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Abstract

In this dissertation we prove a simple criterion for essential normality of compo-
sition operators C, induced by maps ¢ in a large class of functions. Additionally, we
construct essentially normal composition operators which have arbitrary even order
of contact with the unit circle at one point. To do so, we rely on results from three
distinct areas. We use results and techniques of Agler-Lykova-Young to construct ra-
tional analytic self-maps of the unit disk with specified Taylor coefficients at a given
boundary point. This allows us to decompose a composition operator modulo the
ideal of compact operators into a sum of rationally induced composition operators
based on results of Kriete-Moorhouse. The adjoint of each rationally induced compo-
sition operator is then studied using results and ideas of Bourdon-Shapiro. Essential
normality is then characterized, beginning with a single summand in the decomposi-
tion and continuing to the more general case. Finally, we construct essentially normal
composition operators which have arbitrary even order of contact with the unit circle

at one point.
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Chapter 1
Introduction

For ¢ an analytic self-map of the unit disk I, the composition operator C,,: f — fop
induced by ¢ is a bounded operator on the Hardy space H2. Composition operators
have been widely studied and many results can be found in [13] and [25].

Recently, several authors have investigated C*-algebras generated by one or more
composition operators. One aim in studying such C*-algebras is to understand the
properties of the operators they contain. In particular, there is much interest in
determining the spectrum of algebraic combinations of composition operators and
their adjoints.

For C, an essentially normal composition operator, the quotient algebra of the
C*-algebra generated by C, by the ideal of the compact operators K is commutative,
and so spectral theory in this quotient algebra can in principle be understood via
Gelfand Theory. In [6], Bourdon-Levi-Narayan-Shapiro characterize the class of non-
trivially essentially normal composition operators induced by linear fractional maps
and provide additional examples of essentially normal composition operators induced

by maps which have order of contact 2 with 0D at one point. To the best of the



author’s knowledge, no non-trivially essentially normal composition operators having
order of contact n > 2 with the unit circle were known prior to the present work.

In this dissertation we prove a simple criterion for essential normality of compo-
sition operators induced by maps ¢ in a large class of functions. Additionally, we
construct essentially normal composition operators which have arbitrary even order
of contact with the unit circle at one point. To do so, we rely on results from three
distinct areas, presented in Chapters 3-5 after a review of preliminary material in
Chapter 2.

In Chapter 3 we discuss a boundary version of the Carathéodory-Fejér problem
studied by Agler-Lykova-Young in [1, 2], of determining whether a given finite se-
quence of complex numbers comprises the initial Taylor coefficients of an analytic
self-map of the upper half-plane, H, at a boundary point. We review several of the
results and techniques used in [1, 2], then derive similar results for a slightly different
case of interest. We apply this to obtain a parametrization of all analytic self-maps of
H having specified order of contact with the real line at 0, and to construct rational
analytic self-maps of H that are analytic at 0 and have specified Taylor coefficients
there.

In Chapter 4 we review some definitions and results of Kriete-Moorhouse [19]
regarding compactness of linear combinations of composition operators. We then
apply our results from Chapter 3 to obtain a decomposition of a composition operator

modulo K into a sum of composition operators induced by rational functions. We



define basic functions as rational self-maps of the unit disk satisfying some additional
properties, and prove a version of the decomposition theorem with basic functions.
Additionally, we review a result from [19] regarding weighted composition operators
in the Calkin algebra and use this result in the proof of a similar result concerning
weighted adjoints of composition operators.

In Chapter 5 we use the pointwise formula for the adjoint of a rationally induced
composition operator C7; (introduced in [12, 15]) to obtain an operator formula for
CyC;, where 1 satisfies some conditions. We use a variant of the formula which
appears in Bourdon-Shapiro [7] and ideas from [7] to reduce our formula modulo K
for the special case where ¢ is a basic function.

Finally, in Chapter 6 we investigate essential normality. We begin by proving
a necessary and sufficient condition for essential normality for the case where the
inducing map ¢ is a basic function. We then decompose C, into a sum of basic
composition operators modulo K and show that essential normality can only occur
when this sum consists of a single term. Lastly, using the parametrization of functions
with given order of contact proved in Chapter 3, we construct essentially normal
composition operators which have arbitrary even order of contact with the unit circle

at one point.



Chapter 2

Preliminary Material

2.1 Bounded Operators on a Hilbert Space

For any Hilbert space H, we denote the space of all bounded linear operators from H

to H by B(H). The operator norm on B(#H) is defined by
IT[| = sup{[[Thll: h € H, [|hll» < 1},

for all '€ B(H), and B(H) is complete in this norm.
We say that an operator T € B(H) is finite rank if its range is finite dimensional.

An operator T is compact if the following equivalent conditions hold.
Proposition 2.1.1. /23, Theorem 3.3.3] The following conditions are equivalent.
1. T is in the closure of the set of finite rank operators in B(H)
2. The closure of the image of the unit ball of H under T is compact in H

3. Each net in the unit ball of H has a subnet whose image under T' converges in

H



Note that all finite rank operators are compact. Additionally, from the third

condition in Proposition 2.1.1 it follows that:

Proposition 2.1.2. T € B(H) is compact and S € B(H) satisfies ||Sh|| < ||Th|| for

all h € H, then S is compact as well.

We denote the collection of all compact operators on ‘H by K and note that this
collection forms a closed, two-sided ideal in B(H). The quotient algebra B(H)/K is
called the Calkin algebra [4, 23]. If T — S € K, i.e., T and S are in the same coset in
the Calkin algebra, we write

T=S (modK).

For each operator 7' € B(H) there exists a unique operator 7% € B(H), called the
adjoint of T', that satisfies
(Tg,h) = (g, T"h)
for all g,h € H. An operator T is normal if it commutes with its adjoint, that is,
TT* = T*T, and essentially normal if the self-commutator [T, T*] = TT* — T*T is

compact, that is,

T*T=TT* (mod K).



2.2 The Hardy Space H?, Composition Operators

and Toeplitz Operators

The Hardy space of the disk, H? := H?(ID), is the space of all analytic functions f on

D whose power series f(z) =Y~ a,2" satisfy

o0

172 =Y Janl* < oo

n=0

The Hardy space is a Hilbert space under the inner product

<§: a,z", i bnz"> = i by,
n=0 H2

More information about the Hardy space can be found in [13].
We can identify f(z) = > o a,2™ in H? with the boundary function f(e?) =

>0 ane™ in H?(0D). Note that

F(e) = lim f(re”)

r—1

for almost every 6 [21].

For ¢ in L>(9D), we define the multiplication operator M, acting on L?(9D) by
(Mo f)(e”) = w(e”) f(e?),

and the Toeplitz operator T, acting on H*(0D) by T, = PM, where P is the

H27
projection of L*(0D) onto H?*(OD).

For ¢ an analytic self map of D, we define the composition operator C, on H? by

Cof =foep.



By Littlewood’s subordination principle, C,, is a bounded linear operator on H? [21].
The space H*> consisting of all the functions that are analytic and bounded on
D arises in the study of operators on H?. H® is a Banach algebra with pointwise

operations and the sup norm, and is contained in H?2.

2.3 More About Composition Operators

2.3.1 Compactness for Composition Operators

Compactness of the composition operator C,, is closely related to the boundary be-
havior of ¢. The following two results suggest that C, is compact when ¢(z) does

not get too close to the boundary too often.
Proposition 2.3.1. /25, p 23] If ||¢]le < 1 then C, is compact.

Proposition 2.3.2. [25, p 32] If the set {¢ € OD: |¢(C)| = 1} has positive Lebesgue

measure then C, is not compact

In order to state additional results relating the boundary behavior of ¢ and com-
pactness of C,, we introduce the notion of non-tangential approach regions, angular
derivatives and the Denjoy-Wolff point.

For ( € 0D and « > 1 we define the non-tangential approach region at ¢ by

Fo(Q) ={z€D: [z = (| < al = |2)}.



Figure 2.1: A typical non-tangential approach region (o = 3,( = e1")

We say a function f on ID has non-tangential limit L € C at ( and write

Zlim f(z) =L

¢
if f(z) — L as z — ( along any path contained in a non-tangential approach region
at .

Let ¢ be an analytic self-map of D. Then ¢ has a (finite) angular derivative at ¢
in dD provided ¢((), the non-tangential limit of ¢ at ¢, exists and has modulus one,

and

o 0(2) = (Q)
@(C)-—éygé—z_g

exists as a finite complex number. If the angular derivative ¢'(¢) fails to exist, we

write |¢'(¢)] = oo.

Theorem 2.3.3 (Julia Carathéodory [13]). For ¢ an analytic self-map of D and

¢ € dD, the following are equivalent

1. d(¢) = liminf,, 75 < o0



2. ¢ has finite angular derivative ¢'(C) at ¢
3. Both ¢ and ¢ have (finite) non-tangential limits at ¢, with |n| = 1 forn = lim,_,; ¢(r().

Moreover, when these conditions hold, we have lim,_,1 ¢'(r() = ¢'(¢) = d(¢){n and

d(¢) = £lim,_, el

1—z]

The angular derivative criterion for compactness is given by the following result.
Proposition 2.3.4. [25, p 57] Suppose ¢ is an analytic self-map of D
1. If C, is compact then ¢ does not have an angular derivative at any point in OD.

2. If ¢ is univalent and does not have an angular derivative at any point of 0D,

then Cy, is compact.

Theorem 2.3.5 (The Denjoy-Wolff Theorem). [25, p 75] If ¢ is an analytic self-map
of D with no fized point in D then there is a point w € D (“the Denjoy- Wolff point
of ¢”) such that the nth iterate v, = popo...op (n times) converges to w uniformly

on compact subsets of D.
The following is contained in ”The Grand Iteration Theorem”.

Theorem 2.3.6. [25, p 78] Suppose ¢ is an analytic self-map of D that is not an

elliptic automorphism.

1. If © has no fixed point in D, then the Denjoy- Wolff point w € 0D of ¢ is a fixed

point for ¢ and the angular derivative @' (w) exists and satisfies 0 < ¢'(w) < 1.
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2. Conversely, if ¢ has a boundary fized point w at which ¢'(w) < 1, then ¢ has

no fived point in D, and w is the Denjoy- Wolff point of ¢.
We can conclude the following corollary.

Corollary 2.3.7. [25, p 84] If C, is compact then ¢ has a fived point in D.

2.3.2 Adjoint Formula For The Linear Fractional Case

b
Let p = aZj__ g be a linear-fractional self-map of ID. Then the Krein adjoint of ¢ is
cz
defined by
o(z) = =2
—bz+d

Cowen’s adjoint formula (see [11]), relates the adjoint of C,, with C,, by
C, =T,C, Ty,

where g(z) = (—=bz +d)~!, h(z) = cz + d are in H*. Building on this, in [20] Kriete-
MacCluer-Moorhouse provide a simple expression for C7, in the Calkin algebra for the

following linear fractional case.

az+0b .
18
cz+d

Proposition 2.3.8. [20, Theorem 3, Proposition 3] Suppose that ¢ = a

linear-fractional self-map of D, not an automorphism, which satisfies o(¢) = A for

some (, A € 0D. Then
1

C*=—C, (mod K
¢ = e (Ml

where o 1s the Krein adjoint of .
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In Proposition 5.2.3, we generalize this formula to the bigger class of functions A

defined in Section 4.1.

2.3.3 Essentially Normal Composition Operators

Recall that an operator T is normal if it commutes with its adjoint, and essentially
normal if [T',7*] = TT* — T*T is compact. A composition operator C, is normal
if and only if ¢ is of the form ¢(z) = az with |a| < 1 [21, p 171] (result due to
Howard Schwartz [21, p 194]). We say that C,, is non-trivially essentially normal if
it is essentially normal, not compact and not normal.

In [6], Bourdon-Levi-Narayan-Shapiro determined that a composition operator

az+b
cz+d

induced by a linear fractional map ¢(z) = is non-trivially essential normal if and
only if ¢ is a parabolic non-automorphism. In particular ¢ has contact with the unit
circle 9D at one point ¢ and satisfies ¢/({) = 1. Additional examples of essentially
normal composition operators induced by maps which have order of contact 2 with
0D at one point are provided in [6, Section 7].

To the best of the author’s knowledge, no non-trivially essentially normal com-

position operators having order of contact n > 2 with 9D were known prior to the

present work.
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2.4 Order of Contact

We define the notion of order of contact with the boundary both in the context of

the unit disk D and in the context of the upper half-plane H.

Definition 2.1. We say that ¢ has contact with 0D at ( of order ¢ > 0 if there is
some neighborhood V' of ¢ such that ¢ is analytic on V' N D and maps V N D into D,
and

1. (€)= lim ¢(z) exists and p({) € ID

z—(,z€D

1— ()]

> o) — plen)]e

is essentially bounded above and away from zero as ¢ — (.

Definition 2.2. We say that f has contact with R at 0 of order ¢ > 0 if there is
some neighborhood W of 0 such that f is analytic on W NH and and maps W N H
into H, and

1. f(0):= lim f(2) exists and f(0) € R

z—0,z€eH

I
m f(z) - Is essentially bounded above and away from zero as  — 0 in R.

1f(0) = f(2)]

The following proposition provides some insight and intuition to the definition of
order of contact in the upper half-plane by exploring the case where the function is

analytic at the point of contact.

Proposition 2.4.1. Suppose that f is analytic in a neighborhood W of 0 with Taylor

expansion f(z) =Y po,arz® there, and that f maps 0 into R and W NH into H.
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Then f maps an interval in R containing 0 into R if and only if all the coefficients
ay are real. Otherwise, f has order of contact n = min{k: Imay # 0} withR at 0, n

1s even and Ima,, > 0.
Proof. For all x € R we have
Im f(x) = Zlm(ak)xk.
k=0

If all the coefficients aj are real then f maps an interval in R containing 0 into R.

Otherwise, let n be the minimal index for which a,, is non-real. Then
Im f(z) ~ Im(a,)z"
and so f does not map an interval in R containing 0 into R. Additionally, we have
£(0) = f(@)] ~ [aa] - [],

and since f maps W NH into H we have that a; > 0 and Im f(z) > 0 for z € R near

0. Thus
0 < Im f(z) N Im(a,)z™
[F0) = fla)l laa]™ - ||
: Im f(z) Im(ay)
and so n is even and Im(a,) > 0. We get that ~ and so f has
[£0) = f)*  faal
order of contact n with R at 0. [

We show that the definition in D corresponds to that in H. To transfer D to H

we use the family of conformal maps 7,: D — H for a € 9D, defined by
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Proposition 2.4.2. Suppose ¢ is analytic at (. Then @ has order of contact ¢ with
oD at ¢ if and only if f =T )0 po0 TC_I has order of contact ¢ with R at 0.

Proof. Note that f fixes 0 and that x = 7¢(¢%) tends to 0 in R if and only if ¢? tends

to ¢ in dD. We calculate:

. GO — g [P =€) _ L)
(0= I (o () =1 (5550557 ) = s oo

and

Thus for any ¢ > 0,

Im f(z) 1= |p(e”)* Q)+ e(e?)[

@I 1e(Q) = el [2(Q) + ¢(e)P

Note that

1mwﬂo+¢W%V:@WOF:T4
et —¢ [p(C) + (e?)]? 120(0)2

and so ¢ has order of contact ¢ with 0D at ( if and only if f has order of contact ¢

with R at 0. [l

Order of contact with D and H is illustrated in Fig. 2.2, Fig. 2.3 and Fig. 2.4.
The maps fi, fo and f3 are self-maps of H constructed using Proposition 3.3.3, with

contact with R at 0 of order 2,4 and 6 respectively and given by

filz) = z'z_—zl =2z +1i2" + O(z%)
i2? —z ,
fQ(Z) = m =z+ 2’3 +ZZ4 + 0(26)
3., .2
f3(z) = y T =2+ 22 4+22° +i2° + O(2").

—323 + 2224+ 4z —1
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The maps 1, s, 3 are the corresponding self-maps of D with contact at 1, and are

given by
z+1
i2) = —z+3
2242241
902(2)222—224—5
1 224+22+2+1
p3(z) = = - )

2 22— 242

2.5 Rational Functions

Rational functions will have a significant role in this thesis. We review some basic
definitions and properties and discuss the notion of branches of the inverse function.

Let r be a rational function, and write

where p and ¢ are relatively prime polynomials. Then the degree d of r is defined to
be the maximal degree of p and q. We think of r as mapping the extended complex
plane C = C U {oo} into itself. For each point w € C the inverse image r~'({w}) has
d points counting multiplicities [14, Problems 28-32, pages 181-182].

We say w is a regular value of r if r~!({w}) consists of d distinct points, and that
w is a critical value otherwise. By elementary function theory, w is a critical value
for r if and only if r~!({w}) contains at least one critical point - a point that has no
neighborhood on which r is univalent. For a point z € C, z is a critical point if and

only if 7/(z) = 0. Thus, all but finitely many points of C are regular values for 7.
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Let w be a regular value of r, so that r~!({w}) consists of d distinct points
{z1, 22, ..., za}. Then each point z; is the center of an open disc A; on which r has
a univalent restriction. So the restriction of r to A; has an analytic inverse s; on
r(A;). Tt is called a branch of 7! defined on r(A). We take the intersection of the
r-images of the discs Aq, ..., Aq to obtain a neighborhood W of w on which all d
distinct branches si, ..., sq are defined. By the following proposition, we can extend
these d branches to any simply connected domain V' containing W and consisting of

regular values of r.

Proposition 2.5.1. [7, Corollary 3] Suppose r is a rational function and s is a
branch of r=! defined on some disc /A consisting of reqular values of r. Suppose W is
a simply connected domain consisting of reqular values of r and containing . Then

s has an analytic continuation to a branch of r=' defined on W.

Thus, for any rational function r of degree d and any simply connected domain V'
consisting of regular values of 7, there are d distinct branches s, ..., sq of r~! defined
on V. Furthermore, distinct branches defined on the same connected open set have

disjoint images [7, Proposition 1], and so s;(V), ..., sq(V) are pairwise disjoint.



Figure 2.2: Order of contact 2 in D and H

\J

(a) fi(R)

o

(b) ¢1(9D)

Figure 2.3: Order of contact 4 in D and H

\J

(a) fo(R)

o

(b) ¢2(9D)

Figure 2.4: Order of contact 6 in D and H

.

(a) f3(R)

&

(b) ¢3(0D)
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Chapter 3

The Boundary Carathéodory-Fejér
Problem

The Carathéodory-Fejér problem [8, 5] is to determine whether a given finite sequence
of complex numbers comprises the initial Taylor coefficients of an analytic map f
mapping the unit disk D to the upper half-plane H. In [1], Agler-Lykova-Young
provide a solvability criterion for the boundary version, denoted OC FP, and give a
parametrization of all solutions in the real case, denoted OC FP(R).

We review several of the results and techniques used in [1] and the subsequent pa-
per [2], then apply these to obtain a parametrization of all solutions to a slightly
different special case of interest - OCFP(contact-n). We apply this to obtain a
parametrization of all analytic self-maps of H having specified order of contact with
R at 0, and with varying initial Taylor coefficients. Finally, we construct rational
analytic self-maps of the upper half-plane H that are analytic at 0 and have specified

Taylor coefficients there.
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3.1 The Boundary Carathéodory-Fejér Problem

In [1], Agler-Lykova-Young study a boundary version of the Carathéodory-Fejér prob-
lem, denoted OC F'P, for functions in the Pick class P where the interpolation node
x lies on the boundary R. Here P is defined to be the set of analytic functions f

mapping the upper half-plane H into H U R.

Problem 3.1.1 (OCFP). Given a point x € R, a non-negative integer n and numbers
a_1,ag, ...,a, € C, determine whether there exists a function f € P such that [ is

analytic in a deleted neighborhood of x and
Lk(f,l’) = Qf, k= —1,0,1,...,”,
where Ly(f,x) is the kth Laurent coefficient of f at x.

A solvability criterion for this general boundary problem is given in [1, Theorem
1.2], which we partially present in Theorem 3.1.3. Parametrization of all solutions
for the real case, 0CFP(R), where a_1,aq, ...,a, € R, is given in [1, Theorem 8.1,
Theorem 8.2, Corollary 8.6].

In the subsequent paper, [2], weaker solutions to OC'F'P, having non-tangential
pseudo-Taylor expansions, are considered. For our purposes, unrestricted pseudo-
Taylor expansions will suffice, and so we will say a function f € P is a weak solution

of Problem OCFP if f has a pseudo-Taylor expansion

f(z)=ao+ai(z —=2) + ... +an(z = 2)" + o]z — z[")
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as z — 0 unrestrictedly in H.

Theorem 3.1.2. [2, Theorem 5.2] Problem OCFP with a_; =0 has a weak solution

if and only if it has a solution that is analytic at x.

We are interested in a boundary version of the Carathéodory-Fejér problem where
the interpolation node is taken to be x = 0. We restrict attention to functions f in
the Pick class P which extend analytically to a neighborhood of 0 and denote this
subset of the Pick class by Py. Recall from Proposition 2.4.1 that for f € Py, f
has order of contact n with the real line at 0 if and only if n is even and the initial
Taylor coefficient of f at 0 satisfy ag,aq,...,a,-1 € R and a,, € H. We denote this
special case of JCFP where ag,ay,...,a,—1 € R and a, € H by 0CFP(contact-n).

The solvability criterion for OC'FP(contact-n) case is as follows.

Theorem 3.1.3. [1, Theorem 1.2(2)] Let n = 2m be an even positive integer,

ag, ..., an—1 € R and a,, € H, and let H,,(ay, ..., a,—1) be the Hankel matriz defined by

aq a9 [07%%

Q9 as o |
Hy(ay,...;a,_1) =

Ay Qm41 oo Ap—1

Then there exists a function f € Py with initial Taylor coefficients ay, ..., a, at 0 if

and only if Hy,(ay,...,a,—1) > 0, i.e., this matriz is positive definite.

Our goal is to derive a parametrization of all the solutions to C' F'P(contact-n).
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We will use the methods used in [1] for the real case and arrive at a similar parametriza-

tion.

3.2 Reduction and Augmentation

The main tool we will use is a technique for passing from a function in the Pick class
to a simpler one and back again due to G. Julia [18]. We define the reduction and

the augmentation (at 0) of a function as follows.

Definition 3.1. For any non-constant function f € Py such that f(0) € R, we define

the reduction of f (at 0) to be the function g on H given by the equation

(z) _ 1 n 1
T = T =0 T F0)=

Definition 3.2. For any function g € Py and any a9 € R, a; > 0, we define the

augmentation of g (at 0) by ag, a; to be the function f on H given by

1
R E)

The important property of the operations of reduction and augmentation is that

they preserve the Pick class.
Proposition 3.2.1. [3, Theorem 3.4]

1. If f € Py is non-constant and f(0) € R, then the reduction of f is in Py as well.

2. If g € Py and ag € R, a; > 0 then the augmentation f of g by ag,a; s in Py as

well and satisfies f(0) = ap, f'(0) = a;.
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Note that reduction and augmentation are inverse operations on Py, that is,

1. if f € Py and if g is the reduction of f then f is the augmentation of g by

J(0), 7(0);

2. if g € Py and if f is the augmentation of g by ag, a; then g is the reduction of

1.

We will need the following results relating the properties of the Taylor coefficients

of a function and those of its reduction.

Proposition 3.2.2. [1, Proposition 2.5] Let f € Py satisfy f'(0) > 0, and let g be

the reduction of f. Let the Taylor expansions of f and g about 0 be

f(z) = iajzj, g(z) = i b2
j=0 J=0

Then the Taylor coefficients a; and b; are related by

ay 0 0 .. bo (05}

o Q1 0 .. b1 1 as
ay

as as ap ... bg ay

Corollary 3.2.3. Let f(z) = > Zga;2) and g(z) = >°72,b;27 be as in Proposi-

tion 3.2.2. Then for any integer n > 2,

ai,...,a, determine by, ...,b,_a,
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and in the other direction
ai, by, ...,bh_o determine as,...a,.
Furthermore, if ag,ay € R, then
N =min{k: Imag # 0} if and only if N —2 =min{k: Imb, # 0}.
Proof. For k= 1,2, ..., the kth row of the matrix equation in Proposition 3.2.2 is

a
akbo + ak_lbl + ...+ albk_l = htl .

ai

Adjusting the index k and solving for the appropriate terms, we get

1

b = — (a’““ — Qyirbo — agby — ... — a2bk_1) for k=0,1,2, ... (3.2.1)
aj 45]

ap = a1 (ak_lbo + ak_zbl + ...+ albk_g) for k = 2, 3, 4, (322)

Let n > 2. Using Eq. (3.2.1) and by induction on k, we see that ay, ..., a, determine
bo, ..., bp—2. Using Eq. (3.2.2) and again by induction, we see that a; together with
bo, ..., by_o determine ao, ..., a,.

Now suppose that ag, ai, ...,ay—1 € R and ay € H. Then using Eq. (3.2.1) and by
induction on k =0, ..., N —3 we see that by, ...by_3 € R. Now, taking imaginary parts
of Eq. (3.2.1) for k = N — 2, we get that Im(by_5) = élm(aN), so that by_o € H.

To other direction of the implication follows similarly from Eq. (3.2.2). O]

Proposition 3.2.4. [1, Corollary 3.3] Let f(z) = ZJ,O a;2’, g(2) = Y125 b2 be as
in Proposition 3.2.2. Then H,,(ay, ...,asm—1) > 0 if and only if Hy—1(by, ..., bapm—3) >

0.
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3.3 Parametrization of Solutions to the Contact-n

Case

We can obtain an alternative expression for the augmentation of a function by intro-

a1 a2
ducing the following notation. For a matrix A = , denote the correspond-
a1 Q22
ing linear fractional transformation by L[A]:
apnh +a
L[Ap = it e
agh + asy

Note that composition of linear fractional transformations corresponds to matrix mul-
tiplication, i.e., L[A]L[B|h = L[AB]h.
By the definition, the augmentation f of g by ag, a; is

1 a1z apa129(z) —ag — a1z
Z)=Q + —_— = A0 — = s
)=t Ty = g =1~ arzg(e) -1

and so f(z) = L[A(ao, a1)(2)]g(2), where A(ag, a1)(z) is defined by
apga12 —ag — a1z

a1z -1

Theorem 3.3.1. Let n = 2m be an even positive integer and let ag, ..., a,—1 € R and
a, € H be such that Hy,(aq, ..., an—1) > 0. Then all solutions to 0C FP(contact-n) are
given by

f(2) = L{A(y”, i) (=) -+ Alag™ ™, 0" )(2)]g(2)

for any g € Py satisfying g(0) = a(()m), where

aéo) = ayp, a(()l), s a[()m_l) € R, a(()m) € H, ago) =a, agl), - agm_l) >0
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are determined by aqg, ..., Qy,.

Proof. Recall that by Theorem 3.1.3, there exists a solution to 0C' F'P(contact-n) with
initial Taylor coefficients ay, ...a,, and fix a solution f,. We inductively define fy.; €

Py to be the reduction of f for £ =1, ..., m, and denote the Taylor coefficients of fy

at 0 by aék), agk), .... Notice that f; is the augmentation of f,; by aék), agk), so that

fi(z) = LIA(ad”, a{)] fra (2),
and fp can be written as
fo(z) = L[A(ao, a1)] f1(2)
= L[A(a), ai”)(2) A(a”, ai") (2)] falz) = - -
= LA(a)”,a{”)(2) - Alad" ", a{" V) (2)] fn 2).

By Corollary 3.2.3, all the Taylor coefficients listed below are determined by

ao, ..., a, and do not depend on our choice of fj.

fo =5 h = S e =5
ao a(()l) e a(()m_l) a(()m)
a agl) e agmfl)
as aél) e a(zm_l)

o

Qn—1
Qp

In general, for k = 1, ..., m we have that a(()k), ...aflk_)% are determined. Corollary 3.2.3

further shows that a(()k), ...aff_)%_l € R and a;k_)zk € H, i.e., all the non-bold coefficients
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above are in R and all the bold coefficient are in H. In particular, we get that
al” = ag,al”, ..., a" ™V R, ai™ € H.

Additionally, by Proposition 3.2.4, for k = 1, ..., m—1 the Hankel matrix Hm_k(agk), ceey a@%,l)

is positive and so in particular we get that

a§°) = al,agl), ...,agm_l) > 0.

Note that since fo, ..., fin—1 are all real valued at 0 and non-constant, taking the above
reductions makes sense.

Now let Fy be any solution of OC F'P(contact-n) with ay, ..., a,, and let Fj, denote
the kth reduction of Fy. As discussed above, the first n — 2k + 1 Taylor coefficients

of Fj, are a(()k), ...a,(f_)%, and so [ can be written as

Fo(2) = L[A(a)”, ) (2) -+ A(a§" ™, a{" V) (2)] Fu(2),

where F,, satisfies F,,(0) = al™

Conversely, for any F,, € Py satisfying F,,(0) = a(()m) we inductively define Fj, for

k=m—1,...,0 to be the augmentation of Fj,; by a[()k), agk), ie.,

Fi(2) = LIA(ay”, a{")] Fii ().

By the second assertion in Corollary 3.2.3, the first n — 2k + 1 Taylor coefficients of

F}, are again a(()k), ...aff_)zk, and so the function

Fo(2) = L[A(a)”, ) (2) -+ A(a§" ™, a{" V) (2)] Fu(2),

is indeed a solution to 9C' FP(contact-n) with ay, ..., ay. O
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Theorem 3.3.2. Let n = 2m be an even positive integer. Let ag,...,a,_1 € R and
a, € H be such that Hy,(ay, ..., a,—1) > 0. Then all solutions for 0C FP(contact-n) are

parametrized by

p(2)h(2) +q(2)

1&) = o) T s2)

where p,q,r,s are polynomials with real coefficients of degree at most m determined

by ag, ..., a, and satisfying for some K > 0,

(ps — qr)(z) = K="
and h € Py satisfies h(0) = hg, where hg is determined by aq, ..., a,.

Proof. Let a(()o), . a(()m) and a,go), . agm_l) be as in Theorem 3.3.1, so that all solutions

are parametrized by
f(2) = LA(ag” 0" (2) -+ Alag™ 0" ) ()] (2),
where h is any function in Py with h(0) = aém).

We define the polynomials p, q,r, s by

p(z) q(2) _ A(a(()o), a§0))(z) .. .A(a(()mfl), aﬁm’”)(Z),

so that

Recall that
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and so p,q,r, s are real polynomials of degree at most m. Notice that

det A(ag, 1) (2) = —ponz + apayz + o222 = o222,

so by taking determinants we get that

2 2
(s —ar)(2) = (a?) 22 (") 2 = e
O

As a corollary to Theorem 3.3.1, we can now provide a parametrization of all

contact n functions.

Proposition 3.3.3. All functions f € Py with order of contact n = 2m with R at 0

are parametrized by
f(2) = LA(ag” 0" (2) - Alag™ 0" ) (2))g (=),

where g € Py satisfies g(0) € H and

aéo), a(()l), e a(()m_l) eR, a(10)7 agl), e agm_l) > 0.

Furthermore, for any f € Py, these parameters are uniquely determined.

Proof. Let f € Py have order of contact n = 2m with R at 0 with initial Taylor
coefficients ay, ..., a,,. Then by Theorem 3.1.3, H,,(ay,...,a,_1) > 0 and so by Theo-
rem 3.3.1 f is of the desired form.

For the other direction note that any f of this form is obtained by applying m

augmentations to g € Py, and so f € Py. Recall that by Corollary 3.2.3, augmentation
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increases the order of contact with R by 2, and so ¢(0) € H implies that f has order
of contact 2m = n.

To see uniqueness, notice that if
0 0 m—1 m—1
f(2) = LIA(ag”, a”)(2) -+ Alag™ ™ 0y (2)]g(2)

then a((]k) = fk(O),agk) = f1(0) and g = f,, where f; denotes the kth reduction of

- O

3.4 Rational Functions with Specified Taylor Co-

efficients

We turn our attention to construction of simple solutions to JCFP. Initially we
construct rational maps f € Py which map 0 into R and the rest of R = R U {o0}
into H and have specified initial Taylor coefficients at 0. We then add the condition
that 0 is a regular value for f, i.e., f71({0}) consists of d distinct points where d is
the degree of f. We begin by showing that augmentation preserves the properties we

are interested in.

Proposition 3.4.1. Let g € Py be a rational function of degree d. Then any aug-

mentation f of g is a rational function of degree d + 1.

Proof. Let g = M € Py be a rational function of degree d, with p(z) and ¢(z) are

q(z)

relatively prime, and let f € Py be the augmentation of g by ag,a;. Then by the
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definition of augmentation,

1 pz) _ q(z) —azp(z) _ ()
wmz  q(2) a12q(z) s(2)

has degree d+ 1. We see that max{degr,degs} = d + 1, and it remains to show that
r(z) and s(z) are relatively prime.

First note that ¢(z) is not divisible by z since g is analytic at 0, and so z is not
a common divisor of r(z) and s(z). Now assume that z — a is a common divisor
of r(z) and s(z) for some a # 0. Then z — a divides a1z¢(z) implies z — « divides
q(2), and z — « divides both ¢(z) and ¢(z) — a;zp(z) implies z — a divides p(z). This
contradicts the assumption that p(z) and ¢(z) are relatively prime, and so r(z) and

s(z) are indeed relatively prime. ]

Proposition 3.4.2. Let g € Py mapping R\ {0} into H. Let f = L[A(aq, a;)]g with
Imag > 0 and a; > 0 (note that for ag real, f is an augmentation of g). Then f also

maps R \ {0} into H.

Proof. By the definition of A(ag,ay),

apa129(z) — ag — a1z 1
019() 0 1 = ap + : '
a1zg(z) — 1 42

a1z

f(z) =

Let z € R\ {0}, so that g(z) € H. Then
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and so

Im f(z) =Imag+Im | ———
— —g(2)

a1 xr

]

Proposition 3.4.3. Let f be in P and suppose that for some n = 2m, [ has pseudo

Taylor coefficients

. fW(2)
L

=ar fork=0,1,...n,

where the limits are taken unrestrictedly in H, such that ag,aq,...,a,—1 € R and
a, € H.
Then there exists a degree m rational function F € Py that maps R \ {0} into H

and has initial Taylor coefficients ag, ..., a, at z = 0.

Proof. By Theorem 3.1.2 and Theorem 3.1.3, H,,(a1,...,a,—1) > 0 and so by Theo-

rem 3.3.1 with g(z) = a™, we have that

F(z) = L[A(ay”, ") (z) - - A(ag" ™ af™™)(2)]ag™,

is in Py with the desired Taylor coefficients. Here aéo) = ao,a(gl), ...,agm_l) € R,

al™ € Hand a\” = ay,al”, ....al™" > 0 are determined by ay, ..., an.
Note that F' is obtained by applying m augmentations to g(z) = aém). Thus by
Proposition 3.4.1, F' is a degree m rational function, and by Proposition 3.4.2 applied

m times, F maps R \ {0} into H. O
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Proposition 3.4.4. Let f be in P and suppose that for some n = 2m, f has pseudo

Taylor coefficients

. fW(2)
L —

=ar fork=0,1,....n,

where the limits are taken unrestrictedly in H, such that ag,aq,...,a,—1 € R and
a, € H.
Then there exists a degree m + 1 rational function fo € Py that has 0 as a regular

value, maps R \ {0} into H and has initial Taylor coefficients ay, ..., a, at z = 0.

Proof. By Theorem 3.1.2 and Theorem 3.1.3, H,,(a1,...,a,—1) > 0 and so by Theo-

rem 3.3.1 we have that for any g € Py with g(0) = a(()m),

F(2) = LIA(a)”, a”)(2) - - A(a{" ", o™ V) (2)]g(2),
(0) W Y e R,

is in Py with the desired Taylor coefficients. Here ay’ = ag,qq ..., ag

a(()m) € H and a§°) =a, agl), ey agm_l) > 0 are determined by ay, ..., a,.

0" V(@) = ag™ +

|
=
=

IS
=)

For any w € H, we define g,(z) = Then g is

1 —wz
a degree 1 rational function in Py and by Proposition 3.4.2, g,, maps R into H.

Let F, denote the function F' above resulting from the choice ¢ = ¢, and note
that F,, is obtained by applying m augmentations to g,,. Thus by Proposition 3.4.1,
F, is a degree m + 1 rational function, and by Proposition 3.4.2 applied m times, F,

maps R \ {0} into HL

It remains to find a w € H such that 0 is a regular value for F,,, i.e., F,(z) =0
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has m + 1 distinct solutions. Let p, q,r, s be defined by

p(2) q(2) =AY, a”)(2) - A"V, ai™ ) (2) Alal™, 1) (2),

Since the degree of F,, is m+ 1, p(z)w+ ¢(z) and r(z)w + s(z) have no common roots
and so it suffices to find w such that p(z)w + ¢(z) = 0 has m + 1 distinct roots. Note
that p and ¢ have no non-zero roots in common, since by taking determinants, we
have that

(ps — qr)(2) = ()22 (@™)222 = K272, K #£0.

This equation also shows that at least one of p and ¢ has degree m + 1. Suppose for

the moment that F,,(0) = ag # 0, i.e z = 0 is not a common root for p and gq. Then

the function —% is a rational function of degree m + 1 and so all but finitely many
p(z
w € C are regular values. For any choice w € H that is a regular value of —%, F,
p(z

is the desired function.
If F,,(0) = ag = 0 then z = 0is a common root for p and ¢, however F},(0) = a; # 0

and so z = 0 is a solution of multiplicity one to p(z)w + ¢(z) = 0. Thus the function

z
—% is a rational function of degree m, and so we can find w € H with pre-image
p(z

consisting of m points. These m points and the point z = 0 are then the m + 1

distinct solutions to Fy,(z) = 0. O
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Chapter 4

Relations In The Calkin Algebra

In [19], Kriete-Moorhouse investigate compactness of linear combinations of compo-
sition operators where the inducing maps have certain properties of analyticity. We
review some definitions and results from [19], then apply our results from Chapter 3
to obtain a decomposition of a composition operator in the Calkin algebra into a sum
of composition operators induced by rational or basic functions (see Definition 4.1).

Additionally, we review a result from [19] regarding weighted composition opera-
tors in the Calkin algebra and use this result in the proof of a similar result concerning

weighted adjoints of composition operators.

4.1 The Class of Functions A

We will work in the class of functions A (denoted S in [19]) consisting of analytic
self-maps ¢ of D with certain properties of analyticity. The model for a function in
A is an analytic self-map of D which extends analytically to a neighborhood of D and

is not a Blaschke product. In particular, we restrict the number of points of contact
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with the unit circle, and require relatively nice behavior at the points of contact. To

make a precise definition, we first discuss Clark measures.

4.1.1 Clark Measures

Let ¢ be an analytic self-map of D. If |a] = 1, there exists a finite positive Borel

measure p, on 0D such that

- o)l _ g, (LW)) _ /a RACIN0

o — ¢(2)[? a—p(z)
for z in D, where

. 1—z]?
Pz(ezt) o |Z|

NGEE:
is the Poisson kernel at z. The existence of p, follows since the left side the equation
above is a positive harmonic function. The measures p, are called the Clark measures
of ¢. More information about Clark measures can be found in [9] and Sarason [24].

The singular part of the measure, ;f, is carried by ¢~ !({a}), the set of those
¢ € JD where ¢(¢), the non-tangential limit of ¢ at (, exists and equals a. The
measure p; is the sum of the pure point measure

1
PP 5
=

o(Q)=a

where 0, is the unit point mass at ¢, and a continuous singular measure p’.

We write



36

where spt(u) denotes the closed support of a measure u. Note that for any ¢,
F(¢) = {C: ¢ has finite angular derivative at (}

is a subset of E(yp). If E(p) is a finite set then the continuous singular measure ¢

all vanish, and we get that E(p) = F(¢p).

4.1.2 Definition of A

We define the class A to be the set of analytic self-maps ¢ of D with E(¢) = F(y)
and such that for each point ¢ € F(p), there exist an n such that ¢ has order of

contact n at ¢ and complex numbers ag, ay, ..., a, such that
p(2) = ao+ai(z = ) + ... + an(z — ()" + o(|z = (")

as z — (¢ unrestrictedly in D.

For ¢ € A with order of contact n at (, we define the derivatives of ¢ at ¢ by
PD(Q) = Zlim oV (2) = jla
z—C
for j = 1,...,n and note that these limits do exist (see, the argument in [24, p 47]).

Proposition 4.1.1. A contains all self-maps of D that extend analytically to a neigh-

borhood of D that are not finite Blaschke products.

Proof. Let ¢ be a self-map of D which extends analytically to V' D D and is not a

finite Blaschke product. Let S = {¢ € dD: |p(¢)| = 1} be the set of points where ¢
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has contact with dD. Then S consists of zeros of the analytic function

f(2) = p(2) — pe(2),

where ¢, = po @ o p, and p is the inversion in the unit circle defined by p(z) := 1/%.
If S is infinite then the set of zeros of f has an accumulation point in V' and so f is
identically 0 on V. In this case @(e’) = 1/p(e?) for all €?, i.e ¢ is inner. But since
@ is an inner function analytic in a neighborhood of D, ¢ must be a finite Blaschke
product, contradicting our assumption. Thus S is finite and so E(y) is finite. Since
¢ is analytic at each point ( € F(¢) = E(¢) and maps a small arc containing ¢ onto

a curve with contact with D at exactly one point, ¢ has finite order of contact at (.

Lastly, for n equal to the order of contact of ¢ with dD at (, we can write
p(z) = a0+ ai(z = )+ ... + anz — ()" + o]z — ([")

using the Taylor coefficients of ¢ at . Thus, ¢ is indeed in A. O

4.2 Linear Relations for Composition Operators in

the Calkin Algebra

In [19], Kriete-Moorhouse show that information relating to compactness of a linear

combination of compositions operators

c1Cy, + ... + ¢, C,,
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where ¢, ..., ¢, € A, is carried by the behavior of the functions ¢; at their points of
contact with the unit circle. More precisely, the relevant information for ¢ at a point

of contact ( is
Da(p, Q) = (#(Q): (€)™ (C))

where n is the order of contact of ¢ with the unit circle at (.
The following result determines compactness of a linear combination of composi-

tion operators for operators induced by functions in A.

Theorem 4.2.1. [19, Theorem 5.13] Let ¢4, ..., o in A and write F' for the union

F(p1)U...UF(p.), a finite set. For ¢ in F and k = 2,4,6, ..., let
Ne(€Q) ={j: F(p;) contains ¢ and k is the order of contact of p; at C}

and let
Ex(CQ) = {Dk(p;,¢) 1 J is in Np(Q)}.

Given complexr numbers cq, ..., c,., the following are equivalent:
1. 1Cy, + +¢,Cy, is compact

2. for every  in F, every even k > 2 and every d in E((),

Z Cj:O.

JENL(Q)
Dk(‘;’]vc—):d

Our goal is to decompose C,, modulo the ideal K of compact operators, into a
sum of composition operators induced by rational functions, each having contact with

the unit circle at exactly one point. We begin by proving the following lemma.
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Lemma 4.2.2. Let p € A and ( € F(p). Let n = 2m denote the order of contact of ¢
with 0D at (. Then there exists a degree m rational function ¢y with order of contact

n with 0D at ¢ and mapping the rest of D into D which satisfies Dy,(po,¢) = Dp(p, ).

Proof. Let A = ¢(¢) and define
f=mopor,

where 7,(z) = i¢==. Then f € P fixes 0 and since ¢ € A, f has pseudo Taylor

a+z’

coeflicients

. fW(2)
L —

=aqr fork=0,1,...n

such that ag,aq,...,a,-1 € R and a,, € H.
Thus, by Proposition 3.4.3, there exists a degree m rational function F' € Py that
maps R \ {0} into H and has initial Taylor coefficients ag, ..., a, at z = 0. We let g

be the self-map of D defined by
QOOZT)\_IOFOTc.

Note that 7, preserves the degree of a rational function, and so ¢, is a degree m
rational function. As a consequence of the boundary behavior of F', oy maps ( to A
and the rest of D into D. Since D, (¢, () is determined by D, (7¢, (), D,(F,0) and
D, (75", 0) (see Theorem 5.3.1), py satisfies Dy, (o, ) = Dy(p, ¢). Lastly, since F has
order of contact n with R at 0 and by Proposition 2.4.2, ¢y has order of contact n

with 0D at (. O
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We combine this result with Theorem 4.2.1 to obtain our first decomposition

theorem.

Theorem 4.2.3. Let ¢ € A with F(p) = {G,...,(-} and let n; = 2m; denote the

order of contact of ¢ with the unit circle at (;. Then there exists a decomposition,

Co=Cyp+..+C,, (mod K).

where for each j = 1,...,r, @; is a rational self-map of D of degree m; which maps ¢;

into the unit circle OD and the rest of OD into D and satisfies Dy, (@, () = Dy, (0, ().

Proof. Existence of ¢, ..., ¢, follows from Lemma 4.2.2. The result follows by apply-

ing Theorem 4.2.1 to ¢, ¢1, ..., with constants 1, —1,..., —1. [

In the following chapters, we will require that the inducing rational maps have an
additional property of regularity. We define basic functions as follows, and proceed to
prove our second decomposition theorem where each term is a composition operator

induced by a basic function.

Definition 4.1. A function ¢ analytic on D is a basic function with contact at ( if

the following hold.

1. ¢ is a rational function mapping the unit disk I into itself.

2. ¢(() is on the unit circle, and ¢ maps the rest of the unit circle into D.

3. () is a regular value for .
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Lemma 4.2.4. Let ¢ € A and ( € F(p). Let n = 2m denote the order of contact
of ¢ with 0D at (. Then there exists a degree m + 1 basic function o with order of

contact n with 0D at ¢ which satisfies Dy, (o, () = Dp(p, ().

Proof. We begin as in the proof of Lemma 4.2.2, by defining A\ = ¢({) and f =
TZNOPOT, ! Here, by Proposition 3.4.4, there exists a degree m + 1 rational function
G € Py that maps R \ {0} into H, has initial Taylor coefficients ay, ..., a, at z = 0,
and has z = 0 as a regular value.

Again, we define gy = 75 'oGo7; and get that ¢, is a degree m+1 rational function
with the desired boundary behavior at ¢. Since D, (o, () is determined by D, (7¢, (),
D,(G,0) and D, (5 ",0) (see Theorem 5.3.1), ¢y satisfies D, (o, () = Dn(p,¢). Ad-
ditionally, since G’ has order of contact n with R at 0 and by Proposition 2.4.2, ¢,
also has order of contact n with D at (.

Now, since 0 is a regular value for G, we have that
G(w) = (a0 oo T{1>(w) =0

has m 4+ 1 distinct solutions. So

has m + 1 distinct solutions, i.e., A is a regular value for (. O]

Theorem 4.2.5. Let ¢ € A with F(p) = {(,...,¢} and let n; = 2m; denote the

order of contact of @ with the unit circle at (j. Then there exists a decomposition,

Co=Cyp+..+C,, (mod K).
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where for each j =1,...,1, @; is a basic function of degree m; + 1 which has contact

at (; and satisfies Dy, (127,(;) = D, (. Gy).

Proof. Existence of ¢, ..., ¢, follows from Lemma 4.2.4. The result follows by apply-

ing Theorem 4.2.1 to ¢, ¢1, ...¢o, With constants 1, —1, ..., —1. 0

4.3 Weighted Composition Operators and Adjoints

in the Calkin Algebra

In [19], it is shown that the coset of the weighted composition operator M,,C, in the

Calkin algebra is determined by the values of w on E(y) in the following sense.

Proposition 4.3.1. [19, Theorem 3.1] Let ¢ be an analytic self-map of D with
lp(e?)| < 1 a.e. Suppose w is a bounded measurable function on OD such that |w| is

continuous at every point of E(p). Then
M,,C, is compact if and only if w =0 on E(yp).

Here we think of the operator M, C, as mapping H? to L? however it can also
be considered as mapping L? to L? and if w € H* as mapping H? to H?.
For the special case that ¢ € A has contact with D at exactly one point, we have

the following corollary.

Corollary 4.3.2. Let ¢ € A be such that F(p) = {C}. Suppose w is a bounded
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measurable function on D such that w is continuous at (. Then
M,C, =w(()C, (mod K)
Proof. Let v(z) := w(z) — w(¢). Then v is bounded on dD, continuous at ¢ and

satisfies v(¢) = 0 so by Proposition 4.3.1, M,C, = M,,C, — w(¢)C,, is compact. [

We will prove a similar result for weighted adjoints of composition operators.
The proof relies on existence of an H* function which satisfies several boundary
conditions. Before we turn to constructing this H> function, we state and prove the

following fact.

Proposition 4.3.3. If f € L'(0D) is real valued, then the map h defined by

27 10 ] d@
h(z) = / 2 D

e — » o’

is analytic on D, and has non-tangential boundary values a.e. on D which satisfy
Re h(e™) = f(e") a.e. on OD.

Furthermore, iof f is continuously differentiable on an open arc I' contained in 0D,

then h extends continuously to that arc.

Proof. We write
2 ) _db 2 ) _db
he) = [ PG+ [ Qeneng,

where P.(¢) = Re %2 and Q.(¢"?) = Im E?Zf are the Poisson and the conjugate

e —z et —

Poisson kernels. It is well known that the function

u(z) = / ") et

2T
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has non-tangential limits a.e. which satisfy
Re h(e) = u(e) = f(e) a.e. on ID.

Furthermore, if f is continuous on I' then, by standard techniques, the maps u, (e®) =
u(re) converge uniformly to their boundary function as r — 1 on any closed arc
contained in I'. Since u is the uniform limit of continuous functions on I', u is also

continuous on I'. By [16, pp 78-79], similar results hold for the conjugate function v,

/ Q. 29) d&

Namely, v has non-tangential limits a.e., and if f is continuously differentiable on T,

defined by

then the maps v,(e") = v(re') converge uniformly to their boundary functions as
r — 1 on any closed arc contained in I'. Since v is the uniform limit of continuous

functions on I', v is also continuous on I'. O

Lemma 4.3.4. Let A € 0D and v be a non-negative bounded function on O which
is continuous at A, continuously differentiable in a deleted neighborhood of A and

satisfies v(A) = 0. Then there ezists a function b € H* which extends continuously

to OD and satisfies b(A) = 0 and |b(e?)| > v(e®) on OD.

Proof. We begin by constructing a continuously differentiable real valued function u

on JD. Let I' be a closed arc centered at A such that v is continuously differentiable

on I'\ {A\}. We define u on I' by

u(e”) = v(e”) + e = A,
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and extend u to 0D \ I so that the resulting function u is continuously differentiable
on OD \ {A\} and satisfies u(e®?) > v(e?) + |e?? — \| on OD.

We let f = logu, and note that f is continuously differentiable on 9D \ {A} and
satisfies f(e?) > log|e? — )|, so that f € L'(0D). Therefore, by Proposition 4.3.3, h

defined by

et — o’

h(z) = /027T 61:6 T2 log u(ew)ﬁ
is analytic on ), and extends continuously to 0D\ {A}. Furthermore, on 0D \ {\},
Re h(e™) = logu(e™).

We define b on D by b(z) = e® for z # X and b(A\) = 0. Then on 9D \ {\},
)] = "M = (e,

so that b € H*> extends continuously to D\ {\}, with |[b(e®*)| > v(e®) on OD. It
remains to show that b(z) — 0 as z — A unrestrictedly in D.

Note that

el = ean ([ P ostute 32 ).

where P,(e) = Re zzZ—Z is the Poisson kernel. Thus, it suffices to show that

/%p () log(u(e®) L = —oo
P g o

as z — A unrestrictedly in . Let M > 0. We find € such that for |z — A\| < € the

integral above is less than —M. Note that logu(e?) — —o0 as e — ), and let § > 0
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be such that on the arc I's = 9D N {|z — A\| < d} we have logu(e?) < —4M. Then

/F P,(e") log,f(u(ei(’7))ﬁ < —4M Pz(eie)ﬁ

27 I 2

Note that u is bounded from above so that logu < C for some constant C. Now

choose € < § such that for |z — A\| < € we have both

Ldo 1
/ P S 1
Ts

2 2
and P, (") < % for all € € 9D \ Ts.

Then for all z € D such that |z — A| < ¢, we have

2
4 , 0. dO , 0. db , 0. db
| Penogueny) = [ Peogutesl + [ et ogute)s]
0 2T T's 27 OD\T's 27
0. dO M db
< —4M | P.(e")—+ = o=
T's 27T OD\T's C 27T
1
<—4M'§+M:—M.
This completes the proof. n

Proposition 4.3.5. Let ¢ € A be such that F(p) = {C}. Suppose w is a bounded

measurable function on 0D which is continuously differentiable in a deleted neighbor-

hood of A = ¢(C). Then
M,C; =wN)C;  (mod K)
where M, is viewed as an operator from H?* to L?, and in particular,

T,Cp =w(N)C,  (mod K).
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Proof. We can write

MyCy = (My—win) + Mu)Cp = My—wnCyy + w(X)CE.

Thus, it suffices to prove that M,C; is compact where v = w — w(A).
Note that |v| is continuously differentiable in some deleted neighborhood of A,
and so by Lemma 4.3.4 there exists a b € H* which extends continuously to dD and

satisfies b(\) = 0 and |b(e?)| > v(e?) on OD. We get that for all f € H?,

2w ) ) do
MG = [ e FICanE) P

o o gy 2 :
< [ BRI g = 1M,

so by Proposition 2.1.2, it suffices to show that M;C7, is a compact operator from H 2
to L2. We write

M;C = PMC + (I — P)M;C:

and show that both terms on the right hand side are compact.

First note that since b is a continuous function on 9D, the L? operator (I — P)M;P
is compact (see the version of Hartman’s theorem in [22, p 214, Theorem 2.2.5]). Thus,
the term (I — P)M;C} = (I — P)MzPC} is compact from H? to L?.

We now show PM;C7 = TyC is compact on H 2 by looking at its adjoint (T;C3)r =

C,Ty. Since b € H*, we have

C@Tb = Cwa = MbOLpCLp'
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Since ¢ € A with F(¢) = {¢} and b(¢(¢)) = b(\) = 0, by Corollary 4.3.2 we have
Mpo,Cyp = b(0(¢))Cp, =0-C, =0 (mod K),

provided that |bo ¢| considered as a function on dD is continuous at (. Recall that b
is continuous on D, and that ¢ € A with F(p) = {¢} so that ¢(e) is in D and tends

to A as e — ¢. Thus |bo ¢| is indeed continuous at (. O
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Chapter 5

Adjoint Formula for Rationally
Induced Composition Operators

Recent work of Cowen-Gallardo [12], Hammond-Moorhouse-Robbins [15] and Bourdon-
Shapiro [7] has produced pointwise formulas for C, where the inducing map ¢ is
rational. The constituent parts of these pointwise formulas contain multiple-valued
analytic functions which do not necessarily represent well-defined operators individ-
ually. In Section 5.1 we show how to work with these pointwise formulas to produce
legitimate operator equations involving C for the rational case. Then, in Section 5.2,

we consider the case where ¢ is basic and reduce our equations to the Calkin algebra.

5.1 From Pointwise Formula To Operator Equa-
tion

Let ¢ be a rational self-map of D of degree d. We associate with ¢ its exterior map
e := popop, where p is the inversion in the unit circle defined by p(z) := 1/Z. Then

. maps D, := {z € C: |z| > 1} into itself, and so p; (D) C D.
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Recall from Section 2.5 that for any simply connected domain V' consisting of
regular values of ¢, there exist d distinct branches oy, ...,04 of ¢, ! defined on V.
Note that one possible choice of V' is the unit disk with radial slits from each critical
value of ¢, to the unit circle removed. A choice that may be much smaller but
sufficient for our needs is a sufficiently small neighborhood of a regular value of ..

The work of Cowen-Gallardo [12] and Hammond-Moorhouse-Robbins [15] has pro-
duced the following pointwise formula for the adjoint of a rationally-induced compo-

sition operator.

Proposition 5.1.1. [15, Corollary 8] Suppose that V' is a set on which d distinct

branches o, ...,04 of ;' are defined. Then for all f € H? and all z € VN D,

I =L E)

1 —p(c0)z j=1
In [7], Bourdon-Shapiro give an elementary proof for this original formula and

introduce the following variant which we will use.

Proposition 5.1.2. [7, Corollary 8] Suppose that V is a set on which d distinct

branches o, ...,04 of ;' are defined. Then for all f € H? and all z € VN D,

oy 1O (S o
CLI) = 755 * LIS o) (5.1.1)

where S* is the adjoint of the shift operator S defined by (Sf)(z) = zf(2).
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5.1.1 Wishful Thinking - The Outer Regular Case

Note that Eq. (5.1.1) can be rewritten, at least formally, as

d
Cp=A+> M,C, 5" (5.1.2)
j=1
where h;(z) = z0’(2), and A is the rank one operator defined by A(f) := 1_f%z.

Notice that the terms M), ,C, S* are reminiscent of Cowen’s original formula for the
linear-fractional case.

Bourdon-Shapiro define ¢ as outer regular when its critical values all lie in .
Note that w € C is a regular value for ¢, if and only if p(w) is a regular value for
v, so that for outer regular functions ¢ we can choose V' = rD for some r > 1.
Then, restricting domains to D, we have that oy, ...,04 are analytic self-maps of D
and hy, ..., hg are H> functions. Thus, the wishful thinking equation Eq. (5.1.2) is a

legitimate operator equation in the outer regular case [7, Theorem 13(a)].

Example 5.1. [7, Example 9] Let ¢ be the analytic self-map of D fixing 1 defined by

1

¢<2):3_2_22.

Then ¢ has a critical point at z = —% SO gp(—%) = % is a critical value. Note that

¢(00) = 0 is also a critical since ¢! ({0}) contains only one point. Since both critical
values of ¢ lie in D, ¢ is outer regular and so Eq. (5.1.2) is a legitimate operator
equation.

We calculate ¢, = p o ¢ o p and solve the equation p.(w) = z to obtain oy, 0.

1 1

e =3———-—
Pe(w) -
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_1—1—\/13—42 1—-—+v13 -4z

o1(z) 337 and o(z) = 232

where va denotes the principal branch of the square root. Indeed, o; and o, are

analytic on C \ [£3, 00) except for an isolated singularity at z = 3.

Thus Eq. (5.1.2) provides the following legitimate operator formula for C:
Cy = A+ My, Cy, S* + My, Cy, S™.

Note that @ = 7 0o !is

B iz2 — 3z
222455z —1

o(2)
and has Taylor expansion
P(z) = 3z + 14iz* + O(2%)
and so ¢ has order of contact 2 with the unit circle at {( = 1.

The fact that the outer regular function in the example has order of contact 2 with
the unit circle is no coincidence. We prove the following proposition using results from

Section 5.3.

Proposition 5.1.3. If ¢ s rational such that ¢ has order of contact n > 2 with the

unit circle at C, then ¢ is not outer reqular.

Proof. Suppose that ¢ is outer regular and let o be a branch of ¢! mapping ¢(¢) to

¢ and defined on D. We transfer the problem to the upper half-plane and work with

@:T;(IOOQOOTC, @:Tgé)ogoeoq, 5:7'510007'@(0
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which are all analytic self-maps of the upper half-plane according to our assumption.

Let ag, a1, as, az denote the initial Taylor coefficients of ¢ at z = 0, and by, b1, b, b3
denote those of . In Proposition 5.3.6, we show that o has order of contact n at .
Thus by Theorem 3.1.3 the Hankel matrices H,,(ay, ..., a,_1) and H,,(bq,...,b,_1) are

both positive, and in particular, their 2nd leading principal minors are positive, i.e.,
2 2
ajaz — ay > 07 blbg — b2 > 0.

In Proposition 5.3.4 we show that ¢ and ¢, have equal Taylor coefficient aq, ..., a,_1.
Noting that ©, o 0 = id, we can therefore express by, by, b3 in terms of aq, as, az using

the product rule (or Faa di Bruno’s formula, Theorem 5.3.1). We get the equations
1= (9c08)(2) = ¢ (6(2))7'(2)
0= (@ 05)(2) = " (F(2))5" (=) + 3./ (3(2))5"(2)
0=(pc0d)"(2) = 2" (6(2))7(2)* + 38" ((2)) (2)5" (=) + &' (6(2))5" (=),
and evaluating at z = 0, we have
1 = aiby, 0 = 2asb? + a; - 2bs, 0 = 6asb® + 3 - 2asb; - 2by + a; - 6bs.

Solving for by, by, b3 we see that

a9 2a5 — ajas
bl — T b2 - 3 b3 - 5 .
Thus
2
bbe b2 — 1 2a5—ajas a5 —(ajaz —a3) 0
e T 6 <

which is a contradiction. O
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5.1.2 Operator Equation Involving C

In general, the set V' on which o, ..., 04 are analytic can not be chosen to contain all of
D, and so the wishful thinking operators Cy,, ..., C,, in Eq. (5.1.2) are not legitimate
operators. We overcome this difficulty by pre-composing with a map 1 with image
contained in V' NID to obtain analytic self-maps of D, o101, ..., 040. This will enable

us to write a legitimate operator formula for CyC7.

Proposition 5.1.4. Let ¢ be an analytic self-map of D satisfying (D) C V. Then

d
CyCh = CyA+ Y My 0yCo opS*

Jj=1

where hj(z) = 20%(2), S* is the adjoint of the shift operator and A is the rank one

operator defined by A(f) := 1_f%z'

In particular, hj o are H* functions and oj o are analytic self-maps of D.

Proof. Since v maps D into V' and oy, ...,04 are analytic on V, we get that oy o
¥, ...,04 0 ¢ are analytic self-maps of D (recall that ¢, (D) C D). The functions
o1, ...,0, are analytic on V' and so bounded on (D), so hy 0%, ...,hg 0 ¢ are H*®

functions. By the pointwise formula given in Proposition 5.1.2, for all f € H? and all
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z € D we have

_—f(O) y 2o (W(2)S* Flo;((z
=100 +j§;w< ) (¥(2))S™ fo(¥(2)))
= (AN)(W(2)) + Z hi(¥(2))S" f((o 0 ¥)(2))

= (CyuAf)(2) + Y (MiyoyCoyopS™ ) (2)-

Jj=1

CpCof(2) = CLf(¥(2))

Therefore, the operator formula in the statement holds. O]

5.2 The Basic Case

We turn to the case where ¢ is a basic function of degree d with order of contact
n at (. Denote A = () and recall that A € 0D is a regular value for ¢ and so
p(A\) = X is a regular value for .. Thus we can choose V' to be a neighborhood of A
consisting of regular values of ..

Recall from Section 2.5 that (V') ..., 04(V') are pairwise disjoint, and let o denote

the unique branch of ¢! that maps A to (.

Proposition 5.2.1. Let ¢ be an analytic self map of D satisfying (D) C V. Then

CwC; = Mhow(cgows* (mod ’C)

where h(z) := zo'(z).

In particular, ho is an H*(D) function and o o1 is an analytic self-map of D.
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Proof. Notice that since p is the identity on 0D, ¢, maps exactly one point in 0D (the
point ¢) into D and so ¢, !(0D) = {¢}. We also have that the branches o7y, ..., 04
map W]D)) to pairwise disjoint subsets of D (see Section 2.5), and these sets are closed
as continuous images of compact sets. Since \ € W and by the definition of o, we
see that ¢ € o(1(D)), and so for o; # o, the closed set o(1(D)) does not intersect
OD. Thus, we have |lo; 01||o < 1 and so the composition operator C,,oy is compact.

Since A in Proposition 5.1.4 is rank one, reducing Proposition 5.1.4 modulo the

compacts gives

CyCf = MhpoyCooyS™  (mod K)

where h is defined by h(z) = z0'(2). Proposition 5.1.4 also shows that h o is an

H>(D) function and o o1 is an analytic self-map of D. ]

By continuity of ¢ and since o(\) = (, there exists a neighborhood V5 C V' of A

on which ¢ is bounded away from zero.

Proposition 5.2.2. Let ¢ be an analytic self map of D mapping D into V. Then

CyCy = MyoyCooy  (mod K)

where g(z) : OR

In particular, go is an H>®(D) function and o o1 is an analytic self-map of D.

Proof. By Proposition 5.2.1,

CQpC’:; = thC'UwS* mod K
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where h is defined by h(z) = zo'(z2), and hot¢ € H*®(D) and o o ¢ is an analytic

self-map of D. Note that for any f € H? and any nonzero z € D, we have that

£(2) = F0)

z

(5"f)(z) =

Thus, there exists a K; € K such that for any f € H? and z € D, we have

(CyCof)(2) = (MpoyCoopS™ f)(2) + (K1)(2)
fle(@(2))) = f(0)

), () )
= LD o ey - LITEED 50+ ()2

Since ¢ maps D into Vj, o o9 is bounded away from zero on D, and so g o ¢ is an
H*>(D) function. We can define the rank one operator (K> f)(z) := g(¥(z))f(0), and

rewrite the above equation as

(CuCof)(2) = (MgoyCoou f)(2) = (K2f)(2) + (K1 f)(2).

Thus CyCLf = MyoyCooy (mod K), as desired. O

5.2.1 Generalized Adjoint Formula in the Calkin Algebra

If 4 satisfies stronger conditions, we get the following formula which generalizes the
adjoint formula modulo I, developed by Kriete-MacCluer-Moorhouse [20], of a com-

position operator induced by a linear fractional map (see Proposition 2.3.8).
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Recall that f(§) denotes the non-tangential limit of f at £ for a function f of D

and & € OD.

Proposition 5.2.3. There exists a neighborhood W of A such that for any self-map

W of D that satisfies:
1. (D) C W
2. v is analytic at \ and fizes it
3. v ({A}) == {B € OD: ¥(B) ewists and is equal to A} = {\}

we have that the map o o is in the class A with F(o o) = {A} and that

1
C,Cr = —C, mod IC).
wCo = [y v (mod &)

Proof. Let W be a neighborhood of A such that the closure of W is contained in V4.
Then for any v as above, (D) is contained in Vj, and so by Proposition 5.2.2 we
have

CwC; = Mgowcoow (mod IC)

To show that o o ¢ € A, first recall that

E(oov) = [ spt(u3)

laf=1

and that for each a € 9D, p, is carried by

(coy)({a}) = {B € dD: (¢ 0v)(B) exists and is equal to a}.
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Suppose (o0 o ¥)(f) = « for some o, € dD. Then applying p. we get that ¥ (p)
exists and o(¢(8)) = a. Recall that ¢, 1(9D) = {¢}, o(\) = ¢ and o is univalent on
V. Thus o(¢(5)) = o implies that o = ¢ and 1(5) = A, and so by the third condition
on 1 we have 3 = \. Therefore spt(us,) is empty for o # ¢, and spt(pf) C {\}. We
conclude that E(o o)) C {\}.

We have that o o ¢ is analytic at A and maps A to (, so that F(o o) = {A}.
Since o o 1 is analytic as A and does not map an arc of JD containing A into 0D,
o o 9 has finite order of contact at A and a Taylor expansion to that order about \.
This shows that o o is indeed in the class A.

Recall that due to the definition of V4, for g(z) = % the map go1) is an H>(D)

(2)

function. Since g o ® is also continuous at A\, we can apply Corollary 4.3.2 to get:
CyC = (90¢)(A\)Coop  (mod K).
We calculate

B O S S|
(go)(N) =g(\) = ) w0 e

where o’'(\) = 1/¢/(¢) follows by applying the chain rule for o o ¢, at z = (, and
substituting ¢.(¢) = ¢’(¢) which holds by Proposition 5.3.4 or direct calculation.

To complete the proof, note that by Theorem 2.3.3, ¢'(¢) = d(¢)CA, where d(¢) >

0, and so |¢'(¢)] = d(¢) = (A (C). -
. . az +b L
Note that for a linear fractional map ¢(z) = Ve have that ¢.(z) is in-
cz
vertible, and ¢;!(2) = o(z) = 9° 7% s the Krein adjoint of ¢. Recall that by

—bz+d
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Proposition 2.3.8,

1
Cr=—C, d K),
¢ =) med )

and so Proposition 5.2.3 can be viewed as a generalization of Proposition 2.3.8.
Note also that if 7 € A with F(7) = {(}, Proposition 2.3.8 can be extended to
produce a formula for C* provided 7 has order of contact 2 with dD at (, whereas
Proposition 5.2.3 can be extended to produce a formula for CyC’ provided that v
satisfies the conditions of Proposition 5.2.3, and regardless of the order of contact of

7 with 0D at (.

5.3 Relationship Between ¢ and o

Let ¢ be a rational function with order of contact n with the unit circle at ¢, mapping
¢ to . Let o be a branch of ¢_! mapping A to (. Then ¢ o ¢, = id near ¢ and

pe 00 = id near \. Thus
D,(00o¢e, () =1((1,0,...,0), and D,(p.o0,N) = (A1,0,...,0).

Although ¢ and o are not inverse functions, we will show that they are “almost

inverse” in the sense that
D, 1(cop,()=1(¢1,0,..,0), and D, 1(poo,A)=(A10,..,0).

Throughout this section, we will use Faa di Bruno’s formula, an identity general-
izing the chain rule that has been known since 1800. The following is the statement

of the formula in combinatorial form.
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Theorem 5.3.1 (Faa di Bruno’s formula). [17] If g is analytic at z and f is analytic

at g(z), then

(Fog)®(z) =3 f(g()) - ] 9 (2),

mell Ber

where 11 is the set of partitions of {1, ..., k}.

Note that as a consequence of Theorem 5.3.1, if g is analytic at z and f is analytic
at g(z) then Dy(g,z) and Dy(f,g(2)) determine Dy(f o g,z). We rewrite Faa di

Bruno’s formula in the following way.

Lemma 5.3.2. If g is analytic at z and f is analytic at g(z), then

(Fog)®(2) = f®(g(2))d (2)* + F(De_1(f, 9(2)), Di-1(g, 2)) + f'(9(2))g®™(2),

where

F<<a07a17 ---7ak71), (507517 ---7bk71)) = Z Qx| H b\B\-

well Berm
1<|r|<k
Proof. This follows from Theorem 5.3.1, with the first term originating from the
partition m = {{1},{2},...,{k}}, and the last term originating from the partition

7 ={{1,2,....k}}. O

We transfer ¢, . and o to the upper half-plane H = {z € C: Imz > 0}, and

analyze their relationships there. The corresponding self-maps of H are

g=moporl,  Pe=Top.or ', FT=T000T;"
where 7,(2) = i£7Z is a conformal map which maps I onto H and « to 0. Note that

©, p. and ¢ all fix 0 and are analytic in a neighborhood of 0.



Lemma 5.3.3. ¢, is the upper half-plane exterior map associated with p, i.e.,

Pe(2) = ¢(2).
Proof. Recall that ¢, = po ¢ o p where p: z — 1/Z, and so
Pe(2) = (mopopoport)(z).

We denote 7(z) = Z, so that

p(z) = (roFor)(z) = (romopor  or)(z).

It therefore suffices to show that 7, o p = r o 7, for any a € 9. Indeed
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Proposition 5.3.4. D,,_1(¢,¢) = Dp_1(pe,¢) and o™ () # @én)(@'

Proof. By Theorem 5.3.1, it suffices show that

D 1(3,0) = D1 (92,0) and  3™(0) # 3. (0).
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Let ¢(z) = Y ” arz* be the Taylor expansion of @ about 0. Then by Lemma 5.3.3,

we can write @.(z) = ¢(z) = > axz*, and so we have

PM(0) = kla, and 3.7 (0) = klay,

for all k. To complete the proof, recall that ¢ has order of contact n with the unit

circle, and so ag, ay,...,a,_1 € R and Ima, > 0.

]
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Lemma 5.3.5. The n'th order data for o o ¢ and p o o is given by

Dy(co¢,()=(¢1,0,...,0,c- ' (N\))

Do, \) = (M 1,0,..,0,c- ' (A",
where ¢ is a non zero constant given by ¢ = ™ (¢) — ™ (C).
Proof. By Lemma 5.3.2, (00 )™ (¢) and (o 0 ¢.)™(¢) can be written as follows.
(009)M () = ™ (NG ()" + F(Dp1(0,A), Dna(,€)) + o' (N)e™ Q)
(0 090)™(C) = o™ (NL(O)" + F(Dp-1(0,A), Dn1(e, ¢)) + o' (V)™ (€)

Recall that o o ¢, = id and so (o o ¢.)™(¢) = 0, and that by Proposition 5.3.4

Dy—1(p,¢) = Dp_1(¢e, ¢). Thus subtracting the above equations yields:

(009)™(C) =" (A) - (¥™(¢) = ™ (C)).

Similarly, applying Theorem 5.3.1 to (0 )™ (A) and (¢, 0 7)™ (\), we get

(90 © 0)(n)(C> = (p(n)(g)o./()\)n + F(Dn—l(go’ C)a Dn—l(ga A)) + §0,<C)O-(n)(/\)

(pe 00)(C) = (o' (W) + F(Dn-1(pes €), Dur0. 1) +9(Qa ™ (A).
Again, since D,,_1(¢,() = Dp_1(, ) and (¢ 0 )™ (¢) = 0, subtracting the above
equations yields:

(poa)(Q) =" (N)" - (¢™ () — ¥ (C)).

Recall that by Proposition 5.3.4, goén)(C) # ™ ((), and so ¢ # 0. O
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As additional applications of Faa di Bruno’s Formula, we calculate the order of
contact of o with JD at A\ and determine the order of contact of composite maps

under some assumptions.
Proposition 5.3.6. The map o has order of contact n with 0D at X.

Proof. Let ¢(z) = > o axz® and 7(z) = Y " byz" be the Taylor expansions about 0
of ¢ and o respectively. We have that ag,...,a,_1 € R and Ima, > 0 since ¢ has
order of contact n with D, and it suffices to show that by = 0,b1,...,b,_1 € R and
Imb,, > 0 (see Proposition 2.4.2, Proposition 2.4.1).

Recall that .(2) = 3(Z) = 3.0° @2* by Lemma 5.3.3. Notice that § fixes 0 and
maps W N H into H for some neighborhood W of 0, and so a; > 0 and b; = ¢’(0) =

1/¢.(0) = 1/a; > 0. Using Lemma 5.3.2 for o @, = id and k > 1, we get
0 =50(0)8.(0)* + F(Dy-1(7,0), De—1(2e, 0)) + 7 (0)2. ™ (0).

Thus, by induction on £ = 2, ..., n— 1, we see that by, ..., b, are real valued. For k = n,

taking imaginary parts we get
0 =Im(E"(0))%:'(0)" + &(0) Im(: " (0)).

or
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Proposition 5.3.7. Let iy be analytic at oy such that for some neighborhood Wy of
aq, ¥ maps Wi ND into D, and let 1o be analytic at ag = Y1 () such that for some
neighborhood Wy of ai, 19 maps Wo NI into D.

We define N1 and Ny by

c Y; has order of contact ¢ with 0D at o
N; =

oo 1 maps an arc of 0D containing «; into OD
Let K be the minimum of M and N. Then if K is finite, 15 011 has order of contact

K at aq, and if K is infinite then 1y o 1)y maps an arc of 0D containing ay into OD.

Proof. The corresponding maps on the upper half-plane are
f:¢227w2(a2)0¢207'a_217 9:¢1:Ta20¢107';11

and

—_——

(2 0 91) = T(ygopr)(ar) @ V201075 = fog.
Note that these maps are all analytic in a neighborhood of 0, and let f(z) = Z;zgo c;z!
and g(z) = izgo d;z7 be the Taylor series of f and g there. Note that if N, is finite
then by Proposition 2.4.2 and Proposition 2.4.1, ¢, ...,cy_1 € R and ¢y € H and if
Ny is infinite then ¢y, ¢, ... € R. The corresponding statement for g holds similarly.
Note that since f and g both map some neighborhood of zero intersected with H into
H, we have that ¢q,d; > 0.

If cq,...,ck,dy, ..., dr, € R, then by Theorem 5.3.1 and induction on j =1, ..., k, we

see that (f o ¢)/(0), ..., (f o g)¥(0) are all real valued. Thus, (f o g)'(0), ..., (f o g)*(0)
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are real valued in this case.

In the case where K is infinite, we get that all Taylor coefficients of f o g at 0 are
real valued and so fog maps an interval in R containing 0 into R. Thus 1), 01; maps
an arc of D) containing a; into OD.

In the case where K is finite, we get by the argument above that
Cly ey Ci—1,01, ., A1 € R
By Lemma 5.3.2 at z = 0 we have
(f 0 9)*™)(0) = fU0)g'(0)* F(Dx1(f,0), Dic-1(g,0)) + f'(0)g")(0).
and taking imaginary parts we get
Im(f 0 9)*)(0) = ¢/(0)* Im f*(0) + f'(0) Im g (0).

Since ¢1,d; > 0, and Imcg,Imdg > 0 with at least one of them positive by the
definition of K, it follows that Im(f o g)*®)(0) > 0. Thus f o g has order of contact

K with R at 0, and so by Proposition 2.4.2, 15 01, has order of contact K at a;. [J
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Chapter 6
Essential normality

We begin by applying our results from Section 5.2 to characterize essential normality
for the basic case. We then decompose C,, into a sum of basic composition operators
and show that essential normality can only occur when this sum consists of a single
term. Lastly, using the parametrization of functions with given order of contact
proved in Chapter 3, we construct essentially normal composition operators which

have arbitrary even order of contact with the unit circle at one point.

Definition 6.1. For € > 0 we define v, . to be the Riemann mapping from I onto
{]z = A\| < ¢} ND, which fixes A. Note that 1) = ¢, . extends continuously to dD and

analytically across 0D in a neighborhood of A.

6.1 Essential Normality For Basic Composition Op-

erators

Let ¢ be a basic function with contact at ( which fixes (. Let n be the order of contact

of ¢ with 9D at ¢, and let ¢ be the unique branch of ¢ ! defined on a neighborhood
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of ¢ which fixes (.

Proposition 6.1.1. There exists € > 0 such that for ) = ¢, the following conditions

are equivalent.
1. Cy[C,, C3) is compact
2. Dyp(oowot),() = Dyu(poaoi),()
3. Dy(00o¢, ()= D,(poo,()
4- ¢ () =1

Proof. (1) <= (2): Let W be the neighborhood of { guaranteed by Proposi-
tion 5.2.3. Notice that ¢ (W) N W is open and contains ¢, and choose € > 0 such
that {|z — ¢| < e} ND is contained in o~ (W) NW.

Denote 1 = 1 and note that both ¢ and ¢ o1 map ID into W, are analytic at

¢ and fix ¢. Additionally, both ¥ and ¢ extend continuously to D and satisfy

e ={¢}  (po) ' ({¢h) =1{¢

Thus, by Proposition 5.2.3, both of the following equations in the Calkin algebra

hold:

1 1
C,Cr= ——C,, mod ), CoropCF = ———Clrowvo mod ),
wCo = 1y Coov (mod K) - CloonCg = 1577 Coogon (mod K
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Therefore, we can express Cy[C,,, C7] in the Calkin algebra by

CylCy, CF) = CyCC5 — CyCL 0, = CuoyC — CyCLC,,

1 1 1
E—CUO o _—Ca'o C =
(O] 7 e (O] T 1w Q)

(Caowow - C@oaoz/z) (HlOd /C)

Note that ¢ maps an arc of 9D containing ¢ into dD), and recall that by Proposi-
tion 5.3.6 ¢ has order of contact n at (. Thus, by Proposition 5.3.7 both ¢ o ¢ 0 ¥
and @ o g 01 have order of contact n at (. Note also that 0 o po1 and poo o are

is in the class A with F' = {(}. Therefore, by Theorem 4.2.1,
Coropory — Cpopoy € K <= Dyp(copot),() = D,(poootp,().

(2) <= (3): Recall that as a consequence of Theorem 5.3.1, if ¢ is analytic at z
and f is analytic at g(z) then Dg(g, 2z) and Dx(f, g(2)) determine Dy(f o g, z). Since

1 is invertible in a neighborhood of (, we get that

Dn(O'OQOOw,C) :Dn(@000¢a<) < Dn(O'OQD,g):Dn((,OOO',C)

(3) <= (4): By Lemma 5.3.5, the n’th order data for o o ¢ and p oo is given by

D,(co¢,()=1(¢1,0,....,0,c-0'())

DTL(SO o 07 C) = (C’ 1707 "'7070 ' OJ(C)”) Y

where ¢ is a non zero constant. Hence the n’th order data is equal if and only if

1 1
o'(¢) = o'({)". Recall that ¢'(¢) = = and that ¢'(¢) > 0 since ¢ fixes

we(Q) ()
¢. Thus ¢/(¢) = o'(¢)™ if and only if ¢'(¢) = 1. O
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If Cy were bounded below, compactness of (A would imply compactness of A
for any operator A. We prove a somewhat weaker result using a technique from [10,
section 4]. We denote the characteristic function on 9D for the arc I's = {|z — (| <

5} N OD by xs.

Lemma 6.1.2. Let € > 0 and ¢ = .. Then for any x = x5 with 0 < 6 < €, and

any operator A we have
CyA is compact = T\ A is compact.

Proof. Suppose that Cy A is compact. It suffices to show that the H? to L* operator
M, A is compact. Let ¢;,ts be such that e parametrizes the curve I's for t; < ¢ < to,

and let oy, as be such that 1(e) parametrizes the curve I's for a; <t < ay. Then

t2 d@ 0|2 az ) Lod
el = [ ienpg = [ = [ e pwenis;

o2r r, 2miz )

dt
<o [T S < M

where M = max{t/(e"): a; <t < ay} is finite since ¥ can be analytically extended
to a neighborhood of T'.
Note that CyA is compact from H? to H? and so it is compact from H? to L?,

and that for all f € H? we have that |M, Af||r, < VM| CyAf|,. Thus M, A is

compact from H? to L2 O

Theorem 6.1.3. Suppose ¢ is a basic function with contact at { which fixes (. Then

C,, is essentially normal if and only if ¢'(¢) = 1.
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Proof. By Proposition 6.1.1, there exists ¢ > 0 such that for ¢ = .., we have
CylCy, C;] is compact if and only if ¢'(¢) = 1. Thus, it suffices to show that com-
pactness of Cy[C,,, C7] implies compactness of [C,, C7].

Suppose that Cy[C,, C7] is compact. Then by Lemma 6.1.2 with 6 = ¢/2 and
X = X5, we get that T, [C,,, C7] is compact. Now since ¢ € A with F' = {(} and x is

continuously differentiable at (, by Corollary 4.3.2 and Proposition 4.3.5,
L0, =x()Cp=Cp (modK)  and  T,Ch=x(¢())C; = C; (mod K).
Therefore,
T,[C,.C3) = T,C, 05— T,C5C, = [0, €3 (mod ),

and so [C,, C7] is compact as well. O

6.2 (General Essential Normality

In this section we will identify the essentially normal composition operators induced
by a general function in the class A. We let ¢ be in A and denote F/(¢) = {1, ..., ¢}
and the order of contact of ¢ with 0D at ¢(; by n;. Then by Theorem 4.2.5, there

exists a decomposition,
Co=Cyp +..+C, (modK).

where ¢, is a basic function which has contact at (; and satisfies

Dnj(QOﬁCj) - Dn](%CJ)
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For each j, we denote \; := ¢((;), and let o; be the unique branch of (p;). ! defined

in some neighborhood of \; which maps A; to (.

Lemma 6.2.1. Let p1 and @9 be basic functions with contact at (; and (y respectively,

and denote A\; = ¢1(¢1) and Ay = pa((2). Then the following holds:
1 If G # G then C3 Cy, =0 (mod K)

2. If \y # Ay then C,,C5 =0 (mod K)

p2~"p1 —

Proof. For the first part, suppose that (; # (> and let b be defined by b(z) = %,

so that b is continuous at (; and (, and satisfies b((;) = 0 and b((3) = 1. Then by

Corollary 4.3.2,

T,Cy, = b((2)Cyp, = C,, (mod K), and T;C,, =0((1)Cp, =0 (mod K),

and combining these two equations, we get
C;,Cp, = C (T,Cy,) = C T Cyy = (15C,,)"Cypy =0 (mod K).

For the second part, suppose A; # Ay and let ¢ be defined by ¢(z) = /\21:):\22, so that

c is continuously differentiable in neighborhoods of A; and Ay and satisfies ¢(A;) =1

and ¢(A2) = 0. Then by Proposition 4.3.5,
T.C7, = c(M)C;, =C;, (mod K), and T:C;, =c(A)C;, =0 (mod K),

and combining these two equations, we get

C,,C, = Cpy(T.C5) = (C5,)(T2)*Cr, = (ToC3,)"CE, =0 (mod K).
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]

Proposition 6.2.2. Let ¢ in A be such that Cy, is essentially normal. Let (y, ..., ¢,
Nly ooy My A1y ooy Apy P15 00y @ and 01, ..., 0, be as described above. Then for any 1
in {1,...,r} there exists a unique j such that ¢((;) = (;. Furthermore, for this j,
n; =mn; =n and

Dy(0 0 ¢i,G) = Dulgj 0 05, Aj).
Proof. By relabeling the functions, it suffices to show this for = 1. By Lemma 6.2.1,

we see that
[Cp, Co] = [Copy + ... +Cp,, O 4+ CF

=) C,Ch =) CiCh= Y CpCh =Y C5C,  (mod K).
j=1

jk=1 k=1 Gk=1,...,7
Now let b be a polynomial such that b(¢;) = 1 and b is 0 at all the points in
{G, Gy A1y oo A} \ {C1}. Then b is continuously differentiable everywhere and so
by Corollary 4.3.2 and Proposition 4.3.5,
M,C,, =C, (mod K), M,C,, =0 (mod K) fori#1,

MyCy, = Cg, (mod K) if X = G, M,C; =0 (mod K) if A\ # (1.

Therefore, we have

My[Cy, Col= > MG, Ch = > M Cy,
j,){cZI).\..r j=1
J=Ak

> C.Ch— > CrC, (mod K)
j=l..r j=1l..r

)xj:)\l )\j:Cl
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By Proposition 5.2.3, for each ¢; there exists a neighborhood W; of A; such that

1
C,C* =———-C, mod ),
wCo = gy Covev (mod K)

for any self-map ¢ of D that is analytic at \;, satisfies ¢ "*({\;}) = {\;} and maps
D into W;.

Notice that if \; = ¢; then WW; is a neighborhood of (; and if A; = Ay then A\; € W
and so that ;' (W) is a neighborhood of ¢;. We can therefore define a neighborhood
W of ¢; by

w=|{ ey |n| W
Aj=A1 Aj=C

Now let € > 0 be such that Wy := {|z — (1| < €} ND is contained in W, and choose
,l/} - wcl,e
Now for j such that A\; = Ay, we see that ¢; 01 maps D into ¢, (W) C W; and so

by Proposition 5.2.3,

* * 1
Cd;C@l C‘Pj = ‘Plowctpj = mCUjowlow (mod ’C)
J

Similarly, for j such that A\; = (;, we see that ¢ maps Dinto V C W; so by Proposi-

tion 5.2.3,

1 1
CyCt Oy = ——CooyCoy = ———Cyp oy (mod K.
wCo,Co = 1) Core Con = gy Crreeses (mod K)

By our assumption that C,, is essentially normal, the operator Cy,M,[C.,, C;] is com-

pact. We can now express this operator as a linear combination of composition
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operators by

0= CyMy[C,, Cil = Y CuC, Ch = Y CyCi C, (6.2.1)
&Ti"xf jAf:"c}T
= Z %Oﬂkowow - Z /;C%Oﬂjow (mOd }C)
Ao " (G Nt ' (G)
(6.2.2)

In order to draw some conclusions from Theorem 4.2.1, we discuss some properties
of the inducing maps above. First note that 1» maps an arc of 0D containing (; to an
arc of D, and recall that by Proposition 5.3.6 ¢; has order of contact n; at \; = ;.
Thus, by Proposition 5.3.7, 0 0 ¢; 04 has order of contact min(ny,n;) at ;. We also
note that o; o 1 09 is in the class A with F'(o; 0 @1 09) = {(;} and maps (; to (;
(indeed (; SN G2 A = Aj SN ;). Similarly, by Proposition 5.3.7, p; 0 gj 0 ¢
has order of contact n; at ¢y, and ;00,01 is in the class A with F(p,;o00;0v¢) = {(}
and fixes ¢, (indeed ¢ — (1 = A 2 ¢ H2 A = ().

Thus, all the inducing maps above are in A with F' = {(;}, and each inducing
map in the first sum maps ¢; to ¢;, while all inducing maps in the second sum fix ¢;.
Since the (;’s are distinct, any term in the first sum originating from j # 1 would
prevent compactness by Theorem 4.2.1. Thus for all j # 1 we must have that \; # \;

and so Eq. (6.2.1) becomes

1
¢’ (C1)]

Note that by symmetry Ay, ..., A, are distinct, and so there is at most one j such that

0=

1
Coropos — S ——Ciprooop (mod K).
ov = D, gy Gy (mod K

Aj = 1. Thus, the second sum contains at most one term. Again by Theorem 4.2.1,
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the second sum cannot be empty, so there is a unique j such that A\; = ¢;. Further-
more, for this j, |¢'(¢1)| = |¢'({;)| and o1 0 1 09 and ¢; o g, 0 ¥ have equal order of

contact, n = ny; = n;, at ¢; and

Dn(al SEZ S 1/)7<1> - Dn((p] ©00;0 1/}761)‘

Recall that as a consequence of Theorem 5.3.1, if ¢ is analytic at z and f is analytic
at g(z) then Dg(g,z) and Dy (f, g(2)) determine Dy (f o g, z). Since 9 is invertible in

a neighborhood of (, we get that
Dy (010 91,61) = Dn(%’ © 0y, (1)
O

Lemma 6.2.3. Let ¢ be in A be such that Cy, is essentially normal and suppose that

¢ fizes ¢ € F(p). Then ¢ is the unique Denjoy- Wolff point of ¢.

Proof. We label the points of F'(p) so that ¢; = ¢ and let ¢; and o7 be as described

above. Then by Proposition 6.2.2,
Dp(010¢1,G) = Dulp1 001, Gr)-
In particular, the nth derivatives are equal and so by Lemma 5.3.5,
c-01(G) = - o1 (G)",
where ¢ # 0. Using the fact that o}(¢1) = 1/¢1(¢1) > 0, we get that
¢'(G) = ¢1(G) =1

and so, by Theorem 2.3.6, (; is the unique Denjoy-Wolff point of . [
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Theorem 6.2.4. Let ¢ be in A with F(¢) = {C1,...,¢}. Then C, is essentially

normal if and only if r =1, ¢ fizes (; and ¢'((1) = 1.

Proof. If r = 1, ¢ fixes ¢; and ¢'(¢1) = 1 then [C,, C] = [C,,,C} ] is compact by
Theorem 6.1.3.

For the other direction, we suppose that C, is essentially normal. In order to
obtain a contradiction, suppose that » > 1. By Lemma 6.2.3, F'(p) contains at most
one fixed point, so there exists some index i such that {; € F'(¢) is not fixed.

Recall that by Proposition 6.2.2, for each i € {1,...,r} there is a unique j such
that ¢((;) = ¢;. Let ¢; = i and let i3 be the unique index for ¢; as above. Continue to
define 7,1 as the unique index for i; as above until a cycle is closed, iy — ... — 7 — 77.

Let o) = @ o ... o p and note that the operator C,,, = Cf; is essentially normal

(k)
since Uy, and C; commute modulo K. We get that o) € A induces an essentially
normal composition operator and fixes k > 1 distinct points, G, ..., G, in F(pu)).

This is a contradiction by Lemma 6.2.3, and so we must have that r = 1. By

Theorem 6.1.3 we get that ¢ fixes ¢; and ¢'({7) = 1. O

Corollary 6.2.5. Let ¢ be a self-map of D which extends analytically to a neighbor-
hood of D and that is not a finite Blaschke product. Then C, is non-trivially essen-
tially normal if and only if there exists ¢ € OD such that ¢ fives ¢ and ¢'({) =1, and

© maps D \ {C} into D.

Proof. By Proposition 4.1.1, ¢ € A. If F(yp) is empty then ||| < 1 and so C, € K

is trivially essentially normal. Otherwise, the claim follows from Theorem 6.2.4. [
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6.3 Construction of Essentially Normal Composi-

tion Operators

We combine the criterion for essential normality given in Theorem 6.2.4 with several
results from Chapter 3 to construct essentially normal composition operators which

have arbitrary even order of contact with 0D at a point (.

Proposition 6.3.1. Let ( € 0D, n = 2m and
81y .00y Sm_1 € R, t1,..ostm_1 >0, w € H.
Let ¢ be defined by ¢ = Tc_l o f o1 where
f(2) = LIA(0, 1)(2) A(s1,81)(2) - - - A(sm-1, tm-1)(2)]w,

and

Then ¢ is a degree m rational function with order of contact n at ¢ which induces an

essentially normal composition operator.

Proof. By Proposition 3.3.3, f has order of contact n with R at z = 0, and so ¢ has
order of contact n with 0D at (. Note that f is obtained by taking m augmentations
of the constant function g(z) = w. By Proposition 3.4.1 and Proposition 3.4.2, f is a
rational function of degree m mapping R \ {0} into H. Since the last augmentation

performed to obtain f has parameters ag = 0,a; = 1, f satisfies f(0) =0, f'(0) = 1.
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Note that 7 preserves the degree of a rational function, and so ¢ = 7, o fo T 18
a degree m rational function. Additionally, the properties of f ensure that ¢ is in A
with F(p) = {¢} and ¢ fixes  and satisfies ¢'(¢) = 1. Thus, by Theorem 6.2.4, the

operator C,, is essentially normal. m

For order of contact n = 4 we define f(s,t,w) and ¢((,s,t,w) for any s € R,
t>0and w € H and ¢ € 0D by
f(s,t,w)(z) = LIA(0, 1)(2) A(s, ) (2)]w

0 —z sz —s—tz — 220 + 2

 (stz? —t2)w — sz —t22 4+ 1

and
@(C,S,t,ﬂ)) = 7—51 o f(S,t,U)) o T¢.

Then ¢((, s,t,w) has order of contact 4 with dD at ¢ and induces an essentially
normal composition operator.

We examine the order of contact 2 case for motivation. It is known that for a
linear fractional ¢ the operator C,, is non-trivially essentially normal if and only if ¢
is a parabolic non-automorphisms [6]. In this case, ¢ corresponds to a translation in
the right half-plane.

We transfer the contact 2 version of the formula above to the right half-plane

%

using the conformal mapping T'(2) = ¢ which maps H to the right half-plane and 0
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to oo. For any w € H and ¢ € 0D the self-map of H

fu(2) = LIA(0,1)(2)]w = L w = -

corresponds to the self map of the right half-plane

@oﬂﬂTxa_Eﬁ%g_ui—wy_mww

Applying this same procedure to our order of contact 4 functions

—t2?w + 2z
t —=
f(37 ”u])(Z) (St22_t2)w—32—t22+1
B (1 —tzw)z
(wtr = 1)sz + (1~ twz) — t22
el NS S
—S - — —S$ -
z 1—twz z _é
we calculate
. 1
(To f(s,tw) o T)(2) = fr——orrs = i(—s+ = + ——)
f(s,t,w) (i/2) Lo
. 1
Z — 1w

t
In Fig. 6.1, we sketch the image of 9D under ¢ = ¢(1, s, ¢, w) for various parame-

ters.
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Figure 6.1: Examples of inducing maps of essentially normal composition operators

22 +224+1 22 +21+i)z+1—2
1,0,1,i) = 5 — b) o(1,1,1,i) =
(a) ¢(1,0,1,9) = 5+ (b) (1, 1,1,9) 2221 —i)z+5—2i

o
O

, z+1 ; AT
(c) ¢(1,0,1/2,0) = —o—— (d) ¢(1,0,2,0) = o5

a
@,

. —2z¢4+4z+1 . —2424) 22 4(24i) 2+i
(e) ¥(1,0,1,2i) = i (f) »(1,0,1,i/24+1) = (izzt(iﬂzr)(zjzi;

O
&
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