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Abstract

Synthetic cell image generation, as well as cell segmentation and tracking from microscopy, are es-

sential in biology and biomedical research for advancing scientific understanding of a cell population.

Synthetic image generation allows the testing of algorithms and the training of data-driven methods.

The segmentation task allows for identifying, isolating, and analyzing individual cells from images,

while tracking enables the analysis of cell behavior over multiple frames of an image sequence. De-

veloping cell segmentation and tracking algorithms is an active research domain that propels drug

discovery, disease diagnosis and treatment, tissue engineering, and basic research in cell biology.

In this dissertation, we introduce novel synthetic image generation, cell segmentation, and track-

ing algorithms to study a particularly challenging cell population called bacterial biofilms from lat-

tice light-sheet microscopy 3D images and videos. Biofilms are complex biological systems that have

critical functions in diverse fields, including the production of bioelectricity and the development of

infectious diseases. High cell density and intra-cellular intensity inhomogeneity in the microscopy

images of biofilms pose significant challenges to the existing algorithms in identifying individual

bacterial cells and tracking their movements over time. The dissertation achieves three main ob-

jectives. (1) We present a simulation framework designed to produce synthetic biofilm images and

videos featuring cells with realistic curvilinear morphology. This framework is demonstrated to be

useful for training supervised deep learning models for cell segmentation and tracking purposes. (2)

We propose a novel deep learning-based cell segmentation approach that involves enhancing the cell

interior and border information leveraging Euclidean distance transforms and then detecting cell

seeds for a classical watershed segmentation through voxel-wise classification. (3) We introduce an

innovative cell tracking framework that incorporates a deep temporal sequence classification network

to predict the probability of potential associations between consecutive frames, followed by a one-

to-one matching optimization to establish accurate matches. The tracking approach also considers

the detection of cell division events via an Eigen decomposition-based strategy.
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Chapter 1

Introduction

Automatic cell segmentation and tracking is an active field of research in the area of biomedical image

processing. Segmentation of individual cell instances from raw microscopy images enables researchers

to localize cells and extract many representative cellular attributes [1]. Additionally, tracking cells

over time in a microscopy image sequence provides information regarding cell motion, growth and

division rates, cell appearance, and death rates within the imaging field of view [2]. Developing cell

segmentation and tracking algorithms is essential for gaining insights into the underlying dynamics

of a given cell population.

In this thesis, we focus on developing automatic cell segmentation and tracking approaches to

study 3D microscopy images of a particularly challenging cell population known as bacterial biofilms.

Biofilms are large multicellular communities comprising spatially dense allocation of bacterial cells.

Bacterial biofilms play an immense role in regulating many ecological processes, such as recycling

soil nutrients, and assisting plant growth [3, 4]. Biofilms are also useful in producing fuel cells,

which can help meet the energy requirements [5, 6]. On the contrary, undesired growth of biofilms

may cause infectious diseases or degrade process efficiencies in an industrial setting [7, 8]. Thus,

analysis of bacterial biofilms is necessary to exploit their potential for human benefit as well as to

control their undesired growth. Fig. 1.1 presents examples of lattice light-sheet microscopy images

of two types of bacterial biofilms. High cell density in biofilm images poses a significant challenge for

existing approaches in accurately identifying individual cell instances and tracking their movements

over time. Hence, developing effective segmentation and tracking methods is essential for automatic

and accurate analyses of bacterial cell populations.
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(a) E. coli (b) S. oneidensis

Figure 1.1: Maximum intensity projection of the image stacks of two kinds of biofilms

1.1 Cell Segmentation

Single cell segmentation from microscopy images of biofilms is highly susceptible to undersegmen-

tation and oversegmentation issues, primarily due to the presence of numerous touching cells and

instances with intensity inhomogeneities. Traditional model-based methods, including threshold-

ing, level sets, graph cuts, and morphological watershed techniques [9, 10, 11, 12], are not optimal

for effective biofilm segmentation. Some of these approaches demand an initial contour or coarse

segmentation of individual instances, others require tuning numerous hyperparameters, and some

are iterative in nature, making them computationally expensive when applied to segmenting a large

number of cells in densely packed biofilms.

In recent years, deep learning-based approaches have shown superior performance in many cell

segmentation tasks. A commonly adopted strategy involves initially conducting pixel-wise segmen-

tation through a deep network, such as U-Net or its variants [13, 14, 15, 16], and subsequently

aggregate pixels into isolated cell instances using classical methods, such as watershed or graph par-

titioning techniques [17, 18]. However, performing pixel-wise segmentation directly on low-contrast

input images is observed to be less effective in detecting subtle boundary changes between touching

cells. Additionally, deep learning-based segmentation methods that involve the estimation of spatial

gradient maps [19] can be easily affected by intra-cellular intensity inhomogeneity, leading to the

segmentation of broken cells. Furthermore, despite the effectiveness of region-based convolutional

neural networks, namely Mask-RCNN and its variants [20, 21], in many segmentation applications,
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these methods are found to struggle in the presence of touching instances due to non-maximum

suppression operations.

Recently, distance transform prediction-based approaches have become very popular owing to

their superior performance in segmenting individual cell regions [22, 23, 24]. Such methods enhance

individual cell regions performing U-Net-based distance transform estimation, followed by a classical

seeded watershed segmentation. However, the lack of effective distance transform representation,

difficulty in learning high-quality distance maps from low contrast input, and the need for multiple

threshold tuning during seed selection in the watershed segmentation stage often hinder successful

segmentation. Inspired by the promising performance of these approaches in certain cell segmen-

tation tasks, we propose a superior distance transform-based segmentation approach to effectively

segment bacterial cells from dense biofilm images. The proposed segmentation approach addresses

both oversegmentation and undersegmentation errors by effectively extracting cell interior and bor-

der information through Euclidean distance transforms, and then estimating cell seeds for classical

seeded watershed through voxel-wise classification. The efficacy of the proposed approach has been

evaluated using synthetic and real 3D lattice light-sheet microscopy images of biofilms.

1.2 Cell Tracking

As individual cell instances are segmented in a biofilm image stack, we can address the problem

of tracking these instances and their offspring from a temporal sequence of image stacks. In the

presence of high cell density in such a biofilm video, frame-by-frame association of the instances

and subsequent cell division detection becomes a challenging task. Various classical model-based

approaches have been applied to address cell tracking problems, including nearest neighbor-based

tracking, graph matching techniques, motion filter-based methods, and multiple hypothesis-based

probabilistic approaches [25, 26, 27, 28, 29]. However, these approaches often require manual tuning

of many parameters and rely on simplistic assumptions about cell behavior, such as the choice of a

particular cell motion model, which may not always hold true. Some also necessitate a user-defined

similarity function to associate similar instances between consecutive frames.

In recent years, various deep learning-based cell tracking approaches have been introduced. Such

methods include a graph neural network method for complete cell trajectory estimation [30], a

deep reinforcement learning method [31], and a Siamese networks pipeline for frame-by-frame as-

sociations [32]. However, these methods lack the incorporation of temporal history for predicting

associations in the next frame, potentially leading to inaccuracies when cells are poorly imaged

3



or segmented. Additionally, they do not explicitly enforce one-to-one matching between successive

frames, allowing for erroneous associations between one-to-multiple instances. In our proposed ap-

proach, we address these limitations and develop an effective tracking strategy by incorporating

deep learning with model-based techniques for tracking bacterial cells over time and detecting their

offspring in crowded image scenarios.

1.3 Thesis Overview and Outline

This thesis involves the development of data-driven solutions that integrate deep learning and im-

age processing to facilitate the segmentation and tracking of bacterial cells in microscopy images of

densely packed biofilms. The thesis accomplishes three main research objectives: (1) In chapter 2,

we propose a simulation framework to generate 3D synthetic biofilm images consisting of realistic-

shaped bacterial cells [33]. We exploit an elastic shape analysis framework to model realistic bacteria

shapes in 3D. The proposed simulation framework can be useful for producing realistic-shaped syn-

thetic images and videos to train deep learning models for cell segmentation and tracking purposes.

(2) In chapter 3, we propose a new 3D cell segmentation method called DeepSeeded, a cascaded deep

learning architecture to segment densely packed bacterial cells in biofilm microscopy images [34].

We incorporate effective distance transform representation, design a loss function for learning high-

quality distance maps, and adopt a data-driven seed estimation to avoid hyperparameter tuning.

(3) In chapter 4, we introduce a cell tracking framework named DenseTrack [35] for tracking bac-

terial cells in 3D image sequences of densely populated biofilms. The proposed tracking approach

formulates the frame-by-frame association problem as a deep learning-based temporal sequence clas-

sification task, followed by an optimization-based one-to-one matching. Additionally, we propose an

effective cell division detection method involving the Eigen decomposition of the coordinates of the

unmatched instances in the next frame.
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Chapter 2

Realistic-shape Bacterial Biofilm

Simulator for Deep Learning-based

3D Single-Cell Segmentation

2.1 Introduction

This chapter presents an image simulation tool that can produce 3D synthetic biofilm images con-

sisting of realistic-shaped bacteria cells [33]. We model realistic bacteria shapes exploiting a 3D

elastic shape analysis framework known as square-root normal field (SRNF) representation [36].

These newly modeled curvilinear-shaped bacteria cells replace the conventional rod-shaped cells in

synthetic biofilms generated through a biofilm modeling software called CellModeller [37]. We then

demonstrate that training a deep segmentation network using the resulting synthetic biofilms no-

ticeably improves the single-cell segmentation performance on real biofilm data when compared to

training with conventional rod-shaped synthetic biofilms.

2.2 Related Works

Single-cell segmentation in dense 3D biofilms is a challenging task. Traditional model-based image

segmentation approaches, such as thresholding, watershed, and level-set methods, often fail to ac-

curately segment intensity-inhomogeneous 3D bacteria cells from the noisy background [38, 39, 40].

The high density of cells in a biofilm further degrades segmentation performance where most al-
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(a) (b)

(c)

Figure 2.1: Illustration of the proposed method: (a) Examples of curvilinear-shaped synthetic bac-
teria, (b) Transformation of a rod-shaped simulated biofilm into a curvilinear-shaped simulated
biofilm, (c) Training 3D U-Net with curvilinear-shaped biofilm dataset.

gorithms struggle to separate the neighbouring touching cells [41]. In contrast, data-driven deep

learning techniques have recently shown superior potential in cell segmentation and detection prob-

lems [42, 43, 19] by overcoming various limitations of the conventional model-based approaches.

However, deep networks typically require a large amount of ground-truth training data for the opti-

mal performance. We note that it is difficult, if not impossible, to manually produce ground-truth

annotations of individual cells from a large number of dense 3D biofilms. Thus, synthetic training

data is employed in recent studies to train deep segmentation networks for 3D cell images [44, 17].

There exist computational algorithms to simulate synthetic bacterial biofilms, which model the

growth and division of bacterial cells in a biofilm according to some predefined biological and chem-

ical rules [37, 45, 46]. Such simulation models represent bacterial cells in a simple shape geometry,

such as a rod-shaped cell, which consists of a cylindrical body and two hemispherical ends. The rod-

shaped cellular morphology is mostly used to model bacterial biofilms of the Bacillus species, such

as Escherichia coli, Bacillus cereus, and Salmonella bongori microbial populations. However, the

synthetic biofilms represented with rod-shaped cells do not correspond very well with real biofilms

from the microscope, where the bacteria cells have more irregular curvilinear-shaped morphology.

6



2.3 Proposed Approach

In this section, we explain how to model realistic bacteria shapes using shape analysis, exploit these

shapes to simulate 3D synthetic biofilms, and train a basic U-Net with the simulated biofilms. An

overview of the proposed method is demonstrated in Fig 2.1.

2.3.1 Modeling Realistic Bacteria Shapes

We use the square-root normal field (SRNF) representation [36] to analyze a small number of bac-

teria cells manually segmented from real biofilms and generate new synthetic bacteria shapes. We

manually segment 50 bacterial cells from several real microscopy biofilms which are not used to

validate the segmentation performance. The segmented cells are represented in point clouds in R3.

The point clouds are transformed into spherically-parameterized surfaces by applying a 3D surface

parameterization representation method called SPHARM [47]. Each bacterial shape is represented

as a parameterized function: fi : S2 → R3(i = 1, ..., 50), fi ∈ F , where F is the set of surfaces.

To analyze the shapes of bacterial surfaces, we utilize the elastic shape analysis approach [48].

Let Γ be the set of all orientation-preserving diffeomorphisms of S2. For any parameterized surface

f ∈ F and a γ ∈ Γ, the composition f ◦ γ is simply a re-parameterization of f and has the same

shape as f . Equivalently, for any two maps f1 and f2, elements of γ help in a dense registration of

points across two maps. Initially, for any s ∈ S2, we say that the point f1(s) on f1 is registered to

the point f2(s) on f2. If we re-parameterize f2 by γ, then the point f1(s) is now registered to the

point f2(γ(s)). Thus, γ becomes a tool for controlling the registration between surfaces. In order

to quantify the differences in the shapes of surfaces, we need a metric that is invariant to their rigid

motions, global scaling, and re-parameterization.

To accomplish this, we utilize a special mathematical representation called the square-root normal

field (SRNF) as follows. For an s ∈ S2, where s = (u, v) is a point on the sphere S2, the partial

derivatives fu and fv denote two orthogonal tangent vectors to the surface f at the point f(s). The

vector n(s) = fu×fv denotes the (unnormalized) normal vector at points s. Then, SRNF q : S2 → R3

of f is defined as: for s ∈ S2, q(s) = n(s)/ |n(s)|
1
2 , where | · | denotes the vector norm. As described

in [49], the L2-metric under SRNF representation is invariant to shape-preserving transformations,

and can be used to compare shapes of surfaces. The SRNF is invariant to translations since it

involves only derivatives of f . We separate the scaling variability by re-scaling all surfaces to unit

area: f = f/
√
αf , where αf =

∫
S2 |n(s)|ds is the surface area of f . In this modeling problem, we
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will separately preserve, analyze, and include the size information of bacteria as it is an important

feature.

Now, let O ∈ SO(3) denotes all 3D rotations. The SRNF of the rotated and re-parameterized

surface O(f ◦ γ) becomes O(q ⋆ γ) ≡ O
√
Jγ(q ◦ γ), where Jγ is the determinant of the Jacobian of

γ. Hence, we can define a shape metric between f1 and f2 as follows,

ds(f1, f2) = inf
(O,γ)∈SO(3)×Γ

∥q1 −O(q2 ⋆ γ)∥ , (2.1)

for all O ∈ SO(3) and all γ ∈ Γ. Here, the optimal rotation O∗ is solved by Procrustes analysis, and

the optimal re-parameterization γ∗ is solved using a gradient-descent approach. The details of the

algorithms are presented in [48].

We can use this framework to define statistical summaries of bacteria shapes. We define the

Karcher mean of all given surfaces f1, f2, . . . , f50 as the shape µ that minimizes the sum of square

of distances to the given shapes under the shape metric, i.e., µ = arg minf∈F
∑n

i=1 ds(f, fi)
2 . Note

that in the process of computing the Karcher mean, we also get all surfaces fi that are aligned to

the mean shape. With the Karcher mean and the aligned surfaces, we perform principal component

analysis (PCA) to capture essential shape variability, and derive low-dimensional representations

of shapes for use in generating synthetic bacteria. We start by computing the covariance matrix

C for surfaces, C =
∑n

i=1 ViV
T
i , where matrix V contains fi − µ in its ith column Vi. By

performing singular value decomposition (SVD) of the covariance matrix C = UΣUT , we obtain

the left singular vectors as the columns of the unitary matrix U . These columns form the principal

directions of shape variability in the data. Next, we compute the principal scores for all surfaces

based on zi,d = ⟨fi − µ,U(:, d)⟩, where zi,d denotes the surface fi’s principal score on the d -th

principal direction. Thus, a high-dimensional object fi is now represented by a d -dimensional vector

zi ∈ Rd. In this study, the first 19 principal components can explain over 95% of the variability in

shapes, so we use d = 19. It is important to note that this representation is invertible and we can

reconstruct the surfaces according to: f̂i = µ +
∑n

d=1 zi,dU(:, d). After computing the areas and

shape principal scores of manually segmented bacterial surfaces, we generate some synthetic shapes.

We compute the mean µα and the variance σ2
α of areas αfi of all given surfaces. We also compute

the variance σ2
d of shape principal scores zi,d, where i = 1, 2, ..., 50 and d = 1, 2, ..., 19. For synthesis,

we randomly generate areas α̂fj and principal scores ẑj,d according to the normal distributions

N (µα, σ
2
α) and N (µd, σ

2
d), where j = 1, 2, . . . , 500. The reconstructed curvilinear bacteria surface is

8



represented as follows,

f̂j = α̂fj (µ +

n∑
d=1

ẑj,dU(:, d)), ∀j (2.2)

Overall, we have generated 500 synthetic bacteria surfaces. Finally, we transform these synthetic

surfaces back into point clouds in R3. A few examples of such generated shapes are shown in Fig 2.1a.

2.3.2 Simulating 3D Biofilms

With the generated curvilinear bacteria shapes, next step is to simulate 3D synthetic bacterial

biofilms. First, we model the biofilm growth for different spatial arrangement of cells using the biofilm

modeling software, named Cell-Modeller [37]. An output from Cell-Modeller can be considered as

a biofilm consisting of numerous adjacent bacteria cell units, where each unit is represented by a

simple rod-shaped structure.

Let a rod-shaped biofilm with m rod-shaped cells be represented as a collection of point clouds,

Br = {P (1)
r , ..., P

(m)
r }, where each rod-shaped cell is represented as a point cloud, P

(j)
r = {ri}ni=1

of n points in R3. We aim to replace P
(j)
r for all j with a synthetic curvilinear-shaped point cloud,

P
(j)
c = {ci}ni=1, ci ∈ R3. First, we shift both P

(j)
r and P

(j)
c to the center of the coordinate system

by subtracting the means of the corresponding point clouds. Next, P
(j)
c is rotated to align with the

rod-shaped point cloud P
(j)
r using the iterative closest point (ICP) algorithm [50]. To make the size

of P
(j)
c consistent with P

(j)
r , we scale the cell P

(j)
c by applying: P̂

(j)
c = ∥P (j)

r ∥2(
P (j)

c

∥P (j)
c ∥2

). Finally,

P̂
(j)
c is translated to the original coordinates of P

(j)
r . We repeat these steps for all j to replace all

rod-shaped cells in Br with the curvilinear-shaped cells from our set of generated shapes, and obtain

a curvilinear-shaped synthetic biofilm, Bc = {P̂ (1)
c , ..., P̂

(m)
c }. The transformation of a rod-shaped

synthetic biofilm into a curvilinear-shaped one is depicted in Fig 2.1b.

The continuous coordinates of a synthetic biofilm Bc are quantized to turn it into a discrete 3D

volume. To generate a training label for the segmentation network, the voxels within the discrete vol-

ume are labelled into three categories, background (class 0), cell-interior (class 1), and cell-boundary

(class 2). Such multi-class labelling can provide better segmentation performance compared to a

binary labeling [42, 17]. To generate the fluorescence image volume as a training input data, we

first simulate fluorophore distributions within the discrete volume, and then convolve it with the

experimentally-acquired point spread function (PSF) [17]. Finally, Gaussian and Poisson-distributed

noise is added to the convolved image volume.
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Image stack S1

Ground-truth
annotation

Trained w/
curvilinear-shape

Trained w/
rod-shape

Image stack S2

Figure 2.2: Qualitative evaluation of single-cell segmentation on real 3D microscopy stacks illustrated
in point clouds. Red arrows indicate comparative performance of the models in terms of touching
cell separation.

2.3.3 Training Segmentation Network

We train a 3D U-Net convolutional neural network [51] with the simulated curvilinear-shaped

biofilms. The network architecture is shown in Fig 2.1c. The network has an encoding path followed

by a decoding path with each path consisting of five layers. In the encoding path, each layer con-

ducts two 3×3×3 convolutions each followed by an instance normalization and parametric rectified

linear unit (PReLU) activation. A 2 × 2 × 2 max-pooling operation is performed between the con-

secutive layers. The decoding path performs transposed operations of the encoding path. Further,

skip connections are added between the corresponding layers of encoding and decoding paths to

combine features from different spatial resolutions. In Fig 2.1c, orange boxes represent the feature

maps. The number of channels in each of the two features maps of a layer is also denoted in the

figure. To train the network, we exploit a hybrid loss function combining Dice loss and focal loss [52].

While the Dice loss makes the network learn the voxel distribution between different classes, focal

loss term mostly forces the network better learn the poorly predicted boundary voxels. The Adam

optimization algorithm is used to minimize the loss function.
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Test Stacks Train Dataset Precision Recall F1 Score

Stack S1
Rod-shape 0.9412 0.2963 0.4507

Curvilinear-shape 0.8400 0.7778 0.8077

Stack S2
Rod-shape 0.9259 0.4098 0.5682

Curvilinear-shape 0.9737 0.6066 0.7475

Table 2.1: Quantitative evaluation on real test stacks

2.4 Experimental Setup

We perform experiments to analyze how the U-Net segmentation network performs segmentation

task on real microscopy data while training the network with curvilinear-shaped synthetic dataset

vs. rod-shaped synthetic dataset. We simulated 25 rod-shaped 3D biofilms with different cell

arrangements and density from the CellModeller software [37]. For each rod-shaped biofilm of

dimensions 500× 500× 100 (x-y-z), the corresponding curvilinear-shaped counterpart is generated

using the proposed framework. Each biofilm is further randomly cropped into four ROI volumes of

spatial dimensions 160×160×96 (x-y-z). Overall, there are 25×4 = 100 training input-label pairs in

both datasets. The network is trained on the MONAI (Medical Open Network for AI) platform [53],

which is an open-source PyTorch-based framework for image segmentation. For training with either

dataset, we have used the same training parameters with train batch size=2, learning rate=0.0001

in Adam optimizer, and 250 training epochs. The network is trained on a machine with NVIDIA

RTX GPU with 24 GB memory.

We test the trained models on two real lattice light-sheet microscopy Escherichia coli image

volumes obtained from [54]. The dimensions of the two volumes are 153 × 154 × 51 and 164 ×

166 × 51, respectively. For these two volumes, ground-truth cell annotations are also provided. To

evaluate segmentations of these two test image volumes, the raw volumes are first pre-processed

with deconvolution operation and then fed into the network. The network outputs a three-class

segmentation mask (background, cell interior, and cell boundary). The voxels corresponding to

the cell interior class are grouped using connected-component analysis and then dilated to obtain

the final instance-labeled segmentation result (S). We qualitatively and quantitatively evaluate

the segmentation outputs (S) with respect to the ground-truth annotations (G). For quantitative

evaluation of the single-cell segmentation, we compute precision, recall, and F1 score for different

intersection-over-union (IoU) thresholds between the segmentation outputs (S) and the ground-

truths (G), where precision = TP
TP+FP , recall = TP

TP+FN , F1 = 2×precision×recall
precision+recall , and IoU = S∩G

S∪G .

Here, TP (true positive) denotes the number of accurately detected cells, FP (false positive) denotes
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(a) Stack S1 (b) Stack S2

Figure 2.3: F1 scores vs. IoU thresholds on two real test stacks while training with curvilinear vs
rod-shaped data.

the number of incorrectly detected cells, and FN (false negative) denotes the number of missing

cells.

2.5 Experimental Results And Discussion

We demonstrate qualitative comparison between the segmentation results from the curvilinear-

shaped trained model vs. the rod-shaped trained model on real biofilm stacks S1 and S2 in Fig 2.2.

In each row of Fig 2.2, the first column is the maximum intensity projection (MIP) of the raw fluo-

rescence image volume. The second column is the ground-truth annotation of individual cells. The

third and fourth columns show the segmentation outputs from curvilinear-shaped trained network

and rod-shaped trained network, respectively. The cells which are correctly identified in the segmen-

tation outputs with respect to ground-truth annotation (true positives), are annotated with same

color for proper visual comparison. From both rows in Fig 2.2, it is observed that the segmentation

output from curvilinear-shaped model is characterized by more correctly identified cells and less

touching cells when compared to the corresponding output from rod-shaped trained model. The red

arrows on the images indicate locations on the biofilm where the proposed curvilinear-shaped trained

model successfully separate the touching cells while the comparative rod-shaped trained model failed

to distinguish between them.

In Table 2.1, we demonstrate precision, recall, and F1 score on the segmentation outputs of the

stacks S1 and S2. Here we consider that the intersection-over-union (IoU) between a segmentation

output and ground-truth annotation is 0.1, i.e., a cell is detected if the overlap between the seg-

mentation mask and the ground-truth mask is 10% or more. From the table, it is evident that for

both stacks (S1 and S2), the proposed curvilinear-shaped trained model renders better F1 scores

than the rod-shaped trained model. Although in case of S1, the rod-shaped trained model attains
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better precision than the curvilinear-shaped trained model, it performs very poorly in terms of recall

yielding very low F1 score. The reason behind this result is the presence of many touching cells in

the output of the rod-shaped trained model (top row in Fig. 2.2). It is evident that the presence

of numerous touching cells results in higher number of false negatives (i.e., lower number of true

positives), and at the same time lower number of false positives. Therefore, the model yields low

recall score although the precision is high. In case of S2, the proposed curvilinear-shaped trained

model outperforms the rod-shaped trained model in terms of precision, recall, and F1 scores. We

also plot F1 scores with respect to multiple IoU thresholds for both models in Fig 2.3. From the

figure, we see that the F1 scores drop as the IoU threshold values increase. This trend is expected

since the segmented cells with volumes smaller than the threshold are not detected as true posi-

tives. However, curvilinear-shaped trained outputs maintained significantly higher F1 scores than

the rod-shaped trained outputs even at greater IoU thresholds of 0.2 and 0.3 on both stacks.

2.6 Conclusion

We proposed a framework for simulating synthetic 3D biofilms comprising of realistic cellular mor-

phology. We demonstrated that training a simple segmentation network with these realistic-shaped

synthetic biofilms significantly improves the single-cell segmentation accuracy on real biofilm images

compared to training with conventional rod-shaped synthetic biofilms.
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Chapter 3

Volumetric Segmentation of Dense

Cell Populations with a Cascade of

Deep Neural Networks in Bacterial

Biofilm Applications

3.1 Introduction

This chapter presents a solution to the problem of segmenting densely-packed cells in 3D microscopy

images. Cell segmentation is a crucial task in image processing that facilitates the understanding of

the characteristics of a cellular population. Given a segmentation, the microscopist is able to local-

ize and track cells over time, detect cell division and growth rates, trace cell lineages, and extract

volume, shape, and other representative information. These quantitative details can provide insights

regarding cellular health and cellular response to certain drugs [55]. While many automatic segmen-

tation approaches have been developed over the years, cell segmentation still remains challenging in

certain conditions, such as low signal-to-noise ratio, intra-cellular intensity inhomogeneity, and high

cell density, especially in 3D imaging.

We introduce a novel cell segmentation method called DeepSeeded [34], which uses a combi-

nation of two deep convolutional networks to predict the initial seeds required by the traditional

seeded watershed algorithm for cell segmentation. Our proposed technique has been tested on 3D
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microscopy images of bacterial biofilms. Through experiments conducted on a synthetic dataset and

two real biofilm datasets, we have shown that proposed approach outperforms existing deep learning

methods and a traditional method in terms of various measures of segmentation accuracy.

3.2 Related Works

There exist many classical approaches for cell segmentation, including thresholding methods followed

by pixel-grouping via connected components [9, 56], morphological methods based on the watershed

transform [57, 10, 38], geometric active contour models [58, 11], and methods using graph cuts [59,

12]. Among these approaches, thresholding methods often suffer from over-segmentation or under-

segmentation errors that result in broken cells, rough region boundaries, and clumps of touching cells.

Unlike thresholding, active contour models are able to address the intensity inhomogeneity problems

and provide smooth segmentation results; however, they face difficulty in separating touching cells in

the absence of an initial contour for each cell. The graph cut and watershed-based methods are more

suitable approaches when dealing with densely packed overlapping cells. The graph cut techniques

first require an initial detection or coarse segmentation of the cell regions from the background and

then attempt to split the touching cells into isolated cells by cutting graphs based on conditions such

as minimum similarity of node features [60]. While such graph cut methods can improve touching

cell separation, their performance can degrade if the initial detection stage fails to detect cells in

the regions of heterogeneous brightness. Also, the iterative graph optimization in 3D for large input

volumes becomes computationally expensive. In contrast, marker-controlled or seeded watershed

methods feature reduced computation and also require tuning a smaller number of hyperparameters

compared to graph cuts and active contour methods. However, accurate cell seed estimation is also

very challenging in low-contrast and densely packed cell images. Precise seed generation demarcates

the desired regions in the image and hence is crucial to successful segmentation by the seeded

watershed segmentation [61]. Accurate estimation of seed markers helps avoid over-segmentation

and under-segmentation errors, enhancing the algorithm’s ability to handle noise and improving the

overall robustness [62]. Various approaches have been attempted for extracting these seeds, such as

the h-minima (or maxima) based techniques [63, 64] and multilevel thresholding [65, 66, 67]. Seed

estimation following these approaches requires tuning specific thresholds or hypereparameters that

are not adaptive to new data.

Over the recent years, various data-driven deep learning techniques have been proposed for cell

segmentation. One widely adopted approach is to first perform pixel-wise segmentation (also known
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as semantic segmentation) using a deep network, e.g., a U-Net [13, 51, 14, 68], and later group pixels

into isolated cell instances using classical algorithms, such as watershed or graph partitioning tech-

niques [69, 70, 17, 18]. The U-Net-based pixel-wise segmentation directly performed on low-contrast

input images is not very effective in detecting the subtle boundary changes between touching cells,

often causing inaccurate classification of the boundary pixels. Moreover, with U-Net results, the

later post-processing stage involves various tunable hyper-parameters and hence cannot resolve the

touching-cell problem in a data-adaptive fashion. In recent developments, attention-based trans-

former encoders have also been employed within the U-Net architecture for pixel-wise segmentation

tasks [15, 71, 16]. Another notable approach, known as Cellpose [19], estimates spatial gradient

maps from the input image and later performs gradient tracking to achieve final instance-wise seg-

mentation. However, such a gradient feature-based method can be easily affected by the noise and

heterogeneous illumination present in the input.

Furthermore, various methods have been proposed to perform end-to-end instance-wise seg-

mentation. The region-based convolutional neural networks, namely Mask-RCNN and its vari-

ants [20, 21, 72, 68] are widely used instance-wise segmentation approach. The original Mask R-CNN

method [20] consists of several key components: a CNN backbone, a region proposal network (RPN)

with non-maximum suppression, a RoIAlign layer, and individual prediction heads for instance-wise

segmentation. These methods output a bounding box, classification label, and pixel/voxel-wise

mask per detected instance. While the Mask-RCNN-based methods have demonstrated significant

performance gain in many applications, these methods struggle in situations with many touch-

ing/overlapping objects in space due to greedy non-maximum suppression post-processing, as men-

tioned and demonstrated in the literature [73, 74, 75].

More recently, transformer-based end-to-end instance-wise detection and segmentation methods

have been proposed [76, 77]. These approaches employ a combination of transformer encoder-

decoder, CNN backbone encoder, and CNN decoder to produce bounding box predictions, class

labels, and masks for detected instances. These methods have demonstrated their effectiveness in

2D object detection and cell segmentation tasks. However, their suitability for predicting separate

bounding boxes for individual instances in dense 3D cell environments is an area that requires

further exploration. In addition, several techniques have been suggested with a specific emphasis

on segmenting the cellular soma regions from microscopy images of neuronal cells, for instance,

approaches such as the scale fusion segmentation network and the structure-guided segmentation

network [78, 79]. Other soma segmentation approaches include a ray-shooting model combined with

Long Short-Term Memory (LSTM)-based network [80], and 3D U-Net-based approaches [81, 82].
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Recently cell segmentation methods that incorporate the concept of CNN-based distance map

prediction, followed by seeded watershed segmentation, have demonstrated great success in segment-

ing images of densely packed cell populations. Such methods train a convolutional neural network

(CNN) to estimate a cell distance map from a low-contrast input image [23, 83]. In this cell dis-

tance map, the cell interior pixels are more enhanced than the boundary pixels. However, in the

case of many touching cells, an additional map representing the cell border information was found

to be more effective. Scherr et al. [22] proposed a neighbor distance map in addition to the cell

distance map, which utilizes not only touching cells but also close cells in the CNN training pro-

cess. Similarly, Zhang et al. [24] proposed a CNN-based dual distance map prediction approach to

estimate a more effective cell border map. Both these approaches perform the final segmentation

task by exploiting the seeded watershed algorithm, where the seeds are obtained by thresholding

the estimated maps from the CNN. While these methods can improve cell segmentation accuracy

by enhancing the cell interior and border from the low-contrast input, the subsequent seed selection

stage for the watershed-based segmentation involves tuning various parameters, such as intensity,

size, or shape-based thresholding parameters. These thresholds may not be readily applicable to

other datasets. Furthermore, in the presence of heterogeneity of intensity, size, or shape among

the cells, the choice of global image thresholds may not be appropriate for extracting the cell seeds

accurately.

The proposed method, DeepSeeded, overcomes several limitations of existing solutions. Firstly, we

utilize a CNN for the image regression task, estimating two distance maps from the low-contrast input

image stack. However, compared to existing distance map-based solutions [22, 24], we incorporate

an effective distance map representation to facilitate the separation of touching cells. Additionally,

we propose a specialized loss function to enhance the quality of distance map estimations. Secondly,

we leverage another CNN for voxel-wise classification (also known as semantic segmentation), which

automatically estimates the seeds required for the seeded watershed algorithm. This additional

network eliminates the need for sub-optimal thresholding-based seed estimation. We demonstrate

the performance of the proposed method in the segmentation of bacteria cells from 3D microscopy

images of densely packed biofilms. Segmentation of individual instances of bacteria from a biofilm

image is challenging due to the presence of many touching cells and due to intra-cellular intensity

inhomogeneity, which lead to under-segmentation and over-segmentation errors, respectively.
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Symbols Description
x Input 3D cell image
x̃c Cell interior-enhanced image
x̃b Cell border-enhanced image
ṽ Voxel-wise classified map
x̃l Instance labeled segmentation
T Number of training samples
N Number of voxels in an image

Table 3.1: Description of symbols

Our Contribution

The main contributions of the proposed method are mentioned as follows:

• We propose an automatic seed estimation approach for the seeded watershed algorithm using

a cascade of two deep networks, an image regression network, and a voxel-wise image classi-

fication network. Such an approach eliminates the need to tune any hyperparameters during

the online/testing phase of the segmentation workflow.

• We propose a novel cell border representation, the ‘border neighbor distance map,’ to be

learned by the regression network for a precise estimation of the border voxels. Such a repre-

sentation is beneficial for separating touching cells in a densely packed volume.

• We utilize a 3D multi-scale structural similarity index measure (MS-SSIM) as a loss term in

combination with an error-based loss to train the regression network. Such a loss function

formulation ensures superior image quality of the cell interior and border estimation maps.

This chapter is organized as follows: Section 3.3 presents the theory of the proposed approach. Sec-

tion 3.4 includes details of the experimental setup and dataset, evaluation metrics, and comparative

methods. Experimental results are presented and explained in Section 3.5. Limitations and future

potentials are discussed in Section 3.6. Finally, Section 3.7 offers concluding remarks. A number of

symbols used in the chapter are listed in Table 3.1.

3.3 Proposed Approach

The proposed segmentation approach is an instance-based segmentation approach that labels every

cell in the input image. The segmentation problem is formulated as finding the seeds of a classical

watershed algorithm using deep learning. An overview of the proposed approach is demonstrated in

Fig 3.1. We then explain the details of each component of the proposed cell segmentation framework.
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Figure 3.1: Overview of the DeepSeeded segmentation workflow. The input and output images
demonstrated in this artwork correspond to a 2D slice of a 3D biofilm stack.

3.3.1 Image Regression Network

Given a potentially low-contrast 3D microscopy image x, we produce two new 3D images, x̃c and

x̃b, where x̃c represents a cell interior-enhanced image and x̃b represents a cell border-enhanced

image. We implemented a modified two-decoder version of the original single-decoder 3D U-Net [51]

to estimate these two maps.

To train the network with groups containing one input and two target images, the ground truth

images for two targets {xc,xb} are generated from a ground truth instance-labeled image xl of x

where l = {0, 1, .., L} with L cell instances and 0 as background. We refer to xc and xb as ‘cell

distance map’ and ‘border neighbor distance map,’ respectively. The ‘cell distance map’ xc is com-

puted from xl by calculating the Euclidean distance transform for each of the L cells independently.

To compute the ‘border neighbor distance map’ xb, we first find the border voxels of each cell, and
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then for each border voxel, we compute the inverse normalized distance to the nearest neighbor

voxel. The detailed steps of computing xc and xb are provided in Algorithms 1 and 2.

We propose a precise border map representation to be learned by a regression network in contrast

to representations in [22, 24]. In [22], a neighbor distance map is computed pixel-wise for each cell

from a ground-truth instance-labeled image. The approach in [24] refines this representation by

multiplying the neighbor distance map with a weight matrix so that the boundary pixels/voxels

are more enhanced than the cell interior. Although this representation enhances cell boundaries, a

percentage of cell-interior voxels can still be highlighted in a cell border representation, especially in

dense neighborhoods, such as within a bacterial biofilm. In this work, we propose a ‘border neighbor

distance map’ that computes the neighbor distance only for the border voxels of each cell. This

approach yields a sharper border representation. In Fig. 3.2, we qualitatively compare the ground-

truth distance maps from the proposed method with those in [22, 24]. The maps are computed

in 3D from a ground truth instance-labeled image of an E. coli- biofilm, shown in Fig. 3.2a. We

demonstrate the maps for a particular 2D slice (Fig. 3.2b) of the image volume.

(a) GT annotation (3D) (b) GT annotation (slice) (c) Proposed CDM (d) Proposed BDM

(e) [24] CDM (f) [24] BDM (g) [22] CDM (h) [22] BDM

Figure 3.2: Qualitative comparison of cell distance map (CDM) and border distance map (BDM)
between the proposed method and the competing methods. The maps in the figures (3.2c-3.2h)
correspond to the 2D slice in Fig. 3.2b.

We propose a hybrid loss function to train the regression network by incorporating an image

quality-based loss term in combination with the error-based loss. The proposed loss function consists

of multiscale SSIM loss (MS-SSIM) and smooth L1 loss. While the smooth L1 loss minimizes the

error between the ground truth and prediction, the MS-SSIM loss especially helps to maximize

the image quality of the prediction with respect to the ground truth. With T number of training

samples, our loss term is the sum of the losses to estimate the two maps,

20



Loss, LR =
1

T

T∑
t=1

[
Cost(xc

t , x̃
c
t) + Cost(xb

t , x̃
b
t)
]

=
1

T

T∑
t=1

[αCSL1(xc
t , x̃

c
t) + (1− α)CMS-SSIM(xc

t , x̃
c
t)

+ αCSL1(xb
t , x̃

b
t) + (1− α)CMS-SSIM(xb

t , x̃
b
t)]

(3.1)

In equation (3.1), CSL1 refers to smooth L1 cost term and CMS-SSIM represents MS-SSIM cost term.

The parameter α is used to control the balance between these two terms. The smooth L1 cost term

is further defined in (3.2), where N is the number of voxels in the image. The terms x̃(n) and x(n)

correspond to the predicted distance map and the ground truth distance map values, respectively,

at the nth voxel.

CSL1(x, x̃) =
1

N

N∑
n=1

SL1(n) (3.2)

SL1(n) =


0.5 [x(n)− x̃(n)]2, if |x(n)− x̃(n)| < 1

|x(n)− x̃(n)| − 0.5, otherwise

Since MS-SSIM is an image quality-based measure that we aim to maximize, the MS-SSIM cost

term is computed to minimize the following term,

CMS-SSIM(x, x̃) =
1

N

N∑
n=1

[1−MS-SSIM(n)] (3.3)

The computation of MS-SSIM involves computing the SSIM metric at multiple

scales/resolutions [84]. The SSIM for each pixel/voxel n is defined as follows,

SSIM(n) =
2µxµx̃ + C1

µ2
x + µ2

x̃ + C1
· 2σxx̃ + C2

σ2
x + σ2

x̃ + C2
= l(n) · c(n)

Here, µx, σx and σxx̃ denote the mean of x, the variance of x, and the covariance of x and x̃,

respectively. To ensure numerical stability, small constants C1 and C2 are used. Means, standard

deviations, and covariance are computed with a 3D Gaussian filter of standard deviation σG. The

terms l(n) and cs(n) represents luminance and contrast sensitivity measures, respectively.

To utilize the SSIM-based image quality measure as a loss function, we especially apply rectified

linear unit (ReLU) activation function on those two terms to avoid the negative values in the loss

function,

l(n) := max(0, l(n)); c(n) := max(0, c(n))
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Algorithm 1 Compute Cell Distance Map

1: Input: Instance labeled image xl

2: Output: Cell distance map xc

3: xc ← zeros(size(xl)) ▷ initialize as matrix of zeros
4: O ← voxel locations of xl where l = 0
5: for l = 1, ...., L do
6: cl ← lth cell ▷ coordinates of lth cell
7: for p in cl do
8: i, j, k ← location of p in xl

9: for q in O do
10: dpq ← E(p, q) ▷ Euclidean distance
11: end for
12: xc(i, j, k)← min(dpq)
13: end for
14: end for

Algorithm 2 Compute Border Neighbor Distance Map

1: Input: Instance labeled image xl

2: Output: Border neighbor distance map xb

3: xb ← zeros(size(xl)) ▷ initialize as matrix of zeros
4: for l = 1, ...., L do
5: cl ← lth cell
6: cb ← boundary voxels of cl

7: for p in cb do
8: i, j, k ← location of p in xl

9: for m = 1, ...., L and m ̸= l do
10: cm ← mth cell
11: for q in cm do
12: dpq ← E(p, q) ▷ Euclidean distance
13: end for
14: end for
15: xb(i, j, k)← 1−min(dpq)
16: end for
17: end for

Finally, the MS-SSIM for each voxel n is computed over a pyramid of M different resolutions as

follows,

MS-SSIM(n) = lβM (n) cβM (n)

M−1∏
j=1

c
δj
j (n) (3.4)

The hyperparameters α, β, and {δj} are set empirically during the offline training stage of the

network and have been chosen on a validation set of images.
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3.3.2 Voxel-wise Classification Network

The difference map d̃ = x̃c − x̃b of the two predicted maps from the regression network is provided

as input to the classification network. We learn a mapping F : d̃→ ṽ to predict the class label k of

each voxel in d̃ using a 3D residual U-Net. Each voxel ṽn denotes the probability of being classified

as class 0, 1, or 2, representing the background, cell interior, and cell border classes, respectively. In

order to train the network, the target voxel-wise labeled image v is generated from the corresponding

ground truth instance-wise labeled image xl with L cell instances. In such a target image v, a voxel

of a cell is considered a border voxel if any of its neighbors has a different cell label. The remaining

voxels of that cell are considered cell interior voxels. The cell interior and border voxels are labeled

as 1 and 2, respectively, while all background voxels are labeled as 0. With the ground truth and

predicted maps, we train the network using a loss function combining soft Dice loss [15] and focal

loss [85] as follows,

Loss, LC =
1

T

T∑
t=1

[CDice(vt, ṽt) + Cfocal(vt, ṽt)] (3.5)

where,

CDice(v, ṽ) = 1− 2

K

K−1∑
k=0

∑N
n=1 vk(n)ṽk(n)∑N

n=1 [v2k(n) + ṽ2k(n)]

Cfocal(v, ṽ) = − 1

N

N∑
n=1

K−1∑
k=0

vk(n)[1− ṽk(n)]γ log ṽk(n)

and, ṽk(n) =
eṽk(n)∑K−1

j=0 eṽj(n)

Here, K = 3 for three-class voxel-wise classification. The Dice loss enables the network to maximize

the overlap of voxels between the ground truth and segmentation. The focal loss mainly aims to

minimize the segmentation error on the hard examples, such as cell border voxels.

We illustrate the predicted intermediate maps from the two networks in the proposed DeepSeeded

approach for an example E. coli image stack in Fig. 3.3. The predicted cell distance map and

the border neighbor distance map from the regression network are demonstrated in Fig. 3.3b and

3.3c, respectively. It is important to note that we show the border neighbor distance map for a

single slice only, as the maximum intensity projection (MIP) view does not provide suitable border

visualization. The difference map of the cell distance map and the border neighbor distance map

is shown in Fig. 3.3d. The observations from this figure indicate that the background is more

distinct, and the cells are better separated compared to the cell distance map alone. Furthermore,
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we present the output of the voxel-wise classification network after performing connected components

in Fig. 3.3e, which is referred to as the seed-labeled image. Finally, the instance segmentation result

after applying the seeded watershed algorithm is illustrated in Fig. 3.3f.

3.3.3 Seeded Watershed

From the voxel-wise classified output ṽ, the voxels belonging to the cell interior class (class 1)

are exploited to compute the seeds of the watershed algorithm. We perform connected component

analysis to label the 1-classified voxels as seeds. The resulting seed-labeled image is denoted as s̃.

We then apply the watershed function on the cell interior-enhanced image x̃c. Starting with the

seed locations in image s̃, the seeded watershed algorithm attributes each voxel in x̃c to a particular

seed. The resulting output is an instance labeled image x̃l with L detected cells.

(a) (b) (c) (d)

(e) (f)

Figure 3.3: (a) Given a raw image stack, the intermediate maps from the two networks and the
final segmentation by DeepSeeded approach. Here, (a) input stack (MIP), (b) predicted cell distance
map (MIP), (c) predicted border neighbor distance map (single slice), (d) predicted difference map
(MIP), (e) predicted seed labeled image (MIP), and (f) final segmentation (3D point cloud). The
term MIP refers to the maximum intensity projection.

3.4 Experimental Setup

In this section, we provide the implementation details of the cascaded deep learning framework, the

description of the dataset, the evaluation metrics, and an account of the comparative methods.
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3.4.1 Implementation Details

The regression network has been implemented by modifying the original single encoder-decoder 3D

U-Net into two decoders and a single encoder architecture shown in Fig 3.1. The encoder and

each of the two decoders consist of five consecutive convolution layers. In the encoding path, each

convolution layer performs two 3×3×3 convolutions with ReLU activation and batch normalization,

followed by a 2×2×2 max pooling with strides of two. The feature maps used in the five convolution

layers of the encoder are 32, 64, 128, 256, and 512. The same number of feature maps are used

for both decoders but in reverse order. In each of the two decoding paths, there is a transposed

convolution with 2×2×2 strides, followed by two 3×3×3 convolutions along with similar activation

and normalization. We have implemented the network in the PyTorch framework. The MS-SSIM

loss has been self-implemented for the 3D images. For the smooth L1 loss, PyTorch’s built-in

function has been exploited. The hyperparameter α in the loss function equation (3.1) is set to

0.4. In SSIM computation, the means, standard deviations, and covariance are calculated using

a 3D Gaussian filter with a kernel size of 11 × 11 × 11 and a standard deviation of σG = 1.5.

Further, in the MS-SSIM loss term equation (3.4), we have set M=5, β = 0.1333, and {δj}4j=1 =

{0.0448, 0.2856, 0.3001, 0.2363}. The network was trained for a maximum of 250 epochs using a

batch size of 2. If there is no change in the loss values for 30 consecutive epochs, the network stops

training. The initial learning rate is set at 5× 10−4, and it is gradually reduced at a rate of 0.25 to

a minimum value of 10−5. The Adam optimization is used for adjusting the weights of the network.

The voxel-wise classification network has been implemented by incorporating residual blocks

within a 3D U-Net architecture shown in Fig 3.1. Like the regression network, this network consists

of five convolutional layers in both encoding and decoding paths with 32, 64, 128, 256, and 512

feature maps. We have included two residual blocks in each of the convolutional layers of the

network. The parametric ReLU (PReLU) activation function and instance normalization have been

applied after the convolution operation. The kernel sizes for convolution and transposed convolution

operations are set to be similar to those used in the regression network. The focal loss parameter

is empirically set to γ = 1. The network has been trained for a batch size of 2, the learning rate

of 10−4, and a maximum epoch of 250. We have implemented the network using the open-source

PyTorch-based framework MONAI [86].

25



3.4.2 Dataset

We exploit a 3D synthetic biofilm dataset and a few real biofilm 3D images in our experiment.

The synthetic dataset has been generated using a biofilm simulation framework developed in our

previous work [33], which can simulate 3D synthetic biofilms consisting of realistic-shaped bacteria

cells. We simulated 40 synthetic biofilm stacks of dimensions x× y × z, where x, y ∈ [300, 500] and

z ∈ [100, 200]. Among them, 10 stacks have been separated as test stacks, 5 stacks for validation,

and the rest of the stacks have been used for training. The training and validation set images have

been further subdivided into multiple smaller patches of 128 × 128 × 64 by random cropping and

data augmentation operations. Also, we have generated 100 synthetic test volumes of 150×150×64

by random cropping from the original larger test stacks.

We have performed experiments on lattice light-sheet microscopy images [87] of two kinds of

real bacteria species, Escherichia coli and Shewanella oneidensis. We have exploited an Escherichia

coli image dataset from previously published works [17, 33]. Further, we have acquired fluorescence

images of a Shewanella oneidensis biofilm, which has a considerably higher cell density than an

Escherichia coli biofilm. The biofilm of Shewanella oneidensis was observed under two different

conditions: one with a temporal interval of 5 minutes and another with an interval of 30 seconds. In

both cases, each 2D slice was acquired at an exposure time of 10 ms. The resolution is approximately

230 nm in x and y, and 370 nm in z, assuming green fluorescent protein (GFP) excitation and

emission. Because manually labeling cells to produce ground truth annotation from dense 3D biofilm

images is very laborious and challenging, we created ground truth cell labeling for three E. coli and

two S. oneidensis stacks cropped from the original larger stacks. Two of the E. coli stacks have

dimensions of 164×166×51 and 153×154×51, and the third has a dimension of 150×150×25. These

cropped stacks correspond to three different time points in an E. coli image sequence. Among the

three stacks, the first stack was used in the training set along with its multiple augmented versions

by flip and transpose operations in x-y-z dimensions. The rest of the two E. coli stacks were used

for testing. The ground truth annotations of the E. coli stacks were generated by manually tracing

the bacteria cells slice-by-slice in 3D.

For the dense S. oneidensis stacks, ground truth annotations were generated in a semi-automatic

fashion by manually tracing cell seeds or centroids slice-by-slice in 3D and then applying seeded

watersheds on their cell distance maps obtained from the regression network shown in Fig 3.1. The

two S. oneidensis stacks with ground truth annotations have dimensions of 150 × 150 × 25 and

they correspond to two different time points of the S. oneidensis sequence with 5 minutes interval.
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To further assess the robustness of the models in handling variations in segmentation imagery, we

verified segmentation performance qualitatively on additional data. We demonstrated segmentation

on another S. oneidensis stack with larger dimensions of 200× 200× 50. This stack corresponds to

a temporal frame of the S. oneidensis sequence captured at a 30-second interval.

3.4.3 Evaluation Metrics

We evaluate the cell counting accuracy of our segmentation output S with respect to the ground

truth annotation G using per-image cell counting F1 score as follows,

CCF1 =
2× TP

2× TP + FP + FN

If we denote the number of detected cells as NS and the number of ground truth cells as NGT ,

TP represents the number of correctly detected cells, FP = NS − TP represents the number of

detected cells that do not exist in GT and FN = NGT − TP represents the number of missing cells

in S. We compute CCF1 for a range of intersection-over-union (IoU) values {0.1, 0.2, 0.3, 0.4, 0.5}

A cell is considered TP if the percentage of overlapped voxels between S and GT is above a certain

IoU threshold. By computing CCF1 over a range of IoU values, we can understand how much cell

counting accuracy is affected if more cell-volume overlapping is expected.

We also compute the single-cell F1 score, denoted as SCF1, to evaluate cell segmentation accu-

racy. SCF1 provides an assessment of the number of voxels that are correctly classified per instance

on average in the segmentation result. To calculate SCF1, each instance in the segmentation result

S is compared with the closest instance in the ground-truth mask G based on their spatial overlap.

From this comparison, we determine the true positive voxels (TP l), false positive voxels (FP l), and

false negative voxels (FN l) for each matched instance l. The number of matching instances, denoted

as Nmatch, can be less than or equal to the total number of cells in the ground-truth mask. The

SCF1 score indicates how well the segmentation result preserves the cell volume.

SCF1 =
1

Nmatch

Nmatch∑
l=1

2× TP l

2× TP l + FP l + FN l

To further evaluate the accuracy of the segmentation in separating touching cells, we also compute

a single-cell boundary F1 score [60] (denoted as SCBF1). The score SCBF1 tells us per cell how

many boundary points match with the contour of the corresponding ground truth instance. In the
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following expression of SCBF1, subscript b represents the boundary voxels.

SCBF1 =
1

Nmatch

Nmatch∑
l=1

2× TP l
b

2× TP l
b + FP l

b + FN l
b

3.4.4 Comparative Methods

The performance of the proposed method has been assessed by comparing it against four state-of-

the-art deep learning techniques and a classical segmentation approach. We have compared against

the popular distance prediction-based cell segmentation method by Scherr et al. [22], which predicts

two distance prediction maps using a two-decoder U-Net and later performs the seeded watershed

segmentation using the predicted maps. For better comparison, unlike performing the empirical

thresholding-based seed selection approach mentioned in the paper, we have performed automatic

multi-class Otsu thresholding [88] (three-class in this case) to obtain the seeds. Hence, we call this

method a distance prediction network with multi-class Otsu and the seeded watershed, DPN+Multi-

Otsu+SW. Also, the original paper performs 3D segmentation using a 2D network in a slice-by-slice

fashion, whereas we have compared against fully 3D distance predictions by modifying the original

2D network into 3D. We have also compared against a method consisting of a CNN-based pixel-wise

segmentation followed by a seeded watershed-based post-processing. While such methods mentioned

in the literature [70, 89, 55] exploit a standard U-Net convolutional network, we have adopted a

more recent network architecture, Swin Transformer-based U-Net [15] to perform the 3D pixel-wise

classification task. We call this method Swin-TransNet+SW. The proposed method has also been

compared against the popular cell-instance segmentation network Cellpose pipeline [19]. We have

further compared against the latest deep learning-based 3D biofilm segmentation approach named

BCM3D 2.0 [24], which first performs dual distance transform predictions using a regression CNN,

followed by a multi-stage thresholding-based seed selection for the seeded watershed segmentation.

Finally, we have compared against a classical segmentation approach exploited in a recent paper [55]

named MARS, which performs seeded watersheds using the h-minima (or maxima) operator. We

used the publicly available code repositories mentioned in the corresponding papers to execute the

comparative methods.

3.5 Experimental Results And Discussion

We demonstrate the qualitative comparison of the segmentation results on two synthetic biofilm test

stacks in Fig. 3.4. The images shown in Fig. 3.4a are the maximum intensity projections (MIPs) of
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(a) Synthetic Image Stacks 1 and 2 (b) GT Annotation

(c) DeepSeeded (d) DPN+Multi-Otsu+SW

(e) Swin-Transformer+SW (f) BCM3D 2.0

(g) Cellpose (h) MARS

Figure 3.4: Qualitative evaluation on synthetic 3D biofilm images. The white, yellow and red arrows
indicate various locations of touching cells, broken cells, and missing cells, respectively.

the original 3D inputs. The ground truth annotations and the corresponding segmentation outputs

are visualized in 3D. The cells which are correctly identified in the segmentation result are annotated

with the same color as in GT annotation for proper visual comparison. From the figure, we observe

that the DeepSeeded method can effectively separate the touching cells and prevent the individual

cell from breaking into multiple segments. We also observe in Fig. 3.4f that the BCM3D 2.0 method

effectively addresses the touching cell separation for these synthetic image stacks. However, the

results from BCM3D 2.0 also contain a few broken and missing cells, which may result from the

multiple stages of thresholding in the seed selection process. Moreover, one may notice that the

results from the DPN+Multi-Otsu+SW method contain several unresolved touching cells. We also

find that compared to the results from these distance prediction-based methods in Fig. 3.4c, Fig. 3.4f,
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and Fig. 3.4d, the results from the Cellpose, Swin-TransNet+SW, and MARS method contain more

errors. The enhancement of the cell interior and border information through distance predictions

appears to make the subsequent segmentation task easier. The results also indicate that the Cellpose

method mostly suffers from over-segmentation errors resulting in broken cell segments. Since the

method is based on estimating spatial gradient features, the intra-cellular intensity inhomogeneity

may lead to over-segmentation errors. Further, we observe in Fig. 3.4h that the classical MARS

approach suffers heavily in separating the touching cells and preserving the cell volume.

In Table 3.2, we report the mean and standard deviation of the quantitative evaluation measures

on 100 synthetic biofilm test stacks. The CCF1 scores are reported for IoU values of 0.1 and 0.5.

From the table, we notice that all three quantitative scores comply with our visual observation from

Fig. 3.4. The proposed method achieves higher average scores for each quantitative segmentation

accuracy measure.

Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

DPN+Multi-Otsu+SW 0.893 ± 0.043 0.827 ± 0.076 0.883 ± 0.024 0.957 ± 0.020

Swin-Transformer+SW 0.844 ± 0.058 0.485 ± 0.143 0.664 ± 0.034 0.686 ± 0.041

MARS 0.651 ± 0.084 0.017 ± 0.010 0.377 ± 0.049 0.427 ± 0.021

BCM3D 2.0 0.877 ± 0.047 0.863 ± 0.058 0.881 ± 0.028 0.962 ± 0.018

Cellpose 0.810 ± 0.057 0.440 ± 0.087 0.663 ± 0.025 0.743 ± 0.031

DeepSeeded 0.948 ± 0.024 0.915 ± 0.046 0.904 ± 0.023 0.980 ± 0.014

Table 3.2: Quantitative evaluation on 100 synthetic 3D biofilms

We also demonstrate the qualitative segmentation results on real biofilm stacks in Fig. 3.5 and

Fig. 3.6. The images shown in Fig. 3.5a and Fig. 3.6a are the maximum intensity projections (MIPs)

of the corresponding 3D inputs. The GT annotations and the segmentation results from different

methods are visualized in 3D. Overall, the DeepSeeded method outperforms competing approaches

in segmenting individual bacteria cells from two kinds of real microscopy biofilms. Further, we

notice that the BCM3D 2.0 method causes more broken and missing cells on these real biofilm

stacks compared to its results on synthetic data. It is also observed that the DPN+Multi-Otsu+SW

and Swin-TransNet+SW methods result in many touching cells in segmenting the dense Shewanella

stacks. The higher cell density of the Shewanella biofilms makes single-cell segmentation more

challenging. In addition, the Cellpose and MARS methods also produce less effective segmentations

for the real biofilm stacks causing broken and touching cells.

In Tables 3.3, 3.4, 3.5, and 3.6, we also report the quantitative measures on these four real biofilm

volumes. The differences in the challenges posed by each type of biofilm (Shewanella with higher

cell density and E. coli with lower image resolution) require separate reporting of the segmentation
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(a) Image Stacks E. coli-1, 2 (b) GT Annotation

(c) DeepSeeded (d) DPN+Multi-Otsu+SW

(e) Swin-Transformer+SW (f) BCM3D 2.0

(g) Cellpose (h) MARS

Figure 3.5: Qualitative evaluation on two 3D E. coli images. The white, yellow and red arrows
indicate various locations of touching cells, broken cells, and missing cells, respectively.

results for each biofilm type, resulting in individual tables for specific biofilm stacks instead of a

consolidated table. From the results presented in these tables, it is evident that the DeepSeeded

method achieves higher scores in all three quantitative measures on each of the four image stacks.

Also, we observe that the difference between the CCF1 scores at IoU values of 0.1 and 0.5 is small

for the proposed method on all four stacks, while the competing methods have a larger difference

between the corresponding CCF1 scores at IoU of 0.1 and 0.5. This reflects that the proposed

method not only separates individual cells but also preserves the size or volume of the cells. This

size information can be valuable in comprehending cellular characteristics and tracking cell behavior

over time.

In order to provide further evidence of the effectiveness of the DeepSeeded method, additional test

results on another real biofilm stack, denoted as ”Shewanella-3” with dimensions of 200× 200× 50,

are presented in Fig. 3.7. Here, we qualitatively compare the segmentation results obtained by
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(a) Image Stack Shewanella-1, 2 (b) GT Annotation

(c) DeepSeeded (d) DPN+Multi-Otsu+SW

(e) Swin-Transformer+SW (f) BCM3D 2.0

(g) Cellpose (h) MARS

Figure 3.6: Qualitative evaluation on two 3D Shewanella images. The white, yellow and red arrows
indicate various locations of touching cells, broken cells, and missing cells, respectively.

Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

DPN+Multi-Otsu+SW 0.931 0.828 0.795 0.898
Swin-Transformer+SW 0.852 0.407 0.674 0.734

MARS 0.836 0.173 0.514 0.580
BCM3D 2.0 0.921 0.825 0.793 0.899
Cellpose 0.800 0.286 0.584 0.624

DeepSeeded 1.000 0.840 0.853 0.909

Table 3.3: Quantitative evaluation on stack E. coli-1

different approaches on the Shewanella-3 image. To highlight the segmentation errors in various

methods, we have included arrows in the figures.

From Fig. 3.7, overall, our observations indicate that the DeepSeeded method performs better

than the competing approaches in accurately segmenting individual bacteria cells. We have also

noticed that the BCM3D 2.0 method results in several broken and missing cells, which could be at-
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Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

DPN+Multi-Otsu+SW 0.855 0.327 0.618 0.713
Swin-Transformer+SW 0.800 0.434 0.635 0.752

MARS 0.600 0.074 0.327 0.351
BCM3D 2.0 0.842 0.316 0.593 0.666
Cellpose 0.671 0.197 0.560 0.658

DeepSeeded 0.937 0.829 0.800 0.912

Table 3.4: Quantitative evaluation on stack E. coli-2

tributed to multiple thresholding steps during seed selection. Additionally, the segmentation results

obtained using the DPN+Multi-Otsu+SW and Swin-TransNet+SW methods exhibit numerous in-

stances of touching cells. The gradient-based Cellpose method tends to oversegment, leading to

broken cells in the output. Lastly, the classical MARS method produces less effective segmentation

output, resulting in a high number of touching cells. Integrating an image quality-specific loss term

and a refined cell border representation into the training of the regression network, along with a

data-driven seed estimation using an additional network, contributed to the success of the proposed

method in dense cell segmentation compared to competing approaches.

We also report the time taken for model building (i.e., offline training stage) and the online

testing stage for the proposed method and other competing approaches. All deep learning-based

methods were trained for 250 epochs using a machine equipped with an NVIDIA TITAN RTX GPU

with 24 GB memory. The BCM3D 2.0 method required an average of 72.1 seconds per epoch during

training, resulting in a total training time of 5.0 hours. The average testing time on a single instance

was 1.7 seconds. As for the DPN+Multi-Otsu+SW method, the per epoch training time averaged

at 90.5 seconds, leading to an overall training time of 6.3 hours. The average testing time on a single

instance was 4.6 seconds. Regarding the Swin-TransNet+SW method, each epoch’s training time

averaged at 20.8 seconds, resulting in a total training time of 1.4 hours. The average testing time

on a single instance was 3.1 seconds. For the Cellpose method, the per epoch training time was

approximately 60.5 seconds, leading to an overall training time of 4.2 hours. The average testing

time on a single instance was 10.0 seconds. Since the MARS method is a classical approach, it does

not require a training phase. The average testing time on a single instance was 1.5 seconds. In

our proposed DeepSeeded method, the per epoch training time for the regression network (Net-1 )

averaged at 92.1 seconds, resulting in a total training time of 6.4 hours. The per epoch training

time for the voxel-wise classification network (Net-2 ) was approximately 17.5 seconds, leading to an

overall training time of 1.2 hours. The average testing time on a single instance was 4.9 seconds.
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Ablation Study

In order to understand the individual contribution of each of the two networks in the proposed

method, we also demonstrate the results of an ablation study in Tables 3.7 and 3.8 on the real biofilm

stacks E. coli-2 and Shewanella-2, respectively. In both tables, the first row lists the segmentation

scores exploiting the regression network (Net-1 ) combined with the multi-class Otsu thresholding

and seeded watershed. The second row lists the scores corresponding to residual U-Net as the voxel-

wise classification network (Net-2 ) followed by the seeded watershed. From the quantitative scores

presented in these two tables, it is clear that the proposed architecture DeepSeeded provides the

best segmentation performance in terms of all three quantitative measures, irrespective of the type

of biofilm images. We also see from the results that the Net-1+Multi-Otsu+SW method achieves

better scores than the Net-2+SW method. The superiority is due to the enhancement of the cell

interior and border by the regression network, which makes the subsequent segmentation task easier

than direct segmentation on the raw inputs.

Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

DPN+Multi-Otsu+SW 0.821 0.680 0.786 0.883
Swin-Transformer+SW 0.800 0.450 0.670 0.770

MARS 0.562 0.123 0.446 0.541
BCM3D 2.0 0.864 0.722 0.750 0.866
Cellpose 0.825 0.402 0.673 0.783

DeepSeeded 0.885 0.874 0.964 0.967

Table 3.5: Quantitative evaluation on stack Shewanella-1

Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

DPN+Multi-Otsu+SW 0.834 0.717 0.811 0.925
Swin-Transformer+SW 0.775 0.539 0.705 0.822

MARS 0.577 0.110 0.427 0.538
BCM3D 2.0 0.833 0.660 0.756 0.876
Cellpose 0.817 0.435 0.650 0.771

DeepSeeded 0.918 0.900 0.976 0.977

Table 3.6: Quantitative evaluation on stack Shewanella-2

3.6 Limitations and Future Potentials

The proposed method DeepSeeded demonstrates significant performance gain compared to existing

popular solutions when segmenting touching instances in dense cellular environments, such as in

bacterial biofilms. However, there are several areas where further improvement can be made. Since

the proposed segmentation framework addresses cell segmentation in 3D, the memory requirement
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during training increases with more training data, even when trained with smaller training patches.

Such limitation can be addressed by incorporating memory-efficient CNN architectures as intro-

duced in recent literature [90, 91, 92, 93]. The memory-efficient CNN approaches leverage implicit

3D representations, known as occupancy values [91], to overcome the high computational complexity

of traditional 3D CNNs. By learning a continuous decision boundary in a function space instead of

a dense voxelized representation, these networks become significantly more memory efficient than

traditional CNNs on 3D data. In our proposed DeepSeeded framework, we can incorporate such

memory-efficient architectures instead of traditional U-Net-based CNNs for the regression and se-

mantic segmentation tasks. Additionally, our two loss functions can be jointly learned in a multi-task

framework using hypernetworks [94]. Such hypernetworks can optimize the weights of a single net-

work for multiple tasks on hand. In the future, such additional features can be included in the

proposed segmentation approach while still retaining the key benefits of the method, including effec-

tive cell border representation and specialized image quality-oriented loss in an initial enhancement

task and later voxel-wise classification for seed estimation of the watershed.

Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

Net-1+Multi-Otsu+SW 0.850 0.679 0.770 0.882
Net-2+SW 0.786 0.394 0.664 0.760
DeepSeeded 0.937 0.829 0.800 0.912

Table 3.7: Ablation study result on stack E. coli-2

Methods
CCF1

SCF1 SCBF1
IOU = 0.1 IOU = 0.5

Net-1+Multi-Otsu+SW 0.854 0.806 0.933 0.934
Net-2+SW 0.836 0.531 0.690 0.800
DeepSeeded 0.918 0.900 0.976 0.977

Table 3.8: Ablation study result on stack Shewanella-2

3.7 Conclusion

This chapter introduced a novel deep learning-based 3D cell segmentation approach DeepSeeded to

effectively segment touching cells in a densely packed microscopy image volume. We devised the

segmentation problem as estimating the seeds of a classical watershed algorithm using a hybrid deep-

learning model consisting of an image regression network followed by a voxel-wise image classification

network. The regression network incorporates a specialized image quality-specific loss term and a

refined cell border representation during training, resulting in highly enhanced cell interior and
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(a) Image Stack Shewanella-3

(b) DeepSeeded (c) DPN+Multi-Otsu+SW (Scherr, 2020)

(d) Swin-TransNet+SW
(Hatamizadeh, 2022a)

(e) BCM3D 2.0
(Zhang, 2022)

(f) Cellpose (Stringer, 2021) (g) MARS (Kar, 2022)

Figure 3.7: Qualitative evaluation on a 3D Shewanella image. The white, yellow, and red arrows
indicate various locations of touching, broken, and missing cells, respectively.

36



border estimation maps. The voxel-wise classification network enables data-adaptive prediction of

cell seeds for the watershed algorithm, eliminating the need for sub-optimal thresholding. We showed

experimental results in segmenting bacteria cells from 3D microscopy images of densely packed

biofilms. The proposed method achieved better segmentation results in qualitative comparison

and in terms of all the adopted quantitative evaluation measures against the state-of-the-art cell

segmentation methods.
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Chapter 4

Deep Temporal Sequence

Classification for Automatic Cell

Tracking in Dense 3D Microscopy

Videos of Bacterial Biofilms

4.1 Introduction

This chapter proposes a solution to the cell tracking problem in 3D microscopy videos of densely

populated bacterial biofilms. Cell tracking in time-lapse microscopy image sequences is a challeng-

ing multi-object tracking task that is essential for biologists interested in controlling and studying

the behavior of a cell population under investigation. Since a large number of cell instances needs

to be tracked to draw statistically significant conclusions in biological studies, accurate and robust

automatic tracking approaches are required. An automatic tracking process involves identifying and

linking instances of the same biological cell and their offspring in consecutive frames of a microscopy

video. The accurate reconstruction of observed cell trajectories enables researchers extract various

biophysical parameters, such as velocity, acceleration, cell division rate, cell appearance, and death

rate, which provide quantitative insights into the underlying dynamic processes of the cell popula-

tion [2, 95]. The cell tracking problem often becomes challenging to solve in the presence of high
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cell density, high cell migration rate, frequent division events, non-smooth cellular motion, and low

frame rates.

In this chapter, we propose a data-driven cell tracking approach DenseTrack [35] to track bacterial

cells in 3D lattice light-sheet image sequences of biofilms. The proposed method integrates deep

learning with model-based techniques to formulate an effective solution for tracking bacterial cells

and detecting their offspring in crowded image scenarios.

4.2 Related Works

There are two main categories of automatic cell tracking methods: tracking by contour evolution

and tracking by detection. The contour evolution-based methods involve finding the object contour

in the current frame given an initial contour from the previous frame [96, 97, 98, 99]. They solve the

segmentation and tracking tasks simultaneously by solving an iterative PDE-based energy functional.

In contrast, tracking by detection approach separates the segmentation and tracking task by first

performing the segmentation of the individual instances in all the frames and then establishing the

temporal associations between the segmented cells of consecutive frames [100, 101, 102]. While

tracking by contour evolution are effective in certain scenarios, for instance, where morphological

changes of cells are imaged in high magnification, detection based approaches are more suitable

with lower frame rates, high cell density and frequent cell divisions scenarios [103, 104]. Also, less

computational complexity allows the detection based methods to be widely adopted in real-time

tracking of a larger number of cells over longer period of time. In this chapter, we focus on tracking

by detection, and present an algorithm that can be used to effectively track bacteria cells over time

from 3D temporal image sequences of bacterial biofilms.

Over the years, numerous tracking by detection approaches has been proposed. The simplest

methods use basic nearest-neighbor techniques to match cells between frames based on features such

as intensity distribution, morphology, and size [25, 105]. More complex features, such as features of

the cell’s neighborhood [106] or features derived from a graph structure [107] have also been exploited

for instance matching. However, nearest-neighbor methods rely on a user-defined Euclidean distance

function or an exponential similarity function for correspondence matching, which may not always

provide the correct matches between frames. There also exist graph-based tracking approaches

where cells are represented as nodes in a graph, and association hypotheses are represented as

edges linking the nodes [26, 108, 109, 27]. This allows the tracking problem to be formulated as

a graph-matching problem. Further, probabilistic approaches for correspondence finding have also
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been proposed. These include joint probabilistic data association (JPDA) [110, 111] and multiple

hypothesis-based tracking (MHT) [29, 112, 113, 114]. The classical Kalman filter or its probabilistic

variants have also been used to predict the position of the cells in the next frame [115, 28], which

have shown promise in tracking high motility cell populations. While these traditional methods have

been useful, they often require manual tuning of many parameters and make simplistic assumptions

about cell behavior (e.g., choice of particular cell motion model, probability of object appearance,

and disappearance in the field of view) that may not always hold true.

Recently, several deep learning-based tracking methods have been proposed for cell tracking,

which are computationally much more efficient compared to the traditional methods. One such

approach modeled cell tracking as an edge classification problem in a direct graph using a graph

neural network [30]. However, this method can be challenging for a dense cell population with a long

temporal sequence. Another approach used two separate U-Nets for cell likelihood detection and

motion estimation [116]. Other recent approaches include a deep reinforcement learning method [31]

and a pipeline of Siamese networks [32]. However, these methods do not incorporate temporal

history to predict the association in the next frame, which may be necessary as a cell may be

poorly imaged or segmented in some frames but better detected in neighboring frames. Also, these

methods do not explicitly enforce one-to-one matching between successive frames, which can prevent

erroneous associations between one-to-multiple instances. In our proposed approach, we address

these limitations to develop an effective tracking strategy for tracking bacterial cells over time within

a dense environment.

Our Contribution

The key contributions of the proposed method are outlined below:

• Our approach to frame-by-frame association incorporates a deep learning-based temporal se-

quence classifier, which computes the association scores for the potential matches in the subse-

quent frame. We then solidify one-to-one matching by leveraging the confidence scores provided

by the classifier.

• We leverage the near-temporal history to calculate an association score for the potential

matches, rather than solely relying on features from the current frame and the next frame.

• In the context of cell division detection, we introduce a novel strategy that entails Eigen

decomposition of unmatched instances in the following frame.
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(a)

(b)

(c)

Figure 4.1: Overview of the proposed tracking approach DenseTrack. In (a) and (b), we illustrate
our frame-by-frame matching technique that involves computing deep learning-based association
scores and utilizing these scores in an one-to-one matching optimization. (c) represents that a cell
division event can be detected by finding the neighbor instance with minimum projection along 2nd

and 3rd principal components of the unmatched instance in frame t + 1.

This chapter is organized as follows: Section 4.3 presents the theory of the proposed approach.

Section 4.4 includes details of the experimental setup. Experimental results are presented and

explained in Section 4.5. Finally, Section 4.6 offers concluding remarks.
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4.3 Proposed Approach

In this section, first we define the cell tracking problem and then propose an effective strategy to

track cells in 3D time-lapse microscopy videos of biofilms. An overview of the proposed approach is

illustrated in Fig. 4.1.

4.3.1 Problem Statement

Let us consider an image sequence, denoted by S = {F t}Tt=1, which comprises T frames. Let L

be the number of biological cells present in this sequence. The cell tracking problem can be stated

as follows, (1) determine the trajectory of each biological cell and (2) identify the parent of each

biological cell in cases where cell existence is due to cell division. For each biological cell, we need to

calculate a set of information represented by Tl = {tlinit, tlfin,Cl, P (l)}. Here tlinit and tlfin refer to

the first and last time points in which the lth cell appears in the sequence, respectively. Cl represents

the set of coordinates of the lth cell from the first frame tlinit to the last frame tlfin. Finally, P (l) is

a function that identifies the parent cell of the lth cell, where P (l) = l
′

if l
′

is the parent of cell l,

and P (l) = 0 if the cell appearance is not due to cell division. The objective of cell tracking is to

obtain the set {T1, ..., TL}.

4.3.2 Tracking Solution

To solve the problem, our method involves initially matching cell instances across consecutive frames,

followed by the detection of division events and the establishment of complete trajectories.

Frame-by-Frame Association

Let F t = {f t
i |i = 1, 2, ..,m} and F t+1 = {f t+1

j |j = 1, 2, .., n} denote two consecutive frames with m

and n cell instances, respectively, where each instance is represented by a feature vector f . For each

instance f t
i , in frame t, there exist several matching candidates in frame t + 1, represented by the

set Mi = {(f t
i ,f

t+1
jki

)|ki = 1, 2, ..., Ni}. These candidates are selected from the neighborhood of the

projected location of f t
i in frame t+1. Our objective is to determine the likelihood that a candidate

association is correct. For each of the candidate ki associations, we create a spatio-temporal feature

vector, f tem
i,(jki

) = [f t−r
i , ...,f t

i ,f
t+1
jki

]. This vector is formed by concatenating the feature vector at

time t with the feature vectors from the preceding r time frames and the feature vector of the

candidate at time t + 1. Representative features to characterize fi at a specific time point include
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3D spatial coordinates and 3D bounding box measures around the instance. With a chosen value of

r = 2, the resulting f tem
i,(jki

) = [f t−2
i ,f t−1

i ,f t
i ,f

t+1
jki

] is a 36-dimensional feature vector.

By leveraging the spatio-temporal information of the kthi association, we propose computing

the probability that this association is correct, denoted as P [y = 1|f tem
i,(jki

)], using a deep temporal

sequence classification network. The confidence score of the classifier serves as the association

probability or association score, expressed as a(f t
i ,f

t+1
jki

) = R(f tem
i,(jki

);Θ), where the network R

has been trained to differentiate between correct and incorrect associations (y = 1 or 0), with

its parameters represented by Θ. InceptionTime [117], a widely adopted time-series convolutional

neural network model based on the Inception architecture, has been chosen for this classification task.

By integrating Inception modules along with residual connections, the InceptionTime architecture

aims to mitigate overfitting and vanishing gradient issues. Moreover, through the stacking of multiple

Inception modules consecutively, the network can capture latent hierarchical features at various

resolutions. With Ni possible associations for the ith instance, there are a total of N =
∑m

i=1 Ni

possible associations between frame t and t + 1, such that M = ∪mi=1Mi exist. The network R is

employed to compute an association score for all N associations.

Now, we enforce one-to-one matching between frames t and t + 1 by solving a constrained op-

timization problem. The objective is to choose the associations from the N potential associations

that maximize the sum of the association scores. Mathematically, the optimal matching approach

involves searching for a solution represented by a binary vector x0 = {0, 1}N that maximize the

objective function presented in equation (4.1),

x0 = arg max
x∈{0,1}N

N∑
k=1

(
x(k) a(f t

ik
,f t+1

jk
)
)

(4.1)

The matching constraint that ensures bi-directional one-to-one correspondence for the optimization

in (4.1) can be expressed as follows,

Y x ≤ b (4.2)

where Y represents a (m+n)×N dimensional system matrix and b represents a (m+n) dimensional

vector of ones. The system matrix Y is designed as follows,

Y (q, k) =


1, if q = ik or jk

0, otherwise

; q = 1, 2, ....., (m + n) (4.3)
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The entries of the kth column of Y indicate which cell instances in frame t and t + 1 correspond to

the kth possible match (f t
ik
,f t+1

jk
) in M , where k = 1, 2, ...., N . The solution to the optimization

problem in equation (4.1) can be obtained by adopting an iterative search-based approach. The

algorithm iterates for each instance in frame t to identify its matching candidate in t + 1 with the

highest association score. In cases where two instances from t are matched with a single instance

in t + 1, the instance with the higher association score is considered correct, and the other instance

is assigned to its candidate with the next highest association score. The search algorithm continues

until all matched candidates in t + 1 are unique cell IDs. The computational complexity of the

matching algorithm is O(m log n). The pseudocode of the proposed one-to-one matching algorithm

is presented in Algorithm 3.

After performing frame-by-frame association between any two consecutive frames t and t+1, the

matched instances (x(k) = 1) in frame t+ 1 are assigned the same identification numbers or cell ids

as their corresponding instances in frame t. The unmatched instances (x(k) = 0) in frame t + 1 are

labeled with new cell ids. This matching process is performed across the entire sequence of frames

in the video.

Cell Division Detection

To identify division events, we examine the unmatched instances identified throughout the video

sequence since these instances may result from a cell division event or indicate the appearance of a

new cell in the field-of-view. To determine whether an unmatched instance is a candidate daughter

cell, we perform Eigen decomposition of the spatial coordinates of the instance.

Let the coordinates of the instance be denoted by X ∈ Rp×3 with p representing the number

of 3D points. The covariance matrix can be expressed as A = XTX, and we perform the singular-

value decomposition, [U, S, V ] = svd(A). The Eigenvector matrix, V = [v1, v2, v3] with vi ∈ R3

contains three principal components, each with a dimension of 3. We then take a neighborhood

around X and project each neighboring cell Yi ∈ Rq×3 onto the 2nd and 3rd principal components.

The corresponding projection matrix is expressed as PMi = YiV2,3 and a single projection value is

computed as PVi = norm(mean(PMi)). The neighboring cell Yi with minimum projection value,

arg min{PVi}, is considered as the other candidate daughter cell of X, denoted by X
′
.

Now, to further ensure that instances X and X
′

in any frame t + 1 result from the cell division

of a parent cell in frame t, we compare the volume of the other candidate daughter cell in current

frame, vol(X
′

t+1), against its volume in the preceding time frame, vol(X
′

t). As cell division typically

results in the parent cell dividing into two daughter cells, each with approximately half the volume
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of the parent cell, we examine whether the ratio
vol(X

′
t)

vol(X
′
t+1)

≈ 50%. If the condition is satisfied, it

suggests that X and X
′

are the daughters of a parent cell from the previous frame. In such cases,

we assign a distinct new cell ID to the other daughter cell X ′ to differentiate it from its parent in

the previous frame.

Generate Complete Trajectories

Following the frame-by-frame association and cell division detection, we can compute the complete

trajectories of the labeled cell instances in the sequence. This process begins by identifying the unique

instance ids in the relabeled sequence. For each unique instance id l, we traverse the sequence to

determine the initial and final time points at which the instance appears, represented by tlinit and

tlfin, respectively. Additionally, we can extract the coordinates of the lth instance at each time frame

between tlinit and tlfin and store them in a set of coordinates denoted by Cl. Furthermore, we record

whether the instance is a parent cell (P (l) = 0) or a daughter cell (P (l) = l′).

4.4 Experimental Framework

In this section, we provide the description of the dataset, the implementation details of the method,

the evaluation metrics, and an account of the competing approaches.

4.4.1 Dataset

We evaluated the proposed cell tracking method on both synthetic and real 3D microscopy videos of

bacterial biofilms. The synthetic biofilm sequences were generated using a simulation framework [33]

which models biofilm formation following biophysical rules and also represents bacterial cells with

realistic curvilinear morphology. In these synthetic videos, starting with one or multiple seed cells,

biofilm continues to form as the cells grow and divide over a period of time. We simulated multiple

synthetic sequences with a different number of initial clusters where the seed cell are placed at

random spatial allocations and orientations. These sequences were generated at a frame interval

of 10 seconds. Each synthetic video sequence has a dimension of 450 × 450 × 150 × 40 in x-y-z-t.

The tracking challenge here is to linking cell instances within a very dense environment as well as

detecting frequent division events.

For cell tracking in real biofilm sequences, we acquired lattice light-sheet microscopy [87] videos

of two kinds of bacteria species, Escherichia coli and Shewanella oneidensis. The resolution of each

frame in the video is approximately 230 nm in x and y, and 370 nm in z, assuming green fluorescent
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Algorithm 3 One-to-One Matching between Frames t and t + 1

1: Input: Cell ids for all candidate associations, CN×2 ; association scores, aN×1

2: Output: Association prediction xN×1 ∈ {0, 1}
3: ki ← no. of nearest neighbors in t + 1 for ith instance in t (set to 4)
4: c0 ← unique cell ids from frame t
5: c1 ← unique cell ids from frame t + 1
6: x← zerosN×1 ▷ initialize
7: conflict← 1 ▷ initialize
8: D0 [c0[i]]← -1 ∀ i = {0, 1, .., (len(c0)-1)} ▷ initialize a dictionary for unique ids of t
9: D1 [c1[j]]← -1 ∀ j = {0, 1, .., (len(c1)-1)} ▷ initialize a dictionary for unique ids of t + 1

10: while conflict > 0 do
11: conflict← 0
12: for i = 0 to (len(c0)-1) do
13: if D0 [c0[i]] = -1 then
14: max loc← arg maxaki×1 ▷ select association with max score among ki candidate

scores
15: if D1 [C[max loc, 1]] = -1 then
16: D1 [C[max loc, 1]]← max loc ▷ update with new association location
17: D0 [C[max loc, 0]]← max loc ▷ update with new association location
18: else
19: conflict← 1
20: if a[max loc] > a [D1 [C[max loc, 1]]] then
21: a [D1 [C[max loc, 1]]]← 0 ▷ indicates no association
22: D0 [C[D1 [C[max loc, 1]]]]← -1 ▷ indicates no association
23: D0 [C[max loc, 0]]← max loc ▷ update with new association location
24: D1 [C[max loc, 1]]← max loc ▷ update with new association location
25: else
26: a[max loc]← 0 ▷ indicates no association
27: end if
28: end if
29: end if
30: end for
31: end while
32: x [D0 [c0[i]]]← 1 ∀ i = {0, 1, .., (len(c0)-1)} ∧D0 [c0[i]] ̸= -1 ▷ obtain final association

prediction

protein (GFP) excitation and emission. The S. oneidensis video was captured at 30 seconds frame

interval for a total period of 15 minutes, while the E. coli sequence was captured at frame interval

of 5 minutes over a period of 50 minutes. The Shewanella bacteria species has high motility and

cell density, hence tracking individual cells over time becomes quite challenging. On the other hand,

the E. coli data introduces frequent division events where cells divide with orientation change and

spatial displacement into the next frame, thus poses significant challenges to detect those events.
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4.4.2 Implementation Details

The proposed tracking method has one module that requires training, which is the temporal sequence

classification network. The other modules are entirely solved in the online test stage. To train the

network, we have used the synthetic biofilm sequences. From a training sequence, we randomly

sampled trajectories f tem
i,(jki

) between any frame pairs t and t + 1 with corresponding association

labels of correct or incorrect associations (y = 1 or 0). We then train the network to minimize a

binary cross-entropy loss, L = −
∑m

i=1 y
(i) log ŷ(i)− (1− y(i))(1− log ŷ(i)), where ŷ is the association

probability for ith trajectory with a total of m training trajectories. The association network is

implemented using the InceptionTime architecture available in the open-source timeseriesAI (tsai)

framework [118].

We performed tracking experiments on six synthetic sequences and two real biofilm sequences.

For synthetic sequences, the experiments were performed in a leave-one-out fashion, that is, the

temporal sequence classification network was pre-trained on five sequences, while the tracking al-

gorithm was evaluated on the remaining sequence. For the real image sequences of two different

biofilm species, the tracking algorithm was executed using a pre-trained association network on the

synthetic sequences.

Since the proposed method is a tracking-by-detection approach, prior to performing tracking task,

the segmentation was performed on each 3D frame of the video using the proposed segmentation

method DeepSeeded [34] in chapter 3.

4.4.3 Evaluation Measures

We evaluated the tracking performance using two already established cell tracking performance

measures. Both of these measures are full-reference, hence compares the estimated tracks from the

tracking algorithm with respect to the reference tracks. One measure is called tracking accuracy or

TRA, which is widely adopted by the Cell Tracking Challenge. This metric, based on representing

tracks as an acyclic oriented graph [119], calculates the cost associated with transforming a computed

graph into the reference one. The cost, referred to as AOGM (Acyclic Oriented Graph Metric), is

computed as AOGM = wEDED+wEAEA+wECEC. Here, ED represents the cost of adding edges

(resulting from missing links), EA represents the cost of deleting edges (resulting from redundant

links), and EC represents the cost of altering edge semantics (resulting from incorrect division

detection). The weights w associated with these cost terms are typically set to 1. In essence,
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TRA provides a relative cost compared to the expense of creating the reference graph from scratch,

denoted as AOGM0. Mathematically, the TRA measure is expressed as:

TRA = 1− min(AOGM,AOGM0)

AOGM0

Also, we separately evaluated the cell division detection accuracy in datasets with frequent

division events using a F1 score named Division-F1 [120] represented as follows,

Division-F1 =
2× precision× recall

precision + recall

Here, precision = TP
TP+FP and recall = TP

TP+FN , where TP represents the track splitting events

detected within time distance t (t = ±1) of ground truth (GT ) events, FP denotes the difference

between total detected events and TP events, and FN indicates the difference between total GT

events and TP events. Both of these quantitative metrices are computed using a publicly available

repository [121].

4.4.4 Competing Approaches

The proposed cell tracking method DenseTrack has been evaluated against four competing ap-

proaches. We selected three recent methods that have demonstrated state-of-the-art performance in

Cell Tracking Challenge datasets and have publicly available implementations. One of these methods

is called Ultrack, which utilizes ultrametric contours of detected instances for linking them between

adjacent frames through a multiple hypotheses-based technique [114]. Another approach, referred

to as the GraphOpt approach, is a graph-based cell tracking method where segmented objects are

assigned to tracks by solving a model-based graph optimization problem [122]. Additionally, we

considered a recent deep learning-based cell tracking approach named GNN, which constructs cell

trajectories using a graph neural network [30]. Finally, we compared the proposed method against

a biofilm-specific tracking approach [24] known as the NearestNbr tracking method, which performs

frame-by-frame association using Euclidean distance of the extracted features.

4.5 Results and Discussion

In this section, we present both qualitative and quantitative tracking results on synthetic and real

biofilm sequences. In Fig. 4.2, we visualize the tracking results of a synthetic biofilm sequence
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(a) t = 10 sec (b) t = 20 sec (c) t = 30 sec (d) t = 40 sec

(e) t = 190 sec (f) t = 200 sec (g) t = 210 sec (h) t = 220 sec

(i) t = 420 sec (j) t = 440 sec (k) t = 460 sec (l) t = 500 sec

Figure 4.2: Qualitative visualization of tracking cells in a synthetic biofilm sequence with 50 frames
captured at 10 seconds frame interval. We demonstrate tracking of three cells at several frames in
the sequence. Each 3D frame is displayed as a maximum intensity projection along z axis.

(a) (b)

Figure 4.3: Evidence of effective cell division detection over time through (a) space-time plot and
(b) volume-over-time plot, demonstrated for the ‘blue’ cell in the synthetic sequence in Fig. 4.2
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Methods TRA Division-F1

DenseTrack 0.942 ± 0.018 0.911 ± 0.022

Ultrack [114] 0.919 ± 0.021 0.864 ± 0.024

GraphOpt [122] 0.915 ± 0.019 0.886 ± 0.022

NearestNbr [24] 0.840 ± 0.022 0.648± 0.025

GNN [30] 0.818 ± 0.026 0.637 ± 0.033

Table 4.1: Quantitative tracking evaluation on six synthetic biofilm videos

obtained from the proposed DenseTrack method. For the clarity of visual observation in a dense

environment, we demonstrate the predicted matched instances from three particular cells over the

length of the video, displayed in red, blue, and green. From the figure, it is noticeable that the

DenseTrack method can successfully associate the same instance of a cell over consecutive time

points, even in such a crowded neighborhood. Furthermore, it is evident that the cell division events

are also accurately detected by the proposed method, which is essential for an effective tracking

outcome in this dataset involving frequent division events.

In Fig. 4.3, we present additional support of the effectiveness of the proposed method in cell

division detection using a space-time plot and a volume-over-time plot. We demonstrate these two

plots for the ‘blue’ cell of the displayed sequence in Fig. 4.2. The space-time plot depicts the x

and y coordinates of the centroid of the ’blue’ cell and its matched instances over time. The green

circle at the bottom represents the cell’s location in the first frame. Pairs of circles in the same

color indicate that the tracking algorithm detects two daughter cells in that space and time. The

line growing out of the circle signifies the instance’s growth until it divides again. The space-time

plot derived from the proposed method also indicates that division of the bacterial cell follows a

geometric progression, such as 2, 4, 8, 16, and so forth. On the other hand, the volume-over-time

plot is generated by considering the volume of only one daughter cell at each division event from

the corresponding parent cell. The sawtooth pattern of the plot ensures that the cell divisions are

detected properly by the tracking method, as the volume increases when the cell grows and decreases

as it splits into daughter cells.

In Table 4.1, we present the quantitative tracking performance for six synthetic biofilm image

sequences in our dataset. These videos contain an average of 1400 ground-truth division events. The

comparison of tracking methods is based on the overall tracking accuracy (TRA) and the division-

specific accuracy metric (Division-F1). The results indicate that the proposed DenseTrack method

outperforms other methods in both performance measures. Additionally, Ultrack and GraphOpt ex-
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hibit reasonable performance in tracking bacterial cells within a dense biofilm environment. However,

the nearest neighbor-based technique NearestNbr, employing a simplistic Euclidean distance-based

frame-by-frame matching, and the graph neural network-based approach GNN, predicting one di-

rected graph for the entire sequence, exhibit lower tracking accuracy in both measures.

We also present the visualization of tracked cell instances by the proposed method for a real

biofilm sequence of S. oneidensis in Fig. 4.4, which was captured at a 30-second frame interval.

The matched instances of the same cell over time are displayed in the same color. The figure

demonstrates that the proposed method accurately tracks most of the cell instances. Additionally,

we visualize the accuracy of predicted trajectories in comparison to corresponding ground-truth

trajectories in Fig.4.5. Thirty manually generated ground-truth trajectories are plotted in x-y-z on

top of the estimated trajectories by the tracking algorithm. We compare such trajectory plots from

the proposed DenseTrack method and the best competing method, Ultrack, in Fig.4.5a and 4.5b.

Observing the figures, it is evident that predicted trajectories from DenseTrack exhibit more overlap

with the ground-truth, indicating greater accuracy compared to the Ultrack method.

In Fig. 4.6, we present a comparative analysis of quantitative tracking performance based on

the aforementioned thirty ground-truth trajectories. Since the S. oneidensis sequence exhibits very

few cell division events (only three ground-truth division events in the thirty trajectories), we have

opted not to separately present the Division-F1 measure and instead focus on reporting the overall

tracking score TRA. The figure reveals that, similar to the results obtained from synthetic videos,

the proposed DenseTrack approach excels in tracking highly motile Shewanella oneidensis bacterial

cells. While the Ultrack method also demonstrates reasonable performance with approximately

90% tracking accuracy, the GraphOpt method struggles to track these motile cells, resulting in

an approximately 60% TRA score. Additionally, it is observed that the performance of the GNN

method on this real biofilm sequence further declined, possibly due to its lack of scalability to a data

distribution that relatively differs from the distribution of the synthetic training sequences.

We then showcase the qualitative tracking results of our proposed approach on an E. coli image

sequence in Fig. 4.7, which is captured at a larger frame interval of 5 minutes. In this figure,

we observe that even in a lower frame-rate video with very frequent division events, the proposed

method performs reasonably well in tracking the cells and their offspring. Furthermore, we provide

a qualitative comparison of spatial trajectory plots between the proposed method and the Ultrack

method with respect to ten manually generated ground-truth trajectories in Fig.4.8. It is observed

that, in comparison to the trajectory plot corresponding to the S. oneidensis video in Fig.4.5a,
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the proposed method exhibits more deviations from the ground-truth in Fig.4.8a. However, these

deviations are still fewer than those seen in Fig.4.8b from the Ultrack method.

In Table 4.2, we provide the TRA and Division-F1 scores for the comparative methods based on

the ten manually generated trajectories mentioned earlier. These trajectories encompass 54 ground-

truth division events. The table highlights that our proposed method excels in tracking bacterial

cells even in a lower frame rate video, outperforming the competing methods. Additionally, it is

observed that the comparative methods exhibit poorer performance in cell division detection, leading

to lower Division-F1 scores compared to the corresponding scores for synthetic image sequences.

This reduced performance in cell division prediction may be attributed to the presence of division

events with orientation changes and spatial displacement into the next frame.

Ablation Study

To comprehend the distinct contributions of various components in our proposed method, we conduct

ablation studies in this section. In Table 4.3, we present quantitative support for our selection of the

InceptionTime classifier in the temporal sequence classification task for frame-by-frame association.

The classification performance reported here is an average over 10 different frame pairs of a synthetic

biofilm video in our dataset.

In the first column, we report the temporal sequence classification accuracy of predicting correct

versus wrong associations using different classifiers. It is evident that the proposed choice of the

classifier InceptionTime outperforms other classifiers in this task. However, this classification result

includes one-to-many mapping errors, such as one instance from any frame t being associated with

multiple instances from frame t + 1, or vice versa. Therefore, the results from the second column

of the table show that, instead of directly using the classifier output in frame-by-frame matching,

employing the classifier’s confidence scores in a one-to-one matching optimization, as done in the

DenseTrack framework, further improves the classification performance, as observed for all listed

classifiers.

In Fig. 4.9, we also highlight the importance of leveraging near-temporal history in temporal

sequence classification, as implemented in our proposed approach, rather than solely relying on

cellular attributes from the present frame and the next frame. The significance is measured in terms

of the overall tracking accuracy measure TRA. In Section 4.3, we mentioned the use of a spatio-

temporal feature vector, f tem
i,(jki

) = [f t−r
i , ...,f t

i ,f
t+1
jki

], formed by concatenating the feature vector at

time t with the feature vectors from the preceding r time frames and the feature vector at time t+1.

The figure illustrates the effect of using r = 2 as in our proposed method versus the effect of using
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(a) t = 0.5 min (b) t = 2.5 min (c) t = 5 min (d) t = 7.5 min

(e) t = 10 min (f) t = 12.5 min (g) t = 13.5 min (h) t = 15 min

Figure 4.4: Qualitative observation of tracking cells in a S. oneidensis real biofilm sequence with
30 frames captured at 30 seconds frame interval. We display 55 cell trajectories over several time
points of the video, each with a distinct color.

(a) (b)

Figure 4.5: Visualizing some predicted trajectories of the S. oneidensis sequence using the methods
(a) DenseTrack and (b) Ultrack with respect to the corresponding ground-truth trajectories.

r = 0. In Fig. 4.9a, we observe such a comparison for a synthetic biofilm video, while in Fig. 4.9b,

we observe it for a S. oneidensis video. The figures indicate that utilizing near-temporal history

(r = 2) improves tracking accuracy for both the synthetic sequence and the real biofilm sequence,

with a more pronounced improvement observed in the real biofilm example.
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Figure 4.6: Quantitative tracking evaluation on a S. oneidensis biofilm video.

Methods TRA Division-F1

DenseTrack 0.904 0.877

Ultrack [114] 0.823 0.652

GraphOpt [122] 0.764 0.410

NearestNbr [24] 0.512 0.391

GNN [30] 0.477 0.297

Table 4.2: Quantitative tracking evaluation on an E. coli biofilm video

Methods Classifier Classifier+OTOM

InceptionTime [117] 0.964 ± 0.007 0.998 ± 0.003

TST [123] 0.886 ± 0.032 0.940 ± 0.013

LSTM-FCN [124] 0.914 ± 0.024 0.958 ± 0.006

GRU-FCN [125] 0.919 ± 0.018 0.952± 0.007

Res-CNN [126] 0.804 ± 0.031 0.909 ± 0.009

Table 4.3: Binary classification accuracy on temporal sequence classification using various classifiers,
and using classifier’s confidence scores in an one-to-one matching (OTOM) optimization.
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(a) t = 5 min (b) t = 20 min (c) t = 25 min

(d) t = 35 min (e) t = 45 min (f) t = 50 min

Figure 4.7: Qualitative visualization of tracking cells in a E. coli biofilm video with 10 frames
captured at 5 minutes frame interval. Trajectories corresponding to 12 cells in the first frame are
demonstrated over the length of the video, each with a distinct color.

(a) (b)

Figure 4.8: Visualizing some predicted trajectories of the E. coli sequence using the methods (a)
DenseTrack and (b) Ultrack with respect to the corresponding ground-truth trajectories.
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(a) (b)

Figure 4.9: Evidence of exploiting near-temporal history (r = 2) in tracking performance, on a (a)
synthetic biofilm video, and a (b) real biofilm video of S. oneidensis.

4.6 Conclusion

This chapter introduced a novel data-driven cell tracking approach to effectively track cell instances

and their offspring in dense 3D time-lapse microscopy image sequences. We formulated the cell

tracking problem as a frame-by-frame matching task exploiting a deep temporal sequence classifier’s

confidence scores in a one-to-one optimization framework. Utilizing a data-driven deep-learning-

based classifier as opposed to a fixed distance or similarity-based measure yields better association

scores for the potential matches between frame pairs. Additionally, an effective one-to-one matching

optimization formulation with proper constraints presented in this work ensures superior perfor-

mance in associating cell instances within a crowded environment. To detect cell division events

with high accuracy, we also proposed an Eigen decomposition-based strategy that can identify divi-

sion events even when daughter instances change orientation and displace spatially during dividing

from the parent instance. We demonstrate the effectiveness of the proposed method in tracking bac-

terial cells from 3D lattice light-sheet image sequences of biofilms. The proposed method achieved

better tracking results in terms of both qualitative and quantitative evaluation measures against

recent and state-of-the-art cell tracking approaches.
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Chapter 5

Discussion and Future Work

Cell segmentation and tracking are essential image processing tasks that facilitate scientists in gain-

ing insights into the biophysics of a cell population. Manual analysis is laborious and prone to

subjective errors, especially when dealing with a large number of cell instances, and becomes even

more challenging in 3D datasets. Consequently, the development of automatic segmentation and

tracking algorithms has been a thriving area of research. While many existing cell segmentation

and tracking algorithms exist in the literature, they are not readily applicable to addressing the

underlying challenges associated with a particular cell population. One such challenge involves solv-

ing segmentation and tracking problems in 3D images and videos of densely populated bacterial

biofilms. In this thesis, we have proposed effective algorithms to address such problems. Our main

contributions are presented in three distinct chapters.

In Chapter 2, we presented a simulation framework that can generate synthetic biofilm images

consisting of bacterial cells with realistic curvilinear morphology. We utilized an elastic shape anal-

ysis framework known as square-root normal field (SRNF) to model such realistic bacterial shapes.

These simulated curvilinear bacterial shapes were integrated into a biofilm modeling software called

CellModeller. We demonstrated that the realistically shaped 3D synthetic biofilm images and videos

generated by the proposed simulator are useful for training deep learning-based segmentation and

tracking methods. In future, the simulation framework can be further improved by incorporating a

realistic motion model of the bacterial cells during the growth and division process of a biofilm.

In Chapter 3, we proposed a novel cell segmentation approach aimed at effectively segmenting

touching cell instances in crowded image scenarios, such as within a dense 3D biofilm. Our approach

involved designing a hybrid deep-learning model that comprised an image regression network followed
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by a voxel-wise image classification network. This model was utilized to estimate cell seeds for

a subsequent seeded watershed segmentation. Through our regression network, we successfully

generated enhanced maps of cell interior and borders, contributing to superior seed estimation

by the voxel-wise classification network. Experimental results were showcased, demonstrating the

application of our method in segmenting bacterial cells from both synthetic biofilm images and

lattice light-sheet microscopy images of real biofilms. In qualitative and quantitative evaluations,

our proposed method exhibited better segmentation results in comparison to state-of-the-art cell

segmentation methods.

In the future, several improvements can be incorporated into the proposed segmentation work-

flow while still retaining the key benefits of our method, including effective Euclidean distance

map representation, specialized image quality-oriented loss, and a multi-task scheme comprising

enhancement and semantic segmentation tasks. With the success of denoising diffusion models in

many image processing tasks, the diffusion model [127] can be integrated into our U-Net-based re-

gression and voxel-wise classification networks. Further, to optimize the memory requirement while

training the networks on large 3D biofilm datasets, we can incorporate such memory-efficient archi-

tectures [90, 91] instead of traditional U-Net-based CNNs for the regression and semantic segmen-

tation tasks. Additionally, our two loss functions can be jointly learned in a multi-task framework

using hypernetworks [94]. Lastly, instead of performing segmentation separately on each frame, a

video-based segmentation workflow can be implemented while still leveraging the key features of the

proposed segmentation technique.

In Chapter 4, we introduced a novel cell tracking approach designed to effectively track cell

instances and their offspring in dense 3D time-lapse microscopy videos. The proposed tracking

approach involves an efficient frame-by-frame matching procedure that leverages a deep learning-

based temporal sequence classifier. This classifier computes association scores for potential matches

in the subsequent frame. The association scores obtained from the network are then utilized in

a constrained optimization framework to achieve one-to-one matching between consecutive time

frames. Furthermore, for the task of cell division detection, we presented a novel strategy involving

the Eigen decomposition of unmatched instances in the subsequent frame. Assuming the unmatched

instance as a candidate daughter cell, the neighboring cell instance with the minimum projection

along the second and third principal components of the unmatched instance was considered as the

second daughter cell. We demonstrated the effectiveness of the proposed method in tracking bacterial

cells from 3D microscopy videos of biofilms. Our method achieved superior tracking results in terms

of qualitative and quantitative evaluation measures against existing cell tracking approaches.
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In the future, improving the proposed tracking method could involve integrating a segmentation

error correction stage and a tracklet stitching stage. Additionally, to boost the performance of frame-

by-frame matching, a more effective approach could be achieved by merging temporal sequence

classification and one-to-one matching optimization into a unified pipeline. Finally, to improve

overall tracking accuracy, training the temporal sequence classifier with a broader range of diverse

and realistic simulated biofilm sequences, including those with realistic motion features, could be

beneficial.
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