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There is an urgent need to discover new therapeutic targets to treat infections. The 

rise in antimicrobial resistance exacerbates this need. If left unmitigated, antimicrobial 

resistance is estimated to claim over 10 million lives worldwide by 2050. However, despite 

this rise in resistance, very few new antibiotics have been brought to market. In fact, over 

the past thirty years, there has been a lack of discovery of new antibiotic classes as a whole.  

There are several reasons for this lack of antibiotic discovery, many of which are 

scientific bottlenecks. For instance, current target identification platforms require extensive 

screening and downstream follow-up experiments that are very time-consuming. 

Frequently, all that work leads to low success rates because they identify targets of unknown 

function, requiring even more experiments, or they identify targets that actually promote 

resistance. Additionally, current platforms use whole bacterial population approaches and 

fail to capture heterogeneous subpopulations with unique susceptibilities.  

Metabolic network modeling is emerging as a powerful tool for antimicrobial target 

discovery to overcome these limitations. Genome-scale metabolic network reconstructions 

(or GENREs) serve as knowledge-bases for everything we know to-date about the 

metabolism of an organism. These reconstructions are also tools that allow us to study the 

genotype-to-phenotype relationship within a cell. Ultimately, using these models, we can 
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probe the capability of an organism in different environmental conditions. Importantly, we 

can use these models to identify essential processes for different organism objectives, such 

as growth or the production of metabolites of interest. By identifying these essential 

processes, we can suggest potential therapeutic targets.  

In this work, I demonstrate that antimicrobial target discovery with metabolic 

network modeling overcomes challenges associated with current target identification 

platforms. Specifically, I show that metabolic network models (1) enable high-throughput 

target discovery, (2) delineate targets of known function, (3) determine targets that may 

mitigate resistance, and (4) identify targets for heterogeneous subpopulations. To do this, I 

applied a metabolic network model of the Gram-negative, multi-antimicrobial resistant 

pathogen Pseudomonas aeruginosa to antimicrobial target discovery in three different 

applications. In the first, I use the model to probe the interrelationship between growth and 

the synthesis of metabolites important for infection known as virulence factors (Chapter 2). 

In the second application, I reconcile conflicting high-throughput in vitro gene essentiality 

datasets and demonstrate the utility of contextualizing and interpreting these datasets with 

the model (Chapter 3). Finally, in the third, I generate condition-specific metabolic network 

models to identify targets for a specific subpopulation of bacteria, called persister cells, that 

is known to tolerate antimicrobial treatment (Chapter 4).  

Together, this research demonstrates the unique ability of metabolic network 

modeling to facilitate the drug discovery pipeline and identify antibacterial targets that 

would be impossible to delineate without the use of computational models.  
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Chapter 1 
 
Background and Significance 
 

 

 

 

 

 

 

1.1 Introduction 
 

There is an urgent need to discover new therapeutic targets to treat infections. The 

rise in antimicrobial resistance exacerbates this need. Resistance has been observed for 

nearly all antibiotics that have been developed (Figure 1.1) [1].  

 

Figure 1.1. The rise of resistance. 
Reprinted from [2], with permission from the American Association for the Advancement of 
Science.  

 

Concerningly, multidrug resistant pathogens are becoming more common, giving rise to life-

threatening infections that cannot be treated with our current antibiotic arsenal [3]. If left 

unmitigated, antimicrobial resistance is estimated to claim over 10 million lives worldwide 

by 2050 [4]. 

https://paperpile.com/c/jiYnUQ/CvI8
https://paperpile.com/c/jiYnUQ/ONPq
https://paperpile.com/c/jiYnUQ/Ppbo
https://paperpile.com/c/jiYnUQ/jSUM
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Despite this rise in resistance, very few new antibiotics have been brought to market 

(Figure 1.2) [1,5].  

 

Figure 1.2. Number of antibacterial new drug applications approvals versus year 
intervals. 
Reprinted from [1], with permission from MediMedia Managed Markets. 

 

In fact, over the past 30 years, there has been a decline in the discovery and approval of new 

antibiotic classes as a whole [6,7]. Notably, in the past three years, two new classes of 

antibiotics have been discovered by academic groups but have not yet been brought to 

market [8,9]. Unfortunately, both new classes are only active against Gram-positive bacteria. 

Discovery and development of new antibiotics effective against the more problematic, 

multidrug resistant Gram-negative bacteria are lacking. 

https://paperpile.com/c/jiYnUQ/sQ4t+CvI8
https://paperpile.com/c/jiYnUQ/CvI8
https://paperpile.com/c/jiYnUQ/NSkO+UGFL
https://paperpile.com/c/jiYnUQ/OkWJ+ywz7
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This dearth in antibiotic discovery can be attributed to several factors including 

regulatory hurdles, reduced economic incentives as well as scientific bottlenecks [1,7]. For 

example, the cost for Phase III Clinical Trials for an antibiotic (~$70 million) is prohibitive, 

considering that antibiotics are typically used for short periods and are often curative [1,5]. 

Furthermore, new antibiotics are typically prescribed as “last-line” defenses, used only after 

other antibiotics have failed. Additionally, the current approach of high-throughput 

screening of chemical libraries for antimicrobial activity is oftentimes unsuccessful because 

these compounds lack physicochemical properties unique to antibiotics, such as being less 

lipophilic [7]. Together, these hurdles have stalled the discovery and development of new 

antibiotic classes. 

 
1.2 Challenges of current target identification platforms 
 

Challenges associated with current antimicrobial target identification platforms 

contribute to the lack of discovery of new antibiotics. For instance, current target 

identification platforms require extensive screening and downstream follow-up 

experiments that are very time-consuming and resource intensive [10]. Oftentimes, these 

screens lead to low success rates because they identify targets of unknown function, 

requiring even more experiments to fully characterize their function and determine their 3D 

structure. Additionally, promising targets identified by these screens are regularly found to 

actually promote resistance rather than mitigate it [6,10,11]. Furthermore, current 

platforms use whole bacterial population approaches and fail to capture heterogeneous 

populations with unique susceptibilities. Finally, current strategies focus on targets essential 

for growth in vitro, failing to consider targets essential for growth in vivo [11]. Altogether, 

https://paperpile.com/c/jiYnUQ/UGFL+CvI8
https://paperpile.com/c/jiYnUQ/CvI8+sQ4t
https://paperpile.com/c/jiYnUQ/UGFL
https://paperpile.com/c/jiYnUQ/vcSt
https://paperpile.com/c/jiYnUQ/NSkO+vcSt+FcOn
https://paperpile.com/c/jiYnUQ/FcOn


4 
 

these challenges have hindered the success of current target identification platforms to 

discover novel antimicrobial targets. 

 

1.3 Metabolic network modeling is a useful tool 
 

Metabolic network modeling is emerging as a powerful tool for antimicrobial target 

discovery to overcome these limitations [12]. Briefly, genome-scale metabolic network 

reconstructions (or GENREs) serve as knowledgebases for everything we know to-date 

about the metabolism of an organism or cell-type. Importantly, these reconstructions are 

also tools that allow us to study the genotype-to-phenotype relationship within a cell. 

Assembled in part from annotated genomes as well as biochemical, genetic, and cell 

phenotype data, metabolic networks contain curated information about the known 

metabolites and metabolic reactions of a cell type [13]. An important aspect of these 

networks is that they account for the gene, protein, reaction relationships as well as 

physicochemical and thermodynamic constraints. By converting them into a mathematical 

model, we can use them to study the metabolic capabilities of an organism in a variety of 

conditions. Because of the size of these genome-scale reconstructions, which typically 

account for over a thousand genes, proteins, and reactions, computational tools are 

necessary for their analysis. One such tool is flux balance analysis (FBA), which is a 

constraint-based modeling approach. Using FBA, we can probe the capability of the model to 

convert inputs, such as carbon sources, into metabolites of interest through what is called an 

“objective function”. For most cases, this objective function is a biomass reaction, serving as 

an approximation of growth. However, it can also be metabolites of interest, such as small 

molecule virulence factors or biomarkers. These reconstructions also serve as a framework 

https://paperpile.com/c/jiYnUQ/Uy9f
https://paperpile.com/c/jiYnUQ/Z5XV


5 
 

for contextualizing high-throughput, conflicting datasets. Through the integration of omics 

datasets with these reconstructions, condition-specific models can be generated, enabling 

the analysis of context-dependent metabolism [14].  

Ultimately, using these models, we can probe the capability of an organism in 

different environmental conditions. Importantly, we can use these models to identify 

essential processes for different organism objectives, such as growth or the production of 

metabolites of interest. By identifying these essential processes, we can suggest potential 

therapeutic targets.  

 
1.4 Pseudomonas aeruginosa is a model organism 
 

In this work, I have applied metabolic network modeling to the bacterium 

Pseudomonas aeruginosa. Pseudomonas aeruginosa is a model organism for the identification 

of targets using GENREs because of its metabolic versatility, which allows it to thrive in 

diverse environments, such as in the soil [15], on medical devices like catheters [16], on 

human tissues as in the case of the lungs of cystic fibrosis patients [17], and in personal care 

products like shampoos [18]. Because of this versatility, Pseudomonas aeruginosa is a 

problem both in the clinic and in industry.  

In the clinic, it is an opportunistic pathogen. It is the leading cause of hospital acquired 

infections and is best known for chronically infecting immunocompromised patients [19]. 

Furthermore, P. aeruginosa is notoriously multidrug resistant, leading to severe and 

recalcitrant infections with adverse clinical outcomes [20]. Given this threat to public health, 

the World Health Organization recently labelled P. aeruginosa as a “Priority 1: Critical” 

https://paperpile.com/c/jiYnUQ/mKce
https://paperpile.com/c/jiYnUQ/x0UL
https://paperpile.com/c/jiYnUQ/tXQi
https://paperpile.com/c/jiYnUQ/mI1I
https://paperpile.com/c/jiYnUQ/fAOj
https://paperpile.com/c/jiYnUQ/WuGK
https://paperpile.com/c/jiYnUQ/kGQs
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pathogen [21], highlighting the urgent need for new antibiotics to treat P. aeruginosa 

infections. 

In industry, P. aeruginosa is known to routinely contaminate personal care products 

and exhibit resistance to preservative treatment [22]. The presence of P. aeruginosa and 

other microbial pathogens in personal care products is a health risk for consumers [23,24]. 

Additionally, contamination by P. aeruginosa can lead to spoilage of the product through 

breakdown of the formulation, resulting in economic losses for the manufacturer [25]. To 

prevent microbiological contamination of personal care products, preservation systems are 

used; however, industry isolates of P. aeruginosa have exhibited resistance to preservative 

treatment [26], underscoring the need to identify new antimicrobial targets to increase the 

safety and utility of personal care products. 

Because of its troublesome activity in both the clinic and in industry, there is a 

pressing need to discover new antimicrobial targets to treat P. aeruginosa infections and 

contamination. The metabolic versatility of P. aeruginosa makes it a prime candidate for 

antimicrobial target discovery with metabolic network modeling.  

 
1.5 Dissertation preview 
 

In this work, I demonstrate that antimicrobial target discovery with metabolic 

network modeling overcomes challenges associated with current target identification 

platforms. Specifically, I show that metabolic network models: 

 

1. Enable high-throughput target discovery 

2. Delineate targets of known function 

https://paperpile.com/c/jiYnUQ/wShy
https://paperpile.com/c/jiYnUQ/8kGq
https://paperpile.com/c/jiYnUQ/hZ1G+8122
https://paperpile.com/c/jiYnUQ/cCcJ
https://paperpile.com/c/jiYnUQ/BXHF
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3. Determine targets that mitigate resistance 

4. Identify targets for heterogeneous subpopulations 

 

To do this, I applied a metabolic network model of Pseudomonas aeruginosa to antimicrobial 

target discovery in three different applications (Figure 1.3).  

 
Figure 1.3. Antimicrobial target discovery with metabolic network models.  
Graphical abstract for dissertation research. 

 
In the first, I use the model to probe the interrelationship between growth and the 

synthesis of metabolites important for infection known as virulence factors (Chapter 2). 

Virulence factors are pathogen-produced molecules that promote the establishment of a 

pathogen within a host and enhance its potential to cause disease. These compounds can 

range from single metabolites, such as siderophores involved in iron-scavenging, to 

macromolecular structures, such as flagella involved in bacterial motility. In this work, I 

focused on small molecule virulence factors because of the tractability of reconstructing 
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their metabolic synthesis. There has been recent interest in targeting virulence as an 

alternative approach. It is thought that, by targeting virulence, cells might be less likely to 

develop resistance because virulence is not an essential cell process. However, there has not 

been much research into the relationship between virulence factor and growth. Given this 

uncertainty, I applied genome-scale metabolic network reconstructions to aid in teasing out 

the interconnectivity between growth in virulence.  

In the second application, I reconcile conflicting high-throughput in vitro gene 

essentiality datasets and demonstrate the utility of contextualizing and interpreting these 

datasets with the model (Chapter 3). In this work, I define a gene as essential if disruption of 

the gene through transposon mutagenesis results in the inability of the mutant to grow. 

Genes essential for growth are promising antimicrobial targets. Transposon mutagenesis 

screens are the state-of-the-art for experimentally identifying genes essential for growth. 

However, these screens are subject to variability and are challenging to interpret, impeding 

our ability to identify therapeutic targets. Given these challenges, I applied genome-scale 

metabolic network reconstructions to reconcile essentiality data and assist in the antibiotic 

discovery pipeline.  

Finally, in the third, I generate condition-specific metabolic network models to 

identify targets for a specific subpopulation of bacteria, called persister cells, that is known 

to tolerate antimicrobial treatment (Chapter 4). Traditionally, persister cells are thought to 

evade antimicrobial treatment due to a reduced metabolic state. However, the metabolism 

of persister cells is not well understood. Given this ambiguity, I built a metabolic network 

model of persister cell metabolism to aid in characterizing their metabolic state and suggest 

targets of persister viability.  
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Together, this research demonstrates the unique ability of metabolic network 

modeling to facilitate the antimicrobial pipeline. I conclude this dissertation with a 

discussion of how this work has contributed to the fields of antimicrobial target discovery 

and metabolic network modeling as well as point to areas of promising future research.  
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2.1 Abstract 

Virulence-linked pathways in opportunistic pathogens are potential therapeutic 

targets that may be associated with less potential for   resistance than targets in growth-

essential pathways. However, efficacy of virulence-linked targets may be affected by the 

contribution of ‘virulence’ genes to metabolism.  We evaluate the complex interrelationships 

between growth and virulence-linked pathways using a new genome-scale metabolic 

network reconstruction of P. aeruginosa strain PA14 and an updated, expanded 

reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the 

activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 

17 unique compounds. We integrate 8 published genome-scale mutant screens to validate 

gene essentiality predictions in rich media, contextualize intra-screen discrepancies, and 

evaluate virulence-linked gene distribution across essentiality datasets. Computational 

screening further elucidates interconnectivity between inhibition of virulence factor 

synthesis and growth. Successful validation of selected gene perturbations using PA14 

transposon mutants demonstrates the utility of model-driven screening of therapeutic 

targets. 
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2.2 Introduction 

There is a need for new drugs that effectively inhibit microbial infection while 

avoiding the development of resistance. Traditional antibiotics that kill bacteria by targeting 

growth-essential functions actively select for antibiotic-resistant mutants that overtake the 

infection. This growth-based selection promotes the rapid development of resistance and 

consequently exacerbates infections [1], resulting in substantial patient morbidity, 

mortality, and healthcare costs [2].  Inhibiting mechanisms of infection by targeting the 

synthesis of virulence factors and virulence-linked genes may be a promising new 

therapeutic strategy that avoids growth-based target selection, improves patient outcomes, 

and mitigates the spread of resistance [1,3,4].  However, genes that contribute to growth and 

genes that contribute to virulence are not necessarily distinct actors in an organism’s genetic 

network; understanding the impact of genes on each pathogen directive (growth versus 

virulence) is critical to therapy design and prediction of resistance development. 

Virulence-linked genes contribute to survival and fitness within a host. Many of these 

genes encode the synthesis pathways of virulence factors (VFs). Here, we focus on pathogen-

produced small molecule virulence factors that enable adaptation to the host environment 

and enhance infection potential through such activities as iron sequestration and bacterial 

communication [5,6]. In targeting the synthesis of these metabolites, resistance may develop 

more slowly because of weakened selection pressure versus traditional targets that directly 

impact growth-essential catabolism of substrates or cell wall construction and repair [3]. 

However, our understanding of the role of virulence-linked genes is evolving [7] – significant 

links between virulence and pathogen metabolism are now emerging. For example, 

antibiotic pigments called phenazines enable opportunistic bacteria to combat the effects of 

https://paperpile.com/c/yi3XKr/4P8r
https://paperpile.com/c/yi3XKr/Yd8n
https://paperpile.com/c/yi3XKr/4P8r+iMpt+oZ7t
https://paperpile.com/c/yi3XKr/qSTs+L3Gx
https://paperpile.com/c/yi3XKr/iMpt
https://paperpile.com/c/yi3XKr/I8RZ
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immune cell oxidative bursts, but these pigments may also induce rewiring of redox-linked 

pathways within the pathogen [8]. Furthermore, the production of virulence-linked 

compounds relies on essential components of central metabolism that connect substrate 

catabolism to VF synthesis pathways. A clear division between therapeutic targets impacting 

growth and virulence is therefore not straightforward [7]. We need to map the 

interconnectivity of these systems to identify genes that contribute to either or both systems, 

determine their function and essentiality in a clinically relevant environment, and estimate 

the impact of their inhibition on virulence versus growth. 

To study the relationship between VF synthesis and growth from a systems level 

perspective, we used genome-scale metabolic network models (GEMs). Assembled from 

annotated genomic data, GEMs are mathematical frameworks that incorporate biochemical, 

genetic, and cell phenotypic data and account for hundreds to thousands of gene-protein-

reaction (GPR) relationships and reaction stoichiometry and directionality [9]; they have 

been used to predict novel drug targets that inhibit growth [10] as well as probe the 

capability of an organism to synthesize various metabolites [11], including VFs [12].  

Here, we present a new GEM of Pseudomonas aeruginosa strain PA14 (iPau1129) as 

well as an updated GEM of reference strain P. aeruginosa PAO1 (iPae1146). P. aeruginosa is 

a Gram-negative opportunistic pathogen capable of developing multi-drug antibiotic 

resistance, hospital-acquired infections [13–15], and infections in cystic fibrosis patient 

lungs, burn wounds, and immunocompromised individuals. We validate our GEMs using 

substrate utilization data and gene essentiality screens from transposon mutant libraries 

and use six previously-published transposon sequencing (Tn-seq) screens to evaluate 

essential virulence-linked genes [16–18]. To study the relationship between VF production 

https://paperpile.com/c/yi3XKr/nqee
https://paperpile.com/c/yi3XKr/I8RZ
https://paperpile.com/c/yi3XKr/BAd7
https://paperpile.com/c/yi3XKr/o8xv
https://paperpile.com/c/yi3XKr/x4O8
https://paperpile.com/c/yi3XKr/jkA0
https://paperpile.com/c/yi3XKr/wYGx+9DLD+GaDQ
https://paperpile.com/c/yi3XKr/mybz+8Yi8+iKaV
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and growth, we compare the effect of in silico gene knockouts on synthesis of biomass versus 

17 VFs and identified genes uniquely critical for VF production, genes solely important for 

the synthesis of biomass, as well as genes involved in both VF production and biomass 

production. A case study of the VF pyoverdine shows the utility of GEMs in probing network 

dependencies that offer novel insights into links between virulence and metabolism that may 

enhance design of cycled or combination drug therapies as well as reduce the development 

of resistance. 

 
2.3 Results 
 

2.3.1 Metabolic network reconstruction of P. aeruginosa 

 

Here, we present an updated GEM of P. aeruginosa strain PAO1 (iPae1146) as well as 

a new GEM of P. aeruginosa strain PA14 (iPau1129) (for ease of reference in this study, we 

refer to these reconstructions as mPAO1 and mPA14, respectively). The network 

reconstruction process began with previous P. aeruginosa PAO1 GEMs [19,20]. We 

implemented a more detailed biomass equation, incorporated new biological information, 

and curated the model against carbon source utilization and gene essentiality data (see 

below). We also assigned potential roles to 59 and 44 genes annotated as hypothetical 

proteins in PAO1 and PA14 genome annotations from the Pseudomonas Genome Database 

(PGD), respectively. In conclusion, the new GEM mPA14 accounts for the function of 1,129 

genes, 1,495 reactions, and 1,286 metabolites while the updated GEM mPAO1 accounts for 

the function of 1,146 genes, 1,493 reactions, and 1,284 metabolites (Figure 2.1A). 

https://paperpile.com/c/yi3XKr/bDBo+JOdK
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Figure 2.1. Network model characteristics. 
 (A) Properties of the updated PAO1 model as compared to previously published GEMs for P. 
aeruginosa, iMO1056 and iMO1096, as well as properties of the new PA14 model. (B) The 
number of genes, metabolites, and reactions in mPA14 grouped into functional categories as 
defined by KEGG [62]. For the distribution of genes, metabolites, and reactions in mPAO1, 
see Figure 2.2. 

 
The distribution of genes, metabolites and reactions in mPA14 across a variety of KEGG 

functional categories is shown in Figure 2.1B (for the distribution of mPAO1, see Figure 2.2).   

 
Figure 2.2. Network model characteristics for mPAO1. 
The number of genes, metabolites, and reactions in mPA14 grouped into functional 
categories as defined by KEGG [62]. 

 
During curation, we specifically accounted for the synthesis pathways of several small 

molecule VFs.  P. aeruginosa produces an array of VFs which can be grouped into several 

categories including exopolysaccharides, lipopolysaccharides, phenazines, quorum sensing 

https://paperpile.com/c/yi3XKr/uWWk
https://paperpile.com/c/yi3XKr/uWWk


18 
 

signal molecules, siderophores, and surfactant [21,22]. Table 2.1 lists the compounds that 

can be synthesized by mPA14 – the six italicized factors are new to mPAO1 and mPA14 

compared to previous GEMs and are based on experimental evidence.  

 
Table 2.1. Small molecules associated with virulence accounted for in mPA14 and 
mPAO1. 
The six italicized factors are new additions to mPA14 and mPAO1 as compared to previous 
GEMs, and bolded dihydroaeruginoic acid is a recently identified PA14-specific VF included 
only in mPA14 [23]. The metabolite ID is the compound reference ID used in our models.  

 
Bolded dihydroaeruginoic acid is a recently identified PA14-specific VF included only in 

mPA14 [23]. Additionally, we evaluated a list of 454 genes linked to virulence of PAO1, PA14, 

or both in the Virulence Factor Annotations tool from the recently updated PGD to identify 

model genes that are associated with virulence. Only 123 of these virulence-linked genes 

were annotated as part of a BRITE metabolic pathway by KEGG, and 49 of the 454 genes were 

annotated as hypothetical proteins. Using KEGG and PseudoCAP annotations (functional 

system annotations developed by the Pseudomonas Genome Database) as well as literature 

on VF synthesis, we focused on accounting for genes relevant to metabolism and virulence-

linked synthesis pathways. Ultimately, there are 112 and 108 virulence-linked genes 

incorporated into mPAO1 and mPA14, respectively [24]. 

https://paperpile.com/c/yi3XKr/piHD+D7mU
https://paperpile.com/c/yi3XKr/Njdf
https://paperpile.com/c/yi3XKr/E5gl
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2.3.2 Model Validation 

 

We used two data types to curate and validate the models: a carbon source utilization 

dataset and a published gene essentiality dataset. We generated the substrate utilization 

dataset using BIOLOG phenotype microarrays, which indicated whether PAO1 and PA14 

were able to grow on particular carbon sources. We then compared these results to model 

predictions of biomass production (an approximation of growth) on different minimal 

media. After extensive transport reaction curation and refinement of metabolic pathways, 

mPA14 and mPAO1 account for 91 and 93 carbon sources and predict utilization with 

accuracies of 81% and 80%, respectively (Figure 2.3 and Figure 2.4, respectively).  

 
Figure 2.3. Comparison of experimental and computational single substrate source 
utilization for P. aeruginosa PA14. 
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Figure 2.4. Comparison of experimental and computational single substrate source 
utilization for P. aeruginosa PAO1. 

 
For the gene essentiality validation, we used a published dataset comprised of the 

overlap between the essential PAO1 genes identified in Jacobs et al. [25] and the essential 

PA14 genes identified in Liberati et al. [26] by creation of transposon insertion mutant 

libraries in a Luria-Bertani (LB) media background. We used this overlap dataset for our 

curation efforts instead of the individual libraries because there is a higher confidence in 

which genes are essential since they were not disrupted in either of the PAO1 and PA14 

screens and the libraries are validated, publicly available, and created with established 

approaches in rich media. To compare this overlap dataset with our model predictions, we 

performed in silico single gene knockouts in our models and measured the subsequent 

https://paperpile.com/c/yi3XKr/SwtO
https://paperpile.com/c/yi3XKr/P6BO
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effects on biomass production. Ultimately, both mPA14 and mPAO1 can be used to predict 

gene essentiality with an accuracy of 91% (Figure 2.5). 

 
Figure 2.5. Analysis of essential gene predictions compared to in vitro essentiality. 
Overlap of essential genes derived from the PAO1 single transposon mutant library and PA14 
single transposon mutant library were used. Both mPA14 (Panel A) and mPAO1 (Panel B) 
predict gene essentiality with an accuracy of 91%. 

 

2.3.3 Virulence associations of Tn-seq-based essential genes 

 
The recent advent of Tn-seq high-throughput screening has enabled the rapid 

evaluation of the fitness of a transposon insertion mutant in a given condition. These screens 

contribute important information regarding bacterial survival in specific contexts. Given our 

interest in studying the relationship between growth and virulence, we sought to determine 

how many essential genes were also virulence-linked in recent P. aeruginosa Tn-seq screens.   

We obtained data from published Tn-seq screens for PAO1 and PA14 in several 

culturing conditions and identified essential genes for each individual screen. We then 

compared these individual essential gene lists to a list of either PAO1 or PA14 virulence-
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linked genes from the PGD to identify virulence-linked essential genes for each screen (Table 

2.2).  

 
Table 2.2. Comparison of experimental essentiality screens. 
The number of essential genes, virulence-linked essential genes (VF-linked essential genes), 
and the proportion of essential genes that are virulence-linked for all eight of the transposon 
mutant screens analyzed. The data is assembled from studies by the Pier lab in 2013 [16] 
and the Whiteley lab [17] and Manoil lab [18] in 2015.  

 
The number of virulence-linked essential genes identified across the screens ranged from 20 

in the Whiteley PAO1 LB dataset [17] to 54 in the Whiteley PAO1 succinate dataset [17]. 

Furthermore, the proportion of essential genes that were also virulence-linked varied across 

the screens, ranging from 4.9% in the Whiteley PA14 sputum dataset [17] to 14.8% in the 

Manoil PAO1 pyruvate dataset [18]. This variability in the percentage of virulence-linked 

essential genes may stem from the variability in transposon insertion coverage of the 

individual screens. While some screens identified over 600 essential genes [16,17], other 

screens identified less than 200 essential genes [18] in the same media.  

The moderate number of virulence-linked genes present in the Tn-seq screens can 

partially be explained by the lack of host selection pressure in the generation of the mutant 

libraries and the imperfect replication of in vivo growth conditions in in vitro studies. Tn-seq 

screens performed in infection models have demonstrated that mutants unable to synthesize 

certain VFs are unable to colonize the infection site [27], suggesting that virulence-linked 

genes may be essential in some contexts, while elsewhere (such as in liquid culture) they are 

unnecessary for bacterial fitness. However, using only Tn-seq screens that differ by growth 

https://paperpile.com/c/yi3XKr/8Yi8
https://paperpile.com/c/yi3XKr/8Yi8
https://paperpile.com/c/yi3XKr/8Yi8
https://paperpile.com/c/yi3XKr/iKaV
https://paperpile.com/c/yi3XKr/mybz+8Yi8
https://paperpile.com/c/yi3XKr/iKaV
https://paperpile.com/c/yi3XKr/yYfJ
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media rather than host selection pressure to contextualize virulence-linked gene essentiality 

still shows that some virulence-linked genes have important, potentially non-virulence 

related, functions. This analysis indicates that these genes may play a more focused 

metabolic role in the development of infection or are capable of dual functions linked to both 

virulence and growth. 

To evaluate the potential overlap of virulence-linked genes with growth activity, we 

first used mPA14 as a framework to compare sets of growth essential genes and virulence-

linked genes that have been curated as functionally relevant to metabolic activity using the 

Whiteley PA14 sputum screen [17]. Figure 2.6 shows the model reactions linked to 205 

genes required for growth of PA14 in sputum (blue), and the 108 PA14 virulence-linked 

genes from the PGD (red).  

https://paperpile.com/c/yi3XKr/8Yi8
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Figure 2.6. Visualization of experimental virulence-linked essential genes. 
Distribution of virulence-linked genes and growth-essential genes from experiments in CF 
sputum visualized across all mPA14 reactions (gray) using MetDraw. Reactions associated 
with virulence-linked genes (as defined by the Pseudomonas Genome Database) are 
highlighted in red, and reactions associated with genes essential to growth in synthetic cystic 
fibrosis sputum are shown in blue. Purple reactions are associated with both virulence and 
growth essentiality. All reactions and metabolites are labeled with unique identifiers 
referenced in the model, visible at high magnification, and text-searchable. 

 
The overlap between reactions associated with required genes and virulence-linked genes, 

totaling 21 reactions (11 genes) are linked to a broad array of systems and present at high 

density in central metabolic pathways, amino acids, lipids, and nucleotide metabolism 
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(overlap reactions in purple). Intriguingly, many reactions associated only with growth or 

virulence group together in the same pathways, which may indicate functional connections 

even if specific genes are not shared between the distinct gene sets. This analysis supports 

the need for a mechanistic evaluation of virulence-linked genes in the context of growth. 

 
2.3.4 Modeling VF production capabilities 

 
While infection-based Tn-seq screens have demonstrated that mutants incapable of 

VF synthesis lack the ability to infect, it is challenging to discern whether this occurs due to 

the inhibited gene’s essentiality for the expression of virulence-linked compound(s), 

essentiality for growth, or essentiality for both [7,28]. To address this gap in knowledge, we 

employed genome-scale metabolic network modeling. We implemented a medium that 

mimics the lung of cystic fibrosis patients (Synthetic Cystic Fibrosis Medium, SCFM) in order 

to more closely model in vivo conditions [29].  The ability of P. aeruginosa to maintain 

decades-long infections in the lungs of cystic fibrosis patients may be due to both its 

metabolic adaptability and deployment of an array of VFs, such that pathway 

interconnectivity may proffer unique metabolic benefits as well as enable resistance to 

treatment [30]. Using an in silico SCFM medium, we performed in silico single-gene 

knockouts and assessed the levels of growth inhibition and VF synthesis inhibition by 

normalizing the resulting biomass flux and VF flux to wildtype production levels. By 

repeating this analysis for all 17 VFs in our model, we quantitatively compared the broad 

effects of simple genetic perturbations on the production of different VFs versus growth.  

 
2.3.5 Core set of growth-essential genes impact VFs 

 

https://paperpile.com/c/yi3XKr/I8RZ+VNRR
https://paperpile.com/c/yi3XKr/Wn8l
https://paperpile.com/c/yi3XKr/xV6Y


26 
 

To study the role of genes critical to both growth and VF synthesis, we compared the 

116 genes predicted by mPA14 as essential for growth on SCFM to the genes essential for 

synthesis of VFs and found that 46 of the growth-essential genes are also essential for the 

production of at least one VF. These 46 genes critical to both biomass production and 

virulence are listed in Figure 2.7 with their PseudoCAP category and function and a heatmap 

showing the affected VFs.  

 
Figure 2.7. Genes essential for VF synthesis versus growth in SCFM. 
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The table lists the 46 genes essential for growth and production of at least one VF. Pathway 
assignment via PseudoCAP annotation and tabulated count of VFs for which the gene is 
essential are also included. Impact of a given gene’s deletion is shown as white indicating 0% 
inhibition and black indicating 100% inhibition.  

 
The PseudoCAP category critical for the largest number of VFs is fatty acid and phospholipid 

metabolism, with 7 genes predicted to be essential for the production of at least 8 VFs in 

addition to biomass production. Additionally, several aro operon genes contributing to 

aromatic amino acid synthesis are essential for the production of 6 VFs in the phenazine and 

siderophore families, while an array of genes involved in purine metabolism fully inhibit only 

the production of A-band-O-antigen. Ultimately, this analysis provides a novel list of genes 

ranked by their impact on virulence pathways in addition to growth inhibition, which may 

assist the design of therapeutics with broad impact on metabolic processes.  

We then expanded our analysis to all genes in our model, plotting inhibition of each 

VF versus growth (Figure 2.8).  
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Figure 2.8. VF synthesis and growth interconnectivity. 
(A) In silico gene knockouts were performed and the subsequent levels of biomass and VF 
production for each VF in the model were measured. The amount of growth inhibition was 
calculated by normalizing the knockout biomass production to the wild-type biomass 
production. Likewise, the amount of VF synthesis inhibition was calculated by normalizing 
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the mutant level of VF production to the wild-type level of VF production. Each point 
indicates the growth inhibition (x-axis) and VF inhibition (y-axis) relative to wild-type for a 
given in silico knockout. All data points are transparent such that a high density of data points 
results in an increase in color intensity. Colored circles are used to indicate genes of interest 
as labeled in the pyoverdine example with yellow representing genes involved in amino acid 
metabolism, green carbohydrate metabolism, dark blue energy metabolism, and light blue 
VF metabolism. (B) We highlight genes representing unique subtypes of impact on 
pyoverdine synthesis versus growth in a quantitative way that enables easy comparison of 
the activity of these genes across all VFs, with white indicating 0% inhibition and black 
indicating 100% inhibition.  

 
Each point in the resulting plots indicates the level of growth inhibition (x-axis) and VF 

inhibition (y-axis) relative to wild-type for a given in silico knockout. All data points are 

transparent such that a high density of data points results in an increase in color intensity. 

Thus, the color intensity at the origin of the plots indicates a high number of gene deletions 

that have no effect on production of either biomass or the indicated VF. Data points in the 

upper right corner of each plot represent genes essential to both VF production and growth, 

while data points arrayed between axes indicate the degree of biased impact on growth 

versus VF production by a given knockout.  

This analysis enabled the identification of non-obvious relationships between growth 

and VF production. Unsurprisingly, most gene knockouts resulted in marginal or no growth 

defects, as indicated by data point clusters near the origin along the x-axis. This result was 

mirrored for VF synthesis, with most gene knockouts also resulting in marginal or no VF 

production defects. We hypothesized that VF synthesis would be less robust to perturbation 

as compared to growth because these compounds rely on the catabolism of growth 

substrates prior to VF anabolism. We instead see that for several VFs, many genes essential 

for growth only partially inhibit synthesis when disrupted. The number of genes essential 

solely for the production of a given VF varies considerably, and is not always correlated with 
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the complexity of the synthesis pathway or final compound. These results highlight critical 

differences in the degree of interconnectivity of VF synthesis and biomass production across 

the VFs, which we can evaluate mechanistically through the use of our computational model. 

VFs that are less sensitive to genetic perturbations than biomass production may 

have a high degree of redundancy in their synthesis pathways. For example, relatively few 

genes impact lipid A, chorismate, and 1-carboxyphenazine production without also 

impacting growth and no gene is essential solely for the production of the respective VF. 

Instead, genes that are essential for VF production are also essential for growth, thus 

indicating the high level of integration of VF synthesis with the overall metabolism of P. 

aeruginosa. While this integration of VF and biomass synthesis is expected for lipid A given 

its presence in the biomass reaction in the model as an essential component, this was a 

surprising result for chorismate and 1-carboxyphenazine as we do not consider these 

essential components.  Upon closer network inspection, we find alternative pathways for the 

production of chorismate and multiple isozymes for the synthesis of 1-carboxyphenazine. 

Both instances highlight redundancies in the network that reduce the occurrence of 

predicted essential genes unique to these two VFs. 

Interestingly, B-band-O-antigen and A-band-O-antigen demonstrate the other 

extreme – all growth essential genes also impact the synthesis of both O-antigens to some 

extent. This case highlights the dependency of the production of these O-antigens on some 

of the biomass components themselves, namely lipid A. Since the O-antigens rely on the 

production of lipid A, all the genes that inhibit the synthesis of lipid A (and, thus, biomass), 

also inhibit the synthesis of the O-antigens.  This result indicates the importance of biomass 

function formulation; here, we retain a standard list of components for consistency with 
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other models, but more targeted analyses may improve upon addition and removal of less 

integral biomass components.  

In contrast to these VFs, there were several VFs that displayed much less 

interconnectivity with the rest of the network. For example, relatively few genes maximally 

inhibit both growth and alginate production compared to the other VFs in the model. Most 

of the genes that are essential for alginate production have no impact on growth when the 

associated function is removed from the model, thus indicating that the synthesis pathway 

for alginate is less highly integrated into the metabolism of P. aeruginosa. VFs like alginate 

may be more peripheral to the general metabolic function of P. aeruginosa due to 

specialization. While in vivo studies have highlighted the importance of these metabolites in 

maintaining infections [31–34], here we systematically demonstrate pathway independence 

from essential metabolic function. 

 
2.3.6 Interconnectivity of synthesis of pyoverdine and biomass 

 
In addition to studying the interconnectivity of individual VF synthesis pathways, this 

analysis also enabled the investigation of the role of individual genes. While the disruption 

of some gene functions results in a similar response across the VFs, other gene function 

disruptions produce a highly varied response, suggesting that these genes play a unique role 

in the synthesis of each VF (example genes circled in Figure 2.8). Using the VF pyoverdine as 

a reference, when the function of the gene hom, encoding for homoserine dehydrogenase, is 

removed, there is a very slight impact on growth and only marginal impact on each of the 

VFs, with pyoverdine synthesis demonstrating the most inhibition as a result of a hom 

knockout. Similarly, while a functional disruption of pvdA, which encodes for l-ornithine N5-

https://paperpile.com/c/yi3XKr/9RGx+Wy5u+I43q+ivPe
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oxygenase, maximally inhibits pyoverdine production, it has no impact on synthesis of the 

other VFs accounted for in mPA14.  

In contrast, other simulated gene knockouts have more varied impact on VF 

inhibition. Functional disruption of gapA, which encodes for glyceraldehyde-3-phosphate 

dehydrogenase, has varied impact on the synthesis of VFs in the network, illustrated by 

preservation of pyoverdine production but near maximal impact on salicylate production. 

Similarly, while functional disruption of rpiA, which encodes for ribose-5-phosphate 

isomerase A, again does not inhibit pyoverdine production, it does inhibit production of the 

AHLs incorporated into mPA14. Likewise, functionally disrupting folD, which encodes for 

5,10-methylene-tetrahydrofolate cyclohydrolase, maximally inhibits pyoverdine production 

and has no impact on PQS production. Thus, we can tease out the role of different genes on 

the synthesis of different VFs, with some simulated gene knockouts demonstrating 

consistent levels of inhibition across all of the VFs and others demonstrating varied levels of 

inhibition.  

 
2.3.7 Experimental evaluation of pyoverdine mutants 

 
We chose to extend our investigation of the inhibition of pyoverdine synthesis 

because of the important role it has in iron scavenging and the tractability of experiments 

measuring pyoverdine production. In fluorescent Pseudomonads, pyoverdine is the main 

siderophore, a molecule that solubilizes iron for use by essential metabolic processes. It has 

been implicated in bacterial interactions in biofilms, it is essential for burn wound 

colonization, and it is upregulated in initial CF lung colonization [35–37].  Pyoverdine is also 

considered a ‘public good’ compound that is produced by select members of a community to 

https://paperpile.com/c/yi3XKr/il2h+Rhw3+xdTI
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benefit the whole. Thus, the inhibition of pyoverdine synthesis within the small group of 

producer cells may affect the whole community while reducing the possibility of acquisition 

and spread of resistance genes [38,39].  

To interrogate the relationship between growth and pyoverdine synthesis, we 

identified gene function disruptions with varied impact on pyoverdine synthesis and growth 

as shown by the circled points of Figure 2.8. We chose pvdA because it was predicted to be 

essential for pyoverdine production but not growth. Conversely, rpiA was chosen because it 

was predicted to be essential for growth but not for pyoverdine production. We chose folD 

because our model predicted it to be essential for both growth and pyoverdine production, 

and hom and gapA because of their predicted sub-inhibitory effects on pyoverdine 

production and growth, respectively. We then investigated the accuracy of these predictions 

with literature and experiments using available transposon mutants.  

Mutants for both folD and rpiA were not present in the PA14 genome-wide 

transposon mutant library [26], suggesting that both these genes are indeed essential for 

growth of P. aeruginosa. Involved in the folate biosynthetic pathway, folD plays a critical 

upstream role in the synthesis of several compounds such as thymidine, purines and various 

amino acids. Studies have investigated folD as a potential therapeutic target to kill a variety 

of pathogens including P. aeruginosa [40–42]. Also important for purine synthesis, rpiA plays 

a critical role in the pentose phosphate pathway, converting D-Ribulose-5 to D-Ribose-5. Due 

to their growth essentiality, it is not feasible to study their role in VF synthesis 

experimentally – we instead use our computational model to offer unique insight. While 

mPA14 predicts that rpiA is not important in pyoverdine synthesis via a simulated knockout,  

it does predict that folD plays a crucial role, as evidenced by a simulated knockout resulting 

https://paperpile.com/c/yi3XKr/6XzP+XwU7
https://paperpile.com/c/yi3XKr/P6BO
https://paperpile.com/c/yi3XKr/1xaR+Lqpy+SdDk
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in total inhibition of pyoverdine synthesis. An analysis of pyoverdine synthesis precursors 

that cannot be produced after an in silico folD knockout in mPA14 highlights N5-formyl-N5-

hydroxy-L-ornithine as the missing metabolite. This metabolite is not included in the much 

longer list of missing metabolites including purines that prevent biomass formation by the 

model. Thus, while folD may be essential for growth because of its role in purine synthesis, 

it appears to be essential for pyoverdine synthesis because of its role in amino acid 

metabolism. Understanding the metabolic interconnectivity of these genes provides insight 

into their potential impact on multiple systems if targeted therapeutically and we are able to 

determine the role of growth essential genes in VF synthesis which would otherwise be 

intractable.  

Using transposon mutants of pvdA, hom, and gapA from the PA14 genome-wide 

transposon mutant library [26], we performed absorbance-based assays of pyoverdine 

production and growth in SCFM as described in the methods. The extent of growth and 

pyoverdine production (normalized to growth) for wild-type PA14 and each mutant strain 

are shown in Figure 2.9.  

 
Figure 2.9. Pyoverdine synthesis capabilities in vitro on LB. 
PA14 wild-type and pvdA, hom, and gapA PA14 mutants were grown to stationary phase in 
LB and the supernatants isolated. The OD405 of each condition’s supernatant was then 
measured as a proxy for pyoverdine levels. The OD405 was divided by the OD600 of the 
culture in order to normalize for growth. Error bars indicate s.d. among five biological 
replicates. 

https://paperpile.com/c/yi3XKr/P6BO
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As expected, the pvdA mutant showed markedly decreased pyoverdine production 

compared to wild-type, as it is an established pyoverdine assay control directly connected to 

the pyoverdine synthesis pathway. Interestingly, the pvdA mutant resulted in a minor growth 

defect relative to wild-type. This result could indicate that the lack of pyoverdine, and thus 

lack of access to iron, somewhat hindered the growth of the pvdA mutant. The hom mutant 

displayed a marginal growth defect and an approximately 1.5-fold decrease in pyoverdine 

production relative to wild-type. These results are consistent with model predictions that a 

hom knockout would result in slight growth inhibition and significant, but not total, 

inhibition of pyoverdine synthesis. Homoserine dehydrogenase, the gene product of hom, 

catalyzes the reaction converting L-homoserine to L-aspartate 4-semialdehyde which then 

gets converted to L-2,4-diaminobutryate, an important precursor of pyoverdine [43]. Thus, 

a mutated hom limits the production of L-aspartate 4-semialdehyde, creating a bottleneck in 

pyoverdine synthesis. Because, L-aspartate 4-semialdehyde is not a growth-essential 

metabolite, both in vitro and in silico, targeting it may specifically prevent pyoverdine 

production without strong growth-based resistance selection. Unlike the pvdA and hom 

mutants, the gapA mutant did not exhibit a growth defect, disagreeing with our model 

prediction of an approximately 50% reduction in growth. Additionally, while we predicted 

that a gapA knockout would not impact pyoverdine production, we observed that the gapA 

mutant did indeed reduce pyoverdine synthesis, albeit to a lesser extent than the pvdA and 

hom mutants. gapA encodes for the enzyme glyceraldehyde-3-phosphate dehydrogenase, 

which catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3,-biphospho-D-

glycerate, a central reaction in glycolysis. The discrepancy between our model predictions 

and experimental results for both growth and pyoverdine synthesis identifies a “gap” in our 

https://paperpile.com/c/yi3XKr/wc3A
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knowledge regarding the function of glyceraldehyde-3-phosphate dehydrogenase in the 

overall metabolic network. Thus, we experimentally tested model predictions regarding 

genes in both growth and VF synthesis to tease out the role of genes upstream of pyoverdine 

synthesis and identify “gaps” in our current understanding of P. aeruginosa metabolism. 

 

2.4 Discussion 
 

We utilized a novel approach to systematically evaluate the contribution of metabolic 

genes to the synthesis of factors critical to virulence as well as growth at genome-scale using 

metabolic models. A new GEM for P. aeruginosa PA14 and an updated GEM for strain PAO1 

were curated using single transposon insertion mutant data, virulence-linked gene 

databases, substrate utilization data, updated genome annotations, and recent literature. 

Using our PA14 model, we contextualized the PGD database of virulence-linked genes that 

were identified as essential for growth in Tn-seq screens, and then identified a core set of 

metabolic genes that were necessary for both growth and the synthesis of at least one VF. 

Subsequent analyses mapped the metabolic interconnections between growth and the 

synthesis of individual VFs, using a case study of pyoverdine to demonstrate model utility in 

teasing out the role of individual genes with regards to both growth and VF production. Our 

work enhances understanding of relationships between VF synthesis and growth, which is 

challenging to elucidate with experimental approaches. By quantifying the impact of genetic 

targets on growth versus virulence using a mechanistic model, we contribute novel insights 

for the design of therapeutic strategies that account for potential resistance development. 

The rapid fitness screening enabled by transposon insertion mutants have produced 

valuable insights into gene function in different environments [44], but the genome-scale 

datasets can be difficult to interpret. Signature-tagged mutagenesis screens in infection 

https://paperpile.com/c/yi3XKr/WNzV


37 
 

models have identified virulence-linked genes, but require a highly accurate replication of 

growth conditions in vitro for a baseline of effective comparison with infection [45,46]. 

Recently, Tn-seq has been used to measure in vivo gene fitness [44], but transposon insertion 

coverage, interpretation of Tn-seq results and essential gene identification are difficult to 

replicate across studies. Our model provides important nuance when considering the true 

definition of an ‘essential’ gene and survival fitness in varied environmental conditions; 

genes can be classified in a quantitative manner instead of a binary ‘essential/nonessential’ 

categorization. Thus, the high degree of variability in the number and roles of genes 

identified as critical for fitness even in different Tn-seq studies of the same growth 

environment can be elucidated when paired with mechanistic modeling. While we focused 

our efforts on mapping the distribution of virulence-linked genes in the datasets in an effort 

to understand their impact without the pressure of survival in a host, there is a rich 

opportunity to expand this comparison to the distribution of all metabolic genes in future 

work.  

Our study provides an important expansion of genes to consider during study of VF 

synthesis during adaptation. We identify 46 genes as critical for the production of up to 10 

of the 17 assessed VFs as well as biomass, which represent a novel core set of metabolic 

functions integral to the development of infection by P. aeruginosa. Long term adaptation 

may result in altered virulence capabilities due to accumulated mutations in these genes as 

well as regulatory genes and genes linked directly to product synthesis [47].  When we 

expand our analysis to all model genes, we can then group genes by their functional impact 

on growth, VF synthesis, or a combination of roles emphasizing a higher degree of 

connection. This novel analysis provides testable hypotheses regarding the contribution of 

https://paperpile.com/c/yi3XKr/g1Y5+R9y4
https://paperpile.com/c/yi3XKr/WNzV
https://paperpile.com/c/yi3XKr/oN8n
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a gene to a given synthesis task. While we focus on experimental assessment of uniquely 

categorized genes in our pyoverdine analysis, this approach can be expanded to the other 

VFs. The analysis also demonstrates the flexibility of P. aeruginosa metabolism in a 

substrate-rich environment; the impact of competition for resources and the role of 

auxotrophy in evolving strains can be compared by predictions of differing optimal growth 

and production levels. Thus, further mapping of gene function may be enhanced by repeating 

the study in less complex and varied growth conditions. 

Therapeutically targeting virulence-related pathways is an approach attracting much 

attention from a field struggling to find effective treatment for drug-resistant pathogens 

[1,48]. Quorum sensing inhibitors have been investigated through small molecule screening 

for a range of pathogens including P. aeruginosa [49–51] partially as a means of broad-

spectrum anti-virulence treatment. A recent study showed that gallium-based quenching of 

extracellular siderophore activity successfully inhibited infection of caterpillars by P. 

aeruginosa while avoiding the development of resistance [52]. While inhibiting siderophore 

synthesis may increase resistance incidence in comparison to quenching, it will also enable 

pathogen-specific targeting of iron sequestration and avoid other systemic side effects (e.g., 

radiation with respect to gallium). While these VFs are regulated by quorum sensing 

molecules, related signaling networks are complex; more direct routes of inhibition provide 

an  efficient avenue for precision treatment. This study provides curated sets of potential 

targets for diminishing or preventing the production of a large array of VFs. Reducing 

experimental costs and time to identify targets while simultaneously elucidating the 

underlying mechanisms by which targets inhibit infection are major contributions of our 

models to effective development of new therapies.  

https://paperpile.com/c/yi3XKr/PtVB+4P8r
https://paperpile.com/c/yi3XKr/txo7+OMso+kT95
https://paperpile.com/c/yi3XKr/OuCI
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Our quantitative analysis of metabolic gene contribution to both growth and 

virulence is the most comprehensive genome-scale computational screen to date of 

virulence-related metabolism. Concerns regarding resistance to growth-targeting antibiotics 

in the context of multi-drug treatments may benefit from incorporation of new therapeutics 

that target VF synthesis [53–55]. However, new proposals regarding sequential cycling of 

drugs with different mechanisms of action in an attempt to avoid drug resistance may favor 

drugs that inhibit VF production and growth simultaneously to maximize impact [56,57]. Our 

mechanistic modeling approach allows us to predict the graded contribution of a given target 

gene to growth versus virulence systems to aid in these treatment designs. Ultimately, our 

updated models are valuable tools for quantitatively assessing relationships that would be 

challenging to interrogate experimentally at genome-scale. Our experimental validation of 

model predictions indicates that our approach provides testable hypotheses of gene function 

that can be used to elucidate critical interactions that may inform development of 

“resistance-resistant” therapeutics. 

 

2.5 Methods 
 
2.5.1 Metabolic network reconstruction 

 

Previously published iterations of P. aeruginosa PAO1 GEMs iMO1056 [19]  and 

iMO1086 [20] were both used as resources during reconstruction efforts. iMO1056 was 

created using field-standard syntax consistent with many models in the BiGG database, while 

iMO1086 was built using the ToBiN platform which is not currently available [19,20]. Since 

these original models were published, the modelSEED has become a favored draft 

reconstruction resource, and offers a comprehensive database of balanced reactions and 

https://paperpile.com/c/yi3XKr/NRJW+lLFD+3M9q
https://paperpile.com/c/yi3XKr/7qGt+rlgA
https://paperpile.com/c/yi3XKr/bDBo
https://paperpile.com/c/yi3XKr/JOdK
https://paperpile.com/c/yi3XKr/bDBo+JOdK
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metabolites referenced from KEGG and MetaCyc from which hundreds of draft models have 

been created for use within the modeling community [58]. In light of this, we used a draft 

conversion of iMO1056 to model SEED format as the starting point for our GEM update to 

enable consistency with our past P. aeruginosa models, improve annotation of model 

reactions and metabolites (KEGG IDs, E.C. numbers, pathway assignments) and enable easy 

comparison with a large collection of models created and curated by other groups [12,59–

61]. Because the conversion was an automated step performed by the modelSEED in an early 

iteration of the SEED database, manual curation was performed to add additional species-

specific reactions that did not successfully convert from the original iMO1056 model or were 

present in iMO1086 as well as to correct conversion errors in reaction stoichiometry, 

directionality, and gene-protein-reaction (GPR) assignments. Further updates to SEED 

reactions and metabolite names using the modelSEED database were implemented to ensure 

consistency, and a KEGG subsystem assignment was added to each reaction when possible 

[62].  

The genomic contents of P. aeruginosa PAO1 and P. aeruginosa PA14 and two closely 

related pathogens from the Burkholderia cepacia complex were compared to assist 

development of new, reconciled GEMs for each strain from previously built models. P. 

aeruginosa PA14 is a primary clinical isolate that is used as a model strain due to its 

substantial virulence in a variety of hosts, while P. aeruginosa PAO1, a wound isolate, is the 

main reference strain of this species [48]. We used Burkholderia species specifically because 

of their similarities to Pseudomonas as opportunistic Gram-negatives that also chronically 

infect cystic fibrosis patients and share similar virulence mechanisms. We also previously 

built and extensively curated GEMs for these species in modelSEED syntax as described 

https://paperpile.com/c/yi3XKr/NAkZ
https://paperpile.com/c/yi3XKr/jkA0+EGay+h0yz+EiuV
https://paperpile.com/c/yi3XKr/jkA0+EGay+h0yz+EiuV
https://paperpile.com/c/yi3XKr/uWWk
https://paperpile.com/c/yi3XKr/PtVB
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further below, making them useful resources. P. aeruginosa PA14, P. aeruginosa PAO1, 

Burkholderia cenocepacia J2315, and Burkholderia multivorans ATCC17616 were compared 

using genome-scale reciprocal BLASTP with an E-value cutoff of 0.01 with no low-complexity 

filter using CLC Main Workbench (CLC bio, Aarhus, Denmark). Hits with E-values below 1E-

40 were considered high confidence hits and automatically matched. Genes with hits that 

received a higher E-value score were manually evaluated based on predicted function, gene 

descriptions, and PseudoCAP category (custom system/pathway annotations) on the 

Pseudomonas Genome Database (PGD) [24] before inclusion in the models in the few cases 

they were employed. There is a distinction, however, between confident gene matches 

between the organisms used, and utilization of genes annotated as hypothetical proteins in 

all species. We propose functions for a number of hypothetical proteins in the models, some 

of which are missing a specific functional annotation only in PA14 versus PAO1, and some of 

which are hypothetical proteins in both strains which we have utilized in the models based 

on functional domain associations and other predictions provided by PGD annotations, 

literature, and manual curation based on BLAST results against other species. Many of these 

hypothetical proteins are implemented in transport reactions, fatty acid and lipid pathways, 

and VF pathways. A table of these low-confidence gene assignments and hypothetical 

proteins to which we assigned functions in the model is provided in Supplementary Data 1. 

Updated, strain-specific biomass formulas were created using a field standard 

approach that approximates the biomass composition by accounting for DNA, RNA, protein, 

cell wall components, lipids, and organism-specific compounds whose production is 

required for growth [9,12]. This effort expanded the number of components considered 

necessary for growth according to an improved biomass formulation and an updated search 

https://paperpile.com/c/yi3XKr/E5gl
https://paperpile.com/c/yi3XKr/BAd7+jkA0
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of literature pertaining to Pseudomonas species. Additional Pseudomonas-specific 

requirements, such as preference for ubiquinone-9 versus ubiquinone-8 as a key cofactor in 

respiration [63], were implemented. More specific lipids were implemented using recent 

studies from literature and as enabled by the expanded lipid reactions used in modelSEED 

draft reconstructions. Specifically, while iMO1056 and iMO1086 accounted for simple 

representations of cardiolipin, phosphatidylethanolamine, phosphatidylglycerol, and 

phosphatidylserine, we implemented the specific saturated, unsaturated, and cyclopropane 

fatty acids making up the full lipid profile of P. aeruginosa as described in literature [64–67]. 

Details of the new biomass formulations can be found in Supplementary Datasets 7-8. 

To fill gaps and improve predictions, additional model components were first derived 

from iMO1086 and recently published GEMs of Burkholderia species. We built on prior 

curation efforts while maintaining consistent modelSEED syntax to enable future cross-

species comparisons and community modeling. If SEED reactions in Burkholderia models 

were not present in the new Pseudomonas SEED model, the high confidence BLASTP results 

were used in conjunction with the PGD and Burkholderia Genome Database [68] and 

literature to evaluate addition of these reactions. Many of the new reactions were added to 

increase the number of Biolog carbon sources accounted for in the Pseudomonas models 

(from only the PM1 substrate set to both PM1 and PM2a substrate sets); this effort was 

guided by previous work we performed for the highly catabolically flexible Burkholderia 

[12]. We also implemented new VF synthesis pathways using similar Burkholderia pathways 

as a guide. Other new reactions were added to expand lipid metabolism pathways using 

literature regarding Pseudomonas-specific lipid composition and the increased specificity of 

SEED reactions in this subsystem. Reactions implemented in the other well-curated SEED 

https://paperpile.com/c/yi3XKr/9YhP
https://paperpile.com/c/yi3XKr/cRsQ+oBwb+uppB+nepg
https://paperpile.com/c/yi3XKr/iLzt
https://paperpile.com/c/yi3XKr/jkA0


43 
 

model available during our build work, B. subtilis iBsu1103, as well as reactions included in 

the MetaCyc and MetRxn databases were also used as resources [59,69,70]. PAO1 and PA14 

genes categorized as linked to virulence via data from experimental studies incorporated 

into the PGD v3 [24] were specifically evaluated for inclusion in the models to expand 

clinically-relevant functional prediction ability (Supplementary Data 2 and Methods – Screen 

and Database Assembly).  

 
2.5.2 Model validation 

 
Models were validated using new, comprehensive assessments of experimental data 

from genome-scale transposon libraries and carbon utilization screening. Similar data had 

been used with prior models, but unexpected discrepancies identified in comparisons 

between PAO1 and PA14 measurements motivated careful re-assessment of data sets and 

experimental confirmation of results. 

Gene essentiality predictions were performed by in silico deletions of single genes 

while optimizing for production of biomass using flux balance analysis (FBA) via the COBRA 

Toolbox [71]. Predicted essential genes were compared with a list of genes that were not 

successfully targeted by transposon insertions in both genome-scale transposon insertion 

libraries of P. aeruginosa PAO1 [25] and P. aeruginosa PA14 [26]. By using genes lacking 

transposon insertions in both studies, which used different transposon systems and resulted 

in differing levels of insertion rate and genome coverage, we increased our confidence that 

these genes were truly essential for growth in rich media for P. aeruginosa strains. Curation 

with essentiality data resulted in improved prediction accuracy of gene essentiality via 

curated GPR relationships as well as the addition of new components to the biomass formula.  

https://paperpile.com/c/yi3XKr/EGay+MqPw+QmRy
https://paperpile.com/c/yi3XKr/E5gl
https://paperpile.com/c/yi3XKr/6fCa
https://paperpile.com/c/yi3XKr/SwtO
https://paperpile.com/c/yi3XKr/P6BO
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Single carbon source catabolic ability of the strains was predicted by providing a 

single carbon source and salts to the model via exchange constraints and optimizing for 

biomass production using FBA [12].  Carbon utilization data were compiled from literature 

for both PAO1 and PA14, but discrepancies between studies motivated us to perform our 

own growth screens for both strains using Biolog phenotype arrays PM1 and PM2a. Growth 

curve screens were performed in triplicate using a microplate reader with shaking at 37°C 

for 48 hours. Curves were evaluated to identify substrates enabling growth versus no growth 

[12]. Results guided specific curation of catabolic pathways and expansion of transport 

systems included in the model to improve prediction accuracy. 

 
2.5.3 Screen and database assembly 

 
Information on virulence-linked genes was compiled from the Pseudomonas Genome 

Database [24] (current as of February 2016) using the Annotations by Category tool that 

provides Virulence Factor Annotation lists for several strains. We used the lists for PAO1 and 

PA14, which provided 427 and 208 genes, respectively, which were culled by the PGD from 

experimental screens in many different infection models, the Virulence Factor Database, and 

the Victors database as indicated in Supplementary Data 2. The bias towards PAO1 is partly 

due to more screens and studies performed for PAO1 versus PA14 in the literature; however, 

419 of these genes are present in both genomes. We assumed that many of the genes 

identified as virulence-linked in PAO1 could also be virulence-linked in PA14; however, 

virulence-linked genes truly active in only one strain would be of interest to track in future 

work; these genes must then have alternate functions in addition to a role in virulence. 

Nevertheless, building on the above assumption, we created a combined list of genes 

https://paperpile.com/c/yi3XKr/jkA0
https://paperpile.com/c/yi3XKr/jkA0
https://paperpile.com/c/yi3XKr/E5gl
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associated with virulence that included any genes noted in either list which were present in 

both genomes to which we then added strain-specific virulence genes. The resulting lists 

included 432 and 441 plausible virulence-linked genes for PAO1 and PA14, respectively; the 

strain in which each gene was originally classified as a VF is also indicated as well as its 

presence in each model in Supplementary Data 2.  

For the Tn-seq-based essential gene analysis, we obtained gene essentiality data from 

eight recently published Tn-seq screens for PA14 and PAO1 in a variety of culturing 

conditions. These screens are listed in Table 2.2 and are identified by the name of the paper’s 

senior author (Pier [16], Whiteley [17], and Manoil [18]), strain, and media condition. For 

the PA14 Pier dataset [16], we used the essential genes identified in Table S1 of the original 

manuscript. Similarly, for the PAO1 and PA14 Whiteley datasets [17], we used the essential 

genes identified in Dataset S1 and Dataset S3 of the original manuscript, respectively. For the 

PAO1 Manoil datasets [18], we curated the “General essential genes” identified in Dataset S1 

of the original manuscript to determine essential genes for each of the three media 

conditions studied: LB, sputum, and pyruvate. Specifically, we applied a cutoff such that if a 

mutant for a particular gene failed to be generated in at least one of the independent 

transposon mutant pools for a particular media condition, that gene was deemed essential 

for that media condition. This approach does not take into account the location of the 

transposon insertion and, thus, may miss some essential genes. In the end, we obtained eight 

unique lists of essential genes for either PAO1 or PA14 in different media conditions based 

on the Pier, Whiteley, and Manoil datasets. Once we obtained these lists of the essential genes 

identified in each screen, we compared them individually to the list of virulence-linked genes 

from the PGD database for either PA14 or PAO1 as appropriate. Genes that were in both a 
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particular screen’s essential list and the virulence-linked list were categorized as virulence-

linked essential genes for that particular screen. 

 
2.5.4 Prediction of virulence-related production versus growth  

 
VF production capacity was first evaluated by optimizing the flux through an artificial 

‘demand’ reaction for each virulence-related metabolite. Single gene deletions were 

implemented by identifying reactions for which a given gene was essential via the model’s 

Boolean relationships and then constraining the flux through each of these reactions to zero. 

The effect of each of these deletions was evaluated by predicting production levels of each 

VF and biomass separately; resulting production levels lower than 0.001 were categorized 

as completely inhibitory (i.e., the deleted gene is essential for production of that component). 

Production levels were normalized by maximum possible production of a component under 

wild-type conditions for comparison within VFs.  

 
2.5.5 Network visualization 

 
mPA14 was visualized using a command line implementation of MetDraw [72]  that 

enables color overlay which was then edited in Inkscape (https://inkscape.org/en/). 

 
2.5.6 Strains and growth conditions 

 
Wild-type strains of P. aeruginosa PAO1 and PA14 and PA14 single gene knock-out 

mutants from the PA14 non-redundant genome-scale transposon library [26] were grown in 

Luria-Bertani (LB) media supplemented with 15 ug/ml gentamycin as necessary at 37°C 

with aeration for liquid cultures.  
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2.5.7 Pyoverdine assay 

 
To measure pyoverdine production, strains were grown in synthetic cystic fibrosis 

media [29] for 24 hours in 50 ml flasks and the absorbance of culture supernatants was 

measured at 405 nm according to a previously published protocol [73]. All measurements 

were normalized to culture density as determined by the absorbance of the bacterial culture 

at 600 nm.  

 
2.5.8 Data availability 

 
The new metabolic network reconstructions for P. aeruginosa PAO1 and PA14, 

iPae1146 and iPau1129, respectively, are provided in spreadsheet format (Supplementary 

Data 3-4) that includes curation notes and SBML file format (Supplementary Data 5-6).  
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2.10 Supplementary Information 
 
The supplemental files listed below can be found at the following website: 

https://doi.org/10.18130/V3/Xf0AVD 

Supplementary Data 1- Curation of putative proteins added to mPA14 and mPAO1. 
We present information on every gene included in the models with hypothetical, 
putative, and probable annotations in the Pseudomonas Genome Database as well as 
genes which we explicitly use for an alternate function than that annotated. We show 
how these genes were implemented functionally in the model and include notes and 
any relevant literature supporting our curation decision. 

 
Supplementary Data 2 – Integration of virulence-linked genes from the Pseudomonas 
Genome Database. 

We present our reconciliation of the lists of virluence-linked genes from PAO1 versus 
PA14 from the Pseudomonas Genome Database. The Virulence-linked genes 
spreadsheet includes mainly data provided by the PGD for each gene including 
database or study source and infection model. We organized this information such 
that genes matched between strains are paired. We used both BLASTP, manual 
evaluation of similar operons, and literature in creating these pairings – genes 
missing in one strain genome are noted as ‘not available’. The summary count 
information provides insight into the bias of virulence-linked annotations towards 
PAO1 versus PA14 despite nearly all genes being duplicated in each genome.  

 
Supplementary Data 3 – Genome-scale metabolic network model of Pseudomonas 
aeruginosa PA14, iPau1129, in spreadsheet format. 

Our model accounts for the function of 1129 genes and is provided in spreadsheet 
format consistent with usage of COBRA Toolbox 2.0 using SEED notation for reactions 
and metabolites.  

 
Supplementary Data 4 – Genome-scale metabolic network model of Pseudomonas 
aeruginosa PAO1, iPae1146, in spreadsheet format. 

Our model accounts for the function of 1146 genes and is provided in spreadsheet 
format consistent with usage of COBRA Toolbox 2.0 using SEED notation for 
reactions and metabolites.  
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Supplementary Data 5 – Genome-scale metabolic network model of Pseudomonas 
aeruginosa PA14, iPau1129, in SBML format. 

Our model accounts for the function of 1129 genes and is provided in SBML format 
consistent with usage of COBRA Toolbox 2.0 using SEED notation for reactions and 
metabolites.  

 
Supplementary Data 6 – Genome-scale metabolic network model of Pseudomonas 
aeruginosa PAO1, iPae1146, in SBML format. 

Our model accounts for the function of 1146 genes and is provided in SBML format 
consistent with usage of COBRA Toolbox 2.0 using SEED notation for reactions and 
metabolites.  

 
Supplementary Data 7 – Biomass formulation for genome-scale metabolic network model of 
Pseudomonas aeruginosa PA14, iPau1129. 
 
Supplementary Data 8 – Biomass formulation for genome-scale metabolic network model of 
Pseudomonas aeruginosa PAO1, iPae1146. 
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3.1 Abstract 
 

The identification of genes essential for bacterial growth and survival represents a 

promising strategy for the discovery of antimicrobial targets. Essential genes can be 

identified on a genome-scale using transposon mutagenesis approaches; however, 

variability between screens and challenges with interpretation of essentiality data hinder 

the identification of both condition-independent and condition-dependent essential genes. 

To illustrate the scope of these challenges, we perform a large-scale comparison of multiple 

published Pseudomonas aeruginosa gene essentiality datasets, revealing substantial 

differences between the screens. We then contextualize essentiality using genome-scale 

metabolic network reconstructions and demonstrate the utility of this approach in providing 

functional explanations for essentiality and reconciling differences between screens. 

Genome-scale metabolic network reconstructions also enable a high-throughput, 

quantitative analysis to assess the impact of media conditions on the identification of 

condition-independent essential genes. Our computational model-driven analysis provides 

mechanistic insight into essentiality and contributes novel insights for design of future gene 

essentiality screens and the identification of core metabolic processes. 
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3.2 Introduction 
 

With the rise of antibiotic resistance, there is a growing need to discover new 

therapeutic targets to treat bacterial infections. One attractive strategy is to target genes that 

are essential for growth and survival [1–4]. Discovery of such genes has been a long-standing 

interest, and advances in transposon mutagenesis combined with high-throughput 

sequencing have enabled their identification on a genome-scale. Transposon mutagenesis 

screens have been used to discriminate between in vivo and in vitro essential genes [1,5], 

discover genes uniquely required at different infection sites [6], and assess the impact of co-

infection on gene essentiality status [7]. However, nuanced differences in experimental 

methods and data analysis can lead to variable essentiality calls between screens and 

hamper the identification of essential genes with high-confidence [8,9]. Additionally, a 

central challenge of these screens is in interpreting why a gene is or is not essential in a given 

condition, hindering the identification of promising drug targets. 

These data are often used to validate and curate genome-scale metabolic network 

reconstructions (GENREs) [10,11]. GENREs are knowledgebases that capture the genotype-

to-phenotype relationship by accounting for all the known metabolic genes and associated 

reactions within an organism of interest. These reconstructions can be converted into 

mathematical models and subsequently used to probe the metabolic capabilities of an 

organism or cell type in a wide range of conditions. GENREs of human pathogens have been 

used to discover novel drug targets [12], determine metabolic constraints on the 

development of antibiotic resistance [13], and identify metabolic determinants of virulence 

[14]. Importantly, GENREs can be used to assess gene essentiality by simulating gene 

https://paperpile.com/c/Uo3CiH/73YAA+KO628+uuwy6+61WR6
https://paperpile.com/c/Uo3CiH/73YAA+bvCqn
https://paperpile.com/c/Uo3CiH/pS66J
https://paperpile.com/c/Uo3CiH/s1Qik
https://paperpile.com/c/Uo3CiH/kWEKf+9PamQ
https://paperpile.com/c/Uo3CiH/OtnQ+krRa
https://paperpile.com/c/Uo3CiH/ZhlKE
https://paperpile.com/c/Uo3CiH/HK5xK
https://paperpile.com/c/Uo3CiH/t3TxS
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knockouts. Through in silico gene essentiality analysis, GENREs can be useful in the 

systematic comparison of gene essentiality datasets. 

Here, we perform the first large-scale, comprehensive comparison and reconciliation 

of multiple gene essentiality screens and contextualize these datasets using genome-scale 

metabolic network reconstructions. We apply this framework to the Gram-negative, multi-

drug resistant pathogen Pseudomonas aeruginosa, using several published transposon 

mutagenesis screens performed in various media conditions and the recently published 

GENREs for strains PAO1 and PA14. We demonstrate the utility of interpreting transposon 

mutagenesis screens with GENREs by providing functional explanations for essentiality, 

resolving differences between the screens, and highlighting gaps in our knowledge of P. 

aeruginosa metabolism. Finally, we perform a high-throughput, quantitative analysis to 

assess the impact of media conditions on identification of core essential genes. This work 

demonstrates how genome-scale metabolic network reconstructions can help interpret gene 

essentiality data and guide future experiments to further enable the identification of 

essential genes with high-confidence. 

 

3.3 Results 
 
3.3.1 Comparison of candidate essential genes reveals variability across transposon 

mutagenesis screens 

 
We obtained data from several published transposon mutagenesis screens for P. 

aeruginosa strains PAO1 and PA14 in various media conditions and determined candidate 

essential genes for each screen as described in Methods (Table 3.1) [15–19].  

https://paperpile.com/c/Uo3CiH/VHWnu+Uubi4+dCCFJ+lhSPc+8jUxB
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Table 3.1. Detailed description of in vitro transposon mutagenesis screens. 

 

Briefly, where available, we used the published essential gene lists identified by the authors 

of the screen. Otherwise, we defined genes as essential in a particular screen if the 

corresponding mutant did not appear in that screen, suggesting that a mutation in the 

corresponding gene resulted in a non-viable mutant. Candidate essential gene lists ranged in 

size from 179 to 913 for PAO1 and from 510 to 1544 for PA14, suggesting substantial 

variability between the screens (Table 3.2, Supplementary Data 1, Supplementary Data 2).  

 
Table 3.2. Characteristics of the in vitro transposon mutagenesis screens. 
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To investigate the similarity between the different candidate essential gene lists for the two 

strains, we performed hierarchical clustering with complete linkage on the dissimilarity 

between the candidate essential gene lists, as measured by Jaccard distance (Figure 3.1A and 

3.1C).  

 
Figure 3.1. Comparison of candidate essential genes from transposon mutagenesis 
screens reveals variability. 
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 (A and C). Hierarchical clustering of candidate essential gene lists from transposon 
mutagenesis screens for PAO1 and PA14, respectively. (B and D). Overlap analysis of 
candidate essential gene lists for transposon mutagenesis screens for PAO1 and PA14, 
respectively. Blue bars indicate the total number of candidate essential genes identified in 
each screen. Black bars indicate the number of candidate essential genes unique to the 
intersection given by the filled-in dots. The orange bar indicates the overlap for all screens 
for either PAO1 (Panel B) or PA14 (Panel D). For the relationship between the overlap 
analysis and Venn diagrams, see Figures 3.2 and 3.3. 

 
Interestingly, the screens clustered by publication rather than by media condition for both 

strains. As an example from the PAO1 screens, rather than clustering by lysogeny broth (LB) 

media, sputum media, pyruvate minimal media, and succinate minimal media, all three of 

the screens from the Lee et al. publication clustered together, all three of the screens 

analyzed in the Turner et al. publication clustered together, and the Jacobs et al. transposon 

mutant library clustered independently. This result suggests that experimental technique 

and downstream data analysis play a large role in determining essential gene calls, 

motivating the importance of comparing several screens to identify consensus essential gene 

lists, or genes identified as essential across multiple screens. 

We then measured the overlap of the candidate essential gene lists to calculate how 

many genes were shared across all the screens as well as those unique to particular sets of 

screens, defined as intersections (Figure 3.1B and 3.1D). For both strains, the candidate 

essential genes unique to the transposon mutant libraries (i.e., PAO1.LB.913 and 

PA14.LB.1544) accounted for the largest grouping, reflecting the disproportionately large 

size of both screens’ candidate essential gene lists relative to the transposon sequencing 

screens. Approximately 63% and 54% of the essential genes were unique to the 

PA14.LB.1544 and PAO1.LB.913 screens, respectively. While genes were uniquely essential 

for PAO1 on individual LB screens, there were no genes uniquely essential to all three LB 
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screens; rather, the genes identified as commonly essential in all three LB screens were also 

identified in one or more of the sputum, pyruvate and succinate screens. This trend also held 

for the PAO1 sputum screens; however, 61 genes were uniquely identified in the succinate 

minimal media screen and two genes were uniquely identified in the pyruvate minimal 

media screen, perhaps reflecting the more stringent conditions of the minimal media screens 

relative to the more rich conditions of the LB and sputum screens.   

This analysis revealed substantial differences in the overlap of the candidate essential 

genes across the screens. Using the number of intersections as an indicator of variability, 

comparison of the PAO1 screens resulted in more than 30 intersections, while comparison 

of the PA14 screens resulted in seven, highlighting the discrepancies between the screens 

for both P. aeruginosa strains. This heterogeneity across the screens could be attributed to a 

number of factors such as screening approach (e.g., individually mapped mutants versus 

transposon sequencing), library complexity, metrics of essentiality, data analysis, and the 

media conditions tested. To investigate the possibility that these discrepancies were 

completely due to data analysis alone and not experimental differences, we re-analyzed the 

sequencing data for the PAO1 transposon sequencing screens performed on LB where 

sequencing data was publicly available using the same analytical pipeline (Figure 

3.2)[18,20].  

https://paperpile.com/c/Uo3CiH/lhSPc+DxIw
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Figure 3.2. Comparison of candidate essential genes from PAO1 LB transposon 
mutagenesis screens reveals variability across screens.  
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(A and C). Venn diagrams of original (Panel A) and re-analyzed (Panel C) candidate essential 
gene lists from PAO1 transposon mutagenesis screens performed on LB. (B and D). Overlap 
analysis of original (Panel B) and re-analyzed (Panel D) candidate essential gene lists for 
PAO1 transposon mutagenesis screens performed on LB. Blue bars indicate the total number 
of candidate essential genes identified in each screen. Black bars indicate the number of 
candidate essential genes unique to the intersection given by the filled-in dots. The orange 
bar indicates the overlap of both screens. 

 

As expected, when the same analysis pipeline was applied to the two screens, there was an 

increase in the number of commonly essential genes compared to the overlap between the 

published results. However, there were still genes that were identified as uniquely essential 

to each screen. These results suggest that differences in data processing alone do not account 

for the observed variability between the screens but that experimental differences, such as 

library complexity, number of replicates, and read depth, likely also contribute. 

To determine potential core essential genes (i.e., genes that are essential regardless 

of media or other conditions), we measured the number of genes that were shared by all of 

the screens for either PAO1 or PA14. Surprisingly, only 17 genes were shared by all PAO1 

screens while 192 genes were shared by all PA14 screens. These numbers of core essential 

genes are lower than expected, particularly for strain PAO1. Typically, essential genes are 

thought to number a few hundred for the average bacterial genome [21]. We reasoned that 

this unexpectedly low number of observed core essential genes might be due to the variety 

of media conditions across the PAO1 screens, so we repeated our analysis focusing only on 

the LB media screens for both PA14 and PAO1 (Figure 3.3). 

https://paperpile.com/c/Uo3CiH/Bvrb
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Figure 3.3. Comparison of candidate essential genes from LB transposon mutagenesis 
screens reveals variability across screens. 
(A and C). Venn diagram of candidate essential genes lists for transposon mutagenesis 
screens performed on LB for PAO1 and PA14, respectively. (B and D). Overlap analysis of 
candidate essential gene lists for transposon mutagenesis screens performed on LB for PAO1 
and PA14, respectively. Blue bars indicate the total number of candidate essential genes 
identified in each screen. Black bars indicate the number of candidate essential genes unique 
to the intersection given by the filled-in dots. The orange bar indicates the overlap for all 
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screens for either PAO1 (Panel B) or PA14 (Panel D). The black and orange bars correspond 
to the intersections identified in the venn diagrams in panels A and C. 

 
Interestingly, the trends remained the same, with 434 genes shared across both PA14 LB 

media screens and only 44 genes shared across all PAO1 LB media screens. Overall, the PA14 

screens had higher numbers of essential genes compared to those for PAO1, with all the PA14 

screens having at least 400 essential genes. In contrast, there were four PAO1 screens with 

less than 350 essential genes. Together, these differences suggest greater variability for 

transposon mutagenesis in PAO1 compared to PA14. Strain-specific differences in 

essentiality have been reported previously but are underappreciated [22]. This result adds 

to the growing literature emphasizing how the genetic background of the strain analyzed 

may impact the identification of essential genes. Nevertheless, the identified core essential 

genes point to genes that may potentially be indispensable for bacterial growth and survival 

regardless of condition.  

Taken together, results from this comparison revealed vast differences between the 

candidate essential gene lists across screens, even for those from the same media condition. 

These differences may be due to a number of factors such as experimental screening 

approach, library complexity, read depth, and downstream data analysis. Ultimately, this 

variability complicates the discovery of essential genes with high-confidence.  

 
3.3.2 Contextualization of gene essentiality datasets using genome-scale metabolic network 

reconstructions 

 
A central challenge of transposon mutagenesis screens lies in the interpretation of 

why a gene is or is not essential in a given condition. Here, we demonstrate the utility of 

genome-scale metabolic network reconstructions to contextualize gene essentiality and 

https://paperpile.com/c/Uo3CiH/EMqZa
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provide mechanistic explanations for the essentiality status of metabolic genes. To do this, 

we compared the in vitro candidate essential gene lists to predicted essential genes from the 

PAO1 and PA14 GENREs [23]. These GENREs were previously shown to predict gene 

essentiality with an accuracy of 91% [23]. For both models, we simulated in silico gene 

knockouts under media conditions that approximated those used in the in vitro screens and 

assessed the resulting impact on biomass synthesis as an approximation for growth 

(Supplementary Data 3, Supplementary Data 4). Genes were predicted to be essential if 

biomass production for the associated mutant model was below a standard threshold. 

Predicted essential gene lists for both the PAO1 and PA14 models under the different media 

conditions were compared to the candidate essential gene lists for each of the experimental 

screens and the matching accuracy between model predictions and the in vitro screens was 

assessed (Figure 3.4A, Table 3.3).  

https://paperpile.com/c/Uo3CiH/Nd1T
https://paperpile.com/c/Uo3CiH/Nd1T
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Figure 3.4. Contextualization of gene essentiality datasets using genome-scale 
metabolic network reconstructions. 
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(A). Comparison of model essentiality predictions to in vitro essentiality screens. In silico 
gene knockouts were performed for both PA14 and PAO1 genome-scale metabolic network 
reconstructions to predict essential genes. Model-predicted essential genes were compared 
to the candidate essential genes for each in vitro screen. The bars show the result of this 
comparison, with orange indicating the number of genes for which both the model and 
experimental screen identified the gene as nonessential (match: both nonessential), red 
indicating the number of genes for which the model identified the gene as nonessential 
whereas the screen identified the gene as essential (mismatch: model-nonessential, screen-
essential), green indicating the number of genes for which both the model and experimental 
screen identified the gene as essential (match: essential), and blue indicating the number of 
genes for which the model identified the gene as essential whereas the screen identified the 
gene as nonessential (mismatch: model-essential, screen-nonessential). (B). Functional 
subsystems for PA14 consensus essential and nonessential genes that were also correctly 
predicted to be essential or nonessential in the PA14 GENRE. Consensus essential and 
nonessential genes were identified for PA14 by comparing all three LB screens and 
determining genes essential or nonessential in all three screens. (C and D). Metabolic 
pathways demonstrating essentiality for the consensus essential genes adk and glmS, 
respectively. Dashed lines represent inputs and outputs of the pathway, or, as in D, multiple 
steps. Brown boxes indicate media inputs, while purple boxes indicate biomass outputs. 
Metabolites are labeled beside the nodes, with bold metabolites indicating biomass 
components. Genes associated with the specific reaction are indicated. (E). Flux activity in 
pyrimidine metabolism under both sputum and LB media conditions. Consensus LB essential 
genes were compared to consensus sputum essential genes for PAO1. The PAO1 GENRE was 
used to explain differences in essentiality between the two media-types. Black lines indicate 
that the reaction is capable of carrying flux under both sputum and LB conditions, while the 
gray lines indicate that the reaction does not carry flux in sputum conditions but does in LB 
conditions. Brown boxes are media inputs, purple boxes are biomass outputs. Metabolites 
are labeled above the nodes, with bold metabolites indicating biomass components. Many of 
these metabolites are involved in many reactions beyond pyrimidine metabolism. Gene-
protein-reaction relationships are indicated in italics beside each reaction edge. 

 
Table 3.3. Percent accuracy between model predictions of essentiality and in vitro 
identified essential genes. 
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 As expected, most genes were identified as nonessential by both the screens and the 

models. These nonessential genes likely encode redundant features in the metabolic 

network, such as isozymes or alternative pathways, or are involved in accessory metabolism, 

such as the production of small molecule virulence factors. Interestingly, the number of 

screen-essential genes predicted as nonessential was significantly larger than the number of 

screen-nonessential genes predicted as essential (p < 0.01, as measured by Wilcoxon signed-

rank test). We hypothesize that the reason for this difference is due to the increased 

likelihood of an in vitro screen missing a gene, potentially due to gene length or transposition 

cold spots [16], and subsequently incorrectly identifying it as essential.  

This analysis can help to provide specific functional explanations for essentiality. 

Where there is agreement between the model predictions and in vitro screens, we can use 

the network to explain why a gene is or is not essential. Similarly, we can analyze the network 

to explain why a gene may be essential in one media condition versus another. A mismatch 

denotes some discrepancy between the model predictions and the experimental results. 

These mismatches may point to a gap in the model, indicating that it is missing some relevant 

biological information. Alternatively, the mismatches may be due to experimental variability 

such as differences in environmental conditions or technique.  

To begin contextualizing the gene essentiality datasets using the GENREs, we focused 

on metabolic genes that were identified as essential or as nonessential in all LB screens for 

either PAO1 or PA14 (which we termed “consensus essential genes” and “consensus 

nonessential genes”, respectively) (Table 3.4, Supplementary Data 5, Supplementary Data 6).  

https://paperpile.com/c/Uo3CiH/Uubi4
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Table 3.4. Consensus metabolic essential and non-essential genes for PAO1 and PA14 
media conditions with more than two screens. 

 
Consensus essential genes have a greater likelihood of being truly essential rather than 

experimental artifacts since they were identified as such in multiple independent screens. 

We then compared these lists of consensus essential genes and consensus nonessential 

genes to the model predictions of essentiality in LB media.  

From this comparison, we found 45 of 113  consensus  essential genes predicted to 

be essential by the PA14 model and 777 of 800 consensus nonessential genes predicted to 

be nonessential by the PA14 model.  For PAO1, we found seven of 15 consensus essential 

genes predicted to be essential by the PAO1 model and 843 of 863 consensus nonessential 

genes predicted as nonessential by the PAO1 model (Table 3.4). The low number of 

consensus essential genes for PAO1 reflects the high variability between screens, as 

highlighted in Figures 3.1 and 3.2. 

We then used the models to delineate subsystem assignments for the model-

predicted consensus essential and nonessential genes (Figure 3.4B for PA14 and Figure 3.5 

for PAO1).  
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Figure 3.5. Distribution of PAO1 consensus essential and nonessential genes across 
model subsystems. 
Functional subsystems for PAO1 consensus essential and nonessential genes that were also 
identified to be essential or nonessential in the PAO1 genome-scale metabolic network 
model. Consensus essential and nonessential genes were identified for PAO1 by comparing 
all three LB screens and identifying those genes which were either essential or nonessential 
in all three screens. 

 
As expected, the consensus nonessential genes spanned most subsystems within the 

network, likely due to redundancy in the network as well as the presence of accessory 

metabolic functions that are not critical for biomass production. In contrast, for PA14, the 

consensus essential genes were limited to seven of the 14 subsystems within the network 

(note that this trend does not hold for PAO1 because there were very few consensus essential 

genes to consider). These seven subsystems capture metabolic pathways that are critical for 

bacterial growth and survival. For instance, lipid metabolism is essential for building and 

maintaining cell membranes, while carbohydrate metabolism is critical for ATP generation. 

None of the genes involved in transport were consensus essential genes. Because we only 

considered screens performed in LB media, transport of individual important metabolites, 

such as a specific carbon sources, was not a limiting factor given the abundant availability of 
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such compounds in rich media conditions. However, we would expect that if we considered 

screens performed under minimal media conditions, relevant transport genes would be 

essential for bacterial growth. 

Because these consensus essential genes were also predicted to be essential by the 

model, we can use the network to provide functional reasons for essentiality. For example, 

both the model and screens identified the gene adk, encoding adenylate kinase, as essential. 

Using the model, we determined that when adk is not functional, the conversion of 

deoxyadenosine diphosphate (dADP) to deoxyadenosine monophosphate (dAMP) cannot 

proceed, impacting the cell’s ability to synthesize DNA and ultimately produce biomass 

(Figure 3.4C). The model can also tease out less obvious relationships. For instance, both the 

model and the screens identified glmS, encoding glucosamine-fructose-6-phosphate 

aminotransferase, as essential. Using the model, we found that when glmS is not functional, 

the conversion of L-Glutamine to D-Glucosamine phosphate cannot proceed. D-Glucosamine 

phosphate is an essential precursor to both Lipid A, a component of the endotoxin 

lipopolysaccharide, and peptidoglycan, which forms the cell wall (Figure 3.4D). For each of 

the model-predicted consensus essential genes, we identified which biomass components 

could not be synthesized when the gene was removed from the model (Supplementary Data 

7 and Supplementary Data 8). Further analysis is necessary to tease out the metabolic 

pathways that prevent synthesis of these biomass metabolites; however, from the examples 

above it is evident that GENREs can provide both obvious and non-obvious functional 

explanations for essentiality, streamlining the interpretation of transposon mutagenesis 

screens. 
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In addition to identifying consensus essential and nonessential genes that were in 

agreement with the models, we also uncovered discrepancies between model predictions 

and experimental results. For PAO1 and PA14, respectively, there were 8 and 68 consensus 

essential genes that the models predicted to be nonessential and 20 and 23 consensus 

nonessential genes that the models predicted to be essential. These mismatches between 

model predictions and experimental results provide insight into gaps in our understanding 

of P. aeruginosa metabolism.  

In the case where a consensus essential gene was predicted to be non-essential by the 

model, this result indicates that the model has some additional functionality that is not 

available in vitro. This result could be an inaccuracy of the network reconstruction or it could 

be a result of using a non-condition-specific network where the model has access to all 

possible reactions in the network. Because cells undergo varying states of regulation, gene 

essentiality can be modulated as a result. Thus, profiling data such as transcriptomics could 

be integrated into the network reconstruction to generate a condition-specific model to 

improve model predictions under specified conditions [24,25]. 

In contrast, in the case where a consensus nonessential gene was predicted to be 

essential, this result indicates that the model is missing key functionality, pointing to areas 

of potential model curation. Using this list of discrepancies to guide curation (Table 3.5), we 

performed an extensive literature review and found several suggested changes to the 

metabolic network reconstruction (Supplementary Data 9).  

https://paperpile.com/c/Uo3CiH/ulk1y+8I3qc
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Table 3.5. Discrepancies between model predicted essential genes and in vitro 
identified consensus nonessential genes for PAO1. 

 
For instance, we incorrectly predicted as essential the gene fabI (PA1806), which is linked to 

triclosan resistance; however, a recent study discovered an isozyme of fabI in PAO1 called 

fabV (PA2950) [26]. To account for this new information, we suggest changing the gene-

protein-reaction (GPR) relationship for the 28 reactions governed by fabI to be “fabI OR 

fabV”, making fabI no longer essential in the model. Additionally, our model incorrectly 

predicted the genes ygiH (PA0581) and plsX (PA2969) to be essential due to a GPR 

formulation of “ygiH AND plsX” for several reactions in glycerolipid metabolism. Literature 

https://paperpile.com/c/Uo3CiH/UYyMQ
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evidence suggests that the gene-product of plsB (PA3673) is also able to catalyze these 

reactions. Specifically, the gene-products of both plsB and the ygiH/plsX system are able to 

carry out the acylation of glycerol-3-phosphate from an acyl carrier protein whereas only 

the gene-product of plsB is able to carry out this reaction for acyl-CoA thioesters [27,28]. This 

experimental evidence motivates changing the GPRs for 16 reactions in glycerolipid 

metabolism.  

In addition to changes in the GPR formulation for specific reactions, we also identified 

a potential change to the biomass reaction. Two PAO1 genes, glgA (PA2165) and algC 

(PA5322), are incorrectly predicted as essential for the synthesis of glycogen, a biomass 

component. Glycogen is not an essential metabolite for P. aeruginosa growth; however, it is 

very important for energy storage, which is why it was initially included in the biomass 

reaction [29]. Removal of glycogen from the biomass equation would make glgA and algC 

accurate predictions as nonessential genes in PAO1. Implementing these proposed changes 

in the PAO1 and PA14 GENREs resulted in enhanced predictive capability of the models 

(Supplementary Data 10, Supplementary Data 11, Table 3.4). The updated PAO1 model 

predicted consensus gene essentiality status in LB media with an accuracy of 97.4% 

compared to 96.8% for the original model. Meanwhile, the updated PA14 model predicted 

consensus gene essentiality status in LB media with an accuracy of 90.5% compared to 

90.0% for the original mode. It is worth noting that, although these changes to the 

reconstructions were made to address essentiality discrepancies in LB media conditions, 

they also improved the PAO1 model predictive capabilities for consensus genes in sputum 

media, increasing accuracy from 92.6% to 93.0%. 

https://paperpile.com/c/Uo3CiH/ikGsx+IwFgc
https://paperpile.com/c/Uo3CiH/rb69F
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While we identified several changes to the model to improve predictions, there were 

several genes for which we could find no literature evidence to change their predicted 

essentiality status.  These genes highlight gaps in our current knowledge and understanding 

of Pseudomonas metabolism and indicate areas of future research. Identification of these 

knowledge gaps is not possible without the reconciliation of experimental data with model 

predictions. Ultimately, this analysis demonstrates the utility of integrating data with 

GENREs to improve gene annotation and suggest areas of future research. 

 In addition to contextualizing essentiality for a given media condition, we also used 

the model to explain why certain metabolic genes are essential in one media-type versus 

another. We compared consensus LB essential genes to consensus sputum essential genes 

for PAO1 and identified the essential genes that were either shared by both conditions or 

unique to one condition versus the other. Overall, 18 genes were commonly essential, while 

92 genes were uniquely essential in sputum and 26 genes were uniquely essential in LB, 

indicating the presence of condition-dependent essential genes. 

 We then focused our analysis just on those genes that were also present in the PAO1 

model and compared these lists to model predictions. We found four genes that both the 

model and the screens indicated as uniquely essential in sputum but not in LB. Interestingly, 

all four of these genes (pyrB, pyrC, pyrD, and pyrF) are involved in pyrimidine metabolism. 

Applying flux sampling [30] to the PAO1 metabolic network model, we investigated why 

these four genes were uniquely essential in sputum but not in LB (Figure 3.4E). The 

pyrimidine metabolic pathway directly leads to the synthesis of several key biomass 

precursors (UMP, CMP, dCMP and dTMP), making it an essential subsystem within the 

network. Under LB media conditions, there are two inputs into the pathway, one through L-

https://paperpile.com/c/Uo3CiH/sX6t0
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Glutamine and the other through Cytosine. However, in sputum media conditions, L-

Glutamine is the only input into the pathway. Because of this reduction in the number of 

available substrates in sputum media, the steps for L-Glutamine breakdown must be active 

to synthesize the biomass precursors. Thus, the genes responsible for catalyzing this 

breakdown are essential in sputum media conditions. In contrast, because there are two LB 

substrates that feed into pyrimidine metabolism, if a gene involved in the breakdown of one 

of the substrates is not functional the other substrate is still accessible, thus making the 

deletion of that gene nonessential.  

As stated above, further constraining the model with profiling data from both media 

conditions would help to further contextualize differences in the essentiality results by 

modulating the availability of certain reactions. Nevertheless, as demonstrated here, the 

metabolic network reconstruction can be a useful tool for providing functional explanations 

for why certain genes are essential in one condition versus another.  

 
3.3.3 Quantitative evaluation of the impact of media formulation on condition-independent 

essential gene identification 

 
Given the variability in the number of candidate essential genes across the screens, 

we were interested in using the models to quantitatively evaluate the impact of media 

conditions on essentiality. We first focused our analysis on how the number of considered 

minimal media conditions impacts the number of condition-independent essential genes 

identified, or the number of genes found as essential in every condition. To do this, we 

simulated growth of the PA14 model on 42 different minimal media and performed in silico 

gene knockouts, identifying the genes essential for biomass production on each media 

condition (Figure 3.6A).  
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Figure 3.6. Computational assessment of the impact of number of minimal media 
conditions considered on condition-independent essentiality.  
(A). Pipeline for computational assessment of the impact of minimal media composition on 
condition-independent essentiality. The base PA14 model is grown on 42 different minimal 
media. For each minimal media condition, the in silico essential genes are identified, resulting 
in 42 essential gene lists. Initially, pairwise comparisons are made between minimal media 
essential gene lists to identify the shared essential genes. Specifically, the essential gene lists 
from two randomly selected minimal media conditions are compared to determine the 
overlap between the two gene lists. This random selection of two minimal media conditions 
to compare is repeated 500 times. The average number of overlap genes for all 500 
comparisons is calculated as well as the standard deviation. Ultimately, this random 
selection of groups of minimal media conditions to compare is repeated for groups of three 
minimal media conditions, groups of four, and so on, up to groups of 40 minimal media 
conditions. (B). Impact of minimal media differences on the identification of condition-
independent essential genes. Each data point represents the mean from 500 comparisons. 
Error bars indicate standard deviation. 

 
We then randomly selected groups of minimal media conditions and compared their 

essential gene lists to determine the commonly essential genes, defined as the overlap. We 

performed this random selection of minimal media conditions for group sizes ranging from 

two to 40 minimal media conditions considered. For each group size, we randomly selected 

minimal media conditions 500 times. As expected, the more media conditions considered, 

the smaller the overlap of essential genes (Figure 3.6B). This relationship between the 

number of media conditions considered and the size of the overlap is best characterized by 
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an exponential decay, with the size of the overlap eventually converging on 131 genes as 40 

conditions are considered. This result suggests that to identify a core set of condition-

independent essential genes, dozens of minimal media screens need to be compared. 

However, variability between the screens, as indicated by the error bars, could still confound 

interpretation, necessitating the comparison of replicates and potentially even more screens 

to truly identify condition-independent essential genes with high confidence. 

We next assessed how modifications to a rich media, like LB, impact gene essentiality. 

LB is a complex media with known batch-to-batch variability [31,32], motivating this 

analysis of how differences in LB composition can alter essentiality. Given the challenge of 

modeling concentration, here the simulations focus on the presence or absence of 

metabolites in LB media. Specifically, we randomly selected carbon source components from 

LB media in sets of varying sizes, ranging from two to 21 LB media components considered. 

We then used these sets as the model media conditions and performed in silico gene 

knockouts to identify essential genes for biomass production on each LB media formulation 

(Figure 3.7A).  

https://paperpile.com/c/Uo3CiH/xjaKi+tzWfc


82 
 

 
Figure 3.7. Computational assessment of the impact of LB media composition on 
condition-independent essentiality. 
(A). Pipeline for computational assessment of the impact of LB media formulation on 
condition-independent essentiality. The PA14 model is grown on different media 
formulations consisting of random groups of LB components. For instance, two random LB 
components are selected out of a pool of 23 LB components. The model is grown on these 
randomly selected pairs and the essential genes for growth on this media formulation are 
identified. This analysis is repeated 100 times for 100 pairs of LB media components. The 
average number of essential genes for growth on these random pairs across 100 different 
formulations is calculated as well as the standard deviation. Additionally, the essential genes 
common to all 100 different formulations is determined. Ultimately, this random selection 
of groups of LB media components to support growth of the model and essential gene 
identification is repeated for groups of three LB components, groups of four, and so on, to 
groups of 21 LB media components. (B) Impact of LB media formulation on the identification 
of condition-independent essential genes. Circles represent the average number of essential 
genes identified in different LB media formulations across 100 comparisons. Triangles 
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represent the shared essential genes (i.e., the overlap) across all 100 comparisons. Error bars 
indicate standard deviation.  (C) Number of replicates needed to converge on shared 
essential genes in different LB formulations. The pipeline outlined in Panel A was repeated 
10 independent times, with 100 replicates per set size. For each iteration, the number of 
replicates needed to recapture the 111 overlapping genes was calculated. Each data point 
represents the average number of replicates from the 10 runs. Error bars indicate standard 
deviation. 

 
For each set size, we randomly selected LB components 100 times and calculated the average 

number of essential genes identified as well as the number of shared essential genes across 

all 100 sets. As the number of LB media components increases, we found that the size of the 

essential gene lists decreases linearly (Figure 3.7B). If we were to consider even more media 

components beyond the scope of LB, we predict that this linear relationship would 

eventually plateau due to limitations in the metabolic network. This result suggests that a 

media richer than LB may be necessary to identify a core set of condition-independent 

essential genes. 

Interestingly, we found that as more complex LB media formulations are considered, 

the number of shared essential genes across 100 simulations quickly converges on 111. 

Indeed, only three LB media components were needed to achieve this overlap. Thus, even 

though the average size of essential gene lists is larger for less complex media formulations, 

the overlap of these larger essential gene lists still results in the same overlap as more 

complex media formulations, suggesting that changes in complex media formulation have 

minimal impact on determining a core set of essential genes.  

However, for this analysis, we had compared 100 random media formulations for 

each set size, potentially masking the impact of media changes on essentiality. To identify 

how many LB media formulations need to be compared to converge on this overlap value, 

we re-ran this analysis 10 times and, for each iteration, determined the number of samples, 
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or replicates, needed to recapture the 111 overlapping genes (Figure 3.7C). In more complex 

media formulations, relatively few comparisons are needed to identify the 111 overlapping 

essential genes. However, as fewer LB media components are considered, more comparisons 

need to be made. For example, in the case of formulations consisting of only three LB media 

components, nearly 60 comparisons are needed to converge on the 111 overlap essential 

genes. Thus, as the media formulation diverges from true LB due to batch-to-batch 

variability, more comparisons are necessary to converge on a core set of essential genes.  

Taken together, these computational analyses define the scope that is needed to 

identify condition-independent essential genes. These results suggest that both the number 

of media conditions and the number of replicates analyzed can impact our ability to 

determine condition-independent essential genes. 

 

3.4 Discussion 
 
The identification of both condition-dependent and condition-independent essential 

genes has been a long-standing interest [33,34]. Determination of these essential processes 

can aid in the discovery of novel antibacterial targets as well as the discovery of minimal 

genomes required to sustain life [7,35]. In this study, we performed a large-scale comparison 

of multiple gene essentiality datasets and contextualized essential genes using genome-scale 

metabolic network reconstructions. We applied this approach to several P. aeruginosa 

transposon mutagenesis screens performed on multiple media conditions and demonstrated 

the utility of GENREs in providing functional explanations for essentiality and resolving 

differences between screens. Finally, using the P. aeruginosa GENRE, we performed a high-

throughput, quantitative analysis to determine how media conditions impact the 

https://paperpile.com/c/Uo3CiH/gHYsz+V3TBB
https://paperpile.com/c/Uo3CiH/s1Qik+TzB2B
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identification of condition-independent essential genes. The resulting insights would be 

challenging to develop without the use of a computational model of P. aeruginosa 

metabolism. Our work enables the elucidation of mechanistic explanations for essentiality, 

which is challenging to determine experimentally. Ultimately, this approach serves as a 

framework for future contextualization of gene essentiality data and can be applied to any 

cell type for which such data is available. Additionally, by quantifying the impact of media 

conditions on the identification of condition-independent essential genes, we contribute 

novel insights for design of future gene essentiality screens and identification of core 

metabolic processes. 

Recent advances in deep-sequencing technologies combined with transposon 

mutagenesis have enabled high-throughput determination of candidate essential genes for a 

variety of bacterial species in a wide range of environmental conditions [36]. While 

researchers have demonstrated reasonable reproducibility within a given study [37], 

variability across studies has been suggested but not assessed on a large-scale [1,38]. Our 

comparison of multiple P. aeruginosa transposon mutagenesis screens revealed substantial 

variability in candidate essential genes within and across media conditions, particularly for 

strain PAO1. Numerous factors may contribute to this lack of overlap between the screens, 

such as differences in transposon insertion library complexity, differences in data analysis 

and statistical determination of essentiality, as well as environmental variability between 

the screens [8,9]. Factors such as these lead to discrepancies between screens and 

complicate our ability to identify high-confidence sets of condition-dependent and 

condition-independent essential genes.  

https://paperpile.com/c/Uo3CiH/bHJkZ
https://paperpile.com/c/Uo3CiH/N45Nr
https://paperpile.com/c/Uo3CiH/73YAA+eFyeL
https://paperpile.com/c/Uo3CiH/kWEKf+9PamQ
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Focusing on one of these factors, we used the metabolic model of P. aeruginosa strain 

PA14 to quantitatively assess how media formulation impacts the identification of condition-

independent essential genes. While previous in vitro studies have surveyed conditional 

essentiality in numerous environmental conditions, these screens used an already 

established mutant library for each media-type [39]. In this work, we computationally 

generated de novo mutant libraries for individual media conditions, eliminating any bias 

from starting with an established mutant library. Ultimately, we found that to determine a 

high-confidence set of core essential genes for minimal media conditions, more than 40 

minimal media formulations need to be compared. We extended this analysis to consider 

how differences in rich media formulations impact gene essentiality and found that as rich 

media formulations diverge, as many as 60 replicates are needed to identify condition-

independent essential genes with high-confidence. Taken together, these computational 

results suggest a rich opportunity for a large-scale experimental effort to identify with high 

confidence condition-independent essential genes. These insights would be impossible to 

garner without computational modeling due to the sheer number of comparisons made. 

In addition to variability between datasets, a central difficulty of performing gene 

essentiality screens lies in the interpretation of why a gene is essential in a given condition. 

Oftentimes, laborious follow-up experiments are necessary to investigate the role of a gene 

in a given condition using lower-throughput approaches [36]. Here, we presented a strategy 

for contextualizing gene essentiality data using genome-scale metabolic network 

reconstructions. We demonstrated the utility of this approach by providing functional 

reasons for essentiality for consensus LB media essential genes. For these genes, we 

determined which specific components of biomass could not be synthesized when the gene 

https://paperpile.com/c/Uo3CiH/0R8E
https://paperpile.com/c/Uo3CiH/bHJkZ
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was knocked out. Additionally, by analyzing the network structure and flux patterns, we used 

the model to explain why certain genes are essential in one condition versus another. Our 

computational approach provides testable hypotheses regarding the functional role of a gene 

in synthesizing biomass in a given environmental condition, streamlining downstream 

follow-up experiments. In future work, profiling data could be integrated with the metabolic 

networks to further enhance the utility of these models in contextualizing gene essentiality 

[24]. Additionally, integration of transcriptional regulatory networks with the GENREs 

would further expand the number of genes considered [40]. 

 In summary, genome-scale metabolic network reconstructions can guide the design 

of gene essentiality screens and help to interpret their results. The identification of both 

condition-independent and condition-dependent essential genes is vital for the discovery of 

novel therapeutic strategies and mechanistic modeling streamlines the ability to identify 

these genes. This framework can be applied to numerous other organisms of both clinical 

and industrial relevance. 

 

3.5 Methods 
 
3.5.1 Data sources 

 
Transposon insertion library datasets were downloaded from the original publication 

for each screen where available. Screens were renamed following this pattern: 

Strain.Media.NumEssentials, where Strain indicated whether the screen was for strain PAO1 

or PA14, Media indicated which media condition the screen was performed on, and 

NumEssentials indicated the number of essential genes identified for the given strain on the 

given media condition. Specifically, for the PAO1.LB.201, PAO1.Sputum.224, and 

https://paperpile.com/c/Uo3CiH/ulk1y
https://paperpile.com/c/Uo3CiH/LBZNd
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PAO1.Pyruvate.179 datasets, Dataset_S01 was downloaded from [19]. For the PAO1.LB.335, 

PAO1.Sputum.405, and PAO1.Succinate.640 datasets, Dataset_S01 was downloaded from 

[18]. For the PA14.LB.634 dataset, Table S1 was downloaded from [17]. For the 

PA14.Sputum.510 dataset, Dataset_S04 was downloaded from [18]. For the PAO1.LB.913 

dataset, PA_two_allele_library5.xlsx was downloaded from the Manoil Laboratory website 

(http://www.gs.washington.edu/labs/manoil/libraryindex.htm). For the PA14.LB.1544 

dataset, NRSetFile_v5_061004.xls was downloaded from the PA14 Transposon Insertion 

Mutant Library website (http://pa14.mgh.harvard.edu/cgi-bin/pa14/downloads.cgi).  

The PAO1 and PA14 genome-scale metabolic network reconstructions were 

downloaded from the Papin Laboratory website 

(http://www.bme.virginia.edu/csbl/Downloads1-pseudomonas.html).  

 
3.5.2 Generation of candidate essential gene lists 

 
Candidate essential genes were determined for each screen as follows. For 

PAO1.LB.201, we considered genes to be essential if they were not disrupted in all six of the 

Tn-seq runs on LB in the original dataset. For PAO1.Sputum.224, we considered genes to be 

essential if they were not disrupted in all four of the Tn-seq runs on sputum in the original 

dataset. For PAO1.Pyruvate.179, we considered genes to be essential if they were not 

disrupted in all three of the Tn-seq screens on Pyruvate minimal media in the original 

dataset. For PAO1.LB.335, PAO1.Sputum.405, and PAO1.Succinate.640, we used the genes 

that were labeled as essential in the original dataset. For PAO1.LB.913, the mutants listed in 

the transposon insertion library were compared to a list of all known genes in the PAO1 

genome. Genes in the PAO1 genome that were not in the mutant library list were considered 

https://paperpile.com/c/Uo3CiH/8jUxB
https://paperpile.com/c/Uo3CiH/lhSPc
https://paperpile.com/c/Uo3CiH/dCCFJ
https://paperpile.com/c/Uo3CiH/lhSPc
http://www.gs.washington.edu/labs/manoil/libraryindex.htm
http://pa14.mgh.harvard.edu/cgi-bin/pa14/downloads.cgi
http://www.bme.virginia.edu/csbl/Downloads1-pseudomonas.html
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to be essential. For PA14.LB.634, we used the genes listed as essential in the original dataset. 

For PA14.BHI.424 and PA14.Sputum.510, we used the genes that were labeled as essential 

in the original dataset. For PA14.LB.1544, the mutants listed in the transposon insertion 

library were compared to a list of all known genes in the PA14 genome. Genes in the PA14 

genome that were not in the mutant library list were considered to be essential.  

 
3.5.3 Comparison of candidate essential gene lists 

 
Hierarchical clustering with complete linkage was performed on the candidate 

essential gene lists for the PA14 and PAO1 screens and visualized with a dendrogram. The 

overlap between the datasets was visualized using the R-package, UpsetR [41]. 

 
3.5.4 Re-analysis of transposon sequencing datasets 

 
PAO1.LB.335 sequencing data were downloaded from NCBI SRA under the accession 

number SRX031647. PAO1.LB.201 sequencing data were downloaded from NCBI SRA under 

the accession number PRJNA273663. Data were analyzed using methods adapted from 

[18,20]. Briefly, reads were mapped to the PAO1 reference genome (GCA_000006765.1 

ASM676v1 assembly downloaded from NCBI) using bowtie2 v.2.3.4.1. Open reading frame 

assignments were modified where 10% of the 3’ end of every gene was removed in order to 

disregard insertions that may not interrupt gene function. Aligned reads were mapped to 

genes and we removed the 50 most abundant sites to account for potential PCR amplification 

bias. We applied weighted LOESS smoothing to correct for genome position-dependent 

effects. One-hundred random datasets were generated by randomizing insertion locations. 

Previous analysis showed that results begin to converge after 50 random datasets [18]. We 

compared the random datasets to the experimental datasets with a negative binomial test in 

https://paperpile.com/c/Uo3CiH/9v1Gj
https://paperpile.com/c/Uo3CiH/lhSPc+DxIw
https://paperpile.com/c/Uo3CiH/lhSPc
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DESeq2.  We corrected for multiple testing by adjusting the p-value with the Benjamini-

Hochberg method. We used the mclust package in R to test whether a gene was ‘reduced’ or 

‘unchanged’. Genes were called ‘essential’ if they were assigned to the ‘reduced’ category by 

mclust with an adjusted p-value <0.05 and uncertainty <0.1. 

 
3.5.5 Model gene essentiality predictions 

 
In silico gene essentiality screens were performed in relevant media conditions using 

the PAO1 and PA14 genome-scale metabolic network reconstructions [23]. Specifically, 

media formulations were computationally approximated for LB, sputum, pyruvate minimal 

media, and succinate minimal media for the PAO1 simulations and LB and sputum for the 

PA14 simulations. Systematically, genes were deleted from the models one-by-one and the 

resulting impact on biomass production was assessed. If biomass production for the 

associated mutant model was below 0.0001 h-1, a standard threshold, the knocked-out gene 

was predicted to be essential [23]. For each in silico predicted essential gene, we determined 

which biomass components specifically could not be synthesized using the COBRA toolbox 

function, biomassPrecursorCheck() [42]. Statistical significance for the comparison of the 

“mismatch: model nonessential, screen essential” category and the “mismatch: model 

essential, screen nonessential” category was assessed using the Wilcoxon signed-rank test.  

 
3.5.6 Subsystem assignment of consensus essential and nonessential genes 

 
For each of the consensus essential and nonessential genes that were also present in 

the PAO1 and PA14 models, we determined which subsystems they participated in using an 

in-house script (see Supplementary Information). Briefly, we first converted model 

subsystems to broad subsystems based on KEGG functional categories [43]. We then 

https://paperpile.com/c/Uo3CiH/Nd1T
https://paperpile.com/c/Uo3CiH/Nd1T
https://paperpile.com/c/Uo3CiH/kXDuv
https://paperpile.com/c/Uo3CiH/PJgol
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identified the reactions associated with the gene of interest and used the broad subsystem 

of this reaction to indicate the subsystem assignment for the gene of interest. Where there 

was more than one reaction connected to a gene, we used the reaction associated with the 

first instance of the gene in the network for subsystem assignment. 

 
3.5.7 Flux sampling in LB and sputum 

 
The impact of media conditions on flux through pyrimidine metabolism in the PAO1 

metabolic network reconstruction was assessed using the flux sampling algorithm 

optGpSampler [30]. Briefly, optGpSampler samples the solution space of genome-scale 

metabolic networks using the Artificial Centering Hit-and-Run algorithm and returns a 

distribution of possible flux values for reactions of interest. Three-thousand flux samples 

were collected for each simulation, using one thread and a step-size of one. Maximization of 

biomass synthesis was set as the objective function. Flux sampling simulations were 

performed for PAO1 grown in LB media and sputum media. The median flux values for every 

reaction in pyrimidine metabolism were compared between the LB and sputum simulations 

to determine whether flux was higher, lower, or unchanged in sputum versus LB. 

 
3.5.8 Media formulation impact on essentiality 

 
The impact of media formulation on gene essentiality predictions was assessed using 

the PA14 genome-scale metabolic network reconstruction. For the minimal media analysis, 

the PA14 model was grown on 42 different minimal media and in silico essential genes were 

identified as described above. We then randomly selected groups of minimal media 

conditions of varying sizes, ranging from two to 41 minimal media conditions considered, 

and found the intersection of the group’s predicted essential gene lists, or the genes that 

https://paperpile.com/c/Uo3CiH/sX6t0
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were identified as essential in every condition considered within that group. For each group 

size, we randomly selected minimal media conditions 500 times. 

For the LB media analysis, we randomly selected components from LB media in sets 

of varying sizes, ranging from two to 21 LB media components considered, used these sets 

as the model media conditions, and identified in silico essential genes as above. For each set 

size, we randomly selected LB components 100 times and calculated the average total 

number of essential genes identified and the intersection of the essential genes across all 100 

sets. To determine how many LB media formulations needed to be compared to converge on 

this intersection, we re-ran this LB media formulation analysis 10 times and, for each 

iteration, determined the number of samples needed to achieve the size of the overlap if all 

100 samples were considered at each set size 

 
3.5.9 Code and data availability 

 
Code and files necessary to recreate figures and data can be found here: 

https://github.com/ablazier/gene-essentiality 

 
3.5.10 Computational resources 

 
The COBRA Toolbox 2.0.5 [42], the Gurobi 6.5 solver, and MATLAB R2016a were used 

for model simulations. optGPSampler1.1 was used for flux sampling simulations [30].  

Bowtie2 v.2.3.4.1 [44] and Samtools v.1.3.1 [45] were used for transposon sequencing 

analysis. R 3.3.3 was used for all other analyses and figure generation. 
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3.10 Supplementary Information 
 
The supplemental files listed below can be found at the following website: 

https://doi.org/10.18130/V3/Xf0AVD 

Supplementary Data 1 - PAO1 candidate essential genes for in vitro screens 
Candidate essential genes lists for each PAO1 transposon mutagenesis screen. 
Candidate essential genes are marked with a ‘1’, while non-essential genes are 
marked with a ‘0’. 

 
Supplementary Data 2 - PA14 candidate essential genes for in vitro screens 

Candidate essential genes lists for each PA14 transposon mutagenesis screen. 
Candidate essential genes are marked with a ‘1’, while non-essential genes are 
marked with a ‘0’. 

 
Supplementary Data 3 - PAO1 model predicted essential genes for in silico screens 

Model predicted essential genes lists for PAO1 growth simulated on LB media, 
Sputum media, Pyruvate minimal media, and Succinate minimal media. Model 
predicted essential genes are marked with a ‘1’, while non-essential genes are 
marked with a ‘0’. 

 
Supplementary Data 4 - PA14 model predicted essential genes for in silico screens 

Model predicted essential genes lists for PA14 growth simulated on LB media and 
Sputum media. Model predicted essential genes are marked with a ‘1’, while non-
essential genes are marked with a ‘0’. 

 
Supplementary Data 5 - PAO1 consensus metabolic essential/non-essential genes 

Lists of consensus metabolic essential and non-essential genes for PAO1 on LB 
media and Sputum media. 

 
Supplementary Data 6 - PA14 consensus metabolic essential/non-essential genes 

Lists of consensus metabolic essential and non-essential genes for PA14 on LB 
media. 

 
Supplementary Data 7 - Biomass precursors for PAO1 model predicted consensus essential 
genes 
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List of biomass precursors that cannot be synthesized when PAO1 model predicted 
consensus essential genes are removed from the model. 
 

Supplementary Data 8 - Biomass precursors for PA14 model predicted consensus essential 
genes 

List of biomass precursors that cannot be synthesized when PA14 model predicted 
consensus essential genes are removed from the model. 

 
Supplementary Data 9 - Proposed model changes 

Table of proposed model changes based on discrepancies between model 
predictions and consensus metabolic non-essential genes for PAO1 on LB.  

 
Supplementary Data 10 - PAO1 model predicted essential genes for in silico screens for the 
updated PAO1 model 

Model predicted essential genes lists for PAO1 growth simulated on LB media and 
Sputum media. Model predicted essential genes are marked with a ‘1’, while non-
essential genes are marked with a ‘0’. 

 
Supplementary Data 11 - PA14 model predicted essential genes for in silico screens for the 
updated PA14 model 

Model predicted essential genes lists for PA14 growth simulated on LB media. 
Model predicted essential genes are marked with a ‘1’, while non-essential genes are 
marked with a ‘0’.  
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4.1 Abstract 
 

Persister cells are transient phenotypic variants in a bacterial population that are able 

to tolerate antimicrobial treatment. These cells have been implicated in the recalcitrant 

nature of chronic infections and in the resistance to disinfection and preservation systems 

that can lead to contamination of industrial products. While the tolerant nature of persister 

cells is classically associated with a reduced metabolic state, the characteristics of persister 

cell metabolism are not well understood. In this work, we perform an experimental and 

computational systems-level analysis to characterize the metabolic state of persister cells. 

We collected samples from Pseudomonas aeruginosa untreated and persister samples for 

transcriptomics and metabolomics profiling, revealing a distinct metabolic repertoire in 

persister cells marked by an increase in central metabolism activity. To aid in their analysis, 

we integrated these datasets with a P. aeruginosa genome-scale metabolic network 

reconstruction (GENRE), generating condition-specific models of the persister and 

untreated states. We then used this model of persister cell metabolism to propose targets of 

persister cell viability. Experimental testing of model predictions suggested that persister 

cells are robust to single gene deletions and that combinatorial targeting strategies may be 

necessary to completely inhibit the persister phenotype.  
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4.2 Introduction 
 

Bacterial persistence is a transient, phenotypic state marked by the ability to 

withstand antimicrobial treatment [1].  When a culture is exposed to high doses of 

antimicrobial, a majority of the cells rapidly die; however, a subpopulation, known as 

persister cells, remain and tolerate treatment. Upon removal of the antimicrobial pressure, 

these persister cells can then switch into a normal phenotype and repopulate the culture [2]. 

Because of their transient, tolerant nature, persister cells have been implicated in the 

recalcitrant nature of chronic infections and in the resistance to disinfection [3,4]. 

Furthermore, the presence of persister cells may contribute to the development of resistance 

[5]. Despite their clinical and industrial relevance, relatively little is known about persister 

cell formation and maintenance across different bacterial species [6].  

Traditionally, persister cells are thought to tolerate antimicrobial treatment due to a 

reduced metabolic state [7]. However, the specifics of persister cell metabolism are poorly 

understood. While some studies demonstrate that persistence is linked to arrested cell 

growth [8,9], others indicate that dormancy is not a prerequisite for persistence [10,11]. 

Furthermore, studies have shown that inactivation of the tricarboxylic acid cycle can 

differentially modulate persister levels depending on the organism being studied [12,13]. 

Nevertheless, the metabolism of persister cells has been shown to be important for their 

ability to tolerate antimicrobial treatment [14–17]. While individual metabolic genes have 

been linked to the persister phenotype [18], robust analyses of persister cell metabolism are 

lacking [11]. A systems level analysis of persister cell metabolism will enhance our 

understanding of the persister cell metabolic program and will enable the identification of 

promising targeting strategies to eliminate the persister phenotype. 
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In this work, we perform a systems-level analysis to quantitatively characterize the 

metabolic state of persister cells (Figure 4.1).  

 
Figure 4.1. Experimental and computational systems biology approach for 
characterizing the metabolism of Pseudomonas aeruginosa PA14 persister. 

 
We collected transcriptomics and metabolomics data from persister cells of the Gram-

negative, opportunistic pathogen Pseudomonas aeruginosa exposed to the antimicrobial 

benzisothiazolinone (BIT). To facilitate the systems-level analysis of persister cell 

metabolism, we employed genome-scale metabolic network reconstructions (GENREs), 

which are computational modeling frameworks that capture the genotype-to-phenotype 

relationship and enable the study of metabolic capabilities of an organism of interest. 

Through the integration of transcriptomics and metabolomics datasets with a P. aeruginosa 

GENRE [19], we generated condition-specific metabolic models of the persister and 

untreated states. We then used these models to suggest targets of persister cell metabolism 

to inhibit persister cell viability. 

 

https://paperpile.com/c/Awse5v/UXzUv
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4.3 Results 
 
4.2.1 Persister cells enable Pseudomonas aeruginosa to tolerate treatment with 

benzisothiazolinone 

 
To determine whether P. aeruginosa is able to tolerate treatment with BIT due to the 

presence of persister cells, we performed a time-kill assay (Figure 4.2A).  

 
Figure 4.2. Killing of Pseudomonas aeruginosa PA14 by benzisothiazolinone (BIT) 
over time.  
(A). Time-kill curve of Pseudomonas aeruginosa cultures exposed to the antimicrobial 
benzisothiazolinone (BIT). Stationary phase cultures of P. aeruginosa PA14 were exposed to 
various concentrations of BIT for 24 hours. The number of colony forming units (CFUs) in 
each culture were counted immediately before exposure at 0 hours and 2.5, 5, and 24 hours 
after exposure. Untreated cultures exposed to PBS are given by the yellow line and labelled 
as 0% BIT. The green line indicates cultures exposed to 0.02% BIT (10X the minimal 
inhibitory concentration, MIC). The blue line indicates cultures exposed to 0.2% BIT (100X 
the MIC). The pink line indicates cultures exposed to 2% BIT (1000X the MIC). (B). Dose 
response curve of P. aeruginosa treated with BIT. Overnight cultures of PA14 were diluted 
and exposed to various concentrations of BIT. Growth was measured 24-hours after 
inoculation via optical density (OD600) measurements. (C). Re-growth of untreated and 
0.02% BIT treated P. aeruginosa samples. Untreated and 0.02% BIT treated samples were 
diluted to the same starting CFU concentration in LB media. Growth was measured for 24-
hours using optical density (OD600) measurements. 

 
We exposed stationary-phase cultures of P. aeruginosa to various concentrations of BIT 

corresponding to 0x, 10x, 100x, and 1000x the minimal inhibitory concentration (MIC) of 

BIT against P. aeruginosa (Figure 4.2B). We measured the number of colony forming units 
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(CFUs) in the culture immediately before exposure, 2.5, 5, and 24 hours after exposure. The 

time-kill curves of the 10x and 100x  cultures exhibited biphasic behavior marked by an 

initial high rate of killing followed by a plateau in killing. This biphasic behavior is indicative 

of the presence of persister cells in the culture. In contrast, the 1000x MIC culture exhibited 

complete killing by 5 hours after exposure. These results indicate that at concentrations as 

high as 100x the minimal inhibitory concentration, P. aeruginosa is able to tolerate treatment 

with BIT due to the presence of persister cells.  

To further confirm that the cells that survived treatment are indeed persister cells, 

we measured the re-growth of the untreated and 10X MIC (0.02% BIT) conditions (Figure 

4.2C). When the samples were diluted to the same starting CFU concentration, there was not 

an appreciable difference in the growth profiles of the two samples. These results further 

confirm that persister cells enable P. aeruginosa to tolerate treatment with the antimicrobial 

BIT.  

 
4.2.2 The transcriptional state of persister cells is distinct from untreated cells 

 
We were then interested in comparing the transcriptional state of P. aeruginosa 

persister cells in the presence of BIT to untreated cells. We collected samples for RNA-

sequencing from the 0x and 10x MIC conditions (henceforth referred to as the untreated and 

persister conditions, respectively) immediately before exposure (i.e., time 0) as well as 5 and 

24 hours after exposure. Differential expression analysis of the RNA-sequencing data 

revealed that persister cells are in a distinct transcriptional state from untreated cells 

(Figure 4.3).  
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Figure 4.3. RNA-sequencing analysis of P. aeruginosa persister cells. 
Samples were collected for RNA-sequencing from the untreated and persister conditions (0 
and 10X the MIC, respectively) immediately before exposure and 5 and 24 hours exposure. 
(A). Differential expression analysis was performed by comparing the 5 and 24 hour samples 
to their respective time 0 samples. The heatmap shows the log2(fold-change) for genes 
significantly differentially regulated in at least one comparison. (B). Gene set enrichment 
analysis based on KEGG pathway classification was performed on the significantly up- and 
down-regulated genes for each comparison. Black boxes represent the fraction of the entire 
genome represented in the categories. 

 
When comparing the 5 and 24 hour samples of the persister and untreated conditions to 

their respective time 0 samples, the two persister conditions clustered separately from the 

untreated conditions (Figure 4.3A). Indeed, the persister conditions are marked by distinct 

regions of downregulation and upregulation compared to the untreated conditions.  
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We then assessed the overlap between the significantly upregulated genes for the 

persister and untreated conditions. The two persister conditions had the largest number of 

shared upregulated genes followed by genes uniquely upregulated in the untreated 

condition at 5 hours after exposure (Figure 4.4A).  
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Figure 4.4. Overlap of upregulated (A) and downregulated (B) genes across all four 
comparisons. 

 
The same comparison was done for the downregulated genes across the conditions. Similarly 

to the upregulated genes, the two persister conditions had the largest number of shared 

downregulated genes (Figure 4.4B). Overall, there were 522 genes commonly differentially 

expressed in the two persister conditions but not in the untreated conditions.  

To get a sense for systems level changes in the expression data, we performed gene 

set enrichment analysis based on KEGG pathway classification systems (Figure 4.3B). 

Interestingly, we found that the upregulated genes in the persister conditions were 

significantly enriched for several metabolic pathways, such as those involved in carbon 

metabolism and the biosynthesis of secondary metabolites. In contrast, the upregulated 

genes in the untreated samples were enriched for motility pathways, such as flagellar 

assembly for both timepoints and chemotaxis for the untreated at 5 hours after exposure 

sample. Pyruvate metabolism was the only metabolic pathway significantly enriched in the 

untreated sample 24 hours after exposure. No metabolic pathways were significantly 

enriched for the untreated sample 5 hours after exposure. These enrichment results suggest 

an overall shift in the metabolic state of persister cells compared to untreated samples. 

Furthermore, because the enriched metabolic pathways were observed in the upregulated 

genes of the persister conditions, this suggests that persister cells are in a more metabolically 

active state than previously thought. Interestingly, few pathways were significantly enriched 

for the downregulated genes. This lack of enrichment suggests a widespread decrease in 

functionality across cellular subsystems for all conditions.  
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4.2.3 The metabolite footprint of persister samples is different from untreated and dead 

samples 

 
To probe the metabolism of P. aeruginosa persister cells further, we collected samples 

for metabolomics profiling of culture supernatants. Similarly to the RNA-sequencing 

analysis, we collected samples from the persister and untreated conditions immediately 

before exposure and 5 and 24 hours after exposure. Additionally, we collected samples from 

the 1000X MIC condition, henceforth referred to as the dead condition. We included this dead 

condition to filter metabolites associated with dying from the persister condition. Analysis 

of the relative abundance of metabolites across the samples revealed that the persister 

metabolite footprint is distinct from the untreated and dead conditions (Figure 4.5A).  
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Figure 4.5. Metabolomics profiling of culture supernatants. 
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Samples were collected for metabolomics profiling from the culture supernatants of the 
untreated, persister, and dead conditions (0, 10X, and 1000X the MIC, respectively) 
immediately before exposure and 5 and 24 hours exposure. (A). Metabolites that 
significantly changed in abundance over time for each condition were identified. The 
heatmap shows the relative abundance for a metabolite in a given sample compared to the 
other samples. (B). Metabolites that changed in abundance over time only in the persister 
condition were identified. The heatmap shows the relative abundance for a metabolite in a 
given timepoint compared to the other timepoints. (C) Heatmap of the log2(fold-change) for 
genes involved in succinate metabolism. Asterisks denote significant differential expression 
(p < 0.01). (D) Metabolism of D-Gluconate and 2-Ketogluconate. Brown boxes refer to 
metabolites while grey boxes refer to other metabolic pathways. Orange arrows indicate 
upregulation in persister conditions relative to time 0 samples. Blue arrows indicate 
downregulation in persister conditions relative to time 0 samples. Asterisks denote 
significant differential expression (p < 0.01).  

 
The two BIT-exposed persister conditions clustered separately from the other conditions. 

Furthermore, certain metabolites were markedly more abundant in the persister samples 

relative to the other samples. For example, 20 metabolites were significantly more abundant 

in the persister condition at both 5 and 24 hours after exposure compared to the other 

conditions at those respective time points.  

In contrast, 60 metabolites significantly changed in abundance for every condition 

(Figure 4.6).  
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Figure 4.6. Metabolites that significantly change in abundance over time common to 
the untreated, persister, and dead conditions. 
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Interestingly, while each of these 60 metabolites changed in abundance for every condition, 

it varied whether they were produced or consumed across the conditions. For example, 

while ribose decreased in abundance for each condition, arginine only decreased in 

abundance for the untreated condition but increased in abundance for the persister and dead 

conditions. The increase in abundance of arginine in the persister and dead samples is likely 

due to the prevalence of dying cells in both conditions. Other metabolites varied in 

abundance trajectories across all three conditions. For example, N6-acetyllysine increased 

rapidly in abundance for the dead condition, slowly for the untreated condition, and instead 

decreased in abundance for the persister condition. Lysine acetylation has been associated 

with cell-cell signaling, transcriptional regulation, and cell survival pathways in mammalian 

systems [20]. Mounting evidence suggests that lysine acetylation in prokaryotes plays a 

similar role [20,21]. Thus, this difference in N6-acetyllysine abundance between the 

persister and untreated and dead conditions may indicate a difference in regulatory activity. 

Additionally, we identified metabolites that uniquely varied across time for a given 

condition (Figure 4.5B and 4.7).  

https://paperpile.com/c/Awse5v/oqJq
https://paperpile.com/c/Awse5v/oqJq+ZmX4
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Figure 4.7. Metabolites that significantly change in abundance over time unique to the 
untreated (A), persister (B), and dead (C) conditions. 

 

For example, succinate increased in abundance over time for the persister condition but not 

for the untreated and dead conditions. Filtering the data this way allowed us to determine 

metabolites uniquely associated with the untreated state, those associated with dying, and 

those associated with the persister phenotype. Overall, 53 metabolites were uniquely 

associated with the untreated condition, 35 with dying, and 26 with the persister phenotype.  

Transcriptomics analysis revealed that genes associated with the production and 

consumption of these unique persister metabolites were differentially regulated. For 

example, the metabolomics data suggested that succinate production is uniquely associated 

with the persister phenotype. The RNA-sequencing data also indicated a difference in 

succinate metabolism, with unique differential regulation of succinate-associated genes 

across the conditions (Figure 4.5C). Succinate is a key intermediate in the tricarboxylic acid 

(TCA) cycle. Previous studies have implicated the TCA cycle in persister cell formation and 
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viability. Indeed, one study showed that accumulation of fumarate, the product of succinate 

oxidation, enhanced persister formation [22]. Other studies showed that mutants of TCA 

genes, such as sdh and sucB, had significantly reduced persister levels [13,22,23]. 

Interestingly, other studies have found conflicting roles for the TCA cycle in persister 

formation and viability. For example, one study showed that introducing succinate sensitized 

stationary-phase P. aeruginosa cells to tobramycin [24]. However, given the overproduction 

of succinate in our persister samples, our results suggest that succinate actually serves as a 

biomarker of the persister phenotype, not a potentiator for antimicrobial activity. Indeed, 

the previous study showed that carbon-source induced potentiation was specific to 

tobramycin and not applicable to other antibiotics. Additionally, another study found that 

inhibitors of the TCA cycle actually enhanced persister formation in Gram-positive bacteria 

[12]. Altogether, these results indicate that the TCA cycle plays an important, albeit 

heterogeneous, role in persister viability depending on the stressor.  

Additionally, both the metabolomics data and transcriptomics data indicated 

enhanced gluconate metabolism in persister conditions (Figure 4.5D). Both gluconate and 2-

ketogluconate were uniquely produced in the persister condition. Additionally, genes 

associated with the conversion of the two metabolites were significantly upregulated in the 

persister samples but not the untreated samples. Both gluconate and 2-ketogluconate are 

important precursors of purine and pyrimidine metabolism; however, the role of these two 

metabolites is understudied. Interestingly, previous research implicated gluconate 

accumulation with multi-drug resistant clinical isolates [25]. Together with our results, 

gluconate accumulation appears to be associated with antimicrobial inefficacy and may 

https://paperpile.com/c/Awse5v/ZmHC
https://paperpile.com/c/Awse5v/ZmHC+7bQk+Hilh
https://paperpile.com/c/Awse5v/Gyxp
https://paperpile.com/c/Awse5v/PIvu
https://paperpile.com/c/Awse5v/a256
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serve as a good biomarker for resistance. Future work will be necessary to determine if 

targeting gluconate metabolism is a potential antimicrobial strategy. 

 
4.2.4 Condition-specific modeling of the persister and untreated states 

 
Finally, to aid in the interpretation of the metabolomics and transcriptomics datasets, 

we generated condition-specific models of the persister and untreated metabolic states. To 

build the models, we integrated the transcriptomics and metabolomics datasets with a 

previously published genome-scale metabolic network reconstruction (GENRE) of 

Pseudomonas aeruginosa strain PA14 [19]. We first integrated the RNA-sequencing dataset 

with the GENRE using the MADE algorithm [26], which modifies gene functionality in the 

model based on significant differential expression. Then, we forced production of timepoint 

and condition-specific metabolites based on the metabolomics data. Because the structure 

of the condition-specific models changed depending on the parameters used during the 

integration of the RNA-sequencing data, we repeated the integration process for multiple 

parameter sets. Upon integration of the gene expression and metabolomics datasets with the 

PA14 metabolic model, we generated condition-specific models for the metabolism of the 

persister and untreated states at 5 and 24 hours after exposure to BIT.  The resulting models 

differed in their functionality. For instance, the untreated models for the 24-hour timepoint 

contained the most metabolites with forced production based on the metabolomics data, 

followed by the persister models for the 5-hour timepoint (Figure 4.8).  

https://paperpile.com/c/Awse5v/UXzUv
https://paperpile.com/c/Awse5v/JrWi
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Figure 4.8. Integrated metabolites for condition-specific models. 
The number of metabolites with forced production based on the metabolomics data for the 
condition-specific models.  

 
These differences in metabolite production highlight unique functionality of the networks 

and point to potential vulnerabilities of the individual conditions. 

 
 
4.2.5 Metabolic network analysis suggests targets for inhibiting persister viability 

 
Using these condition-specific metabolic models, we sought to identify genes that, 

when inhibited, interrupted persister cell viability. A central challenge to generating these 

predictions is using an appropriate objective function that captures the persister state. For 

our analyses, we explored two potential objective functions: minimal biomass production as 

an approximation for growth and minimal ATP production. We chose to investigate biomass 

production because it is a standard, well-studied objective function in the field of metabolic 

modeling. However, because persister cells are traditionally thought to be in a dormant 

metabolic state, biomass production may not be the best suited objective function. To 

complement our analysis, we also investigated ATP production, which has previously been 

shown to be associated with persistence [16]. While these objective functions are reasonable 

https://paperpile.com/c/Awse5v/CKEB
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starting points, they may be limited in their applicability because the overall goal of persister 

metabolism is unclear. 

Given this uncertainty, for both objective functions, we implemented three different 

strategies to identify potential gene targets. In the first strategy, we performed in silico single 

gene knockouts on the models and identified essential genes. We repeated this simulation 

for models generated with different MADE parameters and tallied the number of times a 

gene was predicted as essential across the different iterations. In the second strategy, we 

used OptGpSampler to perform flux sampling on the networks [27], providing information 

on the distribution of fluxes each reaction in the network can carry. We then used this flux 

sampling information to determine reactions that had a greater likelihood of carrying flux in 

the persister models compared to the untreated models. Once these reactions were 

identified, we found the genes associated with them. In the third strategy, we used the flux 

sampling data to identify reactions strongly correlated with essential reactions in the 

models. Once these reactions were identified, we found the genes associated with them. We 

then combined the predictions generated from these three strategies to generate a list of 

candidate target genes. To arrive at a set of genes for experimental testing, we filtered this 

list of candidate target genes based on several factors such subsystem diversity, availability 

of transposon mutants in the PA14 mutant library [28], and the presence of enzymatic 

subunits. 

Ultimately, we experimentally tested 20 mutants that were predicted to be critical for 

the biomass and ATP objective functions analyzed. Following the same experimental 

procedure as before, we exposed the mutants to 10X the MIC of BIT and performed a time-

kill assay (Figure 4.9).  

https://paperpile.com/c/Awse5v/RYHn
https://paperpile.com/c/Awse5v/va5w
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Figure 4.9. Time-kill assays for P. aeruginosa mutants. 
Mutants of genes predicted to be critical for persister viability were exposed to 10X the MIC 
of BIT (0.02% BIT) for 24 hours. The number of CFUs in the culture at 24 hours after 
exposure were normalized to the number of CFUs in the culture immediately before 
exposure. The normalized 24 hour CFU counts were then compared to wild-type for each 
mutant. 

 
Of 20 mutants tested, one mutant, fdnH, exhibited a significant, yet incomplete, reduction in 

the number of CFUs after 24 hours of BIT exposure (p < 0.05). The gene product of fdnH, 

nitrate-inducible formate dehydrogenase subunit beta, is involved in the breakdown of 

formate, an electron acceptor [29]. In the P. aeruginosa metabolic network, there are two 

enzymes that breakdown formate, formate dehydrogenase and 1,2-dihydroxy-3-keto-5-

methylthiopentene dioxygenase. Interestingly, the gene for 1,2-dihydroxy-3-keto-5-

methylthiopentene dioxygenase is downregulated in expression in the persister samples, 

suggesting that the only route for formate breakdown is through formate dehydrogenase. 

Thus, when a gene encoding one of the formate dehydrogenase subunits is mutated, the 

breakdown of formate cannot proceed in the persister state. Ultimately, as indicated by the 

https://paperpile.com/c/Awse5v/PFXO
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metabolic model, this prevents persister cells from being able to generate the metabolite 5-

10-Methylenetetrahydrofolate, which is important for the synthesis of thymidine and 

various amino acids.  

The discrepancies between the model predictions and the experimental results can 

provide insight into gaps in our understanding of P. aeruginosa persister cell metabolism. 

For example, the models predicted that xanthine dehydrogenase is essential for the persister 

state but not the untreated state. However, when we tested a mutant for one of the subunits 

of xanthine dehydrogenase (xdhB), there was no impact on persister cell viability. Based on 

the metabolomics data, xanthine production was uniquely associated with the persister state 

at both 5 and 24 hours after exposure to BIT. Because of this evidence, we forced production 

of xanthine in the persister models. In the base P. aeruginosa metabolic network, there are 

two routes to xanthine production, one through xanthine dehydrogenase and the other 

through guanine deaminase. However, the reaction catalyzed by guanine deaminase is 

blocked. As a result, xanthine production is forced through the reaction catalyzed by 

xanthine dehydrogenase, ultimately making the genes encoding the subunits of xanthine 

dehydrogenase essential in the persister models. However, the results from the time-kill 

assay for the xdhB mutant suggest that both routes for xanthine synthesis are accessible in 

vitro. Because of the unique production of xanthine in the persister state, we hypothesize 

that a combination targeting approach that removed the functionality of both xanthine 

dehydrogenase and guanine deaminase would impact persister viability. 

Additionally, the models predicted the gene purN to be uniquely critical for the 

persister state. The gene product of purN is phosphoribosylglycinamide formyltransferase, 

which is involved in purine metabolism and important for the synthesis of several biomass 
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precursors. In P. aeruginosa, there is an isozyme for phosphoribosylglycinamide 

formyltransferase encoded by the gene purT. According to the RNA-sequencing data, purT is 

significantly downregulated in the persister conditions at both time points (p < 10^-10), 

suggesting that the preferred route for phosphoribosylglycinamide formyltransferase 

generation is through purN. Because a mutant for purN did not exhibit a reduction in the 

persister state, this implies that the mutant shifted phosphoribosylglycinamide 

formyltransferase generation to purT. Based on these results, we hypothesize that a double 

knockout of purN and purT would inhibit persister viability. Alternatively, a compound that 

targets the enzymatic activity of phosphoribosylglycinamide formyltransferase, such as 

Pemetrexed, may inhibit persister viability [30].  

Overall, the incomplete killing of the P. aeruginosa mutants and the variability in the 

data suggest that the persister phenotype is robust to single gene deletions. This result is 

consistent with literature. Two previously published screens of P. aeruginosa mutant 

libraries attempted to identify genes associated with persistence. One of these screens tested 

5000 mutants and found four mutants with a reduced persister phenotype [31]. The other 

tested 4,411 mutants and found 118 mutants with a reduced persister phenotype [6]. Of the 

mutants identified, none of them completely eliminated the persister state, potentially due 

to a difference in the expression states between the wildtype and mutant strains. 

Additionally, mutants of interest did not decrease the level of persistence to the same extent 

across different antimicrobials. Altogether, our data and data from literature suggest that 

persistence is complex and robust to single gene deletions. To more completely inhibit the 

persister state, we propose that multi-gene targeting will be necessary. Through analysis of 

https://paperpile.com/c/Awse5v/7hGK
https://paperpile.com/c/Awse5v/6Bki
https://paperpile.com/c/Awse5v/pmG6X
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the transcriptomics and metabolomics dataset with the metabolic network reconstructions 

of P. aeruginosa, we were able to suggest combination targeting strategies.  

 

4.4 Discussion 
 

Traditionally, persister cells are thought to be able to tolerate antimicrobial 

treatment due to a reduced metabolic state. However, the extent of persister cell metabolism 

is not well understood. In this study, we employed both experimental and computational 

systems biology techniques to better characterize the metabolism of persister cells and 

suggest vulnerabilities in persister cells metabolism. We applied this approach to persister 

cells isolated from Pseudomonas aeruginosa cultures exposed to the industrial antimicrobial 

benzisothiazolinone. We collected both transcriptomics and metabolomics data on persister 

cell samples, which indicated that persister cells are in a distinct metabolic state relative to 

untreated samples marked by increased activity in central metabolism. We then integrated 

the transcriptomics and metabolomics datasets with a genome-scale metabolic network 

reconstruction of P. aeruginosa to generate a condition-specific model of persister cell 

metabolism. Using this model and information from the experimental data, we suggested 

targets for inhibiting the viability of persister cells. The resulting insights about 

vulnerabilities in persister cell metabolism would be challenging to develop without the use 

of a computational model of P. aeruginosa metabolism. Ultimately, this experimental and 

computational approach enabled the characterization of persister cell metabolic activity and 

the elucidation of potential targets that may interrupt persister cell functionality.  

Both the transcriptomics and metabolomics datasets indicate that persister cells are 

not in a dormant state. Rather, these two datasets suggest that persister cells are active in 
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central metabolic processes. For example, gene set enrichment analysis on the RNA-

sequencing data revealed that upregulated genes in the persister conditions are significantly 

enriched in carbon metabolism, pyruvate metabolism, and the biosynthesis of amino acids. 

These results contrast the enrichment results for the untreated conditions, which were 

enriched for motility pathways. Furthermore, analysis of the metabolomics data revealed 

certain metabolites uniquely associated with the persister state. For example, gluconate and 

2-oxoarginine, intermediates in amino acid metabolism, were uniquely produced in the 

persister condition. Additionally, both the transcriptomics and metabolomics data indicated 

heightened metabolism of succinate, a key metabolite of the TCA cycle, and gluconate, a key 

metabolite in the pentose phosphate pathway. Together, these data add to the growing body 

of evidence that the persister state is a metabolically active state [11,13,32,33]. However, 

because no single pathway was uniquely associated with the persister state, this points to 

the heterogeneity and complexity of the persister phenotype.  

There is a large effort to identify genetic determinants of persistence. Several studies 

have performed high-throughput screens of mutant libraries to identify genes with altered 

persister levels [6,31,34,35]. A limitation of these screens is that they fail to capture the 

biphasic rates of killing of a bacterial culture by an antimicrobial, which is indicative of the 

presence of persister cells. Time-kill assays traditionally used to isolate persister cells are, 

by nature, not amenable to high-throughput screening approaches. To overcome this 

limitation, we sought to expedite the identification of genetic determinants of persistence 

using condition-specific genome-scale metabolic network reconstructions for the persister 

and untreated states. Using these models, we predicted targets critical for persister biomass 

production and ATP production. Upon experimentally testing these model predictions, we 

https://paperpile.com/c/Awse5v/XPZz+oQ46+DM9T+7bQk
https://paperpile.com/c/Awse5v/6Bki+pmG6X+6Vz4+Arst
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found that the persister phenotype is overall robust to single gene deletions, consistent with 

previous findings [6,31]. Most mutants had no impact on persister levels. Even more so, the 

mutants that did have reduced persister levels did not exhibit a complete loss of persistence. 

These results add to the growing body of literature that there is not a single persistence 

mechanism [32,36,37]. Rather, persistence may be mediated through a variety of routes 

within a cell and these routes may differ depending on the stressor applied.  

To this end, we employed the persister condition-specific model to suggest 

combinatorial targeting strategies that may inhibit this complex phenotype. For example, 

based on the metabolomics data, xanthine production is uniquely associated with the 

persister phenotype. Using the persister model, we found two routes for xanthine production 

in P. aeruginosa through xanthine dehydrogenase and guanine deaminase. While inhibition 

of xanthine dehydrogenase alone did not reduce the persister phenotype, we hypothesize 

that combinatorially targeting both enzymes will inhibit the persister state. Future work will 

be necessary to test these multi-target approaches. However, a recent study showed that 

single-drug tolerant persister cells could be eliminated by groups of three antibiotics, 

demonstrating the potential of combination strategies [38]. The identification of 

combinatorial targeting approaches would be challenging to delineate without the use of 

computational models.  

In summary, persister cell metabolism is distinct from untreated cells and may be 

more metabolically active than previously appreciated. Characterization of the persister 

metabolic state enabled the identification of processes unique to the persister phenotype. 

These processes may be crucial to persister cell functionality. Further work needs to be 

performed to determine if these attributes are common to persister cells generated by other 

https://paperpile.com/c/Awse5v/6Bki+pmG6X
https://paperpile.com/c/Awse5v/jaU7+oQ46+FQEm
https://paperpile.com/c/Awse5v/Zxp4
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stressors as well as persister cells generated in other bacteria. Finally, computational 

modeling of persister cell metabolism enabled the identification of potential targets that may 

interrupt persister cell functionality. Further studies, including combinatorial gene knockout 

strategies, will need to be performed to validate these computational predictions. In 

generating condition-specific models of persister and untreated cell metabolism, we provide 

the community with tools to further probe the metabolic capabilities of P. aeruginosa 

persister cells. Additionally, the transcriptomics and metabolomics datasets serve as 

invaluable resources to study the complex state of persistence from a systems perspective.  

 

4.5 Materials and Methods 
 
4.5.1 Bacterial strains and growth conditions 

 
Wild-type Pseudomonas aeruginosa PA14 and PA14 single gene knock-out mutants 

from the PA14 non-redundant genome-scale transposon library [28] were grown in LB 

media supplemented with 15 ug/mL gentamicin as necessary at 37 and 125 RPM for liquid 

cultures. Desired concentrations of BIT were made by diluting the antimicrobial in PBS.  

 
4.5.2 Minimal inhibitory concentration assay 

 
A frozen stock of PA14 was streaked on an LB agar plate and grown overnight. 

Individual colonies were inoculated into 10 mL of LB and grown overnight with aeration. 

The culture was then diluted to an OD600 of 0.001 (approximately 10^6 CFU/mL) and 

inoculated into a 96-well plate containing varying concentrations of BIT. The plate was 

incubated overnight in a plastic container to prevent evaporation at 37 C and 125 RPM. 

Approximately 16-hours after exposure, the OD600 was measured using a plate reader 

(Tecan Infinite M200 Pro) as an approximation for growth. Background subtraction was 

https://paperpile.com/c/Awse5v/va5w
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performed and the minimal inhibitory concentration was defined as the lowest 

concentration that prevented growth of PA14 (i.e., OD600 < 0.1).  

 
4.5.3 Persister isolation and re-growth 

 
A frozen stock of PA14 wild-type or PA14 mutants was streaked on an LB agar plate 

and grown overnight. Individual colonies were inoculated into a 50 mL flask containing 10 

mL of LB and grown overnight with aeration. The overnight cultures were diluted in fresh 

LB in 500 mL flasks to an OD600 of 0.01 for a total volume of 50 mL and grown for 12 hours 

to reach stationary phase. The cultures were then subsequently exposed to BIT by removing 

5 mL of the culture and adding 5mL of antimicrobial at various concentrations (PBS for the 

untreated condition, 0.2% BIT for the 10X MIC condition, 2% BIT for the 100X MIC condition, 

and 20% BIT for the 1000X MIC condition).  The flasks were returned to the incubator for 24 

hours. One microlitre samples were collected to determine the number of viable cells in the 

culture immediately before exposure (0 hr), 2.5, 5, and 24 hours after exposure. Samples 

were washed in PBS twice followed by resuspension in 1 mL of PBS. The samples were then 

serially diluted in PBS and 10 uL was plated for each dilution on LB agar to measure the 

number of colony forming units (CFU).  

To verify the re-growth of the persister cells, 1 mL samples were collected from the 

untreated and 10X MIC conditions. Samples were washed in PBS twice and resuspended in 

1 mL PBS. The 10X MIC condition was diluted 1:100 and the untreated condition was diluted 

to approximately the same CFU concentration as the diluted 10X MIC condition (~10^3 

CFU/mL). The diluted cultures were plated in a 96-well plate and the OD600 was measured 

using a plate reader (Tecan Infinite M200 Pro) for 24 hours.  
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4.5.4 RNA-sequencing 

 
One millilitre samples for RNA-sequencing were collected immediately before 

exposure, 5 and 24 hours after exposure from the untreated and 10X MIC conditions. 

Samples were mixed with 2 mL of RNAprotect (Qiagen) to stabilize RNA and frozen at -80 C. 

Samples were sent to Genewiz for further processing. Ribosomal RNA was depleted using 

the Ribo-Zero rRNA removal kit (Illumina). Libraries were sequenced on an Illumina HiSeq, 

2x150bp configuration. 

Reads were aligned to the reference P. aeruginosa PA14 genome (NC_008463.1) using 

the BWA aligner with the MEM algorithm with default parameters [39]. Aligned reads were 

tallied for each gene using FeatureCounts [40]. Differential expression was then determined 

with DESeq2 [41]. Gene set enrichment analysis was performed using the procedure 

outlined in [42]. 

 
4.5.5 Metabolomics profiling 

 
Six millilitre samples for supernatant metabolomics profiling were collected 

immediately before exposure, 5 and 24 hours after exposure from the untreated, 10X MIC, 

and 1000X MIC conditions. The samples were centrifuged for 5 minutes at 6000 RCF. The 

resulting supernatant was filter sterilized in 1 mL aliquots and frozen at -20 C. The samples 

were shipped to Metabolon (Durham, NC) for metabolomics data collection. Briefly, all 

methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and 

a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with 

a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 

35,000 mass resolution.  Sample extract was dried and reconstituted in solvents compatible 

https://paperpile.com/c/Awse5v/5DZm
https://paperpile.com/c/Awse5v/qX8k
https://paperpile.com/c/Awse5v/dGJd
https://paperpile.com/c/Awse5v/p0xV
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to each of the four methods described below. One aliquot was analyzed using acidic positive 

ion conditions optimized for hydrophilic compounds with a C18 column (Waters UPLC BEH 

C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic 

acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was analyzed using acidic positive 

ion conditions optimized for hydrophobic compounds with the same C18 column using 

methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall 

higher organic content.  Another aliquot was analyzed using basic negative ion optimized 

conditions with a separate dedicated C18 column. The basic extracts were gradient eluted 

from the column using methanol and water, however with 6.5mM Ammonium Bicarbonate 

at pH 8. The fourth aliquot was analyzed via negative ionization following elution from a 

HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of 

water and acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated 

between MS and data-dependent MSn scans using dynamic exclusion. The scan range varied 

slightly between methods but covered 70-1000 m/z. Library matches for each compound 

were checked for each sample and corrected if necessary.  Peaks were quantified using area 

under the curve. Missing values were imputed with half the minimum. Data was log2-

transformed and centered around the mean. Metabolites significantly changing over time 

were identified using a Welch one-way ANOVA with a Games-Howell post-hoc test. 

Metabolites significantly changing across the samples were identified using a one-way 

ANOVA with a Tukey post-hoc test. 

 
4.5.6 Condition-specific model generation 
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Transcriptomics data was integrated with the PA14 genome-scale metabolic network 

reconstruction [19] using the algorithm MADE [26] implemented in the Tiger Toolbox [43]. 

Briefly, MADE modulates gene functionality in the model based on statistically significant 

gene expression.  

Metabolomics data was integrated after RNA-sequencing data integration. Using the 

metabolomics data, metabolites uniquely produced in a given condition for each timepoint 

were identified. Where feasible, the production of these metabolites was forced in the RNA-

sequencing integrated models.  

 
4.5.7 Model prediction of persister targets 

 
Three strategies were implemented to identify potential gene targets. In the first, we 

performed in silico single gene knockouts on the condition-specific models and identified 

genes essential for minimal flux through the objective function (0.0001 h-1). We repeated 

this simulation for models generated with different MADE parameters and tallied the 

number of times a gene was predicted as essential across the different iterations. The MADE 

parameters altered were the adjusted p-value threshold and the log2(fold-change) cut-offs. 

In the second strategy, we used OptGpSampler to perform flux sampling on the 

networks generated with one set of MADE parameters[27]. We used this flux sampling 

information to determine reactions that had a greater likelihood of carrying flux in the 

persister models compared to the untreated models. Mood’s median test was used to 

determine reactions with a significantly different median in the persister conditions 

compared to the untreated conditions (p < 0.05). Once these reactions were identified, we 

found the genes associated with them.  

https://paperpile.com/c/Awse5v/UXzUv
https://paperpile.com/c/Awse5v/JrWi
https://paperpile.com/c/Awse5v/WbkC
https://paperpile.com/c/Awse5v/RYHn
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In the third strategy, we used the flux sampling data collected above to identify 

reactions strongly correlated with essential reactions in the models. Spearman’s correlation 

coefficient was used to find correlated reactions (p < 0.05). Once these reactions were 

identified, we found the genes associated with them.  

We repeated these analyses for minimal biomass production and minimal ATP 

production as the objective functions. 
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Chapter 5 
 
Reflections and Future Directions 
 

 

 

 

 

 

 

5.1 Introduction 
 

Over the course of my dissertation work, I demonstrated that metabolic network 

models are valuable tools for antimicrobial target discovery. More specifically, using 

metabolic network modeling, I revealed the interconnectivity of virulence factor synthesis 

and growth, I reconciled conflicting high-throughput essentiality datasets and suggested 

mechanisms for essentiality, and I uncovered the complex and robust phenotype of the 

antimicrobial tolerant bacterial subpopulation known as persister cells. Having completed 

this work, I now turn to discussing key contributions my research has made to my field. 

Additionally, I present areas of future research to further extend and improve upon my 

findings. Finally, I close with my perspective on the role of metabolic network modeling in 

the future. 

 

5.2 Contributions 
 

Through completion of these Aims, I demonstrated that metabolic network modeling 

can overcome challenges associated with current target identification platforms. First and 

foremost, metabolic network modeling is a high-throughput approach for target discovery. 

In each of the Aims, I used the models to identify potential antimicrobial targets. Secondly, 
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because of the mechanistic nature of these models, the targets delineated by these models 

all have known function. Thirdly, through this approach, I was able to determine targets that 

may mitigate resistance. Finally, through condition-specific modeling, I was able to capture 

heterogeneous populations and identify targets unique to certain sub-populations. 

Additionally, through all of this work, I have developed tools and analyses that benefit the 

metabolic network modeling community. 

 
5.2.1 High-throughput target discovery 

 
A major challenge of current target identification platforms is that they require 

extensive screening and downstream follow-up experiments that are very time-consuming. 

In this work, I showed that metabolic network modeling is a valuable high-throughput 

approach for target discovery. In each of the Aims, I used metabolic network modeling to 

generate lists of high-confidence, computationally predicted antimicrobial targets. More 

specifically, in my virulence project (Chapter 2), I predicted targets that inhibited the 

synthesis of various virulence factors without inhibiting the ability of P. aeruginosa to grow. 

In my gene essentiality project (Chapter 3), I reconciled conflicting experimental essentiality 

datasets with the P. aeruginosa metabolic network model and predicted high-confidence 

targets essential for growth both computationally and in several experimental datasets. In 

my persister project (Chapter 4), I predicted combinatorial targeting strategies that inhibit 

the viability of the complex persister phenotype. Through each of these projects, I 

demonstrated that metabolic network modeling streamlines the target discovery pipeline by 

enabling efficient, cost-effective, and directed target discovery. 
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5.2.2 Targets with known function 

 
One of the significant bottlenecks of current target identification platforms is that 

they oftentimes identify targets of unknown function. To make these targets druggable, 

laborious and time-consuming experiments need to be performed to characterize their 

function. These follow-up experiments ultimately delay the antimicrobial target discovery 

pipeline. In contrast, because of the mechanistic nature of metabolic network models, all the 

targets I identified in my work have known function. Furthermore, in each of my projects, I 

used the model to provide functional reasons for why certain targets are critical for various 

P. aeruginosa processes. Specifically, in my essentiality project, I demonstrated the utility of 

the model in providing non-obvious mechanistic explanations for essentiality for growth 

essential genes. For example, with the network, I determined that when the gene glmS is not 

functional, P. aeruginosa cannot synthesize metabolites critical for Lipid A and peptidoglycan 

production, which are important components of the Gram-negative cell wall. Additionally, 

through simulations on the network, I determined why certain genes involved in pyrimidine 

metabolism are essential in sputum media conditions but not in LB media conditions. In my 

virulence project, I used the model to help explain why certain genes are essential for either 

growth, virulence factor production or both. For instance, through analysis of the network, 

we uncovered that while folD is essential for growth because of its role in purine synthesis, 

it is essential for the synthesis of the virulence factor pyoverdine because of its role in amino 

acid synthesis. In my persister project, I used condition-specific modeling of the persister 

state to provide functional reasons for why certain genes are uniquely critical to the persister 

phenotype. For instance, we found that, while the base network has two genes involved in 

the breakdown of formate, which is an important precursor for thymidine, serine, and 
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methionine, in the persister state, only one of these genes, fdnH, is functional. By identifying 

targets with known function, metabolic network modeling streamlines the antimicrobial 

discovery pipeline. Furthermore, the mechanistic nature of these models helps to focus 

downstream experiments to further characterize the identified targets.  

 
5.2.3 Targets that mitigate resistance 

 
A second significant bottleneck of current target identification platforms is that they 

oftentimes identify targets that actually promote the development of resistance rather than 

mitigate it. Through my research, I was able to propose targets that may actually dampen the 

development of resistance. In my virulence factor project, by identifying targets that 

uniquely inhibit virulence factor synthesis, we avoid targeting processes essential for 

growth, potentially lessening the resistance development. For example, both with the model 

and experimentally, I identified that when the gene hom is knocked out, pyoverdine 

synthesis is significantly interrupted with only a marginal impact on growth. These results 

suggest that inhibiting hom may be a promising anti-virulence strategy that targets 

mechanisms necessary for infection without inhibiting growth essential processes. In the 

persister project, by identifying targets that inhibit this tolerant bacterial population, we 

prevent re-growth of the bacterial culture, ultimately giving the cells less time to evolve 

resistance mechanisms. For example, we propose that a combinatorial targeting strategy 

that inhibits both purN and purT, two genes involved in purine metabolism and critical for 

the synthesis of several biomass precursors, will inhibit persister cell viability. Based on our 

RNA-sequencing data, purT was significantly downregulated in the persister conditions 

while purN was not, suggesting that combinatorial perturbations to this pathway will have a 
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detrimental impact on persister cells. These examples demonstrate the use of metabolic 

network models to suggest targets that may mitigate the development of resistance, 

overcoming one of the central limitations of current target identification strategies.  

 
5.2.4 Targets of heterogeneous populations 

 
Another limitation of current target identification platforms is that they rely on whole 

bacterial population approaches and fail to capture heterogeneous subpopulations with 

unique susceptibilities. Through my persister project, I demonstrate that condition-specific 

metabolic network models are useful tools for identifying targets for distinct subpopulations 

within bacterial cultures. Specifically, through the integration of transcriptomics and 

metabolomics datasets, I generated models for the antimicrobial tolerant subpopulation 

known as persister cells. Using these models, I suggested targets that uniquely inhibit the 

persister state. For example, through analysis of the networks and the experimental data, I 

suggest that targeting both xanthine dehydrogenase and guanine deaminase may uniquely 

inhibit the persister cell phenotype by inhibiting production of xanthine, a metabolite 

uniquely produced in the persister state. Identification of these combinatorial targeting 

strategies to inhibit heterogeneous subpopulations, would be very challenging to determine 

experimentally. Condition-specific metabolic network models are an ideal framework for 

streamlining combinatorial antimicrobial target discovery. 

 
5.2.5 Pseudomonas aeruginosa reconstructions 

 
In addition to facilitating the antimicrobial target discovery pipeline, as part of this 

work, I have developed tools and analyses that benefit the metabolic network modeling 

community. For instance, I and co-authors built a new reconstruction for Pseudomonas 



139 
 

aeruginosa strain PA14 and an updated reconstruction for strain PAO1. These 

reconstructions serve as valuable resources for the metabolic network modeling 

communities. First, as a knowledgebase, these reconstructions contain everything we know 

to-date about P. aeruginosa metabolism. Second, as a tool, these reconstructions can be 

converted into mathematical models to enable simulation and perturbation of the P. 

aeruginosa metabolic network for discovery of emergent behavior. Ultimately, these 

reconstructions enable discovery and a deeper understanding of P. aeruginosa metabolism. 

Already, the new and updated P. aeruginosa reconstructions have been applied for a variety 

of applications beyond the scope of this dissertation. For example, Angharad Green from 

Cardiff University generated isolate specific models, using the PA14 model as a base, to study 

resistance to preservative treatment [1]. Additionally, Laura Dunphy from the University of 

Virginia analyzed carbon source utilization data from antibiotic resistant strains in 

conjunction with the PA14 model to suggest mechanistic reasons for differential catabolism 

across the strains [2]. I am excited to see how these models are used in the future to assist in 

antimicrobial target discovery 

 

5.3 Future work 
 

Insights from my dissertation work point to exciting avenues for future research. For 

example, the computationally predicted essential genes identified in my work are promising 

candidate targets. Further work needs to be done to fully tease out their potential as 

antimicrobial targets. Additionally, through my research, I discovered that both the model 

objective function and the parameters used in omics integration with the models can have a 

large impact on model predictions. In the future, it will be interesting to perform a robust 

https://paperpile.com/c/t8gxTg/NgIf
https://paperpile.com/c/t8gxTg/TIrW
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analysis on both of these aspects to more completely analyze their impact on model 

predictive capability. Finally, my work demonstrated that metabolic network models are 

promising tools for antimicrobial target discovery. In the future, it will be beneficial to apply 

this approach to other microbes and other contexts. 

 
5.3.1 Target follow-through 

 
While metabolic network modeling is a useful tool for generating curated lists of 

promising targets in a high-throughput, efficient, and cost-effective manner, it is necessary 

to further evaluate the candidacy of these targets with downstream experiments and 

analyses. For example, an immediate next step could be to investigate the druggability of 

these targets. With the database DrugBank, we can determine whether any of these targets 

are currently targeted by drugs. As an example, in my persister project, I proposed that 

targeting both the enzymes xanthine dehydrogenase and guanine deaminase might inhibit 

the persister phenotype by preventing xanthine production. Using DrugBank, I found that 

both enzymes are targeted by FDA approved compounds. For example, xanthine 

dehydrogenase is targeted by Allopurinol and Febuxostat, two drugs used to treat 

hyperuricemia associated with gout. Guanine deaminase has been shown to be targeted by 

Imidazole, which has medicinal activity ranging from anticancer to antibacterial. Because 

compounds exist that target these enzymes, this indicates that these enzymes are druggable, 

promoting their candidacy as promising targets. A future experiment exposing P. aeruginosa 

to inhibitors of both xanthine dehydrogenase and guanine deaminase to see if there is a 

reduction in the persister phenotype would motivate their candidacy even further. In 
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filtering the targets on druggability, this will lessen the number of time-consuming and 

resource intensive experiments necessary to validate the targets.  

 
5.3.2 Biomass objective function 

 
The identification of promising antimicrobial targets with metabolic network models 

is dependent on an appropriate objective function. However, it can be challenging to know 

what objective function to use and when. For instance, the same bacteria growing in different 

environments might depend on different objectives. Even subpopulations within a larger 

culture might differ in their objectives.  

In my dissertation work, I explored some alternative objectives; however, I think a 

more robust analysis of different potential objective functions could greatly benefit 

antimicrobial target discovery with metabolic network models. For example, in my persister 

project, a central challenge of the modeling work was determining an appropriate objective 

for the persister state. We explored several possibilities: minimal biomass production, 

minimal ATP production, minimal redox potential, minimization of internal fluxes, as well as 

various combinations of the aforementioned. Each of these objective functions had 

limitations. For instance, while biomass production is perhaps the most established 

objective function in the metabolic modeling field, it might not be appropriate for the 

persister state which is traditionally thought to be a state of dormancy and non-growth. 

Additionally, integration of the RNA-sequencing data prevented the maximization of a 

minimal redox potential in some of the condition-specific models. Ultimately, because of the 

scope of the project, I limited my target identification analysis to the minimal biomass 

production and minimal ATP production objectives. In the future, it would be interesting to 
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explore other objective functions, such as optimizing the model based on the metabolomics 

data, and see if these improve the predictive capabilities of the condition-specific models. 

Additionally, in my essentiality project, I identified that subtle modifications to the 

objective function can have an impact on the model predictions. Specifically, I proposed 

changes to the P. aeruginosa biomass reaction based on discrepancies between model 

predictions and the in vitro consensus essential genes. For instance, the P. aeruginosa model 

incorrectly identified the genes glgA and algC as essential because of their role in glycogen 

metabolism. While glycogen is certainly an important metabolite for energy storage, it is not 

essential for P. aeruginosa growth. Given the experimental data and literature evidence, I 

proposed removing glycogen from the biomass reaction. This result demonstrated the 

importance of contextualizing objective functions with experimental data.  

Based on these results, I was interested to see how modifications to the biomass 

reaction can impact model predictions. Working with Patrick Gelbach, a previous 

undergraduate student in the Papin lab, we performed a robust analysis on how the presence 

or absence of individual metabolites in the biomass objective function can impact different 

model predictions like gene essentiality, carbon source utilization, and internal flux 

distributions (Figure 5.1). 
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Figure 5.1. Impact of biomass metabolite presence on gene essentiality predictions. 
Biomass metabolites were removed from biomass reactions one-by-one for 50 genome-scale 
metabolic network reconstructions. In silico gene essentiality analysis was performed on the 
resulting models. The number of essential genes was identified for each model and 
normalized relative to the base model. (A). The distribution of the normalized essential gene 
counts across the modified models. Only models with altered essentiality counts are 
displayed because a majority of the modified models (~2000) had no impact on essentiality 
predictions. (B-E). Examples of how removal of single biomass metabolites  from the biomass 
reaction can impact essentiality calls for individual models. Orange indicates that removal of 
that particular biomass metabolite from the biomass reaction resulted in an increase in the 
number of essential genes identified. Blue indicates a decrease in the number of essential 
genes identified. Black indicates no change in the number of essential genes identified. Panel 
B is model iNF518 [3]. Panel C is model iBsu1103 [4]. Panel D is model iTZ478 [5]. Panel E is 
model iOD907 [6]. 

 
 To do this, we analyzed the biomass reactions of approximately 50 models and one-by-one 

removed metabolites from the equation and measured the resulting impact on the 

aforementioned predictions. This analysis revealed that certain metabolites, such as ATP and 

isoleucine, are more influential on model predictions. Additionally, while most changes to 

model predictions were involved in the pathways closely related to the metabolite removed 

from the biomass reaction, there were some non-obvious changes to the model predictions 

which will be interesting to investigate further. In the future, we plan to compare the 

https://paperpile.com/c/t8gxTg/NdHv
https://paperpile.com/c/t8gxTg/qeBN
https://paperpile.com/c/t8gxTg/JCQj
https://paperpile.com/c/t8gxTg/JsJc
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predictions of these models to experimental data with the goal of identifying modifications 

to the biomass objective function that improve model accuracy. Ultimately, I think this type 

of analysis will be very beneficial for the metabolic network modeling community in 

designing appropriate objective functions for different microbes in different environments. 

 
5.3.3 Ensemble integration of omics data 

 
Condition-specific models for antimicrobial target discovery are only as useful as the 

experimental data and integration methods used to generate them. Through my persister 

project, I revealed that the network of condition-specific models is highly dependent on the 

parameters used in the integration of the transcriptomics and metabolomics datasets. For 

instance, the p-value threshold used in the integration of the RNA-sequencing data can have 

a large impact on resulting functionality of genes in the condition-specific models. 

Furthermore, condition-specific models built with different integration parameters 

generated different predictions. To investigate this, I performed a sensitivity analysis on the 

integration of my persister RNA-sequencing data with the P. aeruginosa metabolic network 

model on gene essentiality predictions. Specifically, I evaluated the impact of changing the 

p-value and log2(fold-change) threshold parameters in the RNA-sequencing integration on 

the essentiality status of each gene in the P. aeruginosa metabolic network. I found that while 

the essentiality status of some of the genes in the model never changes (i.e., they are either 

always essential or always non-essential), the essentiality status of several genes in the 

model changed depending on the integration parameters used. Because we can never be 

certain of the right integration parameters to use, this suggests that, to overcome this 
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uncertainty, we need to consider the predictions generated by ensembles, or groups, of 

condition-specific models generated with different integration parameters.  

The idea of using ensembles of metabolic network models for improved predictive 

capability is not new. For example, ensembles have been shown to be useful to address 

uncertainty in gap-filling of draft reconstructions [7]. However, the application of the 

ensemble approach to condition-specific modeling, as introduced in my persister project, is 

novel. In the future, I think a more detailed analysis on the use of ensembles of condition-

specific models will be beneficial for the metabolic modeling community. For instance, it will 

be useful to know how large do ensembles of condition-specific models need to be to 

improve predictive capability? What integration parameters have the largest impact on 

predictive capability? And what type of predictions are most impacted by varying integration 

parameters? Additionally, it will be interesting to extend this sensitivity analysis to other 

methods for integrating the different omics datasets. For example, do ensembles of 

condition-specific models generated with multiple methods perform better than ensembles 

of condition-specific models generated with a single method? Ultimately, I think ensembles 

of condition-specific models have the potential to improve metabolic network modeling 

utility not just in antimicrobial target discovery applications but in the field as a whole.  

 
5.3.4 Expansion to other organisms 

 
Finally, based on the promising results from my dissertation work, it will be 

interesting to investigate the applicability of metabolic network modeling to assist in 

antimicrobial target discovery for other microorganisms. For example, metabolic network 

models might be invaluable in their ability to help identify both broad-spectrum antibiotics, 

https://paperpile.com/c/t8gxTg/j8yY


146 
 

those that target multiple groups of pathogens, and narrow-spectrum antibiotics, those that 

target a select few. Through metabolic network modeling, we can efficiently identify targets 

that are common to groups of bacteria or unique to specific pathogens in a high-throughput 

manner. Additionally, metabolic network modeling may be useful in suggesting 

antimicrobial targeting strategies for pathogens that operate in communities, such as P. 

aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus in cystic fibrosis infections. 

Through community modeling, we might be able to identify perturbations that result in an 

imbalance and weakness in the community structure. 

In my own work, I have already begun to explore the utility of metabolic network 

modeling in antimicrobial target discovery for other microbes. For instance, working with 

Julia Hiser, a previous undergraduate student in the Papin lab, we found that persister cells 

enable the Gram-negative, opportunistic pathogen and industrial contaminant B. 

cenocepacia to tolerate treatment with the industrial antimicrobials benzisothiazolinone and 

benzyl alcohol (Figure 5.2).  

 
Figure 5.2. Killing of Burkholderia cenocepacia by industrial antimicrobials. 
(A). Time-kill curve of Burkholderia cenocepacia cultures exposed to the antimicrobial 
benzisothiazolinone (BIT). Stationary phase cultures of B. cenocepacia were exposed to 
various concentrations of BIT for 24 hours. The number of colony forming units (CFUs) in 
each culture were counted immediately before exposure at 0 hours and 2.5, 5, and 24 hours 
after exposure. Untreated cultures exposed to PBS are given by the yellow line and labelled 
as 0% BIT. The green line indicates cultures exposed to 0.0006% BIT (10X the minimal 
inhibitory concentration, MIC). The blue line indicates cultures exposed to 0.006% BIT (100X 
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the MIC). The pink line indicates cultures exposed to 0.06% BIT (1000X the MIC). (B). Time-
kill curve of Burkholderia cenocepacia cultures exposed to the antimicrobial benzyl alcohol 
(BEN). Stationary phase cultures of B. cenocepacia were exposed to various concentrations 
of BEN for 24 hours. The number of colony forming units (CFUs) in each culture were 
counted immediately before exposure at 0 hours and 2.5, 5, and 24 hours after exposure. 
Untreated cultures exposed to PBS are given by the yellow line and labelled as 0% BIT. The 
green line indicates cultures exposed to 0.03% BEN (10X the MIC). Error bars are standard 
deviation from three experiments.  

 
We are currently in the process of collecting samples for RNA-sequencing of the B. 

cenocepacia persister cells to integrate with the B. cenocepacia metabolic network model, 

iPY1537 [8], to generate a model of B. cenocepacia persister cell metabolism. Comparison of 

this model with the P. aeruginosa persister cell model may identify persister traits present 

in both pathogens as well as unique to the individual bacteria. Furthermore, it will be 

interesting to see if the B. cenocepacia persister state is just as complex as the P. aeruginosa 

persister state, requiring a combinatorial targeting approach for complete inhibition. 

 

5.4 My Perspective 
 

There is an urgent need to discover new antimicrobial targets to treat infections and 

mitigate the development of antibiotic resistance. My graduate work has demonstrated that 

metabolic network models are promising tools to assist in antimicrobial target discovery 

because of their ability to delineate targets of known function, determine targets that may 

mitigate resistance, and identify targets for heterogeneous bacterial subpopulations with 

unique susceptibilities in a high-throughput manner. My essentiality work showed the utility 

of reconciling conflicting datasets with metabolic network models. Additionally, in this 

project, I present an approach for interpreting in vitro essentiality datasets with these in 

silico mechanistic models. My virulence work was the most comprehensive, genome-scale 

analysis to uncover the complex interrelationships between virulence factor synthesis and 

https://paperpile.com/c/t8gxTg/ulGz
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growth in a quantitative and high-throughput manner. My persister work relied on novel 

modeling approaches to reveal that the persister state is robust and, through condition-

specific modeling, suggested combinatorial targeting strategies that would otherwise be 

challenging to discern without the use of computational tools. Each of these projects has laid 

a strong foundation for the discovery of novel antimicrobial targets as well as enhanced the 

field of metabolic modeling through the creation of tools and novel simulation approaches.  

Over time, the utility of these models will only be enhanced as additional informative 

data is collected to curate them and more creative tools are developed for novel analyses and 

simulations. For example, as personalized medicine becomes more prevalent, the 

development of patient-specific genome-scale metabolic network reconstructions may be 

realized [9]. These personalized GENREs will enable targeted antimicrobial therapeutic 

strategies rather than the traditional resistance-promoting, broad-spectrum approach [10]. 

As my dissertation shows, metabolic network modeling is a promising tool to facilitate 

current antimicrobial target identification platforms as well as propel next-generation drug 

discovery forward. 
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