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Abstract

The explosion of medical sensors and wearable devices has resulted in the collec-
tion of large amounts of medical trajectories. Medical trajectories are time series that
provide a nuanced look into patient conditions and their changes over time, allowing
for a more fine-grained understanding of patient health. It is difficult for clinicians
and patients to effectively make use of such high dimensional data, especially given
the fact that there may be years or even decades worth of data per patient. Clinical
Decision Support Systems (CDSS) provide summarized, filtered, and timely infor-
mation to patients or clinicians to help inform medical decision-making processes.
Although CDSS have shown promise for data sources such as tabular and imaging
data, e.g., in electronic health records, the opportunities of CDSS using medical tra-
jectories have not yet been realized due to challenges surrounding data use, model
trust and interpretability, and privacy and legal concerns.

This dissertation develops novel machine learning frameworks for trustworthy
CDSS using medical trajectories. We define trustworthiness in terms of three desider-
ata: (1) robust—providing reliable outputs from the CDSS even when inputs are
variable, irregular or missing; (2) explainable—providing understandable, action-
able explanations for CDSS predictions to clinicians or patients; and (3) privacy-
preserving—providing CDSS that use data without violating patients’ privacy ex-
pectations. We develop interpretable machine learning frameworks that are robust to
missing, irregular, variable and conflicting trajectories that directly address data and
model challenges. Moreover, we develop privacy-preserving learning methodologies
that allow for the safe sharing and aggregation of medical trajectories and directly
address privacy challenges. We evaluate our frameworks across a wide selection of
benchmarks and show that our techniques can learn valuable insights from trajectory
data with high accuracy and strong privacy guarantees.
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Chapter 1

Introduction

Recently, the explosion of medical sensors and wearable devices has enabled the col-
lection of large amounts of medical trajectories (medical time series data), relatively
quickly and unobtrusively. Medical trajectories can provide a more nuanced look
into a patient’s condition and how it changes over time, compared to single point of
time (snapshot) measurements. As such, trajectories present an opportunity for the
fine-grained tracking and understanding of disease progression and patient outcomes.

Although there have been calls to take advantage of this type of data in healthcare
settings [1], it is difficult for already overburdened clinicians and patients to effectively
make use of such high dimensional data, especially when there could be years or even
decades of data per patient. In order to make optimal decisions, it is necessary to take
into account a patient’s entire longitudinal history, i.e., simultaneously consider all of
their previous trajectories together, in order to obtain a holistic view of the patient
state and outcomes [2, 3]. However, doing so is a nontrivial task. For example, people
with diabetes who use Continuous Glucose Monitors (CGM) commonly have glucose
data recorded every 5 minutes by the device, resulting in 288 longitudinal time points
per day, 2,016 data points per week and 526,000 data points across 5 years for a single
feature and a single patient [4]. Scaling this up to multiple features and patients
quickly becomes infeasible to analyze and effectively use by hand.

Clinical Decision Support Systems (CDSS) aim to provide summarized, filtered
information at appropriate times to patients or clinicians to help inform medical deci-
sion making processes (Figure 1.1) [5]. In particular, well-designed CDSS that employ
machine learning (ML) technologies can learn from large, high-dimensional sets of
data and succinctly return the most relevant, personalized information back to a pa-
tient or clinician, enabling them to make informed patient care decisions [6]. Example
CDSS applications are shown in Figure 1.2.

Figure 1.1: Architecture of CDSS using Medical Trajectories
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Figure 1.2: Example CDSS Applications

1.1 Challenges with Trajectory Data

CDSS have shown great promise in clinical applications using tabular and imaging
data, such as in electronic health records [6], but the opportunities for using medical
trajectories in CDSS have not yet been realized [7]. This is due to several unaddressed
challenges which we categorize into three key areas: data challenges, model challenges
and privacy challenges. An overview of the challenges is shown in Figure 1.3.

Data Challenges. The effectiveness of the models within CDSS may be limited by
issues with the input trajectory data used for training. Time series data have unique
characteristics including their temporality, changes over time, and sheer volume of
data. These characteristics make building models more difficult and must be carefully
considered when constructing useful ML models [8]. As such, CDSS and machine
learning models built for static data may not be simply transferred over and applied
to trajectory data.

In addition, trajectories, and medical trajectories in particular, may be very noisy,
highly variable, and contain missing values [9]. Entire features (covariates) may be
missing; for instance, given a dataset with trajectories of heart rate, blood pressure and
lab values, a specific patient may have no data recorded for heart rate. Alternatively,
there may be missing recordings at particular timepoints; for example, for a trajectory
recorded at 5 timepoints, the heart rate value may be missing for a patient at timepoint
2 and 5. Moreover, these trajectories may also be recorded at different intervals and
for a different number of times based on a patient’s disease progression, resulting in
trajectories of varied length and periodicity (e.g., across a 3 year period, one patient
may have 3 serial echocardiograms, while another may have 40 serial echos).

Furthermore, there may be conflicting inferences among feature trajectories [8].
For example, a patient may have a decreasing heart rate trajectory, associated with
poorer outcomes, and an increasing blood pressure trajectory, indicative of better
outcomes. CDSS models must be able to handle the innate patient variability in
states and presentation of conditions, as well as any potentially conflicting trajectory
inferences in order to provide a holistic view of the patient, enabling patients or
clinicians to easily determine the best course of action or treatment decision.

Model Challenges. CDSS need to be explainable, e.g., clearly explain how the
system came to a decision, in order to promote trust and reliable usage of CDSS by
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Figure 1.3: Summary of Challenges for CDSS using Trajectory Data

clinicians and patients [7]. However, developing ML-based CDSS that are explainable
remains a large challenge [10], especially given the high dimensionality of trajectories
which makes it even more difficult to explain model decisions or predictions [11, 12].
This is further exacerbated for trajectories because the best performing models for
time series tend to be the least explainable (e.g., LSTM and RNN models that are
black boxes) [3]. Providing phenotypes, sets of features and their thresholds that
characterize a condition, is a helpful method to add explainability to models and
succinctly describe the criteria used to make an output decision. However, providing
temporal phenotypes (e.g., a peak as compared to a declining slope in one feature
may indicate different things about an outcome) is an open challenge [13, 14].

Privacy Challenges. Unsurprisingly, there are well-documented privacy and legal
concerns surrounding the use of sensitive medical trajectories [15]. For example, there
are legal stipulations regarding the sharing of such data around the globe, including
the Health Insurance Portability and Accountability Act (HIPAA) in the USA, the
Personal Information Protection and Electronic Documents Act (PIPEDA) in Canada,
and the Data Protection Directive and General Data Protection Regulation (GDPR)
in Europe. Medical trajectories are particularly challenging to work with given their
increased sensitivity due to the longitudinal nature of this type of data; i.e., a lot more
information may be leaked about a specific patient because their patterns of behavior
may be recorded at a very granular level across a long period of time [16, 17].

These privacy and legal stipulations may seriously limit the ability to train, deploy
or share trajectory data and CDSS models [2, 5]. The sharing of medical trajectories
is important to enable clinical and technological scientific advancements, but in prac-
tice time series are rarely shared due to these concerns. For example, there are no
large, open source databases containing granular longitudinal traces from people with
diabetes. This majorly limits researchers in the development of diabetes technology
including artificial insulin delivery systems which can drastically improve a patient’s
quality of life [17]. As such, there is a need for mechanisms that allow for the safe
sharing of medical trajectories.

Furthermore, sharing trained CDSS models enables their broader use and adop-
tion, resulting in increased promise to improve patient outcomes on a population level.
However, similar to traces, models are rarely shared due to privacy concerns, such as
concerns about the models memorizing training data and disclosing sensitive patient
information [5]. Given this, there is a need for the development of privacy-preserving
CDSS models that are able to learn from sensitive trajectories and be shared safely,
with reduced privacy concerns.
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Figure 1.4: Dissertation Overview

1.2 Dissertation Overview

In this dissertation, the objective is to develop trustworthy CDSS for medical trajec-
tories that address the aforementioned data, model and privacy challenges. We define
trustworthiness in terms of three desiderata: robust, explainable and privacy-
preserving. Robust indicates the CDSS always provides reliable outputs, even when
inputs are variable, irregular or missing. Explainable indicates the CDSS provides
understandable, actionable explanations for model predictions, that are easy to un-
derstand by nontechnical clinicians or patients. Lastly, privacy-preserving indicates
the CDSS use input trajectory data in ways that do not violate patients’ privacy
expectations.

Dissertation Summary. This dissertation develops novel robust, explainable and
privacy-preserving machine learning frameworks for trustworthy trajectory-based CDSS
(Figure 1.4). We develop interpretable machine learning frameworks for trajectories
that are robust to missing, irregular, variable and potentially conflicting data, which
specifically address the data and model challenges. In addition, we develop privacy-
preserving learning methodologies for trajectory-based CDSS, that allow for the safe
sharing and aggregation of medical trajectories and directly address privacy challenges.

1.2.1 Contributions

We develop three different robust, explainable and privacy-preserving machine learn-
ing frameworks. First, we introduce an approach for privately generating synthetic
univariate trajectories, enabling their safe sharing. Next, we introduce a framework
to privately learn population trajectories represented in rule-based structures, such as
those commonly used in electronic health records, facilitating private model learning
in distributed settings. Finally, we introduce an approach for risk stratifying patient
outcomes and providing explainable patient phenotypes, enabling timely triage and
allocation of life-saving therapies. Due to the interdisciplinary nature of this research,
this work presents contributions to multiple disciplines including Computer Science,
Biomedical Informatics and Clinical application areas, both in general and specifically
for Diabetes and Heart Failure. These frameworks are summarized as follows.

Differentially-Private Synthetic Glucose Traces (GlucoSynth, Chapter 3).
Sharing medical time series can facilitate research and therapy development, but is
hindered by serious privacy and legal concerns with sharing longitudinal time series
data in medical contexts [17]. One solution to this problem is to generate a set of
synthetic traces from the original traces such that the synthetic data may be shared
publicly in place of the real ones with significantly reduced privacy and legal concerns.
This project focuses on the problem of generating high-quality, privacy-preserving
synthetic glucose traces, a task which generalizes to other time series sources and
application domains, including activity sequences, inpatient events, hormone traces
and cyber-physical systems. Previous methods for time series synthesis, e.g., [18, 19,
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20], suffer from one or more of the following issues when applied to glucose traces:
1) they do not generate realistic synthetic glucose traces—in particular, they produce
physiologically-impossible phenomenon in the traces; 2) they require additional in-
formation (features, metadata or labels) to guide the model learning which are often
not available; 3) they do not provide any privacy guarantees, or, in order to uphold
a strong formal privacy guarantee, severely degrade the utility (e.g., quality) of the
synthetic data.

We develop GlucoSynth, a novel privacy-preserving Generative Adversarial Net-
work (GAN) framework to generate high-quality, private synthetic glucose traces. The
core intuition behind this approach is to conserve relationships amongst motifs (glu-
cose events) within the traces, in addition to typical temporal dynamics. Moreover,
our framework incorporates differential privacy mechanisms [21] to provide strong
formal privacy guarantees. GlucoSynth presents the following contributions:

• We formalize the concept of motifs and define a notion of motif causality, inspired
from Granger causality [22], which characterizes relationships amongst sequences
of motifs within time series traces.

• We build a novel GAN framework that is trained to optimize motif causality
within the traces in addition to temporal dynamics and distributional charac-
teristics of the data.

• We integrate differential privacy into the framework, which provides an intuitive
bound on how much information may be disclosed about any individual in the
dataset, allowing the GlucoSynth model to be trained with privacy guarantees.

• We present a comprehensive evaluation using 1.2 million glucose traces from
individuals with diabetes collected across 2022, showcasing the suitability of our
model to outperform all previous models and generate high-quality synthetic
glucose traces with strong privacy guarantees.

Differentially-Private Rule Learning (DP-RuL, Chapter 4). Many distributed
CDSS rely on logic-based learning systems [23], in which structured rules are used to
make decisions due to their increased expressivity (diverse representations of medical
associations), dual understandability by humans and machines (e.g., using a rule gram-
mar), and increased explainability which promotes user trust in the system [24, 25].
Serious privacy concerns arise with the use of patient data in CDSS, especially those
deployed in third-party health applications since they are not covered by HIPAA [15,
26]. Given these concerns, the goal of this project is to learn a population ruleset
representative of the local client rule structures, while preserving the privacy of indi-
viduals involved in the rule collection. Local Differential Privacy (LDP) is a paradigm
well suited to the distributed framework deployed for many CDSS since individual
users each perturb their own data before it is collected and aggregated [27]. Previous
work has developed differentially-private methods for distributed learning in various
settings including finding new frequent strings [28], discovering keystroke data [29,
30], text mining [31], frequent item mining [32, 33, 34] and data mining personal in-
formation [35]. However, no previous work has developed LDP methods for learning
logic-based rule structures or for CDSS applications, and none of the methods devel-
oped for these other settings can be directly applied to provide an adequate solution
to the privacy rule discovery problem.

We present DP-RuL (Differentially Private Rule Learning, the first locally
differentially-private framework to learn population rulesets with high coverage and
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clinical utility for logic-based CDSS. Specifically, DP-RuL presents the following con-
tributions:

• We develop a novel Rule Discovery Protocol, which uses a method based on
Monte-Carlo Tree search (MCTS) to search a rule grammar in a structured way
and find population rules contained by the clients. The protocol follows the tra-
ditional MCTS steps (Selection, Expansion, Querying, and Backpropagation).
To provide LDP, we adapt the querying phase to use randomized response. To
find clinically useful rules, we adapt the MCTS scoring function, which guides
the search process about which subtrees to continue searching down, to use
privacy-preserving estimates of the number of clients who have rules that match
a template rule structure in the grammar. By guiding the searching based on
client responses, and taking advantage of the rule grammar, we are able to
efficiently learn population rulesets, including rules with complex structures.

• Each query in the Rule Discovery Protocol is allocated a privacy loss budget that
determines the randomized response noise used in the response. We develop an
adaptive budget allocation method which dynamically provisions the privacy
loss budget. The intuition behind this method is to find the minimum budget
per query to gain enough information to determine whether a node should be
further explored.

• We evaluate our protocol on three clinical datasets from different medical do-
mains and find that we are able to learn population rulesets with high coverage
and clinical utility, even at low privacy loss budgets.

• Our framework is open source, available at: https://github.com/jozieLamp/
DP_Rule_Learning_for_CDSS.

Interpretable Learning for Risk Stratification (CARNA, Chapter 5). Risk
stratification is the process by which patients are grouped based on their disease
condition in order to make timely treatment decisions [36]. As a specific example,
identifying high risk advanced heart failure (HF) patients early on in the care contin-
uum is critical for timely allocation of advanced life-saving therapies such as device
implantation or transplant allocation. Due to high variability in patient conditions
and disease complexity, determining patient risk involves a challenging, multi-faceted
decision making process that places a high burden on clinicians [37]. Hemodynamic as-
sessments provide measures of cardiovascular function and can enhance understanding
of HF trajectories [38], but it is difficult to obtain a comprehensive picture of patient
state from these as they may be variable, conflicting, and missing [39]. Previous
methods for risk stratification [40, 41, 42, 43] use statistical or naive models which
are difficult to optimize and prone to bias. Moreover, no previous models integrate
invasive hemodynamics or contain mechanisms to handle missing trajectory data.
Machine learning (ML) models present a promising opportunity to outperform tradi-
tional risk assessment methods, especially when dealing with large, high-dimensional
data [44], but they remain unpopular in clinical use due to modest model performance
and issues with model interpretability [45].

To address these limitations, we develop CARNA (Characterizing Advanced heart
failure Risk and hemodyNAmic phenotypes),1 an explainable ML framework that
learns risk scores to predict the probability of patient outcomes (mortality and re-
hospitalization), and outputs descriptive patient phenotypes, i.e., sets of features and

1So named for the Roman healing goddess who presides over the heart.

https://github.com/jozieLamp/DP_Rule_Learning_for_CDSS
https://github.com/jozieLamp/DP_Rule_Learning_for_CDSS
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their thresholds, that characterize each predicted risk score. CARNA has the following
contributions:

• We develop a general purpose risk stratification and phenotyping framework
that can handle variable, missing and conflicting trajectories. Although ap-
plied for HF risk stratification, this framework can be applied to other diseases
and medical applications. To provide a risk categorization, we first stratify
risk into categories using a hierarchical clustering algorithm. We harness the
explainability and expressivity of machine learned Multi-Valued Decision Dia-
grams (MVDDs) to learn risk scores using the outputted risk categories from
the clustering. MVDDs represent logical functions in directed, acyclic graphs
where nodes represent features, edges represent logical operators (“and”, “or”)
with parameter threshold values, and leaf nodes represent the final score classi-
fication [46]. Due to their use of logical operators, MVDDs can handle missing
data, as multiple substitutable features may contribute to the same score pre-
diction. Moreover, the “path" through the MVDD may be returned to provide
a descriptive patient phenotype that characterizes the score.

• We provide robust validation of the CARNA framework using four indepen-
dent HF cohorts, and compare them with six established HF risk scores and
three traditional ML models. The CARNA models achieve high performance
and outperform all benchmarks across metrics including Accuracy, Sensitivity,
Specificity and AUC.

• We provide an extensible, open-source tool implementation that includes a de-
ployed web server, which provisions live risk score prediction for ease of clinical
use: https://github.com/jozieLamp/CARNA.

• This framework uses a novel integration of invasive and noninvasive hemody-
namics. Direct findings from this framework about advanced HF (e.g., relations
among hemodynamics and other features) may inform future clinical research
studies.

• We introduce a new clinical paradigm for HF risk stratification, in which predict-
ing risk categories is used over singular binary events (as is done in traditional
risk stratification). This approach may facilitate complementary evidence-based
modeling of “risk–benefit” trade-offs when it comes to the challenging shared de-
cision discussions between clinicians and patients concerning HF prognostication
and the timing of advanced heart failure therapies.

https://github.com/jozieLamp/CARNA
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Chapter 2

Background

In this chapter, we briefly discuss relevant cross-cutting background topics, including
differential privacy (Section 2.1), explainable machine learning in CDSS (Section 2.2)
and risk stratification (Section 2.3). In addition, we introduce two CDSS application
areas used as running examples throughout the dissertation (Section 2.4). Detailed
discussions of background and related work tailored to each specific project is available
in the succeeding chapters.

2.1 Differential Privacy

Differential Privacy (DP) [21, 47] is a formal notion of privacy that provides an intu-
itive bound on the amount of information that can be disclosed about any individual
in a dataset. A randomized algorithm M satisfies (ϵ, δ)-differential privacy if, for all
datasets D1 and D2 differing by at most a single element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ eϵ Pr[M(D2) ∈ S]+δ

ϵ and δ are important privacy parameters determining the privacy loss budget, which
dictates the level of privacy guaranteed by the algorithm; smaller values indicate
stronger privacy.

Local Differential Privacy. Local Differential Privacy (LDP) is a DP paradigm
well suited to the distributed framework deployed for many CDSS systems, as, in
this method, individual users each perturb their own data before it is collected and
used for population-level aggregation [27]. In such a setting, a centralized, untrusted
server, S, wishes to compute some summary statistic y from n individual clients’ data
records, {x1, ..., xn}. Each client locally perturbs the requested data xi before sending
it to the server. In this way, the server (or any other adversary who has access to a
client’s responses or the server’s output) cannot determine any individual’s data with
high confidence.

DP in Medicine. There is a large body of work on differential privacy, including
large-scale deployments of aggregate statistical collection using differential privacy by
Apple [48, 49], Google Chrome [50, 28] and Mac OS [51]. There have also been many
DP models for record and tabular medical data, including aggregating sensitive statis-
tical features from electronic health records, collecting one dimensional data, sharing
entire tabular health datasets, as well as the privatizing and sharing of genomic data,
such as those from genome-wide association studies [52, 53]. Additionally, work has
developed privacy-preserving machine learning methods for a range of models includ-
ing decision trees, graph neural networks, boosting, convolutional neural networks
(often applied to learn predictions from health data) [54, 35, 55]. In summary, there
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are many works applying DP to tabular health data for data publishing and data min-
ing [52]. However, applications of DP for medical trajectories are much more limited
and no previous work has developed DP models for CDSS-specific applications, or
directly implemented DP mechanisms within deployed CDSS.

2.2 Explainable AI in Medicine

Explainable AI (XAI) encompasses a wide range of techniques to provide interpretable
explanations about a model’s choices, such as through the use of feature maps, textual
annotations, local, feature or example explanations, and model simplification meth-
ods [56]. XAI methods have been used in a range of healthcare applications [57],
including for predicting heart failure incidence [58]. Adding explainability to a model
often comes with a trade-off: the XAI methods may be complicated to implement, in-
efficient (i.e., it takes much longer to train an explainable model), or have stability and
reliability issues [59]. In addition, although these methods are good for understanding
more about the model (e.g., visualizing at a high level how combinations of features
contributed to a prediction), they are not always conducive to quick decision making
in high stress environments. For example, interpreting feature maps or understanding
textual explanations is nontrivial; one may need time to decipher the explanation and
determine its use (e.g., figure out how a risk score was computed).

Rules and Logic-Based CDSS. One of the most straightforward XAI methods
is to output model decisions using rules. Many CDSS rely on logic-based learning
systems [23], in which structured rules are used to make decisions. One of the main
motivations for logic-based learning in CDSS is because the easy to understand rules
promote dual understandability by humans and machines (e.g., using a rule grammar),
and increased explainability (no black box models,) which promotes user trust in the
system [24, 25]. Moreover, these learners are quite expressive, allowing for diverse
representations of medical associations. Even with the proliferation of deep learning
and generative ML, rule-based learners are still extremely common in clinical applica-
tions; indeed, some deep learning frameworks actually use a rule-based output layer
or use an ensemble that includes a rule-based learner to explain model predictions,
providing some interpretability and increasing trust of the overall system [60, 61].

2.3 Risk Stratification

Many CDSS, especially those used in chronic disease, use risk stratification. Risk
stratification is the process by which patients are grouped or stratified based on their
disease condition and other health factors [36]. This process is commonly completed
to understand patient risk of adverse outcomes, such as mortality or rehospitalization,
in order to make timely treatment decisions. As part of the risk stratification process,
a succinct patient phenotype may be provided to characterize the predicted outcome
risk in an understandable way. A patient phenotype is a particular set of features and
their thresholds or patterns that characterize a condition or outcome. For example,
a patient with a high risk of mortality may be characterized by a phenotype with an
age > 72, a decreasing systolic blood pressure trajectory, an increasing mean arterial
pressure trajectory, and a cardiac output trajectory that stays below a threshold of
3.7 L/min.

Risk Stratification in Heart Failure. As a specific application area, we look at
risk stratification for heart failure. Identifying patients at risk of heart failure (HF) is
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critical in order to provision correct treatment decisions and implement advanced, life-
saving therapies at the correct time [62]. For high-risk heart failure patients, analyzing
trajectories obtained from procedures such as hemodynamic assessments and imaging
systems, e.g., echocardiograms, can allow clinicians to better understand the patient
state thereby allowing them to make more informed triage decisions earlier in the
care continuum. However, HF risk assessment using such trajectories is a complex,
multi-faceted decision-making process [37]. Related to the challenges mentioned in
Chapter 1, this is because it is hard to obtain a holistic, overall understanding of the
patient state since trajectories may present in ways that are associated with conflicting
outcomes, there may be many missing features, and the trajectories themselves may
be noisy. Furthermore, these trajectories may be recorded at different intervals and
for a different number of times based on a patient’s disease progression (e.g., across
a 3 year period, one patient may have 3 serial echocardiograms, while another may
have 40 serial echos), resulting in trajectories of varied length and periodicity.

2.4 Clinical Case Studies

Although there are many types of CDSS use cases and application areas, in particular
this dissertation focuses on two themes across all the developed frameworks: chronic
disease management and facilitating large scale clinical research.

Chronic Disease Management. The first use case enables the analysis of data from
patients with chronic diseases who are being monitored over a long time period in
outpatient settings. Data being recorded at high temporal granularity (e.g., multiple
times per day for periods of months and years) present obvious privacy concerns, as
they can disclose intimate details about a patient’s life. However, deriving patterns of
patient behaviors that result in different outcome states (e.g., a better or worse patient
state of being for a chronic disease) can support clinical research studies related to
disease progression, improved treatment guidance, triage of patient status, etc. In
particular, being able to aggregate personalized data patterns collected from individual
patients to derive population level findings is especially relevant for the study of rare
disease conditions. The ability to extrapolate common details or symptoms from the
patients to improve diagnoses and treatment protocols (which are often lacking for
rare diseases), while protecting the confidentiality of the patients suffering from such
rare diseases, is an important opportunity for CDSS. In this dissertation, we use the
specific CDSS example application areas of advanced heart failure (HF) and Type I
Diabetes (T1D).

Facilitating Large Scale Clinical Research on Distributed Clinical Data. The
second use case looks at enabling the analysis of large amounts of distributed clinical
data. For example, this may include retrospective studies using inpatient hospital data
after patients have been discharged, across multiple organizations and outside patient
care needs, or for studies collected across individuals collecting personalized data from
wearables and other personal sensors. Currently, conglomerating and then studying
data across multiple (distributed) centers is very difficult due to HIPAA constraints
and patient privacy concerns [2, 5, 15]. However, analyzing this data for large scale
population studies is useful for medical researchers to learn more about various disease
and conditions progressions, triage and diagnostic choices in the hospital.

In addition to the application areas of heart failure and T1D as mentioned pre-
viously, we also look at aggregating inpatient data research across multiple hospitals
in two specific examples of Intensive Care Units (ICU) and Sepsis. A common goal
of CDSS using ICU data is to understand predictors of clinical deterioration in the
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ICU. Deterioration refers to a patient’s quick onset of a declining physical state that
may result in life-threatening outcomes such as death. Symptoms of deterioration are
highly variable between patients, especially because the condition may occur with lit-
tle to no warning. Although deterioration can be characterized by physical indicators
(from hospital sensors such as SpO2, ECG, heart rate etc.) these measures are highly
variable between patients, and, because deterioration usually occurs extremely quickly
with little to no warning, it is very hard to predict which patients may deteriorate. In
this context, the goal of a CDSS is to aggregate patterns across patients from multi-
ple health organizations in order to predict whether or not a patient may deteriorate
in a timely manner such that clinicians can take an action to try and prevent the
deterioration.

In the sepsis case, users of CDSS might wish to understand and predict the onset
and progression of Sepsis. Sepsis is the body’s extreme reaction to an infection it
already had and is life-threatening as it can cause a cascade of biological damages such
as tissue damage, shock, and organ failure. There is still debate about what actually
causes the onset of sepsis. Similar to ICU deterioriation, sepsis occurs extremely
quickly, and presents in highly variable ways between patients. Due to this variability,
and wide range in symptom presentation based on patient underlying health conditions
(e.g., why they were originally admitted to the hospital), age, sex etc., a CDSS would
wish to learn aggregated patterns characterizing sepsis onset from similar patient
cohorts. In this way, being able to better understanding and predict the timing and
presentation of symptoms leading to sepsis based on individual patient characteristics
can allow for timely, life-saving hospital interventions.

It is our intention that the frameworks developed in this dissertation support
both of these use cases including the sharing of clinical trajectories collected from
wearables in outpatient settings as well as the aggregation of population level patterns
of behaviors that can inform disease understanding and clinical management and
treatment decisions. In the next chapters, we describe each of these frameworks in
detail.
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Chapter 3

Differentially-Private Synthetic
Glucose Traces (GlucoSynth)

The sharing of medical time series data can facilitate therapy development.1 As
a motivating example, sharing glucose traces can contribute to the understanding of
diabetes disease mechanisms and the development of artificial insulin delivery systems
that improve people with diabetes’ quality of life. Unsurprisingly, there are serious
legal and privacy concerns (e.g., HIPAA, GDPR) with the sharing of such granular,
longitudinal time series data in a medical context [17]. One solution is to generate a
set of synthetic traces from the original traces. In this way, the synthetic data may be
shared publicly in place of the real ones with significantly reduced privacy and legal
concerns.

This project focuses on the problem of generating high-quality, privacy-preserving
synthetic glucose traces, a task which generalizes to other time series sources and ap-
plication domains, including activity sequences, inpatient events, hormone traces and
cyber-physical systems. Specifically, we focus on long (over 200 timesteps), bounded,
univariate time series glucose traces. We assume that available data does not have any
labels or extra information including features or metadata, which is quite common, es-
pecially in diabetes. Continuous Glucose Monitors (CGMs) easily and automatically
send glucose measurements taken subcutaneously at fixed intervals (e.g., every 5 min-
utes) to data storage facilities, but tracking other sources of diabetes-related data is
challenging [63]. We characterize the quality of the generated traces based on three
criteria— synthetic traces should (1) conserve characteristics of the real data, i.e.,
glucose dynamics and control-related metrics (fidelity); (2) contain representation of
diverse types of realistic traces, without the introduction of anomalous patterns that
do not occur in real traces (breadth); and (3) be usable in place of the original data
for real-world use cases (utility).

Generative Adversarial Networks (GANs) [64] have shown promise in the gener-
ation of time series data. However, previous methods for time series synthesis, e.g.,
[18, 19, 20], suffer from one or more of the following issues when applied to glucose
traces: 1) surprisingly, they do not generate realistic synthetic glucose traces – in par-
ticular, they produce human physiologically impossible phenomenon in the traces; 2)
they require additional information (features, metadata or labels) to guide the model
learning which are not available for our traces; 3) they do not include any privacy
guarantees, or, in order to uphold a strong formal privacy guarantee, severely degrade
the utility of the synthetic data.

Generating high-quality synthetic glucose traces is a difficult task due to the innate
characteristics of glucose data. Glucose traces can be best understood as sequences

1This chapter is based on: Lamp, Josephine, Mark Derdzinski, Christopher Hannemann, Joost
Van der Linden, Lu Feng, Tianhao Wang, and David Evans. "GlucoSynth: Generating Differentially-
Private Synthetic Glucose Traces." Advances in Neural Information Processing Systems 36 (2024).
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Figure 3.1: Example Real Glucose Traces and Glucose Motifs from our Dataset.

of events, which we call motifs, shown in Figure 3.1, and they are more event-driven
than many other types of time series. As such, a current glucose value may be more
influenced by an event that occurred in the far past compared to values from immediate
previous timesteps. For example, a large meal eaten earlier in the day (30-90 minutes
ago) may influence a patient’s glucose more than the glucose values from the past 15
minutes. As a result, although there is some degree of temporal dependence within
the traces, only conserving the immediate temporal relationships amongst values at
previous timesteps does not adequately capture the dynamics of this type of data. In
particular, we find that the main reason previous methods fail is because they may
not sufficiently learn event-related characteristics of glucose traces.

Contributions. We present GlucoSynth, a privacy-preserving GAN framework to
generate synthetic glucose traces. The core intuition behind our approach is to con-
serve relationships amongst motifs (events) within the traces, in addition to the typical
temporal dynamics contained within time series. We formalize the concept of motifs
and define a notion of motif causality, inspired from Granger causality [22], which
characterizes relationships amongst sequences of motifs within time series traces (Sec-
tion 3.2). We define a local motif loss to first train a motif causality block that learns
the motif causal relationships amongst the sequences of motifs in the real traces. The
block outputs a motif causality matrix, that quantifies the causal value of seeing one
particular motif after some other motif. Unrealistic motif sequences (such as a peak
to an immediate drop in glucose values) will have causal relationships close to 0 in
the causality matrix. We build a novel GAN framework that is trained to optimize
motif causality within the traces in addition to temporal dynamics and distributional
characteristics of the data (Section 3.3). Explicitly, the generator computes a motif
causality matrix from each batch of synthetic data it generates, and compares it with
the real causality matrix. As such, as the generator learns to generate synthetic data
that yields a realistic causal matrix (thereby identifying appropriate causal relation-
ships from the motifs), it implicitly learns not to generate unrealistic motif sequences.
We also integrate differential privacy (DP) [21] into the framework (Section 3.4),
which provides an intuitive bound on how much information may be disclosed about
any individual in the dataset, allowing the GlucoSynth model to be trained with pri-
vacy guarantees. Finally, in Section 3.5, we present a comprehensive evaluation using
1.2 million glucose traces from individuals with diabetes collected across 2022, show-
casing the suitability of our model to outperform all previous models and generate
high-quality synthetic glucose traces with strong privacy guarantees.
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(a) Glucose Motif 1 (b) Glucose Motif 2 (c) Temporal Motif 1 (d) Temporal Motif 2

Figure 3.2: Temporal Distributions of Sample Motifs. Each radial graph displays the
temporal distribution of a motif; there are 24 radial bars from 00:00 to 23:00, and each
segment displays the percentage of motif occurrences by each hour. Glucose motifs 1 and 2
are from Fig. 3.1; they are not temporally-dependent and show up across the day. Temporal

motifs 1 and 2 are from a cardiology dataset [65].

3.1 Preliminaries

3.1.1 Motifs

Glucose (and many other) traces can be best understood as sequences of events or
motifs. Motifs characterize phenomenon in the traces, such as peaks or troughs. We
define a motif, µ, as a short, ordered sequence of values (v) of specified length τ ,
µ = [vi, vi+1, . . . , vi+τ ] and σ is a tolerance value to allow approximate matching
(within σ for each value). Some examples of glucose traces and motifs are shown in
Figure 3.1. We denote a set of n time series traces as X = [x1, ..., xn]. Each time series
may be represented as a sequence of motifs: xi = [µi1 , µi2 ...] where each ij gives the
index of the motif in the set that matches xij·τ , ...xi(j+1)·τ−1

. Given the motif length τ ,
the motif set is the union of all size-τ chunks in the traces. This definition is chosen
for a straightforward implementation but motifs can be generated in other ways, such
as through the use of rolling windows or signal processing techniques [66, 67]. Motifs
are pulled from the data such that there is always a match from a trace motif to a
motif from the set (if multiple matches, the closest one is chosen).

3.1.2 Glucose Dynamics (Why Standard Approaches Fail)

We first present a study of the characteristics of glucose data in order to motivate
the development of our framework. Although there are general patterns in sequences
of glucose motifs (e.g., motif patterns corresponding to patients that eat 2x vs. 3x
a day), individual glucose motifs are typically not time-dependent, as illustrated in
Figure 3.2. The radial graphs display the temporal distribution of the first two glu-
cose motifs from Figure 3.1 and two temporally-dependent motifs from a cardiology
dataset [65]. There are 24 radial bars from 00:00 to 23:00 for each hour of the day,
and the bar value is the percentage of total motif occurrences at that hour across
the entire dataset (i.e., value of 10 would indicate that 10% of the time that motif
occurs during that hour). Note that the glucose motifs show up fairly evenly across
all hours of the day whereas the motifs from the cardiology dataset have shifts in their
distribution and show up frequently at specific hours of the day. The lack of temporal
dependence in glucose motifs is likely due to the diverse patient behaviors within a
patient population. Glucose in particular is highly variable and influenced by many
factors including eating, exercise, stress levels, and sleep patterns. Moreover, due to
innate variability within human physiology, motif occurrences can differ even for the
same patient across weeks or months. These findings indicate that only conserving
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the temporal relationships within glucose traces (as many previous methods do) may
not be sufficient to properly learn glucose dynamics and output realistic synthetic
traces.

3.1.3 Granger Causality

Granger causality [22] is commonly used to quantify relationships amongst time series
without limiting the degree to which temporal relationships may be understood as
done in other time series models, e.g., pure autoregressive ones. In this framework, an
entire system (set of traces) is studied together, allowing for a broader characterization
of their relationships, which may be advantageous, especially for long time series. We
define xt ∈ Rn as an n-dimensional vector of time series observed across n traces and
T timesteps. To study causality, a vector autoregressive model (VAR) [68] may be
used. A set of traces at time t is represented as a linear combination of the previous
K lags in the series: xt =

∑K
k=1A

(k)xt−k + et where each A(k) is a n× n dimensional
matrix that describes how lag k affects the future timepoints in the series’ and et
is a zero mean noise. Given this framework, we state that time series q does not
Granger-cause time series p, if and only if for all k, A(k)

p,q = 0. To better represent
nonlinear dynamics amongst traces, a nonlinear autoregressive model (NAR) [69], g,
may be defined, in which xt = g (x1<t , ..., xn<t) + et where xp<t =

(
xp1 ..., xpt−1 , xpt

)
describes the past of series p. The NAR nonlinear functions are commonly modeled
jointly using neural networks.

3.2 Motif Causality

Using Granger causality as defined would overwhelm the generator with too much
information, resulting in convergence issues for the GAN. Instead of looking at traces
comprehensively, we need a way to scope how the generator understands relation-
ships between time series. To this end, we aim to use the same intuition developed
from Granger causality, namely developing an understanding of relationships com-
prehensively using less stringent temporal constraints, but scope these relationships
specifically in terms of motifs. Therefore, we develop a concept of motif causality
which, by learning causal relationships amongst sequences of motifs, allows the gen-
erator to learn realistic motif sequences and produce high quality synthetic traces as
a result.

3.2.1 Extending Granger Causality to Motifs

In order to quantify the relationships amongst sequences of motifs to best capture
glucose dynamics, we extend the idea of Granger causality to work with motifs. Given
a motif set with m motifs, we build a separate (component) model, called a motif
network in our method, for each motif, resulting in m motif networks. For a single
motif µi at time t, µit , we define a function gi specifying how motifs in previous
timesteps are mapped to that motif: µit = gi (µ1<t , ..., µm<t) + eit where µj<t =(
µj1 ..., µjt−1 , µjt

)
describes the past of motif µj . The output of gi is a vector, which is

added to the noise vector eit . Essentially, we define motif µi in terms of its relationship
to past motifs. The gi function takes in some mapping that describes how motifs
in previous timesteps are mapped to the current motif µit . The mapping is not
specified in this notation, and could be defined in many different ways. In our case,
we instantiate gi using a single-layer LSTM, described next.
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Figure 3.3: Motif Causality Block.

A gi function for each motif µi in the motif set is modeled using a motif network
with a single-layer RNN architecture. For a RNN predicting a single component motif,
let ht ∈ Rm represent the m-dimensional hidden state at time t. This represents the
historical context of the motifs in the series for predicting a component motif at
time t, µit . At time t, the hidden state is updated: ht = gi(ht−1) + eit . gi here is the
function describing how motifs in previous timesteps are mapped to the current motif,
and is modeled (instantiated) as a single-layer LSTM as they are good at modeling
long, nonlinear dependencies amongst traces [70]. The output for a motif µi at time
t, µit can be obtained by a linear decoding of the hidden state, µit = W oht + eit ,
where W o is a matrix of the output weights. These weights control the update of
the hidden state and thereby control the influence of past motifs on this component
motif. Essentially, this function learns a weighting that quantifies how helpful motifs
in previous timesteps are for predicting the specified motif µi at time t. We note
that we define causality in this way based on how Granger causality models such
relationships, which is different from traditional causality models.

If all elements in the jth column of W o are zero (W o
:j = 0), this is a sufficient

condition for an input motif µj being motif non-causal on an output µi. Therefore,
we can find the motifs that are motif-causal for motif µi using a group lasso penalty
optimization across the columns of W o:

min
W

T∑
t=2

(µit − gi(µ0<t , ..., µm<t))
2 +

m∑
j=1

||W o
:j ||2

We define this as the local motif loss, Lml, which is optimized in each motif network
using proximal gradient descent.

3.2.2 Training the Motif Causality Block

We next describe how the motif causality block is trained to learn motif causal rela-
tionships amongst traces, displayed in Figure 3.3. The block is structured in this way
to accommodate the privacy integration (Section 3.4.2); here, we present its imple-
mentation without any privacy noise.

Partition data. First, the data is partitioned into r partitions (Step 1, Figure 3.3)
such that no models are trained on overlapping data. The number of partitions, r, is
a user-specified hyperparameter.

Build motif network for each motif. Next, within each data partition a set of
motif networks is trained. As a pre-processing step, we assume each trace has been
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Figure 3.4: Example motif causality matrix for a small motif set (m = 10). Each value
in the grid is between 0 and 1. 0 indicates no motif-causal relationship, and 1 indicates the

strongest motif causal relationship.

chunked into a sequence of motifs of size τ (Section 3.1.1). τ is a hyperparameter,
which we suggest chosen based on the longest effect time of a trace event. We use
τ = 48, corresponding to 4 hours of time, because large glucose events (from behaviors
like eating) are encompassed within that time frame. We assume a tolerance of σ = 2
mg/dL, chosen to allow for reasonable variations in glucose. To model motif causality
for an entire set of data, a gi function is implemented for each motif via a separate
RNN motif net following the description provided previously, resulting in m total
networks (Step 2a, Figure 3.3). If all the motifs were trained together using a single
motif network, it would not be possible to quantify the exact causal effects between
each individual motif as we would not know which exact motifs contributed to a
prediction (only that there is some combination of unknown motifs that contribute
to an accurate prediction for a particular motif). By training each motif network
separately, we are able to quantify the exact effect each motif has on each other,
without any confounding effects from other motifs.

Combine outputs of individual motif networks. Each motif network outputs
a vector of weights W o of dimensionality 1×m, corresponding to the learned causal
relationships (Step 2b, Figure 3.3). Values in the vector are between 0 (no causal
relationship) and 1 (strongest causal relationship) and give the degree to which every
other motif is motif causal of the particular motif µi the RNN was specialized for. To
return a complete matrix that summarizes causal relationships amongst all motifs,
we stack the weights (Step 2c). The output of each data partition is a complete motif
causality matrix, resulting in r total matrices, each of dimensionality m × m. An
example matrix is in Fig. 3.4.

Aggregate matrices and integrate with GAN. After motif causality matrices
have been outputted from each data partition, the weights in the matrices are aggre-
gated (Step 3, Figure 3.3) to return the final aggregate causality matrix, M (Step 4).
In the nonprivate version, the weights are averaged. Finally, M is sent to the genera-
tor to help it learn how to conserve motif relationships within sequences of motifs in
the synthetically generated data. Details are described next in the subsequent section.

3.3 GlucoSynth

The complete GlucoSynth framework, shown in Figure 3.5, comprises four key blocks:
the motif causality block (explained previously in Section 3.2), an autoencoder, a
generator and a discriminator. We walk through the remaining components of the
framework surrounding the GAN next.
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Figure 3.5: Overview of GlucoSynth Architecture.

3.3.1 GAN Architecture Components

Autencoder. We use an autoencoder (AE) with an RNN architecture to learn a lower
dimensional representation of the traces, allowing the generator to better preserve un-
derlying temporal dynamics of the traces. The autoencoder consists of two networks:
an embedder and a recovery network. The embedder uses an encoding function to
map the real data into a lower dimensional space: Enc(x) : x ∈ Rn → xe ∈ Re while
the recovery network reverses this process, mapping the embedded data back to the
original dimensional space: Dec(xe) : xe ∈ Re → x̃ ∈ Rn. A foolproof autoencoder
perfectly reconstructs the original input data, such that x = x̃ ≡ Dec(Enc(x)). This
process yields the Reconstruction Loss, LR, the Mean Square Error (MSE) between
the original data x and the recovered data, x̃: MSE(x, x̃).

Generator. We implement the generator via an RNN or LSTM. Importantly, the
generator works in the embedded space, by receiving the input traces passed through
the embedder (xe). To generate synthetic data, a random vector of noise, z is passed
through the generator and then the recovery network to return the synthetic traces in
the original dimensional space. To learn how to produce high-quality synthetic data,
the generator receives three key pieces of information:

1 – Stepwise. The generator receives batches of real data to guide the generation of
realistic next step vectors. To do this, a Stepwise Loss, LS , is computed at time t using
the MSE between the batch of embedded real data, xet, and the batch of embedded
synthetic data, x̂et: MSE(xet, x̂et). This allows the generator to compare (and learn
to correct) the discrepancies in stepwise data distributions.

2 – Motif Causality. The generator needs to preserve sequences of motifs in addition to
temporal dynamics. Using the aggregate causality matrix M returned from the Motif
Causality Block, the generator computes a motif causality matrix, Mx̂, on the set of
synthetic data x̂. Because the original causality matrix was not trained on data in the
embedded space, we first run the set of embedded synthetic data through the recovery
network x̂e → x̂. From there, the Motif Causality Loss, LM , is computed as the MSE
error between the two matrices: MSE(M,Mx̂). These matrices give a causal value of
seeing a motif µi in the future after some motif µj— unrealistic motif sequences will
have causal values close to 0. As the generator learns to generate synthetic data that
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yields a realistic causal matrix (thereby identifying appropriate causal relationships
from the motifs), it implicitly learns to not generate unrealistic motif sequences.

3 – Distributional. To guide the generator to produce a diverse set of traces, the
generator computes a Distributional Loss, LD, the moments loss (MML), between the
overall distribution of the real data xe and the distribution of the synthetic data x̂e:
MML(xe, x̂e). The MML is the difference in the mean and variance of two matrices.

Discriminator. The discriminator is a traditional discriminator model using an
RNN, the only change being it also works in the embedded space. The discriminator
yields the Adversarial Loss Real, LAr, the Binary Cross Entropy (BCE) between the
discriminator guesses on the real data yxe and the ground truth y, a vector of 0’s,
BCE(yxe , y) and the Adversarial Loss Fake, LAf , the BCE between the discriminator
guesses on the fake data yx̂e and the ground truth y, a vector of 1’s, BCE(yx̂e , y).

3.3.2 Training Procedure

First, the motif causality block is trained following the procedure described in Sec-
tion 3.2.2, and then the rest of the GAN is trained. The autoencoder is optimized to
minimize LR+αLS , where α is a hyperparameter that balances the two loss functions.
If the AE only receives LR (as is typically done), it becomes overspecialized, i.e., it
becomes too good at learning the best lower dimensional representation of the data
such that the embedded data are no longer helpful to the generator. For this reason,
the AE also receives LS , enabling the dual training of the generator and embedder.
The generator is optimized using min(1−LAf )+η(LS+LD)+LM , where η is a hyper-
parameter that balances the effect of the stepwise and distributional loss. Finally the
discriminator is optimized using the traditional adversarial feedback minLAf + LAr.
The networks are trained in sequence (within each epoch) in the following order: au-
toencoder, generator, then discriminator. In our experiments we set α = 0.1 and
η = 10 as they enable GlucoSynth to converge fastest, i.e., in the fewest epochs.

3.4 Providing Differential Privacy

There are two components to our privacy architecture, described in the following
two subsections: (1) each network in the GAN (Embedder, Recovery, Generator
and Discriminator networks) is trained in a differentially private manner using the
Differentially-Private Stochastic Gradient Descent (DP-SGD) algorithm from Abadi
et al. [71]; and (2) the motif causality block is trained using the PATE framework
from Papernot et al. [72]. Importantly, two completely separate datasets are used
for the training of the motif causality block (dataset B in Figure 3.5) and the GAN
(dataset A in Figure 3.5). We structure the privacy integration in this way to allow
for better privacy-utility trade-offs. Our design satisfies the formal differential privacy
notion introduced by Dwork et al. [73]. Differential Privacy (DP) provides an intu-
itive bound on the amount of information that can be learned about any individual
in a dataset. A randomized algorithm M satisfies (ϵ, δ)-differential privacy if, for
all datasets D1 and D2 differing by at most a single unit, and all S ⊆ Range(M),
Pr[M(D1) ∈ S] ≤ eϵPr[M(D2) ∈ S] + δ. The parameters ϵ and δ determine the pri-
vacy loss budget, which provide a way to tradeoff privacy and utility; smaller values
have stronger privacy. Importantly, privacy is provisioned at the trace level, and we
assume each individual has only one trace in the dataset.
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3.4.1 Training the GAN Networks with DP

To add privacy to the GAN components, each of the networks (Embedder, Recov-
ery, Generator and Discriminator) is trained in a differentially private manner using
DP-SGD [71]. Although the overall GAN framework is complicated, the individual
networks all use simple RNN or LSTM architectures with Adam optimizers. As such,
adding DP noise to their network weights is straightforward. We employ the follow-
ing procedure using Tensorflow Privacy functions [74]. Since there are four networks
being trained with DP, we divide the privacy loss budget evenly to get the budget per
network, ϵnet = ϵ/4. Then, we use Tensorflow’s built-in DP accountant to determine
how much noise must be added to the weights of each network based on the number of
epochs, batch size, number of traces and ϵnet. This function returns a noise multiplier,
which we use when we instantiate a Tensorflow DP Keras Adam Optimizer for each
network. Finally, we train each of the networks using their respective DP Keras Adam
Optimizer, which automatically trains the network using DP-SGD.

3.4.2 Training the Motif Causality Block with DP

We train the motif causality block using the PATE framework [72]. PATE provides
a way to return aggregated votes about the class a data point belongs to. First,
the data is partitioned into r partitions, where r is determined based on the size of
the dataset and the privacy loss budget. Then, a class membership model is trained
independently for each partition. The class membership votes from each partition are
aggregated by adding noise to the vote matrix and the noisiest votes are returned
using the max-of-Laplacian mechanism (LNMax), tuned based on the privacy budget
and r.

We use PATE to train the motif causality block: instead of predicting the de-
gree of class membership we predict causal membership, e.g., does motif µi have a
causal relationship to µj . The motif causality block is trained in the same procedure
described in Section 3.2.2 with two changes: (1) the number of data partitions, r, is
determined based on the privacy budget, instead of a user-specified value; (2) the final
causality matrix M is aggregated using DP across the partitions. In normal PATE,
carefully calibrated noise is added to a matrix of votes for each class, such that the
classes with the noisiest votes are outputted. In our use, each value in a motif causal-
ity matrix may be likened to a class (i.e., causal “class" prediction between motif µi

and µj). Thus, we use the LNMax mechanism (from predefined Tensorflow Privacy
functions [74]) to aggregate the matrices weights and return M .

We use PATE instead of training each motif network using DP-SGD for better
privacy-utility trade-offs. With DP-SGD, we would need to add noise to every motif
net, eating up our privacy budget quickly and severely impacting the quality of the
returned casuality matrices. PATE allows us to train each of the motif networks with-
out any noise on the gradients, but then aggregates their returned causality matrices
in a privacy-preserving manner, resulting in a better privacy-utility trade-off.

3.5 Evaluation

Evaluating synthetic data is notoriously difficult [75], so we provide an extensive
evaluation across three criteria. Synthetic data should: 1) conserve characteristics of
the real data (fidelity, Section 3.5.1); 2) contain diverse patterns from the real data
without the introduction of anomalous patterns (breadth, Section 3.5.2); and 3) be
usable in place of the original for real-world use cases (utility, Section 3.5.3).
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Data. We use 100,000 single-day glucose traces randomly sampled across each month
from January to December 2022, for a total of 1.2 million traces, collected from Dex-
com’s G6 Continuous Glucose Monitors (CGMs) [4]. Data was recorded every 5
minutes (T = 288) and each trace was aligned temporally from 00:00 to 23:59. Specif-
ically, 100,000 single day patient traces were randomly sampled across each month
(from January to December 2022). More details about this specific CGM technol-
ogy are available in [4]. As explained in the approach (Section 3.3), our model uses
two separate datasets for the training of the motif causality block and the rest of
the GAN. As such, we used two different samples of glucose traces with no overlap
between patients for the training of each section (meaning we actually used a total of
2.4 million traces across the entire model). We also note that we have received the
proper ethical and legal consent from the individuals to use their data in this way
(and for this purpose).

Hyperparameters. Our experiments were completed in the Google Cloud platform
on an Intel Skylake 96-core cpu with 360 GB of memory. We use a separate vali-
dation dataset (not the set of original training traces) for all experimental results.
Throughout all our experiments we use GlucoSynth model parameters of α = 0.1 and
η = 10 and a motif tolerance of σ = 2 mg/dL and motif length τ = 48. Motif length
of 48 timesteps is equivalent to 4 hours of time and represents a clinically significant
threshold. This threshold was chosen because the effect of any behaviors on glucose
occur within 4 hours of the event (e.g., the effect from eating a meal – a rise in glucose
– will occur within 4 hours after eating.) We note that other choices for τ could be
used, based on what types of phenomenon the users wish to replicate; for example, to
capture day/night glucose rhythm effects, we suggest a τ of 144, corresponding to 12
hours of time.

We vary ϵ in our privacy experiments, but keep δ the same at 5e−4. Importantly,
in order to meet our privacy guarantees, we assume that privacy is provisioned at the
trace level and each individual has only one trace in the dataset. The motif set is
derived separately from the training data (either from a public dataset or generated
based on knowledge about the underlying data, e.g., the possible glucose motif com-
binations), so as not to effect the differential privacy guarantees or use up any privacy
budget. In our case, we assume the motif set is all-encompassing and generated from
the universe of possible motifs, resulting in m = 5, 977, 610 total motifs in the motif
set.

Benchmark Details. We restrict our comparison to the five most closely related
state-of-the-art models for generating synthetic univariate time series with no labels
or auxiliary data: Three nonprivate—TimeGAN [18], Fourier Flows (FF) [76], non-
volume preserving transformations (NVP) [77]; and two private—RGAN [78] and
dpGAN [79]. TimeGAN [18] is implemented from www.github.com/jsyoon0823/
TimeGAN; Fourier Flows (FF) [76] are implemented from www.github.com/ahmedmalaa/
Fourier-flows; RGAN [78] is implemented from www.github.com/ratschlab/RGAN;
and DPGAN [79] is adapted from www.github.com/SAP-samples/security-research-
differentially-private-generative-models. All the benchmarks were trained ac-
cording to their suggested parameters, with most models trained for 10,000 epochs.
We note that we trained for more than the suggested epochs (50,000 instead of 10,000)
and tried many additional hyperparameter settings for RGAN to attempt to improve
its performance and provide the fairest comparison possible.

www.github.com/jsyoon0823/TimeGAN
www.github.com/jsyoon0823/TimeGAN
www.github.com/ahmedmalaa/Fourier-flows
www.github.com/ahmedmalaa/Fourier-flows
www.github.com/ratschlab/RGAN
www.github.com/SAP-samples/security-research-differentially-private-generative-models
www.github.com/SAP-samples/security-research-differentially-private-generative-models
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3.5.1 Fidelity

Visualization. We provide visualizations of sample real and synthetic glucose traces
from all models. Although this is not a comprehensive way to evaluate trace quality,
it does give a snapshot view about what synthetic traces may look like, e.g., how
realistic the synthetic traces may look. We provide heatmap visualizations, where
each heatmap contains 100 randomly sampled glucose traces. Each row is a single
trace from timestep 0 to 288. The values (coloring) in each row indicate the glucose
value (between 40 mg/dL and 400 mg/dL). Figure 3.6 shows the nonprivate models,
and Figures 3.7, 3.8, 3.9 show the private models with different privacy budgets. Upon
examining the heatmaps, we notice that GlucoSynth consistently generates realistic
looking glucose traces, even at very small privacy budgets.

Figure 3.6: Heatmaps for Nonprivate Models

Figure 3.7: Heatmaps for GlucoSynth Across Different Privacy Budgets

Figure 3.8: Heatmaps for RGAN Across Different Privacy Budgets
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Figure 3.9: Heatmaps for dpGAN Across Different Privacy Budgets

Table 3.1: Glycemic Metric Explanations

Metric Name Explanation

VAR Signal Variance average trace variability
TIR Time in Range % of time glucose ≥ 70 & ≤ 180
Hypo Time Hypoglycemic % of time glucose < 70
Hyper Time Hyperglycemic % of time glucose > 180
GVI Glycaemic Variability Index more detailed measure of glucose variability
PGS Patient Glycaemic Status metric combining GVI and TIR

Table 3.2: Population Data Statistics. Each cell value for the synthetic data shows the
(metric, p-value) using a 0.05 testing threshold. Bolded values do not have a statistically

significant difference from the real data (what we want).

Model ϵ VAR TIR Hypo Hyper GVI PGS

Real Data N/A 2832.76 60.31 1.58 38.11 4.03 349.23

GlucoSynth

0.01 2575.501, 0.0 61.759, 2.0e−5 1.331, 0.0 36.91, 5.66e−4 4.002, 0.085 323.056, 0.0
0.1 2803.513, 0.356 60.088, 0.532 1.264, 0.0 38.648, 0.137 3.969, 2.74e−4 347.562, 0.712
1 2760.853, 0.022 60.597, 0.41 1.512, 0.163 37.892, 0.537 4.019, 0.577 345.159, 0.368
10 2800.805, 0.316 60.24, 0.845 1.538, 0.395 38.222, 0.76 3.963, 6.7e−5 344.376, 0.28
100 2796.424, 0.244 60.138, 0.625 1.567, 0.808 38.295, 0.609 4.044, 0.32 352.679, 0.449
∞ 2811.622, 0.503 60.165, 0.682 1.54, 0.416 38.295, 0.61 4.056, 0.083 353.584, 0.339

TimeGAN ∞ 2234.576, 8.08e−3 62.315, 0.42 0.657, 8.233e−3 37.028, 0.669 5.482, 0.0 503.148, 0.2e−5

FF ∞ 2836.067, 0.902 46.578, 0.0 5.627, 0.0 47.795, 0.0 4.931, 0.0 528.773, 0.0

NVP ∞ 1789.430, 0.0 65.499, 0.0 1.507, 0.154 32.994, 0.0 6.607, 0.0 589.473, 0.0

RGAN

0.01 56.96, 0.0 78.756, 0.0 0.0, 1.78e−4 21.244, 0.0 2.52, 0.0 93.409, 0.0
0.1 52.553, 0.0 71.617, 3.7e−5 0.0, 1.78e−4 25.715, 0.0 2.208, 0.0 98.944, 0.0
1 67.346, 0.0 78.154, 0.0 0.0, 1.78e−4 21.846, 0.0 2.251, 0.0 85.417, 0.0
10 76.632, 0.0 83.681, 0.0 0.0, 1.78e−4 16.319, 0.0 2.23, 0.0 64.562, 0.0
100 84.918, 0.0 74.285, 0.0 0.0, 1.78e−4 25.715, 0.6e−5 2.208, 0.0 98.944, 0.0
∞ 89.702, 0.0 78.044, 0.0 0.0, 1.78e−4 21.956, 0.0 2.184, 0.0 82.923, 0.0

dpGAN

0.01 451.098, 0.0 95.275, 0.0 4.60, 0.0 0.124, 0.0 7.718, 0.0 41.549, 0.0
0.1 1057.205, 0.0 86.43, 0.0 0.837, 0.0 12.732, 0.0 6.349, 0.0 148.412, 0.0
1 874.663, 0.0 86.631, 0.0 1.135, 0.0 12.234, 0.0 4.794, 0.0 118.286, 0.0
10 1029.971, 0.0 88.122, 0.0 2.002, 0.0 9.876, 0.0 4.759, 0.0 93.632, 0.0
100 821.636, 0.0 89.354, 0.0 0.664, 0.0 9.982, 0.0 4.613, 0.0 82.561, 0.0
∞ 1120.553, 0.0 81.773, 0.0 1.359, 0.3e−5 16.868, 0.0 6.248, 0.0 188.991, 0.0

Population Statistics. In order to evaluate fidelity on a population scale, we com-
pute a common set of glucose metrics used to evaluate patient glycemic control on
the real and synthetic data, including average trace variability (VAR), Time in Range
(TIR), the percentage of time glucose is within the clinical guided range of 70-180
mg/dL; and time hypo- and hyper- glycemic (time below and above range, respec-
tively) in Table 3.2. More details on each of the metrics are included in Table 3.1.
We test if the difference in metrics between the synthetic and real data is statistically
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significant, using a p-value of 0.05. A p-value < 0.05 indicates the difference is sta-
tistically significant. We want synthetic data that has similar population statistics to
the real data: p-values > 0.05 such that the differences in statistics between real and
synthetic data are not significant. GlucoSynth outperforms all other models, with no
statistically significant difference in all metrics for privacy budgets of ϵ ≥ 100 and
only one metric with a statistically significant difference for budgets ϵ = 1− 10.

Distributional Comparisons. We visualize differences in distributions between the
real and synthetic data by plotting the distribution of variances and using PCA [80].
Figure 3.10 and Figure 3.11 show the variance distribution and PCA plots, respectively
for the nonprivate models. We also compare distributional changes across privacy
budgets: Figures 3.12 and 3.13 show GlucoSynth, Figures 3.14 and 3.15 show RGAN
and Figures 3.16 and 3.17 show dpGAN.

Looking at the figures, GlucoSynth better captures the distribution of the real data
compared to all of the nonprivate models. As evidenced in the PCA plot, (Fig. 3.11),
FF comes the closest to capturing the real distribution in its synthetic data, but
ours does a better job of representing the more rare types of traces. GlucoSynth
also outperforms all of the private models across all privacy budgets. Even at small
budgets (ϵ < 1), the general shape of the overall distribution is conserved (e.g., see
Figure 3.12).

3.5.2 Breadth

Breadth refers to the representation of different types of traces within the synthetic
data, and artifacts are patterns in the synthetic data not contained in the original data.
This criteria hits on the fact that we would like a diverse representation of phenomenon
(e.g., trace types) from the real data in the synthetic data, without the introduction
of too many fake patterns. This is particularly notable in a clinical scenarios where
the introduction of anomalous phenomenon in data used for training and diagnostic
purposes can have real world safety consequences to patients. We quantify breadth
in terms of glucose motifs. For each model’s synthetic traces, we build a motif set
(see Section 3.1.1). Given a real motif set from the validation traces Sx, for each
synthetic motif set Sx̂, we compute “Validation Motifs", (VM), the fraction of motifs
found in the validation motif set that are present in the synthetic motif set, VM/|Sx̂|.
This metric quantifies how good our synthetic motif set is (e.g., are its motifs mostly
similar to motifs found in real traces). We also compute metrics related to coverage,
the fraction of motifs in the validation motif set that are found in our synthetic data,
defined as VM/|Sx|. This gives a sense of the breadth in a more traditional manner.
To compare actual distributions of motifs (not just counts), we compute the MSE
between the distribution of real motifs Sx and the distribution of synthetic motifs Sx̂.
This gives a measure about how close the synthetic motif distribution is to the real
one. We want high VM and coverage, and low MSE. Results are in Table 3.3.

Compared to all other models across all privacy budgets, our model has the best
ratio of found validation motifs, with close to 1.0 for VM and the lowest MSEs. It also
has the best coverage for nonprivate settings and an ϵ of 100. Interestingly, dpGAN
has the best coverage compared to all other models for privacy budgets ϵ ≤ 10 but
worse MSEs across all budgets than GlucoSynth. This means that although it finds
a broader number of motifs contained in the real data, the overall distributions of
motifs it creates in the synthetic data have much higher error rates. We argue that
the tradeoff found by our model is better because although it does miss some of the
types of motifs from the real data (misses some breadth), from the ones it does find it
constructs realistic distributions of the motifs and generates very few anomalous ones.
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(a) GlucoSynth (b) TimeGAN

(c) FF (d) NPV

Figure 3.10: Distributional Variance for Nonprivate Models

(a) GlucoSynth (b) TimeGAN

(c) FF (d) NPV

Figure 3.11: PCA Comparison for Nonprivate Models
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Figure 3.12: GlucoSynth Distributional Variance Comparison Across Privacy Budgets

Figure 3.13: GlucoSynth PCA Comparison Across Privacy Budgets
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Figure 3.14: RGAN distributional Variance Comparison Across Privacy Budgets

Figure 3.15: RGAN PCA Comparison Across Privacy Budgets
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Figure 3.16: dpGAN distributional Variance Comparison Across Privacy Budgets

Figure 3.17: dpGAN PCA Comparison Across Privacy Budgets
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Table 3.3: Breadth and Utility Evaluation. VM = fraction of motifs found in validation
motif set; We want high VM, Coverage and low MSE, RMSE; Bolded values indicate the best

ones at each privacy budget (nonprivate compared with private models when ϵ =∞).

Breadth Utility
Model ϵ VM Coverage MSE RMSE

GlucoSynth

0.01 1.000 0.010 99.0 0.038± 3e−4
0.1 1.000 0.083 11.2 0.036± 3e−4
1 0.992 0.145 6.7 0.030± 1e−4

10 1.000 0.167 5.0 0.029± 1e−4
∞ 0.987 0.534 1.6 7e−3± 2e−4

TimeGAN ∞ 0.625 6e−3 107.7 0.061± 3e−4

FF ∞ 0.642 0.405 2.0 0.038± 3e−4

NVP ∞ 0.482 0.328 1.9 0.029± 3e−5

RGAN

0.01 0.013 1e−3 108.6 0.819± 0.010
0.1 0.015 0.031 107.3 0.688± 6e−3
1 0.015 0.033 103.3 0.651± 0.018

10 0.017 0.053 100.3 0.619± 0.016
∞ 0.026 0.091 79.6 0.460± 0.013

dpGAN

0.01 0.094 0.054 180.1 0.205± 5e−3
0.1 0.390 0.195 28.9 0.045± 2e−4
1 0.480 0.239 23.2 0.030± 2e−5

10 0.743 0.251 16.1 0.035± 8e−5
∞ 0.855 0.293 10.9 0.028± 5e−5

3.5.3 Utility

We evaluate our synthetic glucose traces for use in a glucose forecasting task using the
common paradigm TSTR (Train on Synthetic, Test on Real), in which the synthetic
data is used to train the model and then tested on the real validation data. This use
case was chosen as it is a frequent real-world problem in both academic and industry
scenarios (e.g., used in the current development of artificial insulin delivery). We train
an LSTM network optimized for glucose forecasting tasks [81] and report the Root
Mean Square Error (RMSE) in Table 3.3. We run the experiment 10 times and train
the LSTM for 10,000 epochs. We have also tested with other models including RNNs,
attention-based models and other LSTM architectures (such as bidirectional LSTMs)
but show the results for the best performing model, the LSTM optimized for glucose
forecasting. That being said, even when using the other models we still find that the
RMSE decreases as our privacy budget increases, and that GlucoSynth performs the
best compared to previous methods.

Clarke Error Grids. Since RMSE may provide a limited view about the predictions
from the glucose forecasting model, we also plot the Clarke Error Grid [82], which visu-
alizes the differences between a predictive measurement and a reference measurement,
and is the basis used for evaluation of the safety of diabetes-related medical devices
(for example, used for evaluating glucose outputs from predictive models integrated
into artificial insulin delivery systems). The Clarke Error Grid is implemented using
www.github.com/suetAndTie/ClarkeErrorGrid. The grids are shown in Figure 3.18.

In the figures, the x-axis is the reference value and the y-axis is the prediction.
A diagonal line means the predicted value is exactly the same as the reference value

www.github.com/suetAndTie/ClarkeErrorGrid
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Table 3.4: Clarke Error Grid Zones. Value is the percentage of predicted datapoints.
Categories go from A to E, best to worst. Bolded rows indicate the best results on the
synthetic data at each privacy budget (nonprivate models compared with private models

when ϵ =∞)

Model ϵ A: Accurate B: Acceptable C: Overcorrection D: Failure to Detect E: Error

GlucoSynth

0.01 0.858± 1.057e−3 0.131± 1.172e−3 3.271e−3± 0.0 0.017± 1.158e−4 5.79e−6± 1.2e−6
0.1 0.863± 6.947e−3 0.126± 7.526e−4 3.054e−3± 1.45e−5 0.018± 4.34e−5 5.79e−6± 0.0
1 0.862± 1.578e−3 0.128± 1.259e−3 3.343e−3± 1.45e−5 0.016± 3.329e−4 5.79e−6± 0.0
10 0.864± 6.947e−3 0.125± 6.513e−4 3.039e−3± 5.79e−5 0.017± 4.34e−5 8.68e−6± 2.89e−5
100 0.864± 1.74e−3 0.126± 1.447e−3 3.387e−3± 0.0 0.017± 2.895e−4 5.79e−6± 0.0
∞ 0.964± 1.201e−3 0.035± 1.158e−3 3.039e−4± 2.89e−5 1.732e−4± 1.158e−4 8.68e−6± 1.45e−5

TimeGAN ∞ 0.741± 0.012 0.233± 0.012 2.240e−3± 9.8e−5 0.024± 8.44e−4 2.19e−4± 1.9e−5

FF ∞ 0.824± 6.624e−3 0.156± 6.148e−3 3.547e−3± 9.0e−5 0.017± 3.940e−4 3.57e−4± 8.0e−6

NVP ∞ 0.79± 3.03e−4 0.186± 3.87e−4 3.49e−3± 1.5e−5 0.02± 1.04e−4 3.58e−4± 5.0e−6

RGAN

0.01 0.54± 0.014 0.435± 0.014 3.389e−4± 1.197e−4 0.024± 2.71e−4 2.429e−4± 3.43e−5
0.1 0.594± 1.998e−3 0.38± 1.74e−3 1.326e−3± 1.429e−4 0.025± 1.069e−4 2.873e−4± 8.68e−6
1 0.637± 6.785e−3 0.336± 6.128e−3 2.661e−3± 1.87e−5 0.024± 6.464e−4 2.792e−4± 2.95e−5
10 0.634± 3.452e−3 0.338± 3.247e−3 2.253e−3± 1.004e−4 0.025± 2.894e−4 3.027e−4± 1.71e−5
100 0.638± 4.709e−3 0.335± 4.219e−3 1.991e−3± 2.17e−5 0.025± 4.884e−4 2.949e−4± 2.26e−5
∞ 0.646± 6.89e−4 0.326± 7.19e−4 2.613e−3± 2.852e−4 0.024± 3.006e−4 2.859e−4± 1.5e−5

dpGAN

0.01 0.308± 3.482e−3 0.509± 3.71e−3 2.894e−7± 0.0 0.183± 2.33e−4 1.114e−5± 4.196e−6
0.1 0.781± 6.35e−4 0.191± 5.37e−4 3.226e−3± 5.715e−5 0.024± 3.8e−5 2.533e−4± 1.881e−6
1 0.786± 5.44e−4 0.187± 5.81e−4 2.409e−3± 2.894e−7 0.024± 3.6e−5 2.078e−4± 5.787e−7
10 0.806± 7.34e−4 0.169± 6.09e−4 2.386e−3± 1.476e−5 0.023± 1.113e−4 2.146e−4± 2.749e−6
100 0.813± 3.18e−4 0.161± 2.86e−4 2.266e−3± 2.083e−5 0.023± 5.4e−5 1.889e−4± 1.013e−6
∞ 0.819± 1.487e−3 0.16± 1.306e−3 3.193e−3± 2.677e−5 0.018± 1.60e−4 3.166e−4± 5.208e−6

(the best case). There are 5 total zones that make up the grid, listed in order from
best to worst:

• Zone A – Clinically Accurate: Predictions differ from actual values by no more
than 20% and lead to clinically correct treatment decisions.

• Zone B – Clinically Acceptable: Predictions differ from actual values by more
than 20% but would not lead to any treatment decisions.

• Zone C – Overcorrections: Acceptable glucose levels would be corrected (over-
correction).

• Zone D – Failure to Detect: Predictions lie within the acceptable range but the
actual values are outside the acceptable range, resulting in a failure to detect
and treat errors in glucose.

• Zone E – Erroneous Treatment: Predictions are opposite the actual values,
resulting in erroneous treatment, opposite of what is clinically recommended.

We show Clarke Error grids for all models (and the private models with no privacy
included, ϵ =∞). This is because comparing the models at different privacy budgets
is not very informative – it can be hard to tell exactly where changes between dif-
ferent budgets may occur. We also present a table with the percentages of predicted
datapoints in each category in Table 3.4. This table includes a comparison among
different privacy budgets for the private models (much more effective than the figures
by themselves.)

Looking at the grids, we can see that GlucoSynth performs the best, with most
of the values along the diagonal axis (Zone A and B) and less around the other zones
(Zones C-E) as compared to the other models. This means that most of the predicted
glucose values from the model trained on our synthetic data are in the Clinically
Accurate and Acceptable ranges, with less in the erroneous zones. Moreover, by
examining the table we see that GlucoSynth outperforms all other models across all
privacy budgets as well.
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(a) GlucoSynth (b) TimeGAN (c) FF

(d) NPV (e) RGAN (f) dpGAN

Figure 3.18: Clarke Error Zone Figures for All Models

Approach Limitations. In order to train on a huge set of glucose traces, we used
a private dataset, not publicly available (one of the motivations for this project was
actually to share a synthetic version of these traces). That being said, smaller samples
of glucose traces with similar patient populations are available at OpenHumans [83]
and T1D Exchange Registry [84]. In addition, one of the reasons our privacy results
perform well is because we use two separate datasets for the training of the motif
causality block and the GAN. However, this may be a limiting factor for others that
do not have a large enough set of traces available to be able to train adequately on
partitioned data.

3.6 Related Work

We overview related work in three lines of research: time series, conditional time
series, and time series methods that employ differential privacy. Table 3.5 summa-
rizes the characteristics of previous time series synthesis methods. We note that there
have been exciting developments in new approaches for adjacent research tasks (data
augmentation, forecasting) such as diffusion models [85], but there are not yet any
publicly available models specifically for the generation of complete synthetic time
series datasets. As such, we focus the scope of our comparison on the current state-
of-the-art methods for synthetic time series which all build upon Generative Adver-
sarial Networks (GANs) [64] and transformation-based approaches [77]. In particular
TimeGAN [18], RGAN [78] and dpGAN [79] are most similar to ours and used as
benchmarks in the evaluation in Section 3.5.

Time Series. There have been promising models to generate synthetic time
series across a variety of domains such as financial data [86], cyber-physical systems
(e.g., smart homes [87]), and medical signals [88]. Brophy et al. [89] provides a
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Table 3.5: Summary of Previous Methods for Time Series Synthesis. *CI = conditional
information or extra features

Name Private? No Labels Required? No CI*? Length

TimeGAN [18] x ✓ ✓ 24 - 58
TTS-GAN [19] x x ✓ 24 - 150

SigCWGAN [90] x ✓ x 80,000
RGAN [78] ✓ ✓ ✓ 16 - 30

RCGAN [78] ✓ ✓ x 16 - 30
dpGAN [79] ✓ ✓ ✓ 96

RDP-CGAN [20] ✓ ✓ x 2 - 4097
DoppelGANger [93] ✓ ✓ x 50 - 600
GlucoSynth (Ours) ✓ ✓ ✓ 288

survey of GANs for time series synthesis. TimeGan [18] is a popular benchmark
that jointly learns an embedding space using supervised and adversarial objectives
in order to capture the temporal dynamics amongst traces. TTS-GAN [19], trains a
GAN model that uses a transformer encoding architecture in order to best preserve
temporal dynamics. Transformation-based approaches have also had success for time
series data. Real-valued non-volume preserving transformations (NVP) [77] model the
underlying distribution of the real data using generative probabilistic modeling and
use this model to output a set of synthetic data. Similarly, Fourier Flows (FF) [76]
transform input traces into the frequency domain and output a set of synthetic data
from the learned spectral representation of the original data. Methods that only focus
on learning the temporal or distributional dynamics in time series are not sufficient for
generating realistic synthetic glucose traces due to the lack of temporal dependence
within sequences of glucose motifs.

Conditional Time Series. Many works have developed time series models that
supplement their training using extra features or conditional data. Esteban, Hyland,
and Rätsch [78] develops two GAN models (RGAN/RCGAN) with RNN architec-
tures, conditioned on auxiliary information provided at each timestep during training.
SigCWGAN [90] uses a mathematical conditional metric (Sig −W1) characterizing
the signature of a path to capture temporal dependence of joint probability distribu-
tions in long time series data. However, our glucose traces do not have any additional
information available so these methods cannot be used2.

Differentially-Private GANs. To protect sensitive data, several GAN architec-
tures (DP GANs) have been designed to incorporate privacy-preserving noise needed
to satisfy differential privacy guarantees [91]. Although DP GANs such as Pate-
GAN [92] have had great success for other data types and learning tasks (e.g., tabular
data, supervised classification tasks), results have been less satisfactory in DP GANs
developed for time series.

RGAN/RCGAN [78] also includes a DP implementation, but the authors find
large gaps in performance between the nonprivate and private models. Frigerio et al.
[79] extends a simple DP GAN architecture (denoted dpGAN) to to time-series data.
The synthetic data from their private model conserves the distribution of the real
data but loses some of the variability (diversity) from the original samples. RDP-
CGAN [20] develops a convolutional GAN architecture that uses Rényi differential

2There is a caveat here that RGAN does not use auxillary information, hence why we compare
with it in our benchmarks.
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privacy specifically for medical data. Across different datasets, they find that rea-
sonable privacy budgets result in major drops in the performance of the synthetic
data. Finally, DoppelGANger [93] develops a temporal GAN framework for time se-
ries with metadata and perform an in-depth privacy evaluation. Notably, they find
that providing strong theoretical DP guarantees results in destroying the fidelity of
the synthetic data, beyond anything feasible for use in real-world scenarios. Each of
these methods touches on the innate challenge of generating DP synthetic time series
due to very high tradeoffs between utility and privacy. Our DP framework uses two
different methods to integrate privacy into our GAN architecture, resulting in a better
utility-privacy trade-off than previous methods.

3.7 Summary

In this chapter we have presented GlucoSynth, a novel GAN framework with integrated
differential privacy to generate synthetic glucose traces. GlucoSynth conserves motif
relationships within the traces, in addition to the typical temporal dynamics contained
within time series. We presented a comprehensive evaluation using 1.2 million glucose
traces wherein our model outperformed all previous models across three criteria of
fidelity, breadth and utility. GlucoSynth facilitates the sharing of medical trajectories
with reduced privacy and legal concerns, directly addressing the privacy challenges
elucidated in Chapter 1. In the next chapter (Chapter 4) we introduce a differential
privacy-based framework to learn aggregate population rule structures from local client
rulesets produced by rule-based learning mechanisms in CDSS.
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Chapter 4

Differentially-Private Rule
Learning (DP-RuL)

With the availability of mobile sensors and devices, CDSS are being integrated into
third-party health applications for a myriad of health contexts, including chronic dis-
ease management, remote patient monitoring, and medical triage [94].1 Many CDSSs
rely on logic-based learning systems [23], in which structured rules are used to make
decisions due to their increased expressivity (diverse representations of medical associ-
ations), dual understandability by humans and machines (e.g., using a rule grammar),
and increased explainability which promotes user trust in the system [24, 25]. Even
with the proliferation of deep learning and generative ML, rule-based learners are still
extremely common in clinical applications; indeed, some deep learning frameworks
actually use a rule-based output layer or ensemble learner to better explain model
predictions, increasing trust and interpretability of the overall system [60, 61]. In a
typical distributed CDSS setting, mobile apps using data from wearables learn and
characterize patient behaviors using a rule-based learner, such as Signal Temporal
Logic (STL) Learning (described in Section 4.1.1). From there, the apps send the
rules to a centralized server which aggregates patterns across patients to learn about
clinical conditions that may generalize to broader populations or subcohorts.

Serious privacy concerns, such as data compromise and unsanctioned use of user
data, arise with the use of patient data in CDSSs, especially those deployed in third-
party health applications [26]. Since these third-party health applications are not
covered by HIPAA, they are not subject to the same protective privacy requirements
that govern data in health organizations [15]. Breaches of patient data from third party
health apps, however, can have significant consequences, including job and insurance
discrimination based on exposed sensitive health details (e.g., a patient’s past drug,
mental health or serious disease history) [95].

Project Goal. Given these concerns, the goal of this project is to learn a population
ruleset representative of the local client rule structures, while preserving the privacy
of individuals involved in the rule collection. We consider an untrusted server S
that wishes to generate a population ruleset RS from the local rulesets of n individual
clients, {R1, ..., Rn}. Participating clients are expected to behave honestly but want to
protect the sensitive information contained in their rulesets from the server and other
protocol participants. We wish to learn population rulesets with two key qualities:
(1) coverage — the learned population ruleset captures well the breadth of behavior
of the client population; and (2) clinical utility — the learned rules are useful in a
medical context.

1This chapter is based on: Josephine Lamp, Lu Feng, and David Evans. "Differentially-Private
Rule Learning for Clinical Decision Support Systems". Arxiv (2024).
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Figure 4.1: Our privacy-preserving CDSS framework. Clients locally collect data from
sensors and wearables, which are used to learn personalized rule sets (R1, . . . , Rn) using
STL Learning describing individual conditions. A Rule Discovery Protocol sends a series
of structured queries to the clients who respond using randomized response, to produce an

aggregate population ruleset RS to discover generalizable clinical rules.

Learning Rules with Privacy. To provide local differential privacy (LDP), individ-
ual users each perturb their own data before it is collected and used for population-
level aggregation [27]. Previous work has developed differentially-private methods for
distributed learning in various settings including finding new frequent strings [28],
discovering keystroke data [29, 30], text mining [31], frequent item mining [32, 33,
34] and data mining personal information [35]. However, as we discuss more in Sec-
tion 4.4, no previous work has developed LDP methods for learning logic-based rule
structures or for CDSS applications, and none of the methods developed for these
other settings can be directly applied to provide an adequate solution to the privacy
rule discovery problem.

Contributions. We present and evaluate the first locally differentially-private frame-
work to learn population rulesets with high coverage and clinical utility for logic-based
CDSSs, depicted in Figure 4.1. We develop a novel Rule Discovery Protocol (Sec-
tion 4.2.1), which uses a method based on Monte-Carlo Tree search (MCTS) to search
a rule grammar in a structured way and find population rules contained by the clients.
The protocol follows the traditional MCTS steps (Selection, Expansion, Querying, and
Backpropagation). To provide LDP, we adapt the querying phase to use randomized
response. To find clinically useful rules, we adapt the MCTS scoring function, which
guides the search process about which subtrees to continue searching down, to use
privacy-preserving estimates of the number of clients who have rules that match a
template rule structure in the grammar. By guiding the searching based on client
responses, and taking advantage of the rule grammar, we are able to efficiently learn
population rulesets including rules with complex structures.

Each query in the Rule Discovery Protocol is allocated a privacy loss budget
that determines the randomized response noise used in the response. We develop
an adaptive budget allocation method, which dynamically provisions the privacy loss
budget (Section 4.2.6). The intuition is to find the minimum budget per query to gain
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Figure 4.2: Visual of the STL-learned rule □[0,300](BG ≥ 70 ∧ BG ≤ 180) from glucose
trajectories. The green trajectories satisfy the rule (glucose in range), and the red violate it.

enough information to determine whether a node should be further explored.
We evaluate our protocol on three clinical datasets from different medical do-

mains: Intensive Care Unit (8000 patients, 2,418,776 total timepoints), Sepsis (40,336
patients, 1,552,210 total timepoints), and Diabetes (34,013 patients, 140,461 total
timepoints), and find that we are able to learn population rulesets with high coverage
and clinical utility, even at low privacy loss budgets (Section 4.3).

4.1 Preliminaries

In this section we provide an overview of the relevant background on Signal Temporal
Logic and STL Learning (Section 4.1.1), Monte-Carlo Tree Search (Section 4.1.2), and
Local Differential Privacy (Section 4.1.3).

4.1.1 Signal Temporal Logic

Signal Temporal Logic (STL) is a formal specification language used to express tempo-
ral properties over real-valued trajectories, commonly used to reason about behaviors
of real-world systems, such as cyber-physical systems [96]. We denote Z and P as
finite sets of real and propositional variables. We let w : T −→ Rm × Bu be a multi-
dimensional signal, where T = [0, d) ⊆ R, m = |Z| and u = |P |. The syntax of an
STL formula φ over Z ∪ P is defined by the grammar:

φ ::= p | z ∼ l | ¬φ | φ1 ∧ φ2 | □Iφ | ♢Iφ | φ1UIφ2

where p ∈ P , z ∈ Z, ∼ ∈ {<,≤}, l ∈ Q, I ⊆ R+ is an interval and □, ♢, and U
denote temporal operators “always”, “eventually”, and “until”. STL can be interpreted
over a signal to describe the satisfaction of a formula (an example is in Figure 4.2).
Bartocci et al. [96] provide a comprehensive survey on STL and its use in cyber-
physical systems.

STL Learning. Although there are many rule-based machine learning methods, we
focus on STL Learning due to its ability to expressively represent temporal proper-
ties of real-valued signal trajectories and because it is used in real clinical use cases
(e.g., [97]). STL learning takes advantage of the expressivity of the STL language
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Table 4.1: Example STL Rules Learned from Our Datasets

Dataset Rule

ICU
□[0,0](HR ≥ 80.369 ∧ Pulse ≥ 74.034)

((MET ≥ 0.007) U[0,1] (DeathProb = 0.032))

♢[0,1](Blood_Urea_Nitrogen ≤ 12.889 ∧ Creatinine ≥ 0.723)

Sepsis
((Temp ≥ 9.059) U[1,1] (BaseExcess ≥ 0.048))

□[0,1](((HGB ≥ 0.385 ∧ MAP ≤ 110.015) ∨ Bilirubin_Direct ≤ 107.835) ∧ AST ≥ 47.955)

♢[1,2](((PaCO_2 ≥ 0.171 ∨ Chloride ≤ 8.029) =⇒ Potassium ≥ 0.014) ∧ SepsisProb ≥ 0.85)

T1D
((HbA1c ≥ 7.571) U[1,2] (Hypoglycemia = 1.0))

□[0,1]((TotalDailyInsPerKg ≤ 0.305 =⇒ PtA1cGoal ≥ 0.518%) ∧ GFR ≤ 89%)

♢[1,1](((BMI ≥ 27.066 ∨ HeightCm ≥ 180.022) =⇒ HbA1c ≤ 6%) ∧ Bolus ≥ 57.424)

The ICU rules characterize relationships between labs, physiological values and mortality (MET, DeathProb).
The Sepsis rules characterize relationships between lab values and sepsis outcomes (SepsisProb). The T1D
rules characterize relationships between insulin, blood glucose levels, glomular filtration rate (GFR), body

mass index (BMI) and glycemic outcomes (HbA1c levels, goals and hypoglcemia).

and provides ML techniques to infer STL formulae and parameters from continuous
trajectories [98]. There are many STL Learning algorithms, and our Rule Discovery
Protocol does not depend on how the local client STL rules are learned. For our
experiments, we use the Nenzi et al. [99] genetic algorithm-based methodology as it is
well suited to supervised classification tasks and is able to learn both the parameters
and the structure of STL formulae from real data. The algorithm requires positive
and negative trajectories (e.g., regular and anomalous) and its goal is to learn rules
that best characterize and separate the positive and negative samples. We use our
own implementation of such an algorithm, developed in Python3 and available here:
https://github.com/jozieLamp/STLlearning. Some examples of learned STL rules
are shown in Table 4.1.

4.1.2 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS) [100, 101] is a well-known algorithmic search method
used to solve sequential decision problems and search large combinatorial spaces.
MCTS works by building a search tree that balances exploration, finding new op-
tions in the search space, and exploitation, focusing on the parts of the space that are
most likely to return good rewards. There are four key phases of MCTS: Selection,
Expansion, Querying (traditionally called Simulation), and Backpropagation.

A common MCTS algorithm is the Upper Confidence Bounds for Trees (UCT)
algorithm [101]. This method asymmetrically searches the tree, focusing on the path-
ways that are most promising. The UCT scoring function, which we adapt for our
method, is:

score = rw + Cp ×
√

vparent
vb

where rw is the current reward, vparent is the visit count of the parent node, and vb is
the visit count of the current node. The hyperparameter Cp balances the exploration
vs. exploitation trade-off in the MCTS search, and is typically set to 1√

2
.

https://github.com/jozieLamp/STLlearning
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Figure 4.3: Rule Discovery Protocol. The protocol iterates through each MCTS phase (Se-
lectNode, ExpandNode, QueryClients, Backpropagate) to send a series of structured queries

to the clients, who respond using randomized response, to generate RS .

4.1.3 Local Differential Privacy

Local Differential Privacy (LDP) is a paradigm well suited to the distributed frame-
work deployed for many CDSS systems. It provides privacy assurances to clients
without relying on any external server since individual users each perturb their own
data before it is collected and aggregated [27]. In this setting, a centralized, untrusted
server S, wishes to aggregate some summary statistic s from n individual clients’ data
records, {x1, ..., xn}, that contain private information. Each client locally perturbs
the requested data xi before sending it to the server. An algorithm A satisfies ϵ-local
differential privacy where ϵ > 0 if, for any possible pairs of inputs x and x′:

∀s ∈ Range(A) : Pr[A(x) = s]

Pr[A(x′) = s]
≤ eϵ

where Range(A) denotes every possible output of A.

4.2 Rule Discovery Protocol

We introduce a rule discovery protocol (Figure 4.3) which integrates MCTS with LDP
to search a rule grammar and find population rules. We walk through each protocol
phase in Section 4.2.1–Section 4.2.5. Then, Section 4.2.6 describes an adaptive privacy
loss budget allocation method which determines the privacy loss budget to use for each
query.

4.2.1 Overview

The rule discovery protocol uses an exploration tree, T , to search over an STL grammar
G. The protocol follows the traditional MCTS steps (Selection, Expansion, Querying,
and Backpropagation), adapted to support LDP by using randomized response when
clients respond to queries. We use an MCTS-based approach for our protocol due to
its ability to efficiently search a tree structure while balancing the trade-off between
exploration (i.e., finding new nodes and pathways through the tree), and exploitation
(i.e., focusing on the known nodes in the tree that maximize the score function). This
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Figure 4.4: Example Partial Exploration Tree. Tree nodes contain the rule and MCTS
components visitCount and score.

design is advantageous in an LDP setting where the number and accuracy of the
queries is limited by the privacy budget.

Exploration Tree. An example partial exploration tree is shown in Figure 4.4.
Each node records MCTS properties including node visit count and current score,
which indicates its priority for exploration, explained in Section 4.2.2, as well as the
rule structure. In a completed exploration tree, internal nodes contain incomplete rule
templates where unfinished parts of the rules are represented using "?". Leaves contain
either incomplete rule templates (indicating that a tree path was not fully explored and
that node’s children have not been visited), or completed rules. The completed rules
constitute the learned population ruleset RS . The rule discovery protocol searches G
to iteratively build the exploration tree T and return the population rule set RS .

Threat Model. We assume the network traffic is not observable to an adversary;
our focus is on providing client privacy from the central server. In a setting where
network traffic is exposed, it would be necessary to modify the protocol to ensure
the communication pattern, timing, and packet sizes do not leak information about a
client’s rules. For our differential privacy notion, we quantify the unit of privacy as
one rule, and we assume all rule structures are independent. In practice, a client may
learn multiple rules that convey the same privacy information, so a privacy guarantee
at the level of individual rules as the unit of privacy would be insufficient.

We assume all participating clients are honest—they follow the protocol as pre-
scribed, keeping track of their own privacy loss budget, implementing randomized
response as intended, and refusing to respond to any more queries once their privacy
loss budget is expended. To keep things simple in our design and analysis, we assume
all clients have the same privacy loss budget and each query uses the same per-query
budget for all clients. An adversarial client could respond to queries in ways that
would compromise the results, but we assume that in relevant clinical settings all
participants would be motivated for the aggregate model to be as useful as possible.

Protocol Algorithm. The protocol, described in Algorithm 1, takes as input a rule
grammar G; the valid rule threshold V, the fraction of clients who must have a match
to the rule structure for it to be considered viable in the protocol; the privacy loss
budget ϵ; the number of clients n; and an exploration threshold θ. Details about θ are
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Algorithm 1: Rule Discovery Protocol
1 protocol DiscoverRules(G (rule grammar), V (valid rule threshold),

ϵ (privacy loss budget), n (number of clients), θ (exploration threshold)):
2 RS ←− ∅
3 T ←− empty exploration tree
4 b←− T.root
5 plb ←− ϵ
6 while plb > 0 do
7 bselected ←− SelectNode(b, T , G)
8 b ←− ExpandNode(bselected, T , G)
9 ĉ, plb ←− Query(b, plb, ϵ, V, n, θ, RS)

10 Backpropagate(b, ĉ, T)
11 end
12 return population ruleset RS

13 end

explained in Section 4.2.6. In the start of the algorithm, the population ruleset RS

and exploration tree T are initialized, the current node b is set to the root of the tree,
and a variable tracking the amount of privacy budget used, plb is initialized to the
global privacy loss budget ϵ. The protocol loops iteratively through the four MCTS
phases until the privacy loss budget has been used and the aggregated population
ruleset RS is returned.

To simplify the protocol design, we assume all clients have the same privacy budget,
and every query is sent to every client. We also assume query executions are done
completely; there are additional opportunities to save privacy loss budget by cutting
off a query once enough responses have been received. If these simplifying constraints
were removed, there are many opportunities to use the privacy loss budget more
efficiently, such as querying subsets of clients or adjusting the privacy loss budget for
a query as more information is learned from clients. We describe each phase of the
protocol next.

4.2.2 Selection

In the first MCTS phase, the protocol selects a node to explore (Alg. 1, line 7). This
function follows the traditional Selection implementation in MCTS, and pseudocode
is available in Algorithm 2. The next node is recursively selected by either choosing
the child node of the current node b that is unvisited, or choosing the child node that
returns the maximum score according to the scoring function, discussed next. The
selection function returns when a terminal node is reached.

Scoring. Scoring uses the classical UCT score [101], with the reward adapted to
be the percent of clients who have a match to the rule structure (received from the
clients’ randomized responses and explained below in QueryClients). For node b,

score =

{
0, If ĉ

n < V
ĉ
n + Cp ×

√
vparent

vb
, otherwise

(4.1)

where ĉ is the client match count, Cp is a hyperparameter balancing the exploration
and exploitation tradeoff in the MCTS search, vparent is the visit count of the parent
node, and vb is the visit count of the current node.
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Algorithm 2: SelectNode
1 Function SelectNode(node b, exploration tree T , grammar G):
2 if b is terminal then
3 return b
4 else if any child node of b unvisited then
5 SelectNode(unvisited child node)
6 else
7 for all child nodes of b that are not completely explored do
8 bbest ←− child node with the maximum score according to

Equation 4.1
9 end

10 SelectNode(bbest)
11 end
12 end

4.2.3 Expansion

Next, in the second phase the protocol expands reachable nodes and adds them to
the exploration tree (Alg. 1, line 8). This function follows the traditional MCTS
Expansion implementation in MCTS, and pseudocode is available in Algorithm 3. It
either just returns bselected , or chooses from among the child nodes according to a
selection policy. This policy may select a node to expand randomly or based on the
node that has the highest score (Equation 4.1).

Algorithm 3: ExpandNode
1 Function ExpandNode(node bselected, exploration tree T , grammar G):
2 if bselected is terminal or unvisited then
3 return bselected
4 else
5 if bselected has no children then
6 Get all child nodes possible to visit using G and add them to

bselected
7 end
8 return selectionPolicy(bselected.getChildren())
9 end

10 end

4.2.4 Querying

In the next phase, clients are queried using randomized response (Alg. 1, line 9). This
step is classically known as Simulation; our adaptation is illustrated in Algorithm 4.

Allocate Privacy Budget. The local privacy loss budget, β, to be used by each
client for the query, is determined (Alg. 4, line 2). In the baseline method, a uniform
budget is used for every query by just dividing the total budget by a pre-specified
number of queries: β = ϵ/Q, where Q is the number of queries. For the adaptive
method, β is determined using the method described in Section 4.2.6.

Querying. β is used to send a query (in the form of a rule template) to all the
clients and obtain an estimate of how many clients have a match to the rule structure
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Algorithm 4: Query Clients for Matching Rules
1 protocol Query(b, plb, ϵ, V, n, θ, RS):
2 β ←− allocatePrivacyBudget(plb, ϵ, V, n, θ)
3 t←− b.rule // Get current rule structure
4 for cl in clients do

// Query each client for structural rule match to t
5 y += cl.QueryRuleMatch(t, β)
6 end
7 plb ←− plb − β // Update used budget
8 ĉ←− y−nq

p−q // Unbiased estimate of count
9 if t is complete then

// Determine privacy budget for learning parameters
10 βparam ←− ParamPrivacyBudget (t, plb)
11 plb ←− plb − βparam // Update used budget
12 b.rule ←− QueryParameters(b.rule,βparam)
13 RS .insert(b.rule) // Add completed rule to RS

14 end
15 return ĉ, plb
16 end

contained at the selected node. The function first gets the partial rule template t from
the current node b (Alg. 4, line 3). Next, it queries each client to get the number of
yes responses, y, who have a match to t (line 4–line 6). Each client gives their binary
(yes/no) response following a Direct Encoding Randomized Response method [102].
Additional details about the rule matching process are explained below. Then, the
used privacy loss budget is updated (line 7) and the unbiased estimate of the count
ĉ is computed following traditional randomized response [102] (line 8). ĉ is used to
inform the score function (Equation 4.1) to guide the protocol in determining whether
or not it should continue searching down a particular pathway. If a complete rule is
found (one without any "?"), the parameters of the rule are queried (described below)
and the rule is added to RS (line 9 – line 14). Finally, ĉ and plb are returned (line 15).

Client Rule Matching. In the query, the server sends out the rule template t to all
the clients. The clients each check to see if they have any rules that contain a syntactic
match to the template. A syntactic match is a structural rule match, in which the
specified parts of t have matches to the client rule, and all other parts of the client rule
(i.e., the "?" in t) are ignored. To account for possible semantic matches (equivalence
relations following the defined STL logic [96], in which the client rule semantically has
the same meaning as the template even though the syntactic structure of the rules
may differ), we assume that all rule structures have been converted to a canonical
set in the rule learning. Figure 4.5 shows an example of two client rules matching a
template.

Parameter Querying. If a leaf node in the exploration tree has been reached (rep-
resenting a completed rule structure, one without any "?" marks), the parameters
of the discovered rule structure are queried and aggregated as well. We allocate the
parameter budget βparam by using a small fixed constant multiplied by the number
of parameters there are in the rule structure to fill in (Alg. 4, line 10). After updat-
ing the used budget plb (line 11), the clients are queried for their parameters using
βparam (line 12). If a client does not have a rule match to t, they respond with
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Figure 4.5: Example Rule Matching. Colors indicate the part of the rule to be matched.
In the template, the variables have not yet been specified (part of the ?s), so the template

matches client rules with different variables.

random (noised) parameter values. We aggregate parameters using a standard mean
value estimation process using LaPlacian noise [102]. To aggregate the parameters, a
percentile threshold τ is given, and a parameter value is selected at or below which
(inclusive) τ% of the scores in the distribution may be found.

4.2.5 Backpropagation

In the last MCTS phase, (Alg. 1, line 10) scores are propagated up the exploration
tree. This follows traditional Backpropagation in MCTS (pseudocode is available in
Algorithm 5). Starting at the current node and continuing up through the node’s
parents (until the root node is reached), each node updates the following: the match
count ĉ is added to b.responses, a list tracking the previous yes responses, the number
of visits b.visitCount is incremented and the score of the current node, b.score is
updated using the scoring method (Equation 4.1).

Algorithm 5: Backpropagate
1 Function Backpropagate(node b, match count ĉ, exploration tree T):
2 while b.parent ̸= None do
3 Add ĉ to b.responses
4 b.visitCount += 1
5 Update b.score according to Equation 4.1
6 if b is terminal or all children of b completely explored then
7 b.completelyExplored←− True
8 end
9 b←− b.parent

10 end
11 end

4.2.6 Adaptive Budget Allocation

We detail next how the privacy loss budget is dynamically allocated in the adaptive
method. We define c as the true (unknown) count of how many clients have a match
to the rule structure (t) at the current node (b) and ĉ as the estimated count (obtained
from noised client responses in the protocol). Based on the score function, any nodes
that have client match counts ĉ below the valid rule threshold V are ignored (not
explored) in the searching, since they are unlikely to have clients with rule matches.
As a result of noise being added to the client responses, there are two types of error
that can occur in the searching: (1) Wasting queries searching down pathways which
few clients have matches to ( ĉ

n ≥ V but there is no valid rule in the subtree) and
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(2) failing to explore parts of the grammar that contain valid rules ( ĉ
n < V but the

subtree contains a rule where c
n ≥ V). We prioritize avoiding the second type of error,

as sending a few more queries than necessary is better than missing entire subtrees of
the grammar that may contain important and relevant rules.

To this end, we adaptively allocate our budget by finding the minimum budget
per query, β, that ensures the probability of failing to explore a subtree that is likely
to have valid rules is bounded by a user-specified exploration trade-off threshold, θ.
Following typical LDP randomized response [102], a user outputs a response equal to
the true response with probability p and a random value with probability q:

p =
eβ

1 + eβ
(4.2)

q = 1− p =
1

1 + eβ
(4.3)

Given p and q, we can compute the estimated match count to a query, ĉ, as:

ĉ = y × p+ (n− y)× q (4.4)

where y is the number of yes responses returned from the random response mechanism.
To find β, we formulate an optimization problem as follows:

min
β

(∫ n

y=0
(P (

ĉ

n
< V | c

n
= V))

)
≤ θ (4.5)

Since we have not actually sent a query yet, we do not have any responses from the
clients and do not know the value of y. Therefore, we iterate over all possible values
of y from 0 to the population size n. We assume the worst case scenario where the
true percent c

n is directly at the valid rule threshold V. In summary, this equation
seeks to find the minimum β, where, for all possible values of y, the probability that
we falsely ignore this branch of the grammar is bounded by θ.

4.3 Experimental Evaluation

This section reports on the empirical evaluation of our framework. We first introduce
the experimental setup (Section 4.3.1), and then evaluate our framework based on two
criteria: coverage (Section 4.3.2) and clinical utility (Section 4.3.3).

4.3.1 Experimental Setup

Data. To evaluate our method, three different open source datasets were chosen to
evaluate the applicability of our approach for different clinical use cases (e.g., across
different domains and patient populations). Open data is necessary for reproducibility
and means there are no actual privacy concerns with these data, but they are still
representative of many sensitive and private datasets in the clinical setting.

An overview of the datasets’ characteristics are shown in Table 4.2. The Intensive
Care Unit (ICU) dataset is from a study by Moss et al. [103] predicting inpatient
deterioration. The Sepsis dataset [104] is from the PhysioNet/Computing in Car-
diology Challenge 2019, in which they were trying to develop better algorithms for
early detection of sepsis using physiological trace data. The Type I Diabetes dataset
(T1D) [105], comes from the T1D Exchange Registry and collects longitudinal infor-
mation of patients with T1D at each routine annual clinic exam between July 2007
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Table 4.2: Clinical Dataset Details

Negative Outcome
Dataset # Patients # Features Temporal Recording # Timepoints Ave. # Timepoints/Patient Label % Patients % Timepoints

ICU 8000 57 Every 15 minutes 2,437,318 304.70 Deterioration 1.59 5.21× 10−5

Sepsis 40,336 35 Hourly 1,552,210 38.48 Sepsis 1.06 2.74× 10−4

T1D 34,013 40 Yearly 140,461 4.13 Hypoglycemia 5.26 1.27

Table 4.3: STL-Learned Ruleset Characteristics

Dataset # Client Rules Ruleset Size Rules/Patient Operators/Rule

ICU 598,699 34,208 74.85 2.51
Sepsis 4,420,910 2,344,179 109.60 2.97
T1D 2,105,755 1,353,598 61.91 4.35

(a) ICU (b) Sepsis (c) T1D

Figure 4.6: Rule Breakdown by Population Percentage

to April 2018. We used the ICU dataset in developing our methods and for both
validation and testing purposes, but only used the Sepsis and T1D datasets for final
testing and evaluation to simulate a realistic scenario where the method cannot be
tuned to particular data but must be determined without access to the intended data.

Rules. A set of rules was learned locally for each patient in each dataset using STL
Learning. The STL Learners were trained for 1000 epochs to predict each dataset’s
outcome (Deterioriation, Sepsis, and Hypoglycemia for the ICU, Sepsis and T1D
datasets respectively). No limits were set on the number of rules outputted from
each learner, so clients have different numbers of rules in their local rulesets. Example
learned rules were shown in Table 4.1. Table 4.3 reports ruleset characteristics. In the
table, # Client Rules indicates the sum of the lengths of all individual client rulesets
and Ruleset Size indicates the length of the total set of client rules (which has no
duplicate client rules). Figure 4.6 shows the breakdown of how many rules there are
at different population percentages for each ruleset.

Experimental Details. For all experiments we set Cp, the MCTS parameter bal-
ancing exploration vs. exploitation to 1√

2
, as it is a standard value often used in the

UCT algorithm [101]. For the selection policy, we always select the branch with the
highest score (Equation 4.1), and not randomly as is sometimes done in MCTS. All
experiments were completed on a Mac Studio 20-core CPU with 64 GB of memory.
Experiments were run 10 times, with the average result and standard deviation re-
ported. We experiment with different values of the valid rule threshold V, exploration
threshold θ and privacy loss budget ϵ. For the baseline protocols, we tested different
numbers of queries and selected Q as 1000 and 5000 as they provided the best coverage
and utility results.
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(a) ICU (b) Sepsis (c) T1D

Figure 4.7: Coverage (V = 1%, θ = 5%)

4.3.2 Coverage

Coverage provides a way to measure how well the learned population ruleset captures
the breadth of rule types in the client rulesets. We quantify coverage in terms of two
metrics: coverage and precision. In a population ruleset, RS , we define a valid rule
as one that is contained in the client rule structures of at least V percent of clients.
Coverage provides a measure of the number of different rule structures learned by the
private model contained in the original client rulesets:

Coverage =
|Rvalid |
|RCV |

(4.6)

where Rvalid is the set of valid rules found in RS and RCV is the set of client rules
at the valid rule threshold. Precision provides a measure of quality of the overall
population ruleset—Of the rules we found in RS , how many are valid?:

Precision =
|Rvalid |
|RS |

(4.7)

For reasonable privacy loss budgets, it will be impossible to learn all possible client
rule structures, but our goal is to learn a set of rules that captures enough of the types
of rules contained in the client rulesets to be clinically useful. Coverage, i.e., a wider
breadth of rules, is important (as opposed to just learning the top k most common
rules,) because the less common rule structures are usually the most informative [60,
61]. For example, when clinicians are trying to characterize new conditions or identify
new associations indicative of various disease states, typically the less numerous rules
characterizing the rare phenomenons are more useful than the more common ones.
In this subsection, we evaluate coverage directly; later, in Section 4.3.3, we evaluate
measures of clinical utility.

Comparing Protocols. Figure 4.7 compares the coverage and precision at different
privacy loss budgets for the baseline protocols at 1000 (Baseline 1000Q) and 5000
(Baseline 5000Q) queries compared with the adaptive protocol. We set the valid rule
threshold V = 0.01 and use θ = 0.05 for a controlled comparison and because these
metrics align with clinical goals e.g., finding valid rules across 1% of the population
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(a) ICU (b) Sepsis (c) T1D

Figure 4.8: Query Analysis (ϵ = 1, V = 1%, θ = 5%). The x-axis is truncated at the
max # of queries for the adaptive protocol in each graph to zoom in on interesting adaptive

phenomenon (but the Baseline 5000Q lines continue uniformly to 5000 queries).

and only allowing a small amount of error at 5%. We experiment with different values
of V and θ later. Across all rulesets, the adaptive protocol substantially outperforms
the baseline ones.

Despite having the most rules, the adaptive protocol does the best on the Sepsis
ruleset, reaching coverage of 80% at ϵ = 1 with precision above 90% even for the lowest
privacy loss budget we considered (ϵ = 0.01). This is likely because the Sepsis ruleset
has the least number of features and many very similar rule structures, requiring less
searching through the STL grammar. Contrastingly, the ICU dataset does not have as
many patients, resulting in higher noise addition and lower coverage; the T1D ruleset
has the most complex rules, with highly disparate rule structures that require deep
and wide exploration of the grammar tree, resulting in lower coverage.

Query Analysis. Figure 4.8 compares the privacy loss budget per query across all
protocols. As to be expected, the adaptive budget jumps around between different
amounts of budget, and the baseline methods use a uniform amount at each query.
For the ICU and T1D rulesets, the adaptive budget tends to use higher amounts of
budget in the later queries (e.g., after query number ∼1700 in T1D), whereas the
budget jumps around fairly consistently through all the queries for sepsis.

Comparing Vs. The valid rule threshold V influences the adaptive protocol’s search
as a result of the scoring function (Equation 4.1). Figure 4.9 looks at the effect of
V on the coverage and precision. Across all the rulesets, the precision stays pretty
stable and the coverage increases as V increases. This makes sense as there are fewer
rules to find as V increases (see Figure 4.6 which shows the number of ground truth
client rules contained at each population percentage). The coverage is decent at lower
valid rule thresholds, providing evidence that the adaptive protocol is able to find rare
client rules (e.g., rules that are contained by smaller percentages of clients).

Impact of Exploration Threshold (θ). θ is the exploration trade-off threshold
and determines the probability of falsely ignoring a branch in the adaptive budget
allocation. Figure 4.10 shows the effect of θ on the coverage results. There is a trade-
off between the precision and coverage dependent on the amount of error allowed.
Across all rulesets, as θ increases, the coverage increases, but this comes at a cost to
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(a) ICU (b) Sepsis (c) T1D

Figure 4.9: Coverage at Different Valid Rule Thresholds V for ϵ = 0.1 and ϵ = 1

(a) ICU (b) Sepsis (c) T1D

Figure 4.10: Effect of Exploration Threshold θ on Coverage for ϵ = 0.1 and ϵ = 1

the precision, which drops significantly. This makes sense: as the searching permits
more error, more rule structures are found (increasing the coverage) but more invalid
rules, rules not actually contained by the client rulesets, are found and returned as
a result of the noise in the randomized response querying. Alternatively, lower θ
results in lower coverage, but higher precision. For clinical uses, it is better to favor
higher precision since we want very few invalid rules in the learned population ruleset
(and we note that this is why a more stringent bound of θ = 5% were used for the
experiments.)

4.3.3 Clinical Utility

For the second half of our experimental evaluation, we look at clinical utility, evalu-
ating how useful the rulesets are for representative clinical applications. Since these
applications are highly dependent on clinical context, we next describe motivating use
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(a) ICU (b) Sepsis (c) T1D

Figure 4.11: Clinical Utility (V = 1%, θ = 5%)

cases about how the rulesets may be used and to motivate how utility is evaluated
within that context.

Intensive Care (ICU). This dataset seeks to understand predictors of clinical de-
terioration in the ICU. Deterioration refers to a patient’s quick onset of a declining
physical state that may result in life-threatening outcomes such as death. Symptoms
of deterioration are highly variable between patients, especially because the condition
may occur with little to no warning. For our experiments, we evaluate how predictive
the learned population rules are at predicting ICU deterioration within the next 15
minutes for each patient.

Sepsis. The Sepsis dataset predicts the onset of sepsis. Sepsis is the body’s extreme
reaction to an infection it already had and is life-threatening as it can cause a cascade
of biological damages such as tissue damage, shock, and organ failure. Similar to ICU
deterioriation, sepsis occurs extremely quickly, and presents in highly variable ways
between patients. In our experiments, and following what a CDSS would be used for,
we evaluate how well the learned population rules predict sepsis within the next hour
for each patient.

Type I Diabetes (T1D). The T1D dataset analyzes the glycemic control of in-
dividuals with Type I Diabetes. The T1D rules characterize the impact of patient
behaviors on glycemic outcomes (which dictate better or worse control over the dis-
ease). A CDSS might wish to aggregate subgroup behaviors that characterize good
or bad glycemic control. In our experiments, we evaluate how predictive the learned
rules are for hypoglycemia as one indicator of glycemic control.

Metrics. For our use cases, clinical utility indicates the predictive quality of the
rules in RS when the rules are used to predict outcomes (deterioration, sepsis and
hypoglycemia) on our clinical datasets. Since the rules characterize one of the label
classes (the positive or negative class,) the quality of the rule can be judged based
on its ability to correctly classify unseen data instances. The rules learned using the
privacy-preserving protocols should have predictive quality similar to what would be
obtained if the full client rulesets were available. Using a held-out validation data, we
use the learned ruleset to predict the binary outcome for each patient using a weighted
average taken from each rule in RS , and compute balanced accuracy and F1 based on
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(a) ICU (b) Sepsis (c) T1D

Figure 4.12: Comparing Utility Across Vs (ϵ = 1, θ = 0.05 for adaptive protocol)

these predictions.

Comparing Protocols. Figure 4.11 displays the utility results of accuracy and
F1 scores for the adaptive protocol compared with the two baseline protocols. We
set V = 0.01 and θ = 0.05 for a controlled comparison and because these metrics
align with clinical goals e.g., finding valid rules across 1% of the population and only
allowing a small amount of error at 5%. The black line in each figure displays the
ground truth accuracy and F1 for the complete set of client rules at the selected V
together (e.g., all rules from the client ruleset that 1% of the population have). Across
all rulesets and privacy loss budgets, the adaptive protocol performs the best.

The ICU and Sepsis datasets have high accuracies and F1s even at lower privacy
loss budgets (ϵ = 0.1 and ϵ = 1.0). However, the T1D dataset performs the worst
relative to the other sets, for example with an accuracy of 0.59 for ϵ = 0.1. This
is likely because T1D individuals have the highest variability in terms of conditions
and outcome presentation making it more difficult to correctly predict the outcome
hypoglycemia.

Comparing Vs. Figure 4.12 looks at the effect of the valid rule threshold V on the
clinical utility. All Client Rules refers to the complete set of client rules at the selected
V together. Across all Vs, the adaptive protocol outperforms both baseline protocols.
There is a trade-off between the size of V and the utility. As V becomes very small,
e.g., V = 0.001, accuracy and F1 decrease. This is likely because the number of rules
increases substantially as V decreases, resulting in more varied symptom presentations
and increasing disagreement in the rule predictions. In other words, too many unique
rules (i.e., rules that only very few patients have) makes it difficult to find a consensus
that generalizes across the entire patient cohort. Alternatively, as V becomes too
large, e.g., V > 0.1, accuracy and F1 also decrease. This is likely due to the fact that
there are few rules contained by large numbers of patients, resulting in only a few
general rules that are not as predictive of outcomes. As such, there is a sweet spot
between the two extremes (which occurs between V = 0.01 to 0.05 for these rulesets),
where the population ruleset is generalizable enough to apply to the entire population,
but not too general that its predictions are unhelpful. For all client rules, the highest
accuracy and F1 are at V = 0.01, which is also why this threshold was used for the
prior experiments.
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Summary of Findings. Our experiments demonstrate that the adaptive protocol
parameters have a marked effect on the results. Varying θ results in a trade-off between
precision and coverage. As the searching permits more error, more rule structures are
found (increasing the coverage) but more invalid rules are also found (decreasing the
precision) and vice-versa. Increasing V results in increased coverage, since there are
less total rules to find, but varying V results in a trade-off for the utility. If V is too
small there are too many rules and the population ruleset does not generalize; if V is
too large, there are too few rules, and the population ruleset is too general to provide
nuanced predictions. These findings are useful to help guide real-world instantiations
of our protocol.

Across all experiments, the adaptive protocol outperforms both baseline ones.
These results are very promising, because they demonstrate that the adaptive protocol
is able to learn population rulesets with a breadth of rule types (high coverage) that
are clinically useful (high clinical utility), even at low privacy budgets. Moreover, the
adaptive protocol does well across all three rulesets, despite them having very different
characteristics, including different application domains, ruleset sizes, population sizes,
rule temporalities and complexity of the rule structures (e.g., length of rules, number
of operators/rule.) This provides evidence that our protocol may generalize to many
different distributed rule-based settings.

4.4 Related Work

We discuss the most relevant LDP prior work, focusing on term collection, tree-based
methods and adaptive privacy budgeting. We note that the clinical rules we are
collecting are different from the kinds of data collected in previous LDP work, and no
previous work has developed LDP methods for learning logic-based rule structures or
for CDSS-specific applications. Moreover, no previous methods when applied to the
rule-based setting would present a perfect solution.

Frequent Term Collection. In the simplest case, one could treat the rules as
strings and use prior methods for frequent term discovery and collection. Prior work
in this area has developed LDP models in distributed settings for finding new fre-
quent strings [28], discovering keystroke data [29, 30], text mining [31], frequent item
mining [32, 33, 34] and data mining personal information [35]. These prior methods
require large privacy budgets to discover new strings, especially long strings [106].
By taking advantage of the underlying logical structure in our rules (i.e., the rule
grammar), we are able to learn long rule structures, even at low privacy budgets.
Additionally, many of these methods seek to find only the most frequent strings or
have poor trade-offs when it comes to finding less frequent strings. For example, [29]
has high false positive rates for rare unknown words, and [28] has low utility for rare
n-grams [106, 107]. We wish to find a breadth of rules, as the more rare rules tend to
be the most informative [60]. By searching a rule grammar and balancing exploration
vs. exploitation in our MCTS protocol, we are able to find rare rule structures, and
not only the most frequent ones.

Tree-Based LDP Methods. There has also been prior work in distributed DP
protocols that use tree-based methods, either for searching various data spaces or for
allocating the privacy loss budget. PrivTrie collects new strings by iteratively building
a tree and obtaining a rough estimate of each term prefix by adaptively grouping
clients [30]. On a related note, LDPART, Zhao et al. develop a framework to publish
location-record data. They use a hierarchical tree concept (called a partition tree)
that extracts relevant location record information and partitions users into groups
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who are queried to determine whether to keep splitting the sub-nodes or not [108].
Our method searches a different data space (rule structures using a grammar) and we
do not partition users, which allows them to be queried throughout multiple parts of
the tree, and not only the subtree they were partitioned into. This is advantageous
because we can use information about the history of previous responses to inform
our searching (i.e., in the Backpropagation MCTS step,) and allows our users to
be queried in multiple subtrees throughout the exploration tree, resulting in better
generalizability of the final population ruleset.

Adaptive Privacy Budgeting. A straightforward method for adaptive budgeting
is to allocate the privacy loss budget using a common scaling factor. For example,
to adaptively allocate the budget at each iteration using an exponential decay mech-
anism [109] or at each level in a tree using an increasing geometric or Fibonacci
factor [110]. Using a uniform scaling strategy as done by these methods is not ap-
plicable to our method as there is not a standard factor to guide the scaling (e.g.,
iteration or tree level). In general, our search dynamically jumps around to different
parts of the exploration tree based on the scoring function so it would not make sense
to allocate a standard budget amount (e.g., per iteration). Moreover, due to highly
complex and varied rule structures, scores are highly variable across tree levels; as
such, applying the same budget per level would not be ideal, since many nodes at the
same level will have different sensitivities to noise.

Other methods determine the privacy loss budget based on specific algorithm
computations, such as halting computations during algorithm runtime [111], algorithm
learning rate for IoT blockchain data [112], ratio of eigenvalues in convolutional neural
networks (CNNs) for DP-CNNs [55] and tree position and sensitivity for gradient
boosted trees [113]. Although none of these methods are directly applicable to our
problem as their computations are derived based on very different domains, they are
similar in ideology to our approach: to adjust the privacy loss budget based on an
algorithmic computation.

4.5 Summary

In this chapter, we developed and evaluated a locally differentally-private framework
to learn population rulesets with high coverage and clinical utility for logic-based
CDSS. This is a first work in a new direction about how to learn complex, structured
rules with privacy. Although our work focuses on distributed CDSSs, our protocol can
be adapted to fit other distributed settings where aggregating complex rules would
be valuable, such as fraud detection and network security monitoring. Moreover,
our methodology is amenable to any rule-based learner. Our experimental results
demonstrate the promise of learning useful aggregate rulesets across populations while
providing strong privacy guarantees.

This framework facillitates the sharing and aggregation of trajectories represented
in logical structures, directly addressing model explainability and privacy challenges
elucidated in Chapter 1. Additionally, this chapter introduces a natural bridge be-
tween Chapter 3 and Chapter 5 as it integrates differential privacy with explainable
rule-based learning mechanisms in CDSS. In the next chapter (Chapter 5), we intro-
duce a robust and interpretable risk stratification and phenotyping framework.
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Chapter 5

Interpretable Learning for Risk
Stratification (CARNA)

Heart failure (HF) is a complex disease condition with high morbidity and mortal-
ity [114].1 On a fundamental level, HF is defined by the inability of the heart to
deliver adequate blood flow to the body without an elevation in cardiac filling pres-
sures [115]. Identifying high risk advanced HF patients early on in the care continuum
is critical for timely allocation of advanced, life-saving therapies such as mechanical
support, device implantation or transplant allocation. Due to high variability in pa-
tient conditions and complexity of the disease, determining patient risk involves a
challenging, multi-faceted decision making process that places a high burden on clin-
icians [37]. Hemodynamic assessments can facilitate risk stratification and enhance
understanding of HF trajectories [38]. Hemodynamics provide measures of cardio-
vascular function, and quantify distributions of pressures and flows within the heart
and circulatory system [116]. However, obtaining a comprehensive picture of the pa-
tient state from these, particularly in the context of treatment-guiding outcomes, is
difficult [39].

Many established HF risk scores such as the Seattle Heart Failure Risk model [40]
use statistical or naive models which are difficult to optimize and may be prone to
bias [41, 42, 43]. Machine learning (ML) models present a promising opportunity to
outperform traditional risk assessment methods, especially when dealing with large,
high-dimensional data [44]. However, despite the promise of machine learning for
HF risk stratification, ML-based risk scores remain unpopular due to modest model
performance and issues with model interpretability [45]. Moreover, no previous models
(statistical of ML-based) incorporate invasive hemodynamics, or contain mechanisms
to handle missing data.

To address these limitations, this chapter develops and validates an advanced
HF hemodynamic risk stratification framework entitled CARNA (Characterizing Ad-
vanced heart failure Risk and hemodyNAmic phenotypes)2. We harness the explain-
ability and expressivity of machine learned Multi-Valued Decision Diagrams (MVDDs)
to learn a risk score that predicts the probability of patient outcomes, including mor-
tality and rehospitalization, and provide descriptive patient phenotypes. MVDDs
are discrete structures representing logical functions in directed, acyclic graphs where
nodes represent features, edges represent logical operators (“and”, “or”) with param-
eter threshold values, and leaf nodes represent the final score classification [46]. An
example MVDD is shown in Figure 5.1. Due to their use of logical operators, MVDDs

1This chapter is based on: Lamp, Josephine, Yuxin Wu, Steven Lamp, Prince Afriyie, Nicholas
Ashur, Kenneth Bilchick, Khadijah Breathett et al. "Characterizing Advanced Heart Failure Risk
and HemodyNAmic Phenotypes using Interpretable Machine Learning." American Heart Journal
(2024).

2So named for the Roman healing goddess who presides over the heart.
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can handle missing data, as multiple substitutable features may contribute to the
same score prediction. Moreover, the “path” through the MVDD may be returned to
provide a descriptive patient phenotype that characterizes the score. MVDDs have
typically been applied in optimization and model checking contexts [117], and they do
not inherently learn a risk stratification. Therefore, we develop an innovative method
within our framework to first learn a risk stratification using a hierarchical clustering
algorithm, and then develop a training regime to train the MVDDs on the learned
risk scores and output explainable phenotypes. Although focused on advanced HF,
CARNA is a general purpose risk stratification and phenotyping framework that can
be used for other diseases and medical applications.

In summary, we present the following contributions:

1. We develop CARNA, an interpretable ML framework using Multi-Valued Deci-
sion Diagrams that works with missing data and includes invasive hemodynamics
for risk stratifying advanced heart failure patients. In addition to producing a
risk score, CARNA provides detailed patient phenotypes, i.e., sets of features
and their thresholds that characterize a risk score.

2. We provide robust validation of the CARNA models using four independent HF
cohorts, and compare them with six established HF risk scores and three tradi-
tional ML models. The CARNA models achieve high performance and outper-
form all benchmarks across metrics including Accuracy, Sensitivity, Specificity
and AUC.

3. In order to facilitate practical use and promote open science, we provide an
extensible, open-source tool implementation such that others can quickly and
easily explore, extend, or prototype on top of the tool. In addition, our tool
includes a deployed web server, which provisions live risk score prediction for ease
of clinical use. All code is publicly available: https://github.com/jozieLamp/
CARNA.

5.1 Preliminaries

Multi-Valued Decision Diagrams. MVDDs are discrete structures representing
logical functions in directed, acyclic graphs where nodes represent features, edges rep-
resent logical operators (“and”, “or”) with parameter threshold values, and leaf nodes
represent the final score classification [46]. As such, the “path” through the graph may
be returned to provide a descriptive patient phenotype. An example MVDD is shown
in Figure 5.1: the highlighted red path characterizes the high-risk score of 5 by the
following phenotype: Sex = Male ∧ BPSYS > 103.5 ∧ CPI > 0.621 ∧ (PAS > 74.5
∨ PCWP ≤ 33) = Score 5.

MVDDs are well suited to classification tasks and the representation of HF pheno-
types over other black-box models because they allow increased flexibility in charac-
terizing feature relationships and are highly interpretable [118]. This is advantageous
over other models that do not provide any details about how a score was computed.
Moreover, unlike other explainable models such as decision trees or random forests,
MVDDs are resilient to missing data due to their use of logical operators; multiple
substitutable features may contribute to the same prediction score. For example, in
the above phenotype, PAS or PCWP may be used for calculation, and as such, when
a feature is missing from the provided data, alternative features may be used to still
allow for score prediction. This is advantageous in clinical scenarios where complete

https://github.com/jozieLamp/CARNA
https://github.com/jozieLamp/CARNA
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Figure 5.1: Example MVDD for the Invasive Hemodynamic Feature Set and DeLvTx Out-
come. Dotted lines represent “or” boolean operators, and solid lines represent “and” boolean
operators. The leaf nodes highlighted in yellow indicate the risk score. The highlighted red
path indicates the example phenotype of Sex = Male ∧ BPSYS > 103.5 ∧ CPI > 0.621 ∧

(PAS > 74.5 ∨ PCWP ≤ 33) = Score 5.

patient measurements may not be available and clinicians must make quick decisions
on partial observations.

Despite these advantages, MVDDs have typically been used for optimization and
model checking contexts [117], with limited use in medical classification and no appli-
cations to risk stratification. As such, we develop a training regime for MVDDs within
our framework to learn risk scores and output HF phenotypes that characterize the
predicted risk scores.

5.2 Outcomes and Cohort Selection

Outcomes. The primary outcome was a composite endpoint of death, left ventricular
assist device (LVAD) implantation or heart transplantation (denoted as DeLvTx). A
secondary outcome of rehospitalization within 6 months of follow up was included, as
rehospitalizations have been shown to be predictive of adverse outcomes [62, 119].

Patient Cohorts. This study used 5 HF cohorts, three from randomized clinical tri-
als and two from a real-world setting of a single quaternary healthcare system. Cohort
characteristics are available in Table 5.1. We trained the model using the ESCAPE
(Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization
Effectiveness) trial [433 patients, mean age 56.1, 25.9% female], a randomized control
trial studying the use of pulmonary artery catheters in severe HF patients [65]. The
ESCAPE dataset contains a rich feature set of clinical and hemodynamic variables.
Invasive hemodynamics (e.g., right atrial pressure (RAP) and pulmonary capillary
wedge pressure (PCWP)) were recorded for 209 patients at baseline and prior to the
removal of a heart catheter. Although smaller than the other cohorts, the ESCAPE
dataset was selected for model training because, to the best of the authors’ knowl-
edge, it is the only cohort available with detailed invasive hemodynamics derived from
a well-designed randomized HF clinical trial.

The other 4 cohorts were used for validation: The Beta-Blocker Evaluation of
Survival Trial (BEST) [2707 patients, mean age 60.2, 21.9% female], was a randomized
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Table 5.1: Characteristics of HF Cohorts

ESCAPE [65] BEST [120] GUIDE-IT [121] UVA Shock UVA Serial

# Patients 433 2707 388 364 183
# Patients with Invasive Hemo 209 0 0 130 181
Baseline Data Yes Yes Yes Yes Yes
Discharge Data Yes No Yes Yes Yes
Total Records 866 2707 776 728 366
Total Data Missing (%) 7.8 2.0 15.1 10.4 7.3
Hemodynamics Missing (%) 12.0 N/A N/A 5.9 9.2
Age (years) 56.1±13.9 60.2±12.3 62.2±13.9 59.4±18.5 60.6±15.1
Sex (% female) 25.9 21.9 66.2 35.2 43.2
Race (% white) 59.6 70.0 49.2 N/A N/A
BMI (kg/m2) 28.4±6.7 N/A 31.2±8.6 29.8±8.8 30.5±8.0
LVEF (%) 19.3±6.6 23.0±7.3 24.0±8.2 31.7±17.4 31.3±18.0
SBP (mm Hg) 103.7±15.8 118.5±19.4 115.4±20.0 111.1±21.9 109.1±21.4
DBP (mm Hg) 64.1±11.5 71.9±11.7 70.2±13.5 62.2±15.5 59.9±17.2
Blood Urea Nitrogen (mg/dL) 36.3±22.5 24.6±15.3 31.3±22.6 34.9±24.2 39.1±25.7
Creatinine (mg/dL) 1.5±0.6 1.2±0.4 1.6±0.7 1.7±1.3 1.7±1.0
Potassium (mmol/L) 4.3±0.6 4.3±0.5 4.4±0.6 N/A N/A
Sodium (mmol/L) 136.0±4.4 138.9±3.4 138.3±3.8 136.9±5.1 135.7±5.2
DeLvTx (%) 27.0 31.7 23.7 56.6 41.5
Rehospitalization (%) 57.0 62.9 51.8 47.5 78.7

N/A indicates data not available; LVEF = ejection fraction; SBP = systolic blood pressure; DBP = diastolic
blood pressure; DeLvTx = composite endpoint of death, LVAD implantation or transplantation.

control trial that tested whether bucindolol hydrochloride reduced mortality among
HF patients [120]. The Guiding Evidence Based Therapy Using Biomarker Intensified
Treatment in Heart Failure (GUIDE-IT) [894 patients, mean age 61.5, 68% female]
trial was a randomized controlled unblinded trial testing the efficacy and safety of
adjusting therapy to maintain a N-terminal pro–B-type natriuretic peptide level of less
than 1000 pg/ml in systolic HF patients [121]. We also performed external validation
on two additional real-world cohorts from the University of Virginia: 1) a registry
of cardiogenic shock patients [364 patients, mean age 59.4, 11.7% female], and 2) a
registry of HF patients who had at least two serial right heart catheterizations for
hemodynamic assessment during the same hospitalization [183 patients, mean age
60.6, 43.2% female].

Only New York Heart Association (NYHA) functional class III-IV were included
in the study to ensure comparability. This study has been approved by the University
of Virginia Institutional Review Board. The ESCAPE, BEST and GUIDE-IT data
are available to other researchers for purposes of reproducing the results or replicating
the procedure via data request from the National Heart, Lung, and Blood Institute
Biological Specimen and Data Repository Information Coordinating Center.

Only the ESCAPE, UVA Cardiogenic Shock and UVA Serial Cardiac cohorts
have invasive hemodynamics. GUIDE-IT had the highest percentage of missing data
(15.07%), and ESCAPE had the highest percentage of missing hemodynamic data
(12.04%). Additional characteristics for each of the cohorts are included in Table 5.1.

5.3 Methods

Method Overview. A high-level overview of the CARNA methodology is shown in
Figure 5.2. First, the risk labels are generated (Section 5.3.2). Agglomerative cluster-
ing is used to stratify patients in all datasets into a specified number of cluster groups
and risk categories are derived for each cluster (e.g., class 1-5 ordered numerically
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Figure 5.2: Overview of CARNA Methodology. (A) The risk labels are generated using a
clustering-based derivation scheme using the training and validation datasets; (B) the training
data is used to train the CARNA MVDD models as well as (C) three traditional ML models
for comparison. Finally, the validation data is used to evaluate the performance of the models

and the resulting CARNA risk scores are compared with six previous HF risk scores (D).

based on actual event rates). The output of this step is a set of risk labels that indi-
cate the probability threshold of the outcome event happening (e.g., a patient record
assigned to a class of 1 indicates an outcome probability of <10% for that patient).
This clustering occurred twice (once for each feature set), and the probabilities from
each cluster were derived for each outcome, resulting in a total of four risk label sets.
Next, using the training data (ESCAPE cohort), Multi-Valued Decision Diagrams
were trained to predict the risk labels (e.g., classes 1-5, Section 5.3.3). The trained
MVDD models take in a set of features for a patient and output the predicted CARNA
risk score. A total of four models were derived for each of the four risk label sets: one
for each outcome (DeLvTx, Rehospitalization) and feature set (Invasive Hemodynam-
ics, All Features) pair. Finally, the CARNA risk scores were evaluated using the four
other validation cohorts and compared with traditional ML models (Section 5.3.4)
and established HF risk scores (Section 5.3.5) based on their predictions of the risk
classes. A step-by-step walkthrough of the methodology is provided next.

5.3.1 Data Preprocessing

For each dataset, we first preprocessed the data, including removing outliers (necessary
to reduce bias in our ML training). If the dataset had multiple temporal recordings,
the values recorded at baseline and discharge were treated as two separate records.
Baseline values were included (as opposed to only discharge) as they have been shown
to inform a range of hemodynamic and contractile metrics and are also important in
predicting outcomes as shown in previous studies, e.g., [38]. Moreover, since it was
our intention to provide a single point of care risk score that could make predictions
even at initial hospital admission, we included baseline measurements in the models.
This also increased the total number of training/validation records, especially helpful
with the small training (ESCAPE) dataset. Which cohorts had baseline and discharge
data, as well as the total number of records used is reported in Table 5.1.

Since our models support missing features, we did not impute or remove missing
values from the data records. We also calculated noninvasive hemodynamics, addi-
tional metrics indicative of hemodynamic states, computed from features that were
collected noninvasively. Examples include mean arterial pressure (MAP), cardiac
power index (CPI), and pulse pressure (PP). These metrics were specifically selected
a priori based on previous studies demonstrating incremental value in HF risk strati-
fication [38, 122, 123]. Data was stratified into two subsets: one exploring phenotypes
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of invasive hemodynamics only, and the other for characterizing phenotypes between
noninvasive hemodynamics and all available clinical variables including demographics,
labs, and medications. Henceforth, we refer to these as the Invasive Hemodynamics
and All Features feature sets, respectively.

5.3.2 Risk Label Generation

Each patient cohort had binary outcomes for the two endpoints (DeLvTx, rehospital-
ization), indicating if the outcome occurred or not. As such, there were no explicit risk
thresholds for each of the patient records. Additionally, our MVDDs do not implicitly
assign risk scores as a function of their learning. Since the goal of our approach was
to generate a risk stratification and phenotyping score, the next step was to generate
the categorical risk score values (i.e., 1–5) corresponding to real-valued outcome risks
(e.g., 1 indicates a <10% risk of DeLvTx) for each record in the training and validation
datasets. To this end, we reduced the dimensions of the covariates in the datasets
using Principal Component Analysis (PCA) and then used a clustering approach to
group patients and determine risk categorizations.

PCA. For each feature set and outcome, we performed PCA using two principal
components to reduce the dimensions of the data. This was a necessary pre-step to
reduce bias in the clustering, as clustering methods can be sensitive to outliers or slight
changes in feature set distributions. Specifically, we use the LAPACK implementation
of Singular Value Decomposition, following the PCA library available in the scikit-
learn packages [124]. Since PCA cannot handle missing features, we imputed any
missing values with the feature mean. We note however, that the original (non-
imputed) datasets were used in the MVDD training steps later to ensure the models
learned from the datasets with missing data. Importantly, the risk scores generated
from this step were the labels used to train the MVDD models.

Hierarchical Clustering. Next, we clustered the patients into a specified number
of groups using Agglomerative Clustering, a form of hierarchical clustering. Since the
number of groups, k, is a hyperparameter, the users can select how many groups they
wish to stratify the patients into. We argue this is an advantage of our approach
because, based on details of the patient cohort being trained on or other user criteria
(e.g., a clinician wish for only three risk groups), the number of risk groups can be
adaptively selected. For our experimental purposes, we selected k as the optimal
number of groups using the “Elbow” method, in which the sum of squares at each
number of clusters is plotted on a graph [125]. The point on the graph where the
slope changes from steep to shallow (“elbow” of the graph) indicates the optimal
number of clusters to use. The clustering was performed across all datasets (including
the four validation cohorts). In order to discriminate how well separated the clusters
were, we computed the Hubert & Levin C Index for each feature set [126]. The C
Index provides a metric to compare the dispersion of clusters compared to the overall
dataset dispersion [127]. C Index should be minimized; a smaller index indicates
more distinct (stable) clusters. Each cluster corresponds to one score value (e.g., five
clusters for five score value assignments).

Derive Outcome Probabilities. From there, the outcome probability ranges for
each score cluster were derived by computing the ground truth probability of the de-
noted outcome from the patients in each cluster. For example, cluster 1, corresponding
to a score value of 1, had a ground truth probability of 0.041 for the DeLvTx outcome
and Invasive Hemodynamics feature set; an outcome probability of <10% was derived.
As a sanity check to ensure the derived score categories corresponded to the ground
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truth outcome probabilities across all the datasets, we reported the actual probabil-
ities for each dataset in the Results. Finally, the score labels were assigned to each
data record based on the associated cluster (e.g., a record in cluster 1 is assigned a
score of 1). Using this process, we generated the risk score (labels) separately for each
outcome and feature set, resulting in a total of four risk score label sets.

Label Method Reasoning. We decided to use this clustering approach because,
in addition to risk stratifying patients, it uses an unsupervised method to holistically
group patients, i.e., autonomously groups patients based on similar characteristics.
This is highly advantageous over manually stratifying patients; manually grouping
patients into risk groups is nontrivial due to large (potentially conflicting) sets of fea-
tures and high variability in the presentation of patient conditions. Moreover, manual
grouping is labor intensive (e.g., would require many clinician hours to characterize
every patient’s risk).

5.3.3 Learning Multi-Valued Decision Diagrams

Overall Training Details. As a reminder, the MVDDs were trained on the risk
score labels (i.e., classes 1–5) generated during the previous step and the risk score
labels indicate probability categories of outcomes. The resulting trained models take
in a set of features for a patient and output the predicted CARNA risk score. All
MVDDs were learned using an independent training set (ESCAPE dataset). To max-
imize the training capabilities of the small dataset, we used 5-fold cross validation,
in which 80% of the data in the split was used for training and the other 20% was
held out for validation purposes. A total of four models were derived: one for each
outcome (DeLvTx, Rehospitalization) and feature set (Invasive Hemodynamics and
All Features) pair.

MVDD Learning Process. Each MVDD was learned using a training process sim-
ilar to the Iterative Dichotomiser 3 (ID3) multi-class decision tree algorithm [128].
Specifically, we learn a multi-class tree using the splitting criterion of gini index or
entropy. Each time we add a node to the tree, we replace the boolean edge with
logical operators (“and", “or") and select the operator that gives the best performance
(e.g., lowest gini or entropy.) The MVDDs were trained iteratively until model conver-
gence. The implementation was developed de novo in Python3 using publicly available
packages [124].

Validating the MVDDs. After model training, we independently validated the
models using the four other cohorts, which had not been used in the training phase.
To assess the performance of our MVDDs, five receiver operator characteristic curves
(ROC) for each risk class were plotted for each model based on the ground truth
risk classes in the validation datasets. If the predicted risk class matched the ground
truth risk class, this was considered a success for the ROC analysis. For example,
in the case of class 1 patients, if the MVDD predicted class 1, it was considered
a success, and if it predicted another class, it was considered a failure. The ROC
curves were then constructed based on predictions of the risk classes, which is different
from the conventional ROC method of predicting an actual event. To measure the
overall model performance (e.g., as a summary metric across all risk classes,) we
report a single averaged area under the curve (AUC) metric, calculated by taking
the weighted average of the AUCs from each risk class, weighted by the number of
individuals in each class. We also calculated accuracy, sensitivity and specificity in a
similar manner. We note that ROC/AUC were used over a reclassification analysis
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Figure 5.3: Example CARNA Web Portal – interface for predicting the invasive hemody-
namic risk score.

due to limitations associated with reclassification such as systematic miscalibration
on validation cohorts [129].

5.3.4 Comparison to Traditional Machine Learning Models

We compared the performance of CARNA models with traditional ML models, in-
cluding K-nearest neighbors (KNN), Decision Trees (DT) and Random Forests (RF).
Median imputation was used for any missing values. We followed the same training
procedure used for the MVDDs; each model was trained on the ESCAPE dataset
using 5-fold cross validation with a 80-20% split for training/validation. Performance
was computed using the same metrics on the four validation cohorts. Additionally,
to assess the concordance between the predicted risk and the ground truth outcomes,
calibration plots were computed, using a bin size of 10.

5.3.5 Comparison to Other Heart Failure Risk Scores

For benchmark comparison, we compared our CARNA risk score models with six
other established HF risk scores: ADHERE [130], EFFECT [131], ESCAPE [132],
GWTG [133], MAGGIC [134], and SHFM [40]. We limited our comparison to the
models predicting risk of mortality with similar feature sets and patient cohorts. In
particular, we exclude scores that use biomarkers and pathology based features (e.g.,
QRS measurements) since those were not available in our cohorts. Since the compari-
son scores cannot handle missing data, missing values were imputed with the median.
For each validation dataset, the predicted probability of an event was obtained from
each score for each patient, and then a predicted class was assigned based on that
probability. In other words, if the predicted probability of the event from the SHFM
was 5% for a patient, we would say the SHFM predicted class 1, which had a proba-
bility range of 0-10% for an event. The accuracy of these other models for predicting
the risk class (not the actual event) was again used for the comparison ROC analy-
sis. To compare the AUCs between the established HF risk scores and CARNA, we
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Figure 5.4: Agglomerative Clustering Dendogram for All Features feature set. Clusters are
separated by horizontally dividing the top of the hierarchy based on the specified number of
groups (5 in our case); this is illustrated by the horizontal dashed black line in the figures.

Each leaf (end of the dendrogram) represents an individual data point.

performed hypothesis testing using the DeLong approach [135]. We report the scores’
AUCs, the change in AUCs (CARNA AUC – other score AUC) and the p-value.

5.3.6 Open Source Tool Implementation

In order to promote open science, CARNA is an open source, extensible framework
that others can easily use and build off of. Our implementation is developed in Python
3 using open source libraries. The tool package is clearly commented and includes a
jupyter notebook runner file such that others can quickly and easily explore, extend,
or prototype on top of the tool. In addition, our implementation includes a deployed
web server which provides a live risk score prediction for ease of clinical use. An
example web portal image is in Figure 5.3. All code is publicly available from the
Github repository: https://github.com/jozieLamp/CARNA, and the live web server
may be accessed here: http://hemopheno.pythonanywhere.com/.

5.4 Evaluation

5.4.1 Risk Label Generation Results

From the elbow plots, 5 was chosen as the optimal number of cluster groups corre-
sponding to 5 risk categories. An example dendrogram displaying the cluster splits
for the All Features feature set is shown in Figure 5.4. In hierarchical clustering meth-
ods, clusters are separated by horizontally dividing the top of the hierarchy based on
the specified number of groups, illustrated by the horizontal dashed black line in the
figures. Our clusters are distinct with a high degree of separation, with low
C Indexes of 0.063 for the Hemodynamics feature set and 0.051 for the All
Features feature set.

Table 5.2 reports the risk score meaning and corresponding real-valued average
risk probabilities for each score category across all feature sets and outcomes. For
example, for the Hemodynamics feature set and the DeLvTx outcome, a risk score
of 3 indicates a 20–30% chance of the outcome, with a mean outcome probability of
0.245 computed from the patients in this cluster. For a sanity check, we also reported

https://github.com/jozieLamp/CARNA
http://hemopheno.pythonanywhere.com/
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Table 5.2: Risk Score Meaning and Ground Truth Risk Probabilities

DeLvTx Outcome

Invasive Hemodynamics Cluster Means All Features Cluster Means
Risk Score Probability Risk Category Overall ESCAPE UVA Shock UVA Serial Overall ESCAPE BEST GUIDE-IT UVA Shock UVA Serial

1 <10% Low 0.041 0.081 N/A 0.0 0.043 0.042 0.0 0.076 0.048 0.048
2 10 - 20% Low - Intermediate 0.176 0.185 N/A 0.167 0.145 0.129 0.159 0.143 0.167 0.125
3 20 - 30% Intermediate 0.245 0.25 0.227 0.259 0.255 0.265 0.275 0.235 0.201 0.299
4 30 - 40% Intermediate - High 0.364 0.39 0.31 0.392 0.343 0.333 0.331 0.253 0.315 0.485
5 >40% High 0.535 0.429 0.651 0.525 0.688 0.769 0.333 0.338 1.0 1.0

Rehospitalization Outcome

Invasive Hemodynamics Cluster Means All Features Cluster Means
Risk Score Probability Risk Category Overall ESCAPE UVA Shock UVA Serial Overall ESCAPE BEST GUIDE-IT UVA Shock UVA Serial

1 <10% Low 0.025 0.05 N/A 0.0 0.035 0.077 0.05 0.017 0.0 0.031
2 10 - 20% Low - Intermediate 0.102 0.203 N/A 0.0 0.163 0.186 0.125 0.177 0.173 0.156
3 20 - 30% Intermediate 0.261 0.276 0.216 0.291 0.286 0.309 0.275 0.259 0.275 0.312
4 30 - 40% Intermediate - High 0.379 0.407 0.431 0.30 0.342 0.333 0.312 0.405 0.332 0.328
5 >40% High 0.779 0.647 0.798 0.892 0.724 0.667 0.632 0.571 0.75 1.0

Tables display risk scores with corresponding outcome probability ranges and risk categories as well as cluster
means, the ground truth mean outcome probability for each risk cluster in each dataset. Overall is the
ground truth mean outcome probability across the entire cluster (i.e., across all datasets in the cluster). N/A
= no data points assigned to that cluster; DeLvTx = composite endpoint of death, LVAD implantation or

transplantation.

the average risk probabilities for each dataset individually. These results provide
evidence that the risk ranges correspond to the real observed risk in the
patient cohorts.

5.4.2 Learned MVDDs

We generated a total of four MVDD models for each of the feature sets (Invasive
Hemodynamics and All Features) and outcomes (DeLvTx and Rehospitalization). The
Invasive Hemodynamic models use a combination of 28 features that include basic
demographics, invasive and noninvasive hemodynamics; the All Features models use
a combination of 66 features across demographics, labs, medications, exercise, quality
metrics, other medical diagnostics and noninvasive hemodynamics. We note that these
are the maximum number of features per model and actual prediction paths through
the MVDDs use smaller subsets with interchangeable combinations of features (e.g.,
the features that may be “or-ed” together along a path that provide choices for which
feature is used for prediction in the phenotype.)

5.4.3 MVDD Performance

Table 5.3 presents the validation performance summary. The UVA Cardiogenic Shock
and Serial Cardiac cohorts were used to validate the invasive hemodynamics models,
since they were the only cohorts with invasive hemodynamics; all 4 validation cohorts
were used to validate the All Features models. Figures 5.5 and 5.6 show the ROC
curves and AUC values for each risk class for the Invasive Hemodynamics and All
Features sets, respectively. Figures 5.7 and 5.8 show stacked bar graphs comparing
the real vs. predicted risk categories for the Invasive Hemodynamics and All Features
sets, respectively. Across all outcomes, our validation models performed extremely
well with accuracies of 0.896±0.074 to 0.969±0.081 for the Invasive Hemodynamics
feature set and 0.858±0.067 to 0.997±0.070 for the All Features feature set. These
validation results provide evidence that the CARNA models yield robust
risk stratification.
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Table 5.3: Model Performance Summary (Validation Data)

Invasive Hemodynamic Feature Set

Outcome Dataset Accuracy Averaged AUC Sensitivity Specificity

DeLvTx UVA Shock 0.947±0.107 0.938±0.106 0.915±0.103 0.961±0.108
UVA Serial 0.969±0.081 0.965±0.080 0.950±0.079 0.980±0.081

Rehospitalization UVA Shock 0.907±0.102 0.861±0.096 0.791±0.086 0.935±0.105
UVA Serial 0.896±0.074 0.896±0.074 0.852±0.070 0.940±0.078

All Features Feature Set

Outcome Dataset Accuracy Averaged AUC Sensitivity Specificity

DeLvTx

BEST 0.997±0.037 0.994±0.037 0.990±0.037 0.998±0.037
GUIDE-IT 0.997±0.070 0.996±0.070 0.995±0.069 0.998±0.070
UVA Shock 0.865±0.049 0.871±0.050 0.811±0.045 0.931±0.054
UVA Serial 0.858±0.067 0.871±0.068 0.815±0.063 0.927±0.073

Rehospitalization

BEST 0.997±0.037 0.994±0.037 0.990±0.037 0.998±0.037
GUIDE-IT 0.997±0.070 0.996±0.070 0.995±0.069 0.998±0.070
UVA Shock 0.891±0.051 0.895±0.051 0.846±0.048 0.944±0.054
UVA Serial 0.890±0.070 0.798±0.061 0.653±0.044 0.942±0.075

Table displays value ± confidence interval. DeLvTx = composite endpoint of death, LVAD implantation or
transplantation.

Figure 5.5: ROC Curves for Validation Datasets and Invasive Hemodynamics Feature Set.
nan = no data in that class.
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Figure 5.6: ROC Curves for Validation Datasets and All Features Feature Set.

Figure 5.7: Stacked Bar Graphs Comparing Real Risk Scores vs. Predicted Risk Scores for
Validation Datasets and Invasive Hemodynamics Feature Set

Figure 5.8: Stacked Bar Graphs Comparing Real Risk Scores vs. Predicted Risk Scores for
Validation Datasets and All Features Feature Set



5.4. Evaluation 65

Table 5.4: CARNA Comparison to Traditional ML Models - Invasive Hemodynamics Fea-
ture Set

DeLvTx Outcome

Dataset Model Accuracy Averaged AUC Sensitivity Specificity

UVA Shock

CARNA 0.947±0.107 0.938±0.106 0.915±0.103 0.961±0.108
KNN 0.660±0.064 0.471±0.027 0.154±0.094 0.789±0.086
DT 0.759±0.081 0.628±0.057 0.405±0.049 0.85±0.094
RF 0.754±0.08 0.637±0.059 0.426±0.043 0.849±0.094

UVA Serial

CARNA 0.969±0.081 0.965±0.080 0.950±0.079 0.980±0.081
KNN 0.685±0.051 0.5±0.001 0.199±0.065 0.801±0.065
DT 0.776±0.062 0.649±0.045 0.438±0.029 0.86±0.071
RF 0.772±0.061 0.628±0.042 0.4±0.037 0.855±0.07

Rehospitalization Outcome

Data Set Model Accuracy Averaged AUC Sensitivity Specificity

UVA Shock

CARNA 0.907±0.102 0.861±0.096 0.791±0.086 0.935±0.105
KNN 0.66±0.064 0.471±0.027 0.154±0.094 0.789±0.086
DT 0.759±0.081 0.628±0.057 0.405±0.049 0.85±0.094
RF 0.754±0.08 0.637±0.059 0.426±0.043 0.849±0.094

UVA Serial

CARNA 0.896±0.074 0.896±0.074 0.852±0.070 0.940±0.078
KNN 0.685±0.051 0.5±0.001 0.199±0.065 0.801±0.065
DT 0.776±0.062 0.649±0.045 0.438±0.029 0.86±0.071
RF 0.772±0.061 0.628±0.042 0.4±0.037 0.855±0.07

Table reports value±confidence interval, bolded values indicate highest scoring item in each block. KNN =
K-Nearest Neighbor; DT = Decision Tree, RF = Random Forest; DeLvTx = composite endpoint of death,

LVAD implantation or transplantation.

Figure 5.9: Calibration Plots for Invasive Hemodynamics using bin size of 10. True proba-
bility is the fraction of positives per bin.

5.4.4 Comparison to Traditional ML Models

For additional comparison, the performance of the CARNA models was compared with
traditional ML models, including K-Nearest Neighbors (KNN), Decision Trees (DT)
and Random Forests (RF). For the Invasive Hemodynamics feature set, performance
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is reported in Table 5.4 and calibration plots are shown in Figure 5.9. For the All
Features feature set, performance is reported in Table 5.5 and calibration plots are
shown in Figure 5.10. In the calibration plots, some bins have no samples, hence why
some plots do not have complete points in the line graphs. Of the traditional models,
RFs followed by DTs tend to perform the best. Across all feature sets, outcomes
and datasets, the CARNA models outperform traditional ML models.

Table 5.5: CARNA Comparison to Traditional ML Models - All Features Feature Set

DeLvTx Outcome

Data Set Model Accuracy Averaged AUC Sensitivity Specificity

BEST

CARNA 0.997±0.037 0.994±0.037 0.990±0.037 0.998±0.037
KNN 0.822±0.03 0.677±0.022 0.525±0.008 0.83±0.03
DT 0.831±0.03 0.652±0.021 0.469±0.009 0.835±0.03
RF 0.844±0.031 0.722±0.025 0.602±0.017 0.842±0.031

GUIDE-IT

CARNA 0.997±0.070 0.996±0.070 0.995±0.069 0.998±0.070
KNN 0.849±0.058 0.575±0.027 0.295±0.045 0.854±0.059
DT 0.852±0.058 0.572±0.026 0.277±0.047 0.866±0.06
RF 0.955±0.067 0.719±0.046 0.475±0.016 0.964±0.067

UVA Shock

CARNA 0.865±0.049 0.871±0.050 0.811±0.045 0.931±0.054
KNN 0.349±0.032 0.391±0.027 0.042±0.055 0.624±0.029
DT 0.386±0.028 0.319±0.035 0.135±0.049 0.596±0.025
RF 0.604±0.026 0.377±0.029 0.016±0.057 0.771±0.042

UVA Serial

CARNA 0.858±0.067 0.871±0.068 0.815±0.063 0.927±0.073
KNN 0.346±0.044 0.409±0.034 0.022±0.077 0.612±0.037
DT 0.459±0.023 0.383±0.038 0.208±0.061 0.596±0.035
RF 0.339±0.045 0.4±0.035 0.009±0.079 0.606±0.037

Rehospitalization Outcome

Data Set Model Accuracy Averaged AUC Sensitivity Specificity

BEST

CARNA 0.997±0.037 0.994±0.037 0.990±0.037 0.998±0.037
KNN 0.822±0.03 0.677±0.022 0.525±0.008 0.83±0.03
DT 0.831±0.03 0.652±0.021 0.469±0.009 0.835±0.03
RF 0.844±0.031 0.722±0.025 0.602±0.017 0.842±0.031

GUIDE-IT

CARNA 0.997±0.070 0.996±0.070 0.995±0.069 0.998±0.070
KNN 0.611±0.033 0.646±0.038 0.489±0.01 0.803±0.054
DT 0.612±0.033 0.582±0.028 0.369±0.036 0.794±0.053
RF 0.611±0.033 0.623±0.035 0.446±0.023 0.801±0.054

UVA Shock

CARNA 0.891±0.051 0.895±0.051 0.846±0.048 0.944±0.054
KNN 0.349±0.032 0.391±0.027 0.042±0.055 0.624±0.029
DT 0.386±0.028 0.319±0.035 0.135±0.049 0.596±0.025
RF 0.604±0.026 0.377±0.029 0.016±0.057 0.771±0.042

UVA Serial

CARNA 0.890±0.070 0.798±0.061 0.653±0.044 0.942±0.075
KNN 0.346±0.044 0.409±0.034 0.022±0.077 0.612±0.037
DT 0.459±0.023 0.383±0.038 0.208±0.061 0.596±0.035
RF 0.339±0.045 0.4±0.035 0.009±0.079 0.606±0.037

Table reports value±confidence interval, bolded values indicate highest scoring item in each block. KNN =
K-Nearest Neighbor; DT = Decision Tree, RF = Random Forest; DeLvTx = composite endpoint of death,

LVAD implantation or transplantation.
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Figure 5.10: Calibration Plots for All Features using a bin size of 10. True probability is
the fraction of positives per bin.

5.4.5 Comparison to Previous HF Risk Scores

Benchmark comparison between the CARNA risk scores and 6 other previously devel-
oped HF risk scores are shown in Table 5.6. The table reports the AUCs for each of
the HF risk scores on all datasets. Table 5.7 displays results of the hypothesis testing
between CARNA and previous scores. The delta AUC and p-values are reported;
a p-value of <0.05 indicates there is a significant difference between the two scores.
CARNA outperforms all previous HF risk scores.

Table 5.6: Comparison to Previous Scores - AUC for Outcome Mortality

Score Median Dataset
Follow-Up ESCAPE BEST GUIDE-IT UVA Shock UVA Serial

CARNA - Hemo 6 months 0.952±0.091 N/A N/A 0.938±0.106 0.965±0.080
CARNA - All Fts 6 months 0.978±0.065 0.994±0.037 0.996±0.070 0.871±0.050 0.871±0.068
ADHERE [130] 5.85 days 0.595±0.029 0.576±0.015 0.601±0.021 0.526±0.013 0.574±0.030

EFFECT 30D [131] 30 days 0.550±0.021 0.610±0.018 0.635±0.024 0.584±0.024 0.610±0.037
EFFECT Y1 [131] 1 year 0.548±0.021 0.638±0.020 0.632±0.024 0.612±0.027 0.644±0.043

ESCAPE [132] 6 months 0.681±0.057 0.587±0.016 0.715±0.043 0.595±0.025 0.565±0.029
GWTG [133] 4 days 0.601±0.030 0.538±0.010 0.537±0.013 N/A N/A

MAGGIC Y1 [134] 2.5 years 0.640±0.035 N/A 0.689±0.029 0.678±0.034 N/A
MAGGIC Y3 [134] 2.5 years 0.640±0.035 N/A 0.689±0.029 0.678±0.034 N/A

SHFM Y1 [40] 1 year 0.623±0.033 0.613±0.018 0.623±0.023 0.587±0.024 0.588±0.033
SHFM Y3 [40] 3 years 0.623±0.033 0.616±0.018 0.625±0.023 0.588±0.024 0.584±0.032
SHFM Y5 [40] 5 years 0.622±0.033 0.615±0.018 0.619±0.023 0.573±0.022 0.579±0.032

Table displays AUC±confidence interval; bolded values indicate highest performing score for each
dataset. N/A = score could not be calculated for the dataset; Hemo = Invasive Hemodynamic; All
Fts = All Features; 30D = 30-day mortality; Y1 = 1 year mortality; Y3 = 3 year mortality; Y5 =

5 year mortality.

Table 5.7: Hypothesis Testing Between CARNA and Comparison HF Scores

Invasive Hemodynamic Feature Set All Features Feature Set

Score Dataset Dataset
ESCAPE UVA Shock UVA Serial ESCAPE BEST GUIDE-IT UVA Shock UVA Serial

ADHERE [130] -0.357, 0.262 -0.412, <0.001 -0.391, 0.413 -0.383, 0.031 -0.418, <0.001 -0.395, 0.005 -0.345, <0.001 -0.297, 0.413
EFFECT 30D [131] -0.402, 0.881 -0.354, <0.001 -0.355, 0.315 -0.163, 0.020 -0.428, <0.001 -0.384, 0.069 -0.361, <0.001 -0.287, 0.315
EFFECT Y1 [131] -0.404, 0.832 -0.326, <0.001 -0.321, 0.028 -0.430, 0.026 -0.356, <0.001 -0.364, 0.096 -0.259, <0.001 -0.227, 0.028

ESCAPE [132] -0.271, 0.008 -0.343, <0.001 -0.400, 0.311 -0.297, <0.001 -0.407, <0.001 -0.281, <0.001 -0.276, <0.001 -0.306, 0.311
GWTG [133] -0.351, 0.593 N/A N/A -0.377, 0.002 -0.456, 0.001 -0.459, 0.001 N/A N/A

MAGGIC Y1 [134] -0.312, 0.151 -0.260, 0.018 N/A -0.338, 0.094 N/A -0.307, 0.048 -0.193, 0.018 N/A
MAGGIC Y3 [134] -0.312, 0.151 -0.260, 0.018 N/A -0.338, 0.094 N/A -0.307, 0.048 -0.193, 0.018 N/A

SHFM Y1 [40] -0.329, 0.011 -0.351, <0.001 -0.377, 0.784 -0.355, <0.001 -0.381, <0.001 -0.373, 0.201 -0.284, <0.001 -0.283, 0.784
SHFM Y3 [40] -0.329, 0.012 -0.350, <0.001 -0.381, 0.878 -0.355, <0.001 -0.378, <0.001 -0.371, 0.173 -0.283, <0.001 -0.287, 0.878
SHFM Y5 [40] -0.330, 0.013 -0.365, <0.001 -0.386, 0.996 -0.356, <0.001 -0.379, <0.001 -0.377, 0.268 -0.298, <0.001 -0.292, 0.996

Table reports ∆AUC, p-value. N/A = score could not be calculated for the dataset; 30D = 30-day mortality;
Y1 = 1 year mortality; Y3 = 3 year mortality; Y5 = 5 year mortality.
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Table 5.8: Comparison of HF Risk Score Approaches

Score Method Used # Features Hemo? Allows Missing Data

CARNA Hemo MVDD 28 Yes Yes
CARNA All Fts MVDD 66 Yes Yes

EFFECT [131] Logistic Regression 11 No No
GWTG [133] Logistic Regression 7 No No

MAGGIC [134] Poisson Regression 13 No No
ESCAPE [132] CPH 8 No No

SHFM [40] CPH 30 No No
ADHERE [130] Decision Tree (CART) 3 No No
MARKER [136] Decision Tree (BDT) 8 No No
TOPCAT [137] Various ML 86 No No

Hemo = Invasive Hemodynamics; All Fts = All Features; CPH = Cox Proportional Hazards; CART =
Classification and Regression Tree; BDT = Boosted Decision Tree

5.5 Related Work

HF Risk Scores. There are a variety of HF risk scores that provide risk stratifica-
tions in HF populations using statistical and machine learning models; a comparison
is available in Table 5.8. The EFFECT [131], GWTG [133] and MAGGIC [134] risk
scores predict risk of mortality in HF patients using various regression methods. The
ESCAPE Risk Model and Discharge Score [132] and SHFM [40] stratify mortality risk
using Cox Proportional Hazards models (CPH). The ESCAPE score was derived using
the same dataset that we use for our training cohort. Finally, in the TOPCAT [137],
ADHERE [130], and MARKER [136] risk models, machine learning algorithms, in-
cluding decision trees, boosted decision trees, support vector machines and random
forests are used to predict risk of mortality.

Some of these risk models use small, selective feature sets, or only stratify risk into
a small number of groups (e.g., only two groups of high and low risk as in MARKER),
and none of them incorporate invasive hemodynamics. Moreover, these methods suffer
from limitations associated with statistical and naive machine learning models, such
as being prone to bias, and lacking mechanisms to handle missing data [41, 42]. In
fact, in external validation of these scores, a common issue cited is that some variables
are not readily available in routine clinical practice or are missing from collected data
cohorts so the score cannot be computed [43].

CARNA uses a larger, more diverse feature set than most scores, is able to provide
more fine-grained risk stratification, i.e., can have more risk groups, and incorporates
invasive hemodynamics. In addition, our model is explainable and can handle missing
data. Ultimately, it is our intention that our risk score would be complementary to
previous risk methodologies, in which our score is used to provision risk stratification
for advanced HF patients requiring invasive hemodynamic monitoring, and others may
be used to gain an understanding of risk for more general HF patients.

5.6 Summary and Discussion

In this chapter, we developed an explainable ML approach using Multi-Valued Deci-
sion Diagrams to derive and validate a novel HF risk score that incorporates invasive
hemodynamic and other clinical variables to stratify risk of adverse outcomes in ad-
vanced HF patients. The CARNA risk scores were highly predictive of adverse out-
comes in a broad spectrum of HF patients. Accurately identifying high-risk advanced
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HF patients early on is fundamental for timely allocation of life-saving therapies and
improvement of patient outcomes. CARNA can handle trajectories that are missing,
variable and conflicting, directly addressing the model and data challenges elucidated
in Chapter 1.

Model Design Choices and Limitations. Our models use single point-of-care
measurements, and do not take advantage of multiple follow-up recordings. As a re-
sult, they may lose interrelations available from multiple temporal recordings (i.e.,
changes between measurements). However, using single measurements in our models
allows for clinician ease-of-use. Furthermore, although only the “OR” nodes in the
MVDD model explicitly handle missing data, we chose to use “AND/OR” MVDDs
because the “OR”-only MVDDs become very large and overfit the data. We used
single MVDD models for interpretability purposes throughout the project evaluation.
However, ensemble approaches (e.g., ensembles of MVDDs) have been shown to out-
perform single model methods [138], and this will be investigated in future work.
Additionally, we note that an aspect of model interpretability may be lost due to
the model predicting risk classes generated from an unsupervised clustering method
as opposed to predicting the binary outcome(s) directly. Even so, we believe such a
tradeoff may be acceptable due to the improved ability to risk-stratify HF patients.

Despite fewer patients and shorter follow-up time (6-months) compared to other
datasets, the ESCAPE trial was selected for model training because, to the best of the
authors’ knowledge, it is the only cohort available with detailed invasive hemodynam-
ics derived from a well-designed randomized HF clinical trial. There is potential for
selection bias by choosing trial data and higher-risk patients in the two UVA cohorts.
In addition, many of our validation datasets did not have invasive hemodynamics so
we were unable to validate the invasive hemodynamic models on all four of the patient
cohorts. Further, there were heterogeneities in HF acuity status in the datasets used.
Even so, validation of the CARNA models yielded robust risk stratification compared
to other conventional HF risk score and ML models.

CARNA Outperforms Benchmarks. As shown in Tables 5.3–5.7, the CARNA
risk scores highly outperform previous risk scores across all datasets, feature sets
and outcomes. The CARNA Invasive Hemodynamics score was more predictive than
other scores including the ESCAPE risk score which was derived on the same co-
hort as our training data using linear statistical methods. The CARNA All Features
score also outperformed previous risk scores, indicating noninvasive hemodynamics
are also predictive of outcomes. Moreover, as evidenced by Tables 5.4 and 5.5, the
CARNA models outperform traditional ML models across all datasets, feature sets
and outcomes.

Comment on Hemodynamics. The CARNA Invasive Hemodynamic models do
better than the CARNA All Features models, which suggests that invasive hemo-
dynamics (along with integrated metrices) improve outcome prediction for advanced
HF patients. Integrated hemodynamic indices such as Cardiac Power Index, Mean
Arterial Pressure, and Pulmonary Artery Pulsatility Index were highly predictive of
patient outcomes. This aligns with findings from previous studies, demonstrating the
incremental utility of integrated metrics in risk assessment [38, 122, 123, 139].

Study Strengths. We speculate our models outperform all previous approaches
due to a combination of three key reasons: First, our models use a richer, more
diverse feature set, beyond what is used in other clinical risk scores, and use integrated
hemodynamic metrics, which are very sensitive to hemodynamic changes. Most other
models look at isolated metrics, which may not be as predictive as the integrated ones.
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In our models, integrated hemodynamic indices such as CPI, MAP, and Pulmonary
Artery Pulsatility Index were highly predictive of patient outcomes. This aligns with
other studies, which have shown the incremental utility of integrated metrics in risk
assessment [38, 122, 123, 139].

Second, our models are able to handle missing data. Even if the datasets do not
have high amounts of missingness, this is an important model advantage compared
to other models that do not have built-in mechanisms to handle missing data, and
instead must impute missing values. Previous studies such as [140, 141] have found
that, even with small amounts of missingness (e.g., 10% missing data or less) the type
of imputation method used can have a big impact (bias) on model performance; and
that models that use complete data or do not use data points with missing features
outperform imputed datasets. As such, we believe our models’ built-in method to
handle missing data may provide an important performance advantage.

Finally, our models are interpretable and provide clear sets of features and thresh-
olds used to make each risk prediction. Elucidation of these phenotypes used to make
risk characterizations by our models allow clinicians to better understand how and
why a risk score was given. Such phenotypes may identify possible HF subgroups that
can be further investigated in clinical studies.

A New Paradigm for Risk Stratification. This study introduces a new paradigm
for HF risk stratification, in which predicting risk categories is used over singular bi-
nary events. We believe prediction of which patients fall into groups categorized by
escalating ranges of event rates is very clinically relevant since many clinical manage-
ment decisions are based on general categories of event rates/risk. Risk ascertainment
in advanced heart failure patients is often challenging and more nuanced, requiring
careful consideration of the competing risks of the need for advanced HF therapies
(LVAD and heart transplant) against the “conditional risk category” of a given patient.
We believe this approach may also facilitate complementary evidence-based modeling
of “risk - benefit” trade-offs when it comes to the challenging shared decision discus-
sions between clinicians and patients concerning HF prognostication and the timing
of advanced heart failure therapies.
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Chapter 6

Conclusion

Targeting fundamental challenges in developing trustworthy CDSS for medical tra-
jectories, in this dissertation we develop robust, explainable and privacy-preserving
machine learning frameworks. GlucoSynth is a novel privacy-preserving GAN frame-
work to generate high-quality, private univariate time series data. GlucoSynth is the
first framework to successfully generate synthetic glucose traces usable in real clinical
applications and with strong privacy guarantees. DP-RuL is a locally differentially-
private framework to learn population rulesets with high coverage and clinical utility
for logic-based CDSS. This is the first LDP framework to solve the rule discovery
learning problem. CARNA is a novel general-purpose explainable risk stratification
and phenotyping machine learning framework, applied specifically for risk stratifying
trajectories from advanced heart failure patients. CARNA develops a new clinical risk
paradigm through its use of predicting risk categories, and is the first interpretable
ML framework to incorporate invasive hemodynamics.

The research in this thesis is a successful fusion of important aspects of machine
learning, XAI, privacy, and clinical application areas including diabetes and heart
failure. The primary motivation for this work is to solve challenges within clini-
cal applications of CDSS. At the same time, we advance state-of-the-art theory and
algorithms in machine learning and privacy methodologies. GlucoSynth and DP-
RuL promote sharing and aggregation of medical trajectories collected from personal
wearable devices with reduced legal and privacy concerns. CARNA facilitates better
understanding of underlying disease mechanisms for heart failure and other chronic
diseases.

Societal Implications. This dissertation produced extensible privacy-preserving
and ML frameworks and toolkits usable by application developers, decision support
developers, data scientists, clinical researchers, privacy researchers, general users, pa-
tients and clinicians. GlucoSynth and DP-RuL address the need for effective privacy-
preserving learning methodologies for CDSS to protect patient health data and develop
concrete solutions for major gaps in the current state-of-the-art for private rule-based
learning and univariate time series data synthesis. CARNA addresses shortcomings in
robust, interpretable clinical machine learning and clinical risk stratification. These
frameworks can help decrease instances of unsanctioned use and compromise of patient
data, and increase patient trust and utilization of trajectory-based CDSS. Further-
more, the frameworks introduced in this dissertation can be applied to areas beyond
healthcare, including fraud detection, network security monitoring and other decision
support application areas such as behavioral health, business analytics, finance, sports
prediction, and injury prevention. Moreover, this dissertation can help address cur-
rent issues surrounding inadequate privacy protections and lacking user trust in many
industries, including social media, news outlets, advertising, and the development of
cyber-physical systems.
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