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Abstract

With the rapid development of web applications in datacenters, network latency be-

comes more important to user experience. The network latency will be greatly in-

creased by incast congestion, in which a huge number of requests arrive at the front-

end server simultaneously. Previous congestion problem solutions usually handle the

data transmission between the data servers and the front-end server directly, and they

are not sufficiently effective in proactively avoiding incast congestion. Generally, the

proposals to solve this problem have focused either on refining existing window-based

congestion control like in TCP or on introducing a distributed controller to make

congestion control decisions.

In this dissertation, we introduce a Swarm-based Incast Congestion Control (SICC)

system and a Proactive Incast Congestion Control system (PICC) which focuses on in-

cast congestion problem, and a Neighbor-aware Congestion Control algorithm based

on Reinforcement Learning (NCC) for general congestion control. SICC forms all

target data servers of one request in the same rack into a swarm. In each swarm,

a data server (called hub) is selected to forward all data objects to the front-end

server, so that the number of data servers concurrently connected to the front-end

server is reduced, which avoids incast congestion. Also, the continuous data transmis-

sion from hubs to the front-end server facilitates the development of other strategies

to further control incast congestion. To fully utilize the bandwidth, SICC uses a

two-level data transmission speed control method to adjust the data transmission

speeds of hubs. A query redirection method further reduces the request latency by

balancing the transmission remaining times between hubs. In PICC, the front-end

server gathers popular data objects (i.e., frequently requested data objects) into as

few data servers as possible. It also re-allocates the data objects that are likely to be

concurrently or sequentially requested (called correlated data objects) into the same



server. As a result, PICC reduces the number of data servers concurrently connected

to the front-end server, and the number of establishments of the connections between

data servers and the front-end server, which avoids incast congestion and reduces the

network latency. The large number of data transmissions between the data servers

storing popular or correlated data objects and the front-end server may produce high

queuing latency in the data servers. To reduce the queuing latency, PICC incor-

porates a queuing reduction algorithm that assigns higher transmission priorities to

data objects with smaller sizes and longer queuing times. In NCC, the rate limiting

decisions on one node are driven by the local agent that uses reinforcement learning

to optimize a combination of overall latency, throughput and the shared information.

To make this approach efficient, the local agents choose overall rate limits for each

node, and then a separate process assigns the traffic of individual flows within these

limits. We conclude that these congestion control systems in a datacenter will help

reduce network latency, avoid congestion and improve the quality of service of clients.

This dissertation provides an overview of the scope of congestion control and network

optimization within a datacenter, some of the key challenges in building congestion

control systems, hypothesized contributions. The proposed systems achieve better

congestion avoidance than several end-to-end and centralized mechanisms in prior

work.
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Chapter 1

Introduction

Web applications, such as social network (e.g., Facebook, Linkedin), video streaming

(e.g., YouTube, Netflix), are widely used in our daily life. A data query of a web appli-

cation always needs to retrieve many data objects concurrently from different servers

within one datacenter [49, 50, 56, 69, 80]. As shown in Figure 1.1, after receiving a

client’s data query, the front-end server sends many data requests for data objects

stored in all targeted servers and receives thousands of responses simultaneously. Al-

though a high parallelism of data requests can achieve better performance on the

back-end side, when a large number of concurrent responses arrive at the front-end

server, the switch buffers (between the data servers and the front-end server) within

the datacenter may not handle all the concurrent responses [78]. Then, it causes

packet drops and TCP timeouts, which can introduce retransmission delay and up to

90% throughput reduction [44].

This kind of network congestion is called incast congestion, which is a non-

ignorable reason of high response time in modern datacenter [30, 56, 62, 69], like

Morgan Stanley’s datacenter [35]. Web application users often have a strict require-

ment on response latency [13, 20]. For example, data query latency inside Azure

storage system needs to be less than 100ms [85] to meet user satisfaction and some
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web applications require much shorter latency such as 178µs [56]. Moreover, user loy-

alty is affected by the application’s response latency. For example, the sale of Amazon

will degrade by one percent when the latency of its web presentation increases as small

as 100ms [39]. Since the incast congestion can highly affect the web application la-

tency, in order to reduce response latency and improve users’ experience, it is critical

to avoid incast congestion in a datacenter.

.  .   . 

Data request 

Data response 

Front-end server 

Si Sj Sk 

Incast 
congestion 

Figure 1.1: Illustration of incast congestion.

The root cause of incast congestion problem is the many-to-one concurrent com-

munications between the single front-end server and multiple data servers. In general,

incast congestion problem is common and critical in the TCP protocol environment.

Many previous works have been proposed to handle this problem. They can be clas-

sified into three categories: link layer solutions [3, 21, 31, 36, 92], transport layer

solutions [4, 25, 75, 77, 78, 84] and application layer solutions [63, 64, 88]. The link

layer solutions mainly use the quantized congestion notification algorithm. In this

algorithm, once incast congestion happens in the front-end server or TCP switch, it

can send rapid packet loss notifications to the packet senders (i.e., the data servers

stored the related data objects) asking them to re-send the lost packets. This algo-

rithm needs special hardware to implement [15, 91]. The transport layer solutions

try to improve the TCP sliding window protocol to avoid packet loss. The TCP slid-

ing window protocol adaptively adjusts the size of receiver window by measuring the

available bandwidth and throughput in each control interval. In the application layer
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solutions, some methods schedule all the requests by introducing extra delay between

requests. However, always inserting pre-determined delay between requests may make

the front-end server idle with no packet arrivals. Therefore, these solutions are not

sufficiently efficient for current web applications. In addition, a common approach for

datacenter congestion control has involved extending what we call end-to-end con-

gestion control algorithms originally designed for use on the Internet. These rely

on congestion signals provided in responses to outgoing packets and typically make

decisions for each flow independently. There have been variations on this approach

for the datacenter context, such as DCTCP [4], CONGA [5], and Presto [28]. Most

importantly, these schemes refine congestion signals (often with switch support) and

refine the adjustments to flow sending rates to accommodate the high-bandwidth,

low-latency datacenter environment. Sometimes, as in CONGA [5], they run the con-

gestion control protocol between end-switches instead of between end-hosts and/or

group flows together for congestion decisions. Regardless, the overall design of these

approaches limits their ability to respond to congestion. Only conditions observed by

a node’s outgoing packets are taken into account, so decisions are made with incom-

plete information. To avoid this limitation, some other congestion control systems,

such as Flowtune [59] and AuTo [12], use a different approach which we call cen-

tralized. These designs information gather information about network demands in

a single ‘controller’ that sends congestion control decisions to each machine. Cen-

tralized approaches allow the system to plan for competing network traffic directly

rather than reacting to its side effects. In addition, the amount and complexity of

information the centralized controller must process make it difficult for it to make

decisions quickly, which is especially important for short flows commonly found in

datacenter traffic. This dissertation provides suites of solutions in application layer.

To handle the aforementioned problems, we first propose a Swarm-based Incast
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Congestion Control method (SICC ). SICC makes data transmission long-lasting to

effectively control data transmission speeds and adjust workloads on different data

servers to fully utilize bandwidth to reduce service latency. SICC forms all target

data servers of one request in the same rack into a swarm. In each swarm, a data

server (called the hub) is selected to forward all data objects to the front-end server,

so that the number of data servers concurrently connected to the front-end server

is reduced. Also, instead of sending out data object queries sequentially, the front-

end server sends out data queries simultaneously, so that it can receive the responses

continuously without latency on the data servers for waiting for the data queries. The

long-lasting data transmission from hubs to the front-end server allows it to adjust

the hubs’ transmission speeds and redirect the requests to balance the workloads

among them according to their current data transmission speeds. Also, each hub can

receive many packets for compression in order to save bandwidth consumption for

transmitting many packets.

Second, we propose a new application layer solution, called Proactive Incast Con-

gestion Control (PICC ) for a datacenter serving web applications. The root cause

of incast congestion problem is the many-to-one concurrent communications between

the single front-end server and multiple data servers [62]. Since each connection has

bandwidth limit, PICC novelly limits the number of data servers concurrently con-

nected to the front-end server to avoid incast congestion through data placement. In

this case, a challenge faced by PICC is how to satisfy the response latency require-

ments from users. To handle this challenge, PICC places popular (i.e., frequently

requested) data objects into as few data servers as possible, and also stores correlated

data objects in the same data server, but without overloading the servers (called

the gathering servers). Correlated data objects are the data objects that tend to be

requested concurrently or sequentially. For example, different data objects for a web-
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page are usually requested concurrently, and a webpage indexed by another webpage

may be requested sequentially. In addition, since gathering servers tend to have long

queues to send out data, in order to reduce the queuing latency in gathering servers,

PICC assigns different transmission priorities to data object responses in the queue;

a data object with a smaller size and longer waiting time has a higher priority to be

transmitted out. As a result, when a client sends a data query to the front-end server,

the front-end server is likely to send data requests to a limited number of servers. It

decreases the number of data servers concurrently connected to the front-end server,

which reduces the probability of incast congestion occurrence. Also, it reduces the

number of establishments of the connections between the data servers and the front-

end server (especially for the situation that most connections only carry transient

transmission of only a few data objects), which reduces connection establishment

time and hence the data response latency to the client.

Third, considering the drawbacks of the two kinds of congestion control algo-

rithms introduced above, we propose a distributed congestion control algorithm NCC,

Neighbor-aware Congestion Control algorithm based on Reinforcement Learning (RL)

method. To avoid the problems of both end-to-end and centralized schemes, we pro-

pose a hybrid approach. Our ‘half-distributed’ scheme uses a hierarchical approach

to manage network traffic. Each machine shares network information with other ma-

chines under the same switch. Combining this with local information, the machines

choose a sending rate that will limit congestion overall. To limit the overhead of

this decision, machines only process this information to choose an overall sending

rate and do not share detailed information about each flow. Then, the machines use

a privatization scheme, informed by end-to-end congestion control signals, to divide

this sending rate among the pending flows. Since these decisions about individual

flows are local, these decisions can be very rapid even in the presence of many short
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flows. Our decisions about machine sending rates are computed using reinforcement

learning, taking network statistics from neighboring machines as input. Since we do

not gather information about individual flows, the reinforcement learning agents at-

tempt to optimize a weighted combination of latency and throughput, which indicate

a non-congested network.

The above discussion on congestion control problem in a datacenter leads us to

the following thesis statement.

By exploring the congestion control model and methodologies based on spatial, tem-

poral analysis and network topology of datacenter, considering the competition and

cooperation among all the nodes, it is possible to introduce congestion control systems

for congestion avoidance, latency reduction, and overall performance improvement.

We have developed a set of datacenter network systems to address the challenges

mentioned above. The major contributions of this dissertation are:

(1) We design Proximity-aware swarm based data transmission. The front-end

server dynamically clusters all target data servers of a request in the same

rack into a swarm. The hub in each swarm is responsible for collecting all data

responses from its swarm and sends the responses continually to the front-end

server. Hubs can form a multi-level tree to further reduce the number of concur-

rently connected servers to avoid incast congestion. Two-level data transmis-

sion speed control. Each front-end server adjusts the data transmission speed

of each hub based on its network status in order to fully utilize its bandwidth

while avoiding congestion. It also adjusts its received data response traffic to its

edge switch to avoid congestion at the aggregation router to avoid packet loss.

Packet compression and object query redirection. Each hub combines several

data objects together to one packet to reduce the number of packets in trans-

mission to reduce traffic. Also, the front-end server redirects data queries from
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an overloaded hub to an underloaded hub to reduce the longest data transmis-

sion latency in all hubs for a request.

(2) We design a Proactive Incast Congestion Control (PICC ) system, which in-

cludes three parts. 1) Popular data object gathering. We gather the popular

data objects into as few data servers as possible. Therefore, when a client sends

out a data query, the number of data servers concurrently transmitting data to

the front-end server is constrained and the probability of incast congestion oc-

currence is decreased. Also, the number of connection establishments between

the data servers and the front-end server is reduced, which reduces data query

latency. 2) Correlated data object gathering. We cluster all data objects into

several groups and each group contains the data objects that tend to be re-

quested concurrently or sequentially. We then allocate each group to the same

data server. In this way, for a client’s data query, the data requests issued from

the front-end server have a higher probability to be sent to only a few servers. It

helps reduce the number of data servers concurrently connected to the front-end

server and the number of connection establishments between the data servers

and the front-end server, which avoids incast congestion and reduce data query

latency. 3) Queuing delay reduction. After we gather popular or correlated

data objects into several gathering servers, more data object responses need to

be sent from a gathering server and it increases the queuing latency. We use

a query reduction algorithm to reduce the effect of the head-of-line blocking

(i.e., a line of packets is held up by the first packet which increases the queuing

latency). In this algorithm, the gathering server assigns a higher priority to the

data objects with a smaller size and longer waiting time. Data objects with a

higher priority will be transmitted out earlier than others, so that the average

request latency in the gathering servers is reduced.
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(3) We design NCC which first introduces a utility function that takes into account

a combination latency and throughput. We show that, under some assumptions

about network behavior, this function is approximately convex and therefore

suitable for optimization via reinforcement learning (RL) techniques. We design

an agent that can run each node using RL techniques to choose a sending rate

that optimizes our utility function. Different from previous algorithms, the

input RL algorithm replies on the network information collected among all the

end-hosts under the same switch. We then propose an end-to-end priority flow

scheduling method that considers size, flow remaining processing time, and flow

waiting time. In this way, head-of-line blocking effect can be mitigated and the

average flow completion time can be reduced.
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Chapter 2

Related Work

2.1 Link Layer Solutions

The quantized congestion notification (QCN) method [3] was developed for congestion

control at the link layer in the datacenter network. It is composed of two parts: the

congestion point algorithm which samples the packages only when congestion occurs

to evaluate the congestion situation, and the reaction point algorithm which recovers

the network congestion reported by the congestion point algorithm. The drawback

of QCN lies in the fact that it runs on special switch, which is costly and hard to

implement in practice. Devkota et al. [21, 36] modified QCN by sampling each package

regardless of the occurrence of the congestion in order to get better performance in

avoiding congestion. They found that if every packet is sampled, the performance

is much better even though sampling every packet might not be necessary. Zhang

et al. [92] improved QCN by distinguishing each flow based on their sending rates

and adjusting the feedback to each flow accordingly. Huang et al. [31] found that

controlling the TCP packets size can reduce the congestion possibility. They slice the

TCP packet into smaller size to avoid congestion by special COTS switches.
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2.2 Transport Layer Solutions

These transport layer solutions are mainly focused on improving TCP protocols.

Vasudevan et al. [78] proposed disabling the delayed ACK mechanism and conducts a

retransmission when the retransmission timeout is reached. When the retransmission

timeout is reached, the sender assumes that a loss has occurred before it receives

the acknowledgment and retransmits packets again. Disabling the ACK mechanism

can achieve higher throughput than that with the ACK mechanism. ICTCP [84]

adjusts the receive window according to the ratio of the actual throughput over the

expected throughput. When the ratio decreases, the window size is increased to

use more available bandwidth and vice versa. To improve the downlink bandwidth

utilization, DCTCP [4, 75] and MPTCP [83] reduce the window size by a flexible ratio

according to current network status, such as the round trip delay and package loss

rate. Multipath TCP [29, 58] tries to seek a possible path to transfer data from servers

to the front-end server among multiple paths in order to fully utilize the bandwidth

of each link of all paths and avoid passing congested links. It also uses the different

window sizes for different TCP sub-flows to improve the utilization of link bandwidth

and avoid congestion.

2.3 Application Layer Solutions

In [63, 64, 88], a short delay is introduced between two consecutive requests by

manually scheduling the second response with an extra short delay. Therefore, the

number of concurrently connected data servers is reduced to avoid incast congestion.

In [88], the authors proposed inserting one unit time delay between two consecutive

requests. The methods in [63, 64] ask the target server to wait for a certain time before

transmitting the requested data, so that the number of concurrently connected data

10



servers is reduced. However, the added extra delay will increase the response latency

of data requests, which may not satisfy the user low-latency requirement on the web

applications.

2.4 End-to-End Congestion Control Solutions

In this kind of congestion control algorithms, the traffic rate controller are deployed on

each end-host, switch or both. The distributed controller makes the traffic decisions

according to the network status on itself. IA-TCP [33] avoids the congestion especially

incast congestion by limiting the sending rate of TCP acknowledgment (ACK) on the

receiver side. FlowBender [37] proposes two techniques to manage network traffic.

First, it controls the sending rate of each flow to avoid the excessive packet reordering.

Second, it uses dynamic flow path reassignment to avoid congestion paths. Presto [28]

splits large flows into equal-sized smaller flows on each end-host to make the flow

transmission rate decision on fine-grained level. ExpressPass [16] controls the flow

of credit packets at the switches and end-hosts according to the network bottleneck.

The credit of packets is that a sender is allowed to send a new packet only when

the receiver gives a credit to it. Thus, the speed of credit given to the sender can

control the sending rate of the sender. When a congestion happens, less number

of credit will be sent to the senders and then avoid the congestion. CONGA [5]

deploys congestion aware agent on each end-host and switch. It splits TCP flows into

flowlets, estimates the real time congestion on fabric paths and allocates flowlets to

paths based on feedback from the receivers. Expeditus [81] deploys local information

collector on each switch by monitoring its egress and ingress link loads. It then makes

path selection decisions to avoid the congestion path. Datacenter TCP (DCTCP) [4]

made ECN based congestion control algorithm the default standard in data centers.

In DCTCP, a simple active queue management scheme uses a single parameter, the
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queue occupancy threshold, to specify the threshold for marking packets with the

Congestion Experienced code point. D2TCP [76] builds upon DCTCP to prioritize

flows based on deadlines. TCP bolt [73] uses flow-level congestion control via ECN

to address priority based flow control methods’ limitations. ICTCP [84] iteratively

adjusts the TCP receive window before incast-induced packet drops. Like TIMELY,

all these TCP variants incur several RTTs (i.e., tens or hundreds) to converge to the

appropriate sending rate. TCP Vegas [11] is a pioneering work in first targeting to

achieve high bandwidth and low network delay. Its key insight is to use end host

measurements of packet RTT as a signal to incipient congestion. MPTCP [67] splits

a TCP flow into many sub-flows that may be routed independently along different

paths. DeTail [89] exploits cross-layer information to reduce packet drops, prioritize

latency-sensitive flows, and evenly distribute network load, effectively reducing the

long tail of flow completion times.

2.5 Centralized Congestion Control Solutions

TDMA (Time Division Multiple Access) [79] divides time into multiple rounds when

the centralized controller collects all the end-hosts’ network information. Within each

round, the time is further divided into fixed sized time slots so that each end-host

can communicate to the centralized controller in a contention-less manner. Finally,

all the information are processed in the centralized controller and the controller gen-

erates flow scheduling plan and send it back to each end-host. FastPass [60] sets

different priorities to different size of packets to achieve high network utilization and

low queuing latency. Smaller size of packets have the higher priority to be scheduled

earlier. Meanwhile, FastPass sets different path for different packets with the global

overview of the whole datacenter. Flowtune [59] uses a centralized controller that

it first collects the information of each flow including start and end time from the
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sender and receiver. The controller then calculates an optimal transmission rate and

other congestion control parameter settings within a certain period. In AuTo [12],

the authors first study if the deep reinforcement learning can satisfy the online con-

trol problems and make the decision for each flow in a short time. They then use a

centralized controller to collect the information of all the flows in the datacenter net-

work. In this way, AuTo can achieve near-optimal sending rate with global view while

introducing extra latency for network information transmission between centralized

controller and each node in the datacenter.
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Chapter 3

Swarm-based Incast Congestion

Control

Web applications, such as online social networks (e.g., Facebook), Web search systems

(e.g., Google) and online content publishers (e.g., Youtube), become the top sources of

Internet traffic today [23]. The datacenter serving these applications usually support

tremendous workloads. For example, Facebook serves a billion reads per second [56].

It is important to guarantee that the data requests from users are served successfully

with low latency because it affects the quality of experience of users and also is neg-

atively proportional to the incomes of the Web application providers. Take Amazon

for example, its sale degrades by one percent if the latency of its Web presentation

increases as small as 100ms [39]. The typical data request latency inside a storage

system of Yahoo is on larger than 100ms [19] to meet the user satisfaction. However,

the packet loss always occurs during data requesting due to traffic congestion and the

bandwidth usually becomes the bottleneck of the performance [2, 54, 87]. The traffic

congestion also greatly increase the data request latency due to the retransmissions

of dropped packets. Therefore, it is important to avoid congestion caused by data

requests.
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Figure 3.1: An example of incast congestion.

In Web applications, a data request for a Web page presentation needs to retrieve

thousands of data objects currently [45, 56]. As shown in the Figure 3.1, for a data

request, the front-end server sends out data queries concurrently to all targeted data

servers, and receives hundreds or thousands of data responses simultaneously. The

heavy network traffic in a short time may not reach the front-end server in time due

to the bandwidth limitation. The traffic then overflows the switch buffer capacity

and causes packet loss, which introduces an extra delay due to retransmissions. This

kind of congestion is named as incast congestion, which is a major cause of the delay

of data requests in datacenter [49, 56].

The root cause of incast congestion is the many-to-one communication pattern

between a front-end server and many data servers. Therefore, many previous methods

have been proposed to handle the incast congestion problem by reducing the number

of data servers concurrently connected to the front-end server. We classify these

methods to three groups. The first group [4, 55, 67, 75, 78, 83, 84, 90] improves

the sliding window protocol. This approach measures the actual packet throughput

variation to decide the size of the sliding window at the front-end server. When the

sliding window has an available slot of download link bandwidth, the front-end server

sends a query to a data server. However, there is a delay between the new query

sending and the response receiving so that the download link bandwidth cannot be
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fully utilized. Therefore, this approach cannot meet the stringent low service latency

requirement of the current Web applications. The second group [41, 62, 65] uses

data reallocation that tries to reallocate or replicate the data objects of a request

to a small number of servers. However, the data reallocation method requires that

many requests share concurrently requested data objects (e.g., user data in online

social networks) and the data replication method generates a high overhead due to

data replication and consistency maintenance [46, 47]. The third group [63, 64, 88]

pre-determines a certain time interval between any two consecutive responses in order

to limit the number of responses during a short time arriving at the front-end server.

However, the network status varies over time and between different data servers, so it

is difficult to pre-determine the interresponse interval to fully utilize the bandwidth

while avoiding congestion. If we improve this approach to dynamically determine the

interresponse interval based on current network status of individual data servers, it is

not applicable to the current Web applications which needs hundreds or thousands of

responses for one data request because of the high overhead for the front-end server

to keep track of the network status of such a large number of data servers.

More importantly, all of these previous approaches usually consider the direct data

transmissions from data servers to the front-end server for a request, which leads to

very fast (178µs seconds) transmission of only a few (1 or 2) data objects from each

data server [50, 56, 70] for current Web applications. The transient transmission

makes it difficult to timely control the sending speed or to adjust the workloads on

different data servers without knowing their current transmission speeds to reduce

latency. A very large number of data servers for one data request make these tasks

even more formidable.

To handle the aforementioned problems, in this chapter, we propose a Swarm-

based Incast Congestion Control method (SICC ). It also makes data transmission
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long-lasting to effectively control data transmission speeds and adjust workloads on

different data servers to fully utilize bandwidth to reduce service latency. SICC forms

all target data servers of one request in the same rack into a swarm. In each swarm, a

data server (called hub) is selected to forward all data objects to the front-end server,

so that the number of data servers concurrently connected to the front-end server is

reduced. Also, instead of sending out data object queries sequentially, the front-end

server sends out data queries simultaneously, so that it can receive the responses

continuously without the delay on the data servers for waiting for the data queries.

The long-lasting data transmission from hubs to the front-end server allows it to adjust

the hubs’ transmission speeds and redirect the requests to balance the workloads

among them according to their current data transmission speeds. Also, each hub can

receive many packets for compression in order to save bandwidth consumption for

transmitting many packets.

SICC consists of the following methods. Proximity-aware swarm based data trans-

mission. The front-end server dynamically clusters all target data servers of a request

in the same rack into a swarm. The hub in each swarm is responsible for collecting all

data responses from its swarm and sends the responses continually to the front-end

server. Hubs can form a multi-level tree to further reduce the number of concurrently

connected servers to avoid incast congestion. Two-level data transmission speed con-

trol. Each front-end server adjusts the data transmission speed of each hub based on

its network status in order to fully utilize its bandwidth while avoiding congestion.

It also adjusts its received data response traffic to its edge switch to avoid congestion

at the aggregation router to avoid packet loss. Packet compression and object query

redirection. Each hub combines several data objects together to one packet to reduce

the number of packets in transmission to reduce traffic. Also, the front-end server

redirects data queries from an overloaded hub to an underloaded hub to reduce the
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longest data transmission latency in all hubs for a request.

3.1 Swarm based Incast Congestion Control

In this section, we present the details of Swarm based Incast Congestion Control

(SICC ). A swarm is formed by all data servers of a request in the same rack. In

SICC, the front-end server dynamically forms a proximity-aware swarm structure

with all data servers for a request, and selects one data server from each swarm as

the hub to connect to it in order to reduce the number of concurrently connected data

servers to avoid the incast congestion. By monitoring the actual packet transmission

speed of each hub and the traffic in the uplink of edge switch, each front-end server

controls the data transmission speed of hub servers to fully utilize its bandwidth

without causing congestion in its edge switch and aggregation router. SICC has two

enhancements, a packet compression method and object query redirection method,

to further reduce the network overhead and data request latency.

3.1.1 Proximity-aware Swarm based Data Transmission

To avoid incast congestion, SICC also reduces the number of concurrently connected

data servers to the front-end server. For this purpose, rather than relying on sliding

window protocol (that causes an extra delay) or data reallocation (that generates

extra overhead), SICC introduces another layer between the requester (front-end

server) and the responsers (data servers) of a request (Figure 3.2), which consists of

several data servers called hubs. Hubs are responsible for data transmission between

the front-end server and the data servers. We use hi to denote the hub of the ith

swarm, and H to denote the set of all hubs.

For a data request, SICC forms the target data servers to swarms with each swarm
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Figure 3.2: The multilevel tree with proximity-aware swarms.

consisting of data servers in the same rack. The server with the largest spare capacity

to handle I/O among each rack is selected as the hub of each rack. In order to maintain

the multi-level structure, we also select another server in the rack with larger spare

capacity as the backup for the hub. When the current hub fails, the backup server

will serve as the hub. A hub forwards data object queries from the front-end server to

the target data servers, and then forwards the data responses from the data servers

to the front-end server. Each hub continuously sends all queried data objects to the

front-end server, starting from the data objects stored inside it and then the received

data objects from other data servers inside its swarm sequentially. Since the number

of data servers in a swarm is limited and also the number of hub servers, this one-

to-many communication pattern is unlikely to cause incast congestion. Also, because

data servers and the hub are in the same rack, the data transmission efficiency will

be enough.

Note this structure is dynamically created for each request rather than fixed and

it does not need to be maintained. The front-end server sends its data object queries

to each hub along with its swarm information. Then, each hub knows the data servers

to forward the queries. After receiving queries from a hub, the data servers know the

hub to send their data responses. Finally, the hub forwards the data responses to

the front-end server. If the hub layer has too many hubs that will generate incast
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congestion, we transform the hub layer to a tree structure. We will explain the tree

creation later on.

We create the transient swarm structure from the data servers of a request to be

used specifically for the request rather than creating a global tree from all data servers

in the datacenter for all requests because of three reasons. First, the transient struc-

ture does not need to be maintained by periodical probing between connected servers,

which avoids generating more network load. Second, transmitting data through a

much smaller structure greatly reduces the latency. Third, the data servers without

the requested data objects do not need to involve in the data transmission for the

request, which saves data transmission time since the establishment of the data trans-

mission connection takes a certain time. Though the front-end server needs to create

a swarm structure for each request, this computing latency is negligible as is shown

in Section 3.2.6.

Next, we discuss how to determine a suitable number of hubs. If there are too

many hubs in the system, the number of concurrently received packets in a short time

can still cause incast congestion. Generally, Assume the bandwidth of downlink is Bd

Gbps, the bandwidth of uplink is Bu Gbps, the average size of a packet as s, and the

buffer size of the edge switch is Se MB. In the case that all hubs’ packets arrive at

the edge switch of the front-end server in a short time, the largest number of hubs

(denoted by M) connecting front-end server at a time without causing the increment

of the queue size in the edge switch is

M =
Se
Bd
∗Bu

s
. (3.1)

Assume that there are m requests sent from the front-end server at a time on average,

then the number of hubs for one request is N = M/m.

In a large-scale datacenter with a lot of racks, we also need to constrain the number

20



of hubs directly connecting to the front-end server to be less than N . To achieve this,

as shown in Figure 3.2, all hubs need to form a multi-level tree structure with the

front-end server as the root. Each child hub transmits all its requested data objects to

its parent hub continuously, which transmits the data further to its parent. In order

to reduce the network load, we try to reduce the transmission switches and data size

in data transmission. Then, we follow two rules when building the tree.

Rule 1: We form the tree with proximity-awareness to reduce the number of

transmission switches. That is, two hubs (including their children) under the same

aggregation router are linked together in the tree.

Rule 2: We ensure that a hub’s child always has a smaller number of requested

data objects (including the data objects inside its child hub) than its parent in the

tree structure.

Algorithm 1 shows the procedure to build the multi-level tree from the target data

servers of a request. Based on Rule 1, SICC clusters target data servers inside the

same rack into a proximity-aware swarm (Line 1). Inside a swarm, based on Rule 2,

the data server storing the largest number of queried data objects is selected to be the

hub by the front-end server, and the hub enqueues into queue Qh (Lines 2-4). Thus,

the hub can communicate with its proximity close data servers directly through the

edge switch with minimized path length as 1. Due to the clustering of data servers,

the number of hubs is much smaller than the number of target data servers, so that

the total number of concurrently connected data servers to the front-end server is

reduced to avoid the incast congestion.

When the number of hubs connecting the front-end servers is larger than N , which

tends to generate incast congestion, a multi-level tree is formed from the hubs to limit

the number of concurrent connections to the front-end server no larger than N . By

following Rule 1, we first sort all hubs in an ascending order of the number of their
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Algorithm 1: Building a multi-level tree from hubs.

1 Cluster target data servers in each rack into a swarm;
2 /*Selecting a hub from each swarm*/
3 for each swarm do
4 Select the data server with the largest number of requested data objects

as the hub; Enqueue the hub in to queue Qh;

5 Sort the hubs in Qh in an ascending order of the number of stored requested
data objects;

6 /*Creating multi-level tree from the hubs*/
7 while |Qh| > N do
8 Dequeue a hub hi from Qh;
9 Select a hub hj with the smallest number of data objects

and under the same aggregation router as hi; Link hi as a child to hj;
10 while hj has less than N children and hi has children do
11 Transmit the last child from hi to be a child of hj;

12 Update hj’s number of requested data objects by add hi’s;
13 Update hj’s position at Qh accordingly;

stored requested data objects Qh (Line 5). Qh contains hubs in an ascending order

of the number of requested data objects contained in the subtree with the root of

each hub. While the number of hubs connecting the front-end servers is larger than

N (Line 7), starting from the first hub hi (Line 8), we try to form a subtree to

connect it (as the child) and a hub nearby (as the parent) (Lines 9-13). According

to Rule 1 and Rule 2, we try to link a hub to the hub with the smallest number of

data objects among the hubs under the same aggregate router (Lines 9-10). Also, in

order to balance the workloads among hubs and reduce the number of levels of the

tree to reduce the network load of data transmission, if hi is a parent hub of other

hubs, it transfers each of its child from the one with the largest number of requested

data objects to be a child of hj until all hi’s children are transferred or hj has N

children (Lines 10-11). After that, the number of requested data objects reported by

hj is updated by adding the number of data objects reported by hi (Line 12), and

hj’s position in the queue should be updated accordingly based on the number of
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requested data objects contained in its subtree (Line 13).

3.1.2 Two-Level Data Transmission Speed Control

3.1.2.1 Congestion Avoidance at the Front-End Server

For a data request, the front-end server sends out the data queries concurrently to

all hubs in the swarm structure. While collecting all data responses from target data

servers inside the same swarm, a hub continuously sends out all data responses to the

front-end server. The sum of the bandwidths of the hubs’ upload links may still be

larger than the bandwidth of the download link of the front-end server, which may

cause incast congestion.

To avoid the incast congestion caused by the hubs, we control the data trans-

mission speed of each hub in each short time period (denoted by ti (i ∈ N+)) in

order to fully utilize the bandwidth of the front-end server while avoiding overflows.

Fortunately, the long-lasting data transmissions from hubs to the front-end servers

enable to learn the transmission speeds of hubs in time ti−1 to adjust their assigned

bandwidth in time ti. We use bahi to denote the assigned data transmission speed of

hub hi, and use brhi to denote the real data transmission speed from hub hi to the

front-end server measured during the last short time period. We use Bp to denote

the downlink bandwidth that the front-end server plans or is assigned to use for the

next time period. At initial, Bp is set to (Bd −Ba), where Bd denotes its bandwidth

capacity, and Ba denotes its actual received total size of packets during time ti−1. We

will explain how to update Bp later on.

At the initial time of each short time period, without considering the different

network status of each hub, the front-end server can allocate its bandwidth evenly to
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each hub as:

bahi =
Bp

|H|
. (3.2)

However, the network status of each hub varies over time and the loads on different

hubs are different, so some hubs may not fully utilize their assigned transmission

speed bahi while others need a transmission speed higher than bahi . In order to fully

utilize the bandwidth of the front-end server without causing congestion, we reassign

the over-assigned bandwidth to other hubs that need more bandwidth. We use Ho

and Hu to denote the set of hubs with bahi < brhi (over-utilized hubs) and the set of

hubs with bahi > brhi (under-utilized hubs), respectively. Therefore, we reassign the

data transmission speed of hubs in Ho to:

bahi = bahi +

∑
hj∈Hu(bahj − b

r
hj

)

|Ho|
, (3.3)

and the data transmission speed of hubs in Hu to:

bahi = brhi . (3.4)

The front-end server periodically adjusts the assigned bandwidth to each hub after

each short time period. Since the expected and upper bound of data transmission

speed is always
∑

hi∈H b
a
hi

which equals Bp, the front-end server overflow of the down-

load link is avoided and the bandwidth is fully utilized.

3.1.2.2 Congestion Avoidance at the Aggregation Router

Considering a number of front-end servers in the same rack, due to their sharing of the

uplink of the edge-switch (Figure 3.2), the incast congestion may occur at the uplink

of the edge-switch (i.e., downlink of the aggregation router) if all front-end servers in

the same rack receive many data responses at the same time. To avoid the overflow
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at the uplink of edge-switches, the front-end servers need to cooperatively adjust the

data transmission speeds for data responses in their downlinks on the edge-switch.

That is, Bp used in Equation (3.2) for the next time period is proactively adjusted.

At the beginning of each period ti, each front-end server asks the total size of all

queueing packets (denoted by qti) in the aggregation router’s port, which is connected

to the uplink of its edge switch. We use Sa to denote the size of the buffer in the

aggregation router for package queueing and use T to denote a threshold to judge

a possible incoming congestion at the uplink of the edge switch. If
qti
Sa
≥ T , each

front-end server cuts down its Bp to avoid the congestion:

Bp = Bp ∗ (1− β ∗ qti
Sa

), (3.5)

where β is the upper bound of the decrement of the bandwidth. We used a sliding

window [61] like congestion control strategy by reducing the planned bandwidth by

a certain percentage. Largely reducing the planned bandwidth leads to low band-

width utilization. Therefore, SICC adjusts the planned bandwidth according to the

congestion conditions measured by
qti
Sa

. A larger qti compared to the buffer size Sa in-

dicates a more serious congestion in the edge bandwidth uplink, which needs a larger

decrement on Bp. After updating Bp, all the data transmission speeds of hubs are

updated by keeping the same portion of their sharing of the Bp in last period based

on Equation (3.2).

To fully utilize the bandwidth of the uplink, we need to enlarge Bp when there is

no predicted congestion. Then, we set

Bp = min{Bd, Bp ∗ (1 + α ∗ Ba

Bp

)}, (3.6)

where α is the upper bound of the increment of the bandwidth. Instead of using a
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slow increase as in the sliding window protocol, SICC increases the planned band-

width by a certain percentage according to the network status. A larger Ba means

that the hub fully utilized its planed bandwidth in current period, which indicates

a better network status during packet routing. Thus, we increased Bp faster with a

larger Ba
Bp

. On the other hand, a smaller Ba indicates a busy network during data

transmission. Therefore, Bp is increased more slowly with a smaller Ba
Bp

.

3.1.3 Packet Compression and Object Query Redirection

3.1.3.1 Packet Compression

The data object is usually very small and no larger than 1KB [56], such as the text

content of one friend post and status in online social networks. To put each data

object in one packet, a large amount of the bandwidth along the path from a hub to

the front-end server is consumed by transferring the packet headers compared to its

small payload. Thus, the network resource utilization is reduced.

Actually, the maximum payload of a packet can be much larger than the size of

a data object. For example, the packet in Ethernet is 1, 500 bytes. Therefore, a hub

can combine several data objects into the same packet until the maximum allowed

payload is reached. It reduces the total number of packets needed to be sent to the

front-end server through inter-rack communication and saves the bandwidth otherwise

needed to transmit a large number of packet heads. As a result, the network resource

utilization is increased. The packet compression is more effective for a data request

with many requested data objects. This is because more requested data objects lead

to more queries inside the same rack, which enables a large packet to be more likely

to find small packets in the same rack to be transmitted together in order to reduce

the number of transmitted packets.
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Figure 3.3: An example of query redirection.

3.1.3.2 Query Redirection

The data request response latency depends on the hub that is the last one finishing

the data transmission to the front-end server regardless of the transmission speeds

of the other hubs. Therefore, an incast congestion control method needs to reduce

the longest data transmission latency in all hubs. To achieve this, SICC needs to

balance the number of data objects transmitted from different hubs according to

their data transmission speeds to minimize the data response latency. We define the

data transmission progress rate of hub hi (denoted by phi) as:

phi =
|Dhi | ∗ s
brhi

, (3.7)

where Dhi denotes the set of all data objects stored in the data servers in the subtree

of hi that have not been transmitted yet. The data transmission progress rate phi

actually denotes the expected remaining time to finish the data transmission. In

order to reduce the longest data request latency among all hubs, we need to balance

the data transmission progress rate among them.

For each data object, there are usually several data replicas stored by different

data servers over the datacenter in order to achieve high data availability [6, 71].

Therefore, if a hub has a long data remaining transmission time, the front-end server
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can redirect some of the hub’s queries to another hub whose subtree has data servers

hosting replicas of the data objects of the queries. As shown in Figure 3.3, hi has a

higher remaining time than hj and hk. The request of di and dj are redirected from hi

to hj and hk, respectively. To do this, we define the average transmission remaining

time as

p̄ =

∑
hi∈H phi
|H|

. (3.8)

For any hub with phi > p̄, we define it as a low-progress hub, and use Dl to denote the

set of all low-progress hubs; for any hub with phi < p̄, we define it as a high-progress

hub, and use Dh to denote the set of all high-progress hubs.

We aim to redirect some queries from each hub hi in Dl to the hubs in Dh to make

hi a non-less-progress hub. We loop all data objects dk ∈ Dhi until hi is not a low-

progress hub. Specifically, for each data object dk ∈ Dhi , if there exists a data replica

inside the swarm of a high-progress hub hj in Dh, we redirect the data query of dk

from hi to hj. We then update Dhi and Dhj , and recalculate phi and phj accordingly.

By comparing with p̄, if the hub hi (hj) is no longer a low (high) progress hub, it

is removed from Dl (Dh). In this way, all hubs for a request are expected to have a

similar data transmission progress rate, and the longest data request latency among

all the hubs is reduced.

3.2 Performance Evaluation

We simulated 3000 data servers [14] in a datacenter, which forms a typical three-layer

fat-tree [2] with 60 data servers inside a rack [10]. Front-end servers were randomly

selected from servers. The capacity of downlink, uplink and buffer size of each edge-

switch were set to 1Gbps, 1Gbps [17] and 100KB, respectively. We assume a 1:4

over-subscription ratio at the ToR tier.We set the default number of requested data
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objects of a data request to 1000 [56]. Each data object has three replicas [6] randomly

distributed among all data servers [72]. We set the size of each packet to a value

randomly chosen from [20, 1000]B [56]. The timeout of TCP packet retransmission

was set to 10 ms [57]. As [51, 84, 91], we first simulated the incast congestion scenario

with one front-end server requesting data objects from multiple data servers. For each

experiment, the front-end server continuously initiates 10,000 data requests one after

each other, and we measure the average performance per request after the front-end

server receives all queried data objects. Later on, we test the scenario of multiple

front-end servers. We assume that there is no any physical failure in the simulation.

We compared SICC with previous incast congestion control methods: One-all,

the sliding window protocol (SW ) [56], and ICTCP [84].

One-all We use One-all as a baseline. In this method, the front-end server simulta-

neously sends out queries to all target data servers, which start the data transmission

to the front-end server right after receiving the queries.

SW The sliding window protocol (SW) [56] reduces the concurrently connected data

servers to the front-end server using the typical sliding window protocol, which in-

creases the window size till the occurrence of incast congestion and then decreases

the size.

ICTCP [84] improves the sliding window protocol by adjusting the receiving win-

dow according to the ratio of the actual throughput over the expected throughput. It

divides the slot into two sub-slots and then uses all the traffic received in the first sub-

slot to calculate the available bandwidth as quota for window increase on the second

sub-slot. In the following sections, we first measure the performance of SICC without

enhancements, and then measure the effectiveness of each enhancement method.
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Figure 3.4: Performance of response latency.
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Figure 3.5: Inter-rack traffic
cost reduction
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Figure 3.6: Effectiveness of
swarm-based multi-level tree.

3.2.1 Performance of Data Request Latency

A data request consists of many data queries for different data objects. The latency

of a query is defined as the time elapsed from the time when the front-end server

initiates the query to the time when it receives the data object. The longest query

latency among the queries of a request is the request’s latency. Figure 3.4(a) shows

the data request latency of different methods versus the number of data queries.

Figure 3.4(b) shows the CDF of data queries over time of one data request. From

both figures, we see that the data request latency follows SICC<ICTCP<SW<One-

all. In One-all, all target data servers send data packets to the front-end server

during a short time, which causes incast congestion and retransmissions for dropped
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packets, thus leading to the highest latency. SW reduces the concurrently connected

data servers through the sliding window protocol. Thus, it generates a shorter data

request latency than One-all due to lighter incast congestion. SW generates a longer

service latency than ICTCP, which improves the sliding window protocol to avoid

increasing the window size beyond the bandwidth of the uplink. However, the sliding

window cannot fully utilize the bandwidth while moving the window forwards, and a

delay is generated between querying sending and response receiving for a new available

slot. SICC generates a shorter latency than ICTCP since SICC receives all data

responses continuously by fully utilizing the bandwidth of the downlink. Figure 3.4(a)

also shows that the data request latency of all methods increases proportional to the

number of data queries of a request. More queries mean that more data objects need

to be transmitted to each hub, leading to a longer data transmission time. The figures

indicate that SICC generates the shortest data request latency among all methods

by avoiding congestion and fully utilizing the downlink bandwidth.

3.2.2 Performance in Reducing Inter-Rack Traffic

Inter-rack communication usually has a higher latency than intra-rack communica-

tion. Also, the network resources of inter-rack communication are highly required

since the resources are shared by many servers under different racks. The bandwidth

of links of an aggregation router is much smaller than the total downlink bandwidth

of all data servers connecting to this router. Therefore, it is necessary to reduce

the number of inter-rack packets. Figure 3.5 shows the number of inter-rack pack-

ets (including retransmitted packets) on a logarithmic scale generated by different

methods while the downlink bandwidth decreases from 600Mbps to 200Mbps. We

use SICC-NPS to denote SICC without the Proximity-aware Swarm method (PS),

in which each hub randomly selects the same amount of target data servers as in
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Figure 3.7: Effectiveness of two-level speed control.
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Figure 3.8: Effectiveness of the enhancement methods

SICC-NPS among all data servers as its swarm children. From the figure, we see that

the result follows One-all>SICC-NPS>SW>ICTCP>SICC. One-all generates the

largest number of inter-rack packets since the packet retransmissions caused by the

incast congestion generate extra inter-rack packets. SICC-NPS can mitigate incast

congestion so that it generates a smaller number of inter-rack packets than One-

all. SICC-NPS generates a larger number of inter-rack packets than SW. This is

because in SICC-NPS, most packets between hubs and data servers in their swarms

are transmitted between racks due to the proximity-unaware clustering. In SW, all

data servers transmit the packets directly to the front-end server without another for-

warding layer between hubs and the front-end server as in SICC-NPS . ICTCP also
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has direct transmission without an additional forwarding layer. Since ICTCP avoids

more incast congestion and hence reduces more packet retransmissions than SW, it

generates a smaller number of inter-rack packets than SW. SICC generates the small-

est number of inter-rack packets due to its proximity-aware swarm creation, packet

compression method to send several data packets together, and the incast congestion

control that avoids packet retransmission. This figure indicates that SICC is the

most effective in reducing the number of inter-rack packets to reduce request latency

and save the inter-rack network resources.

3.2.3 Performance of Swarm based Multi-Level Tree

We then measure the effectiveness of the swarm based multi-level tree to reduce the

data request latency by avoiding the incast congestion. We use SICC-NMT to denote

SICC without the Multi-level Tree (MT), so that all hubs directly connect to the front-

end server. Figure 3.6 shows the CDF of the queries over time of different methods

versus downlink bandwidth capacity and (x) in the figure means that the downlink

is xMbps. It shows that SICC-NMT generates a longer data request latency than

SICC due to the incast congestion caused by packets concurrently sent from all hubs.

The figure also shows that a larger downlink bandwidth leads to a smaller response

latency. By fully utilizing the bandwidth, SICC(1000) generates approximate one-

tenth of the data request latency of SICC(100) even though it has a higher depth of

multi-level tree. Since each hub starts transmitting data objects continuously from

currently stored and received requested data objects, it does not need to wait for

receiving all data objects from its children. Therefore, by sending and receiving data

objects continuously, the hub can fully utilize its assigned bandwidth. Therefore,

a tree with a large depth does not increase the data request latency. The figure

further shows that with a smaller downlink bandwidth, SICC-NMT generates much
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longer latency than SICC. This is because, with a smaller downlink bandwidth, there

should be fewer hubs directly connect to the front-end server. Therefore, SICC-NMT

generates more serious incast congestion because it has more hubs connecting to the

front-end server. In summary, the figure indicates that the multi-level tree can avoid

incast congestion caused by many hubs directly connecting the front-end server, and

its depth hardly affects the data request latency.

3.2.4 Two-level Data Transmission Speed Control

In this section, we measure the performance of our two-level data transmission Speed

Control method (SSC). We use SICC-NSSC to denote SICC without this method.

We adjust the assigned downlink bandwidth to each hub in every 10ms. We first

present the performance of congestion control at the front-end server side and then

at the aggregation router. For each experiment, we set the probability of each hub

becoming overloaded to 50%, and the overloaded hub has an actual data transmission

speed as 10% of its initially assigned data transmission speed. Figure 3.7(a) shows

the CDF of queries over time of SICC and SICC-NSSC. It shows that SICC has a

much smaller data request latency than SICC-NSSC. This is because SICC reassigns

the data transmission speeds of hubs according to their actual data transmission

speeds. Together with the query redirection method, SICC can fully utilize the

bandwidth of downlink to reduce the query latency. SICC-NSSC also leverages query

redirection to balance the progress, but without speed control, it cannot fully utilize

the bandwidth, leading to a longer data request latency. The figure indicates that the

data transmission speed control can effectively reduce the data query latency when

the hubs are overloaded by fully utilizing the bandwidth of the edge switch downlink.

We then present the performance of congestion avoidance at the aggregation

router. We set all data servers inside a rack as front-end servers, each of which
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conducts a request concurrently. We set α = β = 20%, T = 10% and Ba = 200KB.

Figure 3.7(b) shows the average data request latency of SICC and SICC-NSSC ver-

sus the number of queries per request. It shows that SICC-NSSC generates a much

longer data request latency than SICC. This is because, without the speed control

method, all front-end servers aim to receive the packets at the speed of their downlink

bandwidth. It causes incast congestion at the aggregation router. Then, a timeout

delay is introduced to all front-end servers due to packet loss. The figure indicates

that the speed control can effectively reduce the data request latency by avoiding the

incast congestion at the aggregation router side.

3.2.5 Performance of Enhancement Methods

We first measure the effectiveness of the packet compression method in reducing the

number of inter-rack packets and data request latency. In order not to count the

inter-rack packets between hubs in the multi-level tree to show packet compression’s

sole effectiveness in reducing the number of inter-rack packets, we connected all hubs

directly to the front-end server. We measure the compression ratio by n/n′, where

n and n′ represent the number of inter-rack packets generated by SICC without

and with packet compression, respectively. Recall that the size of a data object was

randomly chosen from [20, 1000]B. In this test, the size of a data object was randomly

chosen from [20, x]B, where the maximum size of a data object x was varied from

200B to 1000B with a step size as 200B. Figure 3.8(a) shows the compression ratio,

which is always much larger than 1. It implies that the packet compression effectively

reduces the number of packets transmitted from hubs.

We also see that the compression ratio decreases as the size of the data objects

increases. This is because a large maximum size of a data object leads to a lower

probability to fit two packets into the same Ethernet packet with the maximum
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payload limitation. Besides, the figure shows the saved data request latency calculated

by (l′ − l)/l′, where l and l′ are the data request latency of SICC with and without

packet compression, respectively. It shows that the packet compression can reduce

the data request latency. This is because a larger payload in packets leads to higher

bandwidth utilization and then a shorter data request latency while transmitting the

same amount of data. It indicates that the packet compression method is effective in

reducing the data request latency of SICC.

We then measure the effectiveness of the query redirection in reducing the data

request latency. We use the same scenario as in Section 3.2.4. We use SICC-NQR to

denote SICC without the Query Redirection method (QR). Figure 3.8(b) shows the

data request latency of different methods with different number of queries. It shows

the same order among all methods as shown in Figure 3.4(a) due to the same reasons.

SICC-NQR generates a longer data request latency than SICC because of the longer

latency to transmit requested data from overloaded hubs while SICC can redirect the

requests to balance the data transmission progress rate. The figure indicates that the

query redirection method effectively reduces data request latency by balancing the

data transmission progress ratees among hubs.

3.2.6 Performance of Scalability

In this section, we measure the data request latency of different methods in a large-

scale datacenter. We enlarge the number of data servers by 50 times. We varied the

number of queries of a request from 10,000 to 50,000 with a step size as 10,000 to

measure the performance. Figure 3.9 shows the data request latency of all different

methods. We see that SICC always generates the shortest data request latency among

all methods. Also, as the number of queries increases, its data request latency slowly

increases proportionally while those of other methods increase rapidly. This is because
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Figure 3.10: Computing time
for tree creation.

SICC effectively controls all hubs data transmission progress rate and speed and the

number of hubs connecting to it to avoid the incast congestion and fully utilize the

bandwidth. The figure also shows the same order among all other methods as shown

in Figure 3.4(a) due to the same reasons. The figure indicates that SICC generates

the shortest request latency, and its performance is more scalable than other methods

in a large-scale datacenter.

We also measure the time to create the multi-level tree with proximity-aware

swarms in a front-end server. We measured the computing time in a laptop with

4GB memory and Dual-core 2.5GHz CPU. The computing time in a powerful front-

end server in practice will be much smaller. Figure 3.10 shows the computing time to

create the multi-level tree versus the number of target data servers. We set the number

of requested data objects in each target data server to a value randomly chosen from

[1, .., 10]. It shows that more target data servers lead to a higher computing time. This

is because more data servers from more swarms, and there are more hubs to form the

multi-level tree, increasing the computing workload. However, the computing time is

around 4ms to computing a multi-level tree with 50,000 data servers, and less than

1ms for 10,000 data servers. Therefore, the latency to form the tree introduces a small

delay, which is much smaller than 100ms as the typical budget for a data request in

a datacenter serving Web applications [19].
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Chapter 4

Proactive Incast Congestion

Control

Previous incast problem solutions usually consider the data transmission between

the data servers and the front-end server directly. They cannot proactively avoid

the situation that a large number of data servers are concurrently connected to the

front-end server with transient transmission of only a few data objects from each

data server. To handle this problem, in this paper, we propose a new application

layer solution, called Proactive Incast Congestion Control (PICC ) for a datacenter

serving web applications. Unlike the previous solutions, it handles the incast conges-

tion problem from a completely different perspective. Based on the historical log of

data object request activities in a time period, PICC finds popular data objects (i.e.,

frequently requested data objects) and the data objects that tend to be requested

concurrently or sequentially (called correlated data objects). For example, different

data objects for a webpage are usually requested concurrently, and a webpage indexed

by another webpage may be requested sequentially. PICC then stores popular data

objects into as few data servers as possible, and also stores correlated data objects

in the same data server. We call these data servers gathering servers. In addition,
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in order to reduce the queuing latency in gathering servers, PICC assigns different

priorities to data object responses in the queue; a data object with a smaller size and

longer waiting time has a higher priority to be transmitted out. As a result, when a

client sends a data query to the front-end server, the front-end server is likely to send

data requests to a limited number of servers. It reduces the number of data servers

concurrently connected to the front-end server, which reduces the probability of the

incast congestion occurrence. Also, it avoids the establishment of the connections

between the data servers and the front-end server, which reduces the data response

time to the client. Within our knowledge, PICC is the first work that focuses on

the data placement to proactively avoid the incast congestion problem. PICC can

cooperate with previous solutions in handling the incast congestion problem. We

summarize our contribution below: 1,Popular data object gathering. We gather the

popular data objects into as few data servers as possible. Therefore, when a client

sends out a data query, the number of data servers concurrently transmitting data to

the front-end server is constrained and the probability of incast congestion occurrence

is decreased. Also, the number of connection establishments between the data servers

and the front-end server is reduced, which reduces data query latency. 2,Correlated

data object gathering. We cluster all data objects into several groups and each group

contains the data objects that tend to be requested concurrently or sequentially. We

then allocate each group to the same data server. In this way, for a client’s data

query, the data requests issued from the front-end server have a higher probability to

be sent to only a few servers. It helps reduce the number of data servers concurrently

connected to the front-end server and the number of connection establishments be-

tween the data servers and the front-end server, which avoids incast congestion and

reduce data query latency. 3,Queuing delay reduction. After we gather popular or

correlated data objects into several gathering servers, more data object responses
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need to be sent from a gathering server and it increases the queuing latency. We use

a query reduction algorithm to reduce the effect of the head-of-line blocking (i.e., a

line of packets is held up by the first packet which increases the queuing latency).

In this algorithm, the gathering server assigns a higher priority to the data objects

with a smaller size and longer waiting time. Data objects with a higher priority will

be transmitted out earlier than others, so that the average request latency in the

gathering servers is reduced.

4.1 Design of the PICC System

In this section, we present the details of our proposed Proactive Incast congestion

Control system (PICC ). The main cause of incast congestion is that many responses

arrive at the front-end server simultaneously. The number of concurrent responses,

or in another word, the number of servers simultaneously connected to the front-end

server may exceed the processing capacity of the front-end server, and then some

of the responded data objects will be lost. Considering the root cause of the incast

congestion, reducing the number of servers concurrently connected to the front-end

server can avoid the incast congestion. Therefore, rather than relying on short delay

insertion between two requests (which introduces extra latency) or sliding window

protocol (which may not fully utilize bandwidth), PICC has data object placement

methods to proactively reduce the number of data servers concurrently connected to

the front-end server. As a result, the front-end server only needs to communicate with

a few servers for data objects to complete a client’s data query, which helps avoid

incast congestion. Specifically, PICC has three components as presented below.

In current datacenter design, all data objects are randomly stored in data servers

without any optimization. When the front-end server receives a query from a client,

it sends out multiple data object requests to and receive responses from a number
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of data servers concurrently. In PICC, due to its data object reallocation strategies,

fewer data servers need to respond to the front-end server for a data query, which

helps avoid the incast congestion. In the following, we introduce each component of

PICC in detail.

4.1.1 Popular Data Object Gathering

In the following, we explain how to find popular data objects, how to determine the

gathering servers to store the popular data objects, and finally how to store popular

data objects to the gathering servers.

The popular data objects are identified based on the data object request historical

log. We use T to denote a time period and use t ∈ T to denote a time-slot. Upon

receiving a client’s request, the front-end server will send out multiple requests to

different data servers for data objects. After time period T , the front-end server has

a log recording the requesting frequency of each requested data object and its host

data server. Based upon the log, the front-end server first sorts all the data objects

in each rack in descending order of their requesting frequencies. It then selects θ

data objects on the top of the sorted list to transfer to the gathering servers in the

same rack. Next, the front-end server notifies the data servers storing the top θ data

objects to transfer these data objects to the gathering servers in the same rack. The

log will be updated by the front-end server periodically. When the log is updated, the

front-end server sorts and notifies data servers to transfer popular data to gathering

servers using the above steps. In this way, the popular data list are dynamically

updated and popular data objects are stored in several gathering servers.

In addition, we also need to select the gathering server(s) from all data servers in

each rack. For the purpose of minimizing the total size of data objects transferred

from other data nodes to the gathering server(s), we need to select a data server which
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stores the largest size of data objects requested by the front-end server. Accordingly,

based on the recorded log, the front-end server calculates the weight W of data server

Si: WSi =
∑

o∈Si Bo ∗ Fo. Here, o ∈ Si denotes each data object stored in data server

Si, Bo denotes the size of data object o, and Fo denotes the requesting frequency of

data object o during time period T . To limit the transfer distance of popular data

objects in order to constrain the overhead, we select gathering server(s) in each track,

so that popular data objects only need to transfer within a rack. Specifically, the

front-end server sorts data servers in each rack in descending order of server weights.

It then selects the first data server (with the largest weight) in the list as the gathering

server of each rack. The popular data objects will be transferred to this gathering

server until its storage, computing or I/O bandwidth capacity is fully utilized. Then,

the second server in the sorted list will be selected as a gathering server to host other

popular data objects in the rack. This process continues until all popular data objects

are gathered into gathering servers.

In this way, we have only a few gathering servers in each rack to store the popular

data objects (with higher requesting frequencies). Since popular data objects are

stored in these gathering servers, the weights of these servers maintain high in their

rack. Also, as more and more popular data objects move to these gathering servers,

their weights will be raised. As a result, the gathering servers are unlikely to be

changed once they have been selected at the first time.

After the log generation and gathering server selection, we transfer popular data

objects from their original data servers to the gathering servers based upon the log.

At the end of the first time period T , for each rack, the front-end server sorts all

the data objects in this rack in descending order of their requesting frequencies (Fo).

Here, we set threshold θ to decide how many data objects on top of each sorted list

can be set as popular data objects. The front-end server then transfers the θ number
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of data objects on top of the sorted list to the first selected gathering server. If

the first selected gathering server does not have enough storage, computing or I/O

bandwidth capacity to host all the θ data objects, another gathering server will be

selected from the top of the sorted list of the data servers to host other data objects.

This process repeats until all popular data objects are hosted in gathering servers.

Later on, after each time period T , the log for data object requesting frequencies will

be updated. Then, if a gathering server stores data objects not in the top θ popular

data objects, the front-end server notifies the gathering server to transfer these data

objects to other data servers in the same rack. For each data object in the top θ

popular data objects, the front-end server checks whether it is stored in a gathering

server. If not, it is transferred from its current data server to the nearest gathering

server that has sufficient storage, computing and I/O bandwidth capacities for it. If

there is no existing gathering server that has sufficient capacities for the data object, a

new gathering server will be selected from the sorted data server list to host this data

object. As a result, the popular data objects in a rack are always gathered in only a

few gathering servers, which limits the number of servers concurrently connected to

the front-server and hence helps avoid incast congestion.

Figure 4.1 shows an example of the popular data object gathering method. In this

figure, each red rectangular represents one popular data object. In time period T1,

the datacenter distributes all popular data objects into several random servers. Then,

one data query to the front-end server generates several data object requests targeting

servers Si,Sj,......,Sk. As a result, a larger number of servers will be connected to the

front-end server and respond to the front-end server concurrently, which is likely to

cause incast congestion and packet loss on the front-end server side.

In our proposed popular data object gathering method, the front-end server real-

locates popular data objects into only a few gathering servers in each rack. In this
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Figure 4.1: Popular data object gathering.

way, when the front-end server processes query requests from the clients, it requests

and receives data objects mainly from the gathering servers. In Figure 4.1, in time

period T2, Si stores one popular data object, so it is selected as the gathering server

to store all popular data objects. The popular data objects are transferred from their

previous servers to Si, as indicated by red lines in the figure. After the popular data

reallocation, when the front-end server receives queries from the clients, it mainly

requests data objects from Si. As the front-end server receives data objects from

one data server rather than three data servers, the probability of incast congestion

occurrence is reduced.

4.1.2 Correlated Data Object Gathering

In the popular data object gathering method, we allocate top θ popular data objects

to as few gathering servers as possible to reduce the number of servers concurrently

responding to the front-end server. In addition, if we allocate data objects that are

likely to be requested concurrently or sequentially into the same gathering server,

we can further reduce the number of servers concurrently responding to the front-end
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server. Note that some data objects are usually requested concurrently or sequentially.

For example, different data objects for a webpage are usually requested concurrently,

and a webpage indexed by another webpage may be requested sequentially. We call

such data objects correlated data objects. Thus, we propose the correlated data

object gathering method to cluster the concurrently or sequentially requested data

objects (i.e., correlated data objects) into the same group and allocate the group of

correlated data objects into the same gathering server.

If we gather sequentially requested data objects into the same data server, then

the sequential requests are generated one by one from the front-end server to the

same data server. It reduces the data transmission latency caused by the connection

rebuilding delay between the front-end server and data servers [34]. It also decreases

the number of servers concurrently connected to the front-end server since the front-

end server generates requests to a limited number of servers in the same time and the

connection lifetime will be longer than the previous method. As a result, data objects

can be transferred from a limited number of data servers with non-stop connections

with the front-end sever.

In the following, we introduce how to find correlated data objects. We first in-

troduce a concept of data object closeness between two data objects to represent the

likelihood that the two data objects will be requested concurrently or sequentially.

After each time period T , from the data request log, the front-end server can derive

the frequency that two data objects, x and y, are requested concurrently during each

time-slot t, denoted by Pt (x, y). It can also derive the frequency that two data ob-

jects, x and y, are requested sequentially during each time-slot t, denoted by Qt (x, y).

Then, the closeness of x and y for time period T is calculated by:

CT (x, y) = α ∗
∑
t∈T

Pt (x, y) + β ∗
∑
t∈T

Qt (x, y)

+(1− α− β)CT−1(x, y).

(4.1)
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Figure 4.2: Correlated data object clustering.

Here, α and β are the weights for the concurrent request frequency and sequential

request frequency. CT−1(x, y) is the closeness of x and y for the previous time period

T − 1. The inclusion of (1 − α − β)CT−1(x, y) is for the purpose of reflecting the

closeness of two data objects in the long term.

After the front-end server calculates the closeness of every two data objects, it

builds a graph in which each vertex is a data object and uses the minimum cut tree

based algorithm [24] to divide the graph vertices to clusters. The data objects in each

cluster are the correlated data objects. In the following, we introduce how to build

the graph and how to divide the graph to clusters.

The front-end server generates an undirected graph G(V,E), where V is the set

of all data objects and E is the set of all edges connecting data objects. The weight

of each edge connecting data objects x and y is their current closeness CT (x, y). We

then use the minimum cut tree based algorithm to divide the vertices in the entire

graph to subsets in order to create data object clusters. As shown in Figure 4.2, a

cut divides all data objects V in graph G into two data object subsets A and B.

The value of a cut equals the sum of the weights of the edges crossing the cut. The

minimum cut tree algorithm creates clusters that have small sum of inter-cluster cut
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value and relatively large sum of intra-cluster cut values.

Algorithm 2 shows the pseudo-code of the data object clustering algorithm. We

construct a minimum cut tree so that we can get the minimum sum of the values

of cuts. Finally, the graph G has been divided into several clusters. The algorithm

returns all the linked sub-graphs as the clusters of G so that the front-end server can

store data objects in one cluster to the same data server. The minimum cut algorithm

requires a computation complexity of O(|V | · |E|log(|V |2/|E|)) [27].

When the front-end server notifies the data server of a popular data object to

transfer it to a gathering server, it also notifies the data servers of other data objects

in the same cluster of this popular data object to transfer them to the gathering

server. Some data object clusters may not contain popular data objects. For such a

data object cluster, the front-end server finds the data server that stores the most of

the data objects in the cluster and has sufficient capacity to store other data objects

in the cluster, say Si, and notifies the data servers of the other data objects in the

cluster to transfer them to Si.

Algorithm 2: The correlated data object clustering algorithm.

1 V ′ = V ∪ s; Graph generation Link each data object v to generate graph
G′(V ′, E ′);

2 for all nodes v ∈ V do
3 Link V with the weight w;

4 Generate the minimum cut tree T ′ of G′ [26];
5 Divide G into clusters;
6 Return the clusters of G;

4.1.3 Queuing Delay Reduction

A gathering server stores a large number of popular data objects, which are requested

frequently with a large number of data transmissions by the front-end server. A

gathering server also stores correlated data objects that tend to be concurrently or
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sequentially requested by the front-end server. The gathering server maintains a

sending queue of all requested data objects and sends them out sequentially. In order

to minimize the average waiting and transmission time per data object, we can reduce

the effect of head-of-line blocking by setting different priorities for the data objects

based on their sizes and waiting times.

We propose a queuing delay reduction algorithm to reschedule the data objects in

the queue. That is, a data object with a smaller data size and longer waiting time has

a higher priority to be transmitted first. We first present an example to demonstrate

how this algorithm works. Figure 4.3 shows an example of queuing delay optimization

process. Each rectangular represents one data object and the size of the rectangular

means the size of the data object. Assume that the four data objects have the same

waiting time. In situation 1, the four data objects in the sending queue have sizes

400kb, 2kb, 2kb, 200kb in sequence. Then, the queue will be blocked by the 400kb

red data object and other three blue objects have to wait in the queue before the

red data object is sent out. Assume that the data uploading speed is g and the

size of a transmission unit is 400kb. Then, the average waiting and transmission

latency equals (400/g + 604/g)/4 = 251/g. In situation 2, we use the queuing delay

reduction algorithm to reschedule the data objects in the queue. The optimized

order of the four data objects in the queue is 2kb, 2kb, 200kb, 400kb, and the average

latency equals (204/g + 604/g)/4 = 202/g. The optimized queue achieves about 49/g

less latency than the unoptimized queue. In our proposed queuing delay reduction

algorithm, although the latency of the lower priority objects will be increased, the

average latency per data object in the queue will be greatly reduced. To make the

algorithm light-weighted and also constrain the waiting time of data objects, we only

schedule a number (e.g., ten) of objects at the beginning of the queue based on the

first-in-first-out (FIFO) rule rather than all data objects in the sending queue of the
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Figure 4.3: An example of queuing order optimization.

gathering server.

We consider the size and the waiting time when determining the priority of a data

object in the queue. According to [42, 43], the transmission latency and the queuing

latency is in microsecond scale. For a data object o, we use Bo to denote its size and

use τo to denote its waiting time in the queue. We then can calculate the priority

value of data object o, denoted by Mo, by:

Mo = τ3o /Bo (4.2)

In order to place more weight on waiting time when determining the priority of data

objects, we triple the value of τ . This exponent can be set to another value depending

on how much weight the system wants to give to the waiting time. The data objects

in the queue will be re-ordered based on their priority values. Considering that the

queue length of the list is not large, this scheduling method can run fast and uses

little computing resource. Thus, the overhead of the proposed queuing delay reduction

algorithm is trivial.

4.2 Performance Evaluation in Simulation

To build the datacenter, we constructed a typical fat-tree [53] using 4000 data servers

with 60 data servers inside each rack [66]. There is only one front-end server in this
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structure which is randomly selected from all the data servers. In the simulation,

we set the capacity of the downlink, uplink and buffer size of each edge-switch to

10Gbps, 10Gbps and 100kb, respectively. For each data object, it has three replicas

randomly distributed on three different data servers. In order to simulate the web

service applications better, the size of each data object was randomly chosen from

[20B,1024B] [56]. Unless otherwise specified, we set the threshold for the number

of data objects in the top of the sorted list that are considered as popular data

objects θ=1000. There are 20200 data objects in the datacenter; 200 data objects

are popular data objects and 20000 data objects are regular data objects. Each

data query consists 1000 data requests for data objects. For each data request, it

requests one data object from the popular data object list with 50% probability and

from the regular data object list with 50% probability. The interval between two

consecutive data queries was randomly chosen from 0.05s to 0.5s [48]. The timeout

of TCP packet retransmission was set to 10ms. We simulated the incast congestion

situation with one front-end server requesting data objects from multiple data servers.

In every experiment, all the data queries are generated by the front-end server and we

measured the average performance of each request after the front-end server receives

all the queried data objects [84, 91].

We compared the performance of PICC with three other representative methods:

Baseline, SLDW [56], and ICTCP [84]. We used Baseline as a baseline for the

comparison without using any incast congestion problem solutions. In this method,

data objects are randomly distributed to data servers. For a data query from a

client, the front-end server sends requests simultaneously to all the targeted data

servers. After the targeted data server receive the requests, they start the data

object transmissions to the front-end server. SLDW is a sliding window method, in

which the front-end server can adjust the number of its concurrently connected servers
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Figure 4.4: Performance of data query latency.

using the classical sliding window protocol. The window size will increase one by one

until the front-end server detects the incast congestion occurrence. Once the incast

congestion occurs, the window size will decrease to half of the previous window size.

ICTCP [84] adjusts the sliding window size by detecting the bandwidth utilization.

It divides all the slots into two part. The first part can be used to receive all the

traffic and predict the bandwidth utilization. It then adjusts the window size in the

second part based upon the bandwidth calculation results in the first part in order to

fully utilize the available bandwidth without over-utilizing the bandwidth capacity.

In the following sections, we will measure the performance of PICC with all of its

methods and then measure the effectiveness of each method in PICC.

4.2.1 Performance of Query Latency

Each data query consists of multiple data queries for different data objects. The

request latency for a data object is the time period between the time a front-end

server sends the query to the data server and the time it receives the request data

object. The longest time among all the requests of a query is the latency of this query.

Figure 4.4(a) shows the data query latency of different methods versus the number

of data queries. Figure 4.4(b) shows the Cumulative Distribution Function (CDF)
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of data queries versus the data query latency. From both of these two figures, we

see the query latency results follow PICC<ICTCP<SLDW<Baseline. In Baseline,

without any solutions to avoid incast congestion, many simultaneous responses to the

front-end server cause incast congestion, leading to data packet retransmission and

hence high transmission latency. The sliding window protocol SLDW reduces the

number of servers connected to the front-end server once it exceeds the capacity of

the maximum window size (which causes incast congestion). That is, the window size

decreases to half of the previous window size so that it can avoid the incast congestion

by reducing the bandwidth utilization. Therefore, SLDW achieves better performance

than Baseline in terms of data query latency. However, SLDW produces a longer

request latency than that of ICTCP. SLDW cannot fully utilize the bandwidth when

the window size decreases to its half size. Also, the window size increases until

the incast congestion occurs, which leads to packet loss and data retransmission.

ICTCP improves the sliding window protocol to fully utilize available bandwidth

and meanwhile avoids increasing the window size beyond the receiving capacity of

the receiver. As a result, SLDW generates longer query latency than ICTCP. PICC

generates lower query latency than ICTCP. PICC stores popular data objects into

several gathering servers and stores correlated data objects into the same server. In

this way, most of the requests can be responded continuously from a limited number

of servers by fully utilizing the bandwidth. Furthermore, since many of the responses

can be generated by one server, there is no extra delay introduced between request

sending and response receiving for a new connection establishment.

Figure 4.4(a) also shows that the data query latency of all methods increases

proportional to the number of data queries. More queries mean that more data

objects need to be transmitted from each data server, which generates a longer data

transmission time. These figures indicate that PICC generates the shortest data
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Figure 4.7: Incast congestion avoidance and computing time.

query latency among all methods by proactively avoiding incast congestion and fully

utilizing the downlink bandwidth of the front-end server.

4.2.2 Performance of Data Transmission Efficiency

Data object transmissions and retransmissions from the data servers to the front-end

server lead to inter-rack packet transmissions. PICC additionally produces inter-rack

packet transmissions caused by the inter-rack data reallocation. In this experiment,

we measure the number of inter-rack packets versus the different downlink bandwidth

of the front-end server.

A smaller number of inter-rack packets leaves more bandwidth for the connection
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Figure 4.8: Performance of different θ threshold setting.

between the front-end server and data servers, leading to higher throughput. At the

same time, the bandwidth of links of an aggregation router is much smaller than the

total downlink bandwidth of all data servers connecting to this router. Therefore, it

is important to reduce the number of inter-rack packets. Figure 4.5 shows the number

of inter-rack packets of different methods with different downlink bandwidths of the

front-end server. We see that the results follow PICC<ICTCP<SLDW<Baseline.

Baseline has the largest number of inter-rack packets compared with other three

methods since it has the highest probability of generating incast congestion without

any solutions to avoid the incast congestion. For SLDW, all the data servers respond

to the front-end server directly based upon the sliding window protocol, which can re-

duce the inter-rack packet retransmission. In ICTCP, it improves the sliding window

protocol in avoiding the incast congestion by predicting the bandwidth utilization to

fully utilize the available bandwidth. Without the high probability of incast conges-

tion occurrence, ICTCP generates fewer data object retransmissions so that it reduces

the number of inter-rack packets compared with SLDW. By gathering popular data

objects and correlated data objects into a limited number of servers, PICC proac-

tively avoids incast congestion and produces the lowest number of inter-rack packets

even though it sometimes needs inter-rack packet transmission for data reallocation.
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This figure indicates that PICC generates the smallest number of inter-rack packets

since it reduces the incast congestion occurrences and data retransmissions compared

with other comparison methods.

We then measure the data transmission efficiency by size
latency

/BW , where size is the

total size of all the requested data, latency is actual query latency of all the requested

data, andBW is the downlink bandwidth of the front-end server. Figure 4.6 shows our

measured data transmission efficiency of the four methods versus different downlink

bandwidths of the front-end server. It shows that the data transmission efficiency

results follow PICC>ICTCP>SLDW>Baseline. Furthermore, the result of PICC

increases with the bandwidth downlink decreasing, while other methods keep nearly

constant. For Baseline, all the requests are sent from the front-end server and may

be responded concurrently, which leads to incast congestion and long transmission

latency due to retransmissions. SLWD with the sliding window protocol achieves

better performance than Baseline. In ICTCP, the bandwidth occupies as least 50%

and it adjusts the other part of bandwidth based upon the bandwidth utilization,

which leads to higher bandwidth utilization than SLWD and higher data transmission

efficiency. PICC transfers popular and correlated data objects into a limited number

of servers, and the front-end server has a higher probability to request data objects

from the a few data servers, so that its downlink bandwidth can be more fully utilized.

In summary, PICC achieves the best performance in data transmission efficiency and

bandwidth utilization compared with other three methods.

Figure 4.7(a) shows the number of incast congestions occurred. We see that SLDW

and Baseline generate dramatically more incast congestions than ICTCP and PICC,

and PICC generates significantly fewer incast congestions than ICTCP due to the

reasons explained above. Also, as the number of data queries increases, the number

of incast congestions of these four methods grows since more data queries lead to a

55



higher possibility of incast congestion occurrence.

Figure 4.7(b) shows the computing time of PICC and ICTCP for the data reallo-

cation scheduling and window size adjustment calculation, respectively. The comput-

ing time of Baseline is 0 and the computing time of SLDW is negligible. The results

show that the computing time of PICC is higher than that of ICTCP. Also, as the

number of data queries increases, the computing time of PICC increases. Because

PICC needs to find popular data objects and correlated data objects, more data

queries cause more computing time. We also see that even for 50000 data queries, the

computing time is only 11ms, which is very small compared with the entire data trans-

mission latency reduction in Figure 4.4. In summary, compared with ICTCP, PICC

greatly reduces the number of incast congestions and produces reasonable computing

time compared with the entire query latency.

4.2.3 Performance of the Popular Data Object Gathering

Method

We then measure the performance of the popular data object gathering method with

different θ threshold settings that determine the number of popular data objects.

Since Baseline and SLDW always have worse performance than ICTCP, in this ex-

periment, we only compare ICTCP with PICC. We use Low, Medium and High to

denote the three cases when the θ threshold to identify popular data equals 10, 1000

and 10000, respectively. We use PICC-L, PICC-M and PICC-H to denote PICC

with these three thresholds, respectively. We intended to compare the performance

with different θ threshold settings. Figure 4.8(a) shows the data query latency versus

the number of data queries. It shows that PICC-M produces the lowest query latency

compared with PICC-L, PICC-H and ICTCP. In ICTCP, there may be many data

servers concurrently connected to the front-end and each data server transmits only a
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few data packets, which leads to incast congestion. Also, many establishments of the

connections between data servers and the front-end server generates extra latency. As

a result, ICTCP generates the longest latency. PICC gathers popular and correlated

data objects into a limited number of data servers. Thus, the number of data servers

concurrently connected to the front-end server is limited and also the number of es-

tablishments of new connections is reduced, which greatly reduce the query latency.

PICC-L sets a low θ threshold, then only a few data objects can be transferred to

the gathering servers. The reallocation of only a few data objects will not greatly

affect the number of data servers concurrently connected to the front-end server and

hence the query latency. On the other hand, PICC-H sets a high θ threshold. Then,

more data objects transferred to a gathering server lead to congestion in the gather-

ing server, and lower the transmission bandwidth between the gathering server and

the front-end server. Finally, it leads to more data retransmission and increases data

query latency. Therefore, an appropriate setting for the θ threshold is important to

achieve high performance in reducing data query latency.

Figure 4.8(b) shows the number of inter-rack packets versus the downlink band-

width of the front-end server. The results follow ICTCP>PICC-H≈PICC-L>PICC-

M. Due to the same reasons as explained above, ICTCP has the largest number of

inter-rack packets, and both PICC-H and PICC-L have larger numbers of inter-rack

packets than PICC-M. Too many or too few popular data object transferred to the

gathering servers cannot greatly reduce the incast congestions and the data retrans-

missions increase data query latency. To sum up, this figure again indicates that

an appropriate θ threshold setting is important to avoid incast congestion and data

retransmissions.
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Figure 4.9: Performance on a real cluster.

4.3 Performance on A Real Testbed

We implemented the PICC and other comparison methods on a high performance

supercomputer. All the servers we use are with 2.4G Intel Xeon CPUs E5-2665 (16

cores), 64GB RAM, 240GB hard disk and 10G NICs. The operating system of each

server is Linux 64-bit version.

The CPU, memory and hard disk never became a bottleneck in any of our exper-

iments. We randomly selected 150 servers and one front-end server from all servers,

each of which has the downlink and uplink as 10Gbps. We randomly distributed 150

data objects into the data servers, and the size and the number of replicas of each

data object follow the same settings as in our simulation.

Figure 4.9(a) shows the query latency of all methods versus the number of queries.
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Figure 4.9(b) shows the CDF of queries over time of all incast congestion control meth-

ods. They show the same order and relationship as in Figure 4.4 in the simulation due

to the same reasons. Both of the figures indicate that PICC has the best performance

in query latency.

Figure 4.9(c) shows the number of incast congestions versus the number of data

queries. It shows the same order and trend due to the same reasons as in Figure 4.7(a).

The figure indicates that PICC can greatly reduce the number of incast congestions.

Figure 4.9(d) shows the data query latency of ICTCP, PICC and PICC w/o C

versus the number of data queries. PICC has shorter query latency than PICC w/o

C. The results indicate that both the popular data object gathering method and

the correlated data object gathering method are effective in reducing the data query

latency.
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Chapter 5

Neighbor-aware Congestion

Control

A common approach for datacenter congestion control has involved extending what

we call end-to-end congestion control algorithms originally designed for use on the

Internet. These rely on congestion signals provided in responses to outgoing packets

and typically make decisions for each flow independently. There have been variations

on this approach for the datacenter context, such as DCTCP [4], CONGA [5], and

Presto [28]. Most importantly, these schemes refine congestion signals (often with

switch support) and refine the adjustments to flow sending rates to accommodate the

high-bandwidth, low-latency datacenter environment. Sometimes, as in CONGA [5],

they run the congestion control protocol between end-switches instead of between

end-hosts and/or group flows together for congestion decisions. Regardless, the over-

all design of these approaches limits their ability to respond to congestion. Only

conditions observed by a node’s outgoing packets are taken into account, so decisions

are made with incomplete information.

To avoid this limitation, some other congestion control systems, such as Flow-

tune [59] and AuTo [12], use a different approach which we call centralized. These
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designs information gather information about network demands in a single ‘controller’

that sends congestion control decisions to each machine. Centralized approaches al-

low the system to plan for competing network traffic directly rather than reacting to

its side effects. But this approach is problematic in terms of reactiveness and resource

consumption. Minimally, decisions must be delayed by the amount of time required

to communicate with this central controller. In addition, the amount and complexity

of information the centralized controller must process make it difficult for it to make

decisions quickly, which is especially important for short flows commonly found in

datacenter traffic.

To avoid the problems of both end-to-end and centralized schemes, we propose a

hybrid approach. Our ‘half-distributed’ scheme uses a hierarchical approach to man-

age network traffic. Each machine shares network information with other machines

under the same switch. Combining this with local information, the machines choose a

sending rate that will limit congestion overall. To limit the overhead of this decision,

machines only process this information to choose an overall sending rate and do not

share detailed information about each flow. Then, the machines use a privatization

scheme, informed by end-to-end congestion control signals, to divide this sending rate

among the pending flows. Since these decisions about individual flows are local, these

decisions can be very rapid even in the presence of many short flows.

In this paper, we introduce evaluate a particular manifestation of this design fo-

cused on optimizing mean flow competition time. Our decisions about machine send-

ing rates are computed using reinforcement learning, taking network statistics from

neighboring machines as input. Since we do not gather information about individual

flows, the reinforcement learning agents attempt to optimize a weighted combination

of latency and throughput, which indicate a non-congested network. The contribu-

tions of this paper include:
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1. We introduce a utility function that takes into account a combination latency

and throughput. We show that, under some assumptions about network behavior,

this function is approximately convex and therefore suitable for optimization via re-

inforcement learning (RL) techniques.

2. We design an agent that can run each node using RL techniques to choose a

sending rate that optimizes our utility function. Different from previous algorithms,

the input RL algorithm replies on the network information collected among all the

end-hosts under the same switch.

3. We then propose an end-to-end priority flow scheduling method that considers

size, flow remaining processing time, and flow waiting time. In this way, head-of-line

blocking effect can be mitigated and the average flow completion time can be reduced.

4. We conduct comprehensive experiments in real implementation. The results show

that NCC outperforms other comparison methods in the average flow completion time

as well as other measures of congestion.

5.1 NCC System Structure

5.1.1 Overview

Our system enforces an outgoing rate-limit on each node, where the rate limit is

determined by processing the TCP statistics from the current local node and the

neighboring nodes under the same switch. Under a simplified network model, we show

that by controlling these rate limits, it is possible to optimize a throughput/latency

tradeoff by controlling these rate limits. Since setting rate limits on each node does not

determine the order of outgoing traffic, we propose a flow priority scheduling scheme

that avoids head-of-line blocking effects without delaying long flows excessively.
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5.1.2 Agents and Information Sharing

1

Switch

Node

Data transmission

Information sharing

NodeNodeNode

NCC agent

Figure 5.1: The connection between neighbor nodes.

We deploy an agent on each end-host to collect outgoing flow information (such

as statistics from a TCP stack) and make outgoing rate decisions. The agent also

communicates with other neighbor nodes under the same switch as shown in Figure 5.1

and controls the outgoing rate limit by prioritizing flows as described in section 5.3.3.

To make sense of all these data, we use the reinforcement learning (RL) to make

rate limiting decisions based on the information collected from local and neighboring

nodes. The RL makes the decisions for outgoing rate limiting not for the order of the

flows. After deciding the overall rate, we use a privatization method to determine the

order of flows on each node. The RL method continuously makes decisions based on

environmental feedback (e.g., measurements from the TCP stack). The agent runs all

the time and collects the information from neighbor nodes periodically. Since many

flow transmission times are short, we set the information collection period to 1ms

by default. Since we train the RL offline, it can quickly make its decision based on

the collected information. Thus, RL is suitable for the congestion control decision

making process.

The NCC structure on each node is shown in Figure 5.2. NCC is deployed on

each node including a monitoring system, reinforcement learning algorithm, and rate
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Figure 5.2: The overview of NCC structure.

limiting enforcement. The monitoring system, based on CCP platform [18], monitors

the TCP related parameters and then transfers those parameters as state to the

reinforcement learning algorithm based on TensorFlow [1]. Meanwhile, the state

information and the actions taken by other nodes are retrieved from other neighbor

nodes. The trained RL model makes the outgoing rate limiting decision and sends

that decision to the rate limiting enforcement. The RL algorithm is constructed based

on TensorFlow and CCP [18] (a platform for congestion control design) and the rate

limiting enforcement decides which packets to send after they are queued by the TCP

stack. After the rate limit on the node is determined, the flows in the queues will be

transferred out according to the priorities of flows.

5.2 Utility Function

In order to choose transmission rates for each node and control the overall load of

the network, we use reinforcement learning to measure network conditions and try to

optimize a hybrid of overall throughput and latency for each node. We compute each
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node n’s utility as:

Un = lnxn − ρ ln dn (5.1)

where xn represents the achieved throughput of each node and dn the achieved average

latency within a measurement period. ρ is a weight which determines how much our

system favors latency over throughput. We discuss the choice of ρ in our evaluation

in section

Nodes measure the actual xn and dn via locally gathered statistics from the TCP

stack about the current good throughput and recent round-trip times. When packet

loss is negligible, xn will approximately equal the overall sending rate chosen by each

node.

When selecting the overall transmission rates, our agents try to optimize global

utility, which we define as the sum of the utilities of each node (in a group of neigh-

boring nodes): ∑
n∈N

Un(xn) >
∑
n∈N

Un(x′n) (5.2)

where x′n is another value of sending rate for nth node, for all the N senders and all

the non-negative x value.

To determine the sending rate on each node, nodes share network information

about their observed latencies and throughputs with neighboring nodes. Since the

mean waiting time in the queue of the bottleneck can be measured directly, the global

utility
∑
Un is a approximately convex function according to Equation 5.1, showing

that is suitable for the local optimization techniques used by our reinforcement learn-

ing agents.

Suppose the arrival rate in the bottleneck queue is
∑

z xz which is a Poisson process

and the bottleneck packet service times have an exponential distribution [7]. There-

fore, the mean waiting time in the queue of the bottleneck is Wb = 1
C−

∑
z xz

where C
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is the bottleneck bandwidth constraint. Thus, Equation (5.1) can be rewritten as:

Un = lnxn + ρ ln

C − xn −∑
z 6=n

xz

 . (5.3)

In order to get the maximum of objective utilization function, we set the partial

derivative
∂
∑
i Ui

∂xn
to 0 for each n and then get:

0 =
∂
∑N

i=0 Ui
∂xn

=
1

xn
+ ρ

1

C − xn −
∑

z 6=n xz
(5.4)

+
∑
i 6=n

ρ
1

C − xn −
∑

i 6=n xi
(5.5)

Consolidating the terms we have:

0 =
∂
∑
Ui

∂xn
=

1

xn
+

N ∗ ρ
C − xn −

∑
z 6=n xz

. (5.6)

xn =
C −

∑
z 6=n xz

1−N ∗ ρ
. (5.7)

Since the second derivative of
∑
Ui is:

∂2
∑N

i=0 Ui

∂(xn)2
= − 1

(xn)2
−N ∗ ρ 1

(C − xn −
∑

z 6=n xz)
2 < 0 (5.8)

∂2
∑

n∈N Un

∂(xn)2
< 0 (5.9)

which shows that the sum of utility function for all the nodes is a convex function.

Since only xn can be varied by the agent, we use the partial derivative over xn to

prove that Un is a approximately convex function for variable xn. This proof suggests

a closed form for the xn that maximizes the utility function, but this is based on the
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queuing model. In practice, network bursts and variance will cause some deviation

from the queuing model solution, so we do not try to encode this solution in the

reinforcement learning agents.

Although the deviation from the M/M/1 queuing ideal prevents the use of this

analytic solution, we hypothesize that the utility function will remain approximately

convex. The actual mean queue waiting time will still tend to increase as the load

increases. With limited queue capacity, queue waiting times will not increase towards

infinity, but will become unacceptable well before typical queue capacities are reached.

5.3 Design of Reinforcement Learning in NCC

Since the state space (the network related statistics) and the action space (the outgo-

ing rates) are continuous, the traditional RL method with Q-learning cannot handle

this optimization problem well. Since the network condition is more variable and

complex, we use Actor-Critic (A3C) algorithm, which has policy gradient for contin-

uous action space and also better convergence performance in Deep-RL [40]. Different

from the original RL algorithm, with Equation (5.7), the RL agent on each node can,

using information shared from other nodes, select the outgoing sending rate to achieve

global optimality.

A3C [40], a state-of-art deep RL algorithm, has been applied to many network

problems such as video streaming optimization [52]. To apply to network optimization

problems, A3C can be trained offline on historical network conditions. These network

conditions include the time-series states information will be introduced in detail in

Section 5.3.1.2.

At each time epoch e, the RL agent first monitors local network conditions and

receives that information from other nodes to formulate the state S. The agent then

takes actions A according to the policy and receives a reward R. The policy above
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is that the agent aims to map state information to a deterministic action or to a

probability distribution to the actions which uses a accumulated reward calculated

by reward function. While training, the agent tries to update the policy to maximize

the accumulated reward for actions. A3C relies on Deep Q-learning Neural Network

(DQNN) as the function approximation for the reward of an action. The DQNN takes

the state-action pair (s, a) as input and outputs the corresponding Q value Q(s, a)

which is the expected discounted cumulative reward:

Q(s, a) = E[R|(s, a)] (5.10)

where R means the reward function. The policy stored in DQNN can be achieved by:

π(s) = argmaxQ(s, a). (5.11)

In the offline training of the DQNN, the target is that each state-action pair can be

derived the related value by Bellman equation which is:

V = r(s, t) + γQ(s, π(s)|θQ) (5.12)

where V is the target value need to be update and θQ is the parameter of DQNN.

According to V , DQNN can be trained via loss function minimization which is:

L = E[V −Q(s, a|θQ)]. (5.13)

Since Equation (5.18) is non-linear function which is not suitable for the typical

DQNN, in order to improve the stability of Q-learning, experience replay and target

network are introduced. The RL agent collects and stores the state information into

a replay buffer and then updates DQNN with the information stored in replay buffer

68



rather than using the information collected immediately. Therefore, the agent can

observe network conditions and learn from the past experience which is better to

build a non-biased DQNN. The DQNN’s parameters will be slowly updated which

makes the learning process smooth and avoids biased results. Furthermore, A3C is

proposed with two functions. The actor function is used for deriving actions and the

critic function is used for evaluating actions. Both of the functions are stored in two

separate DQNNs. The critic function will be updated according to Equation (5.13)

and the actor function is updated according to another equation which relies on

cumulative reward J with the actor’s parameters θπ:

∇θπJ ≈ E[∇θπQ(s, a|θπ)]

= E[∇aQ(s, a|θπ) ∗ ∇θππ(s|θπ)]

(5.14)

Finally, the two DQNN are built and fully updated according to the equations above.

5.3.1 Reinforcement learning Setting

5.3.1.1 Action Space

The action space A is defined as the possible sending rates that can be allocated on

one end-host. Suppose we divide the link between into d parts, the action space A is:

A = {a0, ..., ad}. (5.15)

During each time period, the RL agent will select one action to execute.

5.3.1.2 State Space

The state space S consists of the information collects from the node itself and all the

neighbor nodes which are related to each flow. It consists several parts below. For
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the nth node itself, it consists the sending rate bn, the round trip time db,n, the actual

sending rate or the good throughput gn is the value measured in the last time period,

the total flow waiting time in the queue dq,n, the size of all the flows in the queue sq,n

and the number of flows in the queue fq,n. For each neighbor node, it consists the

sending rate, the average flow waiting time and the length of queue. For the upper

node, it consists sending rate, the length of queue. The state space can be represented

as:

S = {S1, S2, ..., Sn, ...Sn+1} (5.16)

Si = {bi, db,n, gn, dq,n, sq,n, fq,n} (5.17)

For each end-host, it receives all the states belong to all the neighbor nodes. Thus, all

the end-hosts will receive the same states information except the information belongs

to the end-host itself.

5.3.1.3 Reward

The reward function is defined over past sequences of actions and observations. When

the agent chooses an action, and gets an observation, it receives a reward that is a

function of the observation, all previous observations (e.g., the weight of all previous

observations can be controlled by the RL itself) and the actions. In our method, the

reward will be calculated after the action selected by the agent and all the related

measured parameters are ready.

The reward function used is defined as two parts: 1) Profit which focuses on

maximizing the total profit for all nodes under the same switch and then aiming to

achieve the global optimality according to Equation (5.6). The utility function and

the reward function are equivalent and then RL can use the reward function directly

to optimize the utility as shown in section 5.3.1.4. We want to use utility function
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as the reward function to achieve the tradeoff between latency and throughput for

all nodes. 2) Penalty function includes the real world constraints (e.g., bottleneck

bandwidth, number of cooperation nodes, and other nodes’ network performance)

which can reflect different network situation settings. Meanwhile, the penalty function

considers the maximum delay within neighbor nodes to avoid or mitigate the possible

decisions which may introduce extra delay to other nodes.

The overall reward function is therefore

R = Profit− Penalty. (5.18)

At time t, Profit is calculated by:

Profit =
N∑
i=0

bti
gi

ln bti − ρi ln dt−1i (5.19)

where, for each node i, bti is the action determined by the agent at time t and gi is the

actual sending rate in the last time period of the RL running. dt−1i means the average

packet round trip time measured in the last time period. The values which belong to

other nodes will be transferred from other nodes to this node with the agent.

The Penalty terms takes into account network constraints. Using this, we provide

direct feedback about bandwidth constraints and an extra penalty to avoid situations

where one node experiences very high latency compared to a typical node. The

penalty can be represented as:

Penalty = σ1 ∗
∑

z 6=n gz

C − bn
∗ bn

+ σ2 ∗
(
Maxz 6=n(dz)

Cd
− 1

)
dn

(5.20)

where σ1 and σ2 are the coefficient to optimize the penalty which can give different
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weight to throughput or delay and Cd is a standard delay threshold for the network,

determined from historical data or Service Level Agreement (SLA). For the first term

which considers the bandwidth constraints, if
∑
z 6=n gz

C−bn > 1, then the current decided

sending rate is higher than the available bandwidth in the bottleneck. Then, the first

term in the penalty is inflated and larger than that of
∑
z 6=n gz

C−bn < 1. For the second

term which considers the negative effect of the high latency, we use the standard

delay threshold Cd which is set manually according to the engineer’s experience to

evaluate the latency situation. If the largest delay among these nodes larger than the

threshold, all the agents will be punished. It is because all the agents’ actions can

affect the high latency under the same switch.

5.3.1.4 The Equivalence of Utility Function and Reward Function

Let A be the set of actions an agent can take, and O the set of observations. Assume

both sets are finite (we can set discrete values for the actions and the observations).

Let H be the set of histories (sequence of observations and actions) of an agent. Let

W be the set of worlds which include the full set of observation history for the agent.

Therefore, a reward function R is a function from histories to real numbers, while the

utility function U is a function from worlds to real numbers. We then assume that

the agent knows it can take ω actions and get ω observations. The Wh|h ∈ Hω form a

partition of the possible worlds in W . We then assume that reward function is given

as R, for wh ∈ Wh:

UR(wh) =
ω∑
i=1

R(hi), (5.21)

and then for history h, V (U, π, h) and V (RU , π, h) differ by a constant that is a

function of h only, not because of policy π. Thus, the reward function maximization

and the utility function maximization will choose the same policies. In another words,
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when the reward function and the utility function are the same, the policies selected

from the RL agent or the decision made according to the utility function are the same

aiming to maximize the utility function then.

5.3.2 Monitoring System

The RL system takes all the network information from the monitoring system as the

input. Since the metrics measured in CCP programming model are not enough for

our system, we deploy our own monitoring system written in Python that collects

necessary information every 1ms. db,n is important in reward function to evaluate the

delay within the datacenter network. A timer is implemented and send a statistic to

the monitoring system. The timer variable starts at 0 and represents the number of

microseconds since last ACK arrived. However, it is hard to get this number directly

when the system monitors the packets. The monitoring system collects all the time

stamps including the start time of one packet starting to send and the end time

of the corresponded ACK received by the server. For the good throughput gn, the

monitoring system first check the size of all the flow completed in the last period and

also the loss rate. It then computes the good throughput for each flow and sums

the throughput of all the flows to generate gn. The other flow-related metrics are

collected via flow class in CCP [18]. All the metrics above are also captured and

validated by tcpdump [74] and WireShark [82].

5.3.3 Flow Prioritization

After the reinforcement learning determines the rate at which each node may drain

their queue of packets, the simplest way to prioritize between the different flows

would be FIFO or SJF. However, FIFO would introduce head-of-line blocking and

SJF would degrade the performance on flow completion time by starving long flows.
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In order to avoid this problem, we further consider the remaining flow completion

time to optimize the order of all the flows in the queue within each end-host. In this

way, the average flow completion time can be reduced.

For a flow l, we use τl to denote its waiting time in the queue, measured from

when it was added to the queue to when it started to be sent out. The size of flow l is

denoted as sl andRl is the flow completion remaining time which can be estimated by

remaining flow size over the current throughput. We then can calculate the priority

coefficient Υl of this flow l by:

Υl =
τl
ω

sl ∗ Rl

(5.22)

where the value of ω can decide the weight of waiting time when determining the

priority coefficient of each flow since sometimes the waiting time needs more weights

to determine the priority coefficient compared with the flow size. Since the average

flow completion time of short flows is around several millisecond, in order to reduce

the overhead of the priority optimization method, we only select top κ flows to set

priorities and re-order them.

Next we introduce the priority optimization process with pseudo-code shown in

Algorithm 3.

Algorithm 3: Priority flow optimization algorithm.

1 For all the flows waiting to send out;
2 Sub-queue Generation top κ flows to generate a sub-queue of the flow

queue in the end host;
3 For each flow l in this sub-queue;
4 Calculate the priority coefficient Υl according to Equation (5.22);
5 Sort the flows in the sub-queue according to Υl;
6 Send out the flows in the order of the sub-queue under the rate limits

determined by RL;
7 Remove those κ flows from the queue in the end host;

After the priority of each flow is determined, the flow sending behavior is controlled

by modifying rate class in CCP via command update-fields which is much faster than
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regular setting directly. The rate enforcement will select flow one by one until the rate

enforced is reached. In order to avoid overuse of bandwidth, once the rate limit for

the node is almost occupied and the next first priority is larger, the rate enforcement

waits until some flow’s completion before adding more flows with high priorities.

5.4 Evaluation

5.4.1 Experiment Settings

We implement our NCC using Python based on CCP programming model [18] and

Ubuntu 18.04 LTS. The reason why we implement our methods through CCP is that

it makes it easy to program sophisticated algorithms in a safe user-space environment

as opposed to writing C and then the risk of crashing Linux kernel. Meanwhile,

using Python makes NCC compatible with the current machine learning programming

model like TensorFlow used in this paper.

In the simulation, we use ns-3 network simulation tool to evaluate the performance

of NCC with Fat tree topology. Since the default version of TCP in ns-3 is NewReno

which is out of dated, we adopt the newest TCP BBR based on [9] in ns-3 simulation.

There are 16 servers in each rack, 128 Top-of-Rack (ToR) switches, and 32 aggregation

switches. We use the labmade C++ code to realize the rate control part and realize the

rate limiting mechanism with the same RL model. The link capacity between servers

and ToR switches is 10Gbps. The link capacity between each switch is 40Gbps. When

we change the number of concurrent senders, we will further increase the workload

in the same scale. For example, we double the number of concurrent senders while

doubling the workload in the two benchmarks. To sum up, the rate control mechanism

and decision making process are the same both in simulation and real implementation.

In the implementation, we deploy NCC on 48 Amazon EC2 instances m4.10xlarge
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(40 cores CPU, 160 GB memory, and 10Gbps NIC) as end hosts and another 10

instances m4.16xlarge (64 cores CPU, 256 GB memory, and 25Gbps NIC) simulated

as switches. The instances have sufficient resources to ensure that CPU and memory

will not be the bottleneck in these workloads.

5.4.2 Workload Generation

We use Hibench [32] to generate two types of workload: data analysis and web search

to simulate the most popular workload in the current datacenters [8]. In data anal-

ysis workload which consists more longer flows, we use sort, wordcount, terasort,

enhanced DFSIO to simulate daily data analysis behavior in the datacenter. In web

search workload which consists more shorter flows, we use pagerank, nutch indexing

to simulate web search scenario in the datacenter.

For the RL training in NCC, in order to avoid the data bias, we use another

network data in prior work [68] to train the model for 10 rounds. After the training,

we use the trained RL agent to do the test below. The data has been open-sourced

in “Facebook Network Analytics Data Sharing” Facebook group [22] which is the

network data collected during a 24-hour period in January 2015. The clear majority

of traffic is intra-cluster but not intra-rack (i.e., the 12.9% of traffic that stays within

a rack is not counted in the 57.5% of traffic labeled as intra-cluster). Since the RL

training from scratch can result in poor policies at the beginning of learning and long

time to converge, we adopt the offline supervised learning to guide the RL policy

update with the existing scheduling strategy, the default TCP-BBR sending rate

mechanism. The online training of the RL agent is trained with Adam optimizer [38]

with a fixed learning rate of 0.001 for offline supervised learning and 0.0001 for the

online training. With these setting, the online training will spend around 8 hours to
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converge after the offline learning.

We also use Yahoo Cloud Serving Benchmark (YCSB) [86] to measure the perfor-

mance under web serving workload performance. We use the default settings (e.g.,

readproportion, updateproportion) in YCSB. We set another physical machine as the

client and evenly distribute all the data files in all the nodes. We implement Mon-

goDB on all the nodes to host all the requested data files. For different number of

concurrent senders, we adjust the number of operations in the workload settings to

make sure that lager number of senders have larger workload.

5.4.3 Comparison Methods and Test bed Topology

We took four comparison methods both in simulation and real world implementation.

1. DCTCP: In DCTCP [4], it provides a TCP-like protocol for datacenter network.

It leverages the Explicit Congestion Notification (ECN) in the network to provide

multi-bit feedback to each end host. It adjusts the sending window size according

to the extent of congestion. For each packet in DCTCP, the packets are marked to

convey congestion signal according to instantaneous queue length upon their arrival

at the queue. We set the ECN marking threshold to be 30KB as DCTCP recom-

mends. 2. CONGA: CONGA [5] splits TCP flows into flowlets and estimates real

time congestion on fabric paths. It then allocates those flowlets to paths based on

feedback from switches. 3. Flowtune: Flowtune [59] makes the congestion control

decision for each flowlet not a packet. In Flowtune, they implement a centralized

allocator which receives the flowlet start and end notifications from endpoints. The

allocator then computes the optimal rates using network utility maximization and

updates the related congestion control parameters. 4. Auto: Auto [12] controls all

the flows in a centralized way. A centralized controller collects all the necessary in-

formation including the size of each flow and the number of finished flow in a unit
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time within the datacenter network. The controller then makes the decisions relying

on the deep reinforcement learning for all the flows to determine the priority and the

sending rate of each flow within each node.

5.4.4 Metrics

To measure the performance of congestion control methods, we primarily focus on the

average timeout ratio, a single metric that relates to congestion control performance

and reflects whether we are avoid the congestion and provide much better throughput

and latency performance. Besides average performance, a frequent concern of con-

gestion control systems is poor performance in exceptional cases. We examine how

our system fares in several metrics that reflect this problem, including the flow com-

pletion time, 99th percentile flow completion time, Jain’s fairness index and the CDF

of all the flows for each node’s achieved performance. The measured metrics answer

the questions below. In addition to evaluating performance in terms of congestion,

we are also interested in our system’s sensitivity to its parameters and how well it

achieves its internal utility goal.

5.4.5 Overall Performance

We first show the results in the real implementation.

Figure 5.3 and 5.4 show the timeout ratio for all the flows generated from all the

servers versus the number of concurrent senders. TCP timeout ratio is an abnormal

signal that one packet may be lost and this packet needs to be re-transmitted or the

connection is failed. In another word, the TCP timeout ratio can refplect how many

percentage of packets suffer congestion and even packet lost. The results follow NCC

<Auto<CONGA<Flowtune<DCTCP. DCTCP optimizes the original TCP parame-

ters specially for datacenter networks. Based on DCTCP, CONGA splits each long
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Figure 5.3: Timeout ratio for
HiBench.

0

0.0005

0.001

0.0015

0.002

50 100 150 200 250

T
im

e
o
u
t
 r
a
t
io

Number of concurrent senders

DCTCP CONGA Flowtune Auto NCC

Figure 5.4: Timeout ratio for
YCSB.

flows into small flowlets which can achieve better performance in packets loss avoid-

ance since it optimize each flowlet in more fine-grain level. Thus, the performance of

CONGA is better than DCTCP. Flowtune optimized the sending rate of each flowlet

same to CONGA. Because of the distributed way of CONGA, Flowtune uses a cen-

tralized rate allocator for each flowlet with network utility maximization strategy

which can achieve the global optimal leading to Flowtune<CONGA. In Auto, as a

centralized controller, it also needs the network information of all the flows in the

nodes within the datacenter. The large size of network information and also the RL

model introduces extra decision making and transmission latency. The centralized

controller introduced extra decision making latency which can highly affect the per-

formance. Meanwhile, the extra latency leads to decision delay so that the centralized

controller cannot make the sending rate decision in real time. The nodes sharing the

bottleneck link suffer the congestion so that the decision transmission latency will

be much larger than others. In NCC, without centralized controller, NCC uses a

“hybrid-distributed” method which introduces the network information transmission

between all the neighbor nodes. Different from the previous selfish players’ conges-

tion control game, the cooperative players’ game made it possible to get the global

optimal while avoiding the extra latency introduced by centralized controller since

the transmission latency between each neighbor nodes is much smaller than that in
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Figure 5.5: Queuing time for
HiBench.
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YCSB.

centralized methods. Furthermore, NCC takes advantage of RL which can response

to the variable network conditions fast and also based on historical data. Therefore,

NCC can achieve the best performance compared with other comparison methods

and almost zero timeout ratio in the experiment duration.

Figure 5.5 and 5.6 show the average queuing time of all the flows versus the number

of concurrent senders. We change the number of concurrent senders aiming to test the

scalability holding large number of servers at the same time. The results follow that

NCC>Auto>CONGA>Flowtune>DCTCP. Without any optimization about coop-

eration between each node, DCTCP achieves the worst performance with much lower

throughput because of high query time in the bottleneck link. CONGA splits the

flow into flowlets and determines the sending rate on each node. CONGA adjusts

the sending rate in fine-grain level so that it can response to the high query time in

the bottleneck fast with larger number of servers around 400 servers. Flowtune op-

timizes the sending rate of the flowlets with centralized controller and calculates all

the optimal sending rate for all the flowlets. Therefore, CONGA achieves worse per-

formance than Flowtune. With the flow-level optimization, Auto can achieve better

performance than the above comparison methods. However, the centralized controller

limits the decision making latency performance. NCC considers the congestion con-

trol algorithm as a cooperative game and takes the advantage of centralized methods
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and also lower latency caused by network information transmission between each

neighbor node. The sending rate allocation among all the nodes lower the possibility

of congestion and longer query in bottleneck. NCC achieve lower query time all the

time since the query time is occupied in each node.

Figure 5.7 and 5.8 show the CDF versus the flow completion time (ms). All the

results follow that NCC<Auto<CONGA<Flowtune<DCTCP due to the same reason

in Figure 5.3. From these two figures we also know that NCC can always achieve the

best performance under these two different network topologies with high scalability

because of the “hybrid-distributed” way. It has the network topology aware and only

considers the neighbor nodes network conditions which have much higher effect on

the bottleneck link. All the nodes with the RL agent can communicate with the other

neighbor nodes without the topology sensitive.

Figure 5.9 and 5.10 show the CDF versus the 99% flow completion time. For Hi-

Bench workload, it consists a mixture of both short and long flows in Figure 5.9. NCC

outperforms the other comparison methods and achieves up to 20% improvement for

average flow completion time. This is because that NCC can achieve the global opti-

mal network condition without introducing extra information communication latency.

Considering the enhancements, NCC can dynamically optimize the priority of all the

flows which avoids the “head-of-black” effect. For YCSB workload, it consists mostly
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short flows. NCC has the similar performance compared with CONGA, Auto and

Flowtune.
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Chapter 6

Summary

In this dissertation, we first introduced the background of the datacenter network

and also the root cause of network congestion, especially for the incast congestion.

The three proposed datacenter network congestion control systems outperform other

comparison methods in datacenter network congestion control using different network

features.

We proposed a Swarm-based Incast Congestion Control method (SICC ). SICC

clusters the proximity-close data servers in the same rack into swarms, selects a data

server as a hub to collect all transmitted data inside its swarm and continuously for-

wards it to the front-end server, so that the number of concurrently connected data

servers to the front-end server is reduced, which avoids the incast congestion. Also,

the long-lasting transmission by transmitting data together from a hub enables SICC

to sophisticatedly control the data transmission speed to avoid congestion while fully

utilizing the bandwidth. This feature also enables SICC to have two enhancement

methods: packet compression and query redirection. The packet compression method

combines different packets to one packet to increase the payload of a packet to improve

the bandwidth utilization. The query redirection method transmits the data queries

from swarms with long remaining data transmission latency to swarms with short
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remaining data transmission latency in order to reduce the data request latency. The

experiments in simulation and on a real cluster show that SICC achieves the shortest

data request latency compared with other incast control methods. Web applications

are featured by a very large number of data object responses for a data query, which

may cause the incast congestion problem and makes it difficult to meet their stringent

low delay requirements. Less previous methods focus on the data placement to proac-

tively avoid the incast congestion problem. For this purpose, we proposed a proactive

incast congestion control system PICC. First, PICC reallocates popular data objects

into as few gathering servers as possible. Second, PICC reallocates data objects

that tend to be concurrently or sequentially requested into the same data server.

Such data reallocation reduces the number of data servers concurrently connected

to the front-end server and reduces the number of connection establishments, which

help avoid incast congestion and reduce query latency. Third, considering that the

gathering servers may introduce extra queuing latency, PICC further incorporates a

queuing delay reduction algorithm to reduce the average latency per data object. The

experiments both in simulation and a real cluster show that PICC greatly reduces

data query latency and the probability of the incast congestion occurrence. Cur-

rent datacenter hosts multiple types of workloads which require low latency and high

throughput concurrently. However, the previous distributed solutions cannot achieve

global optimal solutions while the centralized solutions cannot make the congestion

control decision in a short time. To overcome the drawbacks, we propose NCC which

uses “half-distributed” way to build the congestion control system. it takes advantage

of the low latency of communication within one switch or router. The reinforcement

learning agent deployed on each end-host can exchange all the network information

in real time with all the end-hosts under the same switch. Thus, it can avoid the

information exchange delay in centralized method and also achieve the global opti-

84



mal status for all the nodes. The extensive experiment shows that NCC outperforms

other comparison methods under different network conditions in many aspects.

For future work, the application of congestion control algorithms in network per-

formance optimization is vast, and this dissertation is at the beginning stage. There

will be a huge amount of opportunities for network performance optimization, espe-

cially for congestion control algorithms. This section introduces one research direction

to explore congestion control algorithms used in datacenter networks: Data-driven

congestion control methods. As the Internet grows more complex and diverse, the

traditional TCP congestion control can not react to the real-time variance in the

network. Since different datacenter applications have various features of network

transmission, we can design a new system that aggregates the real-time performance

of similar TCP connections and predicts the suitable TCP parameters for each con-

nection to avoid network congestion. Like our third work in this direction, we can

further extend it to all the parameters determination using machine learning algo-

rithms and data analytics tools, such as window size, in TCP connections. Second,

passive network measurements involve high network probing overhead and limited

datacenter coverage. Thus, some special applications like video streaming offer a new

chance. Such applications can provide real-time measurements of network conditions

without any probing overhead. We plan to take advantage of such special applications

to measure network real-time performance and support the future congestion control

algorithms. After several decades of network system development, we believe that,

in the future, the network systems can be improved with the increasing amount of

network measured data and the development of data analytics techniques.
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