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Abstract

Overlap between events can lead to interference due to a tradeoff between encoding the present

event and retrieving the past event. Temporal context information – ‘when’ something occurred,

a defining feature of episodic memory – can cue retrieval of a past event. However, the influence

of temporal overlap, or proximity in time, on the mechanisms of interference are unclear. Here,

by identifying brain states using scalp electroencephalography (EEG) from male and female

human subjects, we show the extent to which temporal overlap promotes interference and

induces retrieval. In this experiment, subjects were explicitly directed to either encode the

present event or retrieve a past, overlapping event while perceptual input was held constant.

We find that the degree of temporal overlap between events leads to selective interference.

Specifically, greater temporal overlap between two events leads to impaired memory for the

past event selectively when the top-down goal is to encode the present event. Using pattern

classification analyses to measure neural evidence for a retrieval state, we find that greater

temporal overlap leads to automatic retrieval of a past event, independent of top-down goals.

Critically, the retrieval evidence we observe likely reflects a general retrieval mode, rather than

retrieval success or effort. Collectively, our findings provide insight into the role of temporal

overlap on interference and memory formation.
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Introduction

Overlap between events leads to interference and impairs memory for those events (McGeoch,

1942; Anderson, 2003). For example, at a conference you may talk to a colleague whom

you had previously met over Zoom. Later you may have difficulty remembering either the

original Zoom meeting or the subsequent conference conversation. The overlap between

these events (e.g. the colleague) promotes retrieval of the past event (the meeting on Zoom)

while you are trying to encode the present event (your conversation; Kuhl, Shah, DuBrow,

& Wagner, 2010). As retrieval and encoding recruit distinct neural substrates and cannot be

engaged in simultaneously (Hasselmo, Bodelon, & Wyble, 2002), retrieving the past comes

at the expense of encoding the present (Long & Kuhl, 2019). Although overlap is a critical

factor in retrieval-mediated interference, two events may overlap along many dimensions and to

varying degrees. Temporal overlap, or proximity in time, has been shown to enhance inference

(Zeithamova & Preston, 2017), but it is unclear how temporal overlap contributes to interference.

The aim of this study is to investigate the extent to which temporal overlap induces retrieval and,

in turn, impacts interference.

Temporal information is a hallmark of episodic memory (Tulving, 1993) and is well known to

impact how events are encoded and retrieved. The closer two events are in time and/or space

the more likely they are to be recalled together (Kahana, 1996; Manning, Polyn, Baltuch,

Litt, & Kahana, 2011) and the greater their neural similarity (Manns, Howard, & Eichenbaum,

2007; Folkerts, Rutishauser, & Howard, 2018). Retrieved context theory (Howard & Kahana,

2002; Sederberg, Howard, & Kahana, 2008; Polyn, Norman, & Kahana, 2009; Lohnas &

Kahana, 2014) provides an account for these effects whereby spatiotemporal context – an

amalgamation of external stimuli and internal states – is bound, via the hippocampus, to the

present experience (Eichenbaum, 2004; Wang & Diana, 2017; Long & Kahana, 2019; Yonelinas,

Ranganath, Ekstrom, & Wiltgen, 2019) and is later used by the hippocampus as a cue to

retrieve past experiences (Long et al., 2017). Comparison of activity patterns between study

and test items – a recalled word or recognition probe – provides support for retrieved context

theory in that the shorter the temporal distance between two items at study, the greater the
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pattern similarity between the study pattern of one item and the test pattern of the other item

(Manning et al., 2011; Howard, Viskontas, Shankar, & Fried, 2012; El-Kalliny et al., 2019).

Although contextually-mediated retrieval is typically considered in relation to the test phase of

an experiment, in principle contextually-mediated retrieval should occur whenever there is a

spatiotemporal contextual overlap between items. Such retrieval may occur automatically, or

independent from top-down demands (Smith, Handy, Hernandez, & Jacoby, 2018). Therefore,

we hypothesized that overlap in spatiotemporal context between two events produces retrieval

during study and in turn promotes interference.

Here, we report a human scalp electroencephalography (EEG) study in which subjects studied

two sets of object images in which the second set categorically overlapped with the first set. Dur-

ing study of the second set of object images, subjects were explicitly instructed to either encode

the second (present) object or retrieve the first (past) object. These instructions were intended

to bias subjects toward either an encoding or retrieval state. Our critical manipulation was the

temporal distance between the first and second object, whereby the shorter the temporal dis-

tance between two objects, the greater their spatiotemporal contextual overlap. Following study,

subjects completed a recognition task to probe their memory for all previously-presented objects.

To the extent that spatiotemporal contextual overlap influences interference, we should find that

temporal distance modulates memory performance for the first and/or second objects. To the

extent that spatiotemporal contextual overlap promotes retrieval, we should find that subjects

are biased toward a retrieval state during second objects that are presented near in time to a

categorically overlapping first object.

Materials and Methods

Subjects

Forty (34 female; age range = 18-37, mean age = 20.3 years) right-handed, native English

speakers from the University of Virginia community participated. All subjects had normal or

corrected-to-normal vision. Informed consent was obtained in accordance with the University
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of Virginia Institutional Review Board for Social and Behavioral Research and subjects were

compensated for their participation. Three subjects were excluded from the final dataset: one

who previously completed a behavioral version of the task, one who had poor task performance

(recognition accuracy below three standard deviations of the mean of the full dataset), and one

due to technical issues resulting in poor signal quality throughout the majority of the session.

Thus, data are reported for the remaining 37 subjects. The raw, de-identified data and the

associated experimental and analysis codes used in this study will be made available via the

Long Term Memory laboratory website upon publication.

Mnemonic State Task Experimental Design

Stimuli consisted of 576 object pictures, drawn from an image database with multiple exemplars

per object category (Konkle, Brady, Alvarez, & Oliva, 2010). From this database, we chose 144

unique object categories and 4 exemplars from each category. For each subject, one exemplar

in a set of four served as a List 1 object, one as a List 2 object, and the two remaining exemplars

served as lures for the recognition phase. Object condition assignment was randomly generated

for each subject.

General Overview. In each of eight runs, subjects viewed two lists containing 18 object images.

For the first list, each object was new (List 1 objects). For the second list (List 2 objects), each

object was again new, but was categorically related to an object from the first list. For example, if

List 1 contained an image of a bench, List 2 would contain an image of a different bench (Figure

1). During List 1, subjects were instructed to encode each new object. During List 2, however,

each trial contained an instruction to either encode the current object (e.g., the new bench) or to

retrieve the corresponding object from List 1 (the old bench). The critical manipulation was the

distance between the corresponding List 1 and List 2 objects. We divided each list of 18 objects

into thirds according to serial position (first [1-6], middle [7-12], and last [13-18]). The objects

in the first third of List 1 were “paired” with the objects in the last third of List 2. For example,

if List 1 contained an image of a bench in serial position 1, List 2 would contain an image of a

different bench in serial position 13-18. The objects in the middle third of List 1 were paired with
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the objects in the middle third of List 2. The objects in the last third of List 1 were paired with

the objects in the first third of List 2. We coded List 1 and List 2 objects as near and far based

on the lag, or difference in serial position, between the two objects in a pair. List 1 and List 2

objects separated by fewer than 18 intervening objects were coded as near ; List 1 and List 2

objects separated by 18 or more intervening objects were coded as far. Following eight runs,

subjects completed a two-alternative forced-choice recognition test that separately assessed

memory for List 1 and List 2 objects.

List 1. On each trial, subjects saw a single object presented for 2000 ms followed by a 1000 ms

inter-stimulus interval (ISI). Subjects were instructed to study the presented object in anticipation

for a later memory test.

List 2. On each trial, subjects saw a cue word, either “OLD” or “NEW” for 2000 ms. The cue

was followed by presentation of an object for 2000 ms, which was followed by a 1000 ms ISI.

All objects in List 2 were non-identical exemplars drawn from the same category as the objects

presented in the immediately preceding List 1. That is, if a subject saw a bench and an apple

during List 1, a different bench and a different apple would be presented during List 2. On trials

with a “NEW” instruction (encode trials), subjects were to encode the presented object. On trials

with an “OLD” instruction (retrieve trials), subjects tried to retrieve the categorically related object

from the preceding List 1. Importantly, this design prevented subjects from completely ignoring

List 2 objects following “OLD” instructions in that they could only identify the to-be-retrieved

object category by processing the List 2 object.

Subjects completed eight runs with two lists in each run (List 1, List 2). Subjects viewed 18

objects per list, yielding a total of 288 object stimuli from 144 unique object categories. Subjects

did not make a behavioral response during either List 1 or 2. Following the eight runs, subjects

completed a two-alternative forced choice recognition test.

Recognition Phase. Following the eight runs, subjects completed the recognition phase. On

each trial, subjects saw two exemplars from the same object category (e.g. two benches; Figure
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1). One object had previously been encountered either during List 1 or 2. The other object was

a lure and had not been presented during the experiment. Trials were self-paced and subjects

selected (via button press) the previously presented object. Trials were separated by a 1000

ms ISI. There were a total of 288 recognition trials (corresponding to the 288 total List 1 and 2

objects presented in the experiment). Note: List 1 and List 2 objects never appeared in the same

trial together, thus subjects never had to choose between two previously presented objects. List

1 and List 2 objects were presented randomly throughout the test phase.

EEG Data Acquisition and Preprocessing

EEG recordings were collected using a BrainVision system and an ActiCap equipped with 64

Ag/AgCl active electrodes positioned according to the extended 10-20 system. All electrodes

were digitized at a sampling rate of 1000 Hz and were referenced to electrode FCz. Offline,

electrodes were later converted to an average reference. Impedances of all electrodes were

kept below 50 kΩ. Electrodes that demonstrated high impedance or poor contact with the

scalp were excluded from the average reference. Bad electrodes were determined by voltage

thresholding (see below).

Custom Python codes were used to process the EEG data. We applied a high pass filter at 0.1

Hz, followed by a notch filter at 60 Hz and harmonics of 60 Hz to each subject’s raw EEG data.

We then performed three preprocessing steps (Nolan, Whelan, & Reilly, 2010) to identify elec-

trodes with severe artifacts. First, we calculated the mean correlation between each electrode

and all other electrodes as electrodes should be moderately correlated with other electrodes due

to volume conduction. We z-scored these means across electrodes and rejected electrodes with

z-scores less than -3. Second, we calculated the variance for each electrode as electrodes with

very high or low variance across a session are likely dominated by noise or have poor contact

with the scalp. We then z-scored variance across electrodes and rejected electrodes with a |z| >

= 3. Finally, we expect many electrical signals to be autocorrelated, but signals generated by the

brain versus noise are likely to have different forms of autocorrelation. Therefore, we calculated

the Hurst exponent, a measure of long-range autocorrelation, for each electrode and rejected
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electrodes with a |z| > = 3. Electrodes marked as bad by this procedure were excluded from the

average re-reference. We then calculated the average voltage across all remaining electrodes

at each time sample and re-referenced the data by subtracting the average voltage from the

filtered EEG data. We used wavelet-enhanced independent component analysis (Castellanos &

Makarov, 2006) to remove artifacts from eyeblinks and saccades.

EEG Data Analysis

We applied the Morlet wavelet transform (wave number 6) to the entire EEG time series across

electrodes, for each of 46 logarithmically spaced frequencies (2-100 Hz; Long & Kahana, 2015).

After log-transforming the power, we downsampled the data by taking a moving average across

100 ms time intervals from 4000 ms preceding to 4000 ms following object presentation, and

sliding the window every 25 ms, resulting in 317 time intervals (80 non-overlapping). Power

values were then z-transformed by subtracting the mean and dividing by the standard deviation

power. Mean and standard deviation power were calculated across all first and second objects

and across time points for each frequency.

Univariate Analyses

To test the effect of serial position, our two conditions of interest were primacy objects (objects in

serial positions 1-9), and recency objects (objects in serial positions 10-18). Our two contrasts

were between primacy and recency List 1 objects and primacy and recency List 2 objects. For

each contrast, subject, electrode and frequency, we calculated z-transformed power in each of

two conditions, averaged over the 2000 ms stimulus interval.

Pattern Classification Analyses

Pattern classification analyses were performed using penalized (L2) logistic regression (penalty

parameter = 1), implemented via the sklearn linear model module in Python. Before pattern

classification analyses were performed, an additional round of z-scoring was performed across

features to eliminate trial-level differences in spectral power (Kuhl & Chun, 2014; Long & Kuhl,
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2018). Therefore, mean univariate activity was matched precisely across all conditions and trial

types. Classifier performance was assessed in two ways. “Classification accuracy” represented

a binary coding of whether the classifier successfully guessed the instruction condition. We

used classification accuracy for general assessment of classifier performance (i.e., whether

encode/retrieve instructions could be decoded). “Classifier evidence” was a continuous value

reflecting the logit-transformed probability that the classifier assigned the correct instruction for

each trial. Classifier evidence was used as a trial-specific, continuous measure of mnemonic

state information, which was used to assess the degree of retrieval evidence present on near

and far trials.

We trained within-subject classifiers to discriminate List 2 encode vs. retrieve trials based on a

feature space comprised of all 63 electrodes × 46 logarithmically spaced frequencies ranging

from 2 to 100 Hz. For each subject, we used leave-one-run-out cross validated classification

in which the classifier was trained to discriminate encode from retrieve instructions for seven

of the eight runs and tested on the held-out run. For classification analyses in which we

assessed classifier accuracy, we averaged spectral power over the 2000 ms stimulus interval.

For analyses measuring classifier evidence, we averaged spectral power over four separate

500-ms time intervals across the 2000 ms stimulus interval.

To measure the ability of the classifier to generalize across temporal distance, we trained and

tested two separate classifiers to distinguish List 2 encode/retrieve trials. One classifier was

trained on near trials and tested on far trials, the other classifier was trained on far trials and

tested on near trials. As there was a slight imbalance in the number of encode and retrieve trials

within each distance, we subsampled trials from the condition with the greater number of trials to

match the condition with fewer trials. We repeated this procedure for 100 iterations and averaged

the resulting classification accuracy values across the 100 iterations.
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Statistical Analyses

We used repeated measures ANOVAs and paired-sample t-tests to assess the effect of instruc-

tion (encode, retrieve) and temporal distance (near, far ) on behavioral memory performance.

We used paired-sample t-tests to compare classification accuracy across subjects to chance

decoding accuracy, as determined by permutation procedures. Namely, for each subject we

shuffled the condition labels of interest (e.g., encode and retrieve for the List 2 instruction

classifier) and then calculated classification accuracy. We repeated this procedure 1000 times

for each subject and then averaged the 1000 shuffled accuracy values for each subject. These

mean values were used as subject-specific empirically derived measures of chance accuracy.

We used repeated measures ANOVAs and paired-sample t-tests to assess the interaction be-

tween instruction (encode, retrieve), temporal distance (near, far ), and time interval on retrieval

evidence.

Results

Influence of Spatiotemporal Contextual Overlap on Interference

We first sought to replicate the finding that subjects are able to shift between encoding and

retrieval states in a goal directed manner (Long & Kuhl, 2019), by testing whether instructions

influenced performance on the recognition task. Although encode/retrieve instructions only

appeared during List 2, we also considered whether memory for List 1 objects was influenced by

List 2 instructions (e.g., whether memory for the old bench was influenced by whether the new

bench was associated with an encode vs. retrieve instruction). A two-way, repeated measures

ANOVA with factors of list (1, 2) and instruction (encode, retrieve) revealed a list by instruction

interaction (F 1,36 = 6.045, p = 0.0189; Figure 2A). This interaction was driven by greater

recognition for List 2 objects presented with an encode (M = 82.88%, SD = 8.51%) relative to

a retrieve instruction (M = 80.52%, SD = 7.79%; difference between List 2 encode vs retrieve:

t36 = 2.1072, p = 0.0421) and numerically greater recognition for List 1 objects presented with a
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retrieve (M = 84.27%, SD = 7.7%) relative to an encode instruction (M = 83.3%, SD = 7.03%;

difference between List 1 encode vs retrieve: t36 = -1.7542, p = 0.0879).

Having replicated our previous finding that instructions to encode and retrieve modulate behav-

ior, we next sought to test the effect of temporal distance on recognition accuracy, separately for

each list. If near List 1 objects are more readily retrievable due to temporal overlap with their

associated List 2 objects, this may yield different memory outcomes for List 1 and List 2 objects.

First, a shorter temporal distance may facilitate List 1 memory specifically for retrieve trials. That

is, if near List 1 objects are more retrievable, the retrieve instruction during List 2 may be more

effective for near than far objects, providing the subject another opportunity to process the near

List 1 object. Second, a shorter temporal distance may impair List 1 memory specifically for

encode trials. The intuition is that automatically retrieved near List 1 objects may be inhibited

or suppressed by virtue of being goal-irrelevant during encode trials. This outcome would be

analogous to the inhibition that is thought to occur during retrieval induced forgetting (Anderson,

Bjork, & Bjork, 1994; Anderson, 2003). Finally, a shorter temporal distance may impair List 2

memory regardless of instruction, as retrieval driven by the near List 1 objects will tradeoff with

encoding of the List 2 objects.

We assessed whether the distance between objects, as well as the instruction given during

List 2, influenced recognition memory separately for List 1 objects (Figure 2B) and List 2

objects (Figure 2C). For List 1, a two-way, repeated measures ANOVA with factors of instruction

(encode, retrieve) and distance (near, far ), revealed a significant main effect of distance (F 1,36

= 4.931, p = 0.0330) driven by greater recognition accuracy for far compared to near objects.

There was a trending main effect of instruction (F 1,36 = 3.769, p = 0.0601) driven by greater

recognition accuracy for retrieve compared to encode instructions. There was a significant

interaction between instruction and distance (F 1,36 = 4.381, p = 0.0435), driven by greater

accuracy for near retrieve trials (M = 83.88%, SD = 11.11%) relative to near encode trials (M

= 80.9%, SD = 9.17%; difference between near encode vs near retrieve: t36 = -2.6225, p =

0.0127). Notably, recognition accuracy on near encode trials was significantly worse compared

to both far encode trials (t36 = -3.3417, p = 0.0020) and far retrieve trials (t36 = -3.1204, p =
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0.0035). For List 2, a two-way, repeated measures ANOVA with factors of instruction (encode,

retrieve) and distance (near, far ), revealed no main effect of distance (F 1,36 = 0.0, p = 0.99),

and a trending main effect of instruction (F 1,36 = 3.87, p = 0.0569) driven by greater recognition

accuracy for encode compared to retrieve instructions. The interaction between instruction and

distance was not significant (F 1,36 = 0.296, p = 0.5900).

We observed decreased recognition accuracy for List 1 near objects when subjects attempted to

encode the List 2 object compared to when they attempted to retrieve the near List 1 object. In

fact, near List 1 objects paired with the encode instruction are remembered worse than all other

List 1 objects, strongly suggesting that bottom-up or automatic retrieval of the near List 1 object,

when coupled with the top-down demand to encode the List 2 object, leads to suppression of

the near List 1 object. In comparison, recognition accuracy for List 2 objects was influenced by

instruction but not distance, suggesting that subjects were able to flexibly shift between encoding

and retrieval states regardless of temporal overlap.

Influence of Spatiotemporal Contextual Overlap on Retrieval State

Our first goal was to replicate our previous finding that a pattern classifier trained on spectral

signals can distinguish encode and retrieve trials (Long & Kuhl, 2019). We conducted a

multivariate pattern classification analysis in which we trained a classifier to discriminate

encode vs. retrieve List 2 trials based on a feature space comprised of all 63 electrodes

and 46 frequencies ranging from 2 to 100 Hz. For this analysis, we averaged spectral power

over the 2000 ms stimulus interval. Using within-subject, leave-one-run-out classifiers, mean

classification accuracy was 53.55% (SD = 7.81%), which was significantly greater than chance,

as determined by permutation tests (t36 = 2.7241, p = 0.0099; Figure 3A).

We next sought to investigate the effect of temporal overlap on retrieval. If greater spatiotempo-

ral contextual overlap between two events promotes retrieval, we would expect to find greater

evidence for a retrieval state on near compared to far trials. Moreover, to the extent that this

retrieval occurs automatically, we would expect to find greater evidence for a retrieval state early
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in the stimulus interval. Although temporal distance could interact with instruction – evidence for

a retrieval state may be particularly strong for near retrieve trials – given that temporal distance

did not enhance memory for near List 1 objects on retrieve trials or impact memory for List 2

objects, we do not anticipate an interaction between temporal distance and instruction.

To investigate the effect of temporal distance on retrieval state evidence over time, we trained

classifiers to discriminate encode vs. retrieve trials using the average z-power from four 500

ms time intervals across the 2000 ms stimulus interval. We conducted a repeated measures

ANOVA in which retrieval evidence was the dependent variable and with factors of instruction

(encode, retrieve), distance (near, far ) and time interval (four 500 ms time intervals). We find a

significant two-way interaction between distance and time interval (F 3,108 = 5.585, p = 0.0013)

whereby retrieval evidence is greater for near compared to far trials during the first two 500 ms

time intervals (near vs. far : 0-500, t36 = 1.9781, p = 0.0556; 500-1000, t36 = 3.2961, p = 0.0022)

and greater for far compared to near trials during the 1000-1500 ms time interval (t36 = -2.778,

p = 0.0086). Retrieval evidence does not differ in the final 1500-2000 ms time interval (t36 =

0.3606, p = 0.7205). We also find a trending main effect of distance (F 1,36 = 3.27, p = 0.0789;

Figure 3B), with greater retrieval evidence for near compared to far trials. We find a significant

two-way interaction between instruction and time interval (F 3,108 = 5.125, p = 0.0024), whereby

the largest differences in retrieval evidence between retrieve and encode trials occurs during the

last two 500 ms time intervals (encode vs. retrieve: 0-500, t36 = -1.3956, p = 0.1714; 500-1000,

t36 = -1.6667, p = 0.1043; 1000-1500, t36 = -4.255, p = 0.0001; 1500-2000, t36 = -4.3626, p =

0.0001). We find a significant main effect of instruction (F 1,36 = 21.31, p < 0.0001; Figure 3C),

consistent with the results of the classifier trained on the full 2000 ms interval above. The two-

way interaction between instruction and distance was not significant (F 1,36 = 2.221, p = 0.1450)

nor was the three-way interaction between instruction, distance, and time interval (F 3,108 = 0.205,

p = 0.8930; Figure 3D). Together, these results suggest that greater spatiotemporal contextual

overlap induces automatic retrieval independent of the actual instruction to either encode or

retrieve. Interestingly, we find greater retrieval evidence on far compared to near trials in the

1000-1500 ms interval. This effect is largely driven by the encode trials (Figure 3D) and is

consistent with a suppression interpretation whereby automatic retrieval of the List 1 object is
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followed by top-down encoding of the List 2 object.

Contribution of Serial Position to the Link Between Temporal Distance and

Retrieval State

We find greater retrieval evidence for near compared to far trials, specifically early in the

stimulus interval. However, due to the design of the experiment, near List 2 objects appear in

early serial positions (primacy) and far List 2 objects appear in later serial positions (recency).

Spectral signals are known to vary as a function of serial position (Sederberg et al., 2006;

Serruya, Sederberg, & Kahana, 2014). Specifically, the neural serial position effect is charac-

terized by increased high frequency (> 28 Hz) spectral power and decreased low frequency

(< 28 Hz; Burke et al., 2014) spectral power for primacy relative to recency items. Thus, the

dissociation in retrieval state evidence between near and far trials may be driven by a serial

position effect rather than retrieval per se. To formally address this concern, we conducted

a univariate analysis to assess serial position effects in both lists in our study, as well as a

multivariate analysis to test the extent to which serial position effects contribute to the classifier

results reported above, using List 1 as a control to assess serial position effects independent of

both distance and instruction.

First, we tested for a neural serial position effect by assessing univariate differences in primacy

(serial position 1-9) vs. recency (serial position 10-18) objects. We calculated the difference in

spectral power between primacy and recency objects separately for List 1 and List 2 across 63

electrodes and 46 frequencies. We expected to find increases in power at high frequencies and

decreases in power at low frequencies for primacy compared to recency objects in both lists.

Indeed, our results mirror the classic serial position effect (Figure 4A). To test the serial position

effects, we ran a repeated measures ANOVA on each list with frequency and electrode as

factors with the dependent variable being the contrast of primacy vs. recency trials. To simplify

the analysis, we collapsed the 46 frequencies into two bands, low frequency activity (LFA, <

28 Hz) and high frequency activity (HFA, > 28 Hz). For both List 1 and List 2 objects, we find

a significant main effect of frequency (F ’s > 30, p’s < 0.0001), reflecting increased HFA and
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decreased LFA for primacy compared to recency objects. We also find an interaction between

frequency and electrode in both lists (F ’s > 3.5, p’s < 0.0001) and a main effect of electrode in

List 1 (F 62,2232 = 4.753, p < 0.0001). These results reveal the classic serial position effect and

suggest that these spectral differences may underlie the dissociation in retrieval state evidence

between near and far List 2 trials.

To determine if the univariate serial position effects observed above contribute to the dissociation

in retrieval state evidence between near and far trials, we conducted a multivariate pattern

classification analysis in which we trained a classifier to discriminate encode vs. retrieve List 2

trials and tested this classifier to distinguish primacy from recency objects during List 1 (Figure

4B). The logic of this analysis is that if the classifier trained on the List 2 trials is dissociating

near from far objects by virtue of their serial position (primacy vs. recency), this classifier

should also be able to dissociate primacy and recency List 1 objects, given that List 1 and List

2 show comparable univariate serial position effects. That is, to the extent that the classifier is

leveraging serial position effects to distinguish near from far List 2 objects, it should perform

above chance (50%) when tested on List 1 primacy and recency objects.

We averaged spectral power across the stimulus interval (2000 ms) for both List 1 and List 2

trials. We trained a classifier to distinguish encode/retrieve List 2 and tested the classifier’s ability

to discriminate primacy from recency List 1 trials. Mean classification accuracy was 49.29% (SD

= 0.0437%), which did not differ significantly from chance (t36 = -0.98, p = 0.3336; Figure 4C).

This suggests that the dissociation in retrieval evidence between near and far trials is unlikely to

be driven by spectral differences across serial positions.

Retrieval State Mechanisms

We have found an increase in retrieval state evidence when objects appear closer together in

time. Although our hypothesis is that this dissociation reflects greater instantiation of a retrieval

state, the classifier may be indexing retrieval success or retrieval effort as opposed to a general

retrieval state or mode (Rugg & Wilding, 2000). Specifically, by virtue of the shorter temporal
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distance, retrieval success might be greater for near compared to far objects. Likewise, by

virtue of the longer temporal distance, retrieval might be more effortful for far compared to

near objects. In our previous classification analysis, the classifier was trained using data from

both near and far trials, meaning that the dissociation between encode/retrieve trials, and

consequently, near /far trials, could be based on information exclusively from either near or

far trials. Put another way, the classifier may have learned to distinguish either encode and

‘retrieval success’ (i.e. near retrieve) trials or encode and ‘retrieval effort’ (i.e. far retrieve)

trials. Therefore, to demonstrate that a general retrieval state or mode underlies the dissociation

between near and far trials, we trained two separate classifiers to distinguish encode/retrieve

using only near or only far trials, and tested the classifiers on the other held-out distance (far

or near ) trials. The logic is that to the extent that the dissociation between encode/retrieve

is supported by the same mechanism on both near and far trials, classifiers trained on one

distance should generalize – reflected by above chance (50%) performance – to the other

distance. To the extent that the dissociation between encode/retrieve is driven either by retrieval

success or retrieval effort, the classifiers should fail to generalize to the other distance.

We conducted a multivariate pattern classification analysis in which we trained a classifier on

only near or far trials to discriminate encode vs. retrieve trials. We averaged spectral power

across the stimulus interval (2000 ms) and used leave-one-run-out cross-validated classification.

First, we trained a classifier to distinguish encode vs. retrieve List 2 near trials and tested the

classifier on the List 2 far trials (Figure 5A). Mean classification accuracy was 52.62% (SD =

0.0529%), which was significantly greater than chance performance (t36 = 2.9734, p = 0.0052;

Figure 5A). Next, we trained a classifier to distinguish encode vs. retrieve List 2 far trials and

tested the classifier on List 2 near trials (Figure 5B). Mean classification accuracy was 53.33%

(SD = 0.0588%), which was significantly above chance (t36 = 3.401, p = 0.0017; Figure 5B).

Together, these results suggest that the dissociation in retrieval evidence between near and far

trials is likely due to a retrieval state or mode rather than retrieval effort or retrieval success.
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Discussion

Here we show that spatiotemporal contextual overlap between events selectively increases

interference and induces automatic retrieval. We used scalp EEG to measure memory brain

states in a task during which subjects were explicitly instructed to either encode the present

event or retrieve a past, overlapping event. We find that temporal overlap selectively leads to

interference for past events when the top-down goal is to encode the present event. We find that

temporal overlap induces automatic retrieval independent from top-down demands to encode or

retrieve. Critically, our results suggest that the retrieval state we observe is likely the result of

a general retrieval ‘mode’ (Rugg & Wilding, 2000), rather than a reflection of retrieval success

or effort. Collectively, these findings demonstrate a link between spatiotemporal context,

interference, and memory brain states.

We find that greater temporal overlap between events leads to a selective memory deficit for a

past event when the top-down demand is to encode the present event. Overlap between events

can lead to both proactive interference, in which learning about a past event impairs memory for

the present, and retroactive interference, in which learning about a present event impairs mem-

ory for the past (Underwood, 1948; Crowder, 1976). Here we find that greater temporal overlap

between two events leads to an increase in retroactive interference; however, this increase is

selective for conditions in which subjects’ top-down goal is to encode the currently presented

stimulus. This result has striking similarity with retrieval induced forgetting (Anderson et al.,

1994; Anderson & Spellman, 1995). In paradigms that produce retrieval induced forgetting, sub-

jects retrieve a target (e.g. strawberry) based on a word stem (e.g. s ) and a cue (e.g. food)

that is associated with other non-targets (e.g. tomato). Researchers theorize that cue driven

retrieval of the non-target leads to suppression or inhibition which impairs subsequent memory

for the non-target (c.f. Perfect et al., 2004). As the strength, typically framed in terms of semantic

overlap, between non-target and cue increases, there is an increase in memory impairment,

putatively due to stronger inhibition (Anderson et al., 1994). We extend these findings by show-

ing that temporal overlap can likewise impair memory for non-targets, suggesting that greater

temporal overlap may lead to inhibition of automatically retrieved items that are not goal relevant.
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Although in our study we find that temporal overlap is detrimental to later memory, there is

evidence that temporal overlap between events can facilitate behavior. When making inference

judgments based on overlapping associations, participants perform better when the associations

are studied closer in time (Zeithamova & Preston, 2017). In free recall, events presented close

together in time are often remembered together (temporally clustered, Kahana, 1996; Long

& Kahana, 2015) and overall memory performance increases as more events are temporally

clustered (Sederberg, Miller, Howard, & Kahana, 2010; Healey, Crutchley, & Kahana, 2014). It

is possible that in our study the explicit instruction to encode interrupts or prevents integration

(Schlichting & Preston, 2015; Richter, Chanales, & Kuhl, 2016) between the two events,

leading to worse memory for the past event. More generally, temporal overlap may have a

differential impact on behavior depending on the type of memory assessment, as greater neural

pattern similarity across events facilitates memory in free recall, but impairs memory for paired

associates (El-Kalliny et al., 2019).

We find stronger induction of a retrieval state – specifically early in the stimulus interval and

independent of top-down demands – when objects are closer together in time. We anticipated

that greater temporal overlap would lead to increased retrieval on the basis of retrieved context

theory. According to retrieved context theory (Howard & Kahana, 2002; Sederberg et al., 2008;

Polyn et al., 2009; Lohnas & Kahana, 2014), spatiotemporal context is bound to items during

study and used as a retrieval cue during test (Long et al., 2017), enabling items with overlapping

spatiotemporal contexts to cue retrieval of one another (Manning et al., 2011). Consistent

with retrieved context theory, we find more retrieval state evidence for objects with greater

temporal overlap (near compared to far objects). Furthermore, this dissociation in retrieval

state evidence is largest within the first 1000 ms following stimulus onset, suggesting that this

retrieval is automatic. Automatic retrieval is thought to be a fast, bottom-up process that can

occur without top-down control (Moscovitch, 1994). Our observation of elevated retrieval state

evidence on near trials even when the instruction is to encode the present (or, conversely, when

the instruction is to not retrieve the past), coupled with the early timing of this effect, strongly

suggests that we are observing automatic retrieval driven by a bottom-up property of the object
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(e.g. its spatiotemporal contextual overlap with a past object) rather than a result of top-down

demands. Interestingly, later in the stimulus interval we find a ‘flip’ in retrieval state evidence,

whereby there is stronger retrieval state evidence for far compared to near trials. Although this

pattern is evident when subjects are instructed to encode as well as to retrieve, the effect is

relatively larger on encode trials. These results suggest that a present event may be encoded

more strongly if its overlapping past event occurred recently in time; however, we did not find

evidence that temporal overlap influences memory for the present event. Collectively, these

findings indicate that memory brain states can rapidly change depending on both bottom-up and

top-down influences.

The retrieval state driven by temporal overlap that we observe likely reflects a general retrieval

‘mode’ rather than serial position effects, retrieval success, or retrieval effort. We replicate

the neural serial position effect whereby high frequency activity increases and low frequency

activity decreases during primacy compared to recency items (Sederberg et al., 2006; Serruya

et al., 2014); however, it is unlikely that these neural signals underlie the dissociation in retrieval

state evidence between near and far trials. More critically, the dissociation between near and

far trials could be the result of other retrieval processes rather than a more general retrieval

‘mode’ (Tulving, 1985; Rugg & Wilding, 2000). Retrieval as it stands is a broad concept and

can encompass multiple different ‘sub-processes.’ We consider a retrieval state or mode as a

content-independent process. Although typically retrieval mode has been considered within the

framework of goal-directed or intentional remembering, we expect that a retrieval state can also

be engaged automatically based on bottom-up inputs (as demonstrated in the current study) and

may align or be synonymous with the internal axis of attention (Chun, Golomb, & Turk-Browne,

2011). This retrieval mode or state is thought to be distinct from retrieval ‘orientation’ in which

specific cues or features are used to guide memory (Herron & Wilding, 2004; Hornberger, Rugg,

& Henson, 2006a, 2006b). Finally, both retrieval state and orientation are separate from retrieval

success and retrieval effort. After directing attention internally and orienting to particular cues

to guide retrieval, an individual will either bring to mind the target item (retrieval success) or

fail to bring to mind the target item, leading to effortful retrieval. The retrieval process that

we observe in the current study likely reflects a general retrieval state given that a pattern

19



classifier can distinguish memory encoding and retrieval across both near and far trials. If the

processes underlying near and far trials were entirely related to retrieval success and retrieval

effort, respectively, the pattern classifier would be unable to distinguish encoding and retrieval

across these trials. This is not to say that there are not potential differences in terms of retrieval

success or retrieval effort between near and far trials, only that there exist shared mechanisms

which enables the pattern classifier to generalize across these trials. These results present an

exciting avenue for future work to use multivariate approaches to further dissociate these dif-

ferent retrieval sub-processes and to more generally relate memory retrieval to internal attention.

Our results add to a growing body of work demonstrating the presence of neurally dissociable

mnemonic states (Hasselmo et al., 2002; Hasselmo, 2005). Mnemonic states predict subse-

quent memory (Long & Kuhl, 2019), impact the cortical location of stimulus representations

(Long & Kuhl, 2021), and can influence behavior and decision making (Duncan, Sadanand, &

Davachi, 2012; Duncan & Shohamy, 2016; Patil & Duncan, 2018). Here we show that mnemonic

states are influenced by bottom-up stimulus properties, or the features of a stimulus, in addition

to explicit top-down demands. We expect that mnemonic states fluctuate based on both stimuli

and goals – to the extent that events overlap, there is the potential for automatic retrieval and a

shift into a retrieval state. Tracking mnemonic state fluctuations will be critical for understanding

both how these states are induced and how these states in turn impact behavior.

In summary, we show that temporal overlap between events induces automatic retrieval and

promotes interference. These findings are consistent with theoretical models which propose

that temporal information can cue retrieval (Howard & Kahana, 2002) and behavioral findings

that retrieving non-goal relevant information can lead to memory impairments (Anderson et al.,

1994). More broadly, these findings point to a role for bottom-up stimulus features in driving

mnemonic brain states.
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Figure 1. Task Design. During List 1, subjects studied individual objects (e.g. bench, apple). During List
2, subjects saw novel objects that were from the same categories as the objects shown in List 1 (e.g., a
new bench, a new apple). Preceding each List 2 object was an “OLD” instruction cue or “NEW” instruction
cue. The “OLD” cue signaled that subjects were to retrieve the corresponding object from List 1 (e.g.,
the old apple). The “NEW” cue signaled that subjects were to encode the current object (e.g. the new
bench). Each run of the experiment contained a List 1 and List 2; object categories (e.g., bench) were not
repeated across runs. List 1 and List 2 objects separated by fewer than 18 intervening objects were coded
as near and List 1 and List 2 objects separated by 18 or more intervening objects were coded as far (see
Methods). Lines around the boxes are shown for illustrative purposes and were not present during the
actual experiment. After eight runs, subjects completed a two alternative forced choice recognition test
that tested memory for each List 1 and List 2 object. On each trial, a previously presented object, either
from List 1 or List 2, was shown alongside a novel lure from the same category. The subject’s task was to
choose the previously presented object. List 1 and List 2 objects were never presented together.
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(A) (B) (C)List 1 Instruction by Distance List 2 Instruction by DistanceList by Instruction

Retrieve
Encode

Figure 2. Behavioral Results. We assessed recognition accuracy as a function of list (1, 2), instruction
(encode, orange; retrieve, teal), and distance (near, far ). (A) When recognition accuracy is collapsed
across distance, we find a significant interaction between list and instruction (p = 0.0189) driven by greater
accuracy for List 2 objects presented with an encode compared to a retrieve instruction and numerically
greater accuracy for List 1 objects presented with a retrieve compared to an encode instruction. (B) For
recognition accuracy of List 1 objects, we find a significant interaction between instruction and distance
(p = 0.0435) driven by greater accuracy for near retrieve trials compared to near encode trials. (C) For
recognition accuracy of List 2 objects, we find a trending main effect of instruction (p = 0.0569) driven by
greater accuracy for encode compared to retrieve trials. ∼ p < 0.1, * p < 0.05.
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Figure 3. Retrieval State Evidence. We trained an L2-logistic regression classifier to discriminate en-
code vs. retrieve trials during List 2. The classifier was trained and tested on spectral power across 63
electrodes and 46 frequencies. (A) The classifier was trained on average spectral power across the 2000
ms stimulus interval. Mean classification accuracy across all subjects (solid vertical line) is shown along
with a histogram of classification accuracies for individual subjects (gray bars) and mean classification
accuracy for permuted data across all subjects (dashed vertical line). Mean classification accuracy for
permuted data ranged from 49.75% to 50.22% across individual subjects (1000 permutations per sub-
ject). Mean classification accuracy was 53.55%, which differed significantly from chance (p = 0.0099).
(B-D) We trained and tested four classifiers on four 500 ms time intervals within the 2000 ms stimulus in-
terval. (B) When we average retrieval evidence over instruction, we find a significant interaction between
distance and time interval (p = 0.0013) driven by greater retrieval evidence on near compared to far trials
early in the stimulus interval. (C) When we average retrieval evidence over distance, we find a significant
interaction between instruction and time interval (p = 0.0024) driven by greater retrieval evidence on re-
trieve compared to encode trials late in the stimulus interval. (D) We do not find a three-way interaction
between instruction, distance, and time (p = 0.893). Error bars denote SEM. ∼ p < 0.1, ** p < 0.01, *** p
< 0.001.
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Figure 4. Serial Position Effects. (A) Electrode-frequency spectrogram of differences in spectral power
between primacy and recency objects as a function of electrode (y-axis) and frequency (x-axis). Red
indicates greater z-power for primacy objects (objects from serial positions 1-9), blue indicates greater
z-power for recency objects (objects from serial positions 10-18). Spectrograms were generated for each
subject and then averaged across subjects. Across both lists, we find increased high frequency activity
(HFA) and decreased low frequency activity (LFA) for primacy compared to recency objects. The dashed
line indicates the cutoff between HFA (> 28 Hz) and LFA (< 28 Hz). (B) To investigate whether the
dissociation in retrieval state evidence between near and far trials is driven by serial position, we trained
an L2-logistic regression classifier to discriminate encode vs. retrieve List 2 trials and tested the ability
of this classifier to distinguish primacy from recency objects during List 1 trials. If serial position effects
contribute to the dissociation between List 2 near and far objects, then the classifier should also be able to
dissociate primacy and recency List 1 objects. (C) Mean classification accuracy across all subjects (solid
vertical line) is shown along with a histogram of classification accuracies for individual subjects (gray
bars) and mean classification accuracy for permuted data across all subjects (dashed vertical line). Mean
classification accuracy for permuted data ranged from 49.70% to 50.12% across individual subjects (1000
permutations per subject). Mean classification accuracy was 49.29%, which did not differ significantly from
chance (p = 0.3336).
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Figure 5. Cross Distance Mnemonic State Decoding. We trained two L2-logistic regression classifiers
to discriminate encode vs. retrieve based on average spectral power for the 2000 ms stimulus interval
with 63 electrodes and 46 frequencies used as features. For each classifier we show mean classification
accuracy across all subjects (solid vertical line) along with a histogram of classification accuracies for
individual subjects (gray bars) and mean classification accuracy for permuted data across all subjects
(dashed vertical line). (A) We trained the classifier on only List 2 near trials and tested the classifier on
List 2 far trials. Mean classification accuracy for permuted data ranged from 49.96% to 50.04% across
individual subjects (1000 permutations per subject). Mean classification accuracy was 52.62%, which was
significantly greater than chance performance (p = 0.0052). (B) We trained the classifier on only List 2 far
trials and tested the classifier on List 2 near trials. Mean classification accuracy for permuted data ranged
from 49.97% to 50.04% across individual subjects (1000 permutations per subject). Mean classification
accuracy was 53.33%, which was significantly greater than chance performance (p = 0.0017).
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