function through orthology can be difficult29 when individual human genes are annotated 

to multiple rat orthologs (Figure 2.2). We developed a consensus approach to prioritize orthology annotations 

from five online resources: the Rat Genome Database (RGD)30, Homologene31, Ensembl32, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG)33,34, and the Universal Protein Resource (UniProt)35 (Figure 2.3). 

By prioritizing ortholog annotated in multiple databases, we assigned confidence to 4768 ortholog pairs between 

2588 human genes and 2897 rat orthologs. Instead of using an arbitrary cutoff, we identified a minimal subset 

of orthologs that preserved the network properties of iHsa in the draft of iRno. Ultimately, we selected a subset 

of 2629 ortholog pairs between 2499 human genes and 2575 rat orthologs that were annotated in at least two 

databases (Figure 2.3). Without filtering orthology data, the draft rat network was difficult to compare with the 

original human network due to differences in the numbers of redundant enzymes associated with each reaction 

(Figure 2.4). The computational methods described in this chapter were critically important in preparing a draft 

of iRno that could be improved in parallel with iHsa, which will be discussed in Chapter 3. Our improved approach 

also provides a novel platform for the rapid generation of GENREs for other organisms that are used to study 

human diseases. 
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Figure 2.1 – The human metabolic network, iHsa, was adapted from existing human GENREs and then 

converted into a rat metabolic network, iRno, using orthology information. A consensus approach was 

developed using annotations from five orthology databases: Homologene, Ensembl, the Rat Genome Database 

(RGD), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the Universal Protein Resource (UniProt). 

 

Table 2.1 – Comparison between rat and human genome sizes and characteristics. Statistics of 

GRCh38.p5 and Rnor_6.0 assemblies were obtained from Ensembl32. Gene counts and orthology statistics were 

obtained from orthology databases. Orthology statistics Abbreviations: Mb (Mega base pairs); GC content 

(guanosine cytosine percent content in genomic DNA).  

 Human 
Genome 

Rat 
Genome 

chromosome pairs 23 21 
genome size (Mb) 3547 3042 
GC content 41.5% 42.3% 
protein-coding genes 20,688 22,066 

with orthology 94.9% 93.8% 
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Figure 2.2 – Inferring function between orthologs is not trivial. (A) Example of the evolutionary history of a 

single gene in the most recent common ancestor of rats and humans that underwent a duplication event in rats 

but not humans after speciation. From this evolutionary relationship, X1 may be annotated to two orthologs, x1 

and x2. Orthologous pairs of rat and human genes separated by shorter evolutionary distances were classified 

as high confidence and assigned the same number. (B) Assuming that function is conserved across X1, x1, and 

x2 after speciation and duplication events, metabolic reactions associated with X1 in a human GENRE should 

be associated with x1 and x2 as isozymes in a rat GENRE. This example highlights the importance of including 

multiple orthology annotations when converting GPR rules between species, even when X1 and x1 has stronger 

evidence for orthology than X1 and x2.  (C) Assuming X1 and x1 catalyze the same metabolic function but x2 

evolved an affinity for a different substrate after duplication, metabolic reactions associated with X1 in a human 

GENRE should only be associated with x1 and not x2. This example suggests that some orthology annotations 

may need to be discarded during the GPR conversion process (and potentially assigned to a new rat-specific 

reaction). (D) Evolutionary history of a single ancestral gene that was duplicated before speciation resulting in 

two human genes, Y1 and Y2, and two rat genes, y1 and y2. (E) Assuming that function is conserved across Y1, 

y1, Y2, and y2 after duplication and speciation events, metabolic reactions associated with Y1 and Y2 as 

isozymes in a human GENRE should be also be associated with y1 and y2 as isozymes in a rat GENRE. (F) If 

the ancestral gene of Y2/y2 evolved a novel function shortly before speciation and after duplication from the 

ancestral gene of Y1/y1, integrating low confidence orthology annotations between Y1/y2 and Y2/y1 into the 

GPR conversion process could generate GPR rules with twice as many rat genes as human genes. (G) 

Evolutionary history of a single ancestral gene that was duplicated before speciation resulting in two human 

genes, Z1 and Z2, but only one rat gene, z1, after a loss of function mutation in the rat descendent of Z2’s 
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ancestral gene. (H) Assuming that function is conserved between Z1, z1, and Z2, metabolic reactions associated 

with Z1 and Z2 as isozymes in a human GENRE would only be catalyzed by z1 in a rat GENRE. (I) If Z1 and Z2 

were known to catalyze distinct reactions in a human GENRE, low confidence orthology annotations between 

Z2/z1 might inappropriately suggest the addition of a human-specific reaction to a rat GENRE. 

Figure 2.3 – Summary of orthology annotations between rat and human genes from five orthology 

databases. (A) Distributions of the numbers of rat orthologs annotated to individual human genes from each 

database. Numbers below each database name indicate the total numbers of human metabolic genes from 

HMR2 with at least one rat ortholog. Human genes with more than 9 orthologs are not shown. (B) Numbers of 

ortholog pairs from each orthology database that are also annotated in other orthology databases. Lighter and 

darker purple represent weaker and stronger consensus among databases, respectively. (C) Percent of ortholog 

pairs in each database (x-axis) that overlapped with in orthology annotations in other databases (y-axis). 
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Figure 2.4 – GPR size comparison throughout the reconstruction process. (A) When using orthology 

annotations from all 5 databases, we observed that rat GPR sizes were frequently larger human GPR sizes, 

likely due false-positive annotations. (B) After filtering orthology information that preserved network properties 

between the two models, rat and human GPR sizes appeared much more balanced. (C) In Chapter 3, we further 

curated the draft networks generated in this chapter and added new rat-specific reactions (red) while still 

preserving balance across GPR rules. 

 

Motivation to reconstruct the first genome-scale rat metabolic network 
Rats serve an important role as model organisms in preclinical drug development and biomarker discovery36-38. 

Candidate drugs are routinely tested in rats to assess safety and efficacy prior to human clinical trials. 

Metabolomics profiling of rat serum and urine has been used to quantify potential metabolic biomarkers of drug 

activity or side effects seen in drug-induced liver injury (DILI) models36-38. Despite a high degree of genomic and 

physiologic similarities between rats and humans (Table 2.1)39,40, functional differences within non-

pharmacokinetic metabolism have been described that could influence whether a compound induces toxicity or 

elevates a biomarker41-43. Understanding species-specific differences between rats and humans will be important 

for the interpretation of preclinical animal studies in toxicology, drug development, and biomarker discovery44,45. 

A high-quality genome-scale network reconstruction (GENRE) of rat metabolism is needed to bridge the 

knowledge gap that exists between humans and rats in clinical and basic science applications. A GENRE acts 

as a repository for all known biochemical and transport reactions for an organism. Several GENREs with 

thousands of human genes have been published16-19 while only core metabolic networks with dozens of genes 

are available for rat46,47. Human GENREs have been used to predict metabolic biomarkers for inborn errors of 

metabolism14,17 (IEMs) and to analyze the metabolic effects of therapeutic strategies in the context of cancers, 
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toxicology, and diabetes15,18-20. Computational methods for integrating gene and protein expression 

measurements into GENREs have been developed to generate context-specific metabolic networks and enable 

comparative predictions across individual patients, treatment conditions, and tissue-types19,22,48,49. Furthermore, 

resolving metabolic differences between rat and human GENREs would enable cross-species comparisons as 

previously described for bacterial GENREs50,51. 

We have constructed the first GENRE of rat metabolism based on an existing GENRE of human metabolism. In 

this chapter, we developed a novel method to generate an automated draft of the rat metabolic network that 

maintains similar network properties as the initial human metabolic network. In the next chapter, we describe the 

iterative process of manually curating this new rat metabolic network in parallel with the initial human metabolic 

network. Unlike existing methods that have been applied to the reconstruction of mouse metabolic networks 

based on human models52,53, the automated approach described in this chapter was designed to facilitate 

subsequent manual curation by minimizing unsupported differences and to improve the ability to make cross-

species comparisons. 

Survey of automated reconstruction approaches 
Reconstructing a rat metabolic network from the bottom-up would be painstaking process at the genome-scale. 

One-by-one, reactions would need to be formulated as mathematical equations for the stoichiometric matrix and 

annotated with gene-protein-reaction (GPR) relationship rules consisting of rat enzymes using literature 

evidence. In Chapter 1, we provided an example of reconstructing a simplified toy network, named Toycon1, 

from the bottom-up. Although Toycon1 only included 4 metabolic and 5 transport reactions, formulating 

stoichiometric relationships between metabolites was time-consuming because metabolic processes are not 

necessarily described in literature as mass balanced reaction formulas. To overcome the technical hurdle of 

reformulating a reaction stoichiometry for each metabolic reaction in an organism, newer GENREs rely heavily 

on previously published GENREs and metabolic reaction databases. As we discussed in Chapter 1, reaction 

formulas can be adapted from one species to another because metabolic transformations typically involve 

metabolites found across many species. Even the first global reconstruction of human metabolism16, Homo 

sapiens Recon 1, was built from the bottom-up after pulling the majority of its reaction formulas from a GENRE 

of Saccharomyces cerevisiae metabolism54 and the KEGG database34. Overall, manually reconstructing 
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GENREs from the bottom-up by adding components one-by-one are intractable, especially for mammalian 

genomes that contain tens of thousands of protein-coding genes.  

Computational methods have been developed to facilitate the initial reconstruction of a draft GENRE for an 

organism using a top-down approach. Fully-automated software such as Model SEED55 and PathoLogic56 in the 

Pathway Tools software suite assign genes from an annotated genome to reactions in a comprehensive reaction 

database such as MetaCyc57,58. With a top-down approach, a reaction can be removed if no genome sequences 

are similar to sequences from other organisms associated with that reaction. Gaps identified in the network can 

be filled by adding back reactions without GPR rules in order to maintain basic functionalities in the draft model. 

A limitation of using a top-down approach based on reaction databases is that differences in annotation quality 

between two similar organisms can result in substantially different draft GENREs, as recently described for two 

species of Burkholderia51. Automated methods are needed to facilitate the construction of a draft GENRE that 

are also robust to differences in quality across annotated genomes. 

Outlook 
In this chapter, we utilized an orthogonal approach to generate a draft GENRE of rat metabolism based on an 

existing GENRE of human metabolism. An orthogonal approach is similar to existing approaches used to 

establish mouse and human GENREs where reactions can be transferred from existing GENREs and/or reaction 

databases 59,60; however, an important distinction is that our orthogonal approach is based on the assumption 

that network properties should be consistent between GENREs of similar species. By maintaining consistent 

network properties, we avoided annotating too many or too few genes to reactions shared by the draft GENRE 

of rat metabolism and the original GENRE of human metabolism. With the explicit intention to reconcile 

differences between rat and human GENREs, we avoided introducing unnecessary differences that would need 

to be manually resolved in the network reconciliation process, which will be discussed in Chapter 3. In this 

chapter, we provide detailed methods for generating draft metabolic networks based on existing models using 

an orthogonal approach that we used to generate initial draft GENREs of rat and human metabolism discussed 

throughout this dissertation. We also describe important considerations that motivated the development of the 

orthogonal approach by analyzing existing pairs of mouse and human metabolic networks.  
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Converting human GPR rules into rat GPR rules using orthology annotations 
The first step in transforming a human GENRE into a rat GENRE involved assigning GPR rules consisting of rat 

genes to reactions associated with human GPR rules (Figure 2.5). Metabolic networks are typically comprised 

of two fundamental components: the stoichiometric relationships between metabolites and reactions, termed the 

stoichiometric matrix or S-matrix, and Boolean relationships between enzymes that catalyze a reaction, termed 

gene-protein-reaction GPR association rules (Figure 2.5A). Reactions and metabolites in the S-matrix were 

assumed to be organism-independent because the molecular building blocks of a cell such as amino acids, 

nucleic acids, and membrane lipids are generally consistent across multiple species. In contrast, enzymes 

catalyzing reactions within the GPR rules of a human GENRE were specifically encoded by the human genome, 

necessitating distinct formulations of GPR rules for the rat genome.  

Figure 2.5 – Orthology information 

can be used to transform a human 

GENRE into a rat GENRE. (A) 

Reactions can be reassigned after 

transforming human GPR rules into rat 

GPR rules. Human genes can be 

replaced by known rat orthologs to 

reconstruct a rat GPR rule, assuming 

that function is conserved across 

orthology. (B) Orthology annotations 

describe individual pairs of human and 

rat genes that can be used to convert 

human GPR rules into rat GPR rules. GPR rules for 4 hypothetical reactions are shown as examples to highlight 

how rat GPR rules may include different numbers of genes compared to the original human GPR rule. In the first 

reaction, the rat genes, a1 and b1, each map to one of two human genes, A1 and B1, which encode distinct 

subunits in a multiprotein complex. In the second reaction, the human gene C1 does not have any known rat 

orthologs, which might suggest that rat cells cannot carry out this function. In the third reaction, the rat GPR rule 

included more redundant genes than the original human GPR rule because the human gene, D2, has more than 

one known rat ortholog. In the fourth reaction, the human gene, F2, did not map to any known rat orthologs; 

however, the rat GPR rule can be considered functional because F1 and F2 redundantly encode the same 

component within the multiprotein complex.  

 



38 
 

To reconstruct a rat GPR rule based on an existing human GPR rule, human genes assigned to a reaction were 

replaced with orthologous rat genes. Inferring metabolic function through orthology is not trivial because 

orthologs descended from the most recent common ancestor of rats and humans have endured more than 50 

million years of evolutionary pressures (Figure 2.2). Additionally, mutations involving the duplication and/or 

inactivation of gene after speciation can lead to one-to-many, many-to-many, or many-to-one orthology 

annotations between rat and human genes61 (Figure 2.5B). If none of the human genes were annotated to any 

rat orthologs, the reaction was disabled in the rat GENRE and flagged as a potential human-specific reaction. 

Individual human genes mapped to multiple rat orthologs were replaced with multiple rat isozymes joined by “or” 

relationships. In Figure 2.5, we provide examples of how the number of genes in a GPR rule can change after 

replacing human genes with rat orthologs.  

Survey of mammalian metabolic networks 
Several published metabolic networks were considered for the basis of iHsa and iRno. These included the 

Human Metabolic Reaction 2.0 database (HMR2)19, Homo sapiens Recon 116 and Recon 217, HumanCyc57, and 

Hepatonet120; ultimately, the largest network, HMR2, was chosen for its inclusivity. Additionally, HMR2 was 

capable of performing 256 well-curated metabolic tasks relevant to hepatocyte metabolism in both humans and 

rats. Despite the availability of multiple generations of human GENREs (Figure 2.6A), only metabolic networks 

representing core metabolic pathways have been described for rats46,47. Constructing iRno based on a mouse 

metabolic network52,53,62 was also considered; however, each mouse model was derived from one of the human 

models described above (Figure 2.6).  

A draft of iHsa was adapted from HMR2 by replacing human GPR rules consisting of Ensembl gene identifiers 

with protein-coding Entrez genes. Ensembl genes without equivalent protein-coding Entrez genes were 

discarded prior to GPR conversion. Additionally, several reactions with excessively large GPR rules such as 

generic protein kinase reactions were simplified or discarded to streamline the GPR conversion process. Prior 

to GPR conversion, annotations mapping a human gene to 10 or more rat orthologs were excluded to avoid 

inferring function from non-specific annotations. A major limitation of HMR2 was the lack of complex GPR rules 

where “and” relationships between genes can be used to describe subunits in a multiprotein complex. In the next 

chapter, we address this limitation by manually curating complex GPR rules for iRno and iHsa.  
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Figure 2.6 – History and comparability of mammalian metabolic networks. (A) Historical timeline shows the 

size and relationships between human metabolic networks (blue) and mouse metabolic networks (gold). HMR 

and Recon 2 were both derived from Recon 1 but published by separate groups. Each mouse model was based 

in part on a human model. Although Recon 2 was published after iSS1393, iSS1393 uses similar reaction names 

as the published version of Recon 2 that were not used by Recon 1. iSS1393 also included reactions that were 

unique to iMM1415 but not originally reconciled with Recon 1. (B-D) Comparisons of GPR sizes (number of 

unique genes in a GPR rule) between pairs of human and mouse metabolic networks. Unreconciled reactions 

(orange) represent reactions that were non-enzymatic in one species and either enzymatic or absent in the other. 

Species-specific reactions were enzymatic in one species and absent in the other, which is the only appropriate 

representation for a reconciled difference. 
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Comparing mouse and human metabolic networks 
We compared mouse and human GENREs to estimate the degree of consistency we should expect from rat and 

human GENREs after automated conversion (Figure 2.6). Surprisingly, we found significant numbers of 

unreconciled differences between the mouse models and relevant human models (Figure 2.6A). Unreconciled 

differences are defined as reactions that were non-enzymatic in one species and either enzymatic or absent in 

the other. The fewest discrepancies were found between HMR2 and the newest mouse metabolic reaction 

(MMR) GENRE (Figure 2.6B), where over 98% of enzymatic reactions were classified as shared. Recon 116 and 

iMM141553 did not include any properly assigned mouse-specific reactions (Figure 2.6C) because reactions 

newly added to iMM1415 lacked valid mouse GPR rules62. For the second generation mouse GENRE, iSS1319, 

most of unreconciled differences between iMM1415 and Recon 1 were resolved62; however, many of the 

changes incorporated into Recon 2 after Recon 1 were not applied to iSS1319 (Figure 2.6D). Because iSS1319 

utilizes naming conventions from Recon 2 instead of Recon 1, comparative analyses between iSS1319 and 

either Recon 1 or Recon 2 cannot be considered reliable.  

Despite the fact that HMR2 and MMR shared a relatively higher proportion of reactions compared to previous 

pairs of human and mouse GENREs, we observed that mouse GPR rules were often smaller than human GPR 

rules for shared reactions (purple dots below the diagonal in Figure 2.6B) and that human-specific reactions 

were more common than mouse-specific reactions. These trends were consistent between other human and 

mouse GENREs, where only a handful mouse GPR rules from iMM1415 and iSS1319 were ever larger human 

GPR rules in Recon 1 (Figure 2.6C) or Recon 2 (Figure 2.6D). Based on these empirical observations, we would 

expect that a GENRE of rat metabolism would also have fewer redundant isozymes for shared metabolic 

functions and fewer unique functions overall compared to a GENRE of human metabolism.  

To test the hypothesis that rats have fewer redundancies than humans for shared metabolic functions, we 

compared the numbers of rat and human genes annotated to reactions in the KEGG database34. Using a similar 

approach used to compare GPR sizes between GENREs, we found that KEGG reactions were annotated to 

relatively proportional numbers of rat and human genes (Figure 2.7). While some KEGG reactions were often 

associated with fewer rat genes than human genes, other KEGG reactions were associated with more rat genes 

than human genes, contradicting our preliminary observations. These results suggested that discrepancies 

between rodent and human GPR sizes were likely an artifact of the reconstruction process used to generate 
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mouse GENREs based on human GENREs. We suspected that rodent GPR rules were smaller in previous 

mouse GENREs due to limited availability of orthology annotations between mice and humans. To overcome 

this potential limitation when generating a rat GENRE based on a human GENRE, we developed a novel 

consensus approach to utilize orthology annotations from five orthology databases instead of choosing a single 

database. 

Inferring metabolic function through orthology annotations is not trivial 
Aggregating orthology annotations from multiple databases increases the risk of inappropriately replacing human 

genes with rat orthologs that do not perform the same function. A consensus approach was used to filter out low 

quality orthology annotations during the GPR conversion process. Each orthologous pair of rat and human genes 

was assigned a score of 1-5 corresponding to the number of databases in which that pair was annotated. 

Individual genes were also assigned confidence scores determined by protein-level evidences and annotation 

scores from Ensembl32 and Uniprot35. For human genes mapped to multiple rat genes, orthologs were prioritized 

first by database scores then confidence scores to assign orthology ranks. Sensitivity analysis was performed to 

explore how filtering out ortholog pairs based on different cutoff values for database scores and orthology ranks 

affected the distributions of rat and human GPR sizes. Ultimately, a subset of 2629 ortholog pairs were selected 

that were annotated in at least 2 of 5 databases and limited each human gene to a maximum of 2 orthologs. This 

filtering step was important because methods that integrate gene expression data or simulate the impact of 

genomic alterations rely heavily on the number of redundant enzymes associated with a reaction.  

Converting all orthology annotations present in any of the 5 orthology databases generated rat GPR rules with 

disproportionately more genes compared to the original human GPR rules (Figure 2.4A). This result directly 

contradicted our previous observations that rodent GPR rules should generally be smaller than human GPR 

rules (Figure 2.6) and was inconsistent with our observation that rat and human genes annotated to reactions 

in the KEGG database were relatively proportional (Figure 2.7). Based on these seemingly conflicting 

observations, we discovered that too many or too few orthology annotations could result in the over-assignment 

or under-assignment of rat genes to GPR rules. To avoid these potential pitfalls, we developed a consensus-

based strategy that filters low quality orthology annotations from multiple databases and maintains moderately 

proportional rat and human GPR sizes after replacing human genes with rat orthologs (Figure 2.4B). 
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Furthermore, humans and rats have similarly sized genomes with approximately 20,000 genes, so genome-

scale properties were assumed to be consistent unless literature evidence suggested otherwise.  

Survey of five distinct orthology databases 
We compared orthology databases to highlight the advantages and disadvantages of using a consensus 

approach versus an individual database (Figure 2.3). Surprisingly, the distribution of rat orthologs annotated to 

each human gene varied substantially between orthology databases (Figure 2.3A). Over a third of human genes 

were annotated to two or more rat orthologs in KEGG while RGD was restricted to one rat ortholog per human 

gene. Despite this limitation, RGD had the highest coverage of human genes with orthology annotations 

compared to KEGG which had the second least. UniProt covered the fewest human genes but most orthology 

annotations were consistently found in at least 4 of 5 orthology databases (Figure 2.3B). Based on this 

information, orthology annotations from UniProt alone might not be sufficient to carry out the GPR conversion 

process at the genome-scale; however, UniProt could be useful in a consensus-based GPR conversion method 

by reinforcing confidence in a core subset of well-annotated ortholog pairs. Most ortholog pairs were annotated 

in multiple databases although KEGG also included a large number of unique ortholog pairs (Figure 2.3B). Each 

database added between 12 and 514 unique human genes originally represented in HMR2 and between 16 and 

2371 unique ortholog pairs not found in any of the other four databases. The percentage of non-overlapping 

ortholog pairs between any two databases was less than 50% with the exception of UniProt (Figure 2.3C). 

Despite a moderate degree of overlap, these results suggested that no consensus has been established among 

orthology annotation resources. As an alternative to choosing a single orthology database, a consensus 

approach would reduce the number of unconverted human genes and potentially capture more evolutionary 

differences between rats and humans (Figure 2.2). 

An optimization algorithm to preserve complexity of rat and human GPR rules 
To construct a rat metabolic network from a human metabolic network (Figure 2.1), human GPR rules were 

converted into rat GPR rules by replacing human genes with known rat orthologs (Figure 2.5). Pairs of 

orthologous genes between humans and rats were downloaded from five separate genomics databases: the Rat 

Genome Database (RGD)30, Ensembl32, the Kyoto Encyclopedia of Genes and Genomes (KEGG)33,34, the 

Universal Protein Resource (Uniprot)35, and Homologene31. Each individual database contained varying amounts 

of orthology information and unique orthology pairs, suggesting a lack of consensus (Figure 2.3). All five 
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databases were utilized in the GPR conversion process because inferring function through orthology can be 

especially difficult when considering genes with multiple orthologs (Figure 2.2).  

A consensus approach was used to assign a confidence score to each pair of human and rat orthologs for initial 

construction of the rat GENRE, iRno. We developed a quantitative method to infer metabolic function by 

incorporating the collective efforts of multiple genome annotation communities: UniProt, Homologene, RGD, 

Ensembl, and KEGG. Using these five orthology databases, we assigned a confidence score to deprioritize the 

conversion of ortholog pairs that were annotated in fewer databases. This prioritization step was implemented 

to filter out low confidence orthology annotations due to the possibility that function may not be conserved as 

described in Figure 2.2. We anticipate that using orthology annotations derived from multiple computational 

methods will be more robust than quantitative methods such as BLAST because a single point mutation could 

be sufficient to alter the basic function of a metabolic enzyme while orthologs with low sequence similarity can 

catalyze similar reactions61. 

Figure 2.7 – Comparison between the numbers of rat and 

human genes associated with reactions in the KEGG database. 

Each dot represents a single KEGG reaction annotated to human 

and/or rat genes. The solid line shows the least squares regression 

fit with a slope of 1.1 which deviated slightly from the dashed unit 

line. 

 

Aggregating orthology annotations from multiple databases 

increases the risk of inappropriately replacing human genes with rat 

orthologs that do not perform the same function. To identify a high-

quality subset of orthology information that preserved functionality 

and GPR sizes between drafts of iRno and iHsa, we developed a consensus-based GPR conversion algorithm 

that required orthologs to be annotated in at least 1-5 databases and limited individual human genes to be 

replaced by a maximum of 1-5 rat orthologs (Figure 2.8). We found that converting all orthology annotations 

present in any of the 5 orthology databases generated rat GPR rules with disproportionately more genes 

compared to the original human GPR rules (bottom row of panels in Figure 2.8). We assumed that this difference 

was more likely explained by a large number of false positive orthology annotations than an actual genome-scale 
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difference in the redundancies between rat and human metabolic enzymes. Alternatively, requiring orthologs to 

be annotated in all 5 databases generated much smaller rat GPR rules for shared reactions and introduced a 

large number of human-specific reactions that would substantially reduce the functionality of iRno (top row of 

panels in Figure 2.8). We found a balanced relationship between the numbers of reactions with larger rat GPR 

rules than human and numbers of reactions with larger human GPR rules than rat by removing orthology 

annotations found in only one database and restricting the replacement of each human gene to two rat orthologs 

(selected cutoff panel in Figure 2.8). Additionally, the selected cutoff preserved the same functionalities as the 

relaxed cutoff when evaluating metabolic tasks from HMR219. This filtering step was important because methods 

that integrate gene expression data or simulate the impact of genomic alterations rely heavily on the number of 

redundant enzymes associated with a reaction63,64. 

Figure 2.8 – Converting GPR rules using a consensus approach. Using a consensus approach, a subset of 

high-quality orthology annotation from 5 databases was obtained to generate an automated draft of a rat 

metabolic network based on a human metabolic network. Sensitivity analysis of two parameters used to filter 

orthology annotations on the relative sizes of rat and human GPR rules: minimum database count (by row) and 

maximum orthology rank (by column). Smaller orthology rank thresholds limited fewer rat orthologs to be 

replaced by individual human genes. Larger database count thresholds removed ortholog pairs that were not 

annotated frequently across multiple databases. Dots represent the relative rat and human GPR sizes for 

individual reactions and the number highlighted in each panel represents the number of shared reactions with 

larger rat than human GPR sizes minus the number of shared reactions with larger human than rat GPR sizes. 

Using orthology annotations from any database (bottom row) generated rat GPR rules that were frequently larger 

than the original human GPR rules, unless each human gene was limited to one ortholog (bottom left panel). 

Requiring orthology annotations to be described by at least 3 different databases (middle row) increased the 

numbers of reactions automatically annotated as human-specific (blue dots) and provided human GPR rules that 

were frequently larger than rat GPR rules. Ultimately, the pair of selected cutoff parameters (boxed panel) used 

in the GPR conversion process provided balanced numbers of disproportionately sized GPR rules between draft 

rat and human networks. 
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Chapter 3: Reconciliation of rat and human metabolic networks 
 
Synopsis 
In Chapter 2 chapter, we described a semi-automated approach to generate a draft genome-scale 

reconstruction (GENRE) of rat metabolism based on an existing GENRE of human metabolism. In this chapter, 

we manually curated the rat metabolic network (iRno) in parallel with the original human metabolic network (iHsa) 

in a process called network reconciliation. As a result, these models successfully captured known metabolic 

features that distinguish humans and rats. By reconciling species-specific differences, we substantially improved 

purine degradation and bile acid synthesis pathways in both models. In Chapter 4, we develop reconciled 

biomass formulations and demonstrate that these models can quantitatively predict cellular growth rates and 

ATP yields unlike previous human GENREs. In Chapter 5, we discuss how manually metabolic networks can 

be used to refine genome annotations using examples identified during the manual curation process described 

in this chapter. By applying network reconciliation principles throughout the reconstruction process, these 

important efforts also facilitated the comparative toxicogenomics that will be discussed in Chapters 6-7. 

Figure 3.1 – iRno and iHsa were 

manually curated in parallel to 

reconcile species-specific differences. 

The efforts described in this chapter 

contributed to the development of the first 

curated genome-scale rat metabolic 

network and a substantially improved 

human metabolic network based on draft 

reconstructions described in Chapter 2. 

 

In the previous chapter, we transformed iHsa into iRno by replacing human gene-protein-reaction (GPR) 

relationship rules with orthologous rat GPR rules. Here, we extensively curated iRno and iHsa by incorporating 

169 new reactions, manually updating 1103 GPR relationship rules, and annotating 5000 new references to 

experimental literature and external databases33,34,57,65 (Figure 3.1). Compared to previous human and mouse 

GENREs16,17,19,52,53, iRno and iHsa captured the highest numbers of total reactions, enzymatic reactions, 

reactions associated with complex GPR rules, and annotations to external databases (Table 3.1). Furthermore, 

reactions were reconciled for potential differences between rat and human networks which has not previously 
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been described for existing mammalian networks (Table 3.1). As a result, iRno and iHsa represent two of the 

most comprehensive metabolic reconstructions and the first pair of mammalian metabolic networks reconciled 

for comparative analyses to date. These models will serve as powerful computational platforms for 

contextualizing experimental data and making functional predictions consistent with rat and human biology for 

clinical and basic science applications.  

Genome-scale differences after network reconciliation 
Network reconciliation was emphasized throughout the entire reconstruction process for iHsa and iRno to 

facilitate cross-species predictions. Oberhardt et al.50 compared GENREs of two closely related Pseudomonas 

species developed independently, and found that cross-species predictions were unrealistic without extensive 

network reconciliation. The percentage of reactions shared 

between the two bacterial models increased from 33% to 

86%, achieved mostly by resolving differences in 

nomenclature used to describe reactions and metabolites 

themselves. Between iRno and iHsa, a much higher 

percentage (>99%) of reactions was shared, likely as a 

result of bypassing the need to reconcile terminology-based 

differences between species. In contrast, the percent of 

reactions that overlapped between previous mouse and 

human GENREs was closer to 98% due in part to reactions 

that were not reconciled (Table 3.1).  

Figure 3.2 – Subsystem-level comparison of the 

knowledge gap that exists between rats and humans. 

Stacked bars represent the percentages of PubMed articles 

mapped to rat and/or human genes for all metabolic genes 

represented in a subsystem. PubMed articles referenced 

human genes more frequently than rat genes within all 

subsystems, but the knowledge gap was larger for 

pathways that included one or more human-specific 

reactions. Abbreviations for subsystems refer to: electron 

transport chain (ETC); pentose phosphate pathway (PPP). 
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Table 3.1 – Comparison of reconciled rat and human GENREs with previous mammalian GENREs. iRno 

and iHsa expand upon HMR2 with curated GPR rules that account for enzyme complexes, updated annotations 

to external databases, and no unreconciled** differences between species-specific models. (*) Genes and 

reactions associated with highly redundant GPR rules (10+ isozymes) such as generic signaling processes were 

excluded in these model comparisons. (**) Unlike species-specific reactions which are enzymatic in one species 

and absent in the other, unreconciled reactions can either be enzymatic in one species and non-enzymatic in 

the other, or non-enzymatic in one species or absent in another. (***) Species-specific tasks are explicitly 

designed to succeed in one species and not the other. 

Database Ratcon HMA BiGG VHM 
Organism Rat Human Mouse Human Mouse Human Human 
Model iRno iHsa MMR HMR2 iMM1415 Recon 1 Recon 2 
Genes* 1994 1991 1902 1986 1332 1435 1617 
Reactions 8271 8264 8140 8181 3726 3742 7440 
enzymatic* 5745 5738 5597 5604 2204 2297 4446 
isozymic* 2863 2691 3013 3135 776 832 1647 
enzyme complex* 620 620 0 0 237 250 461 
annotated in KEGG 2412 2406 - 1527 - - - 
species-specific 14 7 18 60 0 100 - 
unreconciled** 0 0 62 85 83 17 - 
Metabolites 5620 5620 5516 5546 2775 2766 5063 
unique metabolites 3200 3200 3170 3155 1503 1509 2626 
compartments 8 8 8 8 8 8 8 
biomass metabolites 184 169 117 117 41 41 41 
annotated in KEGG 3353 3353 - 689 - - 2601 
Metabolic tasks 327 327 56 256 254 260 354 
species-specific*** 12 2 - - - - - 
 

After extensive manual curation and network reconciliation, there was a high degree of confidence in the 

conserved metabolic functionality of iRno and iHsa. At the genome-scale, 99.6% of all gene-associated 

biochemical and transport reactions were annotated with both rat and human genes. Despite extensive efforts 

to identify metabolic activities unique to rat or human genomes, most metabolic subsystems included zero 

species-specific reactions (Figure 3.2). To approximate whether sufficient literature information was available to 

identify known species-specific differences, we compared how frequently PubMed articles referenced rat and 

human genes within individual subsystems. We found that rat genes were referenced less frequently compared 

to human genes, although the literature gap between rat and human genes varied substantially by subsystem 
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(Figure 3.2). Subsystems with human-specific reactions included fewer references to rat genes relative to human 

genes compared to other subsystems. Interestingly, the number of reactions classified as human-specific based 

on orthology annotations decreased from 19 to 7 after performing network reconciliation, suggesting a higher 

degree of consistency between rat and human metabolic capabilities than currently annotated. Alternatively, rat-

specific reactions were not identified for any of the poorly studied subsystems in rats (Figure 3.2), suggesting 

that additional studies may reveal undiscovered differences between rat and human metabolism. 

Metabolic enzymes unique to either rats or humans more frequently contributed to increased redundancies rather 

than new functionalities when comparing the relative sizes of rat and human GPR rules across shared reactions 

(Figure 3.3). GPR sizes were consistent (along the diagonal of Figure 3.3A) for nearly 80% of reactions 

associated with both rat and human genes (an example is illustrated in Figure 3.3B); however, known differences 

in the numbers of redundant rat and human genes have been described66 for reactions like the example shown 

in Figure 3.3C. Capturing variability between rat and human GPR rules is important because the numbers of 

redundant isozymes or subunits in a protein complex affect the relative robustness of reactions to genetic 

perturbations. Despite individual variations in GPR sizes and a handful of species-specific reactions, rat and 

human GPR rules remained relatively balanced at the genome-scale (Figure 3.3A) and were not suggestive of 

any global differences in robustness within metabolism. 

Functional differences captured by rat and human metabolic networks 
We assembled a comprehensive collection of 327 metabolic tasks that captured known functions within rat 

and/or human metabolism. Each task represented a known biological process such as producing glucose from 

lactate during gluconeogenesis or breaking down glutamine into CO2 and urea. We described the process of 

formulating metabolic tasks in Chapter 1 and also provide detailed methods for identifying species-specific 

differences at the end of this chapter. As a result, we recapitulated 14 new species-specific tasks, 42 new shared 

tasks, and 271 shared tasks previously described in the validation of human metabolic network 

reconstructions17,19,20. Species-specific tasks were well represented across multiple subsystems including 

ascorbate, purine, glycan, and bile acid metabolism, and each task was characterized by one or two unique 

enzymatic reactions (Figure 3.4). Below, we showcase the importance of capturing these differences with iRno 

and iHsa in the contexts of human biology and disease. 
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Figure 3.3 – Reconciled gene-protein-reaction (GPR) relationships between iRno and iHsa allow for 

varying degrees of redundancy. (A) Comparison of the number of genes catalyzing each reaction in iRno and 

iHsa. Gene-associated reactions capable of catalysis in both iRno and iHsa were classified as “shared” reactions 

(purple). Reactions associated with GPR rules in only one organism were classified as species-specific (red and 

blue for rat-specific and human-specific, respectively). Reactions present in both models that had no known GPR 

rule assignments were classified as non-enzymatic (gray). Each tile’s color intensity represents the (log-scaled) 

frequency of reactions in that bin. The annotated letters b and c refer to the individual tiles from which the 

reactions in panels B and C are binned. (B) Example of a shared reaction with balanced GPR rules in iRno and 

iHsa. This reaction, glutamate-cysteine ligase (EC 6.3.2.2), requires both a catalytic subunit (Gclc / GCLC) and 

a regulatory subunit (Gclm / GCLM) to join glutamine with cysteine and form γ-glutamyl-cysteine, a precursor of 

glutathione. This reaction was manually curated because the original HMR2 did not contain information related 

to protein-complexes in GPR rules. (C) Example of a shared reaction, adenosine aminohydrolase (EC 3.5.4.4), 

that is involved in purine degradation and can be catalyzed by two redundant human isozymes or one rat 

enzyme. 

 

Unlike humans, rats are capable of producing vitamin C (ascorbate) (Figure 3.4A) and are thus resistant to 

scurvy6767676261. iRno and iHsa captured this species-specific phenomenon with a new task that simulated de 

novo vitamin C synthesis in a glucose minimal media environment. The rat-specific enzyme, Gulo, is known to 
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be responsible for this functional difference which has limited the use of rat as a model organism for scurvy since 

the early 20th century68. Simulated deletion of Gulo in iRno was sufficient to block this function in rats, consistent 

with a Gulo-deficient strain of rat developed to study scurvy (Figure 3.5A-B). Furthermore, adding a functional 

copy of the enzyme L-gulonolactone oxidase enabled iHsa to complete this task in silico, similar to a previous 

study that restored vitamin C synthesis in a human cell line using the murine ortholog of Gulo69 (Figure 3.5C-D). 

In humans, the purine degradation pathway yields urate as the end byproduct, which can accumulate and cause 

gout70. Rats can further degrade urate into allantoin (Figure 3.4B) and are resistant to gout formation71. iRno 

and iHsa captured this functional difference with new metabolic tasks that simulated the production of urate from 

purines, which is common to both species, and allantoin from purines which is absent in humans. The first two 

steps involved in converting urate into allantoin, urate oxidase (EC 1.7.3.3) and 5-hydroxyisourate hydrolase (EC 

3.5.2.17), are catalyzed by the rat-specific enzymes, Uox and Urah, respectively. The human orthologs for these 

two rat-specific genes, UOXP and URAHP, are nonfunctional pseudogenes; however, the third and last 

enzymatic step, OHCU (2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline) decarboxylase (EC 4.1.1.97) is a 

shared reaction catalyzed by Urad in rats and URAD in humans. By resolving species-specific differences in the 

purine degradation pathway, we also removed reactions that allowed Recon 217 and HMR219 to degrade urate 

into urea, a function known to be absent in mammals but present in other vertebrates including fish71. As a result, 

the ability to study gout or make biomarker predictions of urate production with iHsa was improved over 

previously published human reconstructions17,19. 

Most mammals, including rats, can synthesize N-glycolylneuraminic acid (Neu5Gc), a sialic acid found in 

glycolipids and glycoproteins72,73, via the rat enzyme Cmah, cytidine monophosphate-N-acetylneuraminic acid 

hydroxylase (EC 1.14.18.2) (Figure 3.4C). Humans cannot produce Neu5Gc from N-acetylneuraminic acid 

(Neu5Ac), a prevalent sialic acid in humans, because CMAHP is a nonfunctional pseudogene in humans73. 

Despite this difference, human sialyltransferases can incorporate nonhuman sialic acids into glycans obtained 

through the consumption of red meat72, which we also captured as a shared task in rats and humans. 
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Figure 3.4 – Functional differences known to distinguish rat and human metabolism. (A) Rats are capable 

of synthesizing vitamin C from limited substrates, providing an inherent resistance to scurvy. The rat-specific 

enzyme, Gulo, catalyzes the last enzymatic step of the vitamin C synthesis pathway: L-gulonolactone oxidase 

(EC 1.1.3.8). The human ortholog of Gulo is a nonfunctional pseudogene (GULOP). (B) Gout formation is 

associated with accumulation and crystallization of urate, the end-product of purine catabolism in humans. Rats 

are resistant to gout because urate can be further degraded into allantoin, which is more soluble than urate. (C) 

Most mammals can synthesize the monosaccharide, Neu5Gc, which is known as a nonhuman sialic acid that is 

incorporated into glycoproteins. (D) The human-specific enzyme FUT3 synthesizes the Lewisa antigen (Lea) 

which is involved in Lewis blood group determination and is the precursor for the pancreatic cancer biomarker, 

CA19-9. (E) Metabolic tasks simulating the production of primary and secondary bile acids were consistent with 
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bile acid species reported in a previous study78 that compared rat and human liver samples (X’s). (F) Summary 

of rat-specific and shared primary bile acid synthesis routes from cholesterol. Cyp3a18 was hypothesized as the 

critical enzyme enabling rats to produce rat-specific primary bile acids, which had not been previously described. 

(G) In the process of “bile acid recycling”, primary bile acids secreted by the liver into the gut are transformed by 

bacteria and subsequently reabsorbed by the liver. Synthesis of secondary bile acids were accounted for in iRno 

and iHsa by including extracellular reactions associated with gut bacteria. Interplay between rat liver and gut 

metabolism was necessary for iRno to simulate the synthesis and secretion of the rat-specific bile acid, 

murideoxycholic acid (MDCA). Abbreviations: N-acetylmannosamine (ManNAc); N-acetylneuraminic acid 

(Neu5Ac); N-glycolylneuraminic acid (Neu5Gc); lactosylceramide (LacCer); carbohydrate antigen 19-9 (CA19-

9). 

 

The human-specific enzyme, FUT3, encodes a fucosyltransferase involved in the Lewis blood group system. An 

individual with a functional copy of FUT3 can produce the Lewis a antigen74 (Lea) and sialyl-Lea, a clinical 

biomarker for pancreatic cancer commonly referred to as carbohydrate antigen 19-9 (CA19-9) (Figure 3.4D). 

Despite the inability of rats to synthesize Lea, we expect that CA19-9 could be produced from exogenous Lea by 

the orthologous sialyltransferases, St3gal3 and ST3GAL375,76. Surprisingly, FUT3 was the only functional 

difference attributed to human-specific enzymes after performing network reconciliation between iRno and iHsa.  

Improvements within bile acid metabolism 
The bile acid metabolic pathway was expanded in iRno and iHsa to include bile acids that may serve as 

biomarkers in rats and humans77 (Figure 3.4E). Human hepatocytes can synthesize chenodeoxycholic acid and 

cholic acid from cholesterol to facilitate dietary lipid absorption (Figure 3.4F). In addition to these two primary 

bile acids, rat hepatocytes also produce large quantities of α-muricholic and β-muricholic acid that are absent in 

humans77,78 (Figure 3.4F). After extensive manual curation of this pathway (described below), metabolic tasks 

simulating the synthesis of four primary and seven secondary bile acids were consistent with previous 

experiments directly comparing bile acids detected in the livers and sera of rats and humans77,78 (Figure 3.4G). 

The mammalian intestinal microbiome plays an important role in converting primary bile acids synthesized by 

hepatocytes into secondary bile acids which can be reabsorbed and further metabolized in the liver79. This “bile 

acid recycling” expands the global pool of metabolites encountered by humans and rats beyond what their 

individual genomes allow. In order to account for bile acid recycling in iRno and iHsa, we introduced a new 

extracellular subsystem of “gut” metabolic reactions that converted primary bile acids into secondary bile acids 
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(Figure 3.4G). This simplified system representing the intestinal microbiome was necessary to capture the 

synthesis of murideoxycholic acid, a rat-specific bile acid derived from the secondary bile acid, lithocholic acid 

(Figure 3.4G).  

While curating the bile acid synthesis pathway, we discovered that the critical enzymatic step involved in the 

production of rodent-specific bile acids was not annotated to any rat or mouse genes (Figure 3.4G). In Chapter 

5, we discuss how we identified Cyp3a18 as a candidate gene for performing this function and highlight how 

reconciling metabolic network reconstructions can guide the improvement of genome annotations80. 

Identifying species-specific reactions 
During the manual curation process, new reactions were added to iRno and/or iHsa that were not previously in 

HMR2. Identification of species-specific reactions was prioritized because rat-specific reactions were unlikely to 

be included in a human GENRE. iRno and iHsa were expanded and updated in parallel when possible to maintain 

consistency in the reconstruction process. For each new reaction added, rat and human GPR rules were 

constructed manually using evidence from experimental literature and functional annotation databases. 

Evidence supporting the presence of a reaction in one organism and not the other was necessary for classifying 

a reaction as species-specific. Otherwise, reactions directly associated with rat and human enzymes or indirectly 

through orthology annotations were assumed to be shared. In total, 69 biochemical, 32 transport, 40 exchange 

reactions were added that were not present in HMR2. All transport and exchange reactions were shared by iRno 

and iHsa and nine biochemical reactions were unique to iRno. Additionally, most reactions originally annotated 

as human-specific after the automated reconstruction process described in Chapter 2 were considered shared 

reactions after identifying appropriate rat enzymes. Ultimately, 14 rat-specific and 7 human-specific metabolic 

reactions were included in iRno and iHsa (Table 3.1) in addition to 16 artificial reactions involved in the formation 

of species-specific components used in the biomass formulation (see Chapter 4). Below, we provide detailed 

methods and additional considerations that were critical in identifying and annotating species-specific reactions. 

Updating annotations to external databases 
iRno and iHsa were expanded to include species-specific reactions from the KEGG database and literature 

sources. Lists of reactions and modules linked to genes annotated in humans (hsa) and rats (rno) were obtained 

using KEGG’s Representational state transfer (REST)-style interface 

(http://www.kegg.jp/kegg/rest/keggapi.html). Reactions linked to humans and not rats or to rats and not humans 

http://www.kegg.jp/kegg/rest/keggapi.html
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were manually investigated for their feasibility as actual species-specific reactions. To identify potential 

differences between the metabolic capabilities of rats and humans from literature, various searches were 

performed using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) with combinations of the keywords: rat, human, 

comparative genomics, cross-species, species-specific, metabolism, metabolic deficiency. No comprehensive 

comparative analyses were identified other than original publication of the rat genome40. 

We initially explored the Kyoto Encyclopedia for Genes and Genomes33,34 (KEGG) database as a starting point 

for identifying species-specific differences between rat and human metabolism. Prior to adding potential new 

reactions to iRno and iHsa, existing reactions and metabolites were updated with annotations to external 

databases. Throughout the entire reconstruction process, 742 reactions and 354 metabolites were assigned new 

or updated KEGG annotations to replace empty, incorrect, generic, or obsolete KEGG identifiers. Overall, the 

numbers of unique KEGG REACTION and KEGG COMPOUND identifiers represented across iRno and iHsa 

increased from 1376 and 1650 to 1702 and 1721, respectively, compared to the initial human GENRE, HMR219. 

These updated annotations were necessary to avoid creating duplicate entries of unique reactions or metabolites 

and to facilitate assigning GPR rules to 122 reactions not previously associated with any genes. 

Interestingly, some rat-specific functions were already included as non-gene associated reactions in HMR2 and 

deleted from iHsa as part of the reconciliation process. For example, the metabolic reaction catalyzing the 

conversion of threonine to glycine and acetaldehyde was originally present in HMR2 as a spontaneous (non-

enzymatic) reaction with no external annotations19. This reaction was identified in the KEGG database as the 

rat-specific reaction, threonine aldolase (R00751). As a result, this reaction was assigned a new GPR rule in 

iRno and disabled in iHsa. Of 18 rat-specific KEGG reaction annotations: 5 were already represented and 

removed from iHsa; 11 were added as new rat-specific reactions iRno; and 2 redundant with other rat-specific 

reactions were ignored. Of 75 human-specific KEGG annotations: 4 were already represented in iHsa, and had 

been disabled in iRno as a result of the GPR conversion process described in Chapter 2; 14 were re-classified 

as shared reactions after identifying suitable rat orthologs; and 57 involved in peripheral pathways such as 

xenobiotic metabolism were ignored.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed
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Curating GPR rules to include complex relationships 
In addition to resolving differences at the reaction-level, iRno and iHsa were further reconciled for comparative 

analyses by manually updating GPR rules. A major disadvantage of using HMR2 for the basis of iRno and iHsa 

was the absence of complex GPR relationship rules with multiple subunits in a protein complex (Table 3.1). 

Manually curated GPR rules containing protein-complexes were based primarily on GPR relationships from 

Homo sapiens Recon 217, experimental literature, and genome annotation databases. As a result, GPR rules 

with multiple subunits were constructed for 620 reactions in iRno and iHsa (see Figure 3.3B for example). After 

network reconciliation and extensive manual curation, the numbers of rat and human genes mapped across 

shared reactions remained balanced (Figure 3.3A; Figure 3.4C). 

GPR rules comprised of more than one gene were initially limited to isozymic “or” relationships because none of 

the 1390 unique GPR rules in HMR2 described relationships between subunits in a protein complex19. To 

overcome this limitation, GPR rules were manually constructed to include “and” logical operators for both rat and 

human models when possible. Evidence supporting the requirement of multiple enzymatic subunits to perform a 

metabolic function were obtained from functional annotation databases and experimental literature. We also 

compared complex human GPR rules from the second largest human GENRE, Homo sapiens Recon 2 (versions 

2.0.3 and 2.0.4), with an early draft of iHsa in order to convert isozymic relationships into complex relationships. 

Formulating metabolic tasks 
Metabolic tasks representing known biological functions of rats and humans were simulated in iRno and iHsa. 

To formulate new metabolic tasks, we implemented methods discussed in Chapter 1 that were previously 

applied to HMR219. Overall, curated rat and human models successfully performed 327 tasks including 256 from 

HMR219 and 15 adapted from Recon 217. An additional set of 57 new tasks were defined including 14 species-

specific tasks (Table 3.2) such de novo synthesis of vitamin C (Figure 3.4A). Identifying species-specific tasks 

and tasks related to hepatocyte metabolism was prioritized to capture biological functions that might be important 

for the use of these models in studying toxicology which will be discussed in later chapters. In the next chapter, 

we will also discuss several tasks related to biomass synthesis and energy maintenance that were formulated to 

quantitatively capture cellular growth rates under physiological constraints. Below, we discuss strategies that 

were implemented as part of the iterative network reconciliation process (Figure 3.1). 
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Table 3.2 – Summary of metabolic tasks added as a result of the network reconciliation process. The 

numbers of tasks intended to fail within each category are shown for tasks that cannot be completed by either 

iRno (red), iHsa (blue), or both models (purple).  

Metabolic Task Category Tasks Added Failure Intentional  

Biomass synthesis and energy maintenance 16 1, 5   

Bile acid metabolism 29 7  

Purine, glycan, and ascorbate metabolism 12 2, 4, 2  

Various tasks adapted from Recon 2 14 -  
 

Because none of the original 271 metabolic tasks were considered unique to humans, metabolic task simulations 

were expected to be consistent between iRno and iHsa unless directly supported by literature evidence. To avoid 

changes that negatively impact the performance of iRno and iHsa, we simulated all available metabolic tasks 

during each iterative round of model updates. Removal of reactions from iHsa as part of the reconciliation 

process did not affect the completion of any metabolic tasks that had already been defined. Furthermore, the 

addition of new reactions to iRno and iHsa did not enable completion of 19 tasks explicitly intended to fail such 

as the de novo synthesis of essential amino acids. In cases where model changes introduce unexpected task 

results, it is imperative to justify any inconsistencies with literature support, undo changes that were responsible 

for model discrepancies, or provide an alternative solution with additional model changes. 

Prior to manual curation, the automated draft of iRno originally failed to complete 3 human tasks related to bile 

acid synthesis that have been described as functional in rats78. Assigning the rat gene Akr1c14 to 3α-

hydroxysteroid dehydrogenase (EC 1.1.1.50) was sufficient to resolve all 3 inconsistent metabolic task 

predictions between iRno and iHsa66. In contrast, the mouse GENRE, iMM1415, required the addition of 95 

reactions to complete 260 metabolic tasks after automated conversion from Homo sapiens Recon 116,53 (Table 

3.1). Because orthology between Akr1c14 and AKR1C4 had not previously been annotated in any of the 5 

orthology databases discussed in Chapter 2, we manually investigated all reactions that were annotated as 

human-specific after automated reconstruction of iRno to resolve differences attributed to missing orthology 

annotations. As a result, nearly all species-specific enzymes were also supported by functionally important 

species-specific tasks. Additionally, some of these changes led to genome annotation refinements which will be 

discussed in Chapter 5.  
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Formulating species-specific tasks 
After resolving inconsistencies for previously defined functions, we searched for species-specific differences that 

could be implemented as metabolic tasks. We queried presence or absence of all KEGG MODULEs for rats and 

humans, revealing 2 human-specific modules and 1 rat-specific module. Each module described the ability of an 

organism to synthesize a product de novo from a starting substrate. In the rat-specific module, M00129, vitamin 

C can be synthesized from glucose; however, we found that iRno also required oxygen uptake to complete this 

task, highlighting an advantage of GENREs as a centralized repository to annotate known metabolic functions. 

In KEGG, the human-specific modules for chenodeoxycholic acid synthesis from cholesterol and degradation of 

heparan sulfate into disaccharides were each characterized by a single missing enzyme in rats. For 

chenodeoxycholic acid synthesis, the blocked reaction, 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) 

was not annotated for any rat enzymes in KEGG. As mentioned above, the rat gene, Akr1c14, is known 

demonstrate to this activity66, suggesting that this module be reclassified as complete in both rats and humans. 

For heparan sulfate degradation, manually assigning the rat enzyme, Hgsnat, to its known function (EC 2.3.1.78) 

was able to recapitulate this previously annotated human-specific function in rats81. In Chapter 5, we will discuss 

how the manual curation process for a metabolic network can also be leveraged to guide genome annotations 

refinements using these examples. 

Figure 3.5 – Simulating genetic engineering strategies with iRno and iHsa. (A) Rats are capable of 

synthesizing vitamin C from limited substrates which was captured by iRno. The last enzymatic step of this 

process is known to be catalyzed by L-gulonolactone oxidase (Gulo). (B) Humans cannot synthesize vitamin C 

from limited substrates which was captured by iHsa. The human ortholog of the rat gene, Gulo, is a non-functional 

pseudogene. (C) By simulating the deletion of Gulo with iRno, rats were no longer predicted to be capable of 

synthesizing vitamin C given glucose and oxygen, consistent with the result of the simulation shown in B. (D) By 

simulating the knock-in of a functional equivalent to Gulo in humans, iHsa was capable of performing de novo 

vitamin C synthesis, consistent with the result of the simulation shown in A. 
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Genetic engineering strategies with metabolic networks 
Through the process of network reconciliation, we have established rat and human metabolic networks that can 

be used to develop new genetic engineering strategies that bridge the gap between rat and human biology. L-

gulonolactone oxidase (Gulo) has been described as the critical enzyme for vitamin C synthesis that 

differentiates rats from humans68 (Figure 3.5A). Using flux variability analysis (FVA)82, 10 reactions were 

required by iRno to synthesize vitamin C under glucose minimal media conditions. The only enzymatic reaction 

required for vitamin C synthesis in iRno that was also absent in iHsa was L-gulonolactone oxidase (EC 1.1.3.8) 

(Figure 3.5B). In agreement with the KEGG MODULE, “ascorbate biosynthesis, animals” (M00129), L-

gulonolactone oxidase (K00103) was annotated as the only enzymatic step missing in humans (Figure 3.5C). 

Additionally, deleting Gulo blocked the ability of iRno to produce vitamin C, consistent with a Gulo-deficient strain 

of rat developed to study scurvy83. Artificially adding L-gulonolactone oxidase to iHsa enabled the human model 

to successfully complete the vitamin C synthesis task (Figure 3.5D), as previously described in a study that 

restored vitamin C synthesis in a human cell line using the murine ortholog of Gulo69. 
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Chapter 4: Quantitative growth rate predictions 
Synopsis 
Cellular proliferation is a universal feature shared across all domains of life. The process of transforming raw 

materials into cellular biomass is a fundamental step required for the growth of an organism. Genome-scale 

network reconstructions (GENREs) can capture the metabolic machinery of an organism that salvage, 

synthesize, and organize the macromolecular building blocks within a cell. In this chapter, we describe 

comprehensive biomass formulations for rat and human hepatocytes based on experimental literature. To 

facilitate comparative analyses between the GENREs of rat (iRno) and human (iHsa) metabolism in accordance 

with the network reconciliation process described in Chapter 3, we established a unified biomass subsystem of 

reactions that also takes into account species-specific differences in biomass formulations. By applying 

physiologically-relevant constraints to metabolic exchange reactions, quantitative growth predictions were 

remarkably consistent with growth rates previously reported for hepatocytes. In this chapter, we discuss 

important quality control measures implemented throughout the manual curation process that contributed to the 

ability of iRno and iHsa to accurately capture growth. 

Defining metabolic objectives for mammalian cell types 
Computational methods such as flux balance analysis (FBA) rely on specifying a biological objective to 

interrogate a metabolic network. Biomass synthesis can be considered a fundamental objective in biology. 

Without the drive to proliferate, a species will eventually die out; however, growth is not always the objective of 

a cell. As multicellular organisms, humans and rats have developed highly specialized tissues that perform 

distinct metabolic functions. For example, cardiomyocytes constantly regenerate ATP from ADP to fuel the 

molecular motors that drive cardiac muscle contractions. Using a human cardiac-specific metabolic network, a 

recent study defined ATP turnover as an objective in order to systematically explore how different substrates 

affect the efficiency of cardiac function84. For a kidney-specific metabolic network, objective functions associated 

with kidney filtration were defined such as the removal excess waste products like urea and the reabsorption of 

amino acids85. These examples underscore the importance of understanding physiology when using GENREs 

to study metabolism, particularly in complex organisms like rats and humans. 

The mammalian liver is the serves a variety of functions that are critical for maintaining metabolic homeostasis 

and staying healthy. These include gluconeogenesis, glycogen storage, detoxification of ammonia to urea, 

breakdown of lipids, and bile acid synthesis. The human liver-specific metabolic network, HepatoNet120, captured 
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these and other known liver functions in a collection of metabolic tasks. In Chapter 2, we verified that the initial 

drafts of iHsa and iRno were capable of performing tasks described in HepatoNet1 and the newer human 

GENRE, the Human Metabolic Reaction database19 2.0 (HMR2). In Chapter 3, we defined additional species-

specific metabolic tasks that are also performed in the liver such as de novo vitamin C synthesis and rodent-

specific bile acid production. Despite covering a wide range of hepatic functions, analyzing each metabolic task 

independently does not capture the complexity associated with the tradeoffs between different metabolic 

objectives.  

In this chapter, we defined quantitative parameters for simulating the metabolic activity of hepatocytes at the 

systems-scale. We compiled experimental values reported in literature to formulate a comprehensive 

representation of hepatocyte biomass and implemented a new subsystem of biomass reactions to facilitate 

comparative analyses of growth across iRno and iHsa. By applying physiological constraints to metabolite 

exchange reactions, hepatocyte functions such as urea, albumin, and glucose production could be maintained 

at realistic rates while taking into account the limitations of nutrient consumption rates. By specifying biomass 

synthesis as the objective function, growth rate prediction under physiological constraints were consistent with 

known growth rates reported in literature for hepatoma cell lines. 

Formulating biomass from heterogeneous datasets 
In a metabolic network, the biomass formula represents the recipe for a cell simplified into a list of ingredients. 

Although the quantities of individual ingredients may vary extensively by cell type and by species, most lists will 

include DNA, RNA, proteins, lipids, and glycans. These macromolecular building blocks are represented in 

GENREs as individual amino acids, nucleic acids, fatty acids, and carbohydrates. Unfortunately, experimental 

studies quantifying all of these ingredients are not readily available, so we implemented a piecemeal approach 

to construct biomass formulas for rat and human hepatocytes. Throughout this chapter, we discuss important 

considerations for defining biomass formulas using incomplete knowledge and sparsely populated datasets. 

When gathering data from experimental literature, it is paramount to consider the units in which biomass will be 

formulated. The biomass formula represents each component as a molar quantity per cell quantity (e.g. µmol 

per million cells; mmol / g dry weight; mmol / mm3 tissue). In order to reconcile different types of measurements 

across datasets, metabolite quantities represented by mass can be divided by the molar mass ratio to obtain a 

molar quantity and cellular quantities can be interchangeable with appropriate conversion rates (cells per gram 
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dry weight; cells per mg protein; gram dry weight per mm3 tissue). In Table 4.1, we show experimentally-derived 

conversion rates from a study that compared quantification methods to determine cellularity for rat and human 

hepatocytes. 

Table 4.1 – Experimentally reported86 hepatocyte cellularity (cell count density) using different methods. 

These values provide the ability to combine values from sparse datasets. 

Hepatocytes cells / µg liver cells / µg protein 
Human 139 1015 
Rat 117 1522 

 

In order to quantitatively estimate growth rates, the biomass should be formulated with units that are consistent 

with any experimental flux measurements (minus the time component) that will be applied as constraints to 

exchange reactions. By defining biomass as fmol per cell (1 femtomole = 10-15 moles) and exchange fluxes as 

fmol per cell per hour, growth rate predictions using the biomass reaction can be interpreted as growth per hour. 

To approximate the doubling time of cells growing exponentially at steady-state, divide the natural logarithm of 

2 by the predicted growth rate. 

In many cases, data are only available as relative quantities for metabolites within a specific group such as amino 

acids. To integrate relative quantities into a biomass formula, additional information such as the amount of protein 

in a cell can be used to infer absolute quantities per cell. As an example, the relative abundance of glutamate 

was reported as 10.34% in human liver microsomes and 10.19% in rat liver microsomes from a comparative 

study87. From a separate study88, protein contributed to approximately 61.4% of the cellular mass by dry weight 

for a human hepatocyte cell line whose mass was estimated to be 419.1 pg dry weight per cell. Combining these 

values with a molar mass of 147.13 g / mol for glutamate, we can estimate that the cellular composition of 

glutamate in human hepatocytes is 174 fmol per cell by the following calculations: 

10.34 𝑝𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒

100 𝑝𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
∗

59.1 𝑝𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

100 𝑝𝑔 𝑑𝑟𝑦 𝑤𝑡 𝑐𝑒𝑙𝑙𝑠
∗

419.1 𝑝𝑔 𝑑𝑟𝑦 𝑤𝑡 𝑐𝑒𝑙𝑙𝑠

1 𝑐𝑒𝑙𝑙
∗

1 𝑝𝑚𝑜𝑙 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒

147.13 𝑝𝑔
=

0.174 𝑝𝑚𝑜𝑙

𝑐𝑒𝑙𝑙
   Equation 4.1 

Consistent with the network reconciliation process described in Chapter 3, we assumed that introducing species-

specific differences should be avoided unless supported by evidence. Without comparative quantities from both 

rat and human hepatocytes, we generally assumed that the mass contribution for each biomass component was 

roughly equal. For the cellular composition of glutamate in rat hepatocytes, we can replace 10.34 with 10.19 in 

the equation above and estimate a value of 172 fmol per cell. However, we identified a technical limitation of this 
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strategy when recalculating the total mass per cell across all amino acids which was primarily due to rounding 

errors. To maintain consistency in the total mass contributed by a single biomass subcomponent like amino 

acids, we created separate rat and human protein synthesis reactions within a new biomass subsystem that 

generate an average protein unit. With this formulation, each species has a distinct protein synthesis reaction 

with distinct substrate ratios but the metabolite produced is shared by both species and contributes an equal 

amount of protein mass to the biomass formula.  

Figure 4.1 – A unified biomass reaction was created for rat and human hepatocytes to enable 

comparative predictions using iRno and iHsa. (A) Each metabolite consumed in the hepatocyte biomass 

reaction represents an “average” biomass subcomponent that can be synthesized with a separate reaction. DNA, 

RNA, lipids, and miscellaneous metabolites (abbreviated Misc.) like glycogen and vitamin C were assigned 

species-independent synthesis reactions. Bile acids and amino acids, which can vary significantly between 

species, were assigned species-specific synthesis reactions in iRno and iHsa. Numbers indicate how many 

unique metabolites are shared (purple) or rat-specific (red) within each biomass subcomponent. (B) The biomass 

subcomponent for an average DNA molecule is produced by consuming experimentally-derived ratios of 

individual deoxynucleotides. In this reaction, more adenine (A) and thymine (T) are incorporated into DNA than 

cytosine (C) and guanine (G) as indicated by percent labels and by line thickness. (C) Synthesis of an “average” 

bile acid was defined separately for iRno and iHsa in order to account for species-specific metabolites (muricholic 

acids) and relative abundances. 

 

A unified biomass subsystem that accounts for species-specific differences 
A novel system of reactions representing biomass synthesis was developed to enable cross-species predictions 

of growth between iRno and iHsa with a single biomass reaction (Figure 4.1). Using quantitative values from 

hepatocyte-based experimental literature, iRno and iHsa included reactions that consumed known quantities of 
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individual metabolites to produce an “average” biomass precursor metabolite that was species independent 

(Figure 4.1A). For biomass precursors with relatively similar compositions such as the average nucleotide 

incorporated into DNA (Figure 4.1B), macromolecular synthesis reactions were shared by iRno and iHsa. 

Species-specific macromolecular synthesis reactions were added to represent distinct compositions of bile acids 

(Figure 4.1C) and amino acids obtained from studies comparing metabolomics profiles of rat and human 

hepatocytes77,78,87. This generalized framework for biomass formulations was implemented in iRno and iHsa to 

simulate hepatocyte growth and can be extended to formulate species-specific compositions for groups of 

metabolites in any tissues with quantitative or comparative metabolomics data. Additionally, hepatocyte growth 

and production of each of the 8 macromolecular precursors under strict physiological conditions were simulated 

as separate metabolic tasks (see Chapter 3 for detailed description of metabolic tasks).  

Biomass formulations for rat and human hepatocytes 
New biomass metabolites were defined for each macromolecular subcomponent present in a hepatocyte (Figure 

4.1A). We estimated the relative contribution of each biomass metabolite to the overall biomass of a cell (percent 

of dry weight): DNA (2.3%), RNA (3.7%), lipids (17.2%), protein-incorporated amino acids (59.1%), free amino 

acids (3.8%), bile acids (.1%), glycogen (3.2%), and miscellaneous metabolites (10.5%). Miscellaneous 

metabolites included vitamins, and cofactors, and other metabolites present at high intracellular concentrations 

such as vitamin C, citrate, and glutathione. The relative abundances of individual metabolites within each 

subgroup were determined from several previously published studies87-102. Data directly comparing metabolite 

profiles between human and rat hepatocytes were available for amino acids and bile acids. To account for these 

differences within a generalized framework, species-specific reactions were added to iRno and iHsa for the 

synthesis of these two biomass metabolites (Figure 4.1C). For biomass components with similar compositions 

between rats and humans, shared reactions were used to produce estimated hepatocyte-specific compositions 

(Figure 4.1B). This new cross-species framework can be extended to formulate new biomass compositions for 

cross-species analyses within and between various cell or tissue types using the same centralized biomass 

precursor metabolites. For example, biomass metabolites for DNA, RNA, and protein could be reused when 

formulating a biomass reaction for adipocytes that incorporates a modified lipid composition higher percentage 

of lipids using and formulations would require modified lipid compositions can utilize the same biomass 

metabolites for DNA and RNA while modifying lipid contribution biomass reaction for adipocytes, biomass 
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metabolites such as DNA and RNA can easily be reused be easily adapted by increasing the contribution of 

lipids, metabolites  

Physiological constraints for hepatocyte growth 
Physiological ranges for exchange reactions were determined using a consensus approach (Figure 4.2). 

Experimentally measured metabolite consumption and secretion rates were obtained for rat liver cells and rat 

hepatocytes from 6 existing studies19,46,47,78,103-105. Exchange reaction equations were formulated such that 

negative and positive fluxes represented consumption and secretion, respectively. Flux measurements were 

standardized to units of fmol cell-1 hour-1 using previously described conversion rates86. In order to normalize 

quantitative measurements from different experimental systems, absolute flux measurements were median-

scaled using metabolites measured in all 6 experiments to the average median value of the 3 in vitro experiments. 

To assign experimental observations as physiological constraints, lower and upper bounds for exchange 

reactions were determined based on minimum and maximum normalized values across all experimental 

observations. 

Physiological constraints were applied to iRno and iHsa either as strict constraints for quantitative simulations of 

hepatocyte biomass (Figure 4.2) or relaxed constraints for treatment-induced simulations in Chapters 6-8. 

Under relaxed and strict physiological constraints, lower bound values less than zero were used to allow nutrient 

uptake of measured metabolites. Under strict physiological constraints, lower bound values greater than zero 

were also applied requiring secretion of urea, glucose, glutamate, aspartate, 3-hydroxybutyrate, and albumin. 

Upper bound values were also applied to require consumption or limit secretion of metabolites under strict 

physiological constraints (Figure 4.2A). Additionally, estimated uptake rates for 12 inorganic ions (Figure 4.2B) 

and 13 essential nutrients (Figure 4.2C) were assigned under both relaxed and strict physiological constraints. 

For metabolites with flux measurements available in rat and human hepatocytes, differences between species 

were considered negligible relative to feasible flux ranges with the exception of bile acids. 
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Figure 4.2 – Strict physiological constraints applied to iRno and iHsa. (A) Experimentally reported flux 

measurements from rat hepatocytes were obtained from six separate studies to constrain iRno and iHsa with 

exchange boundaries that represent physiological conditions. Minimum, median, and maximum reported 

exchange fluxes in fmol cell-1 hour-1 are shown for each metabolite. Reaction lower bounds for exchange 

metabolites were set to the minimum reported value (leftmost point) as strict physiological constraints. For 

simulations of hepatocyte growth using the biomass objective, the maximum value for each metabolite was also 

applied as the upper bound to exchange reactions. Exchange fluxes for albumin were scaled to represent the 

secretion of an average amino acid from albumin because the albumin metabolite represents a full-length protein 

with 608 amino acids (in rats). (B) Experimentally reported flux measurements from A were also applied as 

relaxed physiological constraints for toxicogenomics biomarker predictions. Reaction lower bounds with positive 

values (forced production) to were set to zero and upper bounds with negative values (forced consumption) were 

set to positive infinity (106). (C) Species-specific constraints required distinct quantities of bile acids to be 

produced under strict physiological conditions in hepatocytes. Each point represents the lower bound applied to 

either iRno (red) or iHsa (blue) based on serum concentrations in rats and humans, respectively. Synthesis and 

secretion of α- and β-muricholic acids in both taurine-conjugated and unconjugated forms were only 

requirements for iRno. (D) Inorganic metabolites were allowed unconstrained consumption rates of -106 fmol 

cell-1 hour-1. (E) Cofactors and vitamins considered essential in humans were set to an uptake value of 1 fmol 

cell-1 hour-1 in rat and human networks.  
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Under strict physiological conditions, species-specific constraints were formulated for the export of bile salts by 

hepatocytes (Figure 4.2D). In addition to the unique ability of rats to synthesize muricholic acids, the relative 

abundances of bile acids differed significantly in a recent study that compared serum bile acid profiles of rats 

and humans78. Rat-specific and human-specific reactions were defined to produce an average bile salt measured 

for each organism, similar to species-specific reactions formulated for biomass synthesis. Under strict 

physiological conditions, a minimum flux of 0.4 fmol cell-1 hour-1 was required through a unified exchange reaction 

representing average bile salt production. 

Quantitatively validated growth rate predictions 
To interrogate the use of these reconstructions for making cell-specific predictions, we defined quantitative 

biomass compositions for rat and human hepatocytes. (Figure 4.1). Using flux balance analysis106 (FBA) with 

biomass production as the objective, iRno and iHsa predicted maximum growth rates of 0.048 hour -1 and 0.040 

hour -1, respectively, under strict physiological constraints (Figure 4.2). These predicted doubling times of 

approximately 16 hours were remarkably consistent with reported doubling times of 16.9 hours in rat107 and 17.8 

hours in human108 hepatocyte cell cultures. Because biomass compositions and boundary conditions were 

independently formulated from different resources, these quantitative biomass predictions served as validation 

for these models and their comprehensive representations of hepatocellular growth. Physiological constraints 

also enable off-the-shelf use of iRno and iHsa for integration of comparative genomics data and systems-level 

analyses of hepatocyte metabolism. In Chapter 6, we discuss toxicology applications of iRno and iHsa that 

implement the physiological constraints and biomass formulations described in this chapter. 

In Chapter 3, we discussed how iRno was uniquely capable of de novo vitamin C synthesis. We formulated a 

metabolic task to simulate growth in the absence of an external source of vitamin C and confirmed that vitamin 

C consumption was required for biomass synthesis in iHsa but not in iRno.  We further investigated the functional 

impact of vitamin C deficiency on cellular growth by constraining the uptake of the vitamin C exchange reaction 

to values between 1 fmol cell-1 hour-1 (physiological consumption rate96) or 0 (vitamin C deficiency). The 

maximum theoretical flux through the biomass reaction of each model, containing equimolar amounts of vitamin 

C per cell (0.06 fmol cell-1), was measured in silico using flux balance analysis (FBA)106. When the uptake rate 
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of vitamin C was decreased below 25% of normal physiological rates, the maximum possible growth rate was 

reduced exclusively in iHsa and not in iRno.  

Despite this distinction, limiting the uptake of vitamin C within an order of magnitude of the physiological uptake 

rate had no effect on growth, suggesting that vitamin C is not likely a growth rate-limiting factor under normal 

conditions in either organism. Because vitamin C was available in excess, we used flux variability analysis (FVA) 

to predict which metabolic exchange reactions were constrained the most while requiring 100% flux through the 

biomass reaction. As a result, we found that maximum biomass synthesis rates in both species were limited by 

essential amino acid availability rather than other vitamins or nutrients. Because species-specific amino acid 

ratios were incorporated into the biomass formulation, this result also explained minor differences in maximum 

growth rates between the species. This relatively simple exercise highlights the potential usefulness of a 

quantitatively accurate biomass formulation to generate hypotheses about rate-limiting substrates between 

species.  

Thermodynamically infeasible futile cycles contribute to unreasonable ATP yields 
As we mentioned in Chapter 2, iRno and iHsa were constructed as an expansion of the Human Metabolic 

Reaction 2.0 database19 (HMR2). An important advantage of iHsa (and iRno) is that one unit of glucose 

regenerates 25.6 units of ATP with an unlimited supply of oxygen and 2 units of ATP in the absence of oxygen. 

In HMR219 and other human GENREs16,17, one unit glucose yields a nearly infinite amount of ATP regeneration 

capacity due to thermodynamically infeasible loops. Below, we describe some of the improvements incorporated 

into iRno and iHsa that were necessary to overcome unrealistic ATP yields produced by previous human models.  

In Chapter 1, we demonstrated that Toycon1, a toy metabolic network consisting of 9 reactions, was capable of 

accurately capturing theoretical ATP yields. An important reaction in energy metabolism is ATP synthase, which 

is represented in Toycon1 with the reaction formula: adp + pi + 4 h[c]  atp + h2o + 4 h[m], which describes the 

regeneration of ATP from ADP driven by flux moving down the proton gradient between mitochondrial and 

cytosolic compartments. To provide an example of how simple mistakes can lead to catastrophically inaccurate 

predictions in a minimalistic representation of energy maintenance, we used Toycon1 to predict maximum ATP 

yields after adding the following two reactions: a reversible transport reaction representing the passive diffusion 

of lactate across the mitochondrial membrane (lactate[c]lactate[m]) and a reversible transport reaction 

representing the symport of lactate and a proton across the mitochondrial membrane (lactate[c] + h[c]  
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lactate[m] + h[m]). When adding these two reactions which are also present in the first human GENRE (Homo 

sapiens Recon 116), the sky’s the limit for ATP regeneration (i.e. maximum ATP production will infinitely scale 

with any arbitrarily large boundary conditions set by the user to represent infinity). The problem is caused by a 

violation of thermodynamics: enzymes in the electron transport chain (ETC) primarily shuttle protons across the 

mitochondrial membrane to maintain a pH gradient that drives ATP synthase. This process requires energy from 

electron carriers like NADH because it is thermodynamically unfavorable. Thus, allowing lactate to freely enter 

into the inner mitochondrial space and exit with an additional proton would not be thermodynamically feasible 

under normal physiological conditions. To resolve this issue that bypasses the need for oxidative phosphorylation 

in driving ATP synthase, lactate should only be allowed to exit mitochondria by diffusion (or with active transport) 

and should also require a proton for entry because facilitated cotransporters typically move metabolites down an 

electrochemical gradient, not up. Under extreme conditions, these transport reactions might be able to reverse 

direction, but realistic physiological approximations should always be assumed when generating a genome-scale 

network representing for off-the-shelf use by other researchers. Surprisingly, an earlier version of the BiGG 

database (www.bigg.ucsd.edu) included a comment for the reversible lactate transporter (D_LACtm) in Recon 1 

that mentioned it might contribute to free ATP regeneration. Although the comment is no longer available, the 

reaction has yet to be changed to irreversible.  

Updated human GENREs have since resolved this exact problem that enabled Recon 1 to generate ATP without 

a carbon-based energy or “fuel” source like glucose; however, we found that Recon 2 and HMR2 included other 

thermodynamically infeasible reactions to augment ATP yields by shuttling protons across the mitochondrial 

membrane. Unlike the example described above, other problematic reactions participated in futile cycles 

involving dozens of reactions across multiple compartments. To ` problematic reactions, we used flux variability 

analysis (FVA) and parsimonious flux balance analysis (pFBA). Despite knowing which reactions were required 

for unrealistic ATP production, identifying a solution was not trivial because simulation results included reactions 

that participated in ATP regeneration but were not necessarily problematic. Furthermore, multiple problems 

contributed independently to unrealistic ATP yields and not every problem was related mitochondrial oxidative 

phosphorylation. It was especially difficult to identify which transport reactions were problematic because proton 

movement could be concealed when an acidic metabolite was transported between compartments and then 

converted into its conjugate base, releasing the proton.  

http://www.bigg.ucsd.edu/
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To avoid introducing thermodynamically infeasible during the network reconciliation and manual curation process 

described in Chapter 3, we defined new tasks to ensure ATP production capabilities were consistent with known 

yields after updating iRno and iHsa. To avoid direct proton movement problems as we described above for 

lactate transporters, we defined a task to regenerate ATP from ADP without a carbon-based fuel source a task 

that was intended to fail. We also verified that excess oxygen and inorganic ions would not increase ATP yields 

above 50 given a unit of glucose, which we observed was possible with multiple human GENREs.  

Bulk reactions can contribute to mass balance violations 
We encountered an unexpected issue involving de novo synthesis of essential fatty acid by bulk reactions from 

HMR2, which we identified when designing and simulating metabolic tasks that synthesize biomass components. 

In addition to the quantitative task formulated for biomass as a whole, we simulated the synthesis of individual 

biomass components (Figure 4.1) given minimal nutrients and less than minimal nutrients. For example, we 

verified that protein synthesis was not possible without an external supply of essential amino acids and glucose. 

For membrane lipid synthesis, we utilized the existing lipid subsystem of reactions to generate averaged lipid 

metabolites that accounted for the relative proportions of saturated and unsaturated fatty acid chains. As a result, 

we found that one of the tasks that was supposed to fail lipid synthesis actually succeeded without the input of 

essential fatty acids. Using FVA, we found that a bulk lipid degradation reaction produced slightly different ratios 

of fatty acids than the bulk lipid synthesis reaction consumed, thus enabling a route for creating mass in the form 

of essential fatty acids at the cost of consuming nonessential fatty acids. Due to a minor accounting mistake in 

the relative ratios produced and degraded by these reactions from HMR2, iRno and iHsa were initially capable 

of synthesizing membrane lipids without external sources of essential fatty acids, which like amino acids, should 

have been required. We resolved the discrepancy between metabolic tasks and model predictions by removing 

the lipid degradation reaction because we were primarily interested in biomass synthesis. 

Mass balance is also important for metabolic networks because imbalanced reactions can participate in futile 

cycles that infinitely increase the availability of metabolite that acts as a fuel source for ATP regeneration. 

Although mass balance violations are commonly found in metabolic networks and usually addressed as updates 

are published, mass balance violations associated with bulk metabolites like those used in our new system of 

biomass reactions are a new possible limitation that should considered when formulating metabolic tasks. We 

did not expect that bulk synthesis and degradation reactions could accidentally enable de novo fatty acid 
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synthesis because from HMR2 had been one of the first GENREs to utilize multi-step bulk synthesis reactions. 

It is important to note that we only encountered this issue because we had assembled additional tasks related 

to the biomass formulation described in this chapter. Furthermore, without separating the biomass reaction into 

separate subcomponents (Figure 4.1), we would not have formulated these tasks in the first place, highlighting 

both a distinct advantage and a potential pitfall associated with highly complex biomass formulations.  

Outlook 
As a result of the efforts described in this chapter, we captured two quantitatively important functions of cellular 

metabolism: growth rates and ATP production yields. It is important to consider that healthy mammalian cells 

generally do not attempt to maximize these functions as biological objectives; however, cancer cells that 

proliferate uncontrollably likely operate near an optimal growth rate and metastatic cancer cells require additional 

energy for migration109. We implemented this comparative biomass framework to study toxicology in Chapter 6 

by generating treatment-specific networks of rat and human hepatocyte metabolism based on a gene expression 

algorithm that requires a biological objective. Instead of requiring optimal growth rates, we constrained rat and 

human subnetworks to perform basic hepatocyte functions that required energy maintenance and sub-optimal 

growth rates as described in literature. Overall, these improvements demonstrate the quantitative capabilities of 

iRno and iHsa and increase our confidence in their abilities to investigate other biological objectives under 

physiological constraints such as biomarker production which we describe in Chapter 7. 
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Chapter 5: Network-guided improvements to genome 
annotations 
Synopsis 
In this chapter, we describe computational methods for guiding the improvement of genome annotations using 

GENREs. Once constructed, a GENRE can be used to integrate data from heterogeneous sources and generate 

hypotheses for subsequent experimental validation. Constraint-based modeling techniques such as Flux 

Balance Analysis (FBA) can facilitate the identification of knowledge gaps within a metabolic network when 

computational predictions do not match experimental observations. Using topologically-based and biologically-

inspired metabolic network refinement, we can better characterize enzymatic functions present in an organism 

and link these functional annotations to genome sequences. At the end of this chapter, we provide examples of 

how we applied these techniques during the reconstruction, refinement, and reconciliation of rat and human 

GENREs described in previous chapters. 

Motivation to continually improve genome annotations 
A genome-scale network reconstruction (GENREs) serves as a platform for organizing a network of biochemical 

and transport functions in the context of an annotated genome. Complete assemblies of genome sequences are 

currently available for over 4000 organisms including at least 300 eukaryotic and 30 mammalian species110; 

however, curated GENREs have only been established for a fraction of these genomes. The ability to generate 

high quality GENREs for bacterial and eukaryotic organisms depends on the availability of high quality genome 

annotations. From over 2000 genomes that have been sequenced, around 40% of the protein products are not 

annotated to a specific function111. Over 5000 enzymatic functions have been described across all species, 

approximately one third have no known corresponding genes or proteins112,113. Bridging these gaps of knowledge 

between gene and function is important to fully utilize data available in the post-genomic era.  

Protein structure and function is often well conserved between organisms, so we can infer function between 

homologous genes or proteins across organisms114. This is useful for identifying potential functions of 

uncharacterized ORFs (see Figure 5.1), such as those in a newly sequenced genome. However, this approach 

can be limited because there may be multiple homologous sequences when comparing a query sequence 

against millions of sequences from other organisms, and in reality only one of the many homologous sequences 

may actually demonstrate the appropriate enzymatic activity. The error rate for function assigned by sequence 

similarity may be as high as 49% 115; thus, a more guided approach is necessary for assigning function to ORFs. 
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Figure 5.1 – Knowledge gaps between structural and functional annotations. (A) Multiple types of 

information can be annotated to the genome of an organism. An Open Reading Frame (ORF) describes a 

sequence within the genome that is transcribed from a gene into a transcript. A Coding DNA Sequence (CDS) 

describes the coding region of an ORF that is translated into a protein after the transcript is processed. An 

Enzyme Commission (EC) number describes the enzymatic activity of a protein. EC numbers is an example of 

a functional annotation and ORFs and CDSs are examples of structural annotations. (B) Structurally annotated 

proteins that have no known functional annotations are considered uncharacterized proteins. (C) Enzymatic 

functions that are known to occur in an organism but are not annotated to any genes are considered orphan 

reactions. 

 

Genome-scale metabolic reconstructions serve as a platform for integrating data from heterogeneous sources 

and generating hypotheses for further experimental validation. Metabolic networks are constructed from existing 

genome annotations and manually expanded from literature-based sources and biochemical information 

contained in publicly available databases116. Resulting models contain a comprehensive set of known 

biochemical reactions and their associated ORFs. Implementing a systems-level approach allows for the 

identification of potential gaps in knowledge based on discrepancies between model predictions and 

experimental data (e.g., gene essentiality screens) as well as topological features of the network (e.g., pathways 

resulting in dead-ends). With the assistance of semi-automated algorithms and manual inspection, we can fill in 

these knowledge gaps by modifying the network to include additional biochemical reactions that were previously 

missing, or by removing functions that were improperly added by previous annotators. By finding ORFs encoding 
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for enzymes orthologous to those that catalyze the same functions in other organisms, we can improve both the 

structural and functional annotation of the genome for an organism of interest, while also creating a higher quality 

metabolic network. 

Genome annotations can be categorized into two major types: structural annotations and functional annotations 

(Figure 5.1). Structural annotations describe the locations and sequences of genomic regions that encode an 

ORF for a transcribed gene or a CDS for a translated transcript. Functional annotations catalogue biological 

knowledge for a protein product such as catalytic activity, enzyme regulation, cofactor binding sites, and 

numerous other attributes represented by Gene Ontology (GO) terms117. Several computational techniques are 

available to structurally annotate ORFs directly for a newly sequenced organism118,119, but functional annotation 

can be more challenging to assign as the sequence of an ORF alone does not necessarily describe its biological 

function120. Even once a genome has been completely sequenced, determining the structure of ORFs can be 

difficult with complex initiation, termination and splicing rules, and imperfect gene-calling algorithms121. 

Additionally, only around 1% of protein sequences have experimentally-derived annotations122; thus, 

computational techniques are necessary for feasibly assigning functional annotations. 

Methods in this chapter are geared towards improving the annotation of organisms for which a genome-scale 

reconstruction is available. Automated methods are available to generate a draft GENRE based on an annotated 

genome123,124 as discussed in Chapter 2. In this chapter, we describe methods to: 

1. Predict missing and mis-annotated biochemical reactions for a given organism using metabolic network 

reconstructions. These include biologically-inspired refinements, which bridge the gap between model 

predictions and experimental data, as well as topologically-based algorithms that find and fill blocked 

pathways in a given network. These methods help improve the functional annotation of the genome for the 

organism of interest as well as improve the predictive ability of the metabolic model. 

2. Assign candidate ORFs to novel functions as well as to existing functions that lack ORFs (orphan reactions, 

see Figure 5.1). These relationships provide the link between functional and structural annotation, which are 

both important to a higher quality annotation and metabolic model. 

3. Use a systems approach to decide on which network modifications to include (and further validate) when 

posed with multiple gap filling solutions. 
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4. Perform experiments to verify existence of candidate ORFs. This will help strengthen our confidence in both 

the structural and functional annotation of the genome in the organism of interest. 

Survey of computational resources for network-driven annotation improvements 
The Enzyme Commission (EC) classification system is used to define enzymatic activities that can occur within 

different organisms, and an EC number characterizes in part the functional annotation for an enzyme (and 

correspondingly for the catalyzed reaction(s)). EC’s are classified according to the following hierarchical scheme: 

EC-1 (oxidoreductases), EC-2 (transferases), EC-3 (hydrolases), EC-4 (lyases), EC-5 (isomerases) and EC-6 

(ligases). There can be several sub-classes under these six categories. For example, the enzyme hexokinase, 

which is associated with an EC number of 2.7.1.1, belongs to the class on ‘transferases’ (enzymes that aid in 

the transfer of a functional moiety from one metabolite to another) and the subclass on ‘transferring phosphorous-

containing groups’. Other enzymes in the same subclass include glucokinase (2.7.1.2) and galactokinase 

(2.7.1.6). The ENZYME database (http://enzyme.expasy.org/) contains detailed information on EC numbers. 

BLAST (Basic Local Alignment Search Tool) calculates sequence similarity scores between sequences of amino 

acids or nucleic acids125. This bioinformatics tool enables quantitative, high-throughput comparisons between an 

individual sequence of interest (in FASTA format) and a reference database of sequences. BLAST can facilitate 

the identification of paralogs within a species as well as orthologs between species. Although variations of the 

BLAST algorithm have been developed for specific biological contexts, BLAST results typically contain a 

quantitative similarity score between sequence pairs known as an E-value114,126 (Expectation-value). A common 

application of a BLAST result is to assign EC numbers between genes that share high sequence similarity.  

BLAST implementations are available through web-interfaces at NCBI (http://blast.ncbi.nlm.nih.gov/), ExPASy 

(http://web.expasy.org/blast/), and UniProt (http://www.uniprot.org/).  

In this chapter, we describe two strategies that utilize BLAST to assign functional annotations to uncharacterized 

ORFs.  

 Forward BLAST. The first strategy, called forward BLAST, compares the sequence of an uncharacterized 

ORF against a database of ORFs with known functional annotations from other organisms. The forward 

BLAST strategy can be used to infer functional annotations from genes or proteins that are orthologous to 

the input sequence. In cases where multiple distinct functions are suggested by forward BLAST, protein 

annotations from closely related species should be prioritized. 

http://enzyme.expasy.org/
http://blast.ncbi.nlm.nih.gov/
http://web.expasy.org/blast/
http://www.uniprot.org/
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 Reverse BLAST. The second strategy, called reverse BLAST, identifies potential new metabolic reactions 

that can be added to fill in knowledge gaps within a metabolic network. Reverse BLAST compares the 

sequence of a functionally annotated ORF against genome sequences from an organism with a metabolic 

network. Because reverse BLAST starts with a known function instead of a structurally annotated sequence 

from an organism, this approach can be used to identify candidate ORFs that have not previously been 

annotated. Manually identify proteins in other organisms that share the same enzymatic function (EC 

number) from MetaCyc or similar database. Choose proteins from phylogenetically similar organisms first. 

Perform BLAST for each candidate protein against the whole genome of the modeled organism to identify 

similar sequences. Additional details on different BLAST techniques can be found in a previous study114. 

Results are limited to local orphans as they rely on enzymatic functions linked with ORFs in other organisms. 

Figure 5.2 – Gap filling solutions that can restore flux through dead-end metabolite or a blocked reaction. 

(A) Toy network diagram depicting two blocked reactions (BR) caused by root no-consumption (RNC) and root 

no-production (RNP) metabolites. (B) Different categories of reactions can be added to the network in order to 

restore flux through the RNC metabolite: (Category I) Added reversibility to an existing reaction, (Category II) 

Added intracellular reaction, (Category III) Added extracellular transport reaction, (Category IV, not shown) 

Added intracellular transport reaction. Note that in this case the Category II solution restores flux through both 

dead-end metabolites. 
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Reaction databases  
In the process of curating a GENRE, four categories of network modifications can be applied to the stoichiometric 

matrix (Figure 5.2B): modifying reversibility to an existing reaction in the network (Category I); adding or 

removing enzymatic or spontaneous reactions within a single compartment (Category II); adding or removing 

extracellular transport reactions and/or exchange reactions that enable a metabolite to be consumed or secreted 

(Category III); and adding or removing  an intracellular transport reaction between intracellular compartments 

(Category IV). Detailed explanations for classifying reactions into Categories I-III were described previously127. 

Category IV reactions were introduced in this study to distinguish transport reactions from exchange reactions 

because mammalian GENREs frequently include multiple intracellular compartments. 

Metabolic network often incorporate established biochemical relationships between reactions and metabolites 

from various publicly available databases and experimental literature sources. Below, we provide a list of some 

important publicly available biochemical databases that contain information on genome, enzymes, reactions 

and/or pathways. The list below is not intended to be comprehensive; rather, it provides a flavor for the kinds of 

publicly available resources that can be used in the genome-scale metabolic reconstruction and modeling 

process. 

 KEGG (Kyoto Encyclopedia of Genes and Genomes) database contains comprehensive data on known 

enzymatic reactions that occur across various organisms33,128,129. 

o Availability: http://www.genome.jp/kegg 

 ExPASy (Expert Protein Analysis System) contains comprehensive information on EC numbers and protein 

structure130,131. For more information, visit http://expasy.org/. 

 SEED allows for quickly generating automated draft metabolic networks for prokaryotic organisms of 

interest132. For more information, visit http://www.theseed.org. 

 MetaCyc contains comprehensive information on pathways and enzymes across many organisms133,134. For 

more information, visit http://metacyc.org/. 

 GeneDB is a pathogen genome database maintained by the Wellcome Trust Sanger Institute135. For more 

information, visit http://www.genedb.org/Homepage. 

http://www.genome.jp/kegg
http://expasy.org/
http://www.theseed.org/
http://metacyc.org/
http://www.genedb.org/Homepage
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 MetRxn allows queries of a comprehensive metabolite/reaction database and  comparisons of 

metabolites/reactions between KEGG, MetaCyc, several metabolic reconstructions, and more136. For more 

information, visit http://metrxn.che.psu.edu/. 

 UniProt is a comprehensive knowledgebase of annotated protein sequences across many organisms137. For 

more information, visit http://www.uniprot.org/. 

 Metabase: A wiki database of biological databases138. For more information, visit http://metadatabase.org. 

 Published GENREs: Metabolic networks are typically available as SBML files or in a Spreadsheet format139. 

Published GENRE can usually be found in the supplementary material of the original article or on a website 

hosted by the corresponding author (e.g. http://bme.virginia.edu/csbl/Downloads1.html). Additional 

repositories for GENREs include the BiGG database140,141 (http://bigg.ucsd.edu/), MetaCyc58 

(http://metacyc.org/), MEMOSys142, MetaNetX143 (http://metanetx.org/), and SEED132 (http://modelseed.org/). 

Constraint-based methods 
The Constraints Based Reconstruction and Analysis (COBRA) Toolbox144 

(https://github.com/opencobra/cobratoolbox) is a software package available for the MATLAB programming 

environment that includes several functions that can be useful for identifying and filling knowledge gaps in a 

GENRE. An alternative to the MATLAB version of the COBRA toolbox is COBRApy145 

(https://github.com/opencobra/cobrapy), a software package that implements similar functions in the Python 

programming environment. COBRA features such as writing Systems Biology Markup Language (SBML) 

formatted metabolic models139 require installation of the SBML Toolbox146 

(http://sbml.org/Software/SBMLToolbox).  

 Flux Balance Analysis (FBA) identifies a flux distribution through the reaction network that produces an 

optimal flux through the objective function. Availability: COBRA Toolbox 2.0 under optimizeCbModel() 

 Flux Variability Analysis (FVA). The COBRA function, fluxVariability, implements FVA and computes the 

ranges of possible fluxes for all reactions in a network while still maintaining a primary objective flux value 

such as optimal biomass production82,147. Using FVA, reactions produce minimum and maximum flux values 

of zero are considered blocked. 

 GapFind. The COBRA function, gapFind, identifies dead-end metabolites in a network including root no-

production and root no-consumption metabolites148 (Figure 5.2).  

http://metrxn.che.psu.edu/
http://www.uniprot.org/
http://metadatabase.org/
http://bme.virginia.edu/csbl/Downloads1.html
http://bigg.ucsd.edu/
http://metacyc.org/
http://metanetx.org/
http://modelseed.org/
https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobrapy
http://sbml.org/Software/SBMLToolbox
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 DetectDeadEnds. The COBRA function, detectDeadEnds, identifies dead-end metabolites that participate 

in only one reaction within the S-matrix. Supplying detectDeadEnds with a COBRA model will return a list of 

all metabolites that participate in only one reaction (optionally excluding extracellular metabolites)144. This 

method does not return all possible dead-end gaps, but it detects metabolites that participate in only one 

reaction: including reversible reactions (Category I solution of a dead-end), which GapFind will not detect 

because these are not technically dead-ends. It may be preferred to identify Category II solutions to 

incorporate the metabolite into metabolic pathways. 

 SMILEY. To restore activity to blocked reactions, the COBRA function, growthExpMatch, implements the 

SMILEY algorithm and predicts a minimum set of enzymatic or transport reactions for addition that will restore 

flux through a blocked reaction149. For each blocked reaction, set the objective function to the blocked 

reaction, and then execute growthExpMatch with a relevant reaction database such as KEGG. For 

unblocking reversible reactions, solutions that restore flux through a blocked reaction in one direction will not 

necessarily restore flux in the opposite direction. To generate solutions that unblock the reaction in both 

directions, separately set the objective function to minimize and maximize flux through the blocked reaction. 

For unblocking multiple reactions with one suggested set of reactions, set the objective to maximize flux 

through a set of reactions that are blocked. Although SMILEY cannot suggest reactions for removal, SMILEY 

can suggest Category I, II, III, and if not de-compartmentalized, Category IV reactions. SMILEY has been 

extensively used for gap filling purposes as previously reported127,150.  

The Pathway Tools software environment (http://biocyc.org/download.shtml) integrates genome, pathway, and 

regulatory data for analysis and visualization151,152. These functions often utilize data from MetaCyc and UniProt 

as a reaction database and can be used as an alternative to the COBRA toolbox: 

 MetaFlux. The MetaFlux algorithm utilizes multiple gap-filling methods to aid in developing metabolic models 

and defining a feasible biomass reaction153. This algorithm suggests a maximum subset of biomass 

metabolites that can be produced given a minimum set of network modifications in the form of 

added/removed reactions. This algorithm accommodates an initial biomass reaction that may include some 

metabolites that are unable to be produced. Network changes can be manually inspected for feasibility using 

visualization software that is integrated with the Pathway Tools platform. 

http://biocyc.org/download.shtml
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 PHFiller. The PHFiller (Pathway Hole Filler) algorithm finds genes for orphan reactions using BLAST and 

protein databases154. Execute PHFiller to identify proteins that catalyze the orphan reaction of interest. 

PHFiller returns lists of candidate ORFs from the organism’s sequenced genome that may catalyze each 

orphan reaction. This algorithm semi-automates performing Reverse BLAST using existing protein 

databases, and results are limited to local orphans as they rely on enzymatic functions linked with ORFs in 

other organisms. 

 PHFiller-GC. The PHFiller-GC (Pathway Hole Filler – Genome Context) algorithm extends the PHFiller 

algorithm to use a context-specific prediction of genes for orphan reactions based on shared pathways, 

shared operons between proteins, shared proteins in a complex, and regulatory interactions155. PHFiller-GC 

improves upon PHFiller by considering not only BLAST sequence similarities, but also similarity based on 

other associations such as shared protein complexes, shared operons, regulatory elements, and 

transcription factors. This allows the algorithm to explore more complex components of genome annotations 

to identify candidate sequences for global orphan reactions. 

Additional gap filling methods are available as stand-alone software tools: 

 GapFill. The GapFill algorithm suggests adding reactions from a reaction database to restore flux through 

dead-end reactions148. Supply GapFill with a reaction database, a list of all reactions from the network 

reconstruction, and root no-production/consumption metabolites. Only category I, II, and III suggestions will 

be returned. GapFill requires an irreversible GENRE which includes reactions in the forward direction. 

Reversible reactions are represented in an irreversible network by adding a new forward reaction that 

consumes/produces the same metabolites in the opposite direction and by constraining lower reaction 

bounds to at least 0. 

 GrowMatch. Using a reaction database, the GrowMatch algorithm suggests adding or removing reactions 

to reconcile differences between model predictions and gene essentiality screens and nutrient utilization 

assays156. GrowMatch also avoids the creation of new inconsistencies in other conditions. A modified version 

of GrowMatch is also implemented in Model SEED132.  

 OMNI. The OMNI (optimal metabolic network identification) method compares metabolic flux analysis (MFA) 

data and in silico predictions of flux distributions and suggests reactions to add/remove to better correlate 

predictions and experimental data157. Supply OMNI with a library of reactions from a reaction database such 
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as KEGG, a list of existing reactions that are allowed to be removed, or fluxomics data. OMNI suggestions 

include both added and removed reactions that can improve the consistency between fluxomics data and 

metabolic predictions. 

 BNICE. The BNICE algorithm suggests reactions that can consume or produce metabolites based on 

reaction rules from the EC classification system158. Providing BNICE with pairs of dead-end metabolites will 

suggest feasible biochemical reactions that link the two. Suggestions may include novel reactions that may 

not be characterized in other organisms. Preferably, only add novel reactions when a high quality network 

has a few gaps that cannot be filled by other methods. 

Figure 5.3 – A conceptual 

framework for iteratively updating 

metabolic networks and refining 

genome annotations. A traditional 

genome annotation workflow (blue) 

uses bioinformatics and 

experimental methods to assign new 

structural and functional annotations 

to previously unannotated 

sequences. Candidate functions can 

be inferred using forward BLAST by 

calculating sequence similarity 

between the uncharacterized ORF 

and functionally annotated ORFs 

across from other organisms. 

Metabolic network modeling provides an alternative computational method for assigning functional annotations 

to uncharacterized ORFs (red). Gap filling methods can be used to identify missing reactions in a metabolic 

network using existing reaction databases. Known sequences from any species that are functionally annotated 

to a candidate reaction can be compared via reverse BLAST to structurally annotated ORFs from the genome 

mapped to the metabolic network. Although forward and reverse BLAST apply similar bioinformatics algorithms, 

forward BLAST compares a single sequence of interest to potentially millions of annotated genes. In contrast, 

reverse BLAST compares functionally annotated sequences from one or more organisms to several potential 

sequences of interest in the original organism. By identifying knowledge gaps in metabolism networks, assigning 

candidate genes via reverse BLAST, and updating models and genomes with new genome annotations, this 

process can be performed iteratively as long as gaps exist in the updated network. 
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Iterative steps for refining metabolic networks and genome annotations  
Here, we describe iterative steps for improving genome annotations using metabolic network modeling. Unlike 

traditional approaches that identify genome annotations based on a sequence of unknown function, we 

implemented a systems approach to identify sequences of unknown function that can be functionally annotated 

to novel reactions suggested by metabolic network modeling predictions159.   This network-driven discovery 

process involves four major steps which are iteratively compatible with each other (Figure 5.3): 

1. Suggest modifications to the stoichiometric matrix by adding or removing reactions based on: 

a. Manual inspection of literature evidence 

i. Early-stage examination of central metabolism 

ii. Mid-stage multi-pathway refinement 

iii. Late-stage network validations 

b. Semi-automated analysis of network topology 

i. Gap filling based on dead-end metabolites 

ii. Gap filling based on blocked reactions 

c. Semi-automated analysis of experimental data 

d. Adding or removing reactions based on prediction/experimental discrepancies 

2. Identify candidate ORFs/CDSs that catalyze candidate reactions and existing orphan reactions 

3. Manually choose suggested network modifications at the systems-level 

4. Experimentally verify the presence and structure of candidate ORFs 

Overall, the methods outlined in this chapter can be used to identify knowledge gaps in metabolic networks. 

Throughout and after the process of reconstructing a metabolic network, these methods serve as guidelines for 

updating metabolic networks, identifying new knowledge gaps, fillings those knowledge gaps, and refining 

genome annotations. Because genome annotation refinements also lead to improvements of the metabolic 

network, applying semi-automated algorithms combined with manual inspection and experimental validation 
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define will ultimately lead to high-quality metabolic models for the systems biology community as well as 

contribute to improved genome annotations for an even larger research community. 

Biologically-inspired metabolic network refinement 
At all stages in the reconstruction process, it is important to evaluate the functionality of the network model so 

that any subsequent modifications consistently lead to a higher quality model. Any deficiencies in model 

functionality should be manually examined so as to identify enzymes/reactions to fill in these gaps in knowledge. 

1. Early-stage examination of central metabolism. While drafting a reconstruction, examine central metabolic 

pathways (e.g. glycolysis, TCA cycle and pentose phosphate pathway) with literature support for 

completeness. Visualize these pathways in biochemical reaction databases (see Subsection 2.2) such as 

KEGG. For example, to evaluate functionality of glycolysis in a newly reconstructed metabolic network, use 

FBA to optimize for pyruvate production via the pyruvate kinase reaction under glucose-only nutrient 

conditions. If zero flux is obtained for the objective, manually check for gaps or deficiencies in the pathway. 

2. Mid-stage multi-pathway refinement. At intermediate stages of model building, expand this process from 

individual pathways to include multiple pathways (such as amino acid and nucleotide metabolism). For 

example, use FBA to simulate the production of individual amino acids and nucleotides given a particular 

carbon source (e.g. glucose). It is important to utilize experimental literature evidence in this process (for 

example, not all organisms can synthesize all 20 amino acids de novo and may need to scavenge necessary 

amino acids from the environment). 

3. Late-stage network validations. In the later stages of the reconstruction process, ensure basic functionality 

of the model in the context of a biologically-inspired objective function such as biomass or ATP production. 

A semi-automated algorithm for establishing a feasible biomass is MetaFlux. 

Identification of knowledge gaps using network topology 
At any stage in the reconstruction process, there may be blocked reactions, which are reactions that cannot 

carry flux in a metabolic model, usually as a result of containing, being upstream (root no-consumption), or being 

downstream (root no-production) of a dead-end metabolite (see Figure 5.2). Unblocking these reactions can be 

performed at the metabolite level, aimed at restoring fluxes that utilize the dead-end metabolite, or at the reaction 

level, aimed at restoring flux through the blocked reaction. These two general methods may provide different 

gap filling solutions, though they share the same root causes. 
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For network-topology based methods in the COBRA toolbox, limit nutrient consumption to a small value (-1 

assuming that negative exchange fluxes represent nutrient uptake) and constrain default bounds of all other 

reactions to a large number such as 100000. Setting intracellular reactions to extremely large values, and 

opening all exchange reactions may improve the functionality of network topology-based methods144. More 

specifically, set the [lower bounds, upper bounds] of: forward-only reactions [0, 10000]; reverse-only reactions 

to [-10000, 0]; reversible reactions to [-10000, 10000]; and exchange reactions to [-1, 10000]. If an algorithm 

incorrectly identifies gaps, then increasing the magnitude of non-uptake bounds by 10, 100, or 1000 can fix some 

issues. 

At the metabolite level: restoring flux through dead-end metabolites  

1. (optional) De-compartmentalize the model into only intracellular and extracellular compartments (i.e. replace 

non-redundant reactions within sub-cellular compartments such as mitochondria, endoplasmic reticulum, or 

nucleus with cytosolic reactions). Dead-end metabolites may block additional reactions based on 

compartmentalization, and in one instance this was addressed by de-compartmentalizing the human 

metabolic model127. Substantially fewer reactions were blocked suggesting that this approach can be used 

when too many reactions are blocked. De-compartmentalization removes the possibility of addition of 

Category IV reactions. 

2. Identify dead-end metabolites using GapFind or DetectDeadEnds: 

3. Suggest reactions that include dead-end metabolites as products for root no-production cases or as 

substrates for root no-consumption cases. Semi-automated algorithms for identifying candidate reactions 

directly based on input metabolites include GapFill and BNICE. 

At the reaction level: restoring flux to blocked reactions 

1. Identify blocked reactions using FVA. Consider all reactions that have lower and upper flux ranges of 

approximately [0, 0] as blocked reactions. Specifying different media conditions for exchange reactions can 

be useful for identifying blocked reactions in specific contexts. Loops can be allowed or avoided when running 

FVA by setting the parameter, allowLoops, to 1 or 0, respectively; allowing loops will hide reactions that 

cannot carry flux unless a potentially thermodynamically infeasible loop is carrying flux, which may or not be 

relevant to the biology of the model. FVA calculates the full possible ranges of flux values for all reactions 
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while maintaining a set percentage (default: 100%) of maximal flux through an objective. If this percentage 

is set to zero, the objective function will not be important. For identifying blocked reactions in the context of 

simulating biomass, set the parameter, optPercentage, to a lower value such as 10%. In this case, 

maintaining 100% flux through the biomass reaction can often limit flux through alternative pathways. If all 

flux from a rate-limiting carbon source is allocated to biomass, then alternative reactions in non-optimal 

pathways that utilize carbon will result in flux ranges of [0, 0] flux, yielding unnecessarily blocked reactions. 

2. Suggest reactions that can be added to restore flux through each blocked reaction using SMILEY. In this 

case, solutions directly alleviate blocked reactions and may indirectly resolve dead-end metabolites.  

Gene essentiality screens, nutrient utilization assays, and fluxomics data suggest experimentally-

inspired model refinements 

Implementing FBA on metabolic network reconstructions provides the ability to predict growth yields for 

organisms under different substrate conditions and genetic perturbations160. Implementing FBA on the iAF1260 

metabolic reconstruction of E. coli yielded an accuracy of 91% for gene essentiality predictions as compared to 

experimental observations 161.  

Adding (or removing) reactions to reconcile predictions with experimental data: 

1. Define a biologically relevant objective function for the metabolic model 124,162. Consider a biomass function 

of nucleic acids, amino acids, lipids, and energy maintenance when comparing predictions to growth assays. 

Some experimental screens measure secretion of metabolites or other phenotypic properties, so adjust the 

objective of the metabolic model accordingly. 

2. Define nutrient conditions relevant to a biological setting. Consider carbon, nitrogen, phosphorus, and sulfur 

sources as well as presence of oxygen (See Ref. 150 for an example of establishing a minimal media relevant 

to biological conditions).  

3. Manipulate the model to emulate any experimental perturbations. For example, remove relevant reactions 

from a COBRA model using removeRxns or deleteModelGenes for essentiality screens. 



86 
 

4. (optional) Ensure feasibility of the biomass function for at least one condition manually by FBA. Using 

algorithms in this section with an objective that requires a large number of additional reactions is usually 

neither computationally feasible nor biologically relevant. 

5. Identify knowledge gaps by comparing experimental data to model data. Perform FBA for each condition and 

compare output to observed result (See Table 5.1). Possible discrepancies occur when:  

a. Model predicts growth (or other relevant output) when no growth is experimentally observed; as a 

result, remove reactions from network 

b. Model predicts no growth (or other relevant output) when growth is experimentally observed; as a 

result, add reactions to network 

6. Suggest reactions to add (or remove) using one or more of the following semi-automated algorithms: 

SMILEY, GrowMatch, or OMNI. 

Proceed to identifying candidate ORFs for these reactions and narrow down choices of network modifications to 

experimentally validate. 

Table 5.1 – Problem-driven methods to identify and reconcile knowledge gaps in metabolic models 

Type of knowledge gap Methods to identify  
knowledge gaps 

Methods to resolve 
knowledge gaps 

Type of network 
modification 

dead-end metabolites 
cannot be consumed or 
produced 

GapFind 
DetectDeadEnds 

GapFill 
BNICE 

add new reactions; 
category II 
preferred 

blocked reactions cannot 
carry flux due to dead-end 
metabolites 

FVA 
Flux Sampling 

SMILEY add new reactions; 
category II 
preferred 

model predictions are 
inconsistent with 
experimental knowledge 
(e.g. fluxomics data, gene 
essentiality or nutrient 
utilization assays) 

FBA predicts no 
growth when growth 
is observed 

SMILEY 
GrowMatch 
OMNI 

add new reactions; 
category II 
preferred 

FBA predicts growth 
when growth is not 
observed 

GrowMatch 
OMNI 

remove existing 
reactions; 
category I or III 
preferred 

orphan reactions have no 
known GPR relationships 
and are not spontaneous 

findOrphanRxns Reverse BLAST 
PHFiller 
PHFiller-GC 

assign ORF to  
orphan reaction 
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Annotating candidate ORFs for orphan reactions 
Orphan Reactions are enzymatic reactions that have no assigned ORFs or proteins that catalyze this reaction 

(Figure 5.1). Disconnect between structural annotation and functional annotation occurs either in the scope of 

an individual organism (local orphan) or across all organisms (global orphan). For local orphan reactions, utilizing 

BLAST and BLAST-related algorithms are useful for identifying potential ORFs, but global orphan reactions have 

no known enzymes which we can compare sequence similarity. In a metabolic model, an orphan reaction has 

no relationship defined in the GPR, but the stoichiometry is defined in the S-matrix. The following steps describe 

the process of annotating candidate ORFs to newly added orphan reactions as well as orphan reactions already 

included in a GENRE. 

1. After adding candidate reactions to a COBRA model, use findOrphanRxns to locate all orphan reactions. 

2. Identify whether each reaction is a local orphan reaction or a global orphan reaction. Query a reaction 

database such as UniProt, KEGG, or MetaCyc to see a list of annotated gene or protein sequences across 

all organisms. Reactions annotated to genes or sequences in other species are considered local orphan 

reactions. 

3. Use the following algorithms to identify candidate ORFs that may encode for enzymes that catalyze an 

orphan reaction of interest. Reverse BLAST, PHFiller, or PHFiller-GC.  

Choosing reactions to experimentally validate 

Before proceeding to experimental methods for verifying candidate ORFs and validating their function, efforts 

should be made to manually curate the metabolic network. The algorithms described in this chapter are defined 

as semi-automated because manual inspection is essential to ensuring that only biologically-relevant and 

plausible reactions are added or removed from the metabolic network. Using all gap filling methods described in 

this chapter would yield an exorbitant number of suggested network modifications, so this section outlines 

general considerations for selecting reactions to subsequently validate. 

Use a systems approach to add or remove reactions: consider simpler solutions that resolve the most knowledge 

gaps with the fewest network changes before addressing each problem on its own. Instead of adding all reactions 

from these methods to the model at once, select only a few solutions and iterate through the model and rerun 
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gap-filling techniques. This iterative, systems approach to gap filling will ensure higher quality models and better 

genome annotations. 

Considerations for adding reactions based on suggestions from semi-automated algorithms:  

 When multiple solutions are available for the various gap filling conditions, choose small subsets of reactions 

that resolve model predictions with the most experimental conditions.  

 Perform several iterations of each algorithm to produce a comprehensive set of possible reactions. When 

solutions are limited, try other databases where available.  

 Choose reactions that have candidate ORFs when possible over those that will remain local orphan 

reactions. 

 Examine all solutions for biological feasibility. Take into consideration literature suggestions. 

 Prioritize adding Category II reactions when possible (See Table 1). 

 Category I and III reactions are simplified solutions (e.g. exporting a root no-consumption metabolite out of 

the cell to unblock a reaction). Add category I reactions only when literature supports the reversibility of an 

enzymatic reaction, or a separate distinct enzyme can catalyze the opposite reaction. Add category III 

reactions only when literature supports the concept that a metabolite is excreted and/or a transporter or 

relevant channel has been characterized. 

 Calculate feasible ranges of ΔG (free energy) for each reaction in the organism of interest and exclude 

thermodynamically infeasible reactions. 

 Be cautious of creating thermodynamically infeasible loops when adding reactions. For example, the H+ 

gradient across the mitochondrial membrane fuels ATP regeneration from ADP through ATP synthase. The 

electron transport chain maintains this gradient by utilizing energy generated from other metabolic processes  

in order to pump H+ out of the mitochondrion, but additional reactions in a metabolic model may have 

contribute to this process. In a published reconstruction of human metabolism16, a reversible mitochondrial 

transporter allows symport of lactate and H+ ions, while a separate reaction allows lactate to freely diffuse 

between mitochondria and the cytosol. These two reactions effectively serve as a thermodynamically 
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infeasible alternative to the electron transport chain, fueling infinite ATP production through ATP synthase. 

While this loop may have been created to unblock a reaction involving lactate, it inadvertently reduces the 

quality of the model with respect to processes that involve ATP regeneration. 

Considerations for removing reactions based on suggestions from semi-automated algorithms:  

 Some metabolic models have confidence scores associated with annotated GPR relationships, such as 

those in the BiGG database141. Choose to remove reactions with low confidence (annotated based on inferred 

function made only by sequence homology) over those with high confidence (supported with biochemical 

and literature evidence). 

 Be cautious in removing reactions permanently. Enzymatic function may be possible at the genome-scale 

under the right conditions, but enzyme expression or function may be dependent on specific environmental, 

signaling, regulatory, or time-dependent factors that prevent the organism from adapting to a particular 

growth condition. 

 Not all reactions need to be unblocked. Evolutionary trends may have caused a loss of a key metabolic 

enzyme in a pathway, leaving the other members structurally and functionally intact at the molecular level, 

but rendered loss in functionally in the larger scope of the metabolic network. These are called biological 

gaps instead of knowledge gaps 159. Thus, be cautious and consider adding reactions only when justified in 

the scope of biology (See Subsection 3.6). 

 Prioritize removing Category I and III reactions over Category II reactions unless literature evidence strongly 

supports lack of a transport or reversible reaction. 

Structural annotation validation for candidate ORFs 
The process of adding new reactions and adopting orphan reactions (and consequently incorporating new ORFs 

into the model) yields an opportunity to structurally annotate candidate ORFs through experimental validation. 

For each candidate transcript identified in this workflow, we can experimentally verify the presence and sequence 

of the ORF with the following methods: 
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1. Verify the presence of candidate ORFs using RT-PCR (reverse transcription polymerase chain reaction). 

Forward and reverse primers for 5’ and 3’ ends of transcript should be based on the known sequence of a 

candidate ORF. 

2. If only a partial sequence of an ORF is available or if the previous step failed due to errors in termini, perform 

RACE (rapid amplification of cDNA ends) to define the transcript boundaries. Primers should be based on 

inner-regions of candidate ORF. Upon identification of transcript boundaries, repeat step 1 with new primers 

3. Clone ORF vector into E. coli. The amplicons generated from RT-PCR can be cloned using a Gateway donor 

vector and transfected into E. coli. 

4. Sequence ORF amplicons using either high-throughput Sanger sequencing for 5’ and 3’ end verification or 

using a Roche 454FLX Titanium sequencing system. Successful cloning and matching of the sequence from 

a given ORF to its predicted gene would experimentally validate the presence of the hypothesized transcript. 

Additional details related to these methods80 and applications of this experimental approach to verify candidate 

transcripts of the alga Chlamydomonas reinhardtii123,163 have been described in recent literature. 

 

Figure 5.4 – Orphan reaction identified in rats led to updated annotation for Cyp3a18. When curating iRno, 

we found an experimental study demonstrating the ability of rats to perform 6-beta hydroxylation of lithocholic 

acid (EC 1.14.13.94) and 6-beta hydroxylation chenodeoxycholic acid (no EC number found), which was not 

assigned to any rat sequences. Based on knowledge that the golden hamster gene Cyp3a10 (green) catalyzes 

reactions, we performed a reverse BLAST search of the Cyp3a10 sequence against the rat genome, providing 

Cyp3a18 as the top candidate for this function. In contrast, the top 3 candidates from other organisms of a 

forward BLAST included 3 mouse genes (purple) before Cyp3a10 that would likely lead to the conclusion that 

Cyp3a18 was an unspecified monooxygenase (EC 1.14.14.1). 
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Updated functional annotations for Cyp3a18 and Akr1c14 
In Chapter 2, we converted an initial human GENRE into a draft of iRno by inferring functional annotations 

across orthologous genes. Ideally, this approach can be applied to other organisms based on existing GENREs 

for evolutionarily related species; however, extensive manual curation was necessary to fill in several knowledge 

gaps despite the availability of high quality annotations for rat and human genomes. Organisms with lower quality 

genome annotations will likely require significant manual curation as experienced by authors of the original 

mouse GENRE53. Below, we highlight two examples of important knowledge gaps that were identified during the 

reconstruction, curation, and reconciliation processes described in previous chapters.  

While curating the bile acid synthesis pathway, we discovered that the critical enzymatic step involved in the 

production of rodent-specific bile acids was not annotated to any rat or mouse genes (Figure 5.4). A previous 

study hypothesized that an unknown cytochrome P450 family 3 member could produce β-muricholic acid and 

murideoxycholic acid via 6-beta hydroxylation of chenodeoxycholic acid and lithocholic acid, respectively164; 

however, without a specific genome annotation assignment this reaction has remained an orphan for nearly two 

decades. Using Basic Local Alignment Search Tool (BLAST) (http://www.uniprot.org/blast/), we compared the 

Golden Hamster (Mesocricetus auratus) gene, Cyp3a10 (UniProt ID: Q64148), which was reported to perform 

6-beta hydroxylation of lithocholic acid165 (EC 1.14.13.94), to rat genes. We identified Cyp3a18 as the best 

candidate with the highest sequence identity to Cyp3a10 and with protein-level evidence of expression in rat 

hepatocytes166. Additionally, Cyp3a18 had not yet been isolated167 until after original attempts to annotate an 

enzyme to this orphan reaction164. Furthermore, Cyp3a18 was the only potential match with no known human 

orthologs, consistent with the absence of this function in humans78. In contrast, a traditional BLAST comparison 

of Cyp3a18 against other mammalian genomes resulted in three mouse genes with higher sequence identity but 

different functional annotations compared to Cyp3a10 (Figure 5.4), highlighting how reconciling metabolic 

network reconstructions can guide the improvement of genome annotations80. Although we have not 

experimentally validated this suggested reannotation, we have provided strong computational evidence and have 

consulted with the Rat Genome Database30 to annotate 6-beta hydroxylation of chenodeoxycholic and lithocholic 

acids as enzymatic functions for Cyp3a18 in rats (Figure 5.5). These annotations are also likely appropriate for 

Cyp3a25 in mice based on high sequence homology with Cyp3a18 (Figure 5.4). 

http://www.uniprot.org/blast/
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Prior to manual curation of iRno and iHsa, the automated draft of iRno originally failed to complete 3 human 

metabolic tasks related to bile acid synthesis that have been described as functional in rats78. We identified that 

reactions catalyzed by 3α-hydroxysteroid dehydrogenase (EC 1.1.1.50) were blocked in iRno and not in iHsa 

because none of the 3 human genes assigned to this function were annotated to any rat orthologs. We searched 

literature for evidence of the presence or absence of this function in rats and found a comparative study66 

between rat and human enzymes experimentally verifying that not only did the rat enzyme, Akr1c14, have this 

function, but that it had a higher specificity than the 3 human enzymes examined. Assigning the rat gene Akr1c14 

to 3α-hydroxysteroid dehydrogenase (EC 1.1.1.50) reactions was sufficient to resolve all 3 inconsistent metabolic 

task predictions between iRno and iHsa66. 

Figure 5.5 – Chemical structures of rodent-specific bile acids and precursor metabolites. Cyp3a18 likely 

catalyzed 6-beta hydroxylation of both lithocholate and chenodeoxycholate based on similar structural properties 

of each substrate. We assumed that conversion of alpha-muricholic acid into beta-muricholic acid was likely 

spontaneous (abbreviated as spont.) or performed by the Cyp3a18 enzyme because beta-muricholic acids are 

more highly abundant than alpha-muricholic acids102. This multi-step process requires a 7a-dehydroxylase (EC: 

1.1.1.159) in iRno but is annotated as an orphan because we were uncertain about whether this reaction should 

or should not also be functional in iHsa. Red circles indicate rodent-specific hydroxylation sites. Purple circles 

indicate sites of 7-alpha hydroxylation. Chemical structures were obtained from KEGG and include KEGG 

compound identifiers34. 
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Missing functional annotation for Akr1c14 
Interestingly, these examples highlight two distinct types of knowledge gaps that can lead to genome annotation 

refinements. For Cyp3a18, the knowledge gap likely existed because researchers did not have the entirety of 

the rat genome40 available despite their accurate speculations164 that the rat enzyme was likely a family 3 

member of the Cytochrome P450 class of enzymes. For Akr1c14, the knowledge gap was not due to a lack of 

experimental knowledge but due to missing annotations across all 5 orthology databases that we used to 

generate the initial draft rat network in Chapter 2. We expected to find more knowledge gaps involving orphan 

reactions like Cyp3a18 that would contribute to more differences between rats and human; however, we 

encountered several knowledge gaps due to missing annotations like Akr1c14. Because orthology between 

Akr1c14 and AKR1C4 had not previously been annotated in any of the 5 orthology databases, we manually 

investigated all reactions that were annotated as human-specific after automated reconstruction of iRno to 

resolve differences attributed to missing orthology annotations. As a result of the reconciliation process described 

in Chapter 3, curated rat and human networks were even more similar than we anticipated because nearly all 

of the human-specific reactions in the draft rat network were resolved with experimental evidence despite a lack 

of orthology annotations. 

Outlook 
Metabolic modeling can be used to improve genome annotation by filling in network gaps and linking biological 

functions to gene and protein sequences. Throughout this process we want to focus on using modeling as a 

semi-automated tool for generating hypotheses and using manual inspection, biological reasoning, and 

experimental validation to revise both functional and structural annotations. Iterating through these computational 

and experimental steps can facilitate the curation of a genome-scale network reconstruction that is also built on 

the foundation of high quality genome annotations. The potential applications of the methods described in this 

chapter will improve as genome annotations for other organisms become more accurate and complete, providing 

the opportunity to guide and accelerate annotation efforts across bacterial and mammalian genomes. 
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Chapter 6: Comparative toxicogenomics analyses 
Synopsis 
The laboratory rat has been used as a surrogate to study human biology for more than a century. Rats are often 

used as a surrogate model for understanding human hepatotoxicity; consequently, it is critically important to 

understand species-specific responses to toxic compounds in order to efficiently translate preclinical studies. In 

previous chapters, we described the creation of the first genome-scale network reconstruction of rat metabolism 

(iRno) and a substantially updated human metabolic network reconstruction (iHsa). By resolving known 

differences between rat and human metabolism in Chapter 3, these reconciled metabolic networks can generate 

predictions that are suitable for comparative analyses. To investigate systems-level differences between rats 

and humans, we simulated the toxicological effects of 70 compounds on rat and human hepatocytes using high-

throughput gene expression data from a large-scale toxicogenomics study. Comparative analyses revealed that 

treatment-induced changes were inconsistent within bile acid and glutathione metabolism and generally 

consistent within amino acid and central carbon metabolism. Additionally, negatively correlated predictions within 

fatty acid metabolism were directly associated with the known mechanisms of toxicity for three hepatotoxic 

compounds. We also demonstrated how metabolic networks can serve as powerful computational platforms for 

contextualizing experimental data by highlighting important differences between model predictions and gene 

expression changes alone. Overall, we anticipate that the predictive framework described in this chapter will 

provide mechanistic insights into the consistency of rat and human biology for clinical and basic science 

applications. 

Understanding pharmacodynamics with transcriptomics profiling 
High-throughput measurements of gene expression have been extensively used to study the physiological 

response of healthy cells to perturbations. Within the field of toxicology, these toxicogenomics experiments 

provide a snapshot into molecular changes that correlate with the development of toxicity for a pharmaceutical 

drug. By understanding the pharmacodynamics of a drug, researchers can identify potential biomarkers of 

toxicity or develop counteractive measures that could reduce toxicity. In this chapter, we developed a novel 

comparative toxicogenomics strategy to integrate high-throughput measurements of gene expression from rat 

and human hepatocytes into metabolic networks to better understand potential species-specific differences 

within the context of pharmacodynamics. 
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Survey of toxicogenomics resources 
Two large-scale toxicogenomics databases containing thousands of high-throughput gene expression profiles 

have been made publically available over the past decade: the Open Toxicogenomics Project-Genomics 

Assisted Toxicity Evaluation system (Open TG-GATEs)44,168 which was sponsored by the Japanese 

Toxicogenomics Project (http://toxico.nibiohn.go.jp) and DrugMatrix (https://ntp.niehs.nih.gov/drugmatrix) which 

was acquired by National Toxicology Program. Both databases include samples of primary rat hepatocytes, rat 

liver tissue, and rat kidney tissue exposed to pharmaceutical compounds and environmental toxicants at various 

doses for several hours up to multiple days. DrugMatrix includes gene expression data for a total of 638 

compounds and also measures heart and thigh tissue expression for a subset of these compounds. The Open 

TG-GATEs includes gene expression data for a total of 130 compounds and also measures gene expression in 

primary human hepatocytes. To showcase the toxicogenomics applications of metabolic network modeling, we 

selected Open TG-GATEs because it provided an excellent resource for comparative toxicogenomics analyses. 

In future studies, we anticipate that more comprehensive systems toxicogenomics analyses could be performed 

by integrating rat expression data from the DrugMatrix database into iRno. 

Survey of gene expression integration methods for metabolic networks 
Metabolic networks serve as a platform for integrating high-throughput omics data. Several algorithms have been 

developed to constrain metabolic networks based on gene expression63; however, a systematic comparison in 

the predictive ability across several gene expression integration methods came to the conclusion that the 

appropriateness of each method depended on the biological question being asked64. In this chapter, our goal 

was to investigate whether physiological changes in response to pharmaceutical compounds and environmental 

toxicants were consistent between rat and human hepatocytes. When surveying various methods that were 

available for integrating gene expression data into rat and human metabolic networks, we found that most 

methods integrated absolute gene expression while we were interested in integrating relative gene expression. 

Implementing a method that integrates relative changes in expression was more suitable for comparative 

toxicogenomics analyses because we would assume that the baseline metabolic function of rat and human 

hepatocytes were roughly similar; however, differences in the metabolic response to a specific perturbation could 

be more pronounced between rat and human hepatocytes. 

For the analyses described in this chapter, we utilized a method called Metabolic Adjustment by Differential 

Expression (MADE) that is available within the Toolbox for Integrating Genome-scale metabolism, Expression, 

http://toxico.nibiohn.go.jp/
https://ntp.niehs.nih.gov/drugmatrix
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and Regulation (TIGER) (www.github.com/pauljensen/tiger)48,169. This method was chosen because it was 

designed to integrate differential expression rather than absolute expression. Similar to other methods, MADE 

attempts to disable metabolic genes with relatively low expression values. Unlike most available gene expression 

integration methods, expression is considered low when p-values are significantly different between two 

conditions. For a typical toxicogenomics study, genes that were downregulated or upregulated would turned off 

in the treatment condition and control condition, respectively.  

An important feature of MADE is the ability to specify a minimum metabolic requirement through an objective 

function. In this chapter, we utilize the biomass function defined in Chapter 4 to ensure that treatment and control 

models remain functional to a reasonable degree after integrating gene expression changes; however, in some 

rare cases, we found that the models returned by MADE were not actually function. This technical issue remains 

unsolved but may be caused by inappropriate rounding errors introduced during the process of solving the mixed-

integer linear programming problem defined by MADE. To overcome this technical hurdle, we developed a 

straightforward workflow to identifying potential genes that were accidentally turned off by the MADE algorithm. 

First, the entire list of deleted genes suggested by MADE should be deleted using the original COBRA model to 

verify that the metabolic objective does not meet the pre-determined requirement using flux balance analysis 

(FBA). Second, iterate through the deleted list and select one gene that will not be deleted and perform FBA 

after deleting all of the other genes in the list. Ideally, at least one gene will restore flux to the metabolic objective 

when it was not deleted providing a subset of the deleted gene list that satisfies the intended requirements of 

the MADE algorithm. In cases where multiple genes restore the objective flux, either the gene with the least 

significant p-value for differential expression should be chosen based on the formulation of the MADE algorithm. 

Alternatively, if more than one model generated by MADE was negatively impacted by this technical issue, the 

fewest genes that fix the most models should be applied as a parsimonious solution. Using the latter approach, 

we found that un-deleting 3 genes was sufficient to restore biomass synthesis in 9 models that could not produce 

biomass after running MADE.  

We reduced the number of non-functional models initially generated by MADE to 9 out of 280 down from a much 

larger number by specifying optional parameters when using MADE. ‘round_states’ was set to false because 

very small non-integer values were rounded down to zero resulting in deleted genes that should not be deleted. 

‘set_IntFeasTol’ was set to 1e-12 to ensure that all small flux values that may be important are not interpreted 

http://www.github.com/pauljensen/tiger
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as zero. In general, a higher incidence of non-functional models generated by MADE are possible when using 

higher values for the ‘p_thresh’ parameter which encourages MADE to turn off more genes. Additionally, a higher 

value for the ‘obj_frac’ parameter was also associated with increased incidence non-functional models when 

running MADE because more gene-associated reactions were needed to maintain stricter biomass 

requirements. Despite these caveats, MADE remains one of the best methods available for integrating differential 

gene expression and these recommendations may be helpful when using similar algorithms that implement 

mixed-integer linear programming problems.  

Preprocessing gene expression microarrays from rat and human hepatocytes 
To explore the effects of exposure to pharmaceutical compounds and environmental toxicants on normal 

metabolic functions, high-throughput gene expression measurements in rat and human hepatocytes were 

obtained from the Open TG-GATEs database and analyzed within the computational frameworks of iRno and 

iHsa. Gene expression profiles from this large-scale toxicogenomics database were used to analyze reaction-

level changes in response to individual pharmaceutical compounds or environmental toxicants. Raw microarray 

data of rat and human hepatocytes treated with 119 different compounds were available were downloaded from 

ArrayExpress (E-MTAB-797 for rat hepatocytes; E-MTAB-798 for human hepatocytes)170 and pre-processed 

using the oligo package171 in the R/Bioconductor programming environment172,173. 

Calculating gene expression changes between treatment and control conditions 
Expression changes in response to each dose at the 24-hour time point were evaluated independently for each 

compound and organism using the limma package174. Genes with a false discovery rate (FDR)-corrected q-value 

less than 0.1 were considered significantly differentially expressed. For compounds tested at multiple doses, the 

dose resulting in the largest number of differentially expressed genes was chosen for toxicogenomics analyses 

independently for each compound and each organism. Expression changes evaluated in response to 70 

individual compounds mapped to 1945 and 2225 metabolic genes in iRno and iHsa, respectively. Of the 119 

compounds with data available for both rat and human hepatocytes, 70 were selected for model integration that 

significantly altered at least 15 human and 15 rat metabolic genes. 

Integrating gene expression changes using MADE 
Context-specific models of rat and human hepatocytes were generated independently for each compound in 

each organism using the MADE algorithm. For each set of expression fold changes and FDR-adjusted q-values, 

MADE produced a control-specific subnetwork and a treatment-specific subnetwork by assigning binary gene-
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states consistent with downregulation (disabled in treatment; enabled in control) and upregulation (enabled in 

treatment; disabled in control) observations across 1945 rat genes or 2225 human genes (Figure 6.1A-B). Each 

condition-specific model generated by MADE was also required to maintain a minimum growth rate of one 

doubling per week using the hepatocyte biomass reaction as the objective under physiological constraints (see 

Chapter 4 for detailed descriptions of biomass formulations and physiological conditions for hepatocytes). 

By integrating gene expression changes into iRno and iHsa using MADE, we generated binary gene-states for 

140 treatment and 140 control models (Figure 6.1B). Each condition-specific model generated was a subset of 

iRno or iHsa and was capable of maintaining a biomass synthesis rate of one doubling per week under 

physiological conditions. The proportion of gene-associated reactions altered in each network correlated with 

the proportion of differentially expressed metabolic genes (Pearson’s r = 0.86 for iRno and 0.91 iHsa; p-value = 

2.2e-16 for iRno and iHsa) (Figure 6.2). As a result of gene expression integration, gene-level observations were 

transformed into reaction-level predictions that were directly comparable between iRno and iHsa, unlike gene 

expression changes which are difficult to analyze across species. Additionally, predicted reaction-level changes 

between treatment and control conditions could be interpreted analogously to upregulated and downregulated 

expression changes. 

Analyzing condition-specific subnetworks generated by MADE 
Metabolic changes in response to each compound were simulated at the reaction-level using flux variability 

analysis (FVA). Binary gene-states determined by MADE were applied to each condition-specific model of iRno 

and iHsa using the sybil package175 in the R/Bioconductor programming environment172,173. Using FVA, minimum 

and maximum feasible flux values were calculated for each reaction in each condition-specific model while 

maintaining a growth rate consistent with one doubling per week under physiological conditions. For each 

reaction in each condition-specific model, one of three reaction-states was assigned: disabled, enabled, or 

required. Reactions with a minimum flux greater than zero or a maximum flux less than zero were classified as 

required. Enabled reactions were capable of carrying non-zero fluxes in one or both directions but were not 

essential for growth. Disabled reaction-states were assigned to reactions incapable of carrying non-zero flux. 

Flux values were rounded to 6 decimal places prior to classifying reaction-states to minimize rounding errors 

produced during FVA. 
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Figure 6.1 - Reaction-state values were calculated across all reactions in iRno and iHsa based on gene 

expression data from the Japanese Toxicogenomics Database’s Open Toxicogenomics Project-

Genomics Assisted Toxicity Evaluation System (Open TG-GATEs). (A) Gene expression changes in 

response to 70 compounds were evaluated in hepatocytes across 1945 rat and 2234 human metabolic genes. 

Heatmap intensities represent rat and human expression values for a subset of rat and human genes that were 

significantly differentially expressed between acetaminophen-treated and control-treated hepatocyte samples. 

(B) Gene expression log2 fold changes and FDR-adjusted q-values for 70 compounds were integrated into iRno 

and iHsa using the MADE algorithm. For each set of differentially expressed genes, treatment-specific and 

control-specific subnetworks were generated for iRno or iHsa that captured significant changes in expression by 

deleting genes in models with decreased expression relative to the other condition.  It is important to note that 

not all differentially expressed genes were translated into differences in binary gene-states between treatment 

and control models because each subnetwork generated by MADE must also be capable of producing 

hepatocyte growth. (C) Flux variability analysis (FVA) was used to assess to the functional impact of gene 

expression integration for all 280 models generated in B. Reaction-states were calculated and classified as 

required (non-zero flux necessary for hepatocyte growth under physiological constraints), enabled (can carry 

non-zero or zero flux), or disabled (cannot carry non-zero flux) for 2802 biochemical reactions across all 

conditions. For each compound in each organism, reaction-states were transformed into reaction-state changes 

by subtracting the reaction-state value of the control model from the reaction-state value of treatment model. (D) 

Gene expression changes in response to acetaminophen, an over-the-counter drug with well-documented 

hepatotoxicity in humans and rats, were not correlated when comparing orthologous pairs of rat and human 

genes. Discretized values representing the direction (-1, 0, 1) of the log2 fold change between acetaminophen- 

and control-treated hepatocytes was multiplied by 0 for insignificant changes (FDR > 0.1) and multiplied by 2 for 

genes with absolute log2 fold change greater than 1. Orthologous gene expression changes were discretized to 

maximize comparability with reaction-state changes where values range from -2 to 2. (E) Reaction-state changes 

predicted in response to acetaminophen exposure were correlated across shared biochemical reactions between 

iRno and iHsa. 

 

The functional responses of rat and human hepatocytes to treatments were evaluated in silico by comparing 

predicted reaction-states between treatment and control models. Each condition-specific reaction-state was first 

assigned an integer value representative of its functional importance: disabled (0), enabled (1), or required (2) 

(Figure 6.1C). Reaction-state changes were calculated by subtracting the value assigned to the reaction-state 

(0 = disabled, 1 = enabled, 2 = required) of the control model from the value of the treatment model, providing a 

quantitative estimate of relative importance between -2 (decreased importance after treatment) and 2 (increased 

importance after treatment). With this method, positive and negative reaction-state changes could be interpreted 

similarly as upregulation and downregulation events at the gene-level (Figure 6.1D-E). As a result, reaction-
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state changes were observed across a 2802 distinct biochemical reactions at least once. These reaction-state 

changes were comparable across species with the exception of 167 and 105 biochemical reactions exclusively 

altered in iRno or iHsa, respectively. 

Figure 6.2 – The relationship between gene expression changes and reaction-state changes across 70 

compounds. The numbers of significantly differentially expressed genes integrated into iHsa (blue, left) and 

iRno (red, right) were correlated with the numbers of reaction-state changes between treatment and control 

models in response to each compound. As more genes are considered differentially expression, MADE cannot 

further constrain the metabolic networks because normal physiological functions must also remain active. 

 

Comparing predicted reaction-state changes across species 
To determine whether rat and human hepatocytes were more or less similar in their metabolic response to 

individual compounds, reaction-state changes were compared across all reactions shared between iRno and 

iHsa. To simplify reaction-level comparisons across species, reaction-state changes were interpreted as 

increasing (1), unchanged (0), or decreasing (-1). Reaction-level similarity was assessed by calculating the 

correlation coefficient between directional changes predicted in rat versus the directional change predicted in 

human across all compounds. Similarly, compound-level consistencies were determined by calculating the 

correlation coefficient between rat and human directional changes across all reactions. A similar cross-species 

comparison was performed for each compound at the pathway-level for directional differences using KEGG 

pathway annotations.  

Rat and human predictions were generally correlated at the reaction-level 
Reaction-state changes in iRno and iHsa that co-occurred in response to the same toxicant were more often 

altered in the same direction (19591) than in opposite directions (12140). Because predictions made by iRno 

and iHsa were independent and could change in either direction, consistent and inconsistent reaction-state 
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changes were each expected to have a 50% chance of co-occurring. This result demonstrated the capability of 

iRno and iHsa to independently generate comparable and generally consistent predictions between rats and 

humans.  
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Figure 6.3 – Comparative analysis of reaction-state changes between iRno and iHsa revealed distinct 

correlations between species not seen at the level of gene expression. Individual toxicants were classified 

as correlated (purple, FDR < 0.1), uncorrelated (gray), or anti-correlated (orange) based on the Pearson’s 

correlation between rat and human orthologous gene expression changes (dot color). Reaction-state changes 

were classified similarly in response individual toxicants (text color). Compounds were ordered by relative rank 

(y-axis) and the value (x-axis) of the Pearson’s correlation coefficient for expression-level changes and reaction-

state changes, respectively. These correlation analyses demonstrated that metabolic gene expression changes 

integrated into iHsa and iRno can produce distinct results compared to gene expression changes alone. 

Acetaminophen is used as an example in Figure 6.1.  Expression correlation coefficients displayed were 

positioned by rank to avoid overlapping compound identifiers. 

 

At the global-level rat and human hepatocytes responded similarly across a wide range of perturbations, but 

consistency between iRno and iHsa predictions varied between individual compounds. Pearson’s correlations 

were determined for each compound by comparing reaction-state changes between iRno and iHsa across 2802 

shared biochemical reactions (Figure 6.1). In general, positive correlations were associated with higher numbers 

of consistent co-occurring reaction-state changes and consistently unchanging reaction-state changes. Co-

occurring reaction-state changes in opposite changes contributed to negative correlations, and non-overlapping 

reaction-state changes weakened correlations. Of the 70 compounds evaluated, 47 were significantly correlated 

(FDR < 0.1) compared to 13 and 10 that were uncorrelated or anti-correlated, respectively. Correlation 

coefficients between reaction-state changes in iRno and iHsa varied between -0.37 and 0.58 for the metabolic 

response to each compound. These predicted changes in response to individual compounds were 

distinguishable from orthologous gene expression changes alone (Figure 6.3). Two prominent examples 

uncorrelated at the expression-level (Figure 6.1D) but positively correlated at the reaction-level (Figure 6.1E) 

were acetaminophen and phenobarbital (Figure 6.3). Both compounds have been studied extensively in rats 

and humans to understand drug-induced liver injury 176. These results demonstrated how mapping gene 

expression changes onto functional models can provide a framework for analyzing toxicogenomics data.  
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Figure 6.4 – Network visualization of cytosolic reactions from iRno and iHsa at the genome- and 

expression-levels. (A) Relatively few reactions were unique to iRno and iHsa outside of bile acid metabolism 

and vitamin C biosynthesis. Arrows point to rat-specific reactions catalyzed by Gulo and Cyp3a18. (B) High-

throughput gene expression changes were integrated into iRno and iHsa to analyze the reaction-level responses 

of rat and human hepatocytes to a panel of 70 toxicants. Reaction-state changes were evaluated for 70 pairs of 

treatment and control models across all reactions in each organism. For each reaction, the Pearson’s correlation 

coefficient between reaction-state changes of iRno and iHsa was evaluated across all 70 toxicants. Reaction-

level correlation coefficients were z-score normalized and classified as either inconsistent (z-score < -1), 

intermediate (-1 < z-score < 1), or consistent (z-score > 1).  
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Comparative toxicogenomics analyses of species-specific predictions 
Pearson’s correlations were determined for individual reactions by comparing reaction-state changes between 

iRno and iHsa across all 70 compounds. Relative correlations for reactions were categorized as consistent, 

intermediate, or inconsistent and visualized at the network-level (Figure 6.4). A metabolic network map of 

reactions and metabolites from iRno and iHsa generated using MetDraw (www.metdraw.com) 177 in the Python 

programming environment (http://www.python.org). An SBML file containing the superset of reactions capable 

of carrying flux in either iRno or iHsa under physiological constraints was input into MetDraw for visualization. 

Using the MetColor feature available within MetDraw, reactions that were capable of carrying flux in only one 

organism were highlighted as species-specific reactions. Although species-specific reactions at the genome-

scale were relatively sparse across cytosolic reactions in iRno and iHsa (Figure 6.4A), toxicogenomics 

predictions revealed interconnected regions of consistent and inconsistent treatment-induced changes between 

iRno and iHsa (Figure 6.4B).  

Differences in treatment-induced metabolic changes between iRno and iHsa were prominent within 49 individual 

KEGG pathways (Figure 6.5). Pearson’s correlation coefficients were determined for reaction-state changes 

within each KEGG pathway in response to 70 individual toxicants. Positive and negative correlations were 

significant (FDR < 0.1) for 400 and 147 pathway-toxicant pairs, respectively. Changes in central carbon and 

amino acid metabolic pathways were more frequently correlated than anti-correlated, suggesting that rat 

hepatocytes are better suited for studying these pathways within the context of human toxicity (Figure 6.5). In 

contrast, toxicant-induced metabolic changes were often anti-correlated for reaction-state changes involved in 

bile acid metabolism and glutathione metabolism (Figure 6.5). Interestingly, pyrimidine metabolism was highly 

correlated while purine metabolism was less correlated, consistent with known differences in purine degradation 

that are described in Chapter 3. Overall, these results highlight pathways in which rat could serve as a relatively 

good or poor model of human metabolism. 

 

http://www.metdraw.com/
http://www.python.org/
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Figure 6.5 – Comparative pathway-level analysis of metabolic changes predicted by iRno and iHsa in 

response to individual toxicants. Pearson’s correlation coefficients are displayed as individual tiles for each 

KEGG pathway in response to each toxic compound determined by comparing reaction-state changes induced 

by iRno and iHsa for all reactions within that pathway (number of model reactions shown in parentheses). 

Compounds were ordered by the correlation coefficient determined across 2802 metabolic reaction-state 

changes. Pathways were ordered by the number of significant positive correlations (FDR < 0.1) minus the 

number of negative correlations observed across the 70 compounds. 
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Pathway-level correlations of rat and human predictions for individual compounds 
Our analyses revealed that valproic acid and diclofenac, drugs whose gene expression changes were highly 

correlated between rat and human orthologs, induced reaction-state changes that were significantly anti-

correlated (Figure 6.3). For valproic acid, we predicted that reactions within fatty acid metabolic pathway were 

negatively correlated which was surprising given the known role of valproic acid as a substrate for fatty acid 

metabolism178 (Figure 6.5). We explored known mechanisms of valproic acid-induced hepatotoxicity and found 

that interference with fatty acid beta oxidation can cause mitochondrial stress that is directly linked to the 

mechanism of valproic acid-mediated toxicity178. For diclofenac, our predictions suggested that reaction-state 

changes related to fatty acid degradation were anti-correlated, and again we discovered that the molecular 

mechanism of diclofenac is directly associated with lipid peroxidation179. These findings provides examples of 

how model predictions can serve as a guide for investigating potential pathways that contribute to unexpected 

toxicities in humans. Furthermore, the potential for unexpected toxicities from these compounds can easily be 

overlooked in the context of orthologous gene expression changes alone. Another compound that was classified 

as having negatively correlated reaction-state changes within the fatty acid metabolic pathway as well as a 

known mechanism of hepatotoxicity related to mitochondrial stress was benzbromarone180. 

Outlook 
The analyses described in this chapter represent the first large-scale integration of gene expression changes 

metabolic networks for two species. The ability to interrogate genome-scale metabolic networks has been largely 

limited to the availability of reconciled models. Prior to iRno and iHsa, the only two pairs of bacterial species of 

metabolic networks have been constructed. Additionally, the ability to integrate differential expression lags 

behind methods that integrate absolute expression, which is surprising considering that absolute expression 

does not necessarily correlate with enzyme activity due to differences in kinetics, localization, regulatory motifs, 

and numerous other factors. Inferring metabolic changes based on differential expression makes no assumptions 

about the basal level of activity of an enzyme, only that changes in homeostasis may be occurring. As we 

emphasize in the next chapter, improved algorithms are needed to integrate relative gene expression for other 

metabolic network analyses such as biomarker predictions.  
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Chapter 7: Comparative biomarker predictions 
In previous chapters, we described the creation, curation, and reconciliation of genome-scale network 

reconstructions (GENREs) of rat (iRno) and human (iHsa) metabolism. To demonstrate the use of these 

metabolic networks in systems toxicology, we integrated high-throughput toxicogenomics data to predict 

biomarker changes in response to 76 environmental and pharmaceutical compounds for rat and human 

hepatocytes. Using literature-based evidence, we validated biomarker predictions related to known mechanisms 

of action for antipyretic and anti-gout medications. Comparisons of rat and human biomarker predictions revealed 

mechanistic insights into a human-specific side effect caused by theophylline distinct from that of the structurally-

related compound, caffeine. Overall, the comparative network analyses between rat and human metabolism 

presented here provide a novel framework for improving the translation of future preclinical studies in rats to 

humans. 

Benchmarking biomarkers predictions for inborn errors of metabolism 
Before performing comparative toxicogenomics analyses, we benchmarked the ability of iHsa to generate 

consistent biomarker predictions validated in previous human GENREs. Metabolic biomarkers are routinely 

screened to pinpoint genetic deficiencies in metabolic enzymes and to diagnose IEMs14. Known associations 

between genes and metabolites for various IEMs were evaluated as previously described in the validation of 

Homo sapiens Recon 214,17. Biomarkers changes for each IEM were estimated by comparing feasible flux ranges 

via flux variability analysis (FVA) for metabolite exchange reactions between healthy and unhealthy conditions. 

Unhealthy and healthy conditions were simulated by disabling and forcing flux through reactions associated with 

an IEM, respectively. For the healthy condition, individual reactions associated with IEM genes were constrained 

to 90% of the maximum possible flux value determined by FBA under open exchange conditions as described 

previously17. Open exchange conditions were formulated to allow unconstrained uptake (-1000 units) of 12 

inorganic ions and limited uptake (-1 units) of exchangeable metabolites. Biomarker prediction performance was 

measured by the sensitivity to detect known biomarkers of IEMs.  

Table 7.1 – Sensitivity of iHsa in predicting known biomarkers of IEMs compared to previous human 

reconstructions.  

IEM Biomarker Count iHsa HMR  2.0 Recon 2.04 Recon 2.00 
Elevated 83 80 78 77 66 
Reduced 16 3 2 4 10 
Total 99 83.8% 80.8% 82.8% 76.8% 
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Figure 7.1 – Biomarker predictions for inborn errors of metabolism (IEMs). Comparisons between 

biomarker predictions generated by iHsa and Homo sapiens Recon 217 against known metabolite biomarkers for 

IEMs14,17. Triangles pointing up and down represent biomarkers known to be elevated or reduced in patients with 

IEMs. Purple and orange colors represent predictions that were either consistent or inconsistent, respectively, 

with iHsa (triangle outline) and/or Recon 2.04 (triangle filling). Biomarker predictions with increased (purple 

asterisks) or decreased (orange asterisks) performance in iHsa compared to Recon 2 (version 2.04) are 

highlighted for individual metabolites. Metabolites abbreviations: methyl-imidazole acetic acid (MIMA); 

5−hydroxy−L−tryptophan (5-HTP); 2,6−dimethylheptanoyl−carnitine (2,6-DMHPT-crn). 

 

We evaluated the ability of iHsa to predict known metabolic biomarkers for 49 IEMs (Figure 7.1). The 

performance of iHsa to predict 99 biomarker/IEM pairs was compared to Recon 217 (version 2.04) and HMR219. 

Metabolites were predicted as elevated, reduced, or unchanged using iHsa, HMR2, and Recon 2 as previously 

described in the validation of Recon 217. iHsa correctly predicted 83% of 99 IEM biomarkers compared to 81% 
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for HMR2 and 82% for the most recent iteration of Recon 2 (Table 7.1). For IEM predictions, we applied open 

constraints to exchange reactions that were more consistent across iHsa, HMR2, and Recon 2 than default 

constraints (see below). Compared to predictions described in the original Recon 2 publication17 (Table 7.1), 

predictions for all three human GENREs were slightly more sensitive for elevated biomarkers but less sensitivity 

for reduced biomarkers. We also explored possible species-specific differences and found that most GPR rules 

associated with IEM mutations were closely mirrored by equivalent rat GPR rules. 
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Figure 7.2 – TIMBR is a novel method for predicting treatment-induced biomarkers by integrating gene 

expression changes into metabolic networks. (A) TIMBR calculates reaction weights using log2 fold changes 

of significantly (FDR < 0.1) differentially expressed genes. For each reaction, log2 fold changes are averaged 

across isozymes after assigning a value of 0 to any insignificant changes. For reactions associated with protein 

complexes, the subunit with the largest value after averaging is selected. Summarized values are then 

transformed into larger (or smaller) reaction weights for representing relative expression between treatment and 

control conditions. (B) Caffeine-induced gene expression changes are displayed as a volcano plot for rat 

hepatocytes. (C) Optimization problem formulated by TIMBR to estimate the global network demand needed to 

produce a metabolite. The objective function minimizes the sum of all reaction fluxes (v) multiplied by TIMBR 

reaction weights (w). Treatment and control conditions were simulated separately for each potential biomarker 

under similar physiological constraints that assumed steady-state reaction fluxes. The minimum required 

production rate for each metabolite was set to either a rate of 100 fmol cell-1 hour-1 or 90% of the maximum 

possible flux value, whichever was smaller. (D) Optimal caffeine-weighted (wtreatment) and control-weighted 

(wcontrol) flux distributions (vtreatment and vcontrol) for biomarker production of urea determined by integrating gene 

expression changes from B into iRno. Non-zero fluxes that were higher (purple), equal (gray), or lower (orange) 

relative to the other condition were displayed using MetDraw177. Arrow thickness represents the inverse reaction 

weight as described in A. In this example, the global network demand (sum of weighted fluxes) was smaller in 

the treatment condition than the control condition, indicating that caffeine induced expression changes that were 

more consistent with the production of urea compared to controls. (E) Raw production scores in response to 

individual treatment strategies were calculated for each metabolite separately by comparing global network 

demands determined in C for the treatment and control conditions. TIMBR production scores represent these 

raw production scores normalized across all relevant metabolites with biomarker predictions. 

 

A novel gene expression integration method for generating biomarker predictions 
Rats are often used as a surrogate model for understanding human hepatotoxicity; consequently, it is critically 

important to understand species-specific responses to experimental compounds in order to efficiently translate 

preclinical studies. To explore the effects of exposure to pharmaceutical compounds and environmental toxicants 

on normal metabolic functions, high-throughput gene expression profiles of rat and human hepatocytes were 

obtained from the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system44,168 (Open TG-

GATEs) and analyzed within the computational frameworks of iRno and iHsa. We preprocessed raw microarray 

data from the Open TG-GATEs independently for 119 individual compounds and calculated gene expression 

changes between control samples and samples treated with a low, medium, or high dose for eight hours. Of 119 

compounds with expression data available, 76 were considered suitable for comparative toxicogenomics 
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analyses after excluding treatments that did not significantly affect (FDR < 0.1) at least 1% of the 1927 or 2176 

metabolic genes that mapped to iRno or iHsa, respectively. 

Figure 7.3 – Relaxed physiological constraints applied to iRno and iHsa for TIMBR predictions. (A) 

Experimentally reported flux measurements from rat hepatocytes were obtained from six separate studies 

described in Chapter 4 were applied as relaxed physiological constraints. Reaction lower bounds were set to 

physiological values, allowing nutrient uptake, and reaction upper bounds with were set to positive infinity (106). 

(B) Inorganic ions were allowed unconstrained consumption rates of -106 fmol cell-1 hour-1. (C) Cofactors and 

vitamins considered essential in humans were set to an uptake value of 1 fmol cell-1 hour-1 in rat and human 

networks.  

 

To demonstrate the utility of iRno and iHsa in biomarker discovery for human toxicology, we generated biomarker 

predictions for rat and human hepatocytes exposed to these 76 environmental toxicants and pharmaceuticals. 

Species-specific gene expression changes in response to 76 compounds were integrated into iRno and iHsa 

using Transcriptionally-Inferred Metabolic Biomarker Response (TIMBR) (Figure 7.2), a new algorithm that 

estimates the feasibility of producing a metabolite given changes in gene expression. First, TIMBR summarizes 

gene expression log2 fold changes into reaction weights that represent the relative cost or demand of carrying 

flux through each reaction for treatment and control conditions (Figure 7.2A-B). Second, TIMBR calculates the 

global network demand required for biomarker production by minimizing the weighted sum of fluxes across all 

reactions for each condition (Figure 7.2C-D). This general approach, known as parsimonious enzyme usage 
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flux balance analysis (pFBA)181, has been adapted for integrating absolute gene expression measurements 

(present or absent)49,182 but not for relative gene expression changes (upregulated or downregulated) as done 

here with TIMBR. By integrating relative changes in gene expression, TIMBR predictions represented the relative 

propensity to produce metabolites in response to an individual compound. As a result, relative production scores 

were determined independently for each treatment by normalizing TIMBR predictions across all exchangeable 

metabolites (Figure 7.2E). By applying similar physiological constraints to iRno and iHsa (Figure 7.3) and 

requiring similar production rates for each metabolite (Figure 7.2B), TIMBR provided a novel framework for 

making biomarker predictions across metabolites, treatments, and organisms. In contrast, a similar approach 

that integrated absolute expression was described as capable of making comparisons across experimental 

conditions but not between individual metabolites182. Detailed methods and additional considerations of the 

TIMBR algorithm are available at the end of this chapter. 

Figure 7.4 – Validation of caffeine-induced biomarker predictions for rat hepatocytes. Comparison of rat 

production scores calculated by TIMBR in response to caffeine with previously reported changes in metabolite 

concentrations after caffeine exposure183. All metabolites that were experimentally upregulated (3 purple) and 

downregulated (1 orange) with a reported p-value of less than 0.05 were also predicted in the top or bottom 

quartiles of production scores.  
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Validation of caffeine-induced biomarker predictions for rat hepatocytes 
We validated TIMBR as a quantitative method for predicting relative metabolic changes in response to caffeine 

(Figure 7.4). Caffeine-induced gene expression changes from rat hepatocytes (Figure 7.2B) were integrated 

into iRno using TIMBR to generate production scores (Figure 7.2E). An increased production score for a 

metabolite like urea indicated that genes involved in urea synthesis and secretion were more consistently 

upregulated than downregulated by caffeine. Reaction weights and fluxes that contributed to urea production in 

caffeine treatment and control conditions are visualized in Figure 7.2D. We compared increased production 

scores for metabolites like urea (Figure 7.4) with previously reported metabolic changes in response to caffeine 

such as increased urea production in isolated rat hepatocytes or elevated serum levels of urea in rats183. We 

evaluated the ability of TIMBR to quantitatively predict relative caffeine-induced concentration changes by 

comparing production scores against reported log2 ratios between treatment and control sample concentrations 

for urea and ten additional metabolites measured in liver samples183. We found that rat production scores based 

on in vitro gene expression data significantly correlated (Pearson’s r = 0.667; p-value = 0.0249) with caffeine-

induced liver metabolic changes reported in vivo (Figure 7.4). Additionally, all metabolites that were 

experimentally elevated (urea, citrulline, and aspartate) or reduced (glutamate) by caffeine treatment were 

consistently predicted in the top or bottom 25% of production scores, respectively. For metabolites that were not 

significantly affected after in vivo treatment with caffeine, most TIMBR predictions were within the middle 50% 

of production scores, with the exception of ornithine and arginine. Overall, the TIMBR algorithm successfully 

predicted in vivo metabolite concentration changes in response to caffeine with a Matthew’s correlation 

coefficient of 0.69, indicating both high sensitivity (100%) and specificity (71%). Because TIMBR predictions are 

based on transcriptional changes and do not rely on any knowledge of a compound’s mechanism of action, we 

anticipate this computational approach will be broadly applicable to any compound that induces a detectable 

physiological response.  

Comparative toxicogenomics biomarker predictions 
Species-specific differences in the metabolic response to a drug candidate could hamper the successful 

translation of preclinical biomarkers of efficacy or toxicity from rats to humans. We compared TIMBR predictions 

generated by integrating gene expression changes into iRno and iHsa and found a weak but significant positive 

correlation (Pearson’s r = 0.1958; p-value < 10-11) between rat and human production scores across 286 

metabolites and 76 compounds. We analyzed rat and human production scores predicted in response to 
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individual compounds and categorized 40 as positively correlated, 23 as uncorrelated, and 13 as negatively 

correlated using an FDR significance threshold of 0.1.  
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Figure 7.5 – Comparative biomarker predictions in response to anti-gout and antipyretic compounds. (A) 

Heatmap of 16 metabolite biomarkers predicted to increase (purple) or decrease (orange) in response to 16 

individual compounds. Metabolite production scores for rat (upper left triangle) and human (upper left triangle) 

hepatocytes were generated by integrating treatment-induced gene expression changes into iRno and iHsa 

using TIMBR. Rat and human production scores across all 286 metabolites were classified as positively 

correlated (FDR < 0.1), uncorrelated, or negatively correlated (FDR < 0.1) for each individual compound. 

Compounds were ordered by correlation coefficients and metabolites were ordered by average production 

scores across all 76 compounds. Abbreviations: β-hydroxybutryate (BHB); prostaglandin E2 (PGE2). (B) 

Scatterplot comparing rat and human production scores for prostaglandin E2 across 76 compounds. Two 

antipyretic compounds with known cyclooxygenase inhibitor activities, acetaminophen and ibuprofen, were 

predicted to consistently decrease prostaglandin E2 production in both rat and human hepatocytes. (C) 

Scatterplot comparing rat and human production scores for urate across 76 compounds. Rat production scores 

for urate were consistently decreased by anti-gout medications that are known to reduce urate accumulation 

(colchicine, phenylbutazone, benziodarone, benzbromarone). Human production scores were also decreased 

for anti-gout compounds with the exception of benzbromarone. (D) Rat production scores in response to two 

xanthine derivatives, caffeine and theophylline, were strongly correlated. Urate and urea were consistently 

predicted to decrease and increase in response to both compounds for rat hepatocytes. (E) Human production 

scores in response to theophylline and caffeine were less correlated than rat production scores. Urate was 

predicted to increase in response to theophylline and decrease in response to caffeine for human hepatocytes, 

although human predictions for urea were consistent with increased urea production scores predicted for rat 

hepatocytes treated with caffeine and theophylline. Theophylline is known to cause increased serum levels of 

urate in patients but has not been reported in rats. (F) Chemical structures for theophylline and caffeine are 

identical with the exception of a single methyl group.  

 

We validated TIMBR predictions against known metabolic changes related to the therapeutic efficacy for 

antipyretic and anti-gout medicines. Ibuprofen and acetaminophen are over-the-counter antipyretics that are 

known to inhibit cyclooxygenase enzymes (COX-1 and COX-2)184.  We compared rat and human biomarker 

predictions for individual metabolites across all 76 compounds and found that rat and human production of 

prostaglandin E2, a metabolite synthesized downstream of COX1/2, was predicted to decrease in response to 

acetaminophen and ibuprofen (Figure 7.5B). For anti-gout compounds, we analyzed the predicted effects of 

benzbromarone185, benziodarone185, colchicine186, and phenylbutazone187 on urate production. Despite 

differences in chemistry, we found that both rat and human production scores for urate were decreased for three 

out of four anti-gout medications, consistent with their abilities to decrease urate accumulation (Figure 7.5C). 

Furthermore, urate production was predicted to increase in response to several compounds for human 
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hepatocytes but rarely for rat hepatocytes (Figure 7.5C), consistent with known species-specific differences in 

purine degradation described in Chapter 3. 

Species-specific predictions for xanthine derivatives 
TIMBR biomarker predictions were generally consistent between iRno and iHsa for caffeine but not for 

theophylline despite the fact that both compounds are structurally-similar derivatives of xanthine (Figure 7.5A). 

We investigated species-specific differences and found that theophylline-induced urate production was predicted 

to increase for human hepatocytes and decrease for rat hepatocytes (Figure 7.5C). Consistent with human 

production scores, theophylline has previously been reported to increase serum urate levels in patients 

(hyperuricemia)188. In contrast, caffeine was predicted to decrease urate production in both rat and human 

hepatocytes (Figure 7.5C) despite known differences in the purine degradation pathway. Interestingly, 

caffeinated beverages have been associated with a decreased incidence of hyperuricemia in patients189 (Figure 

7.5C). Using only toxicogenomics data as an input into iRno and iHsa, TIMBR provided comparative predictions 

that led to mechanistic insights into how two nearly indistinguishable compounds (Figure 7.5F) induced similar 

responses in rat (Figure 7.5D) but drastically different responses in human (Figure 7.5E). These results 

demonstrate the utility of computational tools in making functional predictions that could mitigate serious 

unexpected toxicities. Additionally, the toxicogenomics analysis pipeline using TIMBR provides a framework for 

streamlining preclinical drug development by highlighting potentially discrepant biomarkers. 

Outlook 
Overall, our results emphasize the importance in accounting for differences between rat and human metabolism. 

Although only a handful of reactions were unique to iRno or iHsa, we were able to capture functional differences 

that need to be considered when using rats as a surrogate for human biology. The consensus-based 

reconstruction and reconciliation approach described in this study can be extended to facilitate comparative 

analyses across other model organisms. Additionally, we anticipate that TIMBR will improve the ability to 

generate mechanistic biomarker predictions using gene expression changes from any organism with an available 

GENRE. As the first pair of reconciled mammalian GENREs, iRno and iHsa serve not only the comparative 

toxicogenomics community but also researchers interested in studying inborn errors of metabolism using rats or 

cancer in humans, among other possible pathologies. 
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Transcriptionally-inferred metabolic biomarker response (TIMBR) algorithm 
Gene expression profiles of rat and human hepatocytes treated with 119 different compounds were obtained 

from the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system (Open TG-GATEs) 

(http://toxico.nibiohn.go.jp)44,168. Raw microarray data were downloaded from ArrayExpress (E-MTAB-797 for rat 

hepatocytes; E-MTAB-798 for human hepatocytes) and pre-processed using the oligo package in the 

R/Bioconductor programming environment. Expression changes after 8 hours of toxicant exposure were 

independently determined for each compound and organism using the limma package. Genes with a false 

discovery rate (FDR)-corrected q-value less than 0.1 were considered significantly differentially expressed. Of 

the 119 compounds with data available for both rat and human hepatocytes, 76 were selected for model 

integration that significantly altered at least 1% of the 1925 rat genes or the 2177 human genes common to both 

microarrays and models. 

Biomarker changes in response to 76 environmental compounds and pharmaceutical toxicants were predicted 

for rat and human hepatocytes with TIMBR, a novel constraint-based analysis algorithm (Figure 7.2). TIMBR 

integrates gene expression data from toxicant-treated and control samples and calculates a production score for 

each exchangeable metabolite under relaxed physiological constraints (Figure 7.3). TIMBR production scores 

represent the consistency between the reactions needed to synthesize and secrete a potential biomarker and 

the relative expression of genes associated with those reactions. For each metabolite, a production cost was 

calculated by minimizing the total weighted flux across all reactions while maintaining positive flux through its 

extracellular exchange reaction:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  [𝑤 ∙ |𝑣| 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑆 ∙ 𝑣 = 0; 𝑣𝑙𝑏 ≤ 𝑣 ≤ 𝑣𝑢𝑏]   (7.1) 

In equation (7.1), v is a vector of reaction fluxes, w is a vector of reaction weights based on gene expression 

measurements, S is the stoichiometric matrix, vlb and vub are vectors of lower and upper bound constraints for 

reaction fluxes. To simulate physiologically-relevant conditions, nutrient uptake was limited to physiological 

values by setting lower bound constraints (vlb) of metabolite exchange reactions to quantitative values derived 

from experimental literature (Figure 7.3A). To simulate production of a potential biomarker, non-zero positive 

flux was forced by setting the lower bound (vlb) through a metabolite’s exchange reaction to 90% of the maximum 

possible secretion rate determined by FVA under relaxed physiological constraints or a value of 100 fmol cell-1 

hour-1, whichever was smaller. In order to solve this optimization problem with a linear programming solver, 

http://toxico.nibiohn.go.jp/
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metabolic networks were first converted into irreversible metabolic networks where each reversible reaction was 

represented by separate forward and reverse reactions in the stoichiometric matrix and vlb is non-negative.  

Reaction weights (wi) based on relative gene expression were calculated independently for each treatment in 

each organism. Given a set of gene expression changes, TIMBR generates two sets of reaction weights (Figure 

7.2A) for the optimization problem in equation (1) that represent the costs associated with carrying flux through 

reactions in toxicant-treated and control conditions (Figure 7.2B). In contrast to approaches that integrate gene 

expression measurements as weights for flux minimization49,182, TIMBR uses differential expression instead of 

absolute expression values.  

To transform relative gene expression changes into reaction weights for treatment and control conditions, TIMBR 

implements a novel approach for summarizing multiple expression changes through GPR relationships. In 

general, GPR rules use Boolean operators to describe multiple genes that encode redundant isozymes with an 

“OR” relationship and genes that encode subunits in an enzyme complex with an “AND” relationship. For a group 

of isozymes, the log2 fold change was averaged such that the effect of one upregulated isozyme could either be 

offset by downregulation in another isozyme or diluted by the presence of multiple unaffected isozymes. For 

subunits in an enzyme complex, the log2 fold change with the largest absolute value was used. Expression 

changes were summarized for log2 fold changes because the distributions of log2 fold changes were more evenly 

distributed (Figure 7.2B). Summarized reaction values based on log2 fold changes were inverse log transformed 

and multiplied to the default vector of reaction weights to represent the control condition (Figure 7.2A). For the 

treatment condition, default reaction weights were divided by reaction fold change values such that upregulated 

reactions contributed less to the sum of weighted fluxes than downregulated reactions and vice versa for controls 

(Figure 7.2A). Default weights of 1 for biochemical reactions and 2 for transport reactions were doubled for 

reactions with no gene associations or expression data available. Treatment and control condition weights were 

then applied separately to either iRno or iHsa in order to calculate the global network demand (sum of weighted 

fluxes) for the production of each potential biomarker (Figure 7.2C).  

Production scores representing relative biomarker changes were determined by comparing biomarker production 

costs based on treatment and control reaction weights (Figure 7.2E). Raw production scores were calculated 

based on the relative global network demand defined in equation (1) between treatment and control conditions 

for each biomarker: 
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𝑟𝑎𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡+𝑐𝑜𝑛𝑡𝑟𝑜𝑙
    (7.2) 

Raw production scores from equation (7.2) across all potential metabolic biomarkers were normalized 

independently for each compound in each organism using a z-score transformation (Figure 7.2E). With this 

method, positive or negative production scores could be interpreted as the increased or decreased propensity 

for a metabolite to be synthesized and secreted in response to a treatment relative to other metabolites. To 

determine whether rat and human hepatocytes were more or less similar in their metabolic response to individual 

compounds, production scores were analyzed across all 286 potential biomarkers shared between iRno and 

iHsa. Biomarker-level similarity was assessed by calculating the correlation coefficient between rat and human 

production scores across all compounds. Similarly, consistencies were determined for individual compounds by 

calculating the correlation coefficient between rat and human production scores across all metabolites. 

Unlike previous methods that integrate absolute gene expression, the TIMBR method requires a specific GPR 

rule format in order to summarize gene expression changes to the reaction-level. GPR rules involving redundant 

subunits in a protein complex were structured according to the following format: (A1 or A2) and (B1 or B2), where 

redundant enzymes are grouped together for each subunit. As a result, a TIMBR weight represents an average 

change in gene expression for the subunit that experienced the largest perturbation. Because TIMBR 

summarizes directional changes instead of absolute values, the following alternative Boolean representation 

could yield different results: (A1 and B1) or (A1 and B2) or (A2 and B1) or (A2 and B2), where non-redundant 

subunits are grouped together for each possible protein complex. With this alternative representation, a reaction 

weight would represent an average of the largest gene expression changes observed for each possible protein 

complex. Although both approaches are conceptually similar, TIMBR implements the former approach that 

summarizes gene expression changes independently for each subunit.  

Metabolic network maps of reactions and metabolites from iRno and iHsa were generated using MetDraw177 

(www.metdraw.com) in the Python programming environment (http://www.python.org). An SBML file containing 

the superset of reactions capable of carrying flux in either iRno or iHsa under relaxed physiological conditions 

was input into MetDraw for visualization of global networks. SBML files containing the subset of rat reactions 

with non-zero flux values from TIMBR simulations of urea production in response to caffeine. 

 

http://www.metdraw.com/
http://www.python.org/
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Chapter 8: High-throughput metabolomics validation of 
transcriptionally-inferred biomarker predictions 
Synopsis 
In Chapter 7, we performed comparative toxicogenomics analyses of rat and human metabolic networks to 

predict potential biomarkers for various pharmaceutical compounds and environmental toxicants. To generate 

biomarker predictions based on changes in gene expression, we developed a novel algorithm called 

Transcriptionally-Inferred Metabolic Biomarker Response (TIMBR). In this chapter, we further evaluate the 

performance of TIMBR by comparing high-throughput metabolomics data with biomarker predictions based on 

gene expression changes from RNA-seq experiments. As a result, TIMBR production scores and 

metabolomics changes detected in spent cell culture media were significantly correlated for carbon 

tetrachloride (CCl4) and slightly correlated for 2,3,7,8-tetrachlorodibenzodioxin (TCDD). Experimental 

validations of model predictions discussed in this chapter demonstrate the utility of the TIMBR algorithm and 

supports the use of metabolic network models in improving preclinical biomarker discovery in the context of 

toxicology. 

Preclinical biomarker discovery of drug-induced hepatotoxicity 
Pharmaceutical drug candidates often fail in preclinical or clinical trials due to unexpected drug-induced liver 

injury (DILI)1. The liver is a vital organ serving a variety of important functions in the body including carbohydrate, 

protein and fat metabolism, as well as diverse metabolic, vascular, immunological, secretory and excretory 

functions. Several liver metabolic tasks are known to be disrupted in response to DILI, resulting in abnormal 

clinical chemistry values: gluconeogenesis (hypoglycemia), albumin synthesis (hypoalbuminemia), detoxification 

of ammonia (hyperammonemia), and bilirubin efflux (jaundice)1-4. In this proposed research, we aim to apply 

computational methods to investigate toxicant-induced changes within rat and human metabolism. 

Novel biomarkers of DILI are needed to facilitate the translation of preclinical studies in rats to clinical trials in 

humans. Candidate drugs are commonly screened in rats to identify potential biomarkers of therapeutic efficacy 

and toxicity. Traditional biomarkers used in preclinical drug development include proteins such as albumin, 

aspartate aminotransferase, and alkaline phosphatase and metabolites such as bilirubin, creatinine, and 

triglycerides5. Although these biomarkers can effectively diagnose DILI, traditional biomarkers are limited in 

scope to accurately predict future onset of DILI6. High-throughput metabolomics methods have the potential to 

significantly improve both diagnostic and predictive biomarkers of DILI by expanding the potential pool of 
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biomarkers from a few dozen to thousands of metabolites7-9. In contrast to biomarkers like aspartate 

aminotransferase, which are released into the blood after hepatocellular membrane disintegration6, we anticipate 

that metabolite biomarkers will require less catastrophic perturbations to be detected and will be more sensitive 

to the direct mechanisms of hepatocyte injury6.  

Preclinical efforts to identify biomarkers associated with toxicity typically use statistical methods that correlate 

changes in metabolite concentrations with toxicant exposure7-13. A major limitation of this conventional approach 

is that the metabolic response of rat hepatocytes will not necessarily reflect that of human hepatocytes. We 

hypothesize that mechanistic modeling of metabolism with GENREs will substantially improve the ability to 

identify biomarkers that are predictive of toxicity. Human GENREs have provided mechanistic insights into 

metabolic biomarkers for inborn errors of metabolism and therapeutic strategies based on genomic alterations 

in cancers14,15. Constraint-based modeling algorithms have been successfully applied to human GENREs to 

study various aspects of human physiology and disease16-21. Here, we apply the TIMBR algorithm described in 

Chapter 7 to further validate the use of the rat metabolic network, iRno, for future use in clinical and basic 

science applications.  

To validate the ability of iRno to predict metabolic biomarkers using the TIMBR algorithm, we generated high-

throughput metabolomics and transcriptomics profiles of rat hepatocytes treated with 5 chemical compounds 

(Figure 8.1). In the previous chapter, we described the validation of a handful of biomarker predictions based 

on gene expression microarrays using literature-based evidence. Here, we performed high-throughput validation 

of biomarker predictions based on RNA-seq data with metabolomics data. Four compounds were investigated 

experimentally (Figure 8.1), although after quality control analyses only TCDD and CCl4 were suitable for 

validation of model predictions. An overview of the experimental protocol for generating these data at the 24 

hour time point are provided in Figure 8.2. A similar approach was used for generating metabolomics and 

transcriptomics profiles of primary rat hepatocytes after 6 hours of treatment. Detailed descriptions of 

experimental protocols will be provided upon publication of a manuscript related to this project.  
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Figure 8.1 – Transcriptomics and metabolomics changes were evaluated in response to four classic 

hepatotoxicants. After quality control analysis, experimental data for TCDD and CCl4 were considered suitable 

for further metabolic network analysis. 

 

Data preprocessing and normalization 
Raw RNA-seq data were preprocessed and normalized using kallisto (www.github.com/pachterlab/kallisto) and 

sleuth (www.github.com/pachterlab/sleuth) software (Figure 8.3). These methods quantify transcript abundance 

much faster than traditional methods enabling processing of treatment and control samples on a single computer 

rather than a cluster of computers. First, a rat transcriptome was obtained from RefSeq 

(www.ncbi.nlm.nih.gov/refseq) and filtered to include only known annotations by removing model predicted 

annotations (prefixes starting with X). After building a rat transcriptome index of sequences to which RNA-seq 

reads can be aligned, individual FASTQ formatted data containing short oligonucleotide reads were 

pseudoaligned by kallisto. Aligned transcript counts were imported into the sleuth package in the 

R/Bioconductor172 programming environment and filtered to remove low abundance transcripts. After filtering, 

10539 unique transcripts mapping to 10121 rat genes were detected in one or more conditions. Differential 

expression was calculated between treatment and control samples independently for each time point using the 

Wald test as implemented in sleuth. Resulting beta coefficients (analogous to a natural log fold change) and 

false-discovery rate-adjusted p-values were then analyzed using the TIMBR algorithm as defined in the previous 

chapter. TIMBR production scores were generated for each metabolite for which an exchange reaction could 

carry positive flux. In some cases, intracellular demand reactions were created for metabolites that could not be 

transported to the extracellular compartment, mostly to enable TIMBR predictions for additional metabolites 

detected in the metabolomics datasets.  

http://www.github.com/pachterlab/kallisto
http://www.github.com/pachterlab/sleuth
http://www.ncbi.nlm.nih.gov/refseq


127 
 

Figure 8.2 – Experimental protocol for generating transcriptomics and metabolomics profiles of primary 

rat hepatocytes. Spent media samples were obtained from cultured hepatocytes after 24 hours of exposure to 

hepatotoxicants or controls. Fresh media samples were obtained immediately after treatment began. Cellular 

RNA samples were obtained from cells cultured after 24 hours of treatment. Cryopreserved cells were plated 24 

hours prior to treatment.  

 

Untargeted metabolomics of primary metabolites was performed by West Coast Metabolomics using gas 

chromatography time of flight (GC-TOF) mass spectrometry. Metabolite abundance of metabolites was 

estimated as the peak intensity area under the curve as provided by West Coast metabolomics. Metabolite 

abundance was normalized between samples by dividing the log intensity value by the sum of the log intensity 

values across all metabolites. Normalized values were then compared between treatment and control conditions 

using the Student’s t-test independently for each time point. Metabolomics data were preprocessed in the 

R/Bioconductor programming environment to calculate changes in relative metabolite abundances between 

experimental conditions that could potentially be translated in biomarkers of treatment exposure. Although the 

possibility that the concentrations chosen for these treatment may not be representative of an actual toxicological 

response, these data were appropriate for validating TIMBR predictions because metabolomics data were paired 

with transcriptomics profiles. 
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Figure 8.3 – RNA-sequencing pipeline from RNA preparation to biomarker predictions with the TIMBR 

algorithm. RNA sequencing was performed by the DNA Sciences Core which is supported by the University Of 

Virginia School Of Medicine.  

 

Correlations between metabolomics changes and biomarker predictions 
After quality control analysis of transcriptomics and metabolomics data, we found that only two drugs, CCl4 and 

TCDD were suitable for validation of TIMBR predictions. The numbers of differentially expressed metabolic 

genes in response to each treatment are shown in Table 8.1. Acetaminophen-induced changes were indicative 

of RNAdegradation or poor sample quality rather than global transcriptional changes that could be interpreted 

as meaningful.  

Table  8.1 – Numbers of significantly differentially expressed genes (FDR < 0.1) in response to individual 

compounds.   

treatment duration upregulated downregulated % significant 
APAP 6 hours 519 252 56.9 
APAP 24 hours 265 747 71.6 
CCL4 6 hours 71 163 17.3 
CCL4 24 hours 22 110 9.3 
TCDD 6 hours 233 324 41.1 
TCDD 24 hours 85 92 12.5 
TCE 6 hours 0 0 0.0 
TCE 24 hours 89 179 16.6 
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We validated TIMBR as a quantitative method for predicting relative metabolic changes in response to CCl4 

(Figure 8.4). Metabolomics changes in spent media for 45 metabolites were comparable with TIMBR predictions 

after data preprocessing and quality control. For CCl4, TIMBR productions scores were highly correlated with 

metabolomics changes, capturing a potential decrease in glutamine (not statistically significant experimentally) 

and a significant increase in glycine abundance at 24 hours. Despite a lack of power to highly significant 

metabolic changes, model predictions for CCl4 were consistent with experimental observations. Correlation 

coefficients between TIMBR production scores and log fold changes in metabolite abundances were significant 

at 6 hours (Pearson’s r = 0.375; p-value = 0.011) and 24 hours (Pearson’s r = 0.396; p-value = 0.007). It is 

important to note that data for each time point was preprocessed and analyzed independently, supporting the 

reproducibility of the TIMBR algorithm in generating predictions that are consistent with biology. Furthermore, 

we found that model predictions for the 6 hour time point were even more consistent with experimental 

observations at the 24 hour time point (Pearson’s r = 0.475; p-value = 0.00097) likely because metabolic changes 

in spent media concentrations are not instantaneous. It is important to note that data for each time point was 

preprocessed and analyzed independently, supporting the reproducibility of the TIMBR algorithm in generating 

predictions that are consistent with biology. 

Biomarker predictions were generally less consistent for TCDD than for CCl4 (Figure 8.5). TIMBR production 

scores were not significantly correlated with experimental observations; however, the trend was positive at both 

time points. Correlation coefficients between TIMBR production scores and log fold changes in metabolite 

abundances were not significant at 6 hours (Pearson’s r = 0.144; p-value = 0.346; not shown) and 24 hours 

(Pearson’s r = 0.012; p-value = 0.940; not shown). Biomarker predictions based on transcriptional changes at 6 

hours were more predictive of metabolic changes at 24 hours (Figure 8.5) (Pearson’s r = 0.192; p-value = 0.207) 

than at 6 hours, consistent with our observations for CCl4 (Figure 8.4). Fortunately, these results are still valuable 

for iterative process of model prediction, experimental validation, and model refinement that we outlined in 

Chapter 5. We observed from these results that lactate was being secreted by hepatocytes in the control 

condition (relative to blank media); however, our default physiological constraints defined in Chapter 4 were 

setup to allow lactate uptake. By updating exchange reaction constraints to more closely match the absolute 

changes in metabolite relative to blank media, we anticipate that model predictions can be dramatically improved. 
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Figure 8.4 – Biomarker comparisons between predicted TIMBR production scores and metabolomics 

changes in response to CCl4. Glycine abundance at 24 hours was the only significantly altered metabolite from 

CCl4 experiments, although several insignificant changes had moderately large fold changes relative to controls. 

TIMBR predictions at the 6 hour time point and biomarker changes at the 24 hour time point were compared to 

highlight how cysteine is moderately increased at 24 hours (insignificant) after having been predicted to be 

elevated at 6 hours. Although not statistically significant, glutamine was the most downregulated biomarker 

metabolite. Red and gray circles respectively indicate metabolites with experimentally significant or insignificant 

changes in abundance between treatment and control conditions. These values are not reflective of whether the 

metabolite is consumed or produced (spent media versus fresh media). 

Mechanistic insights with TIMBR predictions 
To demonstrate the use of metabolic network modeling in providing mechanistic insights into biomarker 

predictions we investigated the upregulation of glycine in response to CCl4 (Figure 8.4). Glycine was chosen 

because it was the only metabolite that was moderately altered relative to control treatment (FDR < 0.3) at 24 

hours (none were significant at the earlier time point with this threshold). Glycine production scores were also 

the most upregulated metabolite at both time points for CCl4. Because transcriptional changes do not necessarily 

result in immediate changes in metabolite concentrations, upregulated glycine TIMBR production scores after 6 

hours of treatment were not inconsistent with the lack of change in metabolite levels at 6 hours. Interestingly, 

this result may actually suggest that TIMBR production scores may be predictive of metabolic changes before 

they actually occurred at 24 hours.  

To provide mechanistic context for why glycine was upregulated in response to CCl4 (Figure 8.4), we compared 

reaction fluxes between treatment and control TIMBR solutions generated by assigning reaction weights based 

on relative changes in gene expression. As a result, we found that the same 19 reactions carried equal amounts 
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of flux in both TIMBR solutions when the minimum glycine production rate was set to 1 fmol cell-1 hour-1. Because 

both simulations utilized identical pathways, we investigated which reactions were assigned different TIMBR 

weights and found that a single reaction was different between the treatment and control conditions: a glycine-

serine antiporter between the cytosol and the extracellular space. As a sanity check, we looked at transcriptional 

changes for genes within this transport reaction’s GPR rule and found that the same gene was consistently 

upregulated (FDR < 0.01) at both time points (Table 8.2). Because this antiporter facilitated the export of glycine 

and import of serine, we hypothesized that changes in serine would proceed in the opposite direction of glycine. 

Looking back at experimental results for CCl4, we confirmed that serine was slightly decreased in the 

metabolomics data (statistically insignificant log fold change of -0.19), confirming our suspicions that these two 

metabolites might mechanistically be linked by this specific reaction. In this example, we were able to establish 

a mechanistic connection between glycine and a specific transporter that implicated serine to better understand 

how the physiological response of hepatocytes exposed to CCl4 translate into a potential biomarker change. This 

type of analysis highlights the specific advantage of applying the TIMBR algorithm to predict metabolic changes 

within a metabolic network that cannot be achieved based on purely correlative studies.  

Figure 8.5 – Biomarker comparisons between predicted TIMBR production scores and metabolomics 

changes in response to TCDD. Aspartate, lactate, glutamate, and 2-hydroxyburanoate abundances were 

significantly increased (FDR < 0.3) at the 24 hour time point for TCDD experiments. Metabolites with the largest 

decreases in abundance are also highlighted although they are not statistically significant. Dots that appear close 

to the horizontal line can be interpreted as false positive predictions while dots close to the vertical line can be 

interpreted as false negative predictions, although we did not assign a quantitative cutoff value for a positive 

prediction. Red and gray circles respectively indicate metabolites with experimentally significant or insignificant 

changes in abundance between treatment and control conditions. These values are not reflective of whether the 

metabolite is consumed or produced (spent media versus fresh media). 
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Pinpointing exactly how glycine was predicted to be upregulated was remarkably simple considering the 

complexity of the metabolic network. A key contributing factor was that we only forced a small amount of flux 

through the biomarker exchange reaction. By increasing the minimum required flux through this reaction to 100, 

we found that optimal solution fluxes or TIMBR weights were different between across 106 reactions. These 

results highlight how it might be important to avoid forcing too much activity through the exchange reaction when 

running the TIMBR algorithm, considering that only a small number of genes were differentially expressed for 

CCl4. For the result presented in this chapter, we forced a minimum required flux of 1 through each exchange 

reaction which achieved better performance than a value of 100 (data not shown). In the previous chapter, we 

applied the TIMBR algorithm with a minimum required flux of 100 which warrants further investigation into 

sensitivity analyses for various thresholds to increase the performance of the analyses described in this 

dissertation.  

Table 8.2 – Relative gene expression changes for the rat gene, Slc3a2, in response to CCl4 treatment 

after 6 and 24 hours.  

treatment duration 
Entrez  
gene 

gene 
symbol logFC FDR p-value 

CCl4 6 hours 50567 Slc3a2 0.33 1.10E-08 1.04E-10 

CCl4 24 hours 50567 Slc3a2 0.25 7.11E-06 7.41E-08 
 

 

Outlook 
In this capstone analysis of the dissertation, we have provided evidence that computational models of 

metabolism can predict metabolic changes using gene expression data. Future studies are warranted in applying 

the algorithms and models described in throughout this dissertation to studying toxicology and metabolism in 

general. We plan on implementing the TIMBR algorithm to in vivo transcriptomics and fluxomics data generated 

by collaborators of this project that is funded by the United States Department of Defense. Ultimately, we 

anticipate that the rat and human metabolic networks described in this dissertation will be a valuable resource 

for contextualizing high-throughput genomic datasets and bridging the knowledge gap that exists between 

humans and rats. 



133 
 

Acknowledgements 
This chapter was partially adapted from a manuscript currently under revision at Nature Communications titled 

“Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions” 

written by Edik M. Blais, Kristopher D. Rawls, Zhuo I. Li, Glynis L. Kolling, Ping Ye, Anders Wallqvist, and Jason 

A. Papin. This chapter was also adapted from an unsubmitted manuscript with that includes similar authorship 

with the addition of Bonnie Dougherty. I thank all co-authors who contributed to this work, specifically Glynis 

Kolling and Kristopher Rawls for performing the cell culture experiments and generating transcriptomics and 

metabolomics data that I used in computational analyses. 

  



134 
 

Chapter 9: Dissertation Discussions 
Synopsis 
In this dissertation, I have provided the first comprehensive summary of functional differences between rat and 

human metabolism. Metabolism is often described as conserved across species, but the degree of conservation 

for two mammalian species has never been systematically investigated. I was surprised to discover that nearly 

all of their biochemical capabilities were shared at the genome-scale. This finding underscores the important role 

of rats as a surrogate for understanding human biology and disease. The computational framework described 

throughout this dissertation can be used to highlight potential limitations of rats as a model organism and to 

further improve the effectiveness of rats in the preclinical stages of drug development and biomarker discovery. 

By establishing the foundation for in silico alternative, I hope that this research will facilitate the use of live animals 

more efficiently. 

Historical perspective 
The laboratory rat has been used as a surrogate to study human biology for more than a century190. Nearly a 

century ago, the first functional difference between rat and human metabolism was discovered when scurvy 

could not be reproduced in rats. Helen Parsons investigated191 whether rats were capable of performing de novo 

vitamin C synthesis or if the nutritional requirements for rats were different than other organisms that were 

susceptible to scurvy like Guinea pigs. In a fascinating experiment, Guinea pigs on a scurvy-inducing diet were 

cured when fed liver tissue from rats on a similar scurvy diet. Remarkably, Parsons described that her finding 

was consistent with an account from the arctic explorer, Elisha Kane, who attributed his freedom from scurvy at 

sea during the winter by eating rats that infested the ship. I found this study intriguing because it embodied 

several concepts that are discussed throughout this dissertation: understanding the metabolic requirements for 

the healthy state is important; the ability to control nutritional inputs can be incredibly useful; and species-specific 

differences can limit the applicability of a model organism to study human disease. 

The first genome-scale comparison between humans and rats was achieved when the rat genome was 

sequenced in 2004, shortly after the completion of the human genome project. However, the first systems-level 

analysis of rat biology was published in 1915190 and updated in 1922192, in which Donaldson provided a 

comprehensive reference datasets complete with tables and data related to the anatomical, physiological, and 

pathological properties of rats. Following a similar paradigm, this dissertation marks the first genome-scale 

collection of the metabolic capabilities of rats. Each of these studies provides comparative analyses discussing 
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the similarities and differences between rats and humans. Additionally, my goal, like theirs, was to 

comprehensively catalogue an important feature of rat biology and provide a rich resource for other researchers 

to build on. Interestingly, I encountered similar challenges with assembling heterogeneous pieces of information 

into a cohesive collection, as Donaldson’s said192: “It is hardly necessary to add that in most directions our 

information is fragmentary.” This dissertation, while limited to the scope of metabolism, provides an additional 

systems-level perspective to rat biology. 

Species-specific differences 
Despite a surprisingly small number of species-specific differences at the genome level, differences at the 

individual gene-level can alter network functionality and have the capacity to limit the use of rats to study human 

pathology and disease. Unlike rats, humans exclusively rely on dietary sources of vitamin C, which may 

obfuscate the clinical translation of rat studies that have described vitamin C as a potential biomarker41,43. The 

abundance and absence of β-muricholic acids in rats and humans, respectively, can have substantial 

implications within the context of toxicology because bile acids are frequently used as blood-based biomarkers 

of liver damage42. In Chapter 7, I described how human-specific deficiencies in the purine degradation could 

lead to unexpected side effects like gout in response to theophylline when extrapolating experimental results 

from rats.  

From an evolutionary perspective, the consideration that humans may actually have fewer metabolic capabilities 

than rats was certainly intriguing. Although I exhaustively searched experimental literature to identify features 

that distinguish humans from rodents in Chapter 3, FUT3 was the only example of a human-specific enzyme 

was distinguished humans from rats. In the future, I anticipate that more will be discovered that can be integrated 

into future iterations of the Ratcon database. One explanation for why more unique enzymes have been 

characterized for rats than humans is that metabolic enzymes first characterized in rats are likely followed up in 

humans whereas functions discovered other organisms may not be evaluated in rats. Furthermore, enzymes 

that are unique to humans may not have been functionally characterized yet because functional studies in vivo 

are rarely performed in humans first. Additionally, differences between rat and human metabolism are likely more 

pronounced for individual tissues where enzymes can be uniquely expressed in one organism and not the other. 
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Network reconciliation 
Through the process of network reconciliation50, I developed highly curated rat and human metabolic networks 

that recapitulate known specific-specific metabolic functions, quantitatively capture cellular growth rates, and 

generate comparative biomarker predictions. Reconciling differences between iRno and iHsa also improved the 

quality of each model individually. For example, I identified several rat-specific reactions that needed to be 

removed from iHsa. I also discovered that most reactions originally annotated as human-specific were capable 

of being catalyzed by rat enzymes. These examples highlight how reconciling differences between two species 

models can lead to valuable improvements that may be overlooked when focusing on a single species.  

Although iRno is not the first animal adaptation of a human GENRE, this parallelized refinement approach has 

only previously been applied to bacterial GENREs50,51. Furthermore, by incorporating biochemical functions 

known to distinguish rats from humans, iRno and iHsa can facilitate the translation of therapeutic strategies and 

biomarkers that are supported by comparative model predictions. This feature does not apply to previous mouse 

GENREs which were based on, but not reconciled with, human GENREs52,53. Because these mouse GENREs 

were missing at least 60 reactions from each of their human counterparts, I anticipated that iRno and iHsa would 

contain a much larger number of species-specific reactions. Surprisingly, network reconciliation revealed that rat 

and human metabolism was much more conserved than my original expectations. This discovery is important 

for the reconstruction of other mammalian metabolic networks because previous mouse networks are likely 

missing functions due to insufficient orthology annotations, further supporting the orthogonal approach that I 

developed in Chapter 2.  

Together, iRno and iHsa serve as a computational resource for understanding of rat metabolism within the 

context of human biology. iRno and iHsa have the capacity to improve the effectiveness of rat as a model 

organism in drug development and biomarker discovery. Potential applications include identifying combinatorial 

therapeutic strategies against cancers that minimize toxicity in normal cells15, optimizing cell culture media 

formulations or experimental diets for specific diseases, and exploring potential genetic engineering strategies 

for new rat strains that better mimic human biology. Resources can be prioritized for simulated experiments that 

minimize species-specific differences in silico over those not supported by the mechanistic framework of these 

reconciled rat and human metabolic networks.  
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Rats serve an integral role in drug development, and understanding differences between rats and humans is 

critically important for the translation of preclinical studies into successful clinical trials36-38. Despite a high degree 

of physiologic and genomic similarities between rats and humans39, several metabolic differences have been 

described that could affect whether a biomarker is elevated or whether a compound is toxic to the liver41,44. The 

rat and human metabolic networks described in this dissertation represent a comprehensive knowledgebase of 

functional differences between rat and human metabolism. In the future, we anticipate the toxicogenomics 

studies described in Chapters 6-8 has the potential to dramatically improve the translation of preclinical studies 

to human trials. 
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Chapter 10: Future Directions 
High-throughput screening and refining genome annotation 
Disrupting enzymes is a fundamental strategy used in biology to understand relationships between genotypes 

and phenotypes. Experimental techniques that disrupt gene function via knockdown or knockout have enabled 

the genome-scale identification of essential genes in cancer cells193,194. With recent advances in genome editing 

tools such as the CRISPR/Cas9 system, extensive libraries with tens of thousands of sequences targeted to 

nearly 20,000 genes are now available that will dramatically increase the productivity of researchers in annotating 

the human genome195. Chapter 5 in this dissertation provides a conceptual framework for leveraging new 

experimental techniques like CRISPR to refine genome annotations iteratively with a metabolic network. 

Although genome-wide knockout screens that require running tens of thousands of samples are financially 

feasible with current technology, a genome-scale double-knockout screen for would require enough resources 

to run hundreds of millions of samples (20,000 choose 2 = 199,990,000 samples per replicate). Computational 

modeling provides an excellent opportunity to perform screening of combinatorial knock-out strategies because 

in silico experiments can be performed much faster and at a lower cost. Although computational modeling cannot 

entirely replace experimental methods, model predictions can be informative in narrowing down millions or 

billions of potential experiments to a number that fits within a researcher’s budget. Additionally, high-throughput 

experimental screening methods are typically limited to a handful of readouts like cell number. Metabolic 

networks can be used to investigate the effect of each knockout strategy on multiple outputs. For example, 

Chapter 7 described the use of human metabolic networks to generate biomarker predictions for several 

metabolic disorders known as inborn errors of metabolism (IEMs) by simulating the knockout of genes known to 

be associated with each disease14.  

Strain-specific models 
By genetically knocking out specific genes in rats, researchers can develop strains that may better represent 

human diseases. As an example, genetically modified strains of rodents missing metabolic enzymes such as 

glutathione transferases have been developed as model systems for pharmacology and toxicology196. The 

functional representations of rat and human metabolism developed in this dissertation provide an excellent tool 

that can be used to predict the systems-wide effects of disrupting metabolic enzymes. The metabolic tasks 

defined in Chapter 3 offer quality control measures to reduce the chance of introducing unintended side effects. 

Additionally, the comparative nature of these rat and human metabolic networks also ensure that human 
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physiology is kept in perspective. Estimating potential benefits and identifying potential negative outcomes will 

be highly valuable to researchers that aim to develop more clinically relevant models with limited resources. 

Before applying Ratcon1 framework to design genetic engineering strategies for new rat strains, an immediately 

applicable next step would be to characterize existing rat strains. A recent publication characterized the genomic 

landscape of 40 rat strains that with over 12 million genomic variants. These strains are used for a variety of 

human diseases and metabolic networks specifically for individual strains would be highly valuable for 

researchers to get the most out of the Ratcon1 database. Additionally, in the future I anticipate that integrating 

the Ratcon1 database with the Rat Genome Database197 would further promote the impact of the work of this 

dissertation and be of significant use to a large community of researchers that use rats to study human biology. 

Biomarker discovery and personalized medicine 
Eventually, personalized metabolic networks based on patient-specific data will be capable of analyzing all 

potential treatment options for a clinical condition in order to provide mechanistic insights into the combination 

of drugs that will provide the patient with the best balance between therapeutic efficacy and adverse toxicity. 

Treatment regimens can include a personalized panel of diagnostic and prognostic biomarkers that facilitate 

decision-making during the course of treatment. For example, biomarkers of efficacy can be monitored to 

determine when a drug stops working and an alternative treatment strategy should be implemented. With 

effective biomarkers of drug-induced liver, kidney, and heart toxicity, clinicians can significantly reduce the risk 

of serious injury due to unexpected toxicities. Furthermore, personal genomics profiles could inform the selection 

criteria for biomarkers by avoiding those that are not consistent with a patient’s metabolic capabilities. As an 

example, the pancreatic cancer biomarker, CA19-9, is a human-specific metabolite not found in rats (see 

Chapter 3); however, genetic variants in the enzyme responsible for CA19-9 synthesis, FUT3, limit the 

applicability of this biomarker to patients with the specific Lewis blood phenotypes198. 

Whole-body metabolic networks 
Most the applications discussed in this dissertation were limited to cell culture experiments. Translating in vitro 

studies to in vivo can be challenging, especially when considering that measuring fluxes in vivo is incredibly 

difficult. GENREs can facilitate the rapid interrogation and interpretation of high-throughput genomics and 

metabolomics data to fill in knowledge gaps that would otherwise be difficult to measure. Furthermore, metabolic 

networks can be used to extrapolate changes measured in one organ system to another via whole-body 
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metabolic network modeling (Figure 10.1). Future applications of the metabolic networks in this dissertation 

include systems toxicology analyses of the interplay between liver, kidney, and heart to establish biomarkers 

that are prognostic of life-threatening injuries that overcome the body’s compensatory abilities. By understand 

how multiple organs respond to a given drug, more specific biomarkers can aid in accurate diagnoses of unknown 

toxic exposures, which are of significant interest to military and industrial communities. 

Figure 10.1 – Schematic for a whole-body representation using genome-scale metabolic networks. Organ 

systems can be represented as compartments in a metabolic network and can be connected by arteries (red) 

and veins (blue). Manual curation of the bile synthesis pathway described in Chapter 3 specified gut-specific 

reactions that should occur in the mammalian microbiome compartment (brown) after transport through the bile 

duct (green array). Host exchange reactions (arrows) representing kidney filtration, dietary consumption, 

gastrointestinal waste removal, and breathing can enable systems-scale analyses that account for all metabolites 

that enter or leave the body. Approximating percentages of blood flow that enter each compartment could 

potentially be used to inform quantitative biomarker predictions. 
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