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Abstract

In this dissertation we prove a simple criterion for essential normality of compo-

sition operators Cϕ induced by maps ϕ in a large class of functions. Additionally, we

construct essentially normal composition operators which have arbitrary even order

of contact with the unit circle at one point. To do so, we rely on results from three

distinct areas. We use results and techniques of Agler-Lykova-Young to construct ra-

tional analytic self-maps of the unit disk with specified Taylor coefficients at a given

boundary point. This allows us to decompose a composition operator modulo the

ideal of compact operators into a sum of rationally induced composition operators

based on results of Kriete-Moorhouse. The adjoint of each rationally induced compo-

sition operator is then studied using results and ideas of Bourdon-Shapiro. Essential

normality is then characterized, beginning with a single summand in the decomposi-

tion and continuing to the more general case. Finally, we construct essentially normal

composition operators which have arbitrary even order of contact with the unit circle

at one point.
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Chapter 1

Introduction

For ϕ an analytic self-map of the unit disk D, the composition operator Cϕ : f → f ◦ϕ

induced by ϕ is a bounded operator on the Hardy space H2. Composition operators

have been widely studied and many results can be found in [13] and [25].

Recently, several authors have investigated C∗-algebras generated by one or more

composition operators. One aim in studying such C∗-algebras is to understand the

properties of the operators they contain. In particular, there is much interest in

determining the spectrum of algebraic combinations of composition operators and

their adjoints.

For Cϕ an essentially normal composition operator, the quotient algebra of the

C∗-algebra generated by Cϕ by the ideal of the compact operators K is commutative,

and so spectral theory in this quotient algebra can in principle be understood via

Gelfand Theory. In [6], Bourdon-Levi-Narayan-Shapiro characterize the class of non-

trivially essentially normal composition operators induced by linear fractional maps

and provide additional examples of essentially normal composition operators induced

by maps which have order of contact 2 with ∂D at one point. To the best of the
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author’s knowledge, no non-trivially essentially normal composition operators having

order of contact n > 2 with the unit circle were known prior to the present work.

In this dissertation we prove a simple criterion for essential normality of compo-

sition operators induced by maps ϕ in a large class of functions. Additionally, we

construct essentially normal composition operators which have arbitrary even order

of contact with the unit circle at one point. To do so, we rely on results from three

distinct areas, presented in Chapters 3-5 after a review of preliminary material in

Chapter 2.

In Chapter 3 we discuss a boundary version of the Carathéodory-Fejér problem

studied by Agler-Lykova-Young in [1, 2], of determining whether a given finite se-

quence of complex numbers comprises the initial Taylor coefficients of an analytic

self-map of the upper half-plane, H, at a boundary point. We review several of the

results and techniques used in [1, 2], then derive similar results for a slightly different

case of interest. We apply this to obtain a parametrization of all analytic self-maps of

H having specified order of contact with the real line at 0, and to construct rational

analytic self-maps of H that are analytic at 0 and have specified Taylor coefficients

there.

In Chapter 4 we review some definitions and results of Kriete-Moorhouse [19]

regarding compactness of linear combinations of composition operators. We then

apply our results from Chapter 3 to obtain a decomposition of a composition operator

modulo K into a sum of composition operators induced by rational functions. We
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define basic functions as rational self-maps of the unit disk satisfying some additional

properties, and prove a version of the decomposition theorem with basic functions.

Additionally, we review a result from [19] regarding weighted composition operators

in the Calkin algebra and use this result in the proof of a similar result concerning

weighted adjoints of composition operators.

In Chapter 5 we use the pointwise formula for the adjoint of a rationally induced

composition operator C∗ϕ (introduced in [12, 15]) to obtain an operator formula for

CψC
∗
ϕ where ψ satisfies some conditions. We use a variant of the formula which

appears in Bourdon-Shapiro [7] and ideas from [7] to reduce our formula modulo K

for the special case where ϕ is a basic function.

Finally, in Chapter 6 we investigate essential normality. We begin by proving

a necessary and sufficient condition for essential normality for the case where the

inducing map ϕ is a basic function. We then decompose Cϕ into a sum of basic

composition operators modulo K and show that essential normality can only occur

when this sum consists of a single term. Lastly, using the parametrization of functions

with given order of contact proved in Chapter 3, we construct essentially normal

composition operators which have arbitrary even order of contact with the unit circle

at one point.
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Chapter 2

Preliminary Material

2.1 Bounded Operators on a Hilbert Space

For any Hilbert space H, we denote the space of all bounded linear operators from H

to H by B(H). The operator norm on B(H) is defined by

‖T‖ = sup{‖Th‖ : h ∈ H, ‖h‖H ≤ 1},

for all T ∈ B(H), and B(H) is complete in this norm.

We say that an operator T ∈ B(H) is finite rank if its range is finite dimensional.

An operator T is compact if the following equivalent conditions hold.

Proposition 2.1.1. [23, Theorem 3.3.3] The following conditions are equivalent.

1. T is in the closure of the set of finite rank operators in B(H)

2. The closure of the image of the unit ball of H under T is compact in H

3. Each net in the unit ball of H has a subnet whose image under T converges in

H
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Note that all finite rank operators are compact. Additionally, from the third

condition in Proposition 2.1.1 it follows that:

Proposition 2.1.2. T ∈ B(H) is compact and S ∈ B(H) satisfies ‖Sh‖ ≤ ‖Th‖ for

all h ∈ H, then S is compact as well.

We denote the collection of all compact operators on H by K and note that this

collection forms a closed, two-sided ideal in B(H). The quotient algebra B(H)/K is

called the Calkin algebra [4, 23]. If T − S ∈ K, i.e., T and S are in the same coset in

the Calkin algebra, we write

T ≡ S (mod K).

For each operator T ∈ B(H) there exists a unique operator T ∗ ∈ B(H), called the

adjoint of T , that satisfies

〈Tg, h〉 = 〈g, T ∗h〉

for all g, h ∈ H. An operator T is normal if it commutes with its adjoint, that is,

TT ∗ = T ∗T , and essentially normal if the self-commutator [T, T ∗] = TT ∗ − T ∗T is

compact, that is,

T ∗T ≡ TT ∗ (mod K).
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2.2 The Hardy Space H2, Composition Operators

and Toeplitz Operators

The Hardy space of the disk, H2 := H2(D), is the space of all analytic functions f on

D whose power series f(z) =
∑∞

n=0 anz
n satisfy

‖f‖2
H2 :=

∞∑
n=0

|an|2 <∞.

The Hardy space is a Hilbert space under the inner product〈
∞∑
n=0

anz
n,
∞∑
n=0

bnz
n

〉
H2

:=
∞∑
n=0

anbn.

More information about the Hardy space can be found in [13].

We can identify f(z) =
∑∞

0 anz
n in H2 with the boundary function f(eiθ) =∑∞

0 ane
inθ in H2(∂D). Note that

f(eiθ) = lim
r→1

f(reiθ)

for almost every θ [21].

For ϕ in L∞(∂D), we define the multiplication operator Mϕ acting on L2(∂D) by

(Mϕf)(eiθ) = ϕ(eiθ)f(eiθ),

and the Toeplitz operator Tϕ acting on H2(∂D) by Tϕ = PMϕ

∣∣
H2 , where P is the

projection of L2(∂D) onto H2(∂D).

For ϕ an analytic self map of D, we define the composition operator Cϕ on H2 by

Cϕf = f ◦ ϕ.
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By Littlewood’s subordination principle, Cϕ is a bounded linear operator on H2 [21].

The space H∞ consisting of all the functions that are analytic and bounded on

D arises in the study of operators on H2. H∞ is a Banach algebra with pointwise

operations and the sup norm, and is contained in H2.

2.3 More About Composition Operators

2.3.1 Compactness for Composition Operators

Compactness of the composition operator Cϕ is closely related to the boundary be-

havior of ϕ. The following two results suggest that Cϕ is compact when ϕ(z) does

not get too close to the boundary too often.

Proposition 2.3.1. [25, p 23] If ‖ϕ‖∞ < 1 then Cϕ is compact.

Proposition 2.3.2. [25, p 32] If the set {ζ ∈ ∂D : |ϕ(ζ)| = 1} has positive Lebesgue

measure then Cϕ is not compact

In order to state additional results relating the boundary behavior of ϕ and com-

pactness of Cϕ, we introduce the notion of non-tangential approach regions, angular

derivatives and the Denjoy-Wolff point.

For ζ ∈ ∂D and α > 1 we define the non-tangential approach region at ζ by

Γα(ζ) = {z ∈ D : |z − ζ| < α(1− |z|)}.
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Figure 2.1: A typical non-tangential approach region (α = 3, ζ = e
π
4
i)

We say a function f on D has non-tangential limit L ∈ C at ζ and write

∠ lim
z→ζ

f(z) = L

if f(z) → L as z → ζ along any path contained in a non-tangential approach region

at ζ.

Let ϕ be an analytic self-map of D. Then ϕ has a (finite) angular derivative at ζ

in ∂D provided ϕ(ζ), the non-tangential limit of ϕ at ζ, exists and has modulus one,

and

ϕ′(ζ) := ∠ lim
z→ζ

ϕ(z)− ϕ(ζ)

z − ζ

exists as a finite complex number. If the angular derivative ϕ′(ζ) fails to exist, we

write |ϕ′(ζ)| =∞.

Theorem 2.3.3 (Julia Carathéodory [13]). For ϕ an analytic self-map of D and

ζ ∈ ∂D, the following are equivalent

1. d(ζ) = lim infz→ζ
1−|ϕ(z)|

1−|z| <∞
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2. ϕ has finite angular derivative ϕ′(ζ) at ζ

3. Both ϕ and ϕ′ have (finite) non-tangential limits at ζ, with |η| = 1 for η = limr→1 ϕ(rζ).

Moreover, when these conditions hold, we have limr→1 ϕ
′(rζ) = ϕ′(ζ) = d(ζ)ζη and

d(ζ) = ∠ limz→ζ
1−|ϕ(z)|

1−|z| .

The angular derivative criterion for compactness is given by the following result.

Proposition 2.3.4. [25, p 57] Suppose ϕ is an analytic self-map of D

1. If Cϕ is compact then ϕ does not have an angular derivative at any point in ∂D.

2. If ϕ is univalent and does not have an angular derivative at any point of ∂D,

then Cϕ is compact.

Theorem 2.3.5 (The Denjoy-Wolff Theorem). [25, p 75] If ϕ is an analytic self-map

of D with no fixed point in D then there is a point w ∈ ∂D (“the Denjoy-Wolff point

of ϕ”) such that the nth iterate ϕn = ϕ◦ϕ◦ ...◦ϕ (n times) converges to w uniformly

on compact subsets of D.

The following is contained in ”The Grand Iteration Theorem”.

Theorem 2.3.6. [25, p 78] Suppose ϕ is an analytic self-map of D that is not an

elliptic automorphism.

1. If ϕ has no fixed point in D, then the Denjoy-Wolff point w ∈ ∂D of ϕ is a fixed

point for ϕ and the angular derivative ϕ′(w) exists and satisfies 0 < ϕ′(w) ≤ 1.
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2. Conversely, if ϕ has a boundary fixed point w at which ϕ′(w) ≤ 1, then ϕ has

no fixed point in D, and w is the Denjoy-Wolff point of ϕ.

We can conclude the following corollary.

Corollary 2.3.7. [25, p 84] If Cϕ is compact then ϕ has a fixed point in D.

2.3.2 Adjoint Formula For The Linear Fractional Case

Let ϕ =
az + b

cz + d
be a linear-fractional self-map of D. Then the Krein adjoint of ϕ is

defined by

σ(z) =
az − c
−bz + d

.

Cowen’s adjoint formula (see [11]), relates the adjoint of Cϕ with Cσ by

C∗ϕ = TgCσT
∗
h ,

where g(z) = (−bz + d)−1, h(z) = cz + d are in H∞. Building on this, in [20] Kriete-

MacCluer-Moorhouse provide a simple expression for C∗ϕ in the Calkin algebra for the

following linear fractional case.

Proposition 2.3.8. [20, Theorem 3, Proposition 3] Suppose that ϕ =
az + b

cz + d
is a

linear-fractional self-map of D, not an automorphism, which satisfies ϕ(ζ) = λ for

some ζ, λ ∈ ∂D. Then

C∗ϕ ≡
1

|ϕ′(ζ)|
Cσ (mod K)

where σ is the Krein adjoint of ϕ.
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In Proposition 5.2.3, we generalize this formula to the bigger class of functions A

defined in Section 4.1.

2.3.3 Essentially Normal Composition Operators

Recall that an operator T is normal if it commutes with its adjoint, and essentially

normal if [T, T ∗] = TT ∗ − T ∗T is compact. A composition operator Cϕ is normal

if and only if ϕ is of the form ϕ(z) = αz with |α| ≤ 1 [21, p 171] (result due to

Howard Schwartz [21, p 194]). We say that Cϕ is non-trivially essentially normal if

it is essentially normal, not compact and not normal.

In [6], Bourdon-Levi-Narayan-Shapiro determined that a composition operator

induced by a linear fractional map ϕ(z) = az+b
cz+d

is non-trivially essential normal if and

only if ϕ is a parabolic non-automorphism. In particular ϕ has contact with the unit

circle ∂D at one point ζ and satisfies ϕ′(ζ) = 1. Additional examples of essentially

normal composition operators induced by maps which have order of contact 2 with

∂D at one point are provided in [6, Section 7].

To the best of the author’s knowledge, no non-trivially essentially normal com-

position operators having order of contact n > 2 with ∂D were known prior to the

present work.
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2.4 Order of Contact

We define the notion of order of contact with the boundary both in the context of

the unit disk D and in the context of the upper half-plane H.

Definition 2.1. We say that ϕ has contact with ∂D at ζ of order c > 0 if there is

some neighborhood V of ζ such that ϕ is analytic on V ∩D and maps V ∩D into D,

and

1. ϕ(ζ) := lim
z→ζ,z∈D

ϕ(z) exists and ϕ(ζ) ∈ ∂D

2.
1− |ϕ(eiθ)|2

|ϕ(ζ)− ϕ(eiθ)|c
is essentially bounded above and away from zero as eiθ → ζ.

Definition 2.2. We say that f has contact with R at 0 of order c > 0 if there is

some neighborhood W of 0 such that f is analytic on W ∩ H and and maps W ∩ H

into H, and

1. f(0) := lim
z→0,z∈H

f(z) exists and f(0) ∈ R

2.
Im f(x)

|f(0)− f(x)|c
is essentially bounded above and away from zero as x→ 0 in R.

The following proposition provides some insight and intuition to the definition of

order of contact in the upper half-plane by exploring the case where the function is

analytic at the point of contact.

Proposition 2.4.1. Suppose that f is analytic in a neighborhood W of 0 with Taylor

expansion f(z) =
∑∞

k=0 akz
k there, and that f maps 0 into R and W ∩H into H.
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Then f maps an interval in R containing 0 into R if and only if all the coefficients

ak are real. Otherwise, f has order of contact n = min{k : Im ak 6= 0} with R at 0, n

is even and Im an > 0.

Proof. For all x ∈ R we have

Im f(x) =
∞∑
k=0

Im(ak)x
k.

If all the coefficients ak are real then f maps an interval in R containing 0 into R.

Otherwise, let n be the minimal index for which an is non-real. Then

Im f(x) ∼ Im(an)xn

and so f does not map an interval in R containing 0 into R. Additionally, we have

|f(0)− f(x)| ∼ |a1| · |x|,

and since f maps W ∩H into H we have that a1 > 0 and Im f(x) > 0 for x ∈ R near

0. Thus

0 <
Im f(x)

|f(0)− f(x)|n
∼ Im(an)xn

|a1|n · |x|n

and so n is even and Im(an) > 0. We get that
Im f(x)

|f(0)− f(x)|n
∼ Im(an)

|a1|n
and so f has

order of contact n with R at 0.

We show that the definition in D corresponds to that in H. To transfer D to H

we use the family of conformal maps τα : D→ H for α ∈ ∂D, defined by

τα(z) = i
α− z
α + z

.
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Proposition 2.4.2. Suppose ϕ is analytic at ζ. Then ϕ has order of contact c with

∂D at ζ if and only if f = τϕ(ζ) ◦ ϕ ◦ τ−1
ζ has order of contact c with R at 0.

Proof. Note that f fixes 0 and that x = τζ(e
iθ) tends to 0 in R if and only if eiθ tends

to ζ in ∂D. We calculate:

Im f(x) = Im
(
τϕ(ζ)

(
ϕ(eiθ)

))
= Im

(
i
ϕ(ζ)− ϕ(eiθ)

ϕ(ζ) + ϕ(eiθ)

)
=

1− |ϕ(eiθ)|2

|ϕ(ζ) + ϕ(eiθ)|2
,

and

|f(x)| = |τϕ(ζ)

(
ϕ(eiθ)

)
| = |ϕ(ζ)− ϕ(eiθ)|
|ϕ(ζ) + ϕ(eiθ)|

Thus for any c > 0,

Im f(x)

|f(x)|c
=

1− |ϕ(eiθ)|2

|ϕ(ζ)− ϕ(eiθ)|c
· |ϕ(ζ) + ϕ(eiθ)|c

|ϕ(ζ) + ϕ(eiθ)|2

Note that

lim
eiθ→ζ

|ϕ(ζ) + ϕ(eiθ)|c

|ϕ(ζ) + ϕ(eiθ)|2
=
|2ϕ(ζ)|c

|2ϕ(ζ)|2
= 2c−2

and so ϕ has order of contact c with ∂D at ζ if and only if f has order of contact c

with R at 0.

Order of contact with D and H is illustrated in Fig. 2.2, Fig. 2.3 and Fig. 2.4.

The maps f1, f2 and f3 are self-maps of H constructed using Proposition 3.3.3, with

contact with R at 0 of order 2, 4 and 6 respectively and given by

f1(z) =
−z
iz − 1

= z + iz2 +O(z3)

f2(z) =
iz2 − z

z2 + iz − 1
= z + z3 + iz4 +O(z6)

f3(z) =
z3 + iz2 − z

−iz3 + 2z2 + iz − 1
= z + z3 + 2z5 + iz6 +O(z7).
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The maps ϕ1, ϕ2, ϕ3 are the corresponding self-maps of D with contact at 1, and are

given by

ϕ1(z) =
z + 1

−z + 3

ϕ2(z) =
z2 + 2z + 1

z2 − 2z + 5

ϕ3(z) =
1

2
· z

3 + z2 + z + 1

z2 − z + 2
.

2.5 Rational Functions

Rational functions will have a significant role in this thesis. We review some basic

definitions and properties and discuss the notion of branches of the inverse function.

Let r be a rational function, and write

r(z) =
p(z)

q(z)

where p and q are relatively prime polynomials. Then the degree d of r is defined to

be the maximal degree of p and q. We think of r as mapping the extended complex

plane Ĉ = C∪ {∞} into itself. For each point w ∈ Ĉ the inverse image r−1({w}) has

d points counting multiplicities [14, Problems 28-32, pages 181-182].

We say w is a regular value of r if r−1({w}) consists of d distinct points, and that

w is a critical value otherwise. By elementary function theory, w is a critical value

for r if and only if r−1({w}) contains at least one critical point - a point that has no

neighborhood on which r is univalent. For a point z ∈ C, z is a critical point if and

only if r′(z) = 0. Thus, all but finitely many points of Ĉ are regular values for r.
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Let w be a regular value of r, so that r−1({w}) consists of d distinct points

{z1, z2, ..., zd}. Then each point zj is the center of an open disc ∆j on which r has

a univalent restriction. So the restriction of r to ∆j has an analytic inverse sj on

r(∆j). It is called a branch of r−1 defined on r(∆). We take the intersection of the

r-images of the discs ∆1, ...,∆d to obtain a neighborhood W of w on which all d

distinct branches s1, ..., sd are defined. By the following proposition, we can extend

these d branches to any simply connected domain V containing W and consisting of

regular values of r.

Proposition 2.5.1. [7, Corollary 3] Suppose r is a rational function and s is a

branch of r−1 defined on some disc ∆ consisting of regular values of r. Suppose W is

a simply connected domain consisting of regular values of r and containing ∆. Then

s has an analytic continuation to a branch of r−1 defined on W .

Thus, for any rational function r of degree d and any simply connected domain V

consisting of regular values of r, there are d distinct branches s1, ..., sd of r−1 defined

on V . Furthermore, distinct branches defined on the same connected open set have

disjoint images [7, Proposition 1], and so s1(V ), ..., sd(V ) are pairwise disjoint.
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Figure 2.2: Order of contact 2 in D and H

(a) f1(R) (b) ϕ1(∂D)

Figure 2.3: Order of contact 4 in D and H

(a) f2(R) (b) ϕ2(∂D)

Figure 2.4: Order of contact 6 in D and H

(a) f3(R) (b) ϕ3(∂D)
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Chapter 3

The Boundary Carathéodory-Fejér
Problem

The Carathéodory-Fejér problem [8, 5] is to determine whether a given finite sequence

of complex numbers comprises the initial Taylor coefficients of an analytic map f

mapping the unit disk D to the upper half-plane H. In [1], Agler-Lykova-Young

provide a solvability criterion for the boundary version, denoted ∂CFP , and give a

parametrization of all solutions in the real case, denoted ∂CFP(R).

We review several of the results and techniques used in [1] and the subsequent pa-

per [2], then apply these to obtain a parametrization of all solutions to a slightly

different special case of interest - ∂CFP(contact-n). We apply this to obtain a

parametrization of all analytic self-maps of H having specified order of contact with

R at 0, and with varying initial Taylor coefficients. Finally, we construct rational

analytic self-maps of the upper half-plane H that are analytic at 0 and have specified

Taylor coefficients there.
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3.1 The Boundary Carathéodory-Fejér Problem

In [1], Agler-Lykova-Young study a boundary version of the Carathéodory-Fejér prob-

lem, denoted ∂CFP , for functions in the Pick class P where the interpolation node

x lies on the boundary R. Here P is defined to be the set of analytic functions f

mapping the upper half-plane H into H ∪ R.

Problem 3.1.1 (∂CFP). Given a point x ∈ R, a non-negative integer n and numbers

a−1, a0, ..., an ∈ C, determine whether there exists a function f ∈ P such that f is

analytic in a deleted neighborhood of x and

Lk(f, x) = ak, k = −1, 0, 1, ..., n,

where Lk(f, x) is the kth Laurent coefficient of f at x.

A solvability criterion for this general boundary problem is given in [1, Theorem

1.2], which we partially present in Theorem 3.1.3. Parametrization of all solutions

for the real case, ∂CFP(R), where a−1, a0, ..., an ∈ R, is given in [1, Theorem 8.1,

Theorem 8.2, Corollary 8.6].

In the subsequent paper, [2], weaker solutions to ∂CFP , having non-tangential

pseudo-Taylor expansions, are considered. For our purposes, unrestricted pseudo-

Taylor expansions will suffice, and so we will say a function f ∈ P is a weak solution

of Problem ∂CFP if f has a pseudo-Taylor expansion

f(z) = a0 + a1(z − x) + ...+ an(z − x)n + o(|z − x|n)
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as z → 0 unrestrictedly in H.

Theorem 3.1.2. [2, Theorem 5.2] Problem ∂CFP with a−1 = 0 has a weak solution

if and only if it has a solution that is analytic at x.

We are interested in a boundary version of the Carathéodory-Fejér problem where

the interpolation node is taken to be x = 0. We restrict attention to functions f in

the Pick class P which extend analytically to a neighborhood of 0 and denote this

subset of the Pick class by P0. Recall from Proposition 2.4.1 that for f ∈ P0, f

has order of contact n with the real line at 0 if and only if n is even and the initial

Taylor coefficient of f at 0 satisfy a0, a1, ..., an−1 ∈ R and an ∈ H. We denote this

special case of ∂CFP where a0, a1, ..., an−1 ∈ R and an ∈ H by ∂CFP(contact-n).

The solvability criterion for ∂CFP(contact-n) case is as follows.

Theorem 3.1.3. [1, Theorem 1.2(2)] Let n = 2m be an even positive integer,

a0, ..., an−1 ∈ R and an ∈ H, and let Hm(a1, ..., an−1) be the Hankel matrix defined by

Hm(a1, ..., an−1) =



a1 a2 ... am

a2 a3 ... am+1

. . ... .

am am+1 ... an−1


Then there exists a function f ∈ P0 with initial Taylor coefficients a0, ..., an at 0 if

and only if Hm(a1, ..., an−1) > 0, i.e., this matrix is positive definite.

Our goal is to derive a parametrization of all the solutions to ∂CFP(contact-n).
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We will use the methods used in [1] for the real case and arrive at a similar parametriza-

tion.

3.2 Reduction and Augmentation

The main tool we will use is a technique for passing from a function in the Pick class

to a simpler one and back again due to G. Julia [18]. We define the reduction and

the augmentation (at 0) of a function as follows.

Definition 3.1. For any non-constant function f ∈ P0 such that f(0) ∈ R, we define

the reduction of f (at 0) to be the function g on H given by the equation

g(z) = − 1

f(z)− f(0)
+

1

f ′(0)z

Definition 3.2. For any function g ∈ P0 and any a0 ∈ R, a1 > 0, we define the

augmentation of g (at 0) by a0, a1 to be the function f on H given by

f(z) = a0 +
1

1
a1z
− g(z)

The important property of the operations of reduction and augmentation is that

they preserve the Pick class.

Proposition 3.2.1. [3, Theorem 3.4]

1. If f ∈ P0 is non-constant and f(0) ∈ R, then the reduction of f is in P0 as well.

2. If g ∈ P0 and a0 ∈ R, a1 > 0 then the augmentation f of g by a0, a1 is in P0 as

well and satisfies f(0) = a0, f ′(0) = a1.
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Note that reduction and augmentation are inverse operations on P0, that is,

1. if f ∈ P0 and if g is the reduction of f then f is the augmentation of g by

f(0), f ′(0);

2. if g ∈ P0 and if f is the augmentation of g by a0, a1 then g is the reduction of

f .

We will need the following results relating the properties of the Taylor coefficients

of a function and those of its reduction.

Proposition 3.2.2. [1, Proposition 2.5] Let f ∈ P0 satisfy f ′(0) > 0, and let g be

the reduction of f . Let the Taylor expansions of f and g about 0 be

f(z) =
∞∑
j=0

ajz
j, g(z) =

∞∑
j=0

bjz
j.

Then the Taylor coefficients aj and bj are related by

a1 0 0 ...

a2 a1 0 ...

a3 a2 a1 ...

. . . ...





b0

b1

b2

.


=

1

a1



a2

a3

a4

.


.

Corollary 3.2.3. Let f(z) =
∑∞

j=0 ajz
j and g(z) =

∑∞
j=0 bjz

j be as in Proposi-

tion 3.2.2. Then for any integer n ≥ 2,

a1, ..., an determine b0, ..., bn−2,
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and in the other direction

a1, b0, ..., bn−2 determine a2, ...an.

Furthermore, if a0, a1 ∈ R, then

N = min{k : Im ak 6= 0} if and only if N − 2 = min{k : Im bk 6= 0}.

Proof. For k = 1, 2, ..., the kth row of the matrix equation in Proposition 3.2.2 is

akb0 + ak−1b1 + ...+ a1bk−1 =
ak+1

a1

.

Adjusting the index k and solving for the appropriate terms, we get

bk =
1

a1

(
ak+2

a1

− ak+1b0 − akb1 − ...− a2bk−1

)
for k = 0, 1, 2, ... (3.2.1)

ak = a1 (ak−1b0 + ak−2b1 + ...+ a1bk−2) for k = 2, 3, 4, ... (3.2.2)

Let n ≥ 2. Using Eq. (3.2.1) and by induction on k, we see that a1, ..., an determine

b0, ..., bn−2. Using Eq. (3.2.2) and again by induction, we see that a1 together with

b0, ..., bn−2 determine a2, ..., an.

Now suppose that a0, a1, ..., aN−1 ∈ R and aN ∈ H. Then using Eq. (3.2.1) and by

induction on k = 0, ..., N−3 we see that b0, ...bN−3 ∈ R. Now, taking imaginary parts

of Eq. (3.2.1) for k = N − 2, we get that Im(bN−2) = 1
a21

Im(aN), so that bN−2 ∈ H.

To other direction of the implication follows similarly from Eq. (3.2.2).

Proposition 3.2.4. [1, Corollary 3.3] Let f(z) =
∑j=∞

j=0 ajz
j, g(z) =

∑j=∞
j=0 bjz

j be as

in Proposition 3.2.2. Then Hm(a1, ..., a2m−1) > 0 if and only if Hm−1(b1, ..., b2m−3) >

0.
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3.3 Parametrization of Solutions to the Contact-n

Case

We can obtain an alternative expression for the augmentation of a function by intro-

ducing the following notation. For a matrix A =

a11 a12

a21 a22

, denote the correspond-

ing linear fractional transformation by L[A]:

L[A]h =
a11h+ a12

a21h+ a22

.

Note that composition of linear fractional transformations corresponds to matrix mul-

tiplication, i.e., L[A]L[B]h = L[AB]h.

By the definition, the augmentation f of g by a0, a1 is

f(z) = a0 +
1

1
a1z
− g(z)

= a0 −
a1z

a1zg(z)− 1
=
a0a1zg(z)− a0 − a1z

a1zg(z)− 1
,

and so f(z) = L[A(a0, a1)(z)]g(z), where A(a0, a1)(z) is defined by

A(a0, a1)(z) =

a0a1z −a0 − a1z

a1z −1

 .
Theorem 3.3.1. Let n = 2m be an even positive integer and let a0, ..., an−1 ∈ R and

an ∈ H be such that Hm(a1, ..., an−1) > 0. Then all solutions to ∂CFP(contact-n) are

given by

f(z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]g(z)

for any g ∈ P0 satisfying g(0) = a
(m)
0 , where

a
(0)
0 = a0, a

(1)
0 , ..., a

(m−1)
0 ∈ R, a

(m)
0 ∈ H, a

(0)
1 = a1, a

(1)
1 , ..., a

(m−1)
1 > 0
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are determined by a0, ..., an.

Proof. Recall that by Theorem 3.1.3, there exists a solution to ∂CFP(contact-n) with

initial Taylor coefficients a0, ...an, and fix a solution f0. We inductively define fk+1 ∈

P0 to be the reduction of fk for k = 1, ...,m, and denote the Taylor coefficients of fk

at 0 by a
(k)
0 , a

(k)
1 , .... Notice that fk is the augmentation of fk+1 by a

(k)
0 , a

(k)
1 , so that

fk(z) = L[A(a
(k)
0 , a

(k)
1 )]fk+1(z),

and f0 can be written as

f0(z) = L[A(a0, a1)]f1(z)

= L[A(a
(0)
0 , a

(0)
1 )(z)A(a

(1)
0 , a

(1)
1 )(z)]f2(z) = · · ·

= L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]fm(z).

By Corollary 3.2.3, all the Taylor coefficients listed below are determined by

a0, ..., an and do not depend on our choice of f0.

f0
red−−−→ f1

red−−−→ . . .
red−−−→ fm−1

red−−−→ fm

a0 a
(1)
0 · · · a

(m−1)
0 a

(m)
0

a1 a
(1)
1 · · · a

(m−1)
1

a2 a
(1)
2 · · · a

(m−1)
2

...
... . .

.

an−2 a
(1)
n−2

an−1

an

In general, for k = 1, ...,m we have that a
(k)
0 , ...a

(k)
n−2k are determined. Corollary 3.2.3

further shows that a
(k)
0 , ...a

(k)
n−2k−1 ∈ R and a

(k)
n−2k ∈ H, i.e., all the non-bold coefficients
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above are in R and all the bold coefficient are in H. In particular, we get that

a
(0)
0 = a0, a

(1)
0 , ..., a

(m−1)
0 ∈ R, a

(m)
0 ∈ H.

Additionally, by Proposition 3.2.4, for k = 1, ...,m−1 the Hankel matrixHm−k(a
(k)
1 , ..., a

(k)
n−2k−1)

is positive and so in particular we get that

a
(0)
1 = a1, a

(1)
1 , ..., a

(m−1)
1 > 0.

Note that since f0, ..., fm−1 are all real valued at 0 and non-constant, taking the above

reductions makes sense.

Now let F0 be any solution of ∂CFP(contact-n) with a0, ..., an, and let Fk denote

the kth reduction of F0. As discussed above, the first n − 2k + 1 Taylor coefficients

of Fk are a
(k)
0 , ...a

(k)
n−2k, and so F0 can be written as

F0(z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]Fm(z),

where Fm satisfies Fm(0) = a
(m)
0 .

Conversely, for any Fm ∈ P0 satisfying Fm(0) = a
(m)
0 we inductively define Fk for

k = m− 1, ..., 0 to be the augmentation of Fk+1 by a
(k)
0 , a

(k)
1 , i.e.,

Fk(z) = L[A(a
(k)
0 , a

(k)
1 )]Fk+1(z).

By the second assertion in Corollary 3.2.3, the first n− 2k + 1 Taylor coefficients of

Fk are again a
(k)
0 , ...a

(k)
n−2k, and so the function

F0(z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]Fm(z),

is indeed a solution to ∂CFP(contact-n) with a0, ..., an.



27

Theorem 3.3.2. Let n = 2m be an even positive integer. Let a0, ..., an−1 ∈ R and

an ∈ H be such that Hm(a1, ..., an−1) > 0. Then all solutions for ∂CFP(contact-n) are

parametrized by

f(z) =
p(z)h(z) + q(z)

r(z)h(z) + s(z)

where p, q, r, s are polynomials with real coefficients of degree at most m determined

by a0, ..., an and satisfying for some K > 0,

(ps− qr)(z) = Kzn

and h ∈ P0 satisfies h(0) = h0, where h0 is determined by a0, ..., an.

Proof. Let a
(0)
0 , ..., a

(m)
0 and a

(0)
1 , ..., a

(m−1)
1 be as in Theorem 3.3.1, so that all solutions

are parametrized by

f(z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]h(z),

where h is any function in P0 with h(0) = a
(m)
0 .

We define the polynomials p, q, r, s byp(z) q(z)

r(z) s(z)

 = A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z),

so that

f(z) = L

p(z) q(z)

r(z) s(z)

h(z) =
p(z)h(z) + q(z)

r(z)h(z) + s(z)
.

Recall that

A(α0, α1)(z) =

α0α1z −α0 − α1z

α1z −1

 ,
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and so p, q, r, s are real polynomials of degree at most m. Notice that

detA(α0, α1)(z) = −α0α1z + α0α1z + α2
1z

2 = α2
1z

2,

so by taking determinants we get that

(ps− qr)(z) =
(
a

(0)
1

)2

z2 · · ·
(
a

(m−1)
1

)2

z2 = Kzn.

As a corollary to Theorem 3.3.1, we can now provide a parametrization of all

contact n functions.

Proposition 3.3.3. All functions f ∈ P0 with order of contact n = 2m with R at 0

are parametrized by

f(z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]g(z),

where g ∈ P0 satisfies g(0) ∈ H and

a
(0)
0 , a

(1)
0 , ..., a

(m−1)
0 ∈ R, a

(0)
1 , a

(1)
1 , ..., a

(m−1)
1 > 0.

Furthermore, for any f ∈ P0, these parameters are uniquely determined.

Proof. Let f ∈ P0 have order of contact n = 2m with R at 0 with initial Taylor

coefficients a0, ..., an. Then by Theorem 3.1.3, Hm(a1, ..., an−1) > 0 and so by Theo-

rem 3.3.1 f is of the desired form.

For the other direction note that any f of this form is obtained by applying m

augmentations to g ∈ P0, and so f ∈ P0. Recall that by Corollary 3.2.3, augmentation
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increases the order of contact with R by 2, and so g(0) ∈ H implies that f has order

of contact 2m = n.

To see uniqueness, notice that if

f(z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]g(z)

then a
(k)
0 = fk(0), a

(k)
1 = f ′k(0) and g = fm where fk denotes the kth reduction of

f .

3.4 Rational Functions with Specified Taylor Co-

efficients

We turn our attention to construction of simple solutions to ∂CFP . Initially we

construct rational maps f ∈ P0 which map 0 into R and the rest of R̂ = R ∪ {∞}

into H and have specified initial Taylor coefficients at 0. We then add the condition

that 0 is a regular value for f , i.e., f−1({0}) consists of d distinct points where d is

the degree of f . We begin by showing that augmentation preserves the properties we

are interested in.

Proposition 3.4.1. Let g ∈ P0 be a rational function of degree d. Then any aug-

mentation f of g is a rational function of degree d+ 1.

Proof. Let g =
p(z)

q(z)
∈ P0 be a rational function of degree d, with p(z) and q(z) are

relatively prime, and let f ∈ P0 be the augmentation of g by a0, a1. Then by the
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definition of augmentation,

f(z) = a0 +
1

1
a1z
− p(z)

q(z)

,

and so it suffices to show that the rational function

1

a1z
− p(z)

q(z)
=
q(z)− a1zp(z)

a1zq(z)
=
r(z)

s(z)

has degree d+ 1. We see that max{deg r, deg s} = d+ 1, and it remains to show that

r(z) and s(z) are relatively prime.

First note that q(z) is not divisible by z since g is analytic at 0, and so z is not

a common divisor of r(z) and s(z). Now assume that z − α is a common divisor

of r(z) and s(z) for some α 6= 0. Then z − α divides a1zq(z) implies z − α divides

q(z), and z−α divides both q(z) and q(z)− a1zp(z) implies z−α divides p(z). This

contradicts the assumption that p(z) and q(z) are relatively prime, and so r(z) and

s(z) are indeed relatively prime.

Proposition 3.4.2. Let g ∈ P0 mapping R̂ \ {0} into H. Let f = L[A(a0, a1)]g with

Im a0 ≥ 0 and a1 > 0 (note that for a0 real, f is an augmentation of g). Then f also

maps R̂ \ {0} into H.

Proof. By the definition of A(a0, a1),

f(z) =
a0a1zg(z)− a0 − a1z

a1zg(z)− 1
= a0 +

1
1

a1z
− g(z)

.

Let x ∈ R̂ \ {0}, so that g(x) ∈ H. Then

Im

(
1

a1x
− g(x)

)
= − Im g(x) < 0,
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and so

Im f(x) = Im a0 + Im

 1
1

a1x
− g(x)

 > 0.

Proposition 3.4.3. Let f be in P and suppose that for some n = 2m, f has pseudo

Taylor coefficients

lim
z→0

f (k)(z)

k!
= ak for k = 0, 1, ..., n,

where the limits are taken unrestrictedly in H, such that a0, a1, ..., an−1 ∈ R and

an ∈ H.

Then there exists a degree m rational function F ∈ P0 that maps R̂ \ {0} into H

and has initial Taylor coefficients a0, ..., an at z = 0.

Proof. By Theorem 3.1.2 and Theorem 3.1.3, Hm(a1, ..., an−1) > 0 and so by Theo-

rem 3.3.1 with g(z) ≡ a
(m)
0 , we have that

F (z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]a

(m)
0 ,

is in P0 with the desired Taylor coefficients. Here a
(0)
0 = a0, a

(1)
0 , ..., a

(m−1)
0 ∈ R,

a
(m)
0 ∈ H and a

(0)
1 = a1, a

(1)
1 , ..., a

(m−1)
1 > 0 are determined by a0, ..., an.

Note that F is obtained by applying m augmentations to g(z) ≡ a
(m)
0 . Thus by

Proposition 3.4.1, F is a degree m rational function, and by Proposition 3.4.2 applied

m times, F maps R̂ \ {0} into H.
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Proposition 3.4.4. Let f be in P and suppose that for some n = 2m, f has pseudo

Taylor coefficients

lim
z→0

f (k)(z)

k!
= ak for k = 0, 1, ..., n,

where the limits are taken unrestrictedly in H, such that a0, a1, ..., an−1 ∈ R and

an ∈ H.

Then there exists a degree m+ 1 rational function f0 ∈ P0 that has 0 as a regular

value, maps R̂ \ {0} into H and has initial Taylor coefficients a0, ..., an at z = 0.

Proof. By Theorem 3.1.2 and Theorem 3.1.3, Hm(a1, ..., an−1) > 0 and so by Theo-

rem 3.3.1 we have that for any g ∈ P0 with g(0) = a
(m)
0 ,

F (z) = L[A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)]g(z),

is in P0 with the desired Taylor coefficients. Here a
(0)
0 = a0, a

(1)
0 , ..., a

(m−1)
0 ∈ R,

a
(m)
0 ∈ H and a

(0)
1 = a1, a

(1)
1 , ..., a

(m−1)
1 > 0 are determined by a0, ..., an.

For any w ∈ H, we define gw(z) = L[A(a
(m)
0 , 1)(z)]w = a

(m)
0 +

z

1− wz
. Then g is

a degree 1 rational function in P0 and by Proposition 3.4.2, gw maps R̂ into H.

Let Fw denote the function F above resulting from the choice g = gw and note

that Fw is obtained by applying m augmentations to gw. Thus by Proposition 3.4.1,

Fw is a degree m+ 1 rational function, and by Proposition 3.4.2 applied m times, Fw

maps R̂ \ {0} into H.

It remains to find a w ∈ H such that 0 is a regular value for Fw, i.e., Fw(z) = 0
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has m+ 1 distinct solutions. Let p, q, r, s be defined byp(z) q(z)

r(z) s(z)

 = A(a
(0)
0 , a

(0)
1 )(z) · · ·A(a

(m−1)
0 , a

(m−1)
1 )(z)A(a

(m)
0 , 1)(z),

so that p, q, r, s are polynomials of degree at most m+ 1, and

Fw(z) =
p(z)w + q(z)

r(z)w + s(z)
.

Since the degree of Fw is m+ 1, p(z)w+ q(z) and r(z)w+ s(z) have no common roots

and so it suffices to find w such that p(z)w+ q(z) = 0 has m+ 1 distinct roots. Note

that p and q have no non-zero roots in common, since by taking determinants, we

have that

(ps− qr)(z) = (a
(0)
1 )2z2 · · · (a(m)

1 )2z2 = Kzn+2, K 6= 0.

This equation also shows that at least one of p and q has degree m+ 1. Suppose for

the moment that Fw(0) = a0 6= 0, i.e z = 0 is not a common root for p and q. Then

the function −q(z)

p(z)
is a rational function of degree m+ 1 and so all but finitely many

w ∈ C are regular values. For any choice w ∈ H that is a regular value of −q(z)

p(z)
, Fw

is the desired function.

If Fw(0) = a0 = 0 then z = 0 is a common root for p and q, however F ′w(0) = a1 6= 0

and so z = 0 is a solution of multiplicity one to p(z)w + q(z) = 0. Thus the function

−q(z)

p(z)
is a rational function of degree m, and so we can find w ∈ H with pre-image

consisting of m points. These m points and the point z = 0 are then the m + 1

distinct solutions to Fw(z) = 0.
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Chapter 4

Relations In The Calkin Algebra

In [19], Kriete-Moorhouse investigate compactness of linear combinations of compo-

sition operators where the inducing maps have certain properties of analyticity. We

review some definitions and results from [19], then apply our results from Chapter 3

to obtain a decomposition of a composition operator in the Calkin algebra into a sum

of composition operators induced by rational or basic functions (see Definition 4.1).

Additionally, we review a result from [19] regarding weighted composition opera-

tors in the Calkin algebra and use this result in the proof of a similar result concerning

weighted adjoints of composition operators.

4.1 The Class of Functions A

We will work in the class of functions A (denoted S in [19]) consisting of analytic

self-maps ϕ of D with certain properties of analyticity. The model for a function in

A is an analytic self-map of D which extends analytically to a neighborhood of D and

is not a Blaschke product. In particular, we restrict the number of points of contact
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with the unit circle, and require relatively nice behavior at the points of contact. To

make a precise definition, we first discuss Clark measures.

4.1.1 Clark Measures

Let ϕ be an analytic self-map of D. If |α| = 1, there exists a finite positive Borel

measure µα on ∂D such that

1− |ϕ(z)|2

|α− ϕ(z)|2
= Re

(
α + ϕ(z)

α− ϕ(z)

)
=

∫
∂D
Pz(e

it)dµα(t)

for z in D, where

Pz(e
it) =

1− |z|2

|eit − z|2

is the Poisson kernel at z. The existence of µα follows since the left side the equation

above is a positive harmonic function. The measures µα are called the Clark measures

of ϕ. More information about Clark measures can be found in [9] and Sarason [24].

The singular part of the measure, µsα, is carried by ϕ−1({α}), the set of those

ζ ∈ ∂D where ϕ(ζ), the non-tangential limit of ϕ at ζ, exists and equals α. The

measure µsα is the sum of the pure point measure

µppα =
∑

ϕ(ζ)=α

1

|ϕ′(ζ)|
δζ

where δζ is the unit point mass at ζ, and a continuous singular measure µcsα .

We write

E(ϕ) =
⋃
|α|=1

spt(µsα),
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where spt(µ) denotes the closed support of a measure µ. Note that for any ϕ,

F (ϕ) = {ζ : ϕ has finite angular derivative at ζ}

is a subset of E(ϕ). If E(ϕ) is a finite set then the continuous singular measure µcsα

all vanish, and we get that E(ϕ) = F (ϕ).

4.1.2 Definition of A

We define the class A to be the set of analytic self-maps ϕ of D with E(ϕ) = F (ϕ)

and such that for each point ζ ∈ F (ϕ), there exist an n such that ϕ has order of

contact n at ζ and complex numbers a0, a1, ..., an such that

ϕ(z) = a0 + a1(z − ζ) + ...+ an(z − ζ)n + o(|z − ζ|n)

as z → ζ unrestrictedly in D.

For ϕ ∈ A with order of contact n at ζ, we define the derivatives of ϕ at ζ by

ϕ(j)(ζ) := ∠ lim
z→ζ

ϕ(j)(z) = j!aj

for j = 1, ..., n and note that these limits do exist (see, the argument in [24, p 47]).

Proposition 4.1.1. A contains all self-maps of D that extend analytically to a neigh-

borhood of D that are not finite Blaschke products.

Proof. Let ϕ be a self-map of D which extends analytically to V ⊃ D and is not a

finite Blaschke product. Let S = {ζ ∈ ∂D : |p(ζ)| = 1} be the set of points where ϕ
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has contact with ∂D. Then S consists of zeros of the analytic function

f(z) := ϕ(z)− ϕe(z),

where ϕe = ρ ◦ ϕ ◦ ρ, and ρ is the inversion in the unit circle defined by ρ(z) := 1/z.

If S is infinite then the set of zeros of f has an accumulation point in V and so f is

identically 0 on V . In this case ϕ(eiθ) = 1/ϕ(eiθ) for all eiθ, i.e ϕ is inner. But since

ϕ is an inner function analytic in a neighborhood of D, ϕ must be a finite Blaschke

product, contradicting our assumption. Thus S is finite and so E(ϕ) is finite. Since

ϕ is analytic at each point ζ ∈ F (ϕ) = E(ϕ) and maps a small arc containing ζ onto

a curve with contact with ∂D at exactly one point, ϕ has finite order of contact at ζ.

Lastly, for n equal to the order of contact of ϕ with ∂D at ζ, we can write

ϕ(z) = a0 + a1(z − ζ) + ...+ an(z − ζ)n + o(|z − ζ|n)

using the Taylor coefficients of ϕ at ζ. Thus, ϕ is indeed in A.

4.2 Linear Relations for Composition Operators in

the Calkin Algebra

In [19], Kriete-Moorhouse show that information relating to compactness of a linear

combination of compositions operators

c1Cϕ1 + ...+ crCϕr
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where ϕ1, ..., ϕr ∈ A, is carried by the behavior of the functions ϕj at their points of

contact with the unit circle. More precisely, the relevant information for ϕ at a point

of contact ζ is

Dn(ϕ, ζ) = (ϕ(ζ), ϕ′(ζ)..., ϕ(n)(ζ))

where n is the order of contact of ϕ with the unit circle at ζ.

The following result determines compactness of a linear combination of composi-

tion operators for operators induced by functions in A.

Theorem 4.2.1. [19, Theorem 5.13] Let ϕ1, ..., ϕr in A and write F for the union

F (ϕ1) ∪ ... ∪ F (ϕr), a finite set. For ζ in F and k = 2, 4, 6, ..., let

Nk(ζ) = {j : F (ϕj) contains ζ and k is the order of contact of ϕj at ζ}

and let

Ek(ζ) = {Dk(ϕj, ζ) : j is in Nk(ζ)}.

Given complex numbers c1, ..., cr, the following are equivalent:

1. c1Cϕ1 + + cnCϕr is compact

2. for every ζ in F , every even k ≥ 2 and every d in Ek(ζ),

∑
j∈Nk(ζ)

Dk(ϕj ,ζ)=d

cj = 0.

Our goal is to decompose Cϕ, modulo the ideal K of compact operators, into a

sum of composition operators induced by rational functions, each having contact with

the unit circle at exactly one point. We begin by proving the following lemma.
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Lemma 4.2.2. Let ϕ ∈ A and ζ ∈ F (ϕ). Let n = 2m denote the order of contact of ϕ

with ∂D at ζ. Then there exists a degree m rational function ϕ0 with order of contact

n with ∂D at ζ and mapping the rest of D into D which satisfies Dn(ϕ0, ζ) = Dn(ϕ, ζ).

Proof. Let λ = ϕ(ζ) and define

f = τλ ◦ ϕ ◦ τ−1
ζ ,

where τα(z) = iα−z
α+z

. Then f ∈ P fixes 0 and since ϕ ∈ A, f has pseudo Taylor

coefficients

lim
z→0

f (k)(z)

k!
= ak for k = 0, 1, ..., n

such that a0, a1, ..., an−1 ∈ R and an ∈ H.

Thus, by Proposition 3.4.3, there exists a degree m rational function F ∈ P0 that

maps R̂ \ {0} into H and has initial Taylor coefficients a0, ..., an at z = 0. We let ϕ0

be the self-map of D defined by

ϕ0 = τ−1
λ ◦ F ◦ τζ .

Note that τα preserves the degree of a rational function, and so ϕ0 is a degree m

rational function. As a consequence of the boundary behavior of F , ϕ0 maps ζ to λ

and the rest of D into D. Since Dn(ϕ0, ζ) is determined by Dn(τζ , ζ), Dn(F, 0) and

Dn(τ−1
λ , 0) (see Theorem 5.3.1), ϕ0 satisfies Dn(ϕ0, ζ) = Dn(ϕ, ζ). Lastly, since F has

order of contact n with R at 0 and by Proposition 2.4.2, ϕ0 has order of contact n

with ∂D at ζ.
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We combine this result with Theorem 4.2.1 to obtain our first decomposition

theorem.

Theorem 4.2.3. Let ϕ ∈ A with F (ϕ) = {ζ1, ..., ζr} and let nj = 2mj denote the

order of contact of ϕ with the unit circle at ζj. Then there exists a decomposition,

Cϕ ≡ Cϕ1 + ...+ Cϕr (mod K).

where for each j = 1, ..., r, ϕj is a rational self-map of D of degree mj which maps ζj

into the unit circle ∂D and the rest of ∂D into D and satisfies Dnj(ϕj, ζj) = Dnj(ϕ, ζj).

Proof. Existence of ϕ1, ..., ϕr follows from Lemma 4.2.2. The result follows by apply-

ing Theorem 4.2.1 to ϕ, ϕ1, ...ϕn with constants 1,−1, ...,−1.

In the following chapters, we will require that the inducing rational maps have an

additional property of regularity. We define basic functions as follows, and proceed to

prove our second decomposition theorem where each term is a composition operator

induced by a basic function.

Definition 4.1. A function ϕ analytic on D is a basic function with contact at ζ if

the following hold.

1. ϕ is a rational function mapping the unit disk D into itself.

2. ϕ(ζ) is on the unit circle, and ϕ maps the rest of the unit circle into D.

3. ϕ(ζ) is a regular value for ϕ.
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Lemma 4.2.4. Let ϕ ∈ A and ζ ∈ F (ϕ). Let n = 2m denote the order of contact

of ϕ with ∂D at ζ. Then there exists a degree m + 1 basic function ϕ0 with order of

contact n with ∂D at ζ which satisfies Dn(ϕ0, ζ) = Dn(ϕ, ζ).

Proof. We begin as in the proof of Lemma 4.2.2, by defining λ = ϕ(ζ) and f =

τλ ◦ϕ ◦ τ−1
ζ . Here, by Proposition 3.4.4, there exists a degree m+ 1 rational function

G ∈ P0 that maps R̂ \ {0} into H, has initial Taylor coefficients a0, ..., an at z = 0,

and has z = 0 as a regular value.

Again, we define ϕ0 = τ−1
λ ◦G◦τζ and get that ϕ0 is a degree m+1 rational function

with the desired boundary behavior at ζ. Since Dn(ϕ0, ζ) is determined by Dn(τζ , ζ),

Dn(G, 0) and Dn(τ−1
λ , 0) (see Theorem 5.3.1), ϕ0 satisfies Dn(ϕ0, ζ) = Dn(ϕ, ζ). Ad-

ditionally, since G has order of contact n with R at 0 and by Proposition 2.4.2, ϕ0

also has order of contact n with ∂D at ζ.

Now, since 0 is a regular value for G, we have that

G(w) = (τλ ◦ ϕ0 ◦ τ−1
ζ )(w) = 0

has m+ 1 distinct solutions. So

ϕ0(τ−1
ζ (w)) = (τ−1

λ )(0) = λ

has m+ 1 distinct solutions, i.e., λ is a regular value for ϕ0.

Theorem 4.2.5. Let ϕ ∈ A with F (ϕ) = {ζ1, ..., ζr} and let nj = 2mj denote the

order of contact of ϕ with the unit circle at ζj. Then there exists a decomposition,

Cϕ ≡ Cϕ1 + ...+ Cϕr (mod K).
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where for each j = 1, ..., r, ϕj is a basic function of degree mj + 1 which has contact

at ζj and satisfies Dnj(ϕj, ζj) = Dnj(ϕ, ζj).

Proof. Existence of ϕ1, ..., ϕr follows from Lemma 4.2.4. The result follows by apply-

ing Theorem 4.2.1 to ϕ, ϕ1, ...ϕn with constants 1,−1, ...,−1.

4.3 Weighted Composition Operators and Adjoints

in the Calkin Algebra

In [19], it is shown that the coset of the weighted composition operator MwCϕ in the

Calkin algebra is determined by the values of w on E(ϕ) in the following sense.

Proposition 4.3.1. [19, Theorem 3.1] Let ϕ be an analytic self-map of D with

|ϕ(eiθ)| < 1 a.e. Suppose w is a bounded measurable function on ∂D such that |w| is

continuous at every point of E(ϕ). Then

MwCϕ is compact if and only if w ≡ 0 on E(ϕ).

Here we think of the operator MwCϕ as mapping H2 to L2, however it can also

be considered as mapping L2 to L2 and if w ∈ H∞ as mapping H2 to H2.

For the special case that ϕ ∈ A has contact with ∂D at exactly one point, we have

the following corollary.

Corollary 4.3.2. Let ϕ ∈ A be such that F (ϕ) = {ζ}. Suppose w is a bounded
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measurable function on ∂D such that w is continuous at ζ. Then

MwCϕ ≡ w(ζ)Cϕ (mod K)

Proof. Let v(z) := w(z) − w(ζ). Then v is bounded on ∂D, continuous at ζ and

satisfies v(ζ) = 0 so by Proposition 4.3.1, MvCϕ = MwCϕ − w(ζ)Cϕ is compact.

We will prove a similar result for weighted adjoints of composition operators.

The proof relies on existence of an H∞ function which satisfies several boundary

conditions. Before we turn to constructing this H∞ function, we state and prove the

following fact.

Proposition 4.3.3. If f ∈ L1(∂D) is real valued, then the map h defined by

h(z) =

∫ 2π

0

eiθ + z

eiθ − z
f(eiθ)

dθ

2π
,

is analytic on D, and has non-tangential boundary values a.e. on ∂D which satisfy

Reh(eit) = f(eit) a.e. on ∂D.

Furthermore, if f is continuously differentiable on an open arc Γ contained in ∂D,

then h extends continuously to that arc.

Proof. We write

h(z) =

∫ 2π

0

Pz(e
iθ)f(eiθ)

dθ

2π
+ i

∫ 2π

0

Qz(e
iθ)f(eiθ)

dθ

2π
,

where Pz(e
iθ) = Re eiθ+z

eiθ−z and Qz(e
iθ) = Im eiθ+z

eiθ−z are the Poisson and the conjugate

Poisson kernels. It is well known that the function

u(z) =

∫ 2π

0

Pz(e
iθ)f(eiθ)

dθ

2π
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has non-tangential limits a.e. which satisfy

Reh(eit) = u(eit) = f(eit) a.e. on ∂D.

Furthermore, if f is continuous on Γ then, by standard techniques, the maps ur(e
it) =

u(reit) converge uniformly to their boundary function as r → 1 on any closed arc

contained in Γ. Since u is the uniform limit of continuous functions on Γ, u is also

continuous on Γ. By [16, pp 78-79], similar results hold for the conjugate function v,

defined by

v(z) =

∫ 2π

0

Qz(e
iθ)f(eiθ)

dθ

2π
.

Namely, v has non-tangential limits a.e., and if f is continuously differentiable on Γ,

then the maps vr(e
it) = v(reit) converge uniformly to their boundary functions as

r → 1 on any closed arc contained in Γ. Since v is the uniform limit of continuous

functions on Γ, v is also continuous on Γ.

Lemma 4.3.4. Let λ ∈ ∂D and v be a non-negative bounded function on ∂D which

is continuous at λ, continuously differentiable in a deleted neighborhood of λ and

satisfies v(λ) = 0. Then there exists a function b ∈ H∞ which extends continuously

to ∂D and satisfies b(λ) = 0 and |b(eiθ)| ≥ v(eiθ) on ∂D.

Proof. We begin by constructing a continuously differentiable real valued function u

on ∂D. Let Γ be a closed arc centered at λ such that v is continuously differentiable

on Γ \ {λ}. We define u on Γ by

u(eiθ) = v(eiθ) + |eiθ − λ|,
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and extend u to ∂D \ Γ so that the resulting function u is continuously differentiable

on ∂D \ {λ} and satisfies u(eiθ) ≥ v(eiθ) + |eiθ − λ| on ∂D.

We let f = log u, and note that f is continuously differentiable on ∂D \ {λ} and

satisfies f(eiθ) ≥ log |eiθ − λ|, so that f ∈ L1(∂D). Therefore, by Proposition 4.3.3, h

defined by

h(z) =

∫ 2π

0

eiθ + z

eiθ − z
log u(eiθ)

dθ

2π
,

is analytic on D, and extends continuously to ∂D \ {λ}. Furthermore, on ∂D \ {λ},

Reh(eit) = log u(eit).

We define b on D by b(z) = eh(z) for z 6= λ and b(λ) = 0. Then on ∂D \ {λ},

|b(eit)| = eReh(eit) = u(eit),

so that b ∈ H∞ extends continuously to D \ {λ}, with |b(eit)| ≥ v(eit) on ∂D. It

remains to show that b(z)→ 0 as z → λ unrestrictedly in D.

Note that

|b(z)| = exp

(∫ 2π

0

Pz(e
iθ) log(u(eiθ))

dθ

2π

)
,

where Pz(e
iθ) = Re eiθ+z

eiθ−z is the Poisson kernel. Thus, it suffices to show that

∫ 2π

0

Pz(e
iθ) log(u(eiθ))

dθ

2π
→ −∞

as z → λ unrestrictedly in D. Let M > 0. We find ε such that for |z − λ| < ε the

integral above is less than −M . Note that log u(eiθ)→ −∞ as eiθ → λ, and let δ > 0
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be such that on the arc Γδ = ∂D ∩ {|z − λ| < δ} we have log u(eiθ) < −4M . Then

∫
Γδ

Pz(e
iθ) log(u(eiθ))

dθ

2π
< −4M

∫
Γδ

Pz(e
iθ)
dθ

2π

Note that u is bounded from above so that log u < C for some constant C. Now

choose ε < δ such that for |z − λ| < ε we have both

∫
Γδ

Pz(e
iθ)
dθ

2π
>

1

2

and Pz(e
iθ) < M

C
for all eiθ ∈ ∂D \ Γδ.

Then for all z ∈ D such that |z − λ| < ε, we have

∫ 2π

0

Pz(e
iθ) log u(eiθ)

dθ

2π
=

∫
Γδ

Pz(e
iθ) log u(eiθ)

dθ

2π
+

∫
∂D\Γδ

Pz(e
iθ) log u(eiθ)

dθ

2π

< −4M

∫
Γδ

Pz(e
iθ)
dθ

2π
+

∫
∂D\Γδ

M

C
· C dθ

2π

< −4M · 1

2
+M = −M.

This completes the proof.

Proposition 4.3.5. Let ϕ ∈ A be such that F (ϕ) = {ζ}. Suppose w is a bounded

measurable function on ∂D which is continuously differentiable in a deleted neighbor-

hood of λ = ϕ(ζ). Then

MwC
∗
ϕ ≡ w(λ)C∗ϕ (mod K)

where Mw is viewed as an operator from H2 to L2, and in particular,

TwC
∗
ϕ ≡ w(λ)C∗ϕ (mod K).
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Proof. We can write

MwC
∗
ϕ = (Mw−w(λ) +Mw(λ))C

∗
ϕ = Mw−w(λ)C

∗
ϕ + w(λ)C∗ϕ.

Thus, it suffices to prove that MvC
∗
ϕ is compact where v = w − w(λ).

Note that |v| is continuously differentiable in some deleted neighborhood of λ,

and so by Lemma 4.3.4 there exists a b ∈ H∞ which extends continuously to ∂D and

satisfies b(λ) = 0 and |b(eiθ)| ≥ v(eiθ) on ∂D. We get that for all f ∈ H2,

‖MvC
∗
ϕf‖2 =

∫ 2π

0

|v(eiθ)|2|(C∗ϕf)(eiθ)|2 dθ
2π

≤
∫ 2π

0

|b(eiθ)|2|(C∗ϕf)(eiθ)|2 dθ
2π

= ‖MbC
∗
ϕf‖2,

so by Proposition 2.1.2, it suffices to show that MbC
∗
ϕ is a compact operator from H2

to L2. We write

MbC
∗
ϕ = PMbC

∗
ϕ + (I − P )MbC

∗
ϕ

and show that both terms on the right hand side are compact.

First note that since b is a continuous function on ∂D, the L2 operator (I−P )MbP

is compact (see the version of Hartman’s theorem in [22, p 214,Theorem 2.2.5]). Thus,

the term (I − P )MbC
∗
ϕ = (I − P )MbPC

∗
ϕ is compact from H2 to L2.

We now show PMbC
∗
ϕ = TbC

∗
ϕ is compact onH2 by looking at its adjoint (TbC

∗
ϕ)∗ =

CϕTb. Since b ∈ H∞, we have

CϕTb = CϕMb = Mb◦ϕCϕ.
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Since ϕ ∈ A with F (ϕ) = {ζ} and b(ϕ(ζ)) = b(λ) = 0, by Corollary 4.3.2 we have

Mb◦ϕCϕ ≡ b(ϕ(ζ))Cϕ ≡ 0 · Cϕ ≡ 0 (mod K),

provided that |b ◦ϕ| considered as a function on ∂D is continuous at ζ. Recall that b

is continuous on D, and that ϕ ∈ A with F (ϕ) = {ζ} so that ϕ(eiθ) is in D and tends

to λ as eiθ → ζ. Thus |b ◦ ϕ| is indeed continuous at ζ.
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Chapter 5

Adjoint Formula for Rationally
Induced Composition Operators

Recent work of Cowen-Gallardo [12], Hammond-Moorhouse-Robbins [15] and Bourdon-

Shapiro [7] has produced pointwise formulas for C∗ϕ, where the inducing map ϕ is

rational. The constituent parts of these pointwise formulas contain multiple-valued

analytic functions which do not necessarily represent well-defined operators individ-

ually. In Section 5.1 we show how to work with these pointwise formulas to produce

legitimate operator equations involving C∗ϕ for the rational case. Then, in Section 5.2,

we consider the case where ϕ is basic and reduce our equations to the Calkin algebra.

5.1 From Pointwise Formula To Operator Equa-

tion

Let ϕ be a rational self-map of D of degree d. We associate with ϕ its exterior map

ϕe := ρ◦ϕ◦ρ, where ρ is the inversion in the unit circle defined by ρ(z) := 1/z. Then

ϕe maps De := {z ∈ C : |z| > 1} into itself, and so ϕ−1
e (D) ⊂ D.
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Recall from Section 2.5 that for any simply connected domain V consisting of

regular values of ϕe, there exist d distinct branches σ1, ..., σd of ϕ−1
e defined on V .

Note that one possible choice of V is the unit disk with radial slits from each critical

value of ϕe to the unit circle removed. A choice that may be much smaller but

sufficient for our needs is a sufficiently small neighborhood of a regular value of ϕe.

The work of Cowen-Gallardo [12] and Hammond-Moorhouse-Robbins [15] has pro-

duced the following pointwise formula for the adjoint of a rationally-induced compo-

sition operator.

Proposition 5.1.1. [15, Corollary 8] Suppose that V is a set on which d distinct

branches σ1, ..., σd of ϕ−1
e are defined. Then for all f ∈ H2 and all z ∈ V ∩ D,

C∗ϕf(z) =
f(0)

1− ϕ(∞)z
+

d∑
j=1

zσ′j(z)

σj(z)
f(σj(z))

In [7], Bourdon-Shapiro give an elementary proof for this original formula and

introduce the following variant which we will use.

Proposition 5.1.2. [7, Corollary 8] Suppose that V is a set on which d distinct

branches σ1, ..., σd of ϕ−1
e are defined. Then for all f ∈ H2 and all z ∈ V ∩ D,

C∗ϕf(z) =
f(0)

1− ϕ(0)z
+

d∑
j=1

zσ′j(z)S∗f(σj(z)), (5.1.1)

where S∗ is the adjoint of the shift operator S defined by (Sf)(z) = zf(z).
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5.1.1 Wishful Thinking - The Outer Regular Case

Note that Eq. (5.1.1) can be rewritten, at least formally, as

C∗ϕ = Λ +
d∑
j=1

MhjCσjS
∗, (5.1.2)

where hj(z) = zσ′j(z), and Λ is the rank one operator defined by Λ(f) := f(0)

1−ϕ(0)z
.

Notice that the terms MhjCσjS
∗ are reminiscent of Cowen’s original formula for the

linear-fractional case.

Bourdon-Shapiro define ϕ as outer regular when its critical values all lie in D.

Note that w ∈ C is a regular value for ϕe if and only if ρ(w) is a regular value for

ϕ, so that for outer regular functions ϕ we can choose V = rD for some r > 1.

Then, restricting domains to D, we have that σ1, ..., σd are analytic self-maps of D

and h1, ..., hd are H∞ functions. Thus, the wishful thinking equation Eq. (5.1.2) is a

legitimate operator equation in the outer regular case [7, Theorem 13(a)].

Example 5.1. [7, Example 9] Let ϕ be the analytic self-map of D fixing 1 defined by

ϕ(z) =
1

3− z − z2
.

Then ϕ has a critical point at z = −1
2

so ϕ(−1
2
) = 4

13
is a critical value. Note that

ϕ(∞) = 0 is also a critical since ϕ−1({0}) contains only one point. Since both critical

values of ϕ lie in D, ϕ is outer regular and so Eq. (5.1.2) is a legitimate operator

equation.

We calculate ϕe = ρ ◦ ϕ ◦ ρ and solve the equation ϕe(w) = z to obtain σ1, σ2.

ϕe(w) = 3− 1

w
− 1

w2
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σ1(z) =
1 +
√

13− 4z

2(3− z)
and σ1(z) =

1−
√

13− 4z

2(3− z)
,

where
√

denotes the principal branch of the square root. Indeed, σ1 and σ2 are

analytic on C \ [13
4
,∞) except for an isolated singularity at z = 3.

Thus Eq. (5.1.2) provides the following legitimate operator formula for C∗ϕ:

C∗ϕ = Λ +Mh1Cσ1S
∗ +Mh2Cσ2S

∗.

Note that ϕ̃ = τ1 ◦ ϕ ◦ τ−1
1 is

ϕ̃(z) =
iz2 − 3z

2z2 + 5iz − 1

and has Taylor expansion

ϕ̃(z) = 3z + 14iz2 +O(z3)

and so ϕ has order of contact 2 with the unit circle at ζ = 1.

The fact that the outer regular function in the example has order of contact 2 with

the unit circle is no coincidence. We prove the following proposition using results from

Section 5.3.

Proposition 5.1.3. If ϕ is rational such that ϕ has order of contact n > 2 with the

unit circle at ζ, then ϕ is not outer regular.

Proof. Suppose that ϕ is outer regular and let σ be a branch of ϕ−1
e mapping ϕ(ζ) to

ζ and defined on D. We transfer the problem to the upper half-plane and work with

ϕ̃ = τ−1
ϕ(ζ) ◦ ϕ ◦ τζ , ϕ̃e = τ−1

ϕ(ζ) ◦ ϕe ◦ τζ , σ̃ = τ−1
ζ ◦ σ ◦ τϕ(ζ)
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which are all analytic self-maps of the upper half-plane according to our assumption.

Let a0, a1, a2, a3 denote the initial Taylor coefficients of ϕ̃ at z = 0, and b0, b1, b2, b3

denote those of σ̃. In Proposition 5.3.6, we show that σ has order of contact n at λ.

Thus by Theorem 3.1.3 the Hankel matrices Hm(a1, ..., an−1) and Hm(b1, ..., bn−1) are

both positive, and in particular, their 2nd leading principal minors are positive, i.e.,

a1a3 − a2
2 > 0, b1b3 − b2

2 > 0.

In Proposition 5.3.4 we show that ϕ̃ and ϕ̃e have equal Taylor coefficient a0, ..., an−1.

Noting that ϕ̃e ◦ σ = id, we can therefore express b1, b2, b3 in terms of a1, a2, a3 using

the product rule (or Faà di Bruno’s formula, Theorem 5.3.1). We get the equations

1 = (ϕ̃e ◦ σ̃)′(z) = ϕ̃e
′(σ̃(z))σ̃′(z)

0 = (ϕ̃e ◦ σ̃)′′(z) = ϕ̃e
′′(σ̃(z))σ̃′(z)2 + ϕ̃e

′(σ̃(z))σ̃′′(z)

0 = (ϕ̃e ◦ σ̃)′′′(z) = ϕ̃e
′′′(σ̃(z))σ̃′(z)3 + 3ϕ̃e

′′(σ̃(z))σ̃′(z)σ̃′′(z) + ϕ̃e
′(σ̃(z))σ̃′′′(z),

and evaluating at z = 0, we have

1 = a1b1, 0 = 2a2b
2
1 + a1 · 2b2, 0 = 6a3b

3
1 + 3 · 2a2b1 · 2b2 + a1 · 6b3.

Solving for b1, b2, b3 we see that

b1 =
1

a1

, b2 = −a2

a3
1

, b3 =
2a2

2 − a1a3

a5
1

.

Thus

b1b3 − b2
2 =

1

a1

· 2a2
2 − a1a3

a5
1

− a2
2

a6
1

=
−(a1a3 − a2

2)

a6
1

< 0

which is a contradiction.



54

5.1.2 Operator Equation Involving C∗ϕ

In general, the set V on which σ1, ..., σd are analytic can not be chosen to contain all of

D, and so the wishful thinking operators Cσ1 , ..., Cσd in Eq. (5.1.2) are not legitimate

operators. We overcome this difficulty by pre-composing with a map ψ with image

contained in V ∩D to obtain analytic self-maps of D, σ1◦ψ, ..., σd◦ψ. This will enable

us to write a legitimate operator formula for CψC
∗
ϕ.

Proposition 5.1.4. Let ψ be an analytic self-map of D satisfying ψ(D) ⊂ V . Then

CψC
∗
ϕ = CψΛ +

d∑
j=1

Mhj◦ψCσj◦ψS
∗

where hj(z) = zσ′j(z), S∗ is the adjoint of the shift operator and Λ is the rank one

operator defined by Λ(f) := f(0)

1−ϕ(0)z
.

In particular, hj ◦ ψ are H∞ functions and σj ◦ ψ are analytic self-maps of D.

Proof. Since ψ maps D into V and σ1, ..., σd are analytic on V , we get that σ1 ◦

ψ, ..., σd ◦ ψ are analytic self-maps of D (recall that ϕ−1
e (D) ⊂ D). The functions

σ′1, ..., σ
′
d are analytic on V and so bounded on ψ(D), so h1 ◦ ψ, ..., hd ◦ ψ are H∞

functions. By the pointwise formula given in Proposition 5.1.2, for all f ∈ H2 and all
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z ∈ D we have

CψC
∗
ϕf(z) = C∗ϕf(ψ(z)) =

f(0)

1− ϕ(0)ψ(z)
+

d∑
j=1

ψ(z)σ′j(ψ(z))S∗f(σj(ψ(z)))

= (Λf)(ψ(z)) +
d∑
j=1

hj(ψ(z))S∗f((σj ◦ ψ)(z))

= (CψΛf)(z) +
d∑
j=1

(Mhj◦ψCσj◦ψS
∗f)(z).

Therefore, the operator formula in the statement holds.

5.2 The Basic Case

We turn to the case where ϕ is a basic function of degree d with order of contact

n at ζ. Denote λ = ϕ(ζ) and recall that λ ∈ ∂D is a regular value for ϕ and so

ρ(λ) = λ is a regular value for ϕe. Thus we can choose V to be a neighborhood of λ

consisting of regular values of ϕe.

Recall from Section 2.5 that σ1(V ), ..., σd(V ) are pairwise disjoint, and let σ denote

the unique branch of ϕ−1
e that maps λ to ζ.

Proposition 5.2.1. Let ψ be an analytic self map of D satisfying ψ(D) ⊂ V . Then

CψC
∗
ϕ ≡Mh◦ψCσ◦ψS

∗ (mod K)

where h(z) := zσ′(z).

In particular, h ◦ψ is an H∞(D) function and σ ◦ψ is an analytic self-map of D.



56

Proof. Notice that since ρ is the identity on ∂D, ϕe maps exactly one point in ∂D (the

point ζ) into ∂D and so ϕ−1
e (∂D) = {ζ}. We also have that the branches σ1, ..., σd

map ψ(D) to pairwise disjoint subsets of D (see Section 2.5), and these sets are closed

as continuous images of compact sets. Since λ ∈ ψ(D) and by the definition of σ, we

see that ζ ∈ σ(ψ(D)), and so for σj 6= σ, the closed set σ(ψ(D)) does not intersect

∂D. Thus, we have ‖σj ◦ψ‖∞ < 1 and so the composition operator Cσj◦ψ is compact.

Since Λ in Proposition 5.1.4 is rank one, reducing Proposition 5.1.4 modulo the

compacts gives

CψC
∗
ϕ ≡Mh◦ψCσ◦ψS

∗ (mod K)

where h is defined by h(z) = zσ′(z). Proposition 5.1.4 also shows that h ◦ ψ is an

H∞(D) function and σ ◦ ψ is an analytic self-map of D.

By continuity of σ and since σ(λ) = ζ, there exists a neighborhood V0 ⊂ V of λ

on which σ is bounded away from zero.

Proposition 5.2.2. Let ψ be an analytic self map of D mapping D into V0. Then

CψC
∗
ϕ ≡Mg◦ψCσ◦ψ (mod K)

where g(z) := zσ′(z)
σ(z)

.

In particular, g ◦ ψ is an H∞(D) function and σ ◦ ψ is an analytic self-map of D.

Proof. By Proposition 5.2.1,

CψC
∗
ϕ ≡Mh◦ψCσ◦ψS

∗ mod K
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where h is defined by h(z) = zσ′(z), and h ◦ ψ ∈ H∞(D) and σ ◦ ψ is an analytic

self-map of D. Note that for any f ∈ H2 and any nonzero z ∈ D, we have that

(S∗f)(z) =
f(z)− f(0)

z
.

Thus, there exists a K1 ∈ K such that for any f ∈ H2 and z ∈ D, we have

(CψC
∗
ϕf)(z) = (Mh◦ψCσ◦ψS

∗f)(z) + (K1f)(z)

= ψ(z)σ′(ψ(z))
f(σ(ψ(z)))− f(0)

σ(ψ(z))
+ (K1f)(z)

=
ψ(z)σ′(ψ(z))

σ(ψ(z))
f(σ(ψ(z)))− ψ(z)σ′(ψ(z))

σ(ψ(z))
f(0) + (K1f)(z)

= g(ψ(z))f(σ(ψ(z)))− g(ψ(z))f(0) + (K1f)(z)

Since ψ maps D into V0, σ ◦ ψ is bounded away from zero on D, and so g ◦ ψ is an

H∞(D) function. We can define the rank one operator (K2f)(z) := g(ψ(z))f(0), and

rewrite the above equation as

(CψC
∗
ϕf)(z) = (Mg◦ψCσ◦ψf)(z)− (K2f)(z) + (K1f)(z).

Thus CψC
∗
ϕf ≡Mg◦ψCσ◦ψ (mod K), as desired.

5.2.1 Generalized Adjoint Formula in the Calkin Algebra

If ψ satisfies stronger conditions, we get the following formula which generalizes the

adjoint formula modulo K, developed by Kriete-MacCluer-Moorhouse [20], of a com-

position operator induced by a linear fractional map (see Proposition 2.3.8).
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Recall that f(ξ) denotes the non-tangential limit of f at ξ for a function f of D

and ξ ∈ ∂D.

Proposition 5.2.3. There exists a neighborhood W of λ such that for any self-map

ψ of D that satisfies:

1. ψ(D) ⊂ W

2. ψ is analytic at λ and fixes it

3. ψ−1({λ}) := {β ∈ ∂D : ψ(β) exists and is equal to λ} = {λ}

we have that the map σ ◦ ψ is in the class A with F (σ ◦ ψ) = {λ} and that

CψC
∗
ϕ ≡

1

|ϕ′(ζ)|
Cσ◦ψ (mod K).

Proof. Let W be a neighborhood of λ such that the closure of W is contained in V0.

Then for any ψ as above, ψ(D) is contained in V0, and so by Proposition 5.2.2 we

have

CψC
∗
ϕ ≡Mg◦ψCσ◦ψ (mod K).

To show that σ ◦ ψ ∈ A, first recall that

E(σ ◦ ψ) =
⋃
|α|=1

spt(µsα)

and that for each α ∈ ∂D, µsα is carried by

(σ ◦ ψ)−1({α}) = {β ∈ ∂D : (σ ◦ ψ)(β) exists and is equal to α}.
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Suppose (σ ◦ ψ)(β) = α for some α, β ∈ ∂D. Then applying ϕe we get that ψ(β)

exists and σ(ψ(β)) = α. Recall that ϕ−1
e (∂D) = {ζ}, σ(λ) = ζ and σ is univalent on

V . Thus σ(ψ(β)) = α implies that α = ζ and ψ(β) = λ, and so by the third condition

on ψ we have β = λ. Therefore spt(µsα) is empty for α 6= ζ, and spt(µsζ) ⊂ {λ}. We

conclude that E(σ ◦ ψ) ⊂ {λ}.

We have that σ ◦ ψ is analytic at λ and maps λ to ζ, so that F (σ ◦ ψ) = {λ}.

Since σ ◦ ψ is analytic as λ and does not map an arc of ∂D containing λ into ∂D,

σ ◦ ψ has finite order of contact at λ and a Taylor expansion to that order about λ.

This shows that σ ◦ ψ is indeed in the class A.

Recall that due to the definition of V0, for g(z) = zσ′(z)
σ(z)

the map g ◦ψ is an H∞(D)

function. Since g ◦ ψ is also continuous at λ, we can apply Corollary 4.3.2 to get:

CψC
∗
ϕ ≡ (g ◦ ψ)(λ)Cσ◦ψ (mod K).

We calculate

(g ◦ ψ)(λ) = g(λ) =
λσ′(λ)

σ(λ)
=

λ

ζϕ′(ζ)
=

1

ζλϕ′(ζ)
,

where σ′(λ) = 1/ϕ′(ζ) follows by applying the chain rule for σ ◦ ϕe at z = ζ, and

substituting ϕ′e(ζ) = ϕ′(ζ) which holds by Proposition 5.3.4 or direct calculation.

To complete the proof, note that by Theorem 2.3.3, ϕ′(ζ) = d(ζ)ζλ, where d(ζ) >

0, and so |ϕ′(ζ)| = d(ζ) = ζλϕ′(ζ).

Note that for a linear fractional map ϕ(z) =
az + b

cz + d
, we have that ϕe(z) is in-

vertible, and ϕ−1
e (z) = σ(z) =

az − c
−bz + d

is the Krein adjoint of ϕ. Recall that by
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Proposition 2.3.8,

C∗ϕ ≡
1

|ϕ′(ζ)|
Cσ (mod K),

and so Proposition 5.2.3 can be viewed as a generalization of Proposition 2.3.8.

Note also that if τ ∈ A with F (τ) = {ζ}, Proposition 2.3.8 can be extended to

produce a formula for C∗τ provided τ has order of contact 2 with ∂D at ζ, whereas

Proposition 5.2.3 can be extended to produce a formula for CψC
∗
τ provided that ψ

satisfies the conditions of Proposition 5.2.3, and regardless of the order of contact of

τ with ∂D at ζ.

5.3 Relationship Between ϕ and σ

Let ϕ be a rational function with order of contact n with the unit circle at ζ, mapping

ζ to λ. Let σ be a branch of ϕ−1
e mapping λ to ζ. Then σ ◦ ϕe = id near ζ and

ϕe ◦ σ = id near λ. Thus

Dn(σ ◦ ϕe, ζ) = (ζ, 1, 0, ..., 0), and Dn(ϕe ◦ σ, λ) = (λ, 1, 0, ..., 0).

Although ϕ and σ are not inverse functions, we will show that they are “almost

inverse” in the sense that

Dn−1(σ ◦ ϕ, ζ) = (ζ, 1, 0, ..., 0), and Dn−1(ϕ ◦ σ, λ) = (λ, 1, 0, ..., 0).

Throughout this section, we will use Faà di Bruno’s formula, an identity general-

izing the chain rule that has been known since 1800. The following is the statement

of the formula in combinatorial form.
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Theorem 5.3.1 (Faà di Bruno’s formula). [17] If g is analytic at z and f is analytic

at g(z), then

(f ◦ g)(k)(z) =
∑
π∈Π

f (|π|)(g(z)) ·
∏
B∈π

g(|B|)(z),

where Π is the set of partitions of {1, ..., k}.

Note that as a consequence of Theorem 5.3.1, if g is analytic at z and f is analytic

at g(z) then Dk(g, z) and Dk(f, g(z)) determine Dk(f ◦ g, z). We rewrite Faà di

Bruno’s formula in the following way.

Lemma 5.3.2. If g is analytic at z and f is analytic at g(z), then

(f ◦ g)(k)(z) = f (k)(g(z))g′(z)k + F (Dk−1(f, g(z)), Dk−1(g, z)) + f ′(g(z))g(k)(z),

where

F ((a0, a1, ..., ak−1), (b0, b1, ..., bk−1)) =
∑
π∈Π

1<|π|<k

a|π| ·
∏
B∈π

b|B|.

Proof. This follows from Theorem 5.3.1, with the first term originating from the

partition π = {{1}, {2}, ..., {k}}, and the last term originating from the partition

π = {{1, 2, ..., k}}.

We transfer ϕ, ϕe and σ to the upper half-plane H = {z ∈ C : Im z > 0}, and

analyze their relationships there. The corresponding self-maps of H are

ϕ̃ = τλ ◦ ϕ ◦ τ−1
ζ , ϕ̃e = τλ ◦ ϕe ◦ τ−1

ζ , σ̃ = τζ ◦ σ ◦ τ−1
λ

where τα(z) = iα−z
α+z

is a conformal map which maps D onto H and α to 0. Note that

ϕ̃, ϕ̃e and σ̃ all fix 0 and are analytic in a neighborhood of 0.



62

Lemma 5.3.3. ϕ̃e is the upper half-plane exterior map associated with ϕ̃, i.e.,

ϕ̃e(z) = ϕ̃(z).

Proof. Recall that ϕe = ρ ◦ ϕ ◦ ρ where ρ : z → 1/z, and so

ϕ̃e(z) = (τλ ◦ ρ ◦ ϕ ◦ ρ ◦ τ−1
ζ )(z).

We denote r(z) = z, so that

ϕ̃(z) = (r ◦ ϕ̃ ◦ r)(z) = (r ◦ τλ ◦ ϕ ◦ τ−1
ζ ◦ r)(z).

It therefore suffices to show that τα ◦ ρ = r ◦ τα for any α ∈ ∂D. Indeed

τα

(
1

z

)
= i

α− 1
z

α + 1
z

= i
z − α
z + α

= −iα− z
α + z

= τα(z)

Proposition 5.3.4. Dn−1(ϕ, ζ) = Dn−1(ϕe, ζ) and ϕ(n)(ζ) 6= ϕ
(n)
e (ζ).

Proof. By Theorem 5.3.1, it suffices show that

Dn−1(ϕ̃, 0) = Dn−1(ϕ̃e, 0) and ϕ̃(n)(0) 6= ϕ̃e
(n)(0).

Let ϕ̃(z) =
∑∞

0 akz
k be the Taylor expansion of ϕ̃ about 0. Then by Lemma 5.3.3,

we can write ϕ̃e(z) = ϕ̃(z) =
∑∞

0 akz
k, and so we have

ϕ̃(k)(0) = k!ak and ϕ̃e
(k)(0) = k!ak

for all k. To complete the proof, recall that ϕ has order of contact n with the unit

circle, and so a0, a1, ..., an−1 ∈ R and Im an > 0.
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Lemma 5.3.5. The n’th order data for σ ◦ ϕ and ϕ ◦ σ is given by

Dn(σ ◦ ϕ, ζ) = (ζ, 1, 0, ..., 0, c · σ′(λ))

Dn(ϕ ◦ σ, λ) = (λ, 1, 0, ..., 0, c · σ′(λ)n) ,

where c is a non zero constant given by c = ϕ(n)(ζ)− ϕ(n)
e (ζ).

Proof. By Lemma 5.3.2, (σ ◦ ϕ)(n)(ζ) and (σ ◦ ϕe)(n)(ζ) can be written as follows.

(σ ◦ ϕ)(n)(ζ) = σ(n)(λ)ϕ′(ζ)n + F (Dn−1(σ, λ), Dn−1(ϕ, ζ)) + σ′(λ)ϕ(n)(ζ)

(σ ◦ ϕe)(n)(ζ) = σ(n)(λ)ϕ′e(ζ)n + F (Dn−1(σ, λ), Dn−1(ϕe, ζ)) + σ′(λ)ϕ(n)
e (ζ)

Recall that σ ◦ ϕe = id and so (σ ◦ ϕe)(n)(ζ) = 0, and that by Proposition 5.3.4

Dn−1(ϕ, ζ) = Dn−1(ϕe, ζ). Thus subtracting the above equations yields:

(σ ◦ ϕ)(n)(ζ) = σ′(λ) · (ϕ(n)(ζ)− ϕ(n)
e (ζ)).

Similarly, applying Theorem 5.3.1 to (ϕ ◦ σ)(n)(λ) and (ϕe ◦ σ)(n)(λ), we get

(ϕ ◦ σ)(n)(ζ) = ϕ(n)(ζ)σ′(λ)n + F (Dn−1(ϕ, ζ), Dn−1(σ, λ)) + ϕ′(ζ)σ(n)(λ)

(ϕe ◦ σ)(n)(ζ) = ϕ(n)
e (ζ)σ′(λ)n + F (Dn−1(ϕe, ζ), Dn−1(σ, λ)) + ϕ′e(ζ)σ(n)(λ).

Again, since Dn−1(ϕ, ζ) = Dn−1(ϕe, ζ) and (σ ◦ ϕe)(n)(ζ) = 0, subtracting the above

equations yields:

(ϕ ◦ σ)(n)(ζ) = σ′(λ)n · (ϕ(n)(ζ)− ϕ(n)
e (ζ)).

Recall that by Proposition 5.3.4, ϕ
(n)
e (ζ) 6= ϕ(n)(ζ), and so c 6= 0.



64

As additional applications of Faà di Bruno’s Formula, we calculate the order of

contact of σ with ∂D at λ and determine the order of contact of composite maps

under some assumptions.

Proposition 5.3.6. The map σ has order of contact n with ∂D at λ.

Proof. Let ϕ̃(z) =
∑∞

0 akz
k and σ̃(z) =

∑∞
0 bkz

k be the Taylor expansions about 0

of ϕ̃ and σ̃ respectively. We have that a0, ..., an−1 ∈ R and Im an > 0 since ϕ has

order of contact n with D, and it suffices to show that b0 = 0, b1, ..., bn−1 ∈ R and

Im bn > 0 (see Proposition 2.4.2, Proposition 2.4.1).

Recall that ϕ̃e(z) = ϕ̃(z) =
∑∞

0 akz
k by Lemma 5.3.3. Notice that ϕ̃ fixes 0 and

maps W ∩H into H for some neighborhood W of 0, and so a1 > 0 and b1 = σ̃′(0) =

1/ϕ̃e
′(0) = 1/a1 > 0. Using Lemma 5.3.2 for σ̃ ◦ ϕ̃e = id and k > 1, we get

0 = σ̃(k)(0)ϕ̃e
′(0)k + F (Dk−1(σ̃, 0), Dk−1(ϕ̃e, 0)) + σ̃′(0)ϕ̃e

(k)(0).

Thus, by induction on k = 2, ..., n−1, we see that b0, ..., bk are real valued. For k = n,

taking imaginary parts we get

0 = Im(σ̃(n)(0))ϕ̃e
′(0)n + σ̃′(0) Im(ϕ̃e

(n)(0)).

or

Im(bn) = − b1

an1
Im(an) =

b1

an1
Im(an) > 0.
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Proposition 5.3.7. Let ψ1 be analytic at α1 such that for some neighborhood W1 of

α1, ψ1 maps W1 ∩D into D, and let ψ2 be analytic at α2 = ψ1(α1) such that for some

neighborhood W2 of α2, ψ2 maps W2 ∩ D into D.

We define N1 and N2 by

Ni =


c ψi has order of contact c with ∂D at αi

∞ ψi maps an arc of ∂D containing αi into ∂D

Let K be the minimum of M and N . Then if K is finite, ψ2 ◦ψ1 has order of contact

K at α1, and if K is infinite then ψ2 ◦ ψ1 maps an arc of ∂D containing α1 into ∂D.

Proof. The corresponding maps on the upper half-plane are

f = ψ̃2 = τψ2(α2) ◦ ψ2 ◦ τ−1
α2

, g = ψ̃1 = τα2 ◦ ψ1 ◦ τ−1
α1

and

˜(ψ2 ◦ ψ1) = τ(ψ2◦ψ1)(α1) ◦ ψ2 ◦ ψ1 ◦ τ−1
α1

= f ◦ g.

Note that these maps are all analytic in a neighborhood of 0, and let f(z) =
∑j=∞

j=0 cjz
j

and g(z) =
∑j=∞

j=0 djz
j be the Taylor series of f and g there. Note that if N2 is finite

then by Proposition 2.4.2 and Proposition 2.4.1, c1, ..., cN−1 ∈ R and cN ∈ H and if

N2 is infinite then c1, c2, ... ∈ R. The corresponding statement for g holds similarly.

Note that since f and g both map some neighborhood of zero intersected with H into

H, we have that c1, d1 > 0.

If c1, ..., ck, d1, ..., dk ∈ R, then by Theorem 5.3.1 and induction on j = 1, ..., k, we

see that (f ◦ g)′(0), ..., (f ◦ g)(j)(0) are all real valued. Thus, (f ◦ g)′(0), ..., (f ◦ g)(k)(0)
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are real valued in this case.

In the case where K is infinite, we get that all Taylor coefficients of f ◦ g at 0 are

real valued and so f ◦g maps an interval in R containing 0 into R. Thus ψ2 ◦ψ1 maps

an arc of ∂D containing α1 into ∂D.

In the case where K is finite, we get by the argument above that

c1, ..., cK−1, d1, ..., dK−1 ∈ R.

By Lemma 5.3.2 at z = 0 we have

(f ◦ g)(K)(0) = f (K)(0)g′(0)+F (DK−1(f, 0), DK−1(g, 0)) + f ′(0)g(K)(0).

and taking imaginary parts we get

Im(f ◦ g)(K)(0) = g′(0)k Im f (k)(0) + f ′(0) Im g(k)(0).

Since c1, d1 > 0, and Im cK , Im dK ≥ 0 with at least one of them positive by the

definition of K, it follows that Im(f ◦ g)(K)(0) > 0. Thus f ◦ g has order of contact

K with R at 0, and so by Proposition 2.4.2, ψ2 ◦ψ1 has order of contact K at α1.
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Chapter 6

Essential normality

We begin by applying our results from Section 5.2 to characterize essential normality

for the basic case. We then decompose Cϕ into a sum of basic composition operators

and show that essential normality can only occur when this sum consists of a single

term. Lastly, using the parametrization of functions with given order of contact

proved in Chapter 3, we construct essentially normal composition operators which

have arbitrary even order of contact with the unit circle at one point.

Definition 6.1. For ε > 0 we define ψλ,ε to be the Riemann mapping from D onto

{|z − λ| < ε} ∩D, which fixes λ. Note that ψ = ψλ,ε extends continuously to ∂D and

analytically across ∂D in a neighborhood of λ.

6.1 Essential Normality For Basic Composition Op-

erators

Let ϕ be a basic function with contact at ζ which fixes ζ. Let n be the order of contact

of ϕ with ∂D at ζ, and let σ be the unique branch of ϕ−1
e defined on a neighborhood
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of ζ which fixes ζ.

Proposition 6.1.1. There exists ε > 0 such that for ψ = ψζ,ε, the following conditions

are equivalent.

1. Cψ[Cϕ, C
∗
ϕ] is compact

2. Dn(σ ◦ ϕ ◦ ψ, ζ) = Dn(ϕ ◦ σ ◦ ψ, ζ)

3. Dn(σ ◦ ϕ, ζ) = Dn(ϕ ◦ σ, ζ)

4. ϕ′(ζ) = 1

Proof. (1) ⇐⇒ (2): Let W be the neighborhood of ζ guaranteed by Proposi-

tion 5.2.3. Notice that ϕ−1(W ) ∩W is open and contains ζ, and choose ε > 0 such

that {|z − ζ| ≤ ε} ∩ D is contained in ϕ−1(W ) ∩W .

Denote ψ = ψζ,ε and note that both ψ and ϕ ◦ ψ map D into W , are analytic at

ζ and fix ζ. Additionally, both ψ and ϕ extend continuously to D and satisfy

ϕ−1({ζ}) = {ζ}, (ϕ ◦ ψ)−1({ζ}) = {ζ}.

Thus, by Proposition 5.2.3, both of the following equations in the Calkin algebra

hold:

CψC
∗
ϕ ≡

1

|ϕ′(ζ)|
Cσ◦ψ (mod K), Cϕ◦ψC

∗
ϕ ≡

1

|ϕ′(ζ)|
Cσ◦ϕ◦ψ (mod K),
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Therefore, we can express Cψ[Cϕ, C
∗
ϕ] in the Calkin algebra by

Cψ[Cϕ, C
∗
ϕ] ≡ CψCϕC

∗
ϕ − CψC∗ϕCϕ ≡ Cϕ◦ψC

∗
ϕ − CψC∗ϕCϕ

≡ 1

|ϕ′(ζ)|
Cσ◦ϕ◦ψ −

1

|ϕ′(ζ)|
Cσ◦ψCϕ ≡

1

|ϕ′(ζ)|
(Cσ◦ϕ◦ψ − Cϕ◦σ◦ψ) (mod K).

Note that ψ maps an arc of ∂D containing ζ into ∂D, and recall that by Proposi-

tion 5.3.6 σ has order of contact n at ζ. Thus, by Proposition 5.3.7 both σ ◦ ϕ ◦ ψ

and ϕ ◦ σ ◦ ψ have order of contact n at ζ. Note also that σ ◦ ϕ ◦ ψ and ϕ ◦ σ ◦ ψ are

is in the class A with F = {ζ}. Therefore, by Theorem 4.2.1,

Cσ◦ϕ◦ψ − Cϕ◦σ◦ψ ∈ K ⇐⇒ Dn(σ ◦ ϕ ◦ ψ, ζ) = Dn(ϕ ◦ σ ◦ ψ, ζ).

(2) ⇐⇒ (3): Recall that as a consequence of Theorem 5.3.1, if g is analytic at z

and f is analytic at g(z) then Dk(g, z) and Dk(f, g(z)) determine Dk(f ◦ g, z). Since

ψ is invertible in a neighborhood of ζ, we get that

Dn(σ ◦ ϕ ◦ ψ, ζ) = Dn(ϕ ◦ σ ◦ ψ, ζ) ⇐⇒ Dn(σ ◦ ϕ, ζ) = Dn(ϕ ◦ σ, ζ)

(3) ⇐⇒ (4): By Lemma 5.3.5, the n’th order data for σ ◦ϕ and ϕ ◦σ is given by

Dn(σ ◦ ϕ, ζ) = (ζ, 1, 0, ..., 0, c · σ′(ζ))

Dn(ϕ ◦ σ, ζ) = (ζ, 1, 0, ..., 0, c · σ′(ζ)n) ,

where c is a non zero constant. Hence the n’th order data is equal if and only if

σ′(ζ) = σ′(ζ)n. Recall that σ′(ζ) =
1

ϕ′e(ζ)
=

1

ϕ′(ζ)
, and that ϕ′(ζ) > 0 since ϕ fixes

ζ. Thus σ′(ζ) = σ′(ζ)n if and only if ϕ′(ζ) = 1.
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If Cψ were bounded below, compactness of CψA would imply compactness of A

for any operator A. We prove a somewhat weaker result using a technique from [10,

section 4]. We denote the characteristic function on ∂D for the arc Γδ = {|z − ζ| <

δ} ∩ ∂D by χδ.

Lemma 6.1.2. Let ε > 0 and ψ = ψζ,ε. Then for any χ = χδ with 0 < δ < ε, and

any operator A we have

CψA is compact =⇒ TχA is compact.

Proof. Suppose that CψA is compact. It suffices to show that the H2 to L2 operator

MχA is compact. Let t1, t2 be such that eit parametrizes the curve Γδ for t1 ≤ t ≤ t2,

and let α1, α2 be such that ψ(eit) parametrizes the curve Γδ for α1 ≤ t ≤ α2. Then

‖Mχf‖L2 =

∫ t2

t1

|f(eiθ)|2 dθ
2π

=

∫
Γδ

|f(eiθ)|2

2πiz
dz =

∫ α2

α1

|f(ψ(eit))|2|ψ′(eit)| dt
2π

≤M

∫ α2

α1

|f(ψ(eit))|2 dt
2π
≤M‖Cψf‖2

L2 ,

where M = max{ψ′(eit) : α1 ≤ t ≤ α2} is finite since ψ can be analytically extended

to a neighborhood of Γ.

Note that CψA is compact from H2 to H2 and so it is compact from H2 to L2,

and that for all f ∈ H2 we have that ‖MχAf‖L2 ≤
√
M‖CψAf‖L2 . Thus MχA is

compact from H2 to L2.

Theorem 6.1.3. Suppose ϕ is a basic function with contact at ζ which fixes ζ. Then

Cϕ is essentially normal if and only if ϕ′(ζ) = 1.
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Proof. By Proposition 6.1.1, there exists ε > 0 such that for ψ = ψζ,ε, we have

Cψ[Cϕ, C
∗
ϕ] is compact if and only if ϕ′(ζ) = 1. Thus, it suffices to show that com-

pactness of Cψ[Cϕ, C
∗
ϕ] implies compactness of [Cϕ, C

∗
ϕ].

Suppose that Cψ[Cϕ, C
∗
ϕ] is compact. Then by Lemma 6.1.2 with δ = ε/2 and

χ = χδ, we get that Tχ[Cϕ, C
∗
ϕ] is compact. Now since ϕ ∈ A with F = {ζ} and χ is

continuously differentiable at ζ, by Corollary 4.3.2 and Proposition 4.3.5,

TχCϕ ≡ χ(ζ)Cϕ ≡ Cϕ (mod K) and TχC
∗
ϕ ≡ χ(ϕ(ζ))C∗ϕ ≡ C∗ϕ (mod K).

Therefore,

Tχ[Cϕ, C
∗
ϕ] ≡ TχCϕC

∗
ϕ − TχC∗ϕCϕ ≡ [Cϕ, C

∗
ϕ] (mod K),

and so [Cϕ, C
∗
ϕ] is compact as well.

6.2 General Essential Normality

In this section we will identify the essentially normal composition operators induced

by a general function in the class A. We let ϕ be in A and denote F (ϕ) = {ζ1, ..., ζr}

and the order of contact of ϕ with ∂D at ζj by nj. Then by Theorem 4.2.5, there

exists a decomposition,

Cϕ ≡ Cϕ1 + ...+ Cϕr (mod K).

where ϕj is a basic function which has contact at ζj and satisfies

Dnj(ϕj, ζj) = Dnj(ϕ, ζj).
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For each j, we denote λj := ϕ(ζj), and let σj be the unique branch of (ϕj)
−1
e defined

in some neighborhood of λj which maps λj to ζj.

Lemma 6.2.1. Let ϕ1 and ϕ2 be basic functions with contact at ζ1 and ζ2 respectively,

and denote λ1 = ϕ1(ζ1) and λ2 = ϕ2(ζ2). Then the following holds:

1. If ζ1 6= ζ2 then C∗ϕ1
Cϕ2 ≡ 0 (mod K)

2. If λ1 6= λ2 then Cϕ2C
∗
ϕ1
≡ 0 (mod K)

Proof. For the first part, suppose that ζ1 6= ζ2 and let b be defined by b(z) = z−ζ1
ζ2−ζ1 ,

so that b is continuous at ζ1 and ζ2 and satisfies b(ζ1) = 0 and b(ζ2) = 1. Then by

Corollary 4.3.2,

TbCϕ2 ≡ b(ζ2)Cϕ2 ≡ Cϕ2 (mod K), and TbCϕ1 ≡ b(ζ1)Cϕ1 ≡ 0 (mod K),

and combining these two equations, we get

C∗ϕ1
Cϕ2 ≡ C∗ϕ1

(TbCϕ2) ≡ C∗ϕ1
T ∗
b
Cϕ2 ≡ (TbCϕ1)

∗Cϕ2 ≡ 0 (mod K).

For the second part, suppose λ1 6= λ2 and let c be defined by c(z) = z−λ2
λ1−λ2 , so that

c is continuously differentiable in neighborhoods of λ1 and λ2 and satisfies c(λ1) = 1

and c(λ2) = 0. Then by Proposition 4.3.5,

TcC
∗
ϕ1
≡ c(λ1)C∗ϕ1

≡ C∗ϕ1
(mod K), and TcC

∗
ϕ2
≡ c(λ2)C∗ϕ2

≡ 0 (mod K),

and combining these two equations, we get

Cϕ2C
∗
ϕ1
≡ Cϕ2(TcC

∗
ϕ1

) ≡ (C∗ϕ2
)∗(Tc)

∗C∗ϕ1
≡ (TcC

∗
ϕ2

)∗C∗ϕ1
≡ 0 (mod K).
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Proposition 6.2.2. Let ϕ in A be such that Cϕ is essentially normal. Let ζ1, ..., ζr,

n1, ..., nr, λ1, ..., λr, ϕ1, ..., ϕr and σ1, ..., σr be as described above. Then for any i

in {1, ..., r} there exists a unique j such that ϕ(ζj) = ζi. Furthermore, for this j,

nj = ni = n and

Dn(σi ◦ ϕi, ζi) = Dn(ϕj ◦ σj, λj).

Proof. By relabeling the functions, it suffices to show this for i = 1. By Lemma 6.2.1,

we see that

[Cϕ, C
∗
ϕ] ≡ [Cϕ1 + ...+ Cϕr , C

∗
ϕ1

+ ...+ C∗ϕr ]

≡
r∑

j,k=1

CϕkC
∗
ϕj
−

r∑
j,k=1

C∗ϕjCϕk ≡
∑

j,k=1,...,r
λk=λj

CϕkC
∗
ϕj
−

r∑
j=1

C∗ϕjCϕj (mod K).

Now let b be a polynomial such that b(ζ1) = 1 and b is 0 at all the points in

{ζ2, ...ζr, λ1, ...., λr} \ {ζ1}. Then b is continuously differentiable everywhere and so

by Corollary 4.3.2 and Proposition 4.3.5,

MbCϕ1 ≡ Cϕ1 (mod K), MbCϕi ≡ 0 (mod K) for i 6= 1,

MbC
∗
ϕi
≡ C∗ϕi (mod K) if λi = ζ1, MbC

∗
ϕi
≡ 0 (mod K) if λi 6= ζ1.

Therefore, we have

Mb[Cϕ, C
∗
ϕ] ≡

∑
j,k=1...r
λj=λk

MbCϕkC
∗
ϕj
−

r∑
j=1

MbC
∗
ϕj
Cϕj

≡
∑
j=1...r
λj=λ1

Cϕ1C
∗
ϕj
−
∑
j=1...r
λj=ζ1

C∗ϕjCϕj (mod K)
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By Proposition 5.2.3, for each ϕj there exists a neighborhood Wj of λj such that

CψC
∗
ϕj
≡ 1

|ϕ′j(ζj)|
Cσj◦ψ (mod K),

for any self-map ψ of D that is analytic at λj, satisfies ψ−1({λj}) = {λj} and maps

D into Wj.

Notice that if λj = ζ1 then Wj is a neighborhood of ζ1 and if λj = λ1 then λ1 ∈ Wj

and so that ϕ−1
1 (Wj) is a neighborhood of ζ1. We can therefore define a neighborhood

W of ζ1 by

W =

 ⋂
λj=λ1

ϕ−1
1 (Wj)

 ∩
 ⋂
λj=ζ1

Wj

 .

Now let ε > 0 be such that W0 := {|z − ζ1| ≤ ε} ∩ D is contained in W , and choose

ψ = ψζ1,ε.

Now for j such that λj = λ1, we see that ϕ1 ◦ψ maps D into ϕ1(W ) ⊂ Wj and so

by Proposition 5.2.3,

CψCϕ1C
∗
ϕj
≡ Cϕ1◦ψC

∗
ϕj
≡ 1

|ϕ′j(ζj)|
Cσj◦ϕ1◦ψ (mod K).

Similarly, for j such that λj = ζ1, we see that ψ maps D into V ⊂ Wj so by Proposi-

tion 5.2.3,

CψC
∗
ϕj
Cϕj ≡

1

|ϕ′j(ζj)|
Cσj◦ψCϕj ≡

1

|ϕ′j(ζj)|
Cϕj◦σj◦ψ (mod K).

By our assumption that Cϕ is essentially normal, the operator CψMb[Cϕ, C
∗
ϕ] is com-

pact. We can now express this operator as a linear combination of composition
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operators by

0 ≡ CψMb[Cϕ, C
∗
ϕ] ≡

∑
j=1...r
λj=λ1

CψCϕ1C
∗
ϕj
−
∑
j=1...r
λj=ζ1

CψC
∗
ϕj
Cϕj (6.2.1)

≡
∑
λk=λ1

1

|ϕ′(ζk)|
Cσk◦ϕ1◦ψ −

∑
λj=ζ1

1

|ϕ′(ζj)|
Cϕj◦σj◦ψ (mod K)

(6.2.2)

In order to draw some conclusions from Theorem 4.2.1, we discuss some properties

of the inducing maps above. First note that ψ maps an arc of ∂D containing ζ1 to an

arc of ∂D, and recall that by Proposition 5.3.6 σj has order of contact nj at λj = λ1.

Thus, by Proposition 5.3.7, σj ◦ϕ1 ◦ψ has order of contact min(n1, nj) at ζ1. We also

note that σj ◦ ϕ1 ◦ ψ is in the class A with F (σj ◦ ϕ1 ◦ ψ) = {ζ1} and maps ζ1 to ζj

(indeed ζ1
ψ7−−→ ζ1

ϕ17−−→ λ1 = λj
σj7−−→ ζj). Similarly, by Proposition 5.3.7, ϕj ◦ σj ◦ ψ

has order of contact nj at ζ1, and ϕj ◦σj ◦ψ is in the class A with F (ϕj ◦σj ◦ψ) = {ζ1}

and fixes ζ1 (indeed ζ1
ψ7−−→ ζ1 = λj

σj7−−→ ζj
ϕj7−−→ λj = ζ1).

Thus, all the inducing maps above are in A with F = {ζ1}, and each inducing

map in the first sum maps ζ1 to ζj, while all inducing maps in the second sum fix ζ1.

Since the ζj’s are distinct, any term in the first sum originating from j 6= 1 would

prevent compactness by Theorem 4.2.1. Thus for all j 6= 1 we must have that λj 6= λ1

and so Eq. (6.2.1) becomes

0 ≡ 1

|ϕ′(ζ1)|
Cσ1◦ϕ1◦ψ −

∑
λj=ζ1

1

|ϕ′(ζj)|
Cϕj◦σj◦ψ (mod K).

Note that by symmetry λ1, ..., λr are distinct, and so there is at most one j such that

λj = ζ1. Thus, the second sum contains at most one term. Again by Theorem 4.2.1,
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the second sum cannot be empty, so there is a unique j such that λj = ζ1. Further-

more, for this j, |ϕ′(ζ1)| = |ϕ′(ζj)| and σ1 ◦ ϕ1 ◦ ψ and ϕj ◦ σj ◦ ψ have equal order of

contact, n = n1 = nj, at ζ1 and

Dn(σ1 ◦ ϕ1 ◦ ψ, ζ1) = Dn(ϕj ◦ σj ◦ ψ, ζ1).

Recall that as a consequence of Theorem 5.3.1, if g is analytic at z and f is analytic

at g(z) then Dk(g, z) and Dk(f, g(z)) determine Dk(f ◦ g, z). Since ψ is invertible in

a neighborhood of ζ, we get that

Dn(σ1 ◦ ϕ1, ζ1) = Dn(ϕj ◦ σj, ζ1).

Lemma 6.2.3. Let ϕ be in A be such that Cϕ is essentially normal and suppose that

ϕ fixes ζ ∈ F (ϕ). Then ζ is the unique Denjoy-Wolff point of ϕ.

Proof. We label the points of F (ϕ) so that ζ1 = ζ and let ϕ1 and σ1 be as described

above. Then by Proposition 6.2.2,

Dn(σ1 ◦ ϕ1, ζ1) = Dn(ϕ1 ◦ σ1, ζ1).

In particular, the nth derivatives are equal and so by Lemma 5.3.5,

c · σ′1(ζ1) = c · σ′1(ζ1)n,

where c 6= 0. Using the fact that σ′1(ζ1) = 1/ϕ′1(ζ1) > 0, we get that

ϕ′(ζ1) = ϕ′1(ζ1) = 1

and so, by Theorem 2.3.6, ζ1 is the unique Denjoy-Wolff point of ϕ.
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Theorem 6.2.4. Let ϕ be in A with F (ϕ) = {ζ1, ..., ζr}. Then Cϕ is essentially

normal if and only if r = 1, ϕ fixes ζ1 and ϕ′(ζ1) = 1.

Proof. If r = 1, ϕ fixes ζ1 and ϕ′(ζ1) = 1 then [Cϕ, C
∗
ϕ] ≡ [Cϕ1 , C

∗
ϕ1

] is compact by

Theorem 6.1.3.

For the other direction, we suppose that Cϕ is essentially normal. In order to

obtain a contradiction, suppose that r > 1. By Lemma 6.2.3, F (ϕ) contains at most

one fixed point, so there exists some index i such that ζi ∈ F (ϕ) is not fixed.

Recall that by Proposition 6.2.2, for each i ∈ {1, ..., r} there is a unique j such

that ϕ(ζj) = ζi. Let i1 = i and let i2 be the unique index for i1 as above. Continue to

define il+1 as the unique index for il as above until a cycle is closed, i1 → ...→ ik → i1.

Let ϕ(k) = ϕ ◦ ... ◦ ϕ and note that the operator Cϕ(k)
= Ck

ϕ is essentially normal

since Cϕ and C∗ϕ commute modulo K. We get that ϕ(k) ∈ A induces an essentially

normal composition operator and fixes k > 1 distinct points, ζi1 , ..., ζik , in F (ϕ(k)).

This is a contradiction by Lemma 6.2.3, and so we must have that r = 1. By

Theorem 6.1.3 we get that ϕ fixes ζ1 and ϕ′(ζ1) = 1.

Corollary 6.2.5. Let ϕ be a self-map of D which extends analytically to a neighbor-

hood of D and that is not a finite Blaschke product. Then Cϕ is non-trivially essen-

tially normal if and only if there exists ζ ∈ ∂D such that ϕ fixes ζ and ϕ′(ζ) = 1, and

ϕ maps ∂D \ {ζ} into D.

Proof. By Proposition 4.1.1, ϕ ∈ A. If F (ϕ) is empty then ‖ϕ‖∞ < 1 and so Cϕ ∈ K

is trivially essentially normal. Otherwise, the claim follows from Theorem 6.2.4.
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6.3 Construction of Essentially Normal Composi-

tion Operators

We combine the criterion for essential normality given in Theorem 6.2.4 with several

results from Chapter 3 to construct essentially normal composition operators which

have arbitrary even order of contact with ∂D at a point ζ.

Proposition 6.3.1. Let ζ ∈ ∂D, n = 2m and

s1, ..., sm−1 ∈ R, t1, ..., tm−1 > 0, w ∈ H.

Let ϕ be defined by ϕ = τ−1
ζ ◦ f ◦ τζ where

f(z) = L[A(0, 1)(z)A(s1, t1)(z) · · · A(sm−1, tm−1)(z)]w,

and

A(s, t)(z) =

stz −s− tz
tz −1

 .
Then ϕ is a degree m rational function with order of contact n at ζ which induces an

essentially normal composition operator.

Proof. By Proposition 3.3.3, f has order of contact n with R at z = 0, and so ϕ has

order of contact n with ∂D at ζ. Note that f is obtained by taking m augmentations

of the constant function g(z) ≡ w. By Proposition 3.4.1 and Proposition 3.4.2, f is a

rational function of degree m mapping R̂ \ {0} into H. Since the last augmentation

performed to obtain f has parameters a0 = 0, a1 = 1, f satisfies f(0) = 0, f ′(0) = 1.
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Note that τζ preserves the degree of a rational function, and so ϕ = τ−1
ζ ◦ f ◦ τζ is

a degree m rational function. Additionally, the properties of f ensure that ϕ is in A

with F (ϕ) = {ζ} and ϕ fixes ζ and satisfies ϕ′(ζ) = 1. Thus, by Theorem 6.2.4, the

operator Cϕ is essentially normal.

For order of contact n = 4 we define f(s, t, w) and ϕ(ζ, s, t, w) for any s ∈ R,

t > 0 and w ∈ H and ζ ∈ ∂D by

f(s, t, w)(z) = L[A(0, 1)(z)A(s, t)(z)]w

= L


0 −z

z −1


sz −s− tz
tz −1


w =

−tz2w + z

(stz2 − tz)w − sz − tz2 + 1
,

and

ϕ(ζ, s, t, w) = τ−1
ζ ◦ f(s, t, w) ◦ τζ .

Then ϕ(ζ, s, t, w) has order of contact 4 with ∂D at ζ and induces an essentially

normal composition operator.

We examine the order of contact 2 case for motivation. It is known that for a

linear fractional ϕ the operator Cϕ is non-trivially essentially normal if and only if ϕ

is a parabolic non-automorphisms [6]. In this case, ϕ corresponds to a translation in

the right half-plane.

We transfer the contact 2 version of the formula above to the right half-plane

using the conformal mapping T (z) = i
z

which maps H to the right half-plane and 0
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to ∞. For any w ∈ H and ζ ∈ ∂D the self-map of H

fw(z) = L[A(0, 1)(z)]w = L

0 −z

z −1

w =
−z

wz − 1
=

1
1

z
− w

corresponds to the self map of the right half-plane

(T ◦ fw ◦ T )(z) =
i

fw (i/z)
= i(

z

i
− w) = z − iw.

Applying this same procedure to our order of contact 4 functions

f(s, t, w)(z) =
−tz2w + z

(stz2 − tz)w − sz − tz2 + 1

=
(1− tzw)z

(wtz − 1)sz + (1− twz)− tz2

=
1

−s+
1

z
− tz

1− twz

=
1

−s+
1

z
+

1

w − 1
tz

,

we calculate

(T ◦ f(s, t, w) ◦ T )(z) =
i

f(s, t, w) (i/z)
= i(−s+

z

i
+

1

w − z
it

)

= z − is+
1

1
t
z − iw

.

In Fig. 6.1, we sketch the image of ∂D under ϕ = ϕ(1, s, t, w) for various parame-

ters.
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Figure 6.1: Examples of inducing maps of essentially normal composition operators

(a) ϕ(1, 0, 1, i) =
z2 + 2z + 1

z2 − 2z + 5
(b) ϕ(1, 1, 1, i) =

z2 + 2(1 + i)z + 1− 2i

z2 − 2(1− i)z + 5− 2i

(c) ϕ(1, 0, 1/2, i) =
z + 1

z2 − 3z + 4
(d) ϕ(1, 0, 2, i) =

z2 + 7

3z2 + 4z + 1

(e) ϕ(1, 0, 1, 2i) =
−z2 + 4z + 1

z2 − 4z + 7
(f) ϕ(1, 0, 1, i/2 + 1) = (−2+2i)z2+(2+i)z+i

iz2−(4+2i)z+2+4i
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