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Abstract

Complex hardware/software systems are ubiquitous, affecting every aspect of daily life. Software

is integral to the normal functioning of critical systems such as power plants, financial systems,

communication systems, modern medical systems and devices, and transportation systems to name a

few. Because of society’s increasing reliance on these systems, it is of paramount importance that

software perform as intended, and not be subverted for malicious purposes. Consequently, techniques

that thwart reverse engineering and tamper, (called tamper-resistance techniques), have become

increasingly important as a means to hinder malicious exploitation of software in critical systems.

Given the growing importance of preventing tampering with critical systems, research in this

area has grown. Recently, software virtualization has been proposed as a suitable mechanism to

impart tamper resistance to software applications. However, protections based on virtualization

have not fully matured, which has led to successful attacks. This dissertation is the culmination of

a detailed study examining the application of low-overhead process-level virtualization to protect

software applications from reverse engineering and tamper.

This research is structured as follows: First, a formal model describing virtualization is presented.

The model is useful in describing general-purpose computing systems and the applicability of

virtualization in protecting applications. Then we explored several novel tamper-resistance techniques

that are based on process-level virtualization. Each technique was thoroughly evaluated in terms of

performance overhead and protection. During the course of our investigation, a serious vulnerability in

current process-level virtual machines was discovered. We modeled this vulnerability using our formal

model and describe two attack implementations that successfully exploit this vulnerability. Finally,
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Abstract iii

we conceptualize a revolutionary protection technique to compose an application with multiple virtual

machines, providing robust program protection. The ideas presented in this dissertation are evaluated

using current state-of-the-art attacks to gauge its effectiveness. The results of our investigation reveal

that composable virtual machines are significantly more effective in thwarting reverse engineering

and software tamper than current protection techniques.
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Chapter 1

Introduction

In the context of computer security, the term tamper resistance refers to the techniques that obstruct

modification of software binaries. Seminal work in the area of tamper resistance was done by David

Aucsmith [1], and much of the current research in this area has been influenced by his work. Techniques

in tamper resistance fall into two broad areas: tamper detection, which includes mechanisms that

uncover any unauthorized modification of the application [2, 3, 4, 5, 6], and obfuscation, consisting of

techniques which make a program harder to understand, thereby increasing the difficulty of reverse

engineering the application [7, 8, 9, 10, 11, 12]. The research presented in this dissertation investigates

the use of process-level virtual machines (PVMs) in both areas of software tamper resistance—tamper

detection and code obfuscation. To evaluate the strength of these techniques, we developed several

metrics that measure the effectiveness of tamper resistance in appropriate contexts. In the course of

evaluating existing tamper resistance techniques and developing metrics to measure the strength of

tamper resistance techniques, a serious flaw in current PVM-based protections was discovered. To

address this flaw, a revolutionary new composition methodology for the creation of tamper resistant

software was developed that provides a robust tamper-resistant execution environment.

1
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1.1 Motivation

Today, computer and software usage has become ubiquitous. This proliferation of software systems

has primarily been fueled by the availability of inexpensive hardware and development of advanced

toolsets which enable programmers to create complex and efficient software applications using high-

level languages. Software’s malleability has enabled vendors to continuously provide new features and

repair erroneous program operation, all without expensive hardware updates. Such utility, and ease

of design and flexibility have enabled the use of software applications to provide critical functionality

in a wide range of systems. To give a few examples, doctors use applications on embedded devices to

diagnose and treat patients, and store patient related information on standard computing systems.

Transportation systems (e.g., air traffic control systems, highway traffic systems, railway switching

systems, etc.) rely on the correct operation of software applications to ensure smooth and consistent

functioning. Financial institutions use software to process important financial information about

their clients.

Because software provides essential and critical functions in these systems, the software has become

the target of malicious entities that aim to subvert the functionality of these systems for personal

gain. Such entities have been aided in their goals by the availability of tools to reverse engineer

application packages and obtain a higher level of comprehension (also known as decompilation).

Reverse engineering tools, such as IDA-Pro [13], OllyDbg [14], and LordPE [15], have made it easier

to obtain a representation at a higher level of abstraction and provide increasing opportunities for

modification and unauthorized use. An adversary with access to such state-of-the-art technology and

tools can modify the binary file (i.e., the software file that contains the instructions and data of the

application), and use it to their own advantage.

Even with a superficial understanding of the software, an adversary can change the operation

of a program and exploit functionalities which they are not entitled to use or cause damage to the

underlying system (e.g., disrupting the network by tampering with the routing software, accessing

privileged information). Any unauthorized modification to critical software systems could lead to

extensive disruption of services and losses in terms of life and property. The Business Software
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Alliance estimated that worldwide losses due to information theft totaled $63.4 billion in 2011 alone,

up from $59 billion in the previous year [16].

In addition, code tampering is commonly used by malware to exploit software systems. Worms

and viruses are increasingly being programmed to first disable any protective software and then infect

the system(called retroviruses) [17]. One example is the Beast Trojan, which infects different variants

of Microsoft’s Windows operating system, from Windows 98 to Windows XP [18]. It operates by

modifying explorer.exe to incorporate and execute its payload. The payload then proceeds to disable

any anti-virus and/or Firewall applications executing in the system and allowing the attacker to

essentially obtain complete control over the host machine.

Because of the potential consequences of the such attacks along with the growing ease that

they can be carried out, it has become vital to develop protection mechanisms that hamper reverse

engineering and tampering of software, either on disk or while the program is running.

1.2 Problem Description

This research addresses the problem of malicious analysis and modification of software applications

The prototype designed to implement our research ideas, uses application object files as input.

Operating on object files enables the process of compilation and administration of protections to be

kept separate which helps maintain modularity and reduces the impact on the software development

processes.

Unauthorized analysis of software is a widespread problem. To illustrate the capabilities of

modern adversaries, we discuss two attacks on software systems that have been described in the

literature.

The first case involved researchers performing penetration testing, which is a method to evaluate

software protections by simulating an attack scenario. Biondi et al. performed their study on the

protections of the popular Voice-over-IP tool, Skype, and published its closed-source algorithm [19].

Figure 1.1 illustrates the protection mechanisms of Skype. The on-disk binary is protected via a

combination of encryption (to prevent static analysis), and checksums over address ranges (to protect
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Figure 1.1: Run-time working of Skype. The binary uses static encryption, self-modifying code and
checksums to protect itself.

against tampering). Skype uses run-time code generation, therefore the on-disk binary file does not

contain the complete code.

On start up, Skype deletes some redundant code sections (Figure 1a). Then it decrypts the entire

code base (Figure 1b), leaving the application fully exposed in memory. Finally, it generates the

remaining code (Figure 1c).

Biondi, et al. were able to run Skype under a debugger and study these techniques using analysis

tools. They located the checksumming code and disabled it by running two instances of the program,

I and I’, in parallel. The checksums were obtained incrementally in version I. This value was then

used to bypass the actual checking of the corresponding checksumming code in version I’. Because

the program always executed from the same location, the attackers were able to mutually relate, and

disable checks in the two versions.
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The primary reason behind the failure of Skype’s protections was the mutual dissonance of the

techniques. The designers of Skype applied several schemes, each of which, by itself, is relatively

strong and impervious to trivial attack. However, they do not reinforce each other. Consequently,

Biondi and his colleagues were able to systematically remove the protections and extract useful

information.

The attack on Skype’s protections was achieved primarily by the use of debugging and analysis

tools. Software can also be attacked by subverting hardware or software, and returning incorrect

information. This approach was illustrated in a well publicized attack by Oorschot et al. [20], called

the split-memory attack.

The split memory attack methodology targets protection mechanisms used on machines with the

von Neumann memory architecture. The Von Neumann model specifies one type of memory in the

system, which is shared by both data and code. Modern hardware processors, on the other hand,

follow the Harvard memory model, which specifies separate structures for data and code. In most

cases, this dichotomy on physical Harvard processors is managed by the operating system, which

presents a von Neumann view to the application.

Based on the von Neumann architecture, Chang and Atallah proposed checksumming of code, to

provide integrity. During software creation, the content of application code regions are hashed and

the value is stored. At run time, small sequences of code (called guards) rerun the hash over the

same regions and ensure the hash value is identical. A mismatch triggers a tamper response.

The functionality of guards depends on presence of the von Neumann memory model, since during

the hashing process, the code is treated as input data to the hash operation. The split memory

attack involves modifying the OS such that the inherent Harvard model is no longer hidden. Thus,

the code that is checked by guards is not the same as the code that is executing. Any changes made

to the executing code will no longer be detected.

Figure 1.2 illustrates this attack methodology in more detail. The adversary initially creates a

tampered version (A′) of the original protected program (A). The malicious OS maps instruction

accesses to A′, while data accesses are directed to unmodified pages from A in the data cache.
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 A’

A

Figure 1.2: Split memory attack on guard systems, as devised by Wurster et al. The Translation
Lookaside Buffer (TLB) is a structure that is used to store virtual to physical address mappings.
Instruction fetches are directed by the OS to physical addresses containing pages from the modified
program A′ whereas data reads go to the original version A.

Consequently when the application validates the application code through data reads (such as when

guards read their input), it accesses A, while the actual instructions that would execute on native

hardware are fetched from A′. This technique also allows an adversary to quickly identify loads from

the text segment and potentially locate and remove checksumming code.

To summarize, adversaries subject software applications to various analyses in their attempts to

reverse engineer, and modify, them. The next section describes the capabilities and limitations, if

any, of the adversary.
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1.3 Threat Model

Prior to examining any security solution, it is necessary to understand the environment in which

the protected software executes. Additionally, it is also necessary to recognize the set of attack

capabilities of the adversary. Any protective technique can only be truly evaluated when it is tested

in the appropriate environment, and against correct set of capabilities. Consequently, every security

technique has an associated threat model, which describes its operational environment.

The threat model associated with this research is as follows: During software creation, the

computing environment is completely trusted. This environment includes various tools (e.g., the

compiler, linker, assembler etc.) as well as, the software developer. The software is created, verified,

tested, and then protected using various security transformations. The research in this dissertation

targets general-purpose software applications that run on standard commercial hardware, without

the use of any special hardware.

Once deployed, the software is susceptible to attack. An adversary can use various tools such as

debuggers, simulators, and emulators to run, modify, and observe the program in a number of ways.

Even the operating system can be modified to return inaccurate information [20]. Consequently,

we consider all software on the machine as potentially malicious, and the entire application created

at the trusted development site (including any virtual machines distributed with said software) as

potentially vulnerable to attack.

Furthermore, even hardware devices in the entire system cannot be trusted, as the application

may be running within a simulator or emulator which can arbitrarily return forged results to the

application. In essence, this is a white-box attack on the application [21]. The adversary can inspect,

modify, or forge any information in the system.

Given enough time and resources, the adversary can always succeed in manually inspecting and

making modifications to the program [22]. However, human adversaries have difficulty directly solving

problems involving large data sets. As such, they rely on algorithmic solutions in an attempt to

disable security features in software. Typically, adversaries use automated tools to perform various

analyzes on application packages, including determining instruction locations, disassembling the
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program, and capturing the control-flow or call graphs, to name a few. The goal of this research is to

make such tasks harder to accomplish.

1.4 Limitations of Current Approaches

Current tamper-resistance techniques suffer from a variety of drawbacks.

• Most techniques have targeted making the application hard to analyze statically [23, 24, 10, 25].

For example, an opaque predicate is a binary expression (usually true or false) that is hard to

analyze statically, but several runs in a simulator can provide the adversary with information

required to defeat the protections. Static encryption techniques have been used to prevent

static disassembly of applications [12]. Unfortunately, once loaded into memory, decryption

occurs at a coarse level of granularity. As we discussed in Section 1.2, such a scheme left

Skype vulnerable to dynamic analysis [19]. A major goal of this research is to reduce plaintext

information at run time.

• The use of additional hardware is required by some of the solutions [26, 27, 28, 29]. Unfortunately

extra hardware adds an additional cost that will be borne by the end user, and it restricts the

software to a particular set of platforms. Consequently, adoption of such techniques has been

slow, and only used where expense is not a restriction.

• A number of software protection schemes have impractical or unreasonable resource con-

straints [30, 31, 32]. The Proteus system involves overheads between 50X-3500X which is too

high for most applications [11]. Remote tamper-proofing techniques, in which code running on

a server is used to validate client-side code, is commonly used to verify and validate software

running on networked embedded devices [6, 5]. However, such solutions are incompatible with

most heterogeneous, networked environments [33] due to their differing network latencies. A

realistic solution must have tolerable overheads, otherwise developers will be unwilling to deploy

such measures on a large scale.
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• Finally, a number of schemes have been proposed recently, which attempt to improve the

run-time protection of applications, primarily using virtualization [11, 34]. A major contribution

of this research is presentation of strong evidence through demonstration that such schemes

are not fully mature, and are susceptible to attacks. Chapter 8 discusses these attacks.

Given these limitations, there is an urgent need for new techniques that protect software. This

research presents a detailed exploration of the applicability of process-level virtualization to software

tamper resistance. The next section gives a brief introduction to process-level virtualization.

1.5 Software Virtualization

Software Virtualization is a versatile technique that involves the addition of a layer of software

between an application (often called the guest) and the underlying platform (often called the host).

This addition is done to enhance different properties of the application (e.g., security or flexibility).

This layer of software, called the virtual machine, encapsulates a single process (a process-level virtual

machine (PVM), or an entire operating system (a system-level virtual machine)). This research

focuses exclusively on utilizing PVMs for program protection.

Figure 1.3 illustrates two applications running on a computing system (the host). Application

App2 is a process that runs natively on the system. App1 runs via a PVM. On startup of App1, the

PVM assumes control and starts emulating the instructions of App1 on the host. In Chapter 2, we

provide a detailed explanation of PVM functionality, and the feasibility of its use in the field of

program protections.

The next section states the main thesis of this research.

1.6 Thesis

Set in the context described in Section 1.4, it can be recognized that new techniques are required

to thwart an adversary’s goals of subverting critical software and exploiting them for their own
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Figure 1.3: A high-level illustration of process-level virtualization

malicious goals. This research investigates the aptness of process-level virtualization for software

tamper resistance.

The thesis of this dissertation is that composing applications with process-level

virtual machines can effectively hamper reverse engineering and tamper attacks on

software.

In the context of this research, composing an application is defined as creating a PVM-protected

application in a holistic manner. Previous attempts in virtualization-based software protections have

approached the design of the application and the PVM in isolation. This research demonstrates

that designing the applications and the PVM in close harmony leads to a more robust execution

enviroment. The protection mechanisms reinforce each other, instead of acting in and of themselves.

1.7 Research Overview

Now that the major premise behind this research has been established, we present a high-level

overview of this research. Initially, we developed an equational model to describe composable virtual
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Figure 1.4: High-level overview of the protection process. During application creation, the application
is co-located with a protective PVM. At run time, the PVM takes control of execution and runs the
application in a protective environment.

machines. Consequently, we investigated techniques to improve the resistance of on-disk binaries to

static disassembly. Finally, we proposed and evaluated mechanisms to boost the run-time protection

of virtualized applications.

Figure 1.4 illustrates the creation and application of protection techniques using the proposed

approach. During software creation the application is combined with a protective PVM. Then, the

consolidated package is protected using static techniques. The contributions of this research in

thwarting static analysis are described in Chapter 4.

At run time, the PVM gains controls and proceeds to create a protective execution environment.

The execution pattern of the PVM is intertwined closely with that of the application. Throughout

the execution process, several protection techniques are applied that mutually reinforce each other
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and thwart dynamic attacks. Composing applications with PVMs also reduces the leakage of useful

information at run time. Thus, this technique provides a robust environment for thwarting tamper

attacks during application execution.

It has been proven that providing perfect protection is not possible [22]. Most protection

techniques operate by increasing the effort required to obtain critical information. The goals is to

have an adversary expend substantial resources (e.g., monetary resources, compute cycles, memory,

etc.), such that it would be substantially easier or cheaper to obtain the software through legitimate

means, or that by the time the adversary is near achieving their goal, the software is changed thereby

rendering their analysis useless. Measuring this effort provides a useful insight into the robustness of

these techniques, and consequently, forms a major part of our evaluations.

In the next section, we summarize the major contributions of this research.

1.8 Contributions

The contributions of this dissertation are the direct consequence of exploring and evaluating the thesis

statement in Section 1.6. These contributions can be better understood in terms of a traditional

engineering framework, illustrated in Figure 1.5. In the figure, the boxes in light gray represent the

different stages of a traditional engineering process. The first stage consists of formally analyzing the

problem (in this case, software tamper and reverse engineering). The second stage typically involves

devising solutions that address the problems identified in the previous stage. The next stage consists

of prototyping the new solution schemes. This stage is followed by evaluation of the techniques, so

assess their effectiveness. Often, investigation of new solutions leads to discovery of new issues. As

such, engineering new solutions is often an iterative process (illustrated in the figure by the loopback

from stage 5 to stage 1).

The boxes colored blue in Figure 1.5 consist the contributions of this dissertation. These

contributions are listed below:

• We developed an equational model that describes applications executing via virtualization. A

high-level model enables software developers to better understand the system and propose
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Figure 1.5: High-level overview of the the different contributions of this dissertation. The boxes in
gray represent the various stages of a traditional engineering process. The boxes in blue represent
the various contributions of this dissertation.

measures aimed at improving its protection. We use this model to expose a serious flaw in

current virtualization systems. The model is also used to interpret various tamper-resistance

techniques.

• We developed and experimentally evaluated several tamper-resistance schemes, aimed at

protecting applications from reverse engineering and tamper. We examined the performance

overhead of each technique, and also their robustness when subjected to known attacks. Our

evaluations indicate that virtualization-based protection mechanisms provide stronger run-time

protection than current techniques with acceptable overhead.

• We discovered a serious weakness in current virtualization-based program protections. This

weakness arises due to the lack of data binding between the application and the PVM. Two
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established use cases that exploit this vulnerability are presented.

• We developed a solution to overcome this weakness. The solution involves interleaving the data

of the application and the PVM, a novel scenario in virtualization.

• Along with the design of several protection techniques, an important contribution of this

research involves the design of metrics, which analytically measure different properties of the

systems. These measurements provided useful insight about the strength of these protections

and robustness against attacks.

• Finally, we have prepared a proof-of-concept implementation of the ideas discussed in this

dissertation. Such a prototype aids in validating the practicality of our research and also,

measuring the effectiveness of these mechanisms using the newly-designed metrics.

The next section describes how these contributions are presented in subsequent chapters.

1.9 Organization

This dissertation is organized as follows: This chapter describes the motivations behind this work. In

particular, we describe some of the deficiencies in current research. Chapter 2 describes the concept

of software virtualization, and provides a detailed description of software dynamic translation. The

ideas presented in this work have been prototyped via SDTs. Chapter 3 describes a model, to

facilitate better comprehension of attacks and their solutions. We utilize and extend this model to

express some of the research ideas presented in this work. Chapter 4 discusses the impact of PVMs

on static program protections. A novel scheme is proposed to obfuscate the application code sections

by interleaving them with those of the protective PVM. Chapter 5 describes self-aware integrity

checkers in the presence of software virtualization. Chapter 6 introduces the novel scheme of temporal

polymorphism, which provides a continuously-shifting attack surface. This scheme makes it harder

for the adversary to locate critical information, compared to current protection techniques. The

focus of research then turns to weakness in the PVMs themselves. Chapter 7 discusses an attack

methodology on protective PVMs, in which the adversary can dynamically replace them. A solution
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is also proposed in the chapter. Chapter 8 describes an novel attack methodology on PVMs, by

tracking the flow of instructions accessing critical data. This chapter also proposes a solution to

thwart such dataflow-based attacks. Chapter 9 introduces the concept of composable virtualization.

It provides a preliminary investigation on CVMs, and is intended to serve as a base for future research.

Chapter 10 chronicles some of the past work on software protections. Finally, Chapter 11 present the

conclusions of this research, and describes some avenues for further investigation.



Chapter 2

Process-level Virtualization

A brief introduction to process-level virtualization was given in Section 1.5. This chapter provides a

more extensive overview of software virtualization, and lays the foundation for PVM-based tamper

resistance. To begin, we provide the reasons behind the selection of PVMs as a platform for tamper

resistance and code obfuscation. Next, a high-level synopsis of virtualization is provided. We then

proceed to describe a PVM implementation which will be employed for prototyping purposes. Finally,

we present some related works in virtualization.

2.1 Motivation

Software virtualization has been increasingly used to deliver solutions in the area of software protec-

tion [34, 11, 35]. A number of commercial products have been designed to provide software protection

via process-level virtualization such as VMProtect [36], Code Virtualizer [37], and Themida [38]. A

number of computer gaming software applications employ the StarForce virtualization system for

copy protection and anti-reverse engineering [39]. The Terra system allows the software developer

to create custom platforms where the software stack can be individually tailored to meet specific

security requirements [40]. SecureQEMU uses a system-level VM to cryptographically protect the

application from tamper [35]. Recently, malicious agents have used this protection technique to

design state-of-the-art malware that can evade current detection systems [41].

16
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This research focuses on the utilization of virtualization in the area of program protections. There

are several reasons why virtual machines (VMs) are popular amongst security researchers.

• Process-level virtualization provides a platform for enhanced run-time security. Attackers are

increasingly using dynamic techniques to attack software (e.g., running applications under

a debugger or a simulator) [19]. Virtualization allows run-time monitoring and checking of

the code being executed, making them an excellent tool for applying dynamic protection

schemes [42]. The virtual machine can also mutate the application code as it is running

(e.g., changing code and data locations, replacing instructions with semantically equivalent

instructions), hampering iterative attacks [34].

• It is advantageous to have the protection techniques closely integrated with the application,

yet keep the implementations separate. This modular approach enables easier testing and

debugging of the system, and it allows legacy systems to be retrofitted with new protections

without the need for modification and recompilation or to change the software development

process. These properties are particularly expedient in a situation where the software developer

and the software defender are not the same. The developer can create and test the application.

Once assured that the application meets the required specifications, they can then transfer the

binary to the defender for processing. VMs can be used to provide such a flexible capability.

• Static protection schemes can be strengthened when the application is virtualized. For example,

encryption is a useful technique that hampers static analysis of programs. Because the encrypted

code cannot be run directly on commodity processors, the software decryption of the application

code becomes a point of vulnerability. For example, schemes which decrypt the application

in bulk are susceptible to dynamic analysis techniques [19], whereas decryption at a lower

granularity (e.g., functions) can suffer from high overhead [12, 30]. In contrast, executing

encrypted applications under the control of a VM has been shown to have a better performance-

security trade-off [43]. Virtualization incurs low information leakage, with the addition of a

small performance overhead [34]. Another example is the improvement of the robustness of
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integrity checks that are located in the application. When run under a VM, these integrity

checks never execute from their original location, instead, they can be invoked from randomized

locations in memory [34]. This randomization makes it harder for the attacker to locate and

disable the checks.

Virtualization at both the process level [37, 36], and the system level [35], has been shown to

be effective at thwarting reverse engineering. In fact, many protection techniques are oblivious to

the underlying implementation (e.g., both [35] and [34] use on-demand decryption of code to thwart

reverse engineering). However, prototyping a protection scheme based on system-level virtualization

is more complex, since the VM has to virtualize an entire operating system. Consequently, this

research exclusively focuses on utilizing the PVM to thwart reverse engineering and code tamper.

The next section gives a more detailed description of virtualization.

2.2 Introducing Virtualization

Before presenting the concept of virtualization, it is useful to present the concept of computing

systems and the mutual interaction with software applications that are designed to run on them. A

computing system is a collection of several resources, including (but not limited to) an ALU, registers,

memory and I/O devices. Each computing system has a specific Instruction Set Architecture (ISA)

that controls operations. Software applications are sequences of these instructions which facilitates

the computation of complex problems on these computing systems.

Computing systems have evolved in complexity considerably since the Intel 8086 microprocessors.

Currently, multiple ALUs interconnect and combine with several I/O devices and networking

infrastructure to provide a base platform. Consequently, even simple software applications that

run on such platforms consist of millions of instructions. The key to managing such complexity,

and to increasing flexibility, involves dividing the system into levels of abstraction. Traditionally,

each abstraction layer encapsulates and addresses different parts of the requirements of the system,

reducing overall complexity compared to monolithic architectures. The layers of abstraction are
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Figure 2.1: Computing systems are designed using layers of abstraction. These layers typically
manage different aspects of the system that pertain to the implementation. In this particular design,
the system has been partitioned into the hardware, the OS kernel, the system libraries, and finally,
the applications that run on the system.

arranged in a hierarchy, with the lower layers implemented in hardware, and the upper layers in

software. Each layer has a well-defined interface, allowing design tasks to be decoupled. The top of

this hierarchy provides the interface through which software applications interact with the system.

The operating system (OS) kernel software, application libraries and networking software implement

various aspects of these layers. Figure 2.1 give a high-level overview of the design.

Virtualization involves the addition of an extra software layer, between the application and the
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underlying platform. It has been used to overcome the barriers imposed by new hardware [44, 45],

or to improve security [46, 47, 40]. Formally, Popek and Goldberg defined virtualization as the

construction of an isomorphism that maps the resources of a virtual system (called the guest) onto

the resources of the native system (called the host) [44]. It is the responsibility of the virtual machine

to run the application compiled for the guest (called the guest application) on the host system, as

the resources of the guest might not be the same as the host. Some of the necessary tasks include

converting the guest application’s instructions to run on the host, and mediating communication

between the application and the host platform.

Virtualization can be implemented at the system level, or at the process level. A system-level

virtual machine (SVM) provides a complete system environment. This environment enables a single

hardware platform to support multiple OSes, each running several user processes. Each guest OS can

access the underlying hardware resources, including network interfaces, disk interfaces, displays, etc.

A system-level virtual machine is often referred to as a virtual machine monitor (VMM in literature.

SVMs have been used to provide tamper resistance to applications. For example, SecureQEMU

is an application based on the QEMU VMM that cryptographically protects the application from

tamper [35]. The Terra system uses a trusted VMM to partition tamper-resistant hardware platform

into several, isolated virtual machines, which can be configured to provide custom protection [40].

Finally, the Overshadow system obfuscates the memory of the guest OS from the host, preserving the

privacy and integrity of the guest application even in the event of host compromise. Although such

solutions are effective, they have a high overhead in terms of resources. Associating an entire OS

with a single application might not be feasible in many cases, specially in the domain of embedded

systems. As such, this research focuses on process-level virtualization.

Process-level virtual machine (PVM) refers to the software layer around a solitary guest application.

The guest application runs under the mediation of the PVM, giving the appearance of a native

process to the underlying host. Although PVMs are complex systems, they are all variations of the

fetch-decode-dispatch method [48], which forms the basis for a standard multiple-stage pipelined

processor [49]. Figure 2.2 gives a high-level overview of this scheme. PVMs based on this method
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Figure 2.2: High-level overview of the fetch-decode-dispatch mechanism that forms the basis for
PVMs. The guest application instructions are decoded, one at a time and dispatched to appropriate
handling functions, which execute according to the semantics of the instructions.

consist of a central loop, which steps through the guest application, one instruction at a time, and

modifies resources on the host according to the instruction. The loop consists of three main phases:

the decode phase, which fetches one instruction, based on program order, and decodes that instruction.

Based on the decoding, the dispatch phase invokes an appropriate handling routine. Finally, the

execute phase utilizes the relevant operands to execute the semantics of the instruction on the host

platform.

In the next section, we discuss some of the techniques that can be used to implement virtualization.

We will be using one technique in particular, software dynamic translation, for prototyping our ideas.
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2.3 Software Dynamic Translation

In Section 2.2, we stated that all PVMs use some variation of the decode-dispatch-execute paradigm [48].

In and of themselves, PVMs based on decode-dispatch-execute are inefficient. Such PVMs execute

each instruction of the guest application using several instructions on the host machine. To enable

adoption of program protection techniques based on PVMs, performance overhead needs to be

reduced. As such, several optimization techniques have been designed to improve the run-time

performance of PVMs.

The threaded approach improves performance by removing the central decode-dispatch loop [50].

The decoding and dispatching logic is appended to the execution semantics by duplicating code to the

end of each handling routine. Although this technique increases code size, it improves performance

on processors that have branch prediction.

Binary translation is one of the most efficient methods of virtualization. This techniques involves

conversion of the guest application code block into instructions that can be directly executed on the

host machines (called translation). The translated blocks can also cached in software to amortize the

overhead of virtualization over the entire course of execution. This technique is known as Software

Dynamic Translation, and PVMs implementing this technique are referred to as software dynamic

translators (SDTs). The PVM only translates those code blocks that are scheduled to be executed [51].

Numerous other techniques have also been proposed for reducing performance overhead of binary

translators [52, 53, 54, 55].

The protective PVM in our case study is implemented using the Strata binary translator [51, 56].

Figure 2.3 illustrates the mechanism of Strata, modified to apply protection techniques. At program

start up, Strata gains control of execution, saves the current execution context (i.e., current PC,

register values, conditional codes, etc.), and starts fetching, decoding and translating instructions

from the application’s start address. This process continues until an end-of-translation condition is

satisfied. At this point, Strata appends a code sequence to the block that will return control back

to Strata. This code sequence is termed as a trampoline. Each trampoline is associated with an

application address, containing the instruction to be executed. Consequently, Strata restores context
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Figure 2.3: Strata Virtual Machine modified to apply dynamic protections.

and proceeds to transfer control to the newly translated block. After the block completes execution,

control transfers back to Strata via the trampoline, and the next instruction to be scheduled for

execution is translated.

During this process of translation, Strata can apply various protection techniques to the newly

translated blocks. This dynamic nature of code creation in SDT libraries facilitates new mechanism to

dynamically thwart analysis and reverse engineering, which are missing from current state-of-the-art

techniques.

The translated code blocks, instead of being disposed of after execution, are cached in a region

in memory (called the software cache or software cache) [46]. Strata initially searches the cache

before attempting translation. If the block is found, control will be directed to the cached block.

When an application instruction is translated and cached, Strata overwrites all trampolines, that are
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associated with this application instruction, with direct transfers to the translated counterpart. This

overwriting is known as patching. Each patch connects a block, previously using a trampoline to

transfer control to the SDT, to the translated instruction. Therefore, the context switch to and from

the SDT is no longer performed, resulting in reduction in overhead.

This process of caching significantly reduces the cost of translation. The figure also depicts the

ways in which protection techniques can be applied by Strata. Any mechanism that is part of the

original application, get translated on to a new location in the code cache. During translation itself,

Strata can apply dynamic protection schemes that thwart reverse engineering and tamper.

2.4 Summary

Virtualization was first proposed more than 40 years ago, as a technique to introduce more flexibility

in application execution. Recently, virtualization has proved to be a feasible platform for imparting

security to unprotected applications. Improved dynamic checking and modular implementation are

some of the advantages of using virtualization for imparting protections. Virtualization can be done

at the system level, or at the process level. This research focuses on process-level virtual machines

(PVMs), and their applicability in improving tamper resistance. This section gave a high-level

overview of virtualization, and described an equational model. In the following chapters, we make

use of this model to illustrate defenses and attacks on software systems.



Chapter 3

Modeling Virtualization-based

Protections

During the course of our preliminary investigations, we concluded that a model was needed to

concisely describe software systems and the protection mechanisms devised to protect such systems

from attacks. The model would be used to describe attacks methodologies targeted at software, and

provide insights that would be useful for devising techniques to thwart such attacks. To that end, this

chapter presents a model of software applications and their interaction with the underlying platform.

We extend the model to include virtualization, and utilize it to illustrate attacks and protections

schemes. The use of a model can also expedite the understanding of any weaknesses and techniques

to strengthen software. For example in Chapter 8, the model enables an elegant explanation of the

dataflow-based attack on PVM-protected applications implemented by Coogan, et al. [57].

3.1 Model

In this section, we specify in detail our equational model. First, software applications are described.

Then, the model is extended to represent tampering and reverse-engineering attacks, and their

solutions, with an emphasis on software virtualization.

25
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3.1.1 Software Applications

A software application, PA, represents a sequence of instructions to a computing system. During

application execution, the system processes these instructions along with certain inputs. Based on

these instructions, the system transforms data stored in memory locations and generates outputs.

The software developer identifies critical pieces of information, called assets. These assets can either

aid in computation (e.g., intellectual property), or serve as data to the application (e.g., monetary

information in a banking application). A software application, PA can be modeled as:

PA =< IHA , INA, OUTA, ASSETSA > (3.1)

where IHA is the instruction sequence (i1, i2, ...., in) for the application PA, which are instructions

in the instruction set architecture (ISA) of machine H. INA represents the set of valid inputs to

the application, including any information that is provided by the operating system (e.g., the values

returned by system call invocations). OUTA represents the set of valid outputs generated by the

application, and ASSETSA are the assets of the application which the adversary is attempting to

exploit.

Software applications are inputs to a computing system. During execution of the application,

the Central Processing Unit (CPU) interprets the instruction sequence comprising the application

in execution order to compute the outputs. During this interpretation, several partial products are

generated and consumed. Each CPU has memory structures to store these values. This process of

interpretation on H can be represented notationally as

φH(PA, inA,m1H) −→< outA,m2H > (3.2)

where inA ∈ INA, outA ∈ OUTA, and m1H , m2H ∈ MH , where MH represents the memory state

on the machine, H.
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3.1.2 Software Interpretation

When an application executes natively, it is interpreted directly by the hardware, as represented

in Equation 3.2. Interpreters can also be implemented in software, in which additional software

layers between the application and the native hardware platform (the innermost layer has to be

implemented in hardware). These software layers can mediate the application as it is executing,

providing a dynamic execution environment. The main focus of this research is to leverage this

dynamism to improve program protection.

Next, we model software interpretation. A software interpreter is a specialized type of application

that is used to execute other software applications. It takes as input the instruction sequence of an

application, any of the application’s inputs, and its configuration settings. The instructions are then

processed to generate the corresponding output. Notationally, an interpreter program, hosted on the

machine H, can be represented as:

Pinterp =< IHinterp, INinterp, OUTinterp, ASSETSinterp > (3.3)

In Equation 3.3, the instructions of the interpreter application is represented by IHinterp. The input

set, INinterp, consists of the combination of all applications and specific configuration setting of

the interpreter, usually in the form of disk files; denoted by ρ× IN × Cinterp and the output set,

denoted by OUTinterp, consists of all the applications’ outputs, as well as any outputs generated by

the interpreter.

To the software application, it makes no difference whether it is interpreted by a software

interpreter or on hardware. At run time, its instruction sequence is executed in program order.

Periodically, it issues requests for information from the execution environment (in the form of

system call invocations). On a hardware platform, these requests are typically handled by associated

resources (disks, CD players, etc.), and the information is returned to the application.

In the case of the software interpreter, it itself runs on hardware. As such, any requests it receives

from the application, are transferred to the underlying platform. We can describe this scenario as a
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mapping, between the resources on the virtual machine (as referenced by the application), and the

actual resources of the hardware platform. In our model, when the application is interpreted by a

software VM, all information related to the environment (e.g., information returned by system calls)

is conveyed by the set, Cinterp.

We proceed to model the functioning of an actual interpreter. For our example, the host machine

H, is any generic Intel x86 processor. In such a machine, the interpretation occurs in hardware.

The machine accepts applications written in the x86 ISA. One such application is the Java Virtual

Machine (JVM). The JVM performs software interpretation, accepting applications written in Java.

Equation 3.7 models the interpretation of a Java application, PJava, on a JVM.

PJava =< IJVM
Java , INJava, OUTJava, ASSETSJava > (3.4)

Equation 3.4 represents an application written in Java byte codes, PJava. It consists of the instruction

sequence, IJVM
Java . It operates on an set of inputs, denoted by INJava, and produces OUTJava. The

assets that enable the application to generate outputs is denoted by ASSETSJava.

Similarly, Equation 3.5 represents a JVM interpreter, PJVM .

PJVM =< Ix86JVM , INJVM , OUTJVM , ASSETSJVM > (3.5)

Its instruction sequence is represented by Ix86JVM . The input set of the JVM, INJVM , consists

of the set (PJava × INJava × CJVM ), where PJava refers to the set of Java applications, INJava

represents the inputs to the Java applications, and CJVM refers to the configuration settings of the

JVM. The output set of the JVM, OUTJVM , consists of the OUTJava × OJVM , where OUTJava

represents the output of the Java application, and OJVM represents any output specific to the JVM

(e.g., log or error messages). The assets of the JVM are represented by ASSETSJVM .

Thus, expanding Equation 3.5 with the new terms, we have

PJVM =< Ix86JVM , (PJava × INJava × CJVM ), OUTJava ×OJVM , ASSETSJVM > (3.6)
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Next, we describe the interpretation of these two applications. Equation 3.7 represents the

interpretation of a Java application on the JVM:

φJVM (PJava, inJava,m1JVM ) −→< outJava,m2JVM ) (3.7)

The Java interpreter (the JVM) operates over the Java application PJava, a particular input inJava ∈

INJava, and the initial memory state, denoted by m1JVM . This operation results in the generation

of a particular output, outJava ∈ OUTJava, and the memory state is transformed to m2JVM .

Next, we consider the interpretation of the JVM on the x86 hardware, represented by Equation 3.8.

φx86(PJVM , inJVM ,m1x86) −→< outJVM ,m2x86 > (3.8)

The x86 interpreter (the CPU) operates on the JVM application PJVM , with the input to the

JVM represented by inJVM . This input consists of a tuple < PJava, inJava, cJVM >, where PJava

is a Java application, inJava is its input, and cJava is the configuration for the JVM. The initial

memory state on the x86 machine m1x86. This interpretation results in an output sequence outJVM

(consisting of a tuple < outJava, oJVM >, where outJava refers to the output of the Java application

corresponding to input inJava, and oJVM refers to any output from the JVM). The memory state at

the end of interpretation is represented by m2x86.

The previous equations describe nested interpretation (i.e., the x86 hardware interpreting an

application that is interpreting another application). We now present this nesting using a single

equation. Since the x86 is the physical platform in this example, with actual memory storage, the

memory locations being accessed by PJava exists on that platform. Equation 3.9 illustrates the

resultant equation.

φx86(PJVM , < PJava, inJava, cJVM >,m1x86) −→<< outJava, oJVM >,m2x86 > (3.9)

The x86 interpreter operates on the JVM application PJVM , and takes as input a 3-tuple,

consisting of the Java application Pjava, one of its inputs inJava, and the initial configuration settings,
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cJVM . The initial memory state on the x86 machine is represented by m1x86. The results of this

interpretation consist of outJava, the output of the Java application corresponding to inJava, and

oJVM , which refers to any output specific to the JVM. The final memory state is set to m2x86.

This example illustrates that multiple layers of software virtualization can be modeled in our

framework. This feature plays a pivotal part in laying the foundation to describe composable

virtualization in Chapter 9.

We now proceed to describe attacks on software using our model.

3.1.3 Modelling Tamper Attacks

Software applications often perform critical tasks. In many cases, such critical applications must

conform to previously-established rules about the execution environment, or their domain of operation.

For example, software controlling missile defense systems should only be operational on selected

computing systems, and corporate accounting software should only run within the private network of

the specific corporation, to name a few. Critical software systems also possess critical assets that

are used in computation and it is often desirable to protect those assets from malicious adversaries.

The goal of software tampering involves subverting these two scenarios, i.e., the adversary aims to

break any rules related to application execution, or to steal the valuable assets of the application.

Such tasks can be achieved by reverse engineering the application and modifying the application’s

instruction, or providing false information to the application such that the application generates

outputs under abnormal execution conditions.

Equation 3.10 represents a critical application.

Pcritical =< IHcritical, INcritical, OUTcritical, ASSETScritical > (3.10)

The application consists of a tuple, consisting of IHcritical, the instruction sequence in the ISA of the

machine, H. INcritical refers to any inputs to this application, including any information provided by

the OS. OUTcritical refers to all the outputs that can be generated by this application, including any
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error messages. Such error messages can be referred to by ERRcritical (ERRcritical ∈ OUTcritical).

Finally, the assets of the critical application are ASSETScritical.

Attack scenarios on this application can be modeled within our framework. First, we consider

attacks in which the adversary provides false information to the application, to circumvent checks that

verify the execution environment. For example, an application that confirms the MAC address of the

hardware platform prior to execution, can be misled by running the application on an emulator that

can spoof any MAC address, and pass it to the application. To model this scenario in our framework,

we first specify the interpretation of the application on the correct platform. Equation 3.11 represents

the interpretation of critical application, Pcritical, on a machine with MAC address MAC1.

φH(Pcritical, incritical,m1H) −→< outcritical,m2H > |MAC1 ∈ incritical (3.11)

The interpreter accepts an input sequence, represented by incritical. The memory state changes from

m1H to m2H .

Running this application on a machine with a different MAC address, MAC2, that accepts the

same ISA, will result in an error message. This outcome is represented by Equation 3.12.

φH(Pcritical, incritical,m1H) −→< outcritical,m3H > |

MAC2 ∈ incritical, outcritical ∈ ERRcritical

(3.12)

In Equation 3.12, the hardware interprets the application, with input incritical. In this case,

MAC2 is the MAC address provided by the hardware, via the application input set. The application

checks the MAC address to verify whether it should run successfully on this machine. In this case, the

check fails, resulting in an error message (outcritical ∈ ERRcritical). The memory state is changed

from m1H to m3H .

To circumvent this check, the adversary can run this application on an emulator that spoofs the

appropriate MAC address (in this case, MAC1). This spoofed information can be provided as a
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configuration (i.e., as part of the set C introduced in Equation 3.6). Since the emulator is itself a

software, Equation 3.13 gives its representation in our framework.

Pemulator =< IHemulator, INemulator, OUTemulator, ASSETSemulator > (3.13)

IHemulator is the instruction sequence of the emulator, in the ISA of H. INemulator refers to the

inputs to this emulator, which can consist of all the applications written in the ISA of H, PAPP ,

their inputs, INAPP , and configurations for the emulator, CAPP . The outputs of this emulator,

OUTemulator, consists of the outputs of the application, OUTAPP , and any outputs generated by the

emulator Oemulator.

We now model the interpretation of the critical application on the emulator, with spoofed

information. The interpretation is represented in Equation 3.14.

φH(Pemulator, < Pcritical, incritical, cemulator >,m1H) −→<< outcritical, oemulator >,m2H > |

MAC1 ∈ incritical, MAC1 ∈ cemulator

(3.14)

The emulator software runs on the native hardware interpreter. The input to the emulator consists of

the critical application, Pcritical,its inputs incritical, and the configuration, cemulator. The adversary

can modify the emulator to pass any forged information (in this case, the MAC address) to the

critical application. This forgery can be done primarily, by modifying system call returns. Thus,

the application runs successfully on the machine, generating output outcritical, and output from the

emulator, oemulator. The adversary can modify the emulator to leak essential information about the

critical application, such as the trace of the instructions executed. Such leakage of information forms

part of the output of the emulator.
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Tampering can also be achieved by modifying part of the application’s instructions. Given an

application PA, tampering results in a modified application, PT (A) defined as follows:

PT (A) =< IHT (A), INT (A), OUTT (A), ASSETSA, > (3.15)

Equation 3.15 models the tampered application. Potentially, any of the application’s components,

such as its instruction sequence, set of inputs, or set of outputs can be modified. In our model, the

tampered application consists of the tampered instruction sequence (IHT (A)), the tampered input set,

INT (A) (which includes the original input set, INA), and the tampered output set, OUTT (A) (which

also includes the output set of the original application, OUTA).

Next, we model the interpretation of this tampered application on a machine, H.

φH(PT (A), inT (A),m1H) −→< outT (A),m2H > (3.16)

Equation 3.16 illustrates the interpretation of the tampered application, PT (A) on host machine H,

with application input inA, and initial memory state m1H . Interpretation results in the generation

of output outT (A), and the final memory state m2H . The tampered output, outT (A) can also contain

information about a critical asset of the application (e.g., the location of a password file).

Equations 3.14 and 3.16 describe software tampering at a high level. As this dissertation

progresses, the equations will be modified and extended to reveal finer details about attacks and the

use of process-level virtualization to improve program protection.

3.1.4 Modeling Program Protection

Section 3.1.3 described tampering of software applications. This section models the use of software

virtualization to protect applications. Software virtualization is primarily achieved by the addition of

a software interpretation layer between the application and the underlying platform. As we mentioned

in Chapter 1, the extra layers of software are configured to apply protections during program run

time.
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Prior to discussing the use of virtualization in program protection, we present some basic definitions.

Researchers have long been pursuing techniques to prevent successful tampering of software systems.

It has been established that it is not possible to completely tamperproof an arbitrary application [22],

therefore, the goal of software tamper resistance is to devise mechanisms which force the adversary

to expend a large amount of effort both in terms of time and resources. These techniques usually

involve applying various program transformations to the application that make it difficult for the

adversary to analyze and understand the application code.

Tamper-resistance (TR) techniques are program transformations applied to application instructions

that hamper the adversary from exploiting the application, while ensuring that the program’s

semantics remain intact. Notationally, such techniques can be described as:

PTR(A) =< IHTR(A), INA, OUTA, ASSETST (A) > (3.17)

In Equation 3.17, PTR(A) refers to the protected application. It comprises of an instruction sequence,

ITR(A)H , a set of inputs, INA. Its execution can generate a set of outputs, OUTA, utilizing assets

ASSETST (A). The adversary can modify assets by inroducing new properties and dependencies.

The original assets can also be modified and removed.

Collberg and Nagra have previously designed a framework for describing tamper-resistance

transformations [58, 59]. According to the authors, tamper-resistance techniques should possess the

following properties:

• Correctness: dictates that the functionality of the program, P , is not affected by tamper-

resistance techniques(i.e., the transformations should be semantics preserving.

φH(PA, inA,m1H) −→< outA,m2H >

φH(PTR(A), inA,m1H −→< outA,m2H >

 ∀ inA ∈ INA (3.18)

Equation 3.18 models the interpretation of a standard application PA, and a protected appli-

cation PTR(A) on the same platform, H. In both cases, input inA is provided. The output
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should be identical in both cases (represented by outA). The memory state changes from m1H

to m2H .

• Soundness: implies that the probability to successfully tamper with a protected application,

PTR(A), in polynomial time is close to zero.

Prob
Time=O(nk)

{
φT (H)(PT (TR(A)), inA,m1T (H)) −→< outA,m2T (H) >

}
< ε ∀inA ∈ INA (3.19)

Equation (3.19) considers a protected application that has been subjected to tamper, represented

by PT (TR(A)). The probability that interpretation of such an application with valid inputs

inA will result in a valid output, outA in polynomial time O(nk), is less than ε). For a

tamper-resistance technique to be considered strong, ε should be close to zero.

This model can be used to describe concepts in tamper resistance, including vulnerabilities and

their solutions. As an example, we use this model to describe Authentication.

3.1.5 An Example: Authentication

Authentication is the one of the key components of many software software systems, e.g., email,

banking, shopping. It is defined as the binding of an identity to an entity. This identity controls

the entity’s actions in the system [60]. In this particular example, the software application possesses

encrypted data. It can take as input any combination of characters (.∗). If the correct pass phrase is

provided (in this case, pass), the application decrypts its data and provides it to the user (denoted

by D). Otherwise, the applications terminates with an error message (err).

The system can be represented as:

INA = {pass, .∗}

OUTA = {D, err}

ASSETSA = {pass}
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where the input set INA consists of the phrase pass, and all other string combinations. The output set

OUTA consists of the decrypted output D, and an error message, err. The assets of the application

in this scenario consist of the pass phrase pass. In other scenarios, the assets could also include the

encryption algorithm. We ignore the algorithm as an asset in this example.

We assume that the application runs on the Intel x86 platform. One way to represent the

application is:

PA =< Ix86A , {pass, .∗}, {D, err}, {pass} >

We adapt Equation 3.2 to describe the execution of this application, when the correct pass phrase

is provided.

φx86(PA, pass,m1x86) −→< D,m2x86 > (3.20)

In Equation 3.20, the application PA is interpreted by the x86 platform. The input in this case is

pass. In this case, the application successfully outputs the decrypted data, D, and the final memory

state is m2x86.

Next, we present the equation representing application interpretation when an incorrect input is

provided.

φx86(PA, abcd,m1x86) −→< err,m3x86 > (3.21)

The interpreter runs the application, with input abcd. In this case, the application generates the

error message, err and terminates.

Next, the adversary subjects the application to a tampering transformation, resulting in PT (A).

The goal of the adversary is to generate output D, without providing the correct input. Assuming

the adversary is successful, such a scenario can be represented by:

φx86(PT (A), abcd,m1x86) −→< D,m4x86 > (3.22)

In this case, the interpreter executes the tampered application, PT (A). The application takes as

input, abcd. On successful interpretation, the tampered application outputs D.
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Finally, the software defender applies tamper-resistance transformations to the application, which

results in PTR(A). Assuming the protections are successful, the execution of such an application

when the adversary subjects in to tamper can be represented as:

φx86(PT (TR(A)), abcd,m1x86) −→< err,m5x86 > (3.23)

In Equation 3.23, PT (TR(A)) refers to a protected application that has been subjected to tamper.

Since the protection techniques are successful, the tampering is ineffective. Thus, the input abcd

generates the error message, err.

This example illustrates the applicability of this model to describe tamper in software applications.

Over the next few chapters, we will be utilizing this model to describe tamper-resistance techniques

based on PVMs. We summarize our design in the next section.

3.2 Summary

In the area of software security, formal modeling often aids in understanding the scope of protection

techniques. Directly implementing such techniques can lead to ineffective and weak systems. A

formal model enables researchers to analyze the techniques and eliminate any weaknesses in the

design, if found. This chapter introduced the framework for an equational model that describes

tamper resistance. The model can be used to portray software applications, virtualization and

program protections. As this dissertation proceeds, this model will be extended to accommodate new

attack methodologies and protections against such attacks. The goal of this model is to facilitate the

synthesis of a strong foundation for PVM-based program protection techniques.



Chapter 4

Creating Tamper-resistant Binaries

In Section 1.3, we stated that adversaries are increasingly targeting the application at run time, to

exploit critical information and break software protections. Consequently, the focus of this research

is providing dynamic protections to the application. However, protecting the on-disk binary is still

important, as dynamic protections are ineffective without complementary static protections.

In this chapter, we investigate composition of applications and PVMs to thwart static analysis.

In particular we focus on an established technique, code encryption, and study the effects of

virtualization on it. The main contribution of this chapter is a static obfuscation technique, that

makes it algorithmically harder to extract the application code from the protected package (i.e., the

software package containing the application and the PVM). This static technique is based on random

permutation of code blocks, and we demonstrate that technique improves the static protection of the

package over current state of the art.

The remainder of this chapter is organized as follows: Section 4.1 discusses code encryption in a

virtualized application. In Section 4.2, we describe and evaluate random code-block permutation

between the application and the PVM. Finally, in Section 4.3, we discuss past research work that

hampers static analysis of applications.

38
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4.1 Encryption

Code encryption is an established technique to defeat static analysis [12, 19, 61, 35]. Without the

decryption key, the level of effort required to obtain a disassembled version of the code for analysis is

significantly increased.

Previous mechanisms often included the logic for decrypting the code within the application

itself [12, 19]. A common problem with such techniques is the coarse granularity of decryption at

run time. If the granularity is too coarse, the adversary can use simple run-time monitor to obtain

the information needed to then perform static disassembly. However, fine-grained granularity can

result in high run-time overhead. Previous techniques were not able to achieve an adequate balance

between overhead and information leakage.

This research investigates techniques to reduce run-time leakage of information to the adversary

at with low overhead by delegating the task of decryption to the PVM. The application is encrypted

as in previous techniques, but the decryption is now controlled by the protective PVM. Such a

configuration facilitates a much easier design of encrypted application packages. At run time, the

PVM mediates the trade-off between performance overhead, and the rate at which plaintext code

is exposed to the attacker. The bulk of our analysis of an PVM-protected application that uses

encryption is described in Chapter 6. In this chapter, we focus on modeling PVM-enabled encryption

to prevent static analysis.

Recalling Equation 3.1, a software application, PAPP can be represented by a 4-tuple, consisting

of its instruction sequence in the ISA of the target platform, a set of inputs, a set of outputs, and its

assets. An encrypted application, PEk(APP ), is produced by applying an encryption algorithm to

the code section of the application, with k as the decryption key. This modified application can be

described in our model, as in Equation 4.1

PEk(APP ) =< I
Ek(H)
APP , INAPP , OUTAPP , ASSETSAPP > (4.1)

The first component of the 4-tuple consists is I
Ek(H)
APP , which is the instruction sequence of the
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encrypted application. The ISA is represented by Ek(H), i.e., the encrypted form of the original

ISA. The inputs, outputs and the assets of the application remain unchanged.

Compared to the application described in Equation 3.1, this transformed application requires the

presence of the decryption key, k for successfull interpretation. Recalling Equation 3.2, interpretation

of an encrypted application can be illustrated as:

φH(PEk(APP ), inAPP ,m1H) −→< outAPP ,m2H >

|k ∈ inAPP

(4.2)

In Equation 4.2, the interpreter operates on the encrypted application, PEk(APP ), with an input

sequence inAPP . The decryption key, k can be considered part of the input. Successful interpretation

of the application results in generation of output, outAPP . The memory state is transformed from

m1H to m2H .

In our research, we delegate the decryption of the application to the protective PVM. Its

representation was first presented in Equation 3.3. The PVM takes as input, any application, the

application’s inputs, and a configuration setting. The PVM generates the output of the application,

as well as its own output.

PPVM =< IHPVM , INPVM , OUTPVM , ASSETSPVM > (4.3)

Here, IHPVM refers to the instruction sequence of the PVM. The input INPVM consists of a member

of the set ρAPP ×INAPP ×CPVM , where ρAPP refers to the class of all applications, INAPP refers to

their inputs, and CPVM refers to the configuration settings for the PVM. the output set OUTPVM is

composed of the outputs of the applications, OUTAPP , and its own outputs, OPVM . ASSETSPVM

refers to its assets.

The PVM is interpreted by the underlying hardware, H. This nested interpretation is modeled

as:

φH(PPVM , < PAPP , inAPP , cPVM >,m1H) −→<< outAPP , oPVM >,m2H > (4.4)
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In Equation 4.4, the hardware interpreter(φH) operates on the PVM application, PPVM . The

input to the PVM consists of the original application, PAPP , its inputs inAPP , and configuration

settings cAPP . On success, the interpretation operator generates an output consisting of outAPP of

the application, and oPVM of the PVM. The memory state is transformed from m1H to m2H .

Next, we consider encryption in the presence of virtualization. As we first introduced in Equa-

tion 4.1, encryption transforms the original application, PAPP , to PEk(APP ). To run this encrypted

application, its associated decryption key, k is required at run time. Since the PVM is responsible for

decryption, the key forms part of the configuration setting for the PVM. Thus, modifying Equation 4.4

to represent the interpretation of the encrypted application, we have:

φH(PPVM , < PEk(APP ), inAPP , cPVM >,m1H) −→<< outAPP , oPVM >,m2H > |

k ∈ cPVM

(4.5)

In Equation 4.5, the hardware interpreter function, φH , operates on the PVM. The input to the

PVM is a 3-tuple, consisting of the encrypted application, PEk(APP ), its input sequence inAPP , and

a configuration setting for the PVM, cPVM . The decryption key forms part of the configuration

settings. On successful interpretation, the outputs generated consist of outAPP , the output of the

encrypted application, and oPVM , the output of the PVM. The memory state is transformed from

m1H to m2H .

Now that the model for PVM-enabled encryption has been established, we proceed to describe

the implementation of this technique.

4.1.1 Implementation

In this section, we describe the implementation of a PVM-protected binary that uses encryption.

To prepare the application binary for encryption and virtualization, we adopted the previous work

done by Hu, et al. [43]. The basic framework for creating the protected application package consists
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of Diablo, a binary rewriting tool created by researchers at the University of Ghent [62]. We use

Strata,which was first introduced in Section 2.3, as the protective PVM used in our experiments, .

Diablo operates on object files and libraries constituting the package (Strata and the application).

Diablo translates object and library code into an internal representation, and is able to generate

instruction representations and the Control Flow Graph of the application. It provides a wide range

of APIs, to facilitate analyzing and modifying the CFG. After the user performs custom modifications,

Diablo regenerates the CFG, and produces target-machine instructions. Finally, it emits the modified

binary [43].

In our experiments, the application objects files and the Strata libraries were input to Diablo.

Based on the name of the module from which the code originates, Diablo is able to differentiate

application and Strata code. Once all the application code is identified, Diablo proceeds to tag such

code segments for encryption. Next, the target-machine instructions (in this case, x86) are generated.

The tagged instructions are then encrypted using 128-bit AES. Finally, the encrypted application

instructions and Strata code is written to file. Further details of this scheme can be obtained from

Hu et al. [43].

Figure 4.1 illustrates the layout of the protected on-disk binary, consisting of the encrypted

application and the Strata. As the figures demonstrates, the code segments for the two components

are largely distinct. In the figure, some sections in the application segment appear to have the same

color as the PVM blocks. This discrepancy is purely an implementation issue. Currently, we mark

any block that is encryptable, as belonging to the application. In our framework, the entry and

exit functions of Strata are inserted manually into the application. These compiler-generated code

sections, such as startup and exit), that execute before Strata’s entry function, or after its exit,

can not be encrypted and as such, get tagged as belonging to Strata).

On the whole, 99% of the Strata code is contiguous, which means that most of the critical

application code is concentrated in a smaller region. Therefore, the adversary can localize his analysis

on that region.

As we described in Section 2.3, Strata performs just-in-time, on-demand decryption. At run
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Figure 4.1: Layout of the on-disk binary consisting of the guest application and the protective PVM.
The guest code is encrypted. A few libraries of the PVM end up amongst the application code.

time, Strata loads the application and starts decrypting and decoding application instructions one

basic block at a time. The block is cached in software and scheduled for execution. After the block

executes, control again enters the Strata. If next instruction to be executed already exists in the

code cache, control directly transfers to that instruction. Otherwise, Strata begins decrypting and

decoding instructions at the next application address. The translated block is then placed at the

next available location in the code cache. We analyze the run-time performance and information

leakage extensively in Chapter 6.

4.1.2 Key Protection

A pertinent issue with any encryption scheme involves the security of the decryption key. Most

encryption algorithms where initially designed to be deployed in a ’black-box’ environment (i.e.,

the adversary has access to only the inputs and outputs of the cryptosystem). Such a restricted

environment does not apply in the attack model for software applications. Our techniques are

attempting to protect applications running on ’open’ systems (i.e., PCs, tablets etc.). We denote

this context as the white-box attack context. As we described in Section 1.3, in such a context, a

’white-box’ adversary has full access to the software implementation of a cryptographic algorithm.
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Hence, the implementation itself is the sole line of defense.

An encryption algorithm is only as secure as its key. If an adversary is able to analyze the

cryptographic implementation, and identify the keys, the encryption algorithm is vulnerable, regardless

of its complexity. Shamir and Van Someren demonstrated that cryptographic keys can be extracted

from poorly-designed encrypted binaries [63]. Their attack could theoretically be applied to any data

container: binaries, computer memory, and so forth. Halderman, et al. were also able to design

techniques to extract keys from the DRAM of a computing system [64]. In 2012, Zhang, et al. used

a system-level VM to extract information about cryptographic keys from an encrypted application

running on the guest OS [65]. All these examples demonstrate that this attack methodology is

realistic. Thus, modern cryptosystems are incomplete in security, unless their keys are protected as

well.

The presence of this weakness led to the development of white-box cryptography (WBC). WBC is

defined as an obfuscation technique intended to implement cryptographic primitives in such a way,

that even an adversary who has full access to the implementation and its execution platform, is

unable to extract key information [21]. Cryptographic key information should be spread over the

entire implementation, forcing an adversary to analyze the whole implementation, instead of focusing

on individual parts (that could for example, be identified by an entropy study [63]). The first WBC

implementations were presented by Chow, et al. in 2002 on the Data Encryption Standard (DES) [66],

and the Advanced Encryption Standard (AES) [21] respectively. Their white-box techniques transform

a cipher into a series of key-dependent look up tables. The secret key is hard-coded into the lookup

tables and protected by static randomization techniques. Although the initial implementations were

subjected to cryptanalysis, and subsequently broken [67, 68], researchers have been able to design

more robust implementations [69]. They have been able to successfully demonstrate that extracting

keys from modern WBC implementation is extremely difficult [70].

The main concerns with white-box cryptography are the performance and size penalty. The

performance issues limit the utilization of white-box cryptography for high-throughput applications,

while size issues constrain its use in cost-sensitive embedded systems. These concerns can be addressed
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using special-purpose white-box implementations which can exploit hardware accelerators [70].

Nonetheless, white-box cryptography has become a cornerstone in the protection of cryptographic

primitives in applications that run in hostile execution environments. White-box cryptography is

quickly gaining momentum in commercial applications. White-box cryptography is used in products

by companies such as Microsoft, Apple, Irdeto, Arxan, and many more are actively investigating

white-box techniques [71]. It would be relatively straightforward to choose an established white-box

cryptography algorithm, and implement it as part of our prototype. Therefore, due to the wealth of

available research in this area, we defer to previously-established work in white-box cryptography,

and focus our attention on PVM-enabled protections.

4.2 Interleaving Application and PVM code

On closer analysis of Figure 4.1, it can be seen that the protected binary has two discernible

components, corresponding to the PVM and the application respectively. Even if the guest application

is encrypted, such a distinct layout reduces the search space for the adversary and divulges the region

to attack. The knowledgeable adversary could concentrate their static analyses on just the encrypted

portion of the binary and extract useful information.

Composing an application with a PVM facilitates techniques to increase the search space for the

adversary and thwart static analysis. During software preparation, code blocks from the application

and the PVM can be permuted in random manner. In such a case, the adversary will have to search

the entire binary in an attempt to extract relevant information. The effectiveness of this scheme

depends on the relative number of code blocks of the application and the PVM. As the relative PVM

code blocks decrease in number, so does the strength of this protection scheme. We address this issue

further in our section on evaluation.

We now proceed with the description of our implementation, and the evaluation of its strength

against static analysis.
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Figure 4.2: Layout of the code regions after the instruction blocks have been randomly permuted.

4.2.1 Evaluation

To obtain the maximum amount of obfuscation via interleaving, the granularity of interleaving should

be at the basic block level. In this case, each block is likely to be permuted with another block.

However, such a scheme could lead to high run-time performance overhead. Traditional compilers lay

out blocks that are likely to execute together in close proximity in the binary file (called chained blocks

in Diablo terminology [62]). Changing the layout of such connected blocks changes the alignment,

and leads to a high overhead. Thus, in our experiments, the granularity of interleaving is a chain of

basic blocks.

There are several algorithms for generating a random permutation of a finite sequence. In our

experiments, we utilized the Fisher-Yates shuffling algorithm [72]. During the protected package

creation, Diablo creates chains of basic blocks that are likely to be executed together. We modify

Diablo, to apply the Fisher-Yates algorithm on these chains. Consequently, the blocks are converted

to target-machine instructions and written to file.

Figure 4.2 illustrates the layout of a protected binary after the process of code-block permutation

has been applied. There are no discernible target areas where the adversary could focus their static

analyses. Thus, this scheme increases the attack surface for the adversary. In the next section, we

describe our experiments to support this assertion.
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Measuring Randomness

Figures 4.1 and 4.2 reveal that random permutation increases the search space for the adversary,

by adding randomness to the layout. We would like to demonstrate algorithmically that random

permutation indeed improves the static obfuscation. Giacobazzi have demonstrated that obfuscation

is directly related to the amount of entropy in the system [73]. Thus, we need a technique to measure

the relative entropy of the two layouts.

This question of measuring entropy has long been an area of interest for security researchers [74,

75, 76, 77]. Entropy is often directly related to the complexity of the system. The goal of security

techniques often involves increasing the complexity, to make it hard for the adversary to predict its

characteristics. Therefore, a metric that facilitates measurement of entropy of a security technique

can be used to demonstrate its effectiveness.

After much investigation, we decided to adopt the work of Hansel, Perrin and Simon in the area

of entropy measurement. In their seminal work published in 1991, the authors proved that the

compression rate, and the entropy of a set of characters are closely related [78]. The main outcome

of their work was to demonstrate that the compression rate of a finite string is the upper bound

on the entropy of the string (i.e., ξ(X) ≤ τ(X) where X is a finite character string, ξ represents

its entropy, and τ represents its compression ratio). They also demonstrated that the Ziv-Lempel

compression algorithm designed in 1978 (LZ78) [79], provides the most optimal comparison with

entropy values (i.e., ξ(X) = τLZ78(X)). This algorithm is implemented by the UNIX tool compress,

further facilitating the adoption of Hansel et al.’s work for our analysis.

We compare the relative entropies as follows: Each basic block of the protected package is assigned

a bit ID; ’0’ if it belongs to the PVM, and ’1’ if it belongs to the application. Then, a bit string

is created based on the layout for the normal case, as well as the case where random permutation

is employed. We then apply the compress tool to both these strings, and compare the sizes of the

compressed outputs. Table 4.1 displays the results.

For the benchmark 181.mcf, the original bit string size was 52983 bytes, for both cases. On

compression, the bit string representing normal layout resulted in a string with 555 bytes. The bit
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Benchmark
Bit-string
size
(bytes)

Compressed size
(normal layout)
(bytes)

Compressed size
(random permuta-
tion) (bytes)

181.mcf 52983 555 4950

253.perlbmk 88381 714 6110

176.gcc 145483 889 7565

Table 4.1: Results of applying compression to bit strings describing layout for the normal case,
and with random permutation applied to the blocks. This technique was applied to 181.mcf,
253.perlbmk, and 176.gcc. 181.mcf and 176.gcc represent the opposite ends of the spectrum in
terms of bit string sizes.

string representing the layout where random permutation was applied, resulted in a string of size

4950. Thus, using Hansel, et al.’s theorem, we can state that random permutation of basic block

chains resulted in a binary that had 10 times more entropy. Thus, using random permutations on

181.mcf results in static protections which were an order of magnitude stronger than the standard

scenario. We observe similar entropies between the two cases for both 253.perlbmk, and 176.gcc.

A point to note is that the strength of this protection depends on the relative number of blocks

for the application and the PVM. As the application code blocks increase in number, the amount

of entropy obtained by random permutation decreases. This finding can be deduced by comparing

entropies across benchmarks. The bit string representing the protected package for 176.gcc is three

times larger than the package for 181.mcf, and 1.64 times larger than 253.perlbmk. The number

of blocks belonging to Strata is the same in all three benchmarks. Comparing the compressed bit

strings for the benchmarks under random permutation, we observe the 176.gcc is only 1.6 times

larger than 181.mcf, and 1.24 times larger than 253.perlbmk. Thus, the rate of increase in entropy

is much slower than the increase in number of blocks.

Confounding Static Assemblers

In this section, we investigate the effect of encrypted blocks on static disassemblers, which are a key

tool for any adversary. Analyzing the output of a disassembler might aid the adversary in locating

critical information ( that is encrypted), and help to localize their attacks.

Our investigations revealed that several encrypted blocks of the application were erroneously

identified as valid instructions. This phenomenon arises from the variable-length, CISC-like nature
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Benchmark
Application
size (number
of ins.)

False positives (normal lay-
out) (number of ins.)

False positives (random
permutation) (number of
ins.)

181.mcf 147070 112914 (76.71%) 113678 (77.29%)

253.perlbmk 285347 207247 (72.66%) 206219 (72.27%)

176.gcc 495013 334166 (67.50%) 335004 (67.67%)

Table 4.2: This table displays the results of running a disassembler (objdump) on applications. The
second column displays the total number of static instructions in the binary file (not considering
the PVM). The third column displays the number of instructions that were falsely identified as
valid instructions (and the percentage over total count) for encrypted binaries with normal layout
(labeled as false positives). The final column displays the the number of instructions that were falsely
identified as valid instructions in encrypted binaries under random permutation. The code sections
for the PVM are not considered.

of the ISA (in this case, the Intel x86 32-bit version). Consequently, static disassemblers misidentify

encrypted byte strings as valid instructions and then attempt to use established idioms to obtain

higher level information [80]. For example, on the x86 32-bit platform, several encrypted byte

sequences were identified as return instructions. Table 4.2 displays the results of applying a standard

disassembler (objdump) on three applications for the Intel x86 32-bit platform. In this analysis, we

do not consider the code sections that belong to the PVM.

The second column displays the total number of static instructions that correspond to the

application. The third column displays the number of instructions that were falsely identified as

valid in the encrypted application. Since these values are from the binary with normal layout, all

these instructions are likely to be located contiguously in the binary. On average, the number of

false-positive instructions generated by the disassembler is 72% of the original application size. This

number indicates that the encryption does a good job of obfuscating static analysis tools.

The final column displays the false-positive instructions for the layout generated by random

permutations. In this case as well, the number of false-positive instructions generated by the

disassembler is 72% of the original application size. However, these false positive instructions would

be harder to identify on account of their spread in the binary (as demonstrated by Figure 4.2). For

example, in the case of 176.gcc, the average number of encrypted blocks was calculated as 700, per

1000 blocks of the protected package, in both layouts. In the normal layout, the standard deviation

was approximately 400, while in the case of the layout generated by random permutations, the
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standard deviation was 149.2. These numbers imply that, in the normal layout, while sampling the

protected package at the rate of 1000 blocks, the number of encrypted blocks that are likely to be

encountered is either very high, or very low, since the standard deviation is large (400). Therefore, for

the normal layout, the encrypted blocks are likely to be localized to specific intervals. A knowledgeable

adversary could potentially target those intervals with a high count of encrypted blocks, and extract

valuable information. For the layout generated by random permutations, the standard deviation is

lower (149.2), which implies that, while sampling this configuration, the number of encrypted blocks

encountered is likely to be closer to the average, for every sample interval. That is, the number of

encrypted blocks stays roughly similar for each interval, and the encrypted blocks are more likely to

be spread throughout the package. Therefore, an adversary would require more effort to establish

whether a block is valid or not, while analyzing the layout generated by random permutations.

In summary, combined together, encryption and random permutation of code blocks provide a

strong resistance to static disassembly of the protected binaries. The adversary would require extra

effort to obtain useful information for binaries protected using these approaches. In the next section,

we discuss related work in this area.

4.3 Related Work

Obstructing static analysis of applications has been researched extensively. Primarily such techniques

aim to thwart the ability of the adversary to extract useful information from the on-disk binary. Such

information helps the adversary gain high-level knowledge about the constructs and functionality of

the application.

Several solutions aim to break the decoding algorithms of traditional disassemblers. Code

encryption forms part of that solution set. Such systems typically rely on an accompanying interpreter

to execute the application. Examples of such systems include Proteus [11], in which the original

application was translated to a unique instruction set, and interpreted at run time by a specific instance

of an interpreter. There are several commercial tool available which use the same idea [36, 37, 39].
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A number of techniques attempt to conceal the control flow graph (CFG) of the application.

Wang, et al. proposed flattening the CFG, i.e., replace the direct jumps in the application with a

switch table [9]. The next block of instructions to be executed is determined by the value of global

valuer, and the resulting flow graph loses its structure. Collberg, et al. suggested using spurious

pointer aliasing to obstruct the disclosure of indirect jump targets. Collberg, et al. also proposed

adding bogus control flow statements in the application. The resulting graph has branches which

are never taken, branches which are always taken, and branches which are redundant (i.e., their

execution does not affect the semantics).

Debray, et al. proposed the use of branch functions to replace direct branches [23]. Instead

of a straight jump to the target address, control flows through a special function that performs a

complicated calculation to derive the target based on the caller address, and then executes a return

instruction (i.e., a ret) to the target. Conventional disassemblers expect control to flow back to

the instruction immediately following the call instruction, but branch functions do not let control

return to that instruction. Thus, using branch functions is an attempt to not only obscure the target

of direct branches, but also confuse traditional disassembly.

Popov, et al. also proposed replacing control transfers with signals and inserting dummy code

after the signals [81]. Static dissassembly will fail to extract the correct control flow of the program.

However, the application will function correctly because the signal handlers are able to patch the

control at run time.

Most of the techniques described in this section are complementary to PVM-based protection

and can be combined with it. These techniques have been rigorously evaluated and offer robust

protection against static analysis. However, most of these schemes can be subverted using dynamic

means. Protecting the application at run time still needs to be addressed.

4.4 Summary

The goal of PVMs is to provide dynamic protection to applications. However, PVMs can be utilized

to thwart static analysis as well. In this chapter, we discussed ways in which the PVM can improve
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the protection offered by encryption of application binaries. Code encryption hinders the adversary

from using traditional disassemblers on the binary. Secondly, random permutation of code blocks

increases the adversary’s attack surface. We employ an established algorithm to prove this assertion.

Our evaluations indicate that these techniques make static analysis harder.



Chapter 5

Strengthening Tamper Detection

Using PVMs

The previous chapter described the protection of the PVM-application package on disk. From this point

forward, we focus our attention to the run-time protection of the application, the major capability

of PVMs. This chapter investigates tamper detection of code in the presence of virtualization.

Tamper detection consists of techniques that ensure the application is unchanged after creation. Such

techniques have proven to be effective in protecting traditional application execution from tamper [2, 3].

Composing applications with PVMs changes the run-time environment significantly. This chapter

describes the impact of virtualizing applications on traditional tamper-detection techniques. Our

research also demonstrates that virtualization opens up new opportunities for protecting code from

tamper.

This research focuses on code integrity as the foundation to detect unauthorized tamper. Whenever

a code segment is generated (at software creation time or during application execution), a checksum

is created over it. Later, when that segment is scheduled for execution, the checksum is recalculated

and compared with the previous value. Any mismatch indicates that the code has been tampered

and triggers an appropriate response mechanism.

The major contributions of this chapter are:

53
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• Development of novel checksumming techniques via PVMs that are stronger than previous

checksumming techniques. With the dynamism provided by PVMs, checksumming mechanisms

can be relocated continuously making their identification and removal more difficult.

• Design of a multi-dimensional checking capability that provides a cyclical protection scheme.

The checks are located in three regions: the PVM, the application, and the software code

cache. The protection domain can include any of these regions. Previous attacks have been

successfully disabled tamper-detection features in part because such schemes operated on a

singular dimension (i.e., the application) [19].

• Conception of novel schemes that protect code generated by the PVM at run time. These

schemes can also protect code generated by the application itself i.e., self-modifying code. Such

code cannot be protected by existing techniques.

The remainder of this chapter is organized as follows. Section 5.1 introduces the concept of

software checksumming, and illustrates two techniques: a previously-established techniques called

guards [2], and a new technique called knots. Section 5.2 describes the use of code polymorphism

to increase the robustness of such checksumming techniques. The techniques described in this

chapter have been implemented in a prototype and Section 5.3 presents the results of a security and

performance evaluation of the techniques, using the prototype. The evaluation aids in understanding

the trade-off involved between performance and strength of program protection. Finally, we discuss

impact of these techniques on software protection in Section 5.4. We summarize this chapter in

Section 5.5.

5.1 Checksumming Code

The problem of unauthorized code tamper can be thwarted by the use of checksumming [2, 3, 1].

During the software creation process, hash values are calculated over several code ranges of the

application. These values are stored at random locations in the binary file. Next, a sequence of

instructions is generated corresponding to each range. Prior to the execution of a particular code
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Figure 5.1: On-disk layout of PVM-protected binary containing guards(G1, G2, G3, and G4).

range, the corresponding sequence checks that the hash value is consistent with the stored value. Any

mismatch indicates that the code has been tampered with, and an appropriate response mechanism

can be triggered. Such sequences of instructions that check integrity are referred to as checkers.

In PVM-protected applications, checking code is generated in two different ways, by the traditional

tool chain (called static code), and by the PVM at run time. Guards protect static code, whereas

knots protect any code generated by the PVM.

5.1.1 Guards

Guards are self-introspective code sequences that protect statically-generated code. This concept

was initially proposed by Chang and Atallah [2]. The technique works as follows. The application is

compiled and linked with associated libraries as per normal software development practices. Next,

hash values are calculated over different sections of the code. Then guards are created and placed

at different locations in the code. At run time, the guards are executed and check that the hash

values are consistent. Any mismatch triggers an appropriate response. Guards are inserted into the

application, as well as the PVM.

In our approach, guards protect the encrypted application instructions. Figure 5.1 illustrates

the layout of a protected binary, with guards (G1, G2, G3, and G4) and associated checksums

inserted in both the encrypted application and the VM. For example, the guard G3, located in the

VM, protects encrypted application code (shown in hatching in the figure), whereas the encrypted
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guard G4, located in the application, protects the VM. Initially, guard code templates are inserted

probabilistically throughout the application and the VM. The checksums are only calculated after

the entire application has been encrypted. This technique offers stronger protection than guarding

plaintext code in the case where the adversary is able to locate and adjust the checksums to reflect

any malicious modifications. The adversary would now have to encrypt the modifications as well and

update the checksums accordingly. Although the guards located in the VM are unencrypted, the

cyclic nature of guard protection ensures that such guards are safeguarded from tampering.

5.1.2 Knots

A number of SDT systems that use binary translation, translate code for the host machine at run

time [52, 82, 83]. Statically implemented guards cannot protect such code. A dynamic scheme is

required to safeguard dynamically-generated code.

We propose a novel scheme of program protection, in which the PVM generates knots during

translation [84]. At randomly-selected points during the application code translation, the PVM

will generate checksumming code that will safeguard translated code that is located in the software

cache. The goal of these dynamic knots is to protect the code located in the software cache, but

the protection domain can be extended to include the PVM and the guest application as well. At

random points during translation, the PVM creates a checksum over a randomly chosen range of

memory addresses using a pre-determined hash function, and stores the hash value. It then creates a

sequence of instructions that perform the same operation over the same range of memory and places

the instruction sequence in the software cache. The PVM then continues to translate application

instruction blocks normally. When control is transferred to the software cache, the knot executes

and ensures no modification of the translated block has occurred.

Knots provide an added protection feature, in that they can also protect code generated by the

application as well (self-modifying code). If the PVM-protected application attempts to execute

dynamically-generated code at run time, the PVM clears its software cache, and translates that code

sequences to its software cache. At this point, it can also insert knots that check the integrity of



5.2 Instantiation Polymorphism 57

STRATA VM

    

insn1

CONTEXT 
SWITCH

QUIT?

NO

YES

TRANSLATED CODE

FETCH

DECODE

TRANSLATE

NEXT PC

insn1

insn2

GUARD

….

insn3

insn4

insn2

jmp translator

insn3

Insn4

jmp translator

APPLICATION

KNOT

GUARD

GUARD

Figure 5.2: Flowchart depicting the run-time of a Strata-VM protected application. The code is
protected by guards and knots.

the translated code. To the best of our knowledge, no current scheme affords such protection to

self-modifying code.

Figure 5.2 depicts the flow of an application that is protected by guards and knots. Guards

that are placed in the application do not execute in-situ. Instead, they are translated and placed in

the software cache. Taken together, the guards and the knots protect the main components of the

virtualized application: the original application, the PVM, and the software cache.

5.2 Instantiation Polymorphism

Traditional code-integrity checkers have a very structured construction. Such checkers usually consist

of a sequence of instructions grouped together in memory, consisting of initialization (which usually

loads the start address and size of the region to be checked), a loop (to iterate over the address range),

a test (to check whether the checksum matches the statically-calculated value), and a response block
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(to decide what to do based on the outcome of the check). Often, applications have several checker

instances located in them, that are constructed based on this basic design, and use the same set of

instructions. For example, in their investigation of Skype, Biondi, et al. discovered that the binary

had over 300 guards protecting the code base, all of them designed using few templates [19]. As a

result, a majority of them were identical to each other.

This compactness of locality, regularity of structure, and instruction reuse facilitate the use of

automated attacks against checksumming systems. Once the structure of a few guards has been

determined, the adversary can create an automated method to parse the binary, and locate each

checker. These automated techniques can be easily crafted using regular expressions (RE). These

REs can be created to locate code constructs that are likely to be part of the checker. In the attack

on Skype, the authors created REs for the initialization part of the checker, and were successfully

able to identify all the instances. Once these instances have been identified, the adversary can replace

the verifier code with harmless instructions (e.g., no-ops). After this change, the adversary is free to

modify the application at will. Biondi et al. successfully disabled protections in Skype using this

technique [19].

In general, automated attacks are an issue in most software security systems. As we mentioned

in Section 1.3, one of the goals of security techniques involves increasing the effort required by the

adversary to obtain the assets from the application. Since automated attacks are easier to craft

than customized attacks, the vulnerability of any security scheme to automated attacks significantly

reduces its effectiveness. To combat such attacks, many systems employ software diversity, which

consists of customizing every instance of a particular security scheme [85, 86] . The basic premise

behind software diversity is that each security implementation is different from another instance,

such that an automatic attack has a reduced chance of success. This diversity of implementation is

typically driven by randomization. Diversity has been demonstrably successful against several types

of automated exploits [87, 88, 89].

We propose using diversity of structure to thwart automated attacks on checkers as well. In our

case, diversity is provided by the use of polymorphic code in the construction of checkers, as well as
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preamble:

mov edx , -checksum

mov eax , range_start

....

loop:

cmp ebx , range_end

jg checker

add edx , dword[ebx]

add eax , 4

jmp loop

....

checker:

cmp edx , 0

je app_code

jmp tamper_response

....

tamper_response:

...

(a) Assembly listing of a checker. The
checksum is calculated using the add

operation.

preamble:

push checksum

pop ecx

mov eax , range_start

loop:

cmp eax , range_end

jg checker

xor ecx , dword[eax]

lea eax , [eax + 4]

jmp loop

....

checker:

jecxz app_code

sub esp , 4

mov esp , tamper_response

ret

....

tamper_response:

...

(b) Assembly listing of another checker. The
checksum is calculated using the xor opera-
tion.

Figure 5.3: Two examples of knots, created using a random selection of instructions.

the location of the checker components across application invocation. Whenever a checker needs to

be created, the constituent instructions are chosen randomly. The basic premise is to reduce the

similarity between any two checkers. Used effectively, polymorphism can prove to be a powerful

deterrent against simple regular expression-based attacks [90, 85].

We utilize polymorphism as follows: A standard checker still consists of the four main components:

a preamble, a loop, a verifier, and tamper response. To expand the locality, these four components

are not grouped together, but are distributed in different regions in the binary. Furthermore, a

database of instructions is used to construct these components. During checker creation, random

instructions are chosen from this database to form its structure. Figure 5.3 shows code for two such

checkers created using a random selection of instructions. To further increase the level of obfuscation,

the instruction database is placed with other program data. This scheme is similar in concept to

that employed by polymorphic viruses [61]. Typically, polymorphic viruses consist of a malicious

payload that is encrypted, to prevent static analysis. These viruses also possess a mutation engine

that generates a new decryptor each time a virus infects a new program. In many cases, even the

decryption routine itself is randomized in each new copy [91]. As a result, not only is the virus

payload randomized, but the virus decryption routine also varies from infection to infection. With
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no fixed code to scan, the virus scanner is thwarted in its search for specific virus signatures [92]. In

our system, the different permutations allow for several thousands of different checker instances. Our

prototype supports the expansion of checkers generation by a few orders of magnitude, enabling the

defender to create millions of checkers. Also, in case of tamper, the checkers do not immediately

report an attack. Instead, whenever an attack is detected, control transfers to a different location

and the tamper response is delayed till a later time. This delay has been demonstrated to be effective

in thwarting the identification of checkers [93].

To summarize, previous checker systems have been vulnerable to attack primarily due to their

compactness, and uniform structure. In this section, we have described our design, which can be

used to generate checkers with little or no predictability in construction and layout. Thus, regular

expression attack will no longer be as effective at dismantling checkers. We present the evaluation of

our techniques in the next section.

5.3 Evaluation

Using a combination of binary rewriting and Strata [51], a prototype has been implemented that uses

previously-described techniques. The proof-of-concept implementation targets the Intel x86 platform,

but the concepts described in this work are platform-independent. First, the application and Strata

are compiled using a traditional compiler. Next, a link-time optimizer, called Diablo, inserts guards

into the package. At run time, the application runs under control of Strata, and both components

are protected by static guards. Also at run time, Strata protects its software code cache using knots.

We applied these techniques on several benchmarks of the SPEC CPU2000 suite and analyzed the

results. All the performance related plots are normalized to native execution (i.e., no protection

techniques) and averaged over five runs.

For guards, the number to be inserted into the application and the PVM is determined by a

heuristic. The heuristic takes into account the expected connectivity (number of guards protecting a

guard on average), and the size of the address range, given by N = K∗P
S where K is the approximate

coverage desired by the user, P is the program text size, S is the average guard range size set by the
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Figure 5.4: Number of checkers (guards and knots) executing per second for 175.vpr and 176.gcc.
The protected range consists of both the application code and the translated instructions.

user and N is the number of guards. Various experiments were run, with these parameters (K and

S) set to different values. From preliminary investigations, we found that a value of 7 for K, and

4096 bytes as the value for S yielded a good trade-off between performance and protections.

For knots, we also chose similar values for connectivity and protection-domain size. Our results

are presented below.

5.3.1 Run-time Protection

We first analyze the run-time protection afforded by these techniques. The frequency of checker

invocation is one useful metric of run-time protection. Figure 5.4 shows the frequency of combined

checker execution per second for 175.vpr and 176.gcc. The figure illustrates that both guards and

knots execute frequently for both benchmarks. The checkers are triggered by predicates.
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Figure 5.5: Guard connectivity

A high rate of execution of the guards is necessary, but not sufficient condition for robust tamper-

detection systems. The range of protection also needs to be evaluated. In an effective system, each

byte of the application should be protected by multiple checkers, so that even if an adversary manages

to disable some of them, there are other checkers offering protection. Therefore, another important

metric involves measuring the connectivity of guards. Connectivity is defined as the number of unique

checkers covering a particular region of memory. Figure 5.5 shows that on average about 80% of the

application text is covered by three to four checkers (this graph covers the guest application code, as

well as the code residing in the software cache). This value indicates that on average, the adversary

will have to disable 3-4 checkers to modify a single byte of application code. These checkers, in turn,

are protected by 3-4 checkers each. Such a distributed protection scheme makes it difficult for the

attacker to target any single point of vulnerability.
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Figure 5.6: Average time delay between checks for each byte of the program. This metric gives an
indication as to how long a modification can exist undetected.

The strength of tamper detection can also be evaluated by measuring the average time delay

between successive checks on a program byte. This metric indicates how long modifications can exist

in the system before detection. Figure 5.6 the measurement results for the C benchmarks in the

SPEC 2000 benchmark suite. On average, checks are performed every 3.5 seconds for each byte in

the programs, indicating that any modification in the code will be detected within 3.5 seconds on

average. We believe that this value is sufficient protection for many classes of applications, such as

word processors, web browsers and media players. For example, using these techniques to protect

media players will prevent the adversary from viewing digital media for any significant length of time.
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Figure 5.7: Percentage of unique checkers for each benchmark. This statistic indicates that a simple
regular expression will fail to locate all of them.

5.3.2 Measuring Diversity of Checker Instances

As described in Section 5.2, we proposed instruction polymorphism to defeat attacks that use regular

expressions. Figure 5.7 shows the percentage of unique checkers created for each benchmark. For

our proof of concept, we constructed an instruction database for use by both Diablo and Strata.

This database supports the creation of tens of thousands of unique checker instances. For all of the

benchmarks, our design achieved upwards of 90% unique instances for every benchmark. Since the

creation of checkers is driven by randomization, there is a small probability that the structure of two

or more checkers are identical. The database can be inserted with more template instructions to

make this probability even lower, and achieve greater occurrence of checker uniqueness. This graph

demonstrates that there is a significant amount of diversity in the structure of the checkers. Thus, if

the adversary is able to correctly identify one checker using a regular expression string, there is a low
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Figure 5.8: Performance overhead for the protection features normalized to native application run.

probability that another checker will be identified by that search string. Another point to note is

that the checker structure and location changes with each invocation of the application, providing an

ever-changing attack surface for the adversary. Based on the outcomes derived by previous work on

software diversity, [11, 85, 90], we conclude that instantiation polymorphism is effective at defeating

automated attacks based on regular expressions.

5.3.3 Performance

Figure 5.8 displays the performance overhead of Strata and the protection features normalized to

native (i.e., the baseline is the application running natively on the platform). Strata itself adds

around 17% overhead to the run time [43]. Previous work has investigated techniques to reduce this

overhead [53]. Research in this area is still ongoing.
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The checkers add an additional overhead of around 15%. Both guards and knots add an overhead of

around 7% each, which is logical considering that the execution rate of both is similar. The predicates

that trigger checker execution are based on the exponential back-off method [94]. Initially the checker

executes immediately when the predicate is triggered. Every time the checker is executed, the

predicate is reconfigured such that it will have to be triggered twice more than the previous predicate

value before the checker will execute, subject to a threshold value. This scheme multiplicatively

reduces the rate of checker execution (and consequently, performance overhead) to gradually find an

acceptable rate.

5.4 Discussion

This section discusses some of the protective properties of the checkers, as well as their robustness

against established attacks.

5.4.1 Protection of Generated Code

The primary goal of the knots is protecting the translated code from tamper. To our knowledge, our

scheme is the first attempt at tamper-proofing the software code cache. Static techniques can only

protect the guest application code and the PVM. Previously, the adversary could make modifications

to the code cache without fear of detection. In the presence of knots, such modifications will be

detected. As we demonstrated, knots and guards complement each other, and should be used in

conjunction to provide robust protection.

5.4.2 Software Diversity

Several researchers have advocated the use of diversity to make software applications less vulnerable

to automated attacks [95, 96, 97]. The argument is that if every instance of a protection technique is

different, it is more difficult to reuse an attack that was successful against one instance. In keeping

with this viewpoint, we have created a system for checkers (guards and knots), that is based on

diversity. First, we use polymorphic code to create the actual instances. In our prototype, more
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than 90% of the instances possess unique structure. Secondly, the components of the checkers are

not located together but distributed in memory. Each time the application is invoked, the structure

and location of the checkers are altered, providing a constantly-changing execution environment for

the application. Thus, the attack target for the adversary is in a state of flux across application

invocations. In Chapter 6, we will introduce techniques to change the attack surface of the application

at run time.

5.4.3 Circular Protection

All the techniques mutually reinforce each other to provide a strong tamper-resistant run-time

environment. For example, guards check the encrypted binary as well as the PVM code. For an

attack to be successful, the adversary will have to find and update all the guards (since each guard is

protected by a network of multiple guards). Similarly, the code cache is protected by knots. Also,

the guards in the application are protected via encryption. This code is only decrypted on demand,

so the guards are not in plaintext simultaneously. Taken together, every component of the software

package is being protected against tamper.

5.4.4 Effectiveness Against OS and VM attacks

Modified OSes have already been used to mount successful attacks against software checksumming

systems. Such systems work on the assumption that the underlying hardware uses a von Neumann

architecture (data reads and instruction fetches go to the same memory structure). Wurster, et al.

demonstrated a skillful software-only attack on guards: separate data and instruction memory [20].

Each page of the application was duplicated and modifications were applied to it. The kernel was

modified such that data reads would go to the unmodified application, whereas instruction fetches

would bring in instructions from the tampered copy. In our system, the application code is encrypted

on disk, and decrypted on an on-demand basis. To create a tampered copy, the adversary will have

to obtain the decrypted instructions from the code cache. In the next chapter, we will introduce

techniques to periodically delete code from the software cache. Under this obfuscation scheme,
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the adversary will only be able to create a copy from the cache, if he is able to gather all the

cache snapshots. Also, PVMs like Strata use self-modifying code, which has been shown to defeat

split-memory attacks [98]. Any attempt to tamper with the underlying memory system would render

the VM and consequently, the application, unusable.

5.5 Summary

Checksumming is a well-established techniques to thwart tamper attacks on software. Composing

applications with PVMs adds a powerful, new dimension to checksumming. In this chapter, we

discussed some of the novel features of using checksumming in a PVM-protected application. PVMs

add dynamism to the guards, translating them to a new location before execution. This relocation

makes it hard for the adversary to identify their position. Also, knots created by the PVM safe-

guard the previously-unprotected software code cache. Taken together, these techniques provide a

comprehensive protection strategy against unauthorized tamper.
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Temporal Polymorphism

The previous chapter described the use of instantiation polymorphism to change the shape of guards

and knots across application runs. Such a technique can provide protection against iterative attacks,

where the adversary might try to run the application multiple times to gain useful information. To

improve the tamper resistance of the program during execution, this chapter introduces the technique

of temporal polymorphism. Temporal polymorphism presents the attacker an attack surface that

changes at run time.

Temporal polymorphism is achieved by periodically flushing the code cache of the PVM, and

continuing translation of the application [34]. As we described in Section 2.3, the PVM caches the

instructions for optimization purposes. Compacting all the critical instructions (i.e., the application’s

instructions) in a particular location (the code cache) creates a potential vulnerability in the system

as the adversary can focus their analysis on this region. To provide a fluctuating attack surface, the

instructions in the cache are deleted periodically, and the PVM continues to translate and cache the

application’s instructions.

This periodic flushing provides the foundations for the PVM to create a moving attack surface for

the adversary. For example, after flushing, the PVM continues to translate and cache the application

as before, but the location of the software cache can be changed. Therefore, each flush results in the

the relocation of the attack target (the translated instructions). Also, the application’s semantics

69
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can be expressed using different opcodes after every flush, creating a diverse attack surface (e.g.,

add eax, 1 can be expressed as sub eax, -1, mul eax, 2 can be expressed as shl eax, 1, etc.).

Employing this feature enables the same original application block to appear as different blocks

in the software cache. These three components (cache flushing, code polymorphism, and location

randomization) together constitute temporal polymorphism. The major contributions of this chapter

are:

• Design of a continuously shifting application attack surface. Such a scheme provides increased

ability to protect against run-time attacks, e.g., critical sections of the application are not

executed in-situ, but from randomized locations in memory as the program executes. This

dynamism is missing in current techniques.

• Formulation of decryption schemes that have a finer level of granularity than current tech-

niques [19]. By combining cache flushing with on-demand decryption, the amount of code that

is available in plaintext form can be reduced significantly.

• Development of stealthy schemes to trigger flushing. Using an external signal to trigger cache

flushing creates a potential point of attack, because the adversary has full control over the

external environment 1.3. Our scheme uses internal application properties to trigger flushing.

• Evaluation of the prototype implementing the ideas discussed in the chapter. We demonstrate

the effectiveness of temporal polymorphism against published attack methodologies. Our

analysis shows that such attacks fail to uncover useful information in the presence of temporal

polymorphism. This obfuscation can be implemented with tolerable performance overheads.

This chapter is organized as follows: in Section 6.1, we describe temporal polymorphism in greater

detail. Section 6.2, we present the results of the evaluation of temporal polymorphism. In Section 6.4,

we discuss the effect of temporal polymorphism on previously-published attacks, and demonstrate

that this scheme is effective at thwarting such attacks. We summarize our findings in Section 6.5.
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6.1 Incorporating Temporal Polymorphism

As described in the previous chapters, the protected package consists of the encrypted application and

the PVM. At run time, the PVM performs on-demand decryption of the application code, and caches

the translated code in a software-managed memory buffer to amortize performance overhead [51].

Over a period of time the application code will materialize in the cache. Flushing the code cache

at periodic intervals prevents the adversary from obtaining a sizable portion of the plaintext code.

Flushing splits the run-time information into multiple pieces, forcing the adversary to splice them

back together to fully analyze the application.

Flushing also creates an opportunity for the PVM to retranslate the code using a different set

of opcodes. Such a scheme creates a constantly changing execution profile of the application. It

regularly shifts the attack surface of the application as the protection mechanisms are relocated after

each flush. This entropy is furthered increased by adding a random number of dead-code instructions

to each basic block in the software cache. Randomized blocks combined with flushing ensure that

code blocks regularly execute from different addresses in the cache. Therefore, periodic flushing,

retranslation and dead-code instructions act together to impart temporal polymorphism.

In the next section, we discuss the factors affecting the trigger mechanism for the cache flush.

6.1.1 Triggering Cache Flush

Balancing the periodicity of code cache flushing plays an important role in determining the effectiveness

of temporal polymorphism. At one extreme, a flush can occur after each instruction is executed.

At any point in time, the adversary will only be able to disassemble one instruction, leaking the

least amount of information. Unfortunately, such a scheme will lead to an inordinate amount of time

being spent in translating instructions and not enough on actual application execution.

One of the major goals of this work has been to find stealthy schemes which flush the code at a

fairly uniform rate, such that a high rate of polymorphism is achieved, yet the performance does

not degrade significantly. The first scheme considered involved flushing based on a periodic signal

generated by the operating system. On receipt of this signal, the system saves the current context
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and deletes the stored instructions. Execution continues at the next PC scheduled for execution.

However, the threat model includes the case where the application is run on under a malicious OS.

The adversary could modify the OS kernel such that the signal is not delivered to the application at

all, thus disabling the flushing completely.

Consequently, another technique was required for triggering the cache flushing. Ideally, this

scheme should depend on an inherent property of the application itself, making it difficult to alter the

system via external manipulation. The flushing should be triggered stealthily, without alerting the

adversary as to when the code cache is cleared of the stored instructions. One such scheme involves

counting a particular type of instruction at run time and triggering the flush when a threshold

has been crossed. The instruction should be numerous enough and well spread out throughout the

application code such that the flushing behavior is approximately periodic. As an example, we chose

indirect jumps (including function returns) as our candidate instruction. The application is run in

training mode and the average number of indirect jumps executed per second is calculated. Flushing

occurs based on some function of this average.

6.1.2 Randomizing Code Locations in the Cache

Flushing enables code locations to change during execution. This code shifting hampers the adversary

from launching iterative attacks on the application. As such, a small number of random instructions

(between 2-8) are appended at the end of each basic block in the software cache. This randomization

ensures that there is a high probability that relative distance between any two basic blocks is different

across software cache flushes. As a consequence, code (including protective code, such as guards and

knots) will execute from different locations during, and across runs.

We have built a prototype implementing these ideas. The next section presents an analysis of

this prototype.
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Figure 6.1: Performance overhead due on flushing based on indirect branch count

6.2 Evaluation of Temporal Polymorphism

In this section, we analyze the effects of indirect-branch-based flushing on performance and program

security. Initially, the application is profiled, using SPEC’s training input, to obtain the number of

indirect branches executed per second (designated as R in the following discussion). Figure 6.1 displays

the plot showing the performance overhead relative to unprotected execution. The performance

overhead for flushing after every 10R, R, and R/10 branches was 25%, 30% and 55% respectively,

compared to native execution. The overhead for flushing every R/10 branches is quite high but

the other two options show promising results. We found the rate of flushing becomes somewhat

inconsistent, if the threshold is set too low. In particular, flushing performed after every R/10

branches differs when compared with flushing performed every 0.1 sec. The reason for this behavior

is that indirect branches are not temporally uniform but are clumped together in time.



Chapter 6 Temporal Polymorphism 74

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

P
e
rc

e
n
ta

g
e
 o

f 
a
p
p
lic

a
ti
o
n
 t
e
x
t 

Time in seconds 

No Flushing R/10 R 10R

Figure 6.2: Rate of plaintext application code due to flushing on indirect branch count for 176.gcc

In addition to temporal polymorphism, periodic flushing significantly reduces information leakage,

when compared to current decryption schemes [19, 12]. This reduction is evaluated by measuring

the rate at which application text appears in the code cache. Figure 6.2, which plots the rate at

which the application text appears in the code cache for 176.gcc. The plot shows that even without

flushing, only some of the program text is present in the cache at a time. Flushing every 10 R

branches per second shows some benefit, as much of the code is used in startup or tear down, after

which it can be flushed out of the cache. Flushing every R branches is much more effective at keeping

a significant portion of the application out of the cache. Flushing R/10 branches per second does

the best job, as no more than 30% of the code resides in the cache at any point in time, while only

adding an overhead of around 20%. This value is much better than bulk decryption [19], which has

100% application code decryption at startup. Decryption on a per-function basis typically has high
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Figure 6.3: Distribution of code cache addresses for guards across 10 independent runs. The cache is
flushed every second.

overhead (up to 8X), unless functions are encrypted selectively based on profiled information [12].

Flushing based on indirect branch count relies on training input to ascertain the average number

of branch instructions executing per second. This average differs frequently when the application is

run using reference inputs. There are other program characteristics that can be used to simulate a

periodic signal, but the challenge is to find one which is consistently uniform across all application

inputs. Developing an algorithm which provides consistent flushing which maintains the program’s

security without degrading performance is an area of ongoing research.

To illustrate the effectiveness of adding random instructions during translation to randomize code

addresses, we analyzed the locations of protective code, in this case, application guards. Figure 6.3

shows the distribution of cache addresses of guards across 10 runs of the same executable. The

software cache was flushed once every second so that even within a single run, guards execute from
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multiple locations. Each guard had at least 10 distinct locations within the cache.

6.3 Robustness of the Flush-trigger Mechanism

As we described earlier, any external triggering mechanism for the software cache flush can be easily

neutralized. The adversary has complete control over the external environment (including OS and

the hardware), and can provide false information to the application to disable the trigger mechanism.

In light of this weakness, it is essential to trigger software cache flushing based on properties of

the application itself. In our prototype, flushing depends on the dynamic count of indirect branches.

The threshold, at which the software cache is flushed, is modeled to achieve a periodic effect i.e., the

threshold is chosen in such a way that the software cache is flushed at approximately regular intervals.

Any other dynamic program property is equally applicable (e.g., number of calls, number of direct

jumps, etc.). Obscuring the cause of the flush is the first line of defense against tamper attacks.

An adversary attempting to disable flushing may try to overwrite the instructions that actually

do the flushing (e.g., replace them with no-ops). The presence of guards makes this attack less likely.

As we have demonstrated in Chapter 5, each byte of the application (including guard code) is checked

multiple times. Therefore, the network of guards provide robust resistance to tampering with the

flushing mechanism.

Instead of modifying code, the adversary might attempt to change the threshold value, which

triggers the software cache flush. This threshold is likely to be located in the global data section for

the protected package. It is conceivable that an adversary is successful in locating the threshold value,

and changing it to a large negative number. This change will effectively disable flushing. To thwart

such attacks, copies of the threshold value can be made and distributed throughout the program

data section. The sequence of code that updates the counter and checks if the threshold value has

been reached, is generated dynamically and placed in the software cache. Multiple copies of this

sequence can be generated. In this manner, the point of vulnerability (the threshold value, and the

code updating the counter) is distributed, and hard for the adversary to locate and disable. Finally,
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the flushing mechanism itself is located in the PVM, safeguarded by software guards. Any attempt

to modify the flushing code would be detected by the guards.

Thus, taking these protection schemes together, we believe that it would be hard for the adversary

to disable flushing. In the next section, we illustrate the effects of temporal polymorphism on

established reverse-engineering attacks.

6.4 A Use Case

To further highlight and demonstrate the effectiveness of temporal polymorphism, we describe a

published use case describing reverse-engineering methodologies. We then illustrate the effectiveness

of temporal polymorphism against such attacks.

6.4.1 Analyzing the Control Flow Graph

The first step of any attack involves obtaining a basic understanding of the application. The control

flow graph (CFG) is an essential data structure for program comprehension and analysis. It is a

directed graph where the vertices represent basic blocks, and edges represent potential transfer of

control flow from one block to another. A CFG can be dynamic or static. The static CFG is obtained

by locating the start address of the application in the binary. Then, all the basic blocks are identified.

Finally, all potential paths between the blocks are located. The dynamic CFG, on the other hand, is

usually obtained from the trace of actual instructions executed. Depending on application input,

the trace of one application invocation might be different from another. Consequently, the dynamic

CFG can also be different from one invocation to another. In some cases, the static CFG can contain

the superset of all possible dynamic CFGs in the application. In other cases, the dynamic CFG is

partitioned into static control flow and data flow (e.g., applications that use self-modifying code).

Obtaining the CFG from the binary in the presence of static protections can be computationally

very expensive [61, 9]. Consequently, adversaries have increasingly focused on run-time techniques

to obtain the CFG. Although CFGs obtained dynamically can be incomplete, they still provide



Chapter 6 Temporal Polymorphism 78

the adversary with useful information about the application. PVMs provide protection by making

dynamic CFG construction and analysis highly resource- and time-intensive tasks.

To demonstrate this point, we studied dynamic reverse engineering schemes that have been shown

to be successful in attacking software [99, 100] and compared their effectiveness in the presence of

a protective PVM. Typically, these techniques involve instrumenting the protected application to

obtain the instruction trace. The trace is analyzed to identify individual basic blocks. Consequently,

control flow analysis is performed to obtain the dynamic CFG of the application. The adversary then

performs profiling of various structures, such as basic blocks and procedure calls, to isolate relevant

portions of the code. For example, Madou et al. used basic block execution frequency and in-degree

of functions to identify a watermarking function [99]. Similarly, Udupa et al. used edge profiling to

identify and remove unnecessary edges from the static CFG [100].

6.4.2 Thwarting Dynamic Analysis

To show the effectiveness of temporal polymorphism against the attack methodologies described in

Section 6.4.1, we explored the applicability of such profiling techniques on two different run-time

scenarios.

• The application executing without any protections (No protection).

• The application executing in the presence of a protective PVM (Protected). This PVM applies

temporal and instantiation polymorphism to the application code.

To facilitate collection of application code blocks that have been translated, the application was

run under an instrumentation framework in both scenarios. In the following discussion, we refer to

such blocks as dynamic blocks. The dynamic blocks are identified based on their starting virtual

address. The protective PVM was also modified to generate the mapping between on-disk application

code blocks and translated blocks. This modification was performed only for the purposes of this

study and would not typically be available to the adversary.

We began by comparing instruction trace generation and block analysis in both cases. On

comparison, we observed that packaging a protective PVM with the application makes analysis of
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Application Rank Rank

Address
(No Pro-
tection)

(Protected)

0x8048830 1 121

0x804ac3c 2 45

0x804ae1b 3 13

0x80507d4 4 9
0x80507d9 5 173

0x80507c0 6 18

0x80507fa 7 29

0x805082c 8 351

0x8050810 9 139

0x804a750 10 779

Table 6.1: Original application addresses of the top-10 most frequently executing blocks in the
unprotected run, with their corresponding rank when run under the protection of a PVM. The
standard deviation for these blocks in the protected run comes to 239, indicating a very high degree
of variability. Consequently, more effort will be required to locate the blocks.

the dynamic trace and CFG generation much harder. First, the periodic flushing and retranslation

of application code increased the number of individual basic blocks substantially. In the case

study involving 256.bzip2, the number of dynamic code blocks increased from around 3.7K for

the unprotected run, to more than 160K when the application was subjected to PVM protection.

Similarly, the number of distinct CFG edges rose from 6.4K to 290K. Although a large number of

these dynamic blocks originate from the same application blocks, temporal polymorphism makes the

code blocks appear different [101]. To summarize, temporal polymorphism increases the number of

dynamic blocks by an order of magnitude. To obtain the dynamic CFG, the adversary would have to

perform analysis on a larger instruction trace. Furthermore, to obtain a CFG closer to the actual

application CFG, the adversary would have to perform analysis to reduce the number of blocks (e.g.,

by identifying different blocks that were translated from the same original application block).

Temporal polymorphism alters a number of dynamic characteristics of the application, such as

block execution frequency, and in and out degrees of the CFG nodes. Figure 6.4 shows the execution

frequency of the dynamic blocks in both the scenarios. When the application was run with no

protections, we observed that there were a few code blocks which execute very frequently (of the

order 107). An adversary would initially focus on reverse engineering these blocks, as they are

on the hot paths of the application. Madou et al. used this heuristic to locate the watermarking
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Application Rank Rank

Address
(No Pro-
tection)

(Protected)

0x804bec0 162 1

0x804ae21 17 2

0x804ac74 36 3

0x804bed3 21 4
0x804a7a0 42 5

0x804abaf 164 6

0x804a81a 88 7

0x804a99b 126 8

0x80507d4 4 9

0x804a7ca 63 10

Table 6.2: Original application addresses of the top 10 most frequently executing blocks when the
application is run under the protection of the PVM, along with their corresponding rank when the
application runs unprotected.

function [99]. Running the application under the control of a protective PVM obfuscates such blocks

due to periodically flushing and retranslation to different locations. The execution frequency for the

protected application show that there are no longer blocks which execute as frequently (i.e., no blocks

with an execution frequency over 107). Instead, there are now more code blocks executing at a lower

frequency (e.g., between 102 and 105). For example, 15% of the blocks execute at least 104 times

when running under the control of a protective PVM, as compared to just 4% in the unprotected

run. Thus, there are no obvious candidate blocks where the adversary could initiate analysis. The

adversary will have to increase the search space to locate the hot paths for the application.

The PVM also provides misleading information to the attacker. In the two scenarios mentioned

above, we ranked all the code blocks based on their execution frequency. Rank 1 was assigned to

the most frequently executing block. Table 6.1 shows the top-ten most frequently executing blocks

when the application is run without any protections. Traditionally, an attacker would focus on

analyzing these blocks first. Column 2 displays the ranking of these blocks when the application is

run under the control of the PVM. For example, the most frequently executing application block in

the unprotected run, appears at the 121st position when the application is run under the protective

PVM. Thus, the PVM is able to reorder the blocks based on execution frequency. We observed

similar reordering when rankings were based on the in degree of the code blocks. Table 6.2 shows the

list of the ten most frequently executed blocks when the application is run under the protection of
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Figure 6.4: Execution frequencies for the application blocks under the two run-time scenarios (No
protection, and Protected). The periodic flushing and retranslation of the application’s code blocks
by the protective VM drastically changes the execution frequency characteristics. Under the control
of the VM, blocks no longer execute at very high frequencies ( 107), instead substantially more blocks
execute at intermediate rates ( 103 and 105), forcing the adversary to expand their search space.

the PVM, along with their corresponding ranks in the unprotected run.

We observe that the blocks with a high rank in the unprotected run, are displaced in rankings by

other blocks when the application is run under temporal polymorphism. Most instrumentation tools

identify blocks based on their address. Since, under temporal polymorphism, application blocks are

constantly flushed and rewritten at a different location, the instrumentation tool is not able to identify

different blocks as originating from the same application block. The use of code polymorphism adds

an extra layer of obfuscation. A retranslated block is likely to be composed of different opcodes, than

its previous incarnation. Thus, this study demonstrates that frequency analysis is not useful to the

attacker in the presence of temporal polymorphism. Critical information (in this case, the ranking
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based on frequency) is dispersed by the protective PVM, making it difficult for the adversary to

locate and exploit it.

Finally, the constant shifting of code for the application makes it difficult to detect the execution

location. We ran the PVM-protected application ten times and observed that application blocks were

translated to different code cache addresses each time. Therefore, even if the adversary is able to

identify critical code (i.e., the address of a relevant function) in the on-disk binary, that information

is of no use at run time since there is no a priori knowledge about the final location of the translated

code. For example, in Madou et al.’s case study, once the watermarking function was determined;

the application was run under the control of a debugger and the control flow changed to circumvent

the function using breakpoints. This technique will not work in the presence of a protective PVM as

code is repositioned continually.

As should be obvious, PVMs have the potential to provide strong protection against dynamic

analysis on software applications. PVMs can greatly increase the search space for the attacker,

provide misleading run-time information and continuously relocate critical code, making dynamic

analysis exceedingly difficult to accomplish. There exists research which aims to reverse engineer

PVM-protected applications, by identifying code belonging to the VM in the execution trace [102, 57].

However, such methodologies usually involve performing complex analysis on the trace information

and are targeted towards applications which are typically small in size (i.e., a few hundred instructions

e.g., malware). These methodologies fail to provide satisfying results when applied to VM-protected

applications as they are unable to process the complex data and control flow typically associated

with large applications.

6.5 Summary

In this chapter, we presented temporal polymorphism, a novel methodology for obfuscating application

code. By periodically flushing the cached code, and retranslating it using different opcodes at different

locations, this technique presents a changing attack surface to the adversary. Reverse-engineering

methodologies that depend on iterative runs or profiled information, failed to obtain useful data in
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the presence of temporal polymorphism. To impart trigger this scheme, we presented a technique

based on the application itself (i.e., the rate of indirect branch execution). Our evaluation shows

that temporal polymorphism is a potent obfuscation scheme, reducing the leakage of plaintext

information, as well as constantly relocating code. The analysis of the use case proved that known

reverse-engineering attacks will fail on applications protected by this mechanism.



Chapter 7

Point-ISA: Binding the

Application to the PVM

Chapters 5 and 6 illustrated the effectiveness of PVMs in improving the tamper detection and code

obfuscation of applications. In particular, instantiation and temporal polymorphism can make it

hard for the adversary to successfully reverse engineer the application. Consequently, any attack on

the application has a higher chance of success if the protective PVM can be disabled.

This chapter investigates an attack methodology that targets applications protected using process-

level virtualization. The basic premise behind this attack strategy is that the PVM is not tightly

bound to the application, and can be replaced by the adversary. Using a replacement attack,

the attacker can effectively remove any dynamic protection technique provided by process-level

virtualization and proceed to analyze the application. After presenting a thorough investigation of

this attack methodology, we present a novel approach to counter replacement attacks. The basic

premise behind this solution is to create a unique relationship between the application and the

protective PVM instance, based on the semantics of certain instructions. This relationship facilitates

the detection of any attempt to execute the application without mediation by the protective PVM.

Some of the major contributions of this chapter are listed below.

84
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• Design of a novel attack methodology, called replacement attacks, targeted towards virtualized

applications (i.e., applications that run under the mediation of a process-level virtual machine),

that seeks to render the protective PVM ineffective [103]. A replacement attack can be used

against any application that is run under the mediation of a process-level virtual machine. The

goal of a replacement attack is the circumvention of the dynamic protections driven by PVMs,

thereby making dynamic analysis easier.

• Demonstration that existing protection schemes, such as software checksumming guards fail to

adequately protect virtualized applications from replacement attacks. Thus, a novel solution is

required to thwart this class of attacks.

• Use of a comprehensive, two-part case study that describes in detail, the replacement attack

methodology. The first part of this study describes the creation of a protected, virtualized

application, and then how an attacker can replace the protective PVM. We describe two

prototypes of the replacement attack using easily available, free-to-use tools. The first involves

replacing the protective PVM with an attack PVM (i.e., a PVM without any protections). The

second prototype involves running the application on a modified simulator which circumvents

the protective PVM and simulates the application directly. These examples demonstrate the

feasibility and effectiveness of replacement attacks on non-trivial applications. We then discuss

the implications of the replacement attack in the second part of our case study. It involves

examining dynamic attacks on unprotected applications, PVM-protected applications, and

applications subjected to the replacement attack. Our results show that the replacement attack

renders the application completely vulnerable to run-time analysis and subsequent tamper.

• Design of a novel solution that thwarts replacement attacks. This solution, termed Point-ISA

seeks to bind the application to its associated protective PVM instance. This novel relationship

is achieved by inserting instructions into the application, whose semantics have been modified

for this particular context (application and protective PVM instance). Any other interpreter
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attempting to execute the application will interpret these instructions according to their original

semantics and can be detected.

• Design of a prototype that implements our ideas. Using this prototype, we have performed

extensive analysis on various issues related selecting instruction selection and attack response.

We have also studied responses techniques in the case when a replacement attack has been

detected. Our findings demonstrate that Point-ISA is effective against replacements attacks.

The organization of this chapter is as follows: In Section 7.1, we define the replacement attack

methodology and give a formal description using our model. Section 7.2 describes two implementations

of this attack. In Section 7.3, we analyze the effects of this attack on applications protected using

the PVM-based techniques described in Chapters 5 and 6. Section 7.4 presents some techniques

that an adversary can exploit to gain information before launching such attacks. The second part of

this chapter deals with a solution strategy against replacement attacks. Section 7.5 describes this

strategy, called Point-ISA, and defines it in terms of the formal model. In Section 7.6, we address

some of the design decisions related to Point-ISA. Section 7.7 explains the creation of a prototype of

this solution scheme, and evaluates its effectiveness. Section 7.8 provides a detail security discussion

of this scheme. Finally, our results are summarized in Section 7.9.

7.1 Replacement Attack

The first part of this chapter explores the loose connection between the application and the protective

PVM instance. The only requirement on the part of the PVM involves the ability to interpret

the semantics of the application’s instruction sequence. This weak binding stems from the need to

make applications platform-independent, which was one of the major goals behind virtualization.

The application is compiled once, and should be runnable on many platforms. This adaptability

is facilitated by the virtual machine, which is implemented according to the specifics of the native

platform. In this paradigm (exemplified by Java), it is essential that the application and the PVM

be unbound.
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We demonstrate that such adaptability leads to a serious weakness when PVMs are utilized in

program protection. An able adversary can replace the protective PVM instance with a benign VM,

and proceed to analyze the application unhindered. We define such attacks as replacement attacks,

targeting software application packages protected by process-level virtualization. Once the PVM

and its associated protection mechanisms are replaced, an adversary can apply standard reverse

engineering techniques to study the application.

In the next section, we proceed to describe this attack methodology. This description is facilitated

by extending the equational model introduced in Chapter 3.

7.1.1 Modeling the Attack

The main motive behind designing the model was to facilitate the description of various defenses and

attacks involving PVM-protected applications. In this section, we extend the equations introduced

in Section 3.1, to represent the replacement attack methodology.

We consider a generic software application that has been compiled to run on the Intel x86 platform.

Equation 7.1 describes such an application.

PAPP =< Ix86APP , INAPP , OUTAPP , ASSETSAPP > (7.1)

Recall that Ix86APP refers to its instruction sequence in the x86 ISA. INAPP and OUTAPP refer to

its input and output set, respectively. Finally, ASSETSAPP refers to its assets. INAPP contains a

subset of inputs, denoted by LP that confirms that validity of application execution (i.e., all the

established rules for application execution have been met).

The software defender applies several transformations that are designed to protect the application.

These transformations are represented by the operator, TR, which can be applied to an application.

Equation 7.2 describes the protected application.

PTR(APP ) =< Ix86TR(APP ), INAPP , OUTAPP , ASSETSAPP > (7.2)
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Ix86TR(APP ) refers to the transformed instruction sequence. The rest of the variables have the same

meaning as in Equation 7.1. In our research, an example of a transformation could be to encrypt the

instruction sequence, which is then decrypted at run time by Strata.

Next, we model the protective PVM (in this case, Strata), which runs the protected application.

We assume that the hardware platform is an instance of the Intel x86 architecture. Equation 7.3

describes the Strata PVM.

Pstrata =< Ix86strata, INstrata, OUTstrata, ASSETSstrata > (7.3)

Ix86strata represents the instruction sequence of Strata in the x86 ISA. The input set for Strata is a

subset of ρAPP × INAPP ×Cstrata, where ρAPP refers to all applications. In this example, we assume

that the applications have been compiled for the Intel x86 architecture and subsequently protected.

INAPP represents the input set to the applications. Finally, Cstrata refers to the configurations for

Strata, to enable executing the application. Similarly, the output set for Strata, OUTstrata, consists

of OUTAPP ×Ostrata, where OUTAPP refers to the outputs generated by the application, and Ostrata

represents the outputs generated by Strata. ASSETSstrata refers to the assets of the PVM.

We now focus on the run time. This application is interpreted by Strata, which applies dynamic

protections techniques, similar to those described in Chapters 5 and 6. Referring to Equation 3.11,

the interpretation by Strata can be modeled as:

φstrata(PTR(APP ), inAPP ,m
in
strata) −→< outAPP ,m

out
strata > (7.4)

In Equation 7.4, φstrata refers to the interpretation operation under Strata. PTR(APP ) refers to the

protected application, the operation TR() indicating that the application can also be protected by

techniques independent of Strata (e.g., static protections). The input variable, inAPP consists of the

application inputs. min
strata represents the initial memory state. At the conclusion of interpretation,

outAPP is generated, and the final memory state is denoted by mout
strata.

The Strata PVM is, itself a software application that is interpreted by the x86 platform. As we
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described in Section 3.1, this framework can model nested interpretation. Equation 7.5 represents

the interpretation of Strata on the Intel x86 platform.

φx86(Pstrata, instrata,m
in
x86) −→< outstrata,m

out
x86 > (7.5)

The x86 interpreter takes as input the Strata software application, Pstrata, and an input, instrata,

while generating output outstrata. The memory state is transformed from min
x86 to mout

x86.

Expanding the variables in Equation 7.5 to include the representation of the protected application,

PTR(APP ), we obtain Equation 7.6, which illustrates the full nested interpretation.

φx86(Pstrata, < PTR(APP ), inAPP , cstrata >,m
in
x86) −→<< outAPP , ostrata >,m

out
x86 > (7.6)

The input to the interpreter is composed of a tuple, comprising the protected software application

TR(PAPP ), the input to the original application, inAPP , and cstrata, the configuration settings for

Strata to run the application. For example, if the application is encrypted, cstrata can represent the

decryption key. The memory is in its initial state, which can be broken down into the memory state

for Strata, (min
x86)strata, and the state for the application, (min

x86)APP . On successful completion,

the output, outAPP is generated, and memory reaches its final state, denoted by mout
x86)strata and

(mout
x86)APP .

Next, we describe the replacement attack using our model. To remove PVM-enabled obfuscations,

and to execute and analyze the application unhindered, the adversary replaces the protective PVM

with a benign instance. We refer to such a PVM instance as the attack PVM. This PVM can also

interpret any application that has been compiled to run on Strata, but enables the adversary to

perform any analysis. The attack PVM can be represented by:

Pattack =< Ix86attack, INstrata, OUTstrata, ASSETSattack > (7.7)

Comparing Equations 7.3 and 7.7, we observe that the attack VM has the same input set, and
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generates the same output set as Strata. Ix86attack denotes the instruction sequence for the attack PVM

on x86 machines. Finally, ASSETSattack represents the assets of the attack PVM.

We now proceed to model the attack, by modifying Equation 7.6.

φx86(Pattack, < PTR(APP ), inAPP , cattack >,m
in
x86) −→<< outAPP , oattack >,m

out
x86 > (7.8)

Equation 7.8 illustrates the replacement attack. The x86 interpreter operates on the attack PVM,

Pattack. The inputs consist of a 3-tuple comprised of the protected application, PTR(APP ), the input

to the application, inAPP , and a configuration setting for the PVM, cattack. During interpretation,

the memory state is transformed from min
x86 to mout

x86. On conclusion, the interpreter outputs a tuple

consisting of outAPP , which is the output of the application, and oattack, which is the output specific

to the attack PVM. The adversary can configure the attack PVM to generate additional information

that could facilitate analysis. An example of oattack could be the run-time trace of the application,

which enables dynamic control flow analysis.

Thus, the replacement attack enables the adversary to remove any dynamic protections, and

study the application unobfuscated. With the formal model in place, we proceed to describe the

details of this attack against a PVM-protected application.

7.1.2 Description of the Attack

The replacement attack methodology targets the surface of the application that is most vulnerable

to attack (i.e., when protections are at their weakest). More specifically, this attack methodology

targets the application just after start up (when static protections are not as effective), but before the

PVM assumes control and begins applying protections to the application. If successful, the attack

disengages the protective PVM and disables the run-time protections.

To craft a successful replacement attack against PVM-protected applications, certain requirements

need to be met:

• The attacker must be able to locate the entry function (EP) of the protective PVM in TR(P ).
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The entry function is defined as the function of the PVM which initiates software virtualization.

The entry function often takes the starting address location of P ’s code as an argument.

• The attacker must be aware of the guest application’s instruction set architecture. The code of

the guest application P , is typically obscured using a secret ISA or encryption. To analyze and

run P after the protective PVM has been disabled, the attacker needs to be cognizant of the

ISA, which involves either analyzing and understanding the secret ISA, or extracting the key

from the binary.

Section 7.8 discusses these requirements in more detail, including heuristics that the attacker can

employ to obtain the required information.

The attack occurs in two stages. In the first stage, the attack PVM has to be extended to decode

the protected application, which involves understanding the guest ISA. If the ISA is encrypted, the

decryption keys and algorithms must also be obtained and used to further extend the attack PVM

by including the decryption algorithm and keys. Details on deciphering the guest application’s ISA

are given in Section 7.4.2.

Figure 7.1 illustrates the second stage of the attack on TR(P ). In Figure 7.1(a), the attacker

invokes TR(P ), under a code introspection framework CIF observing instructions as they execute.

Well known examples of CIFs include Pin [82] and QEMU [104]. The attacker modifies the CIF to

locate the call to the entry function of the protective PVM.

The initialization routine then proceeds to prepare the PVM’s internal structures. As the entry

function of the protective PVM is invoked, the CIF intercepts this call and extracts the start address,

depicted in Figure 7.1(b). Details on identifying the PVM’s entry function are given in Section 7.4.1

The CIF then proceeds to load and initialize the attack PVM, shown in Figure 7.1(c). The CIF

then invokes this attack PVM with P ’s start address which has been extracted from the initial call.

Thus, P now runs under the mediation of the attack PVM (shown in Figure 7.1(d)). The

protective PVM is circumvented and fails to provide dynamic protection to P . The attack PVM

can be used to perform tasks that helps the attacker understand P (e.g., dump information, identify

function locations, trace instructions, etc.).
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(a) The virtualized application, TR(P ), is run under
an introspection framework.
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(b) The CIF intercepts the call to the entry function
of the protective PVM.
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(c) The CIF proceeds to load an attack PVM.
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(d) Control is then transferred to the entry function
of the attack PVM, which proceeds to run P without
any dynamic protections.

Figure 7.1: Steps illustrating the attack methodology on virtualized applications.

In Section 7.2, we describe two proof-of-concept implementations that use the approach just

described. The first prototype makes use of a widely used CIF, Pin, to replace the protective PVM

with an attack PVM and execute the guest application. The second uses a modified architectural

simulator, which performs code introspection as well as virtualization.

7.2 Use Cases

This section provides a comprehensive case study of the replacement attack methodology. It describes,

Strata, the protective virtual machine, and the creation of the protected application, TR(P ). The

target application was chosen from the integer benchmarks of the SPEC CPU2000 suite [105]. The



7.2 Use Cases 93

benchmarks were selected as examples of typical applications and they are commonly used to measure

run-time performance. These benchmarks range from a few thousands lines of code to hundreds of

thousands of lines, and perform various tasks. Thus, these benchmarks present a wide range of code

size and functionality to validate our ideas. For the purposes of this discussion, we focus on the

256.bzip2 benchmark as the target guest application, P . 256.bzip2 is a modified version of the bzip

compression program. All our tests were carried out on the Intel x86 32-bit platform running Linux

OS. All the components were initially compiled using gcc.

7.2.1 Attack Implementations

This section describes two implementations of the attack methodology that renders the application,

P , vulnerable to analysis and subsequent attack based on information obtained from that analysis.

The first proof-of-concept uses a dynamic instrumentation framework (Pin) to replace Strata with

an attack PVM (built using HDTrans [52] that we extended to perform AES decryption). The

second implementation uses an architectural simulator, PTLsim [83], as both the code introspection

framework and the attack PVM. While we use these particular tools to demonstrate the methodology,

any similar tools would suffice.

Attack Using a Dynamic Binary Translator

This prototype uses Intel’s run-time binary instrumentation framework, Pin [82], to replace Strata

with another binary translator, HDTrans. Pin offers a rich API to dynamically inspect and modify the

instrumented application’s original instructions. The instrumentation functionality is implemented

in a module called a Pintool. At run time, the Pin framework takes as input the Pintool and the

target software, and performs the necessary instrumentation.

Because the protected application is encrypted, we must first locate the decryption routine in the

protective PVM and extend the attack VM to use the same algorithm. The cryptographic primitives

are located in the PVM which is not as strongly protected as the application, enabling easier analysis.

Techniques have been proposed which can automatically infer these cryptographic primitives from
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pop %eax

sub 0x1c , %esp

pusha

pushf

push %eax ; contains application start address

push <address > ; return address

jmp <address > ; jump to entry point function

Figure 7.2: Listing of x86 assembly code snippet preceding the entry point into Strata.

binary code [106, 107, 108]. These schemes involve profiling the virtualized application and analyzing

the trace to locate the cryptographic primitives. We successfully used Gröbert’s technique to identify

the underlying algorithm (AES) and extracted the key [106]. HDTrans was subsequently modified

to use AES decryption on the application code blocks prior to translation. Section 7.4.2 describes

techniques that can be used to obtain cryptographic information in greater detail.

The Pintool, which implements the attack, operates as follows: It starts by loading and starting

execution of the protected application. As execution proceeds, the Pintool watches for the entry point

function of the protective PVM. In the case of Strata, the call to entry point function is preceded by

the following code sequence:

When the entry point function is invoked, the Pintool extracts the application’s start address

from its argument list. It then dynamically loads the extended HDTrans, proceeds to initialize

HDTrans, and transfers the application start address to HDTrans. Thus, HDTrans takes control of

the protected application and Strata never executes. The application can now be analyzed in any

number of ways. We modified HDTrans to write the execution trace to disk.

The attack essentially disables checksumming guards from verifying code integrity. Guards located

in Strata are never invoked, whereas guards present in P continue to verify the integrity of P and

Strata which remain unchanged. At this point, P ’s code is available for analysis.

Attack Using an Architectural Simulator

The second prototype for the attack uses the PTLSim architectural simulator [83]. In this imple-

mentation, PTLSim acts as the instrumentation framework as well as the attack PVM. PTLsim

models a modern superscalar Intel x86 compatible processor core along with the complete cache
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hierarchy, memory subsystem and supporting hardware devices. It models all the major components

of a modern out-of-order processor, including the various pipeline stages, functional units and register

set. PTLsim supports the full x86-64 instruction set along with all the extensions (SSE, SSSE, etc.).

More details of the simulator can be found in the user’s manual.

The Intel x86 ISA is a two-operand CISC ISA, however PTLSim does not simulate these

instructions directly. Instead, each x86 instruction is first translated into a series of RISC-like

micro-operations (uops). To further improve efficiency, PTLSim maintains a local cache containing

the program ordered translated uop sequence for the previously decoded basic blocks in the program.

The attack proceeds as follows: The cryptographic primitives are obtained as in Section 7.2.1,

and PTLSim is extended to decrypt instructions after fetching them from memory. At load time,

PTLSim initializes its internal data structures and reads in TR(P )’s binary file. The fetch stage of

PTLSim accesses instructions from the memory address pointed to by its program counter, called

the Virtual Program Counter (VPC). We modified the fetch stage to check for the instruction

sequence (illustrated previously in Section 7.2.1) denoting Strata’s entry function. Once the fetch

stage recognizes the entry function, the simulator retrieves its arguments, which contain the start

address of the application code. The simulator then discards its current instruction, waits for the

pipeline to empty, and then proceeds to fetch instructions from the retrieved application start address.

The simulator decrypts the instruction using the extracted key before decoding it into its constituent

uops. In this way, Strata never executes and PTLSim is able to fetch and simulate P ’s instructions

directly.

As with the previous prototype, checksumming guards fail to provide adequate protection. The

guards only check the original code, which is never executed. We can analyze P in PTLSim’s local

cache and modify it, if desired.

7.3 Implications of the Attack

In section 6.4.2, we presented a use case to illustrate the obfuscation properties of the PVM.

Continuing with the same example, we show that the replacement attack effectively reduces the



Chapter 7 Point-ISA: Binding the Application to the PVM 96

0

10

20

30

40

50

60

1
.0

0
E

-0
1

1
.0

0
E

+
0

0

1
.0

0
E

+
0

1

1
.0

0
E

+
0

2

1
.0

0
E

+
0

3

1
.0

0
E

+
0

4

1
.0

0
E

+
0

5

1
.0

0
E

+
0

6

1
.0

0
E

+
0

7

1
.0

0
E

+
0

8

No protection Attack Temporal Polymorphism

P
e
rc

e
n
ta

g
e
 B

a
s
ic

 B
lo

c
k
s
 

Execution Frequency 

Figure 7.3: Execution frequencies for the application blocks under the three run-time scenarios (No
protection, Protected, and Attack). The periodic flushing and retranslation of the application’s code
blocks by the protective VM drastically changes the execution frequency characteristics. Under the
control of the VM, blocks no longer execute at very high frequencies ( 107), instead substantially
more blocks execute at intermediate rates ( 103 and 105), forcing the attacker to expand their search
space. Replacing the protective VM restores the original execution characteristics.

run-time execution environment of the protected application to that of an unprotected instance. To

study the effects of the attacks, we applied the profiling techniques of Section 6.4 to an additional

run-time scenario:

• The protected application that has been subjected to a PVM-replacement attack,(i.e., the

application is running under the control of a compromised PVM (Attack).

The dynamic blocks in this third scenario were collected as before, i.e, by instrumenting the

applications and identifying blocks based on their memory address.

Figure 7.3 is the extension of Figure 6.4 displaying the execution frequency of all three cases. An

adversary attempting to analyze the protected application directly, will encounter a much larger
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Application Rank Rank Rank

Address
(No Pro-
tection)

(Protected) (Attack)

0x8048830 1 121 1

0x804ac3c 2 45 2

0x804ae1b 3 13 3

0x80507d4 4 9 4
0x80507d9 5 173 5

0x80507c0 6 18 6

0x80507fa 7 29 7

0x805082c 8 351 8

0x8050810 9 139 9

0x804a750 10 779 10

Table 7.1: Original application addresses of the top ten most frequently executing blocks in the
unprotected run, with their corresponding rank when run under the protection of a PVM. The
standard deviation for these blocks in the protected run comes to 239, indicating a very high degree of
variability. Consequently, more effort will be required to locate the blocks. A successful replacement
attack restores the rankings.

space for exploration. As we discussed in Section 6.4, temporal and instantiation polymorphism

lead to a large increase in the dynamic instruction and consequently, basic block counts. Figure 7.3

shows that replacing the protective PVM yields much more successful results. The attack reveals the

original execution frequency of the application, which had previously been obfuscated by the PVM.

For example, in the case study, the number of dynamic code blocks increased from around 3.7K for

the unprotected run, to more than 160K when the application was subjected to PVM protection.

Similarly, the number of distinct CFG edges rose from 6.4K to 290K. Once the protective PVM is

replaced, the number of dynamic blocks and edges exposed return to their original values. Launching

a successful replacement attack reduces the search space for the adversary by a considerable amount.

Replacing the PVM enables the adversary to obtain correct information about the application run

time. Column 1 of Table 7.1 shows the top-ten most frequently executing blocks when the application

is run without any protections. Column 2 displays the ranking of these blocks when the application

is run under the control of the PVM. Finally, Column 3 reveals the ranking after the successful

completion of the replacement attack. The PVM is able to reorder the blocks based on execution

frequency. We observed similar reordering when rankings were based on the in-degree of the code

blocks. Such a reordering can seriously affect analysis performed by the adversary. Replacing the

protective PVM enables the original block rankings to be determined. Table 7.2 shows the list of the
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Application Rank Rank Rank

Address
(No Pro-
tection)

(Protected) (Attack)

0x804bec0 162 1 162

0x804ae21 17 2 17

0x804ac74 36 3 36

0x804bed3 21 4 21
0x804a7a0 42 5 42

0x804abaf 164 6 164

0x804a81a 88 7 88

0x804a99b 126 8 126

0x80507d4 4 9 4

0x804a7ca 63 10 63

Table 7.2: Original application addresses of the top 10 most frequently executing blocks when the
application is run under the protection of the PVM, along with their corresponding rank when the
application runs unprotected, and when it is subjected to the replacement attack.

ten most frequently executed blocks when the application is run under the protection of the PVM

along with their corresponding ranks in the unprotected run. This study shows that replacing the

PVM enables the use of frequency analysis to uncover critical information about the application.

The replacement attack methodology is pivotal to the success of reverse engineering PVM-

protected applications. Once the protective PVM has bee replaced, the application can be analyzed

and its true characteristics studied without any obstruction.

7.4 Attack Discussion

Section 7.2 described two implementations of an attack that seeks to remove the protective PVM from

a virtualized application, TR(P ). Both implementations were crafted using freely-available tools and

resulted in the guest application, P , running with the added protections disabled. Checksumming

guards inserted into TR(P ) failed to prevent the replacement. To successfully orchestrate the attack,

some prior information about TR(P ) is required. In this section, we discuss some heuristics the

attacker can use to determine this information.
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7.4.1 Determining PVM Entry Function

To launch a successful attack, the location of the entry function(EP) to the protective PVM must be

determined. The attack PVM intercepts any calls to this function, as one of the arguments consists

of the start address to P . To obtain this location, the attacker can inspect TR(P ) for distinctive

instruction sequences that indicate the location of the entry function.

For example, prior to initialization, the PVM saves the current application’s context. Upon

initialization, the PVM restores the application’s context. On 32-bit Intel x86 platforms, the

instructions pusha and pushf are commonly used by dynamic translators to save state. Section 7.2.1

displayed the instruction sequence used by Strata to save state, which contains these two instructions.

Dynamo-RIO, HDTrans and Pin also use these instructions to store register and flag values prior to

initiating translation. Investigation into the C benchmarks of the SPEC CPU2000 suite, compiled

using standard flags, revealed that none of the application binaries contained these instructions.

Consequently, an adversary can use the presence of these instructions to help identify potential

entry points into the PVM. Because of the unique actions of the PVM, simple examination of these

potential entry points can determine the actual entry point.

The attacker can also use information flow analysis to determine the entry point of a PVM. Most

compilers place code and data in separate sections in the binary file. Data-read accesses into the

code section are likely to be from the PVM. Thus, using taint analysis on this data and backtracing

where the data location was determined will enable the attacker to determine the entry function of

the PVM. Since the PVM initialization typically occurs very early, the attacker will only have to

analyze a smaller amount of code to determine the entry function. This code is not subjected to any

dynamism making analysis easier.

7.4.2 Determining the ISA of the Guest Application

Another requirement to use a replacement attack is the identification of the ISA of the guest

application, P . Traditionally, P ’s code has been protected by obscurity [36, 11] or encryption [34].

The attacker has to analyze the on-disk binary to obtain information required for determining the
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ISA, which is then used to configure the attack PVM. This section discusses some heuristics that the

attacker can utilize to obtain the relevant information.

Rolles et al. have done extensive work in investigating ISAs used by obfuscation tools such as

VMProtect and Themida [41]. The semantics of the ISA are not released to the public providing

security through obscurity. At the time protections are applied, P ’s instructions are converted to a

custom ISA chosen from a set of template ISAs, which is then interpreted at run time by a PVM

designed specifically for that ISA. These ISAs are RISC-like, lacking many of the complex features of

traditional ISAs like Intel x86. Since these tools derive the final ISA from a template, the instruction

sequences of two different protected binaries will have many similarities. This fact makes the analysis

of the syntax and semantics more tractable. Further, parts of the x86 instruction set such as the

SIMD instructions are not virtualized by VMProtect.

The guest ISA can also be protected via encryption. Manually analyzing and reverse-engineering

cryptographic keys and routines can be an arduous task. Recently, researchers have designed

techniques that facilitate automatic identification and extraction of cryptographic routines. Gröbert

et al. have presented a novel approach to identify cryptographic routines and keys in an encrypted

program [106]. Their techniques involves profiling the application and applying heuristics to detect

the cryptographic operations. Some of the heuristics proposed by the authors include excessive use

of arithmetic functions, loops and investigating the data flow between intermediate variables across

multiple runs. This technique is able to identify common encryption algorithms, such as AES and

DES, and extracts the key as well.

Even if the application is protected by a proprietary encryption algorithm, researchers have

devised techniques to isolate and extract this information from the binary. Caballero et al. have

designed a technique to automatically identify code fragments from executable files, so that they

are self-contained and can be reused by external code (called binary code reutilization) [108]. They

successfully applied this technique to identify and extract cryptographic routines from a set of

malware files. Similarly, Leder et al. examined data in-flow and out-flow in memory buffers to

isolate cryptographic functions [107]. Therefore, such identification techniques can be applied to the



7.5 Point-ISA: Using Homographic Instructions to Semantically Bind the Application and the PVM101

protective PVM to obtain the decryption routines, and consequently, used to configure the attack

PVM.

Decryption key management is also an issue for the protective PVM. The attacker can use dynamic

analysis techniques to extract the decryption key. Halderman et al. point out that modern DRAMS

retain their contents for a significant amount of time and an attacker could locate and exploit these

keys to analyze encrypted data [64]. Skype is a popular VoIP tool which uses encryption as a tool to

hamper static analysis. Biondi et al. were able to decipher Skype’s code by obtaining its decryption

key from memory [19]. Techniques, such as white-box cryptography, were proposed to improve

key management in encrypted systems [21]. However, researchers have since developed solutions to

extract the key from such systems [67]. Once the key is available, deciphering the encrypted ISA is

straightforward regardless of the the strength of the encryption algorithm.

Therefore, obscuring the ISA fails to adequately protect the guest application from analysis.

Previous work has shown that the attacker can analyze such ISAs using reasonable time and

effort [19, 41]. Once the the ISA is known, the attacker can successfully replace the protective PVM.

7.5 Point-ISA: Using Homographic Instructions to Semanti-

cally Bind the Application and the PVM

The replacement attack succeeds due to the fact that the application can be virtualized by any

PVM that can interpret the ISA of P . This section proposes a solution that thwarts replacement

attacks, by semantically binding P with a specific instance of the protective PVM(i.e., P can only

be interpreted by a unique PVM instance.

This protection scheme is facilitated by the implementation of a property adopted from the field

of classical linguistics, called homography [109]. Homography refers to the property of words with

identical representation, but different semantics. For example, bark has two meanings in the English

language; the noise made by a dog, and the outer covering of a tree. The appropriate meaning

conveyed by this word depends on the containing sentence.
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We apply this property in the context of software virtualization to ensure that the protective

PVM is not replaced. Traditionally, each instruction of an ISA possesses a unique semantics. In

our proposed solution, certain instructions are selected from the ISA of the application, P . We

refer to this set as IHG, and each individual member of this set by iHG. These instructions are

inserted into the application at appropriate locations . Consequently, the PVM is configured to

handle these instructions uniquely as follows: At run time, when the protective PVM encounters

any of these select instructions, it interprets them in a custom manner,different from the semantics

specified by the platform documentation, i.e., the protective PVM instance will interpret homographic

instructions using customized semantics, whereas all other interpreter instances will interpret it in

the conventional manner (according to the platform documentation). When run under the protective

PVM, the transformed application should generate outputs which are identical to the unprotected

version, for any input combination.

The set of homographic instructions is not unique, but varies for each application. Implemented

correctly, a replacement attack and subsequent interpretation on a generic interpreter will cause

the application to behave in an undefined manner, and either lead to failure, or trigger appropriate

response mechanisms. Thus, the replacement attack will fail in its objective of successfully executing

the application without the protective PVM.

This solution methodology is termed as Point-ISA1.

There are several components of this solution that need to be investigated, before a successful

prototype can be implemented. Some of the primary areas of research include identifying the set

IHG, and designing seamless responses to a replacement attack. Care must also be taken to ensure

that the transformed application running on the PVM instance generates outputs that are identical

to those of the original application. The next few sections discuss these issues in detail.

Before exploring the various issues, we formalize this protection technique using our model.

1Point-ISA has been derived from the term, point functions in cryptography. Point functions return true for only
one input, and false otherwise. In our case, iHG corresponds to its correct value(i.e., f−1 in only one context(i.e.,
when it’s interpreted by the associated PVM instance. In all other contexts, iHG is interpreted according to the
architectural ISA.
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7.5.1 Formalizing Point-ISA

In Section 7.1, we used our model to describe replacement attacks. We now extend this model to

characterize the Point-ISA scheme. We recall Equation 7.5, which describes the execution of the

protected application on Strata. Strata itself is running on an Intel x86 hardware machine.

φx86(Pstrata, < PTR(APP ), inAPP , cstrata >,m
in
x86) −→<< outAPP , ostrata >,m

out
x86 > (7.9)

In Equation 7.9, the input to the interpreter is composed of a tuple, comprising the protected software

application PTR(APP ), the input to the original application, inAPP , and cstrata, the configuration

settings for Strata to run the application. For example, if the application is encrypted, cstrata

can represent the decryption key. The memory is in its initial state, which can be broken down

into the memory state for Strata, (min
x86)strata, and the state for the application, (min

x86)APP . On

successful completion, the output, outAPP is generated, and memory reaches its final state, denoted

by mout
x86)strata, and (mout

x86)APP .

The replacement attack results in the substitution of the protective PVM with an attack PVM,

which can then be used to analyze the application without any hindrance. Recalling Equation 7.8,

φx86(Pattack, < PTR(APP ), inAPP , cattack >,m
in
x86) −→<< outAPP , oattack >,m

out
x86 > (7.10)

The x86 interpreter operates on the attack PVM, Pattack. The inputs consist of a 3-tuple comprised

of the protected application, PTR(APP ), the input to the application, inAPP , and a configuration

setting for the PVM, cattack. During interpretation, the memory state is transformed from min
x86

to mout
x86. On conclusion, the interpreter outputs a tuple consisting of outAPP , which is the output

of the application, and oattack, which is the output specific to the attack PVM. The adversary can

configure the attack PVM to generate additional information that could facilitate analysis.

We now introduce the Ψ operator, which represents the Point-ISA protection scheme. This operator

is applied to the software application, and results in a transformed application, Ψ(TR(PAPP )). Now,
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the application can only be successfully executed under the mediation of its associated protective

PVM, strataAPP . This protection scheme is orthogonal to other protection schemes, allowing it to

be used in conjunction with other techniques.

Equation 7.11 describes the interpretation of a Point-ISA protected application on the native

platform.

φx86(PstrataAPP , < Ψ(TR(PAPP )), inAPP , cstrataAPP >,min
x86) −→<< outAPP , ostrata >,m

out
x86 >

(7.11)

The application has a unique PVM associated with it, denoted by strataAPP . The interpreter

function, φx86, operates on the PVM application, PstrataAPP . The inputs consist of the protected

application, Ψ(TR(PAPP )), the application input inAPP , and the configuration setting for the PVM

cstrataAPP . The outputs consists of the output from the application outAPP , and the output from

the PVM itself, ostrata. The memory state changes from min
x86 to mout

x86.

The interpretation of this Point-ISA protected application on the associated protective PVM is

identical to the interpretation of the original application (represented by Equation 7.9). However,

if this application is subjected to a replacement attack, the interpretation fails. This scenario is

represented by the following equation.

φx86(Pattack, < Ψ(TR(PAPP )), inAPP , cattack >,m
in
x86) −→<< (outAPP )error, oattack >,m

out
x86 >

(7.12)

In Equation 7.12, the x86 interpreter (φx86) operates on the attack PVM, Pattack. The inputs to

the attack PVM consist of the protected application, Ψ(TR(PAPP )), the application input inAPP ,

and the configuration for the PVM cattack. In this case, the application fails to execute correctly,

and an error message is generated ((outAPP )error), along with any output from the attack PVM,

oattack. The memory state changes from min
x86 to mout

x86.
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Modeling Homographic Instructions

The previous set of equations described the solution methodology at a conceptual level. We now

proceed to expand our model, to describe Point-ISA at a finer level of granularity. To begin, we

need to represent the interpretation of a sequence of instructions on the host machine via our

model. Described in a simple form, interpreting an instruction (or a sequence of instructions) implies

transforming memory of the computing machine from one state to another. To express this action

in our model, we introduce a new operation, ΦH . We describe the interpretation of a sequence of

instructions in Equation 7.13.

ΦH(iH1 , i
H
2 , i

H
3 ..,m

in
H ) −→< mout

H > (7.13)

The operator, ΦH denotes the interpretation of an instruction sequence on the host H. The sequence

is denoted by iH1 , i
H
2 , i

H
3 ... The initial memory state is denoted by min

H , and the final state by mout
H .

We can now utilize Equation 7.13 to represent homographic instructions. As we described, the

semantics of the homographic instruction depend on the instance of the interpreter. We consider an

instruction belonging to the x86 ISA, and its interpretation by a standard x86 interpreter, and the

Strata protective PVM running on an x86 platform. Equation 7.14 describes these two scenarios.

Φx86(iHG
x86 ,m

1
x86) −→< m2

x86 > (7.14)

Φstrata(iHG
x86 ,m

1
x86) −→< m3

x86 > (7.15)

When the instruction, iHG
x86 , is interpreted by a generic x86 interpreter, the memory state is

transformed from m1
x86 to m2

x86. When that same instruction is interpreted by the strata instance,

the memory state is transformed from m1
x86 to m3

x86. The premise behind Point-ISA is that this

homographic behavior of iHG
x86 (which leads to memory states m2

x86 and m3
x86) can be differentiated

programmatically enabling detection of the replacement attack.
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We are now ready to design the Point-ISA solution. For this purpose, we utilize two functions f

and f−1, which are defined as follows.

f(m) −→ n (7.16)

f−1(n) −→ m (7.17)

As Equation 7.16 represents, the function f takes an input m and transforms it to n, while the

function f−1 transforms n back to m,(i.e., the pair are the inverse of each other.

Consequently, these functions are inserted into the application. The function, f is implemented

via a sequence of instructions. The function f−1 is implemented via a homographic instruction, iHG
x86 .

The PVM is configured such that, when it encounters iHG
x86 at run time, it implements the semantics

of f−1. Equations 7.18 and 7.19 illustrate these scenarios.

Φstrata((f = {i1x86, i2x86...ikx86}),m1
x86) −→ < m2

x86 > (7.18)

Φstrata(iHG
x86 ,m

2
x86)) −→ < m3

x86 > (7.19)

During software creation, the instruction sequence implementing f(i.e.,i1x86, i
2
x86...i

k
x86), is inserted

at a suitable location in the application’s CFG, followed by the insertion of iHG
x86 at a second location.

The two locations are chosen such that both of them are guaranteed to be reached during program

execution. In our prototype these components are aligned sequentially in program order. Dominator

analysis can be used to make the arrangement less predictable. The protective PVM instance is

configured such that iHG
x86 is interpreted according to the semantics of f−1.

Under normal circumstances, this arrangement guarantees that the protected application produces

outputs identical to those of the original application, for the identical set of inputs (we define this

scenario as output equality). If a replacement attack occurs, the execution of a homographic

instruction will leaves memory in an undefined state. We now proceed to describe appropriate

response mechanisms to an attack.
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Response to Replacement Attacks

During application execution, after instructions representing Equations 7.18 and 7.19 have been

interpreted, m1 and m3 should be equal. This scenario is necessary for Point-ISA to maintain

output equality. If the protective PVM instance is replaced, the attack interpreter will interpret iHG
x86

according to the ISA specifications, and not the semantics of f−1. Consequently, output equality

will no longer be achieved. We can respond to this event in two ways.

The first response mechanism, termed the Value Modification mechanism, involves letting the

application continue execution. Since the memory values of the application are no longer in a

predictable state (due to the execution of the actual semantics of iHG
x86 , as opposed to f−1), there is a

probability that the program will go down an incorrect path and fail. Such a failure is likely to be

obscure due to the fact that the path taken is not predictable. The downside to this technique is that

the modification may be ineffectual, resulting in normal program execution on the replacement PVM.

As such, the second response technique, termed the Auditor mechanism, involves the use of a

guarding mechanism which checks to ensure that output equality has been maintained. If the checks

detect that output equality has been broken, appropriate measures are taken. The downside to this

scheme is that a knowledgeable adversary might be able to detect these checks and disable them.

Therefore, to obtain a robust defense mechanism, a probabilistic mix of both schemes should suffice.

Equation 7.20 describes functionality of the auditor function, which checks the memory, and triggers

an attack response if they are not equal.

faudit −→


if m3 ≡ m1 continue execution

if m3 6= m1 respond to attack

(7.20)

m1 denotes the state of memory prior to execution of the Point-ISA solution. m3 denotes the state

of memory after Point-ISA has successfully executed. If the two states are equal, it indicates that

the execution has proceeded as expected. If the states are not equal, it signifies an attack, and an

appropriate response is generated.

For the rest of this discussion, the components represented by Equations 7.18, 7.19, and the
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optional part, 7.20 are referred to as the components of the Point-ISA methodology. In the next

section, we describe the implementation of these components in greater detail.

7.6 Designing Point-ISA

There are several factors that can determine the effectiveness of Point-ISA. We address these issues

in this section.

7.6.1 Identification of Homographic Instructions

The protective PVM instance interprets the redefined semantics of selected instructions. To enable

such custom interpretation, the PVM must be able to distinguish the homographic instructions, IH ,

from regular instructions that form part of the application. A straightforward manner to obtain such

classification is to analyze the original, unprotected application, and choose an instruction that is

not a constituent.

iH /∈ IP (7.21)

Consequently, the protective PVM instance is modified such that, on encountering iH , it im-

plements the semantics of f−1. Each application to be protected via a PVM will possess its own

IH .

An adversary may be able to perform frequency analysis on the application, and decipher which

instructions form part of IH . To thwart such analyses, instead of a unique instruction, a unique

combination of opcode and operands can be chosen. The opcode may be present in the original

application, but the combination of the opcode and its operands is not. In this case, the protective

PVM instance will have to decode the instruction completely (opcode and operands) before deciding

whether to trigger the semantics of f−1.

The next design issue involves devising techniques to insert the various Point-ISA components

into the application such that they are executed in the correct order.
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7.6.2 Insertion of Point-ISA Components

To recall, our semantic-binding scheme involves the insertion of a function, f , and a homographic

instruction, iH , into the control flow of the application, such that the output of the transformed

application matches the original version, for all inputs (output equality). To achieve this property,

iH is interpreted by the protective PVM instance as f−1.

To implement Point-ISA, the control flow of the application needs to be adjusted such that, when

its components are scheduled for execution in correct order. For the purposes of our proof-of-concept,

we inserted the Point-ISA components in sequential order at appropriate locations in the application.

We describe our prototype in greater detail in Section 7.7.1

Maintaining output equality of the components is essential for correct functioning of Point-ISA.

Reducing performance overhead is also critical, because a large increase is undesirable and makes the

protection scheme impractical. To reduce excessive overhead, the point of insertion must not be on

a frequently-executing path. This issue is similar to the issue of placement of checkers, discussed

in Chapter 5. In the case of checkers, we needed to establish a balanced trade-off between checker

execution and overhead, to maintain constant protection. As such, we devised predicated triggers.

In the case of Point-ISA, we feel that the rate of execution of its components is not as relevant,

since any one of them can trigger a response in the event of an attack. As such, we proceeded with

utilizing profile information to guide the insertion process (i.e., the application was run in profiled

mode to obtain frequently-executing paths. Then, components are inserted based on a probability

which is inversely proportional to path’s frequency of execution).

7.6.3 Response to a Replacement Attack

If an adversary attempts to replace the protective PVM instance and execute the application on a

different interpreter (software or hardware), the semantics of the iH will revert to its original, and

this event can be detected. We have devised two mechanisms to respond to such an attack.
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Auditor Mechanism

In the first case, we employ the use of an auditor to detect the attack and take appropriate action.

Recalling Section 7.5.1, the function, f updates a memory location’s from , m1, to m2, whereas the

protective PVM interprets iH such that the memory location’s value reverts back to m1. The auditor

is placed further along the same program path, and checks that the value of the memory location is

indeed m1. In case there is a mismatch, the auditor will trigger a response (e.g., stopping application

execution, or taking control along an incorrect path). Assuming that all the components (f , iH , and

the auditor) run correctly and in order, this technique guarantees that replacing the protective PVM

instance will cause the application to fail.

Value Modification Mechanism

The use of an auditor leads to the creation of another point of attack. If the adversary is able to

disable the auditor (e.g., by replacing it with no-op instructions), a replacement attack will not be

detected. To obfuscate Point-ISA, we modify the function, f to update a value belonging to the

application (e.g., modify a register) . The protective PVM instance is also updated such that the

interpretation of iH reverts the value of the variable.

The basic premise behind this response scheme is that, if the application is run under an attack

PVM, f will be invoked as usual, but the interpretation of iH will not revert the program variable.

Further along this program path, the update caused by f could lead to program failure, although the

final result is non-deterministic.

We have described two schemes that, although individually vulnerable to specific attacks, can

mutually reinforce each other, to provide a robust protection for the protective PVM. Next, we

evaluate the Point-ISA methodology, and describe the results in detail.

7.7 Evaluating Point-ISA

This section discusses the creation of a prototype implementing Point-ISA. Some of the design

decision included techniques to select candidate instructions, identifying locations in the application
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control flow graph where the homographic instruction could be inserted, and appropriate response

mechanisms to tamper.

7.7.1 Designing the Prototype

The Point-ISA implementation depends on the complementary functions f and f−1. Any number

of such functions can be designed. For the purposes of our implementation, we defined f and f−1

in two ways, corresponding to the Value Modification and the Auditor mechanisms. Equation 7.22

describes the semantics of the functions in the case of the Value Modification Mechanism:

f, f−1 : ∼ reg −→ reg (7.22)

In this scheme, f modifies an application value residing in a hardware register. reg can be any

standard hardware register (eax, ebx, etc. on the Intel x86 platform).

Equation 7.23 describes the semantics of the functions in the case of the Auditor mechanism:

[MEM1] = INIT

f, f−1 : ∼ [MEM1] −→ [MEM1] (7.23)

faudit : [MEM1] == INIT =


do nothing if true

respond to tamper if false

In this scheme, the memory location, [MEM1] refers to the contents of a global memory variable

that is created during the software protection process (i.e., this location is not a part of the original

application). This variable is initialized to a randomly selected value. f and f−1 consist of negating

this variable. Finally, the audit function, faudit checks whether the value of the variable has been

reverted. For the sake of simplicity, we have provided only one version of f and f−. A robust

implementation of Point-ISA should possess several different versions of these functions.

In both these equations, negation(∼) is the primary logical operator. This operator was chosen

because:
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• On the 32-bit Intel x86 platform, the negation operator does not change any processor flags. As

such, the flag register does not need to be preserved, which is beneficial for reducing overhead.

• The negation operator possesses the property of involution [110](i.e., the function is its own

inverse, making the implementation of f and f−1 identical.

The prototype is created using the link-time optimizer, Diablo. The inputs to Diablo consist of

the original, unprotected application P , a set of homographic instructions (selection criteria for these

instructions is described in Section 7.7.2) IH , and an instance of the protective PVM (in this case,

Strata). The logic of the protective PVM has been modified such that, during execution, when it

encounters a homographic instruction, it implements the semantics of f−1.

During software creation, we use Diablo to generate a flow graph of P . The nodes in this flow

graph consist of basic blocks data structures (i.e., sequence of instructions with a single entry point

and a single exit point). The edges in this graph correspond to control flow branches (direct jumps,

conditional jumps, calls, etc.). An edge typically connects a predecessor block (i.e., the source block

of the control transfer) to a successor block (i.e., the destination block of the transfer) [111].

Once the flow graph information is obtained, Point-ISA is ready to be implemented. First, we

consider the Value Modification mechanism, specifically Equation 7.22. Based on a selection criteria

(described in Section 7.7.2), a target basic block XP , belonging to P is identified. This block is

subjected to liveness analysis in isolation [111], and registers are identified that contain live values

exiting this block. An instruction sequence negating one of these registers, (i.e., f) is inserted into a

basic block data structure, BBf . Next, an instruction is randomly selected from IH , and inserted

into another basic block structure, BBIH . The protective PVM is modified such that it interprets

iH as f−1. The CFG is then modified such that XP becomes the new direct predecessor of BBf ,

and BBf becomes the new direct predecessor of BBIH . All the previous successors of XP becomes

the new successors of BBIH . This modification ensures that any program path that contains XP is

guaranteed to execute BBf and BBIH , enabling the Value Modification scheme.
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Thus, if Nsucc is the set of successors of XP , the relationship is denoted by:

XP
pred−−−→ {Nsucc}

We modify the CFG such that:

XP
pred−−−→ BBf

pred−−−→ BBIH
pred−−−→ {Nsucc} (7.24)

The Auditor mechanism can also be implemented in a similar way, however the function auditF ,

in Equation 7.23, needs to be handled as well. The instructions corresponding to auditF are stored

in a new basic block, BBaudit. BBaudit is inserted into the CFG such that it becomes the new

immediate successor of BBIH , and the new predecessor of all the original successors of XP . Thus,

the modified CFG would look as follows:

XP
pred−−−→ BBf

pred−−−→ BBIH
pred−−−→ BBaudit

pred−−−→ {Nsucc} (7.25)

where {Nsucc} is the set of successors to XP in the original application, P .

Both these schemes are applied multiple times to blocks selected based on profiled information to

obtain a distributed protection mechanism.

7.7.2 Selection Criteria for Homographic Instructions

Selecting the set IH is crucial to the success of Point-ISA. These instructions should belong to the

set of commonly used instructions of most applications. Such unobtrusiveness provides a natural

cover from techniques such as frequency analysis. For our prototype, we created the set IH , based

on unique instruction opcodes. We statically analyzed a collection of applications binaries (SPEC

CPU2000 and binutils package), and stored their instruction opcodes in a database. Let this set

be denoted by ID Subsequently, while processing a benchmark b, its unique opcodes are collated.

This set is denoted by Ib. The set of homographic instructions can be obtained by calculating the set
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Figure 7.4: Number of opcodes in the database that can form part of IH , for each benchmark.

difference between ID and Ib. This equation can be represented as follows:

IH = ID \ Ib := {x ∈ ID, x 6∈ Ib}

where \ denotes the set difference operation. Any opcode in the database that does not occur in b,

can be used to form IH . Once IH has been identified for a particular application, an instance of the

protective PVM is created that handles each member instruction, iH accordingly.

Figure 7.4 displays the number of opcodes that can be used to form the set IH , for each benchmark

of the SPEC CPU2000 suite. As the figure illustrates, each benchmark has several options. Because

all these opcodes occur in standard applications, their presence in the protected application should be

well camouflaged. The options for IH can be further increased by considering instruction operands in

addition to the opcodes. In this case, the number of options increased by several orders of magnitude.
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During the software creation process, Diablo selects one instruction at a time using a random

scheme. This instruction is then inserted in basic block B, and the process continues as described in

Section 7.7.1.

7.7.3 Performance

As with any other protection scheme, low overhead is an important factor in the design of Point-ISA.

High overhead may limit the adoption of this technique.

The selection of block XP is directly related to the overhead associated with Point-ISA. Since all

the inserted blocks are predecessors of this particular node, a high execution frequency for this node

will translate into a high execution frequency for the newly inserted nodes. A high frequency adds to

the overhead. Therefore, we need a judicious arrangement to select XP . In Chapter 5, one of the

schemes designed to insert checkers into the application involved generating probabilities of basic

blocks that was inversely proportional to their execution frequency. The downside of such a scheme is

that, in certain applications, the standard deviation of the checker frequency can be inordinately high.

This disadvantage is not quite so bothersome in Point-ISA. As long as the Point-ISA components

execute, protection will be achieved. The relative spread of their execution times is not relevant.

Therefore, we utilize the inverse-frequency scheme to generate probabilities for each basic block

of P . During software creation, the selection of XP depends on its assigned probability. Figure 7.5

shows the overall performance overhead for the SPEC CPU2000 benchmarks. On average, this

technique adds an overhead of 5% over Strata. Since the placement method is probabilistic, there is

a non-zero chance that the Point-ISA components will be placed in a hot path (e.g., 177.mesa). In

such a case, it is judicious to rerun the software creation process to get a more favorable binary.

Figure 7.6 shows the average time delay between two successive execution of the Point-ISA

components. The error bars correspond to the standard deviation. The high standard deviation in

benchmarks such as 181.mcf and 255.vortex indicate that the components execute in intermittently

in groups, rather than periodically. As we mentioned previously, the rate of execution of these

components is not as relevant to the protection offered.
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Figure 7.5: Performance overhead for Point-ISA normalized to native. Overhead for Strata is provided
for reference.

7.8 Security Discussion

This section discusses the impact of Point-ISA on program protection. Specifically, we consider the

robustness of this scheme against particular attack methodologies. We also examine the presence of

any weaknesses that an adversary might exploit and offer alternate schemes.

7.8.1 Effectiveness against Replacement Attacks

Point-ISA was designed specifically to thwart replacement attacks. Therefore, its effectiveness against

such attacks is paramount. We applied the process described in Section 7.7.1 to several benchmarks,

and subjected them to replacement attacks. All the protected benchmarks were able to repel the

attacks. Most of the benchmarks exited with a message generated by the auditor. However, some



7.8 Security Discussion 117

0

5

10

15

20

25

30

35

1
6

4
.g

z
ip

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

1
9

7
.p

a
rs

e
r

2
5

3
.p

e
rl
b

m
k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

3
0

0
.t

w
o

lf

1
7

7
.m

e
s
a

1
7

9
.a

rt

1
8

3
.e

q
u

a
k
e

1
8

8
.a

m
m

p

A
V

G

T
im

e
 i
n
 S

e
c
o
n
d
s
 

Figure 7.6: The average delay between the invocations of two Point-ISA components. The error bars
correspond to the standard deviation.

benchmarks generated the SIGSEGV faults, which indicate that the Value Modification mechanism

had been triggered and led to the corruption of the application.

7.8.2 Effectiveness against Reverse Engineering

In Section 7.7.1, we presented a straightforward mechanism to implement Point-ISA, which consisted

of inserting the Point-ISA components in a predictable order into the CFG of P . Such a naive

implementation can be disabled by a knowledgeable adversary.

Data-flow analyses can be used to make Point-ISA more robust against reverse-engineering attacks.

use-def is commonly-used analysis technique which identifies instructions that define and use the

variables in an application. The sequence of instructions that mark the definition and use of a

variable are termed chains. In the Value Modification Scheme, the use of def-use chains can be used
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to identify multiple locations to insert the Point-ISA components. Blocks BBf and BBIH can be

inserted randomly at any site within the confines of the use-def chain associated with the live value

being modified. This additional entropy makes it harder for the adversary to identify and disable

these Point-ISA components. The amount of entropy will vary depending on the variable chosen.

Applying this scheme multiple times should give a good spread.

To increase the robustness of the Auditor mechanism, we utilize dominator analysis [111]. In any

directed graph (e.g., the CFG of an application), a node d is called the dominator of node e if all

paths from the graph entry point (i.e., program entry point) to e pass through d) [111]. Similarly,

the node e post-dominates d if the paths from d to the graph exit point pass through e. Referring to

Equation 7.25, the components BBf , BBIH , and BBaudit can be placed on the post-dominator path

of XP to application exits. Care must be taken to ensure that the components all execute the same

number of times. This restriction can be enforced trivially by avoiding their placement in any loops.

1P ..
sdom−−−→ BBf ..

sdom−−−→ BBIH
sdom−−−→ 2P ..

sdom−−−→ BBaudit..
sdom−−−→ XP (7.26)

The blocks 1P , 2P .. refer to basic block blocks of the original application. Equation 7.26 implies that

the components are inserted at random locations in the dominance tree of XP . Thus, this scheme

makes Point-ISA more unpredictable and consequently, harder to reverse engineer.

7.8.3 Tampering with the Protective PVM

A knowledgeable adversary can attempt to uncover the special semantics of the homographic

instructions by investigating the instruction handling logic of the protective PVM instance, and

comparing with the ISA manual. Instruction handling is one of the most complicated components

of any PVM implementation. Applying traditional program protection techniques to the PVM can

make reverse engineering even harder. Thus, while it is theoretically possible to analyze the PVM

and discover the homographic instructions, we do not see a trivial way to achieve this task. The

adversary will have to manually investigate the handling of each possible instruction. By expanding
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the domain of homographic instructions to include instruction operands as well, this task can be

made still harder.

7.8.4 Synopsis of Overall Protection

Point-ISA is designed to be used in conjunction with static protections and a protective PVM. The

static protections safeguard the application and the PVM binary from analysis and tamper. At

run time, the associated PVM instance continuously applies tamper-resistance techniques, making

dynamic analysis harder. Point-ISA ensures that this protective PVM instance is not replaced by

a benign PVM instance by an adversary attempting to obviate security measures. Thus, taken

together, such a protective configuration lays the foundation for a robust tamper resistance execution

environment.

7.8.5 Co-designing Applications and protective PVMs

The use of homographic instructions can be extended, to codesign applications with protective PVMs.

During software creation, large sequences of code (e.g., a function block) of the application can be

replaced by a homographic instruction. At run time, when the PVM encounter this instruction, it

will interpret it according to the semantics of the replaced block. In this scenario, further analysis is

required to ensure that, in the case of a replacement attack, the interpretation of the homographic

instruction actually leads to a successful detection of the attack. This topic is a source of further

research.

7.9 Summary

In this chapter, we explored the relationship between the application and the protective PVM instance.

We discovered that the PVM is not strongly bound to the application. Such a weakness can be easily

exploited by a knowledgeable adversary. We prototyped a PVM-replacement attack methodology

based on this weakness, which completely obviated all dynamic protections based on PVMs. To

combat this attack, we adapted the property of homography from classical linguistics, and applied
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to to the field of software virtualization. Using homographic instructions, we designed a solution

methodology, Point-ISA, that can thwart replacement attacks. Our prototype provided encouraging

results on the success of this solution. PVMs have already been shown to provide strong dynamic

protections. Combined with Point-ISA, the effectiveness and robustness of PVMs increases beyond

the state-of-the-art.



Chapter 8

Establishing a Data Dependence

between the Application and the

PVM

At this point, we recap software protections from the view of the application’s state. Prior to

application execution, static techniques protect the binary from reverse engineering. This area of

protection has been thoroughly studied, and several robust mechanisms have been proposed [9, 5, 6, 81].

Chapter 4 proposes new techniques that protect virtualized applications from analysis. Thus, these

mechanisms perform effectively at thwarting static attacks.

During execution, protection is provided by the associated PVM. Chapters 5 and 6 describe

effective schemes that obfuscate the run time of the application, repelling reverse engineering attacks.

Chapter 7 illustrated a weakness in current PVM-based protection technology, and proposed a

solution that establishes a semantic relationship between the protective PVM instance and the

application. Incorporating these techniques into the application provides a robust tamper-resistant

environment at run time.

The question remains whether it is possible for an adversary to extract critical information after

121



Chapter 8 Establishing a Data Dependence between the Application and the PVM 122

execution has concluded. For example, the adversary might be able to obtain a protected copy of

the software application and proceed to run it to completion under the control of an analysis tool

(e.g., an instrumentation framework, or a modified OS). The question we are addressing is, whether

the adversary can extract the application’s assets from any post-execution analysis. Examining the

susceptibility of PVM-based protections against such exploitation is the focus of this chapter.

As previous research uncovers, it is indeed possible to inspect software, and extract critical

information using such post-execution analyses (i.e, by examining the application trace, which refers

to the sequence of executed instructions) [57]. Such attacks consist of isolating unique application

attributes (e.g., system calls) from the trace, and performing a data flow analysis . In traditional

PVM systems, the data access patterns of the application, and those of the PVM are distinct. As such,

examining the flow of data could reveal all the relevant information about the original application.

This chapter deals with the investigation of such dataflow attacks on PVM-protected applications.

An implementation of this attack methodology was first realized by Coogan, Lu and Debray [57].

The authors termed this attack methodology as Value-based Dependence Analysis (VDA). Their

scheme consists of identifying instructions that perform arithmetic and logical operations directly

on application data, neglecting other operations (e.g, address calculation, conditional jumps, etc.)1

Applying this methodology to a virtualized application’s trace reveals those instructions that imple-

ment the core functionality of the application. VDA can be classified as a search-space reduction

technique.

In this chapter, we thoroughly investigate this attack methodology. We begin by formally defining

the attack methodology using our model. We demonstrate that Coogan, et al.’s implementation can

be easily defeated by binary translators, and propose a more robust attack that targets all types of

PVMs. Next, we describe a novel scheme that thwarts this attack. This solution mechanism, called

DataMeld, involves establishing a relationship between the data values of the PVM and the protected

application. Our evaluation reveals that our solution significantly reduces the amount of relevant

1Inherently, VDA is similar to a well-known security technique, taint checking. In taint checking, program variables
that are susceptible to malicious data (e.g., program inputs) are identified, and the flow of their data values is tracked
throughout application execution. The major difference between VDA and taint checking is that, tainting is a forward
flow analysis (the data values are tracked in program order), whereas VDA is a backward flow analysis (the data values
are tracked from application attribute to program entry).
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information that can be extracted by the adversary, post execution.

The major contributions of this chapter can be summarized as follows:

• Description of a class of data-analysis attacks on PVM-protected applications, called Value-

based Dependence Analysis (VDA). Initially, it was thought that PVMs were effective at

obfuscating the execution trace of the application. However Coogan, et al. demonstrated that

it is relatively straightforward to extract the relevant information from the trace [57]. We

represent this attack in our model to facilitate a better understanding.

• Design of a run-time solution that thwarts Coogan’s attack implementation, called dynamic

address-mode transformation. We demonstrate that the original VDA scheme can be thwarted

by changing the addressing modes of instructions. We employ this scheme via a software

dynamic translator. We use a case study to demonstrate that this solution can defeat Coogan,

et al.’s implementation.

• Design of a more robust implementation of the VDA methodology. The new scheme, called

modified VDA (MVDA), has more overhead (in terms of redundant information extracted)

than Coogan, et al.’s implementation, but is effective against addressing-mode changes. We

extend our case study to demonstrate that MVDA is able to extract critical information from

the PVM-protected trace.

• Conception of a novel scheme that consists of blending the data of the PVM and the protected

application, called DataMeld. This scheme operates by modifying the data values of the

application using the values of the PVM in a semantically-neutral manner. The basic premise

behind this solution is to obfuscate the dynamic data flow of the application by using the PVM.

• Introduction of a metric for calculating the memory coverage of variables, called instruction

coverage for variables (ICV). ICV values facilitate the selection of PVM variables for binding

with the application.
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• Finally, the design of a robust prototype for evaluating these ideas. We demonstrate that

DataMeld increases the obfuscation in the trace of the PVM-protected application. Thus

dataflow attacks like VDA have a reduced chance of success.

The rest of the chapter is organized as follows: in Section 8.1, we explore the concept of data-based

attacks on the PVM-protected trace. We discuss the attack devised by Coogan, et al. in this section.

In Section 8.2, we demonstrate that modifying the addressing modes of instructions that perform

direct register transfers can thwart VDA attacks. We employ a use case to illustrate our assertion. In

Section 8.3, we describe a modified version of the VDA attack, that can withstand addressing mode

transformations. Section 8.4 describes a robust solution to the VDA methodology that obfuscates

the dataflow of the application by blending it with the data flow of the PVM. Section 8.5 presents

a the concept of instruction coverage for variables, to facilitate selection, and describes the design

of a tool to calculate this metric. Section 8.6 we review past work that has investigated extracting

data structure information from binaries. We utilize this work for implementing DataMeld, which is

described in Section 8.7. In Section 8.8, we present an evaluation of this obfuscation, by calculating

the amount of information leakage. Finally, we summarize the chapter in Section 8.9.

8.1 Value-based Dependence Analysis (VDA) Attacks

Software applications modify data values during processing. Any non-trivial application will apply

a myriad of operations on many different data values during the course of its execution. Because

most modern processors have a finite set of hardware registers, these values are temporarily stored in

memory locations while other values are being computed. Dataflow analysis investigates the transfer

of data between memory locations and hardware registers on the native machine, and by extension,

the instructions that access such data values.

The introduction of a virtualization layer in an application changes the dynamic execution

environment. Within the context of data flow, the PVM and the application are two separate

software entities, each with their own set of data values, which do not intersect. This dichotomy

forms the premise behind the VDA attack methodology by Coogan, Lu, and Debray [57]. The
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critical aspect of their analysis is the identification of an attribute that belongs exclusively to the

application. The authors decided on utilizing system calls as the attribute, since most PVMs use

a limited set of system calls (usually related to file I/O, such as open, read, etc.). Because the

system call arguments and return values are standardized for every platform, it is easy to identify

them. Once these values are recognized, VDA operates by tracking their flow through the instruction

trace. In this manner, all the critical instructions (i.e., those belonging to the application) can be

identified. The instructions belonging to the PVM in the dynamic trace will be ignored. Results

have indicated that this scheme can aid reverse engineering by reducing the search space by orders of

magnitude [57].

The VDA attack methodology can be elegantly represented in our formal model. Recalling

Equation 7.6, which describes execution of a an application on a software interpreter, which in turn,

is running on an Intel x86 hardware platform.

φx86(Pstrata, < PTR(APP ), inAPP , cstrata >,m1x86) −→<< outAPP , ostrata >,m2x86 > (8.1)

In Equation 8.1, the hardware interpreter operates on the Strata application, Pstrata. The inputs

to Strata comprise of a tuple, comprising the protected software application PTR(APP ), the input

to the original application, inAPP . The configuration settings for Strata are also given as input,

cstrata. On completion, output outAPP is generated, along with any outputs from Strata, ostrata.

The memory of the host machine is transformed from m1x86 to m2x86.

Next, we analyze the memory used by the interpreter. As we have described, these can be

broken down into two separate components, one belongs to the application, and the other to Strata.

Consequently, in Equation 8.1, the memory state at the beginning of interpretation, m1x86 can be

split into m1stratax86 , and m1APP
x86 , represented in Equation 8.2.

m1x86 = m1APP
x86 ∪m1stratax86 (8.2)
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Similarly, the output memory can also be split in to m2strata
x86 , and m2APP

x86 , represented by Equa-

tion 8.3.

m2x86 = m2APP
x86 ∪m2stratax86 (8.3)

Rewriting Equation 8.1 with these changes, we have:

φx86(Pstrata, < PTR(APP ), inAPP , cstrata >,m1APP
x86 ∪m1stratax86 ) −→<< outAPP , ostrata >,m2APP

x86 ∪m2stratax86 >

(8.4)

Equation 8.4 illustrates the interpretation of a PVM-protected application, with the distinct

memory components. The inputs to Strata comprise of a tuple as before, comprising of PTR(APP ),

the input to the original application, inAPP , and the configuration settings for Strata, cstrata. On

completion, output outAPP is generated, along with any outputs from Strata, ostrata. In this case,

the memory components have been split. The input memory can be described as the union of the

memory state of the application and the PVM. The same case applies to the memory state at the

end of interpretation.

The basic premise behind this attack methodology is that the memory components are mutually

exclusive. Thus, for the input components, we represent this situation in Equation 8.5

m1APP
x86 ∩m1stratax86 = ∅ (8.5)

The same scenario holds for the output memory components, represented in Equation 8.6.

m2APP
x86 ∩m2stratax86 = ∅ (8.6)

To summarize, the sets of data values accessed by the application and the protective PVM are

distinct.
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Given Equations 8.5 and 8.6, if an adversary is able to identify a member of the application’s

data value set, and iteratively analyze the flow of the value, it could reveal other relevant values

that belong to the application, and the instructions that access them (Relevance implies that the

value is a partial product that is pertinent to the eventual computation). Once the application’s

instruction sequence is obtained in this manner, the adversary can apply any number of known

reverse-engineering techniques to obtain its representation at a higher level of abstraction and analyze

its functionality.

Now that we have established the main concepts behind the VDA methodology, we describe the

implementation by Coogan, et al..

8.1.1 Coogan, et al.’s implementation of VDA

The domain of Coogan, et al.’s investigations involved malware protected by software interpreters,

such as VMProtect [36] and CodeVirtualizer [37]. This point is pertinent, because malware is

minuscule in size, compared to generic applications this research is attempting to protect. When

their methodology is applied to generic software, the amount of protection offered is reduced. But

the general principle still holds.

Their implementation consists of two steps. The first step involves data analysis of the trace to

recognize instructions that belong to the original application. The second step involves performing

control flow analyses on the instructions identified to generate program structures (e.g., call-return

pair, jumps, etc.) such that the representation is at a higher level of abstraction. The control-flow

analyses are not specific to reverse engineering virtual machines, but can be applied to attack any

generic obfuscation technique. As such, we focus on the first part of the attack,(i.e. the data-flow

analysis).

To initiate the attack, a run-time trace of the interpreted application is generated and recorded.

The next step involves identifying system calls that belongs to the original application. System calls

belonging to the interpreter can be easily identified by generating the execution trace of two different

PVM-protected applications and matching the common system call invocations.
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Once the system calls are identified, the data path of their arguments are investigated. As we

have established, the goal of this analysis is to identify all data values and, by extension, instructions

that directly or indirectly access these values. The direction of this analysis is reverse to execution

order,(i.e., from the system call back to the next system call or the first instruction executed). The

analysis terminates when another system call is encountered or the first instruction of the trace is

reached.

A notable feature of their VDA implementation is that it essentially focuses on the flow of

values and neglects non-essential computations, such as address calculation. As such, the extracted

information deals almost entirely with the algorithms that have been implemented in the application.

By ignoring such non-essential constructs, this feature simplifies the adversary’s work load.

Listing 8.1: Value-based Dependence Analysis of PVM-protected applications, as defined by Coogan
et al. [57]

VDA(T, C)

inputs:T Trace of PVM-protected Application, P
:{C} Set of system calls belonging to P

S = {}
i = last instruction of T

while (i ∈ T 6= empty)

do

if (i ∈ C)

then

S = {}
S = S ∪ use(i)
mark(i)

endif

if (def(i) ∈ S )

then

S = S − def(i)
S = S ∪ use(i)
mark (i)

endif

i = prev(i)
done

use(i):

inputs: i a read operand

if (i reads register r )

then

return r

else if (i references memory address a )

return a

endif

return NULL

def(i):

inputs: i a write operand

if (i writes register r )

then

return r

else if (i writes memory address a )

return a
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endif

return NULL

Listing 8.1 illustrates the VDA algorithm together with the modified definitions for use and def.

The analysis begins at a system call invocation known to be part of the application. For each such

system call, the Application Binary Interface (ABI) information is used to identify its arguments.

At the onset, a set S is initialized with the locations containing these arguments. Then the trace is

scanned in reverse, and each instruction is processed as follows: if I defines a location l ∈ S, I is

marked relevant, l is removed from S, and the set of locations used by I is added to S. This scan

continues until S is empty, the beginning of the trace is reached, or another system call belonging to

the application is reached. If the terminal condition is another relevant system call, this process is

repeated. The definition of use and def has been modified from the classical definition, to focus

on the values (registers and addresses), rather than the locations of these values. This modification

reduces the amount of information extracted, because address computations are ignored. Therefore,

only the instructions dealing with core computation are identified.

We apply Listing 8.1 to an example code snippet obtained from the trace of a PVM-protected

application, displayed in Listing 8.2 in static single assignment (SSA) form2. We then study the

effects of VDA on this snippet. The system call, print, has been identified as part of the application.

The application of VDA to Listing 8.2 works as follows:

Listing 8.2: Example assembly code

/*I0*/ add esp1, 8 ;pop off two arguments of the stack

/*I1*/ popf ;restore flags

/*I2*/ popa ;restore registers

/*I3*/ lea esp2, [esp1 + 32] ;pop off 32 bytes off the the stack

/*I4*/ jmp [esp2 -24] ;jump to address

/*I5*/ mov ecx1, 0x34 ;mov 0x34 to ecx
/*I6*/ mov eax1, [ecx1 + 0x1000] ;move the value of memory location a to eax

/*I7*/ mov ebx1, 0x124 ;move 0x124 into ebx
/*I8*/ add eax2, ebx1 ;add ebx to eax and store in eax
/*I9*/ mov ebx2, eax2 ;store value in ebx, as argument for syscall

/*I10*/ mov eax3, 4 ;load syscall number into eax

/*I11*/ int 0x80 ;invoke system call ABI with argument

2SSA is a representation technique in which each assignment denotes a new variable [111]. New variables are
typically denoted by a subscript on the name of their container. Thus, eax1, and eax2 refers to different variables that
reside in eax
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• I11: invokes the system call. ABI information reveals that system call, print takes one argument,

which is placed in register ebx. So, this instruction is tagged, and the set S is initialized with

register ebx, i.e., S = {ebx}

• I10: moves the system call to the register eax. This instruction is tagged. S remains unchanged,

i.e., S = {ebx}.

• I9: moves a value from register eax to ebx. Since ebx is a member of S, we add eax to S, and

remove ebx, i.e., S = {eax}. This instruction is tagged.

• I8: adds eax and ebx, and stores it in eax. This instruction is tagged. Thus, S = {eax, ebx}

• I7: stores an immediate value in ebx. Since ebx is in S, we remove it from the set, S = {eax},

and we tag this instruction.

• I6: stores a value from memory location, (ecx1 + 0x1000) to eax. Thus S = {(ecx1 + 0x1000)}.

Note that ecx is not included in S because it deals with address calculation.

• I5: stores an immediate value in ecx. Since ecx is not in S, this instruction is ignored.

S = {(ecx1 + 0x1000)}.

• I4: makes an indirect jump off the stack. This instruction is ignored.

• I3, I2, I1, I0 perform processing which does not involve memory location (ecx1 +0x1000). Hence,

these instructions are ignored.

Thus, VDA tags the following instructions as belonging to the application:

{I6, I7, I8, I9, I10, I11} (8.7)

Applied iteratively on the instruction trace, VDA is able to identify all the application instructions

that are used for core computation. Thus, one of the major protections offered by the PVM is

successfully removed.



8.2 Effectiveness of VDA on Binary Translation Systems 131

In the next section, we provide a solution to Coogan, et al.’s implementation of VDA. This

solution is based on software binary translators, and exploits the fact that their implementation

ignores instructions that perform address calculation.

8.2 Effectiveness of VDA on Binary Translation Systems

The VDA implementation designed by Coogan et al., addresses software interpreters, although the

basic theory is applicable to any PVM technology. An optimization devised by the authors involved

ignoring any instructions that deal with address calculation, and only focusing on memory and

registers contents, containing partial computation products. We describe a scheme that thwarts

Coogan, et al.’s design by transforming the addressing modes of application instructions at run time.

8.2.1 Dynamic Transformation of Addressing Modes (DTAM)

DTAM operates by transforming addressing modes. It has been designed specifically for software

dynamic translators (SDT) as these translators are able to generate and modify code at run time.

The main premise behind this solution involves changing direct data transfer to indirect transfers.

Making this transformation on the application is relatively straightforward using SDTs. We validate

this claim using Strata.

Our DTAM implementation is targeted towards PVM-protected application running on 32-bit

Linux platform. We assume that the size of an int variable is 4 bytes. At application start up, the

PVM allocates a chunk of contiguous memory, Mbase of size n ∗ 4, located at address base. Then,

this memory is initialized, such that the offset 4 ∗ i contains the value i.

[base+ index ∗ 4] = index (8.8)

During execution, whenever the PVM encounters application instructions containing direct register

transfers, it translates such transfers into based indexed indirect transfers [112]. Consider the simple

transfer listed in Equation 8.3.
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Listing 8.3: Direct register transfer

mov eax , ebx

Strata translates this instruction into the sequence listed in Listing 8.4.

Listing 8.4: Indirect data transfer, created by Strata at run time.

push ecx

mov ecx , base

mov eax , [ecx + ebx*4]

pop ecx

The register that is used to store the base address of the memory block,in this case, ecx, can be

any register that is not being used as an operand in the direct transfer. Because Coogan, et al.’s

implementation ignores instructions dealing with address calculation, it will fail to track the flow of

data through the base and index registers (ecx and ebx in Listing 8.4, affecting the effectiveness of

VDA.

We apply dynamic address-mode transformation to the code snippet presented in Listing 8.2.

Listing 8.5 illustrates the modified snippet, as generated by Strata.

Listing 8.5: Example assembly code using based, indexed indirect transfers

init_array: ;function to initialize the memory array

mov ebx , 0xdeadbeef ;load start address

L1: ;start of loop

mov ecx , 0 ;set counter to zero

mov [ebx], ecx ;set counter value at location

;(start address + 4 * counter)

add ebx , 4 ;increment the address

inc ecx ;increment counter

xor ecx , n ;check for loop termination

jnz L1 ;iterate if loop not broken

...

...

/*I0*/ add esp1, 8 ;pop off two arguments of the stack

/*I1*/ popf ;restore flags

/*I2*/ popa ;restore registers

/*I3*/ lea esp2, [esp1 + 32] ;pop off 32 bytes off the the stack

/*I4*/ jmp [esp2 -24] ;jump to address

/*I5*/ mov ecx1, 0x34 ;mov 0x34 to ecx
/*I6*/ mov eax1, [ecx1 + 0x1000] ;move the value of memory location b to eax

/*I7*/ mov ebx1, 0x124 ;move 0x124 into ebx
/*I8*/ add eax2, ebx1 ;add ebx to eax and store in eax
/*I9*/ push edx1 ;save register

/*I10*/ mov edx2, 0xdeadbeef ;set location of array in memory

/*I11*/ mov eax3, [edx2 + eax2] ;load location (0xdeadbeef + eax) into eax

/*I12*/ pop edx3 ;restore register

/*I13*/ mov ebx2, eax3 ;store value in ebx, which acts as argument for syscall

/*I14*/ mov eax4, 4 ;load syscall number into eax

/*I15*/ int 0x80 ;invoke system call ABI with argument
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Strata adds a function, init array, to initialize the block of memory. Applying the VDA scheme

to this code snippet yields:

• I15: invokes the system call. ABI information reveals that system call, print takes one argument,

which is placed in register ebx. So, this instruction is tagged, and the set S is initialized with

ebx ,(i.e., S = {ebx}

• I14: moves the system call to register eax. This instruction is tagged.

• I13: moves a value to register ebx. As ebx is in set S, we remove it, and add eax, i.e., S = {eax}.

This instruction is tagged, and S = {eax}.

• I12: restores a value to register edx, which is not in S. This instruction is ignored.

• I11: moves a value from memory to register eax. As eax is in S, we remove it from the set,

and add the memory location. This instruction is tagged, and S = {(eax2 + edx2)}.

• I10: loads the start address of the memory buffer into edx. This instruction is ignored.

• I9: saves edx on the stack. This instruction is ignored.

• I8: adds the value of eax and ebx. As eax is no longer in S, this instruction is ignored.

• I7: loads a value in ebx. This instruction is ignored.

• I6: loads a value from memory into eax. This instruction is ignored.

• I4 through I0: are all ignored by Coogan, et al.’s implementation VDA, as none of them write

to any of the contents of the set, S.

This analysis will eventually tag the instructions of the function init array, completely ignoring

the instructions that actually implement the core functionality. Thus, in the original code snippet of

Listing 8.2, Coogan, et al.’s analysis only identifies the following instructions as belonging to the

application.

{I11, I13, I14, I15} (8.9)
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The instructions performing core computations (I5 through I8) are ignored.

As our investigation illustrates, this scheme significantly reduces the effectiveness of VDA attacks.

In particular, arithmetic and logical operations are ignored. As such, the adversary will be unable to

identify the majority of instructions that form the original application.

Caveats

Although this solution is effective at thwarting VDA attacks, there are a couple of points that should

be recognized.

A point of concern involves the size of the MBASE(i.e., n. Theoretically, it should be equal the

maximum possible value that can be stored in a variable of type int. However, such a value would

lead to a prohibitively high memory overhead. To reduce overhead, n should be set to a reasonable

value. At run time, the protective PVM will transform the addressing mode only if the value being

transferred using register direct mode is less than n.

We also acknowledge that this technique has a high performance overhead, because it replaces a

simple register-to-register transfer with instructions that access memory. If the instruction to be

replaced exists on a frequently-executed path, the overhead implications could be severe. As we

have already seen in Chapter 5, profiling the application provides a simple technique to identify

basic blocks (and instructions) that are on hot paths. When applying this protection scheme, the

application should be profiled, and only those direct transfers targeted for replacement, that do not

lie on such paths.

In the next section, we modify Coogan, et al.’s original design of VDA to be effective in the

presence of DTAM.
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8.3 Modified Value-based Dependence Analysis (MVDA): An

Example of White-hat Attack

The area of program protections is attritional by nature. The adversary designs techniques to steal

assets from applications. The software defender develops mechanisms to protect applications from

such attacks. Then, the adversary constructs schemes to disable the protections, and so forth. Aware

of this cyclical nature of protections, most security researchers often attempt to break their own

protection techniques, as a measure of robustness. This technique, called ’white hat’ or ethical

hacking, offers the security provider a view of the protections from the perspective of the adversary.

Such schemes often lead to discovery of weaknesses and loopholes, that may not be clear initially

(such as the attack on Skype [19]).

In this section, we switch our viewpoint to that of an adversary. In the last section, we

demonstrated that Coogan, et al.’s implementation of the VDA attack is relatively straightforward to

overcome, specially using a PVM based on binary translation that can perform code manipulations

at run time. Rather than wait for an adversary, it would be prudent to attempt to design the next

step in the evolution of the VDA methodology. The results of such an analysis could be used to make

protections more robust.

The DTAM scheme operates by modifying address transformations. We opted to attack this

aspect of the solution. Thus, we modify VDA to include the operands used in address calculation

in its analysis as well. That is, the analysis of the dataflow should include the address generation

operands as well.

Applying this modification to our definition of VDA in Listing 8.1 yields the modified definition

displayed in Listing 8.6.

Listing 8.6: Modified definitions of def and use, to thwart trivial solution.

use(i):

inputs: i a read operand

if (i reads register r )

then

return r

else if (i references memory address a )

return a and any registers used in calculation

endif
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return NULL

def(i):

inputs: i a write operand

if (i writes register r )

then

return r

else if (i writes memory address a )

return a

endif

return NULL

In this listing, the function use, is modified to return any registers that were used to generate

the address. For example, on a Intel x86 platform, applying use to the instruction in Listing 8.7

returns ebp, esi, and the address pointed to by (ebp + esi), as illustrated by Listing 8.7.

Listing 8.7: Example of address calculation in an instruction

mov eax , [ebp + esi]

We now apply this modified VDA algorithm to the code snippet presented in Listing 8.5. This

analysis yields:

• I15: invokes the system call. ABI information reveals that system call, print takes one

argument, which is placed in register ebx. So, at the onset, the set S is initialized with ebx,

i.e., S = {ebx, eax}

• I14: moves the system call number to register eax. This instruction is tagged, and S = {ebx}.

• I13: moves a value to register ebx. Since ebx is in set S, we remove it, and add eax, i.e.,

S = {eax}

• I12: restores a value into edx. Since this register is not in S, we ignore this instruction.

• I11: stores a value into eax, which is present in S. This instruction exemplifies our modification.

Now, we replace eax in S with edx, eax, and the memory address (eax+edx), i.e., S =

{eax, edx, (eax+ edx)}. This instruction is tagged.

• I10: moves an immediate value into edx, which is present in S. Hence, edx is removed, and

this instruction is tagged, i.e., S = {eax, eax+edx)}.
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• I9: stores the value in edx. This instruction is ignored.

• I8: stores a value in eax, which is in S. Hence, eax is removed, and the operands, ebx, and

eax are inserted. This instruction is tagged, and S = {eax, ebx, (eax+edx)}.

• I7: moves an immediate into ebx. This instruction is tagged, and S = {eax, (eax+edx)}.

• I6: moves a value from memory to eax, which is in S. Hence, this instruction is tagged, and

the memory location, b is added. The register used in address calculation is also added to S,

resulting in S = {(eax+edx), (ecx + 0x1000), ecx}.

• I5: moves an immediate value to ecx. This instruction is tagged. S = {(eax+edx), (ecx + 0x1000)}.

• I4 through I0: are ignored, since they do not involve writing to locations a and b.

This analysis results in the following instructions being tagged:

{I5, I6, I7, I8, I9, , I10, I11, I12, I13} (8.10)

Comparing Equation 8.7, Equation 8.9, and Equation 8.10, we observe that MVDA does output

more instructions than Coogan et al.’s implementation, but less than the actual trace size. All the

core instructions are present in the output of MVDA.

This running example illustrated the effects of the VDA methodology over a small code snippet.

We now expand the scope of the analysis, to include the whole application trace, and evaluate the

effects of VDA. The next section describes our results.

8.3.1 Evaluation

To judge the effectiveness of both VDA and MVDA techniques, we decided to compare the dynamic

instruction count (DIC) obtained by applying these techniques to run-time traces generated under

different scenarios. We performed our experiments on a subset of the SPEC 2000 benchmarks

under different scenarios. The count in each scenario is normalized with respect to the DIC in the

original, unprotected application. The first scenario under consideration involves calculating the
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Figure 8.1: Dynamic instruction counts, normalized to the original application. The four scenarios
include running the PVM-protected application, the count of the instructions obtained when VDA
is applied to the PVM-protected application, the instruction count when VDA is applied to an
application protected with dynamic address-mode transformation, and finally, MVDA applied to an
application protected with dynamic address-mode translation.

DIC of a PVM-protected application. Next, we display the DIC obtained from applying VDA to the

PVM-protected application. The third scenario consists of the DIC obtained from applying VDA to

a DTAM-protected application. The last scenario involves obtaining the DIC from applying MVDA

on an application protected via DTAM. Figure 8.1 illustrates the results.

From the perspective of the adversary, the optimal condition is represented by the scenario where

VDA is applied to a trace of a standard PVM-protected application. As we have previously described,

VDA only focuses on instructions that perform the core computation for the application. It ignores

all superfluous instructions (such as address computations, and those instructions that belong to the

PVM). Any technique that outputs information greater than this case has likely extracted some of
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the superfluous instructions. Any technique that outputs information less than this case has likely

ignored some of the instructions dealing with core computations. Therefore, both these cases are

worse.

As the figure illustrates, on average, the PVM introduces 40% more instructions to the benchmark.

Since applications have DIC in the order of billions, this overhead represents a significant increase

on the part of the adversary. Analysis of second scenario reveals that VDA reduces DIC by more

than half, compared to the first scenario. This result indicates that more than half of the dynamic

instructions of the PVM-protected application consist of the PVM or address-calculation instructions.

The remaining instructions form the core of the application (about 70% on average), and are of the

most value to the adversary.

The third scenario reveals that DTAM removes most of the relevant instructions. On average,

applying VDA on this protection scheme uncovers only 25% of the original instructions. As we

demonstrated via an example in Section 8.2, most of the instructions obtained in this scenario consist

only of the data transfers. The arithmetic and logical instructions that form the bulk of any complex

application, are completely missed by VDA in the presence of DTAM protections.

Finally, MVDA is able to render DTAM protections ineffective, uncovering close to 90% of the

original application. This figure is slightly higher than the result obtained from Coogan, et al.’s

analysis (Scenario 2), which we assume to be optimum, but is still better than Scenario 3.

Although this change to VDA increases the amount of information to be processed, it makes

VDA more effective at disabling all PVM technologies. To effectively defeat this modified version

of VDA, a more robust solution is required. In the next section, we present such a solution that

involves the protective PVM modifying data that belongs to the application.
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8.4 DataMeld: Blending Data between the Application and

the PVM

Now, we revert back to our original viewpoint, that of the software defender. The goal now is to

design a solution to the robust version of VDA methodology introduced in Section 8.3. In this section,

we present a revolutionary approach to virtualization that thwarts VDA attacks, by removing the

separation between the application and the PVM data sets. The basic idea involves inserting the

PVM data into the data flow of the application, without affecting functionality. In the presence of

this obfuscation scheme, data-based analyses, such as VDA, will be unable to discern the individual

components (the PVM and the original application). VDA will track instructions belonging to the

PVM as well. Consequently, the effectiveness of VDA will be reduced, nullifying it as a search-space

reduction technique.

We call this scheme DataMeld, because it obfuscates the application by blending its data flow

with that of the PVM. To achieve optimum protection, all the data values of the protective PVM

should affect the the application’s data values. However, extracting this information from the PVM

can be an onerous task. Thus, part of the research involves the creation of a tool that analyzes

memory usage patterns of the PVM and outputs those variables that provide the maximum coverage

in terms of the PVM code. The software defender can then proceed to blend the dataflow of the two

components. We explain this process in greater detail in the next section.

DataMeld is achieved by applying arithmetic and logical operations on application values using

PVM data as operands, and vice versa. However, these operations can not be applied arbitrarily.

Care must be taken to ensure that this manipulation does not affect the outputs of the application.

Thus, these data manipulations should have no effect over the course of the application lifetime. We

achieve this effect by applying a series of operations on the data values of the application, and then,

applying the inverse of these operations, using PVM data values as operands. This action occurs at

different points in the run time of the PVM-protected application.

One such convenient point is when the PVM obtains control and translates the application. When
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control is transferred to the PVM, the application data values can be extracted and modified. After

the PVM completes translation, the values are reverted and control is transferred to the translated

code.

The data values of the application can be accessed easily by the PVM. Prior to transferring control,

the application’s context is stored on the software stack. As both the application and the PVM

share this stack, the PVM can scan the stack, and read the values. These values are subsequently

modified using different PVM variables and stored back in their original locations on the stack. After

the translation of the current block is completed, the PVM will revert the modifications and store

the values in their original location on the stack. In this manner, dataflow of the application is

transformed to include data from the PVM as well.

As we mentioned previously, these modifications should have no net semantic effect, so that

the transformed application generates the same outputs as the original version, for all inputs. A

knowledgeable adversary can attempt to locate these operations based on this premise. To make this

scheme more robust, the modifying operations can utilize techniques, such as pointer aliasing [23, 8],

and branch functions [81]. These techniques make it harder for the adversary to analyze the trace.

In essence, the effect of this scheme is to bind the data flow of the application with that of

the PVM. To maximize this binding (i.e., maximize obfuscation), the chosen PVM variables must

be affected by as many PVM instructions as possible. We define the number of instructions that

affect the value of a variable as instruction coverage for variables (ICV). This metric can serve as

an indicator of the strength of the protection against VDA. Variables with a higher ICV value will

generate more obfuscation comparable to variables with lower values. One of the contributions of

our research is a tool that calculates the ICV values for the variables in a software application.

Figure 8.2 illustrates the workflow for protecting an application via DataMeld. The steps of the

workflow are as follows:

1. The application is packaged with Strata, and subjected to the ICV tool, described in Section 8.5.

This tool generates the ICV values for the memory references used by Strata. The top-ten

memory references are chosen, according to decreasing ICV values.
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Figure 8.2: The workflow for the application protection process via DataMeld. First, the memory
references with most instruction coverage are calculated. Subsequently, the variables in source code
that correspond to these references are identified. Finally, DataMeld is implemented using Strata

2. Previously-derived heuristics (HOWARD) [113] are utilized to identify the variables that

correspond to the memory references generated in Step 1. The heuristics facilitate identifying

data structures from the source code. This step is performed manually. This part of the

workflow is described in greater detail in Section 8.6.

3. The source code of Strata is manually modified such that at run time, Strata can extract and

modify application values from the stack, using the variables identified in Step 2. Subsequently,

the PVM-protected application package is created, as in previous cases.

We now proceed to explain the ICV calculation in detail.
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8.5 A Tool to Calculate ICV

ICV calculation is based on dataflow analysis (DFA), which tracks the flow of data throughout

execution, and has been used in software security techniques, such as taint analysis of software

programs [114, 115, 116]. ICV basically computes the number of instructions that have affected the

value of a particular variable. The goal is to obtain the ICV value for all the data variables in the

PVM. The PVM variables with higher ICVs can then be used as candidates in the implementation

of DataMeld.

Our tool has been designed to work on PVM-protected applications. We are only interested in

the dataflow of the PVM, hence the analysis phase ignores data flow of the original application. Our

tool calculates dynamic ICV for the PVM (i.e., the number of dynamic instructions affecting the

data variable).

The tool analyzes the run-time of the application. It operates on a per-function basis. On startup,

each data memory location in the application is assigned with a ICV counter, initialized to zero.

Whenever a memory write instruction is encountered, the ICV of the destination operand is updated

based on the ICV counter of its source operands, plus the current instruction. The rules for calculating

the updated value are described in Section 8.5.1. On most systems, general-purpose registers are

used to perform arithmetic and transfer operations, as such, each general-purpose register is also

assigned with a ICV counter. After the application exits, each memory reference is collated and

ordered based on the counter value.

In the next section, we describe the rules that guide ICV calculation.

8.5.1 Rules Regulating ICV Calculation

This section describes the rules for calculating the ICV of application memory locations. These rules

have been extended from the DFA rules proposed by Kemerlis et al. [117]. In the following discussion

the term dst refers to the destination operand, whereas src* refers to the source operands.

The rules are based on the type of opcode of the instruction.
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• ALU: These operations typically consist of 1 or 2 source operands writing to a destination

operand. Examples of such instruction include sub, add, and mul. For such instructions, the

ICV for the destination operand can be calculated as follows.

ICVdst = ICVsrc1 + ICVsrc2 + 1

All literal values have an ICV of zero.

• XFER: These operations consist of data transfers from the source to the destination. Both

the source and the destination can be a register or a memory location. The rule for such

instructions is as follows:

ICVdst = ICVsrc + 1

As before, literal values have an ICV of zero.

• CLR: Examples of such instructions include cpuid, setxx etc. Zeroing out operations are also

included in this category (e.g., xor eax, eax. The ICV for such locations is:

ICVdst = 1

• SPECIAL: This class contains instructions that cannot be handled appropriately by the above

primitives. Examples of such instructions include xchg, cmpxchg, lea etc.

The tool ignores all other instructions, such as FPU, MMX.

Next, we apply these rules to a small code snippet, and calculate the ICV values for the variables

in that example.

Listing 8.8: Example code to illustrate Instruction Coverage for Variables. Note that the implemen-
tation actually works at the binary level.

1 int datum1 = 4; // ICVdatum1 = 1
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2 int datum2 = 5; // ICVdatum2 = 1

3 int datum3 = datum1 * datum2; // ICVdatum3 = ICVdatum1 + ICVdatum2 + 1

lstsetlanguage=C,numbers=none,escapeinside=@@

Listing 8.8 displays the snippet. Initially, the ICV for the variables datum1, datum2, and datum3

is zero. In Line 1, datum1 is written, therefore, its ICV is set to 1. Similarly, in Line 2, the ICV for

datum2 is set to 1. Finally in Line 3, the ICV for datum3 is set to the ICV of its operands plus the

current instruction,(i.e., 3.

We have created a tool that calculates ICVs based on these rules, using Intel’s Pin instrumentation

framework. This pintool analyzes PVM-protected applications, and calculates ICV values based

on the above rules. For our prototype, we used Strata as the protective PVM. Since this tool only

calculates ICV for variables in Strata, a technique is required to trigger the pintool when Strata

obtains control (to continue analysis), and when it relinquishes control (to pause analysis). We

achieve this trigger by instrumenting the strata build main (which indicates control has been

transferred to Strata), and the targ exec (which indicates that control has been transferred to the

translated block) functions. Whenever a write occurs, the ICV of the destination operand is updated

by applying one of the rules to the ICV values of the source operands. The tool maintains the ICV

values in a map data structure, indexed by memory address. At the end of execution, this map

contains the ICV values of all the memory addresses accessed by the PVM.

8.6 Mapping Memory References to Variables in Source Code

The pintool generates ICV values for memory references of Strata. We need a technique to ascertain

the variables in source code that correspond to these references, as the DataMeld is implemented

at the source code level. This information can be extracted from heuristics that recover data

structures from binary code. Extensive research has already been performed in this area, such as

the CodeSurfer project designed by Balakrishnan and Reps [118, 119, 120]. Others research of note

include Laika [121], and Rewards [122]. In light of the established body of research, we proceeded

with reusing some of these techniques for our goals.
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For our purposes, we adopted the techniques for dynamic data structure excavation from the

Howard system [123, 113]. Howard has been designed to extract data structures from generic binaries.

This information is extracted by running the application, and analyzing the data usage pattern. Since

we are only interested in applying these techniques to protective PVMs like Strata, we simplified

them accordingly. For our initial study, we have restricted our analysis to local function variables.

During execution, whenever a call instruction is encountered, it signifies a new function is to be

analyzed. A ret instruction signifies the end of analysis for the current function. The frame pointer

(ebp), or the stack pointer (esp) is typically used in operations on local variables. Local variables

and arguments are accessed via positive or negative offsets off of these registers.

While processing a function, if an operation that is relevant to ICV calculation occurs, and one

of the operands is a memory location accessed via the stack or frame pointer, its offset is recorded,

along with the ICV calculations. When the entire analysis terminates, we collate this per-function

data and attempt to match the offsets with the variables from source code manually. Although this

method is not precise, we were able to obtain sufficient information to facilitate implementation of

DataMeld.

In the next section, we describe the creation of the DataMeld system.

8.7 Implementing DataMeld

Once the variables are recognized, Strata is modified to extract and the applications values on the

stack. The main code modifications occur in the builder function of Strata, strata build main.

The prototype of this function is as follows:

Listing 8.9: Function prototype of strata build main

fcache_iaddr_t strata_build_main (app_iaddr_t to_PC , strata_fragment *from_frag)

This function is invoked when a new application block has to be translated. Prior to invoking

this call, the application’s context (i.e. all the register values, as well as status flags) are pushed on
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to the program stack. Once this function is invoked, these values can be accessed via its function

arguments. An example code snippet that performs this operation is as follows:

Listing 8.10: Strata code snippet to access the locations where application values are stored

eax_address = (int *)( ((char *)& from_frag) + 36);

ecx_address = (int *)( ((char *)& from_frag) + 32);

edx_address = (int *)( ((char *)& from_frag) + 28);

ebx_address = (int *)( ((char *)& from_frag) + 24);

In Listing 8.10, the variable eax address contains the address of the stack location containing the

eax values of the application prior to context switch. Similarly, ebx address contains the address of

the location storing ebx’ values, and so on.

Once these locations are extracted, code can be added in strata build main to modify these

values. An example follows:

Listing 8.11: Strata code modifying the applications values

*( eax_address) += frag ->fPC;

Listing 8.11 illustrates the modification of the application’s eax values by a variable of Strata,

frag->fPC.

Prior to strata build main returning control to the newly translated block, the above mentioned

change must be reverted. This modification is illustrated in Listing 8.12.

Listing 8.12: Strata code reverting the applications values

*( eax_address) -= frag ->fPC;

In this manner, the application’s values can be tainted by the PVM values. These examples

perform simple calculations, but any complex calculations can be performed, as long as the values

on the stack prior to strata build main returning control are identical to the values at the point

of invocation of this function. Applying VDA to such a protected application will lead to a large

portion of the PVM appearing in the results, thwarting analysis. In the next section, we present

some of the results of our evaluation.
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Rank File name Function name
Variable
name

1 targ-build.c targ classify insn

2 targ-build.c targ classify opcode

3 targ-build.c targ normal insn

4 targ-build.c targ normal frag

5 targ-build.c targ normal class

6 targ-build.c targ pcrel branch insn

7 build.c strata build main frag

8 targ-build.c targ create trampoline tramplist

9 build.c strata build main to PC

10 build.c strata create trampoline patch

Table 8.1: Table displaying the top-10 variables in terms of ICV values. These variables are used for
creating the DataMeld system.

8.8 Evaluation

We successfully prototyped the DataMeld system, using Strata, and performed analysis on its

protection properties. We summarize our efforts in this section.

8.8.1 ICV Tool Output

As before, we utilized Strata as the prototype for the protective PVM. Initially, we ran the ICV

tool on a simple PVM-protected application, and obtained 10 variables that had the highest ICV

counts. We then manually modified the Strata source code, such that when Strata was in control, it

would extract the application values from the stack and modify its contents, using these variables as

operands.

Table 8.1 displays the ten variables with the highest values of ICV. For the prototype, we used

simple arithmetic operations to modify the data values of the application, using these variables. The

operations that are performed on the application variables are not static, but selected at random.

Care must be taken to ensure that these operations are reverted when control returns to the translated

code.
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Figure 8.3: Dynamic instruction counts, normalized to the original application across all the five
scenarios. To recap, these scenarios include running the PVM-protected application as is, the DIC
obtained when VDA is applied to the PVM-protected application, the DIC when VDA is applied to
an application protected with DTAM, the DIC obtained when MVDA is applied to an application
protected with DTAM, and finally, the DIC when MVDA is applied to an application protected via
DataMeld.

8.8.2 Measuring Obfuscation

To measure obfuscation caused by DataMeld, we added an additional scenario to the analysis

performed in Section 8.3.1. This additional scenario comprises of calculating the DIC obtained by

applying the MVDA analysis on a DataMeld-protected application. Figure 8.3 displays the DIC for

a few benchmarks, together with the DICs obtained from the previous four scenarios described in

Section 8.3.1.

As the figure illustrates, DataMeld increases the amount of superfluous instructions obtained by

MVDA, thereby thwarting the attack. On average, the DIC for DataMeld-protected applications is

25% more than that of an unprotected application. Recalling Section 8.3.1, the optimum scenario
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for the adversary comprises of applying VDA to a PVM-protected application, which resulted in a

DIC that was 30% less than that of an unprotected application. As such, our results indicate that

DataMeld does increase the amount of obfuscation in the trace. These experiments on DataMeld

were performed by using the top ten variables in terms of ICV values. By increasing the number of

values, DataMeld can provide more obfuscation. Each additional variable will likely result in VDA

generating more instructions (i.e., those instructions that interact with the additional variable).

These investigations reveal that DataMeld can improve the robustness of the protective PVM,

against dataflow-based attacks like VDA. Employing this scheme removes another weakness that

could potentially be exploited by an adversary, preventing them from removing protections and

acquiring the application’s assets in an unauthorized manner.

8.9 Summary

In this chapter, we presented our investigation into the flow of data between the application and

the protective PVM. We began the discussion by describing the work of Coogan, et al., in designing

an attack on PVM-protected applications by obtaining the trace and performing dataflow analysis,

called Value-based Dependence Analysis (VDA). We modeled this attack methodology within our

framework. We then proceeded to extend the attack to binary translation systems. The original

version of VDA could be defeated by software dynamic translators, but we demonstrated a modified

version of VDA that is effective at disabling any PVM technology. Finally, we designed a robust

solution, DataMeld, that offers protection by conflating the dataflow of the PVM with that of the

application. Our results show that DataMeld is effective at thwarting dataflow-based attacks on

PVM-protected applications.



Chapter 9

Composable Virtual Machines

Upto this point in the dissertation, this dissertation has exclusively focused on a single layer of

virtualization to combat reverse engineering and tamper. The PVM makes it hard to statically

analyze the application. At run time, the PVM applies various dynamic protection techniques to

the application, such as temporal polymorphism, and knots. Point-ISA and DataMeld ensure that

the adversary is not able to remove the protections. All these techniques thwart the adversary

from targeting the attack surface (i.e, the application), and successfully acquiring the assets of the

application.

One point of concern is that the PVM itself is not as well protected. The PVM is not as attractive

a target as the application for the adversary, but there is still potential for an attack that could disable

the protective properties of the PVM and leave the application vulnerable. The major weakness

for the PVM is its stationary target surface. As opposed to the application, the PVM executes in

a predictable manner. If an adversary were able to locate a vulnerability, they could launch an

automated attack on the PVM.

A straightforward solution to this problem involves nesting virtualization layers to impart all the

dynamic protections to the PVMs themselves. The concept of nesting virtualization layers was first

proposed by Popek and Goldberg [44]. In essence, the adversary would have to break through a

dynamically-protected PVM layer before even attempting to attack the application.
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Figure 9.1: A conceptual overview of a CVM-protected application package. The application is
partitioned (based on certain criteria) into two sections. The first section is protected by a set of two
CVMs, while the second section is protected by one CVM instance.

In this chapter, we expand on the idea of nesting virtualization layers, by proposing the concept of

composable virtualization. We define composable virtualization as applying a set of virtual machines

(which could be null) to different partitions of an application, for program protection. Since the

virtual machines themselves are software applications, they too can be subjected to composable

virtualization. These virtualization layers are termed as Composable Virtual Machines (CVMs).

The basic steps involved in this scheme comprise of partitioning the application, and assigning each

partition to a set of CVMs. These partitions are then composed together, to create a executable

package that represents the protected application.

Figure 9.1 illustrates the conceptual overview of an application protected by CVMs.

The application is partitioned into two sections. The first partition is protected by a set of two

CVMs (CVM1 and CVM2). The set is arranged in such a way that CVM2 protects CVM1, which

in turn protects the first partition. The second partition is protected by a single CVM (CVM3).

The goal of this chapter is to introduce research on composable virtual machines. An extensive

analysis and evaluation of multiple virtualization layers is beyond the scope of this dissertation.

Rather, we will be analyzing some of the logistics involved in composing applications using CVMs,

and their properties at run time. Our hope is that this study will facilitate further analysis and
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research into composable virtualization, and pave the way for their widespread adoption.

The main contributions of this chapter are as follows:

• Introduction of a novel protection technique, called composable virtualization. In this scheme,

the application is partitioned, and assigned to a set of virtual machines that protect it and

themselves as run time.

• The use of a case study to investigate some of the protection properties of this technique. For

example, we demonstrate that CVMs can better protect software caches, compared to the

use of a single PVM instance. The goal of the case study is to provide an initial insight into

composable virtualization, and foster future research in this area.

• The design of an optimization technique to alleviate some of the performance overheads

associated with multiple layers of virtualization. This optimization is targeted towards software

dynamic translation, and can be used to reduce overheads significantly.

The rest of the chapter is organized as : Section 9.1 discusses past work on program partitioning

for security. It is our belief that such past work can be co-opted for use in the CVM methodology as

well. Section 9.2 describes the experimental set up for creating CVM-protected packages. Section 9.3

discusses the use of a case study to investigate some of the properties of CVMs. In Section 9.4, we

investigate the sources of overhead in CVMs, and proposes optimizations. In Section 9.5, we discuss

some of the issues related to CVMs, and propose some specific areas for further research. Finally, we

summarize this chapter in Section 9.6.

9.1 Partitioning Applications

The high-level design philosophy for creating a CVM-protected application consists of partitioning

an application, and assigning each partition to a set of CVMs, (or scheduling the partition to run

natively). At run time, each partition will run under mediation of its assigned set of CVMs. The

CVMs will dynamically protect the currently-executing partition, as well as each other, creating a

network of protection.
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Partitioning an application for security purposes has been investigated in the past [124, 125, 126,

127]. Primarily, such techniques have facilitated a distributed computing paradigm, in which different

parts of the application execute on various hosts, each with a different level of trust. Zdancewic, et al.

devised language-based scheme for protecting confidential code during computation in a distributed

network containing untrusted hosts [124]. Narayanan, et al. designed a compiler-guided technique

for secure code partitioning among a set of hosts. Their scheme targeted hosts that execute secure

embedded application in parallel [125]. Sondergaard, et al. also devised techniques to annotate

programs with annotations with protection specifications, and to partition the annotated programs.

In most of these works, the exact mechanism to partition the application has been left to the discretion

of the software defender. These solutions typically enable the defender to mark sections of the code

as critical.

Having investigated the plethora of research work, we have opted against devising a partitioning

scheme of our own. We feel that the partitioning scheme is highly dependent on the needs of the

protection configuration. For example, it might be tolerable, from the perspective of the software

defender, to run certains sections of the application natively and without protections. The more

relevant issue is to compose the protected package, once a partitioning scheme has been decided. In

the next section, we describe techniques to compose a CVM-protected application.

9.2 Creating CVM Packages

The CVM infrastructure is based on software dynamic translation (Strata) [51], which we described in

Section 2.3. To create applications protected via CVMs, we utilize the Diablo link-time toolchain [62].

The application is first compiled using the standard gcc compiler. The SDT library (i.e., Strata) is

also compiled in a similar manner.

Each CVM instance is created from the Strata library. To create the multiple instances, we

employed the objcopy utility from the binutils suite of tools. objcopy copies the contents of one

object file (including library and executable files) to another, while providing options to modify

the output in several ways. One of the options involves modifying the names of all the global
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symbols in the output file by adding a prefix. This option can be used to ensure that the different

CVM instances do not share any global symbol names, thus removing any name conflicts. Utilizing

objcopy provides a simple technique to create several CVM instances, without performing extensive

source code changes. It is important to note that creating CVM instances with different protection

properties, some amount of code modification may be required. In our subsequent discussion, we will

assume that different CVM instances possess identical protection properties.

Strata has three functions that are of relevance. The strata init function initializes the Strata

library. The strata start function prepares for application virtualization. Finally, the strata exit

function deallocates any resources that Strata might be using, and relinquishes control completely.

Once all the object files and CVM instances are created, they are provided as input to Diablo. As

we described in Chapter 4, Diablo processes the inputs and creates the CFG for the application. At

this point, Diablo can be programmed to insert calls to start init, strata start and strata exit

for each CVM instance at appropriate locations in the CFG corresponding to each partition. If a

CVM instance is itself scheduled for partition, Diablo can be programmed to insert the calls to the

CVM accordingly.

Consequently, Diablo generates machine code for this modified CFG and writes it to an executable

file. Various static protection can also be applied to the executable at this stage. This file represents

the CVM-protected application binary. At run time, when a call is made to strata start, the

corresponding CVM instance starts mediating the application. When a call is made to strata exit,

the corresponding CVM instance releases resources, and yields control permanently.

This technique provides a platform to the software defender to craft different configuration of

CVMs. In the next section, we will focus on some of their protection properties. We will base our

discussion of CVM protection on a case study, comprising of two CVM configurations.

9.3 A Use-case Study

The protection offered by CVMs depends, to a large extent, on the partitioning scheme. For example,

the defender may choose to partition the application such that only one function runs under a CVM.
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In such a case, CVM-enabled protections will only be active when that particular function is invoked.

To obtain insight into the protection offered by CVMs, we performed a case study consisting of two

simple CVM configurations, called series and nested. Each configuration consists of an unprotected

application, PAPP , and two CVM instances, Strata1 , and Strata2. In the series configuration, the

two CVM instances are in series of each other i.e., at any point in time, only one CVM instance is

active. In the nested configuration, both CVM instances are active simultaneously.

9.3.1 Series Configuration

Figure 9.2 illustrates the creation and the run time of a package protected by the series configuration

of CVMs. During software preparation, Diablo generates the CFG of the application. The set of

blocks representing the main function of the application is partitioned equally. Diablo then inserts

the entry and exit calls to Strata1 and Strata2 to the two partitions, as shown in the figure.

On program startup, Strata1 assumes control, and start mediating the execution of its partition.

It applies various dynamic schemes to protect the run time from attacks. When the corresponding

strata exit is invoked, Strata1 deallocates its resources, and yields control. Consequently, Strata2

assumes control, and mediates the execution of its partition. It too, applies various dynamic schemes

to the run time. The application then runs to completion.

We analyzed this configuration, in terms of security and performance. The performance overhead

is similar to the case of an application running under a single instance of Strata. There is some

overhead involved for the startup and shutdown associated with every CVM instance, but for most

of the benchmarks, it was negligible.

The protection offered by this configuration is incremental, compared to the single PVM scenario.

The dynamic protection at any point is dependent on the CVM instance in control. Over the entire

application run, the protection applied is the average of the two CVM instances.

As the protections offered by the series configuration is incremental over a single PVM instance,

the rest of this chapter deals exclusively with the nested configuration of CVMs.
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Figure 9.2: A high-level overview of the series configuration. During software creation, Diablo
synthesizes the CFG of the application and inserts the entry and exit functions of the CVM instances,
Strata1 and Strata2, by dividing the main function equally. At run time, first Strata1 translates its
partition, followed by Strata2.

9.3.2 Nested Configuration

Figure 9.3 illustrates the creation, and the run time of the nested configuration. As before, during

software preparation, Diablo generates the CFG of the application. In this case, all the blocks

comprising main are encapsulated by the start and exit functions of Strata2. Consequently, Strata2

is encapsulated by Strata1, ensuring that Strata2 executes under the control of Strata1.

At run time, Strata1 assumes control. It proceeds to translate code from Strata2 to its software

cache, SC1. Then, control is transferred to the translated code in SC1, which in turn, starts translating

the application’s code to Strata2’s software cache (SC2). As control is about to be transferred to

SC1, Strata1 captures control, and starts translating code from SC2, to its own cache SC1. Thus, all

the instructions that execute natively belong to Strata1 or reside in its software cache, SC1. This
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Figure 9.3: A high-level overview of the nested configuration. During software creation, Diablo
synthesizes the CFG of the application and inserts the entry and exit functions of the CVM instances,
Strata1 and Strata2. In this case, Strata2 is encapsulated within Strata1. At run time, Strata2

translates the application to its software cache, SC2. Strata1 translates Strata1 and SC2 onto SC1.
Since the code resident in SC2 does not execute directly, it can be encrypted.

feature is important to note as it indicates that the code residing in the software caches of inner1

CVMs (such as Strata2) do not execute directly. Therefore, they can be transformed in a manner

that thwarts analysis (e.g., encryption).

Next, we focus on some of the properties of the nested configuration that protect against reverse

engineering.

1In this discussion, positions of the virtualization layer are described relative to the application. The application
is located at level 0, the innermost CVM layer at level 1, and so on. Any CVM that is interpreted directly by the
hardware is said to be at the outermost level.
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Obfuscation of the Software Cache

One of the major goals of composable virtualization involves increasing the obfuscation of software

cache containing translated code. To evaluate this feature, we analyzed the software caches of the

CVMs.

As we mentioned, code resident in the software cache of any CVM that is not directly in contact

with the native platform, will be translated by another CVM. As a means of thwarting analysis,

the contents of such an inner-level software cache can be encrypted. In such a case, the decryption

key must be possessed by any CVM that is translating this code. In the current example, Strata2

responsible for mediating Strata2, and must possess the corresponding decryption key. This feature

can be extended to multiple layers of virtualization, as long as the decryption keys are shared

appropriately. Thus, if a CVM at level n controls the execution of a CVM at level n− 1, it must

posses the decryption key for the encrypted code residing in the software cache of the CVM at level

n− 1.

Care must be taken to ensure the encryption algorithm is robust, and the key is not easy to

extract. The logistics of encryption and key protection are similar to the case of encrypting the

application, which was discussed in Section 4.1.2. that discussion applies in this scenario as well.

We now focus on the software cache of the CVM at the outermost level, i.e., the CVM that

executes on the native platform. In our example, this CVM is represented by Strata1. Figure 9.4

illustrates its software cache. As the figure shows, there is interleaving between the code from these

two components. There is no clear demarcation between the code of Strata2, and the application.

As discussed in Section 4.2, interleaving code from the application and the VM enables greater

entropy, and leads to greater obfuscation. It is more difficult for the adversary to distinguish the

application code from the CVM code. We decided to reuse the experiments of Section 4.2 on the

contents of this software cache, to obtain an insight on the entropy of the system. Each basic block

that originated from the application was assigned a bit value of ’0’, and each basic block from Strata2

was assigned a value of ’1’. A string was then obtained based on the layout of the software cache,

and compressed using the LZ78 algorithm.
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Figure 9.4: This figure illustrates the software cache of Strata1. This software cache contains the
code from Strata2, and its software cache SC2, which is basically translated application code. As can
be seen from the figure, the code from the components are interleaved, to provide better obfuscation.

In the case of an application protected by a single PVM, the compression ratio was 149. In the

case of the nested configuration, the compression ratio was observed to be 15.63. These results

indicated indicate that the nested CVM configuration provides higher entropy to the software cache.

Therefore, the nested configuration provides more protection from analysis to the software cache.

This result is encouraging, from the viewpoint of the software defender. With more complex CVM

configurations, the software caches will possess more entropy, making it harder for the adversary to

extract meaningful information.

Obfuscation of the Control Flow Graph

The previous experiment indicated that the low-level information possesses higher randomness in the

presence of CVMs. In this section, we demonstrate that the high-level information (i.e., the CFG)

is also more obfuscated, further thwarting the adversary from successfully reverse-engineering the

application. As discussed previously, the CFG is a useful tool for the adversary to comprehend the

functionality of the application.
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To validate our claim of increased CFG complexity, we reviewed past work and identified a metric,

Cyclomatic Complexity, for measuring complexity of program graphs. It should be noted at the

outset that metrics in security can be subjective, and provide only a limited scope for evaluating the

absolute effectiveness of obfuscations.

Cyclomatic Complexity (CC) was designed by Thomas McCabe, and is used to indicate the

complexity of graphs. It measures the number of linearly independent paths through an application’s

code [128]. In the context of reverse engineering, a higher value of CC implies that there are more

program paths that need to be analyzed. Consequently, more effort is required from the adversary.

CC has been used previously in the field of program obfuscation [129, 130]. McCabe, et al. defined

the Cyclomatic Number (CN), for a undirected graph G, as:

CN(G) = e(G)− n(G) + 2 ∗ p(G) (9.1)

where e(G) represents the number of edges of the graph, n(G) denotes the number of nodes in the

graph, and p(G) denotes the number of exit nodes in the graph [128].

Our experiment consist of comparing the cyclomatic complexities of the CFGs obtained from the

software caches in two different configurations; the application running under a single PVM, and

the application running under the nested CVM configuration (i.e., the application running under

Strata2, which runs under Strata1). In the nested configuration, we only consider the software cache

of Strata1.

The CFG is built from the executable code located in the software cache. Whenever control exits

the software cache and enters the SDT library, processing of the CFG stops. When control returns

to the software cache, a new CFG component is started. So the dynamic CFG consist of several

disconnected components representing the different translated blocks. In the case of the nested

configuration, only the the software cache of Strata1 (SC1) is considered. This software cache contains

code translated from the inner CVM (Strata2), as well as code originating from the application.

We performed the analysis for CC on the benchmarks of the SPEC CPU 2000 suite. The values for

e(G), n(G), and p(G) were obtained by running the two configuration under the Pin instrumentation
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Benchmark CC for Single PVM CC for Nested CVMs Percent Increase from Original
176.gcc 1604 80109 4894.77
181.mcf 351 9828 2701.65

256.perlbmk 803 32903 3997.51
179.art 181 5130 2734.25

Table 9.1: Cyclomatic Complexity of the dynamic CFGs obtained from the software caches, when
run under a single PVM, and a nested CVM configuration comprising of two CVMs. The edges and
node (basic blocks) were calculated using the Pin instrumentation framework. The CFG corresponds
to the executable code residing in the software software cache. In the case of the nested CVMs, the
CFG corresponds to the code in the cache of Strata2. The benchmarks were run under the test mode
to expedite the study.

framework. Table 9.1 displays the cyclomatic complexity for some of the benchmarks, under the two

scenarios.

As the table illustrates, the nested CVM configuration has more independent paths in its CFG,

compared to the case where only a single PVM is used. On closer examination of Equation 9.1, we

observed that the increase in CC in the nested configuration was mainly triggered by the increase

in the number of exit nodes (denoted by p(G) in Equation 9.1, which has twice the weigth of the

other parameters). This higher value of p(G) implies that there are more disconnected components

in the software cache of the outer CVM (Strata1). An adversary would have to collate all these extra

components to successfully in an effort to reverse engineer the application.

This experiment indicates that CVMs have the potential of increasing the obfuscation of protected

applications. Simple nesting of CVMs yields CFGs that are significantly more complex. With more

elaborate partitioning and utilization of numerous CVMs, foundations can be laid for robust program

protection. An adversary will have to expend significantly more effort than current state-of-the-art,

to successfully obtain relevant information.

As previously mentioned, the increased complexity of the CFG in the nested configuration is

reflected in the run-time performance. In the next section, we investigate this overhead of nested

CVM, and suggest optimizations that can improve performance.
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9.4 Performance Overhead of Nested CVMs

The previous section provided some insight into the protection properties of CVMs. However,

to enable practicality, the overhead of CVMs must be tolerable. In this section, we discuss the

performance implications of nested CVMs, and suggest techniques to alleviate the overhead.

9.4.1 Experimental Setup

The performance evaluation was performed on the SPEC CPU 2000 benchmarks. The CVM instances

were created from the Strata, as described in Section 9.2. The experiments were carried out on a

32-bit AMD Athlon processor, running Ubuntu 12.04. The code was compiled using the gcc-2.95

compiler, and the protected package was created using Diablo. The older version of gcc was used, as

newer versions are not compatible with Diablo [62].

9.4.2 Self-modifying Code

The performance overhead was observed to be 35X over native execution, on average. This high

overhead is due to the self-modifying aspect of software dynamic translation. As we have described

previously, the SDT translates and caches instructions from the application one at a time till a

control transfer instruction is encountered. If the target block (also called a successor block) of the

transfer instruction has previously been translated and cached, the SDT will append a direct transfer

instruction to that block. If the target is absent, the SDT will append a sequence of instructions

that transfer control back to itself so that it can translate the code located at the target address.

This sequence of instructions is known as a trampoline. Each trampoline is associated with a target

address.

When the target application block actually appears in the software cache the corresponding

trampoline is rewritten with a jump instruction, that transfers control directly to the translated

target block, without invoking the SDT again. This instruction rewriting is known as patching, and

is an example of self-modifying code [54].
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Currently, SDTs handle self-modifying code by flushing the entire software cache, and continuing

translation at the next application block scheduled to be executed. In our example of nested CVMs

(which are based on software dynamic translation), Strata1 obtains control at start up, and begins

translating Strata2’s code to its software cache, SC1. Consequently, control is transferred to the

translated code corresponding to Strata2. This code translates the application to the software cache,

SC2, and appends a trampoline to those blocks whose target successors have not been translated.

Consequently, Strata1 again obtains control and copies the instructions from SC2 to SC1.

When the translated code for Strata2 patches a trampoline in its software cache (SC2), it causes

Strata1 to flush SC1 entirely. After the flush, Strata1 must translate a significant portion of Strata2

(such as the initialization parts), before any code corresponding to the application can be translated

and executed. Therefore, this patching of trampolines in the software cache of Strata2 leads to

excessive overheads.

9.4.3 Super-patching of Trampolines

The generic mechanism to handle self-modifying code in SDTs (i.e, flush the entire software cache) is

expensive and leads to high overheads in nested CVMs. Since the software cache flushes are exclusively

caused by the patching of trampolines, we devised a novel mechanism, called super-patching, that

alleviates some of the performance overheads associated with nested CVMs.

In Section 9.4.2, we described how the creation of a patch in the software cache of Strata2, causes

the entire software cache of Strata1 to be flushed. Instead of flushing, a simple optimization involves

propagating the patch in the software cache of Strata2 into the software cache of Strata1. When any

trampoline is being patched to its target block (TB) in SC2, Strata2 sends that information about the

patch and the TB to Strata1. Strata1 no longer flushes the cache but stores this information for later

processing. When the TB is translated from SC1 to SC2, Strata1 artificially patches the translated

trampoline to the translated TB in its software cache. This mechanism is called super-patching,

because the patching in SC1 triggers this patch in SC2. With this mechanism, the extraneous

flush has been removed. After implementing this technique, we observed significant reduction in
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Figure 9.5: Performance overhead for super-patching in the nested CVM configuration. The
performance overhead of Strata is also provided for comparison. On average, super-patching reduces
the overhead of nested CVMs to 70% over native execution.

performance overhead.

Figure 9.5 compares the overhead for an application running under a single Strata instance, and

the nested configuration. Due to the reduction in unwanted software cache flushes, the total overhead

is now 70% over native. One of the reasons for the high overhead pertains to indirect branches.

Applications with a high occurrence of indirect branches are known to cause performance issues in

SDTs [54]. Since the SDT itself uses indirect branches during run time, adding the second layer

causes the overhead to increase significantly. This amplification is specially visible in benchmarks

such as 176.gcc and 253.perlbmk, which also have a high occurrence of indirect branches.

Super-patching can lead to a reduction of overhead in nested CVMs. However, there are trade-offs

involved between this optimization and protection. In the next section, we discuss these trade-offs
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Benchmark CC for Single PVM CC for Nested CVMs with Super-patching Percent Increase from Original
176.gcc 1604 6078 278.92
181.mcf 351 989 181.76

256.perlbmk 803 2997 273.22
179.art 181 r5632 193.92

Table 9.2: Cyclomatic Complexity of the dynamic CFGs obtained from the software caches. In this
case, the nested CVM configuration has super-patching enabled. The CC values indicate that super-
patching significantly reduces complexity, which has a negative effect on the protection properties of
CVMs.

and other issues in more detail.

9.5 Issues Regarding CVMs and Scope for Future Work

In this chapter, we have introduced the concept of composable virtualization to combat reverse

engineering. Our preliminary investigations reveal that CVMs can thwart analysis of code. There

are several issues that need to be resolved to make CVMs practical. Resolving these issues provides

a rich source for future research.

9.5.1 Performance Trade-offs

In Section 9.4.3, we introduced the concept of super-patching to alleviate some of the performance

overheads associated with nesting CVMs. At the high-level, super-patching can be viewed as

introducing short cuts between paths in the CFG of the protected application. Super-patching

creates a path from a translated block to its target, overwriting a trampoline which would have taken

execution via the SDT library.

This creation of a short cut inherently reduces the complexity of the dynamic CFG, which is an

issue from the protection aspect. Extensive use of super-patching will make the CFG easier to analyze,

and therefore, easier to reverse engineer. To demonstrate this reduction in complexity, we repeated

the Cyclomatic Complexity (CC)experiments of Section 9.3.2 on the nested CVM configuration, with

super-patching enabled. Table 9.2 displays the results of the experiment.
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As the findings demonstrate, the CC values have been significantly reduced. This experiment

indicates that indiscriminate use of super-patching actually obviates most of the protections afforded

by nested CVM configurations, facilitating the task of the adversary.

Therefore, we propose selective super-patching as a technique to improve performance overheads,

as well as, to maintain the protective features of CVMs. Rather than applying super-patching to

every translated trampoline blocks, some selection criteria should be used. One criteria that can be

appropriate in this scenario involves super-patching those blocks that are executed frequently. The

outer CVM (Strata2) can maintain a count of translated trampolines, and super-patch them after

their execution count reaches a threshold. Otherwise, it should flush its software cache, and continue

translation.

Future work can investigate and compare different selection strategies for super-patching. An

appropriate strategy should balance performance overhead and Cyclomatic Complexity.

9.5.2 Security Evaluation of CVM Methodology

In this chapter, we investigated code layout and dynamic CFGs to gain some insight into the protective

qualities of CVMs. Our preliminary results indicate that CVM can provide robust protection of

software. We believe that further demonstration of CVM protections will facilitate wider adoption of

this methodology to safeguard applications.

To further highlight the protective properties of nested CVMs, consider the following example of

analyzing the dynamic CFG of the protected application. The dynamic CFG is made up of nodes

(basic blocks) that belong to the application and the various constituent CVMs. These nodes are

interleaved with each other, as control keeps transferring between the CVMs and the translated

application code. An adversary attempting to extract the critical information from such a CFG, will

have to excise those parts that belong to the CVMs. We believe that the adversary’s task can be

reduced to the problem of subgraph isomorphism, which involves identifying a smaller subgraph in

a larger graph. This problem is well-established in the field of theory of computation, and in the

general case, is NP-complete to solve [131].
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Formally analysing the accuracy of this reduction hypothesis is an area for future research.

9.5.3 Incorporating Protection Techniques into CVMs

Most of the experiments described in this chapter used standard VMs with no protections added. An

important direction for future work involves incorporating the various protection schemes described

in the previous chapters into CVMs. Techniques such as temporal polymorphism and code checkers

will potentially improve application protection. Techniques such as Point-ISA and DataMeld will

potentially ensure that CVMs cannot be replaced at run time. Incorporating these techniques, and

ensuring that the results are practical will most likely be a challenging task.

9.6 Summary

This chapter introduces the concept of composable virtualization for program protection. The

application is partitioned, and each partition is assigned to a set of protective CVMs (which could

be null). The goal is to create a network of protective entities that safeguard the application and

themselves from tamper and reverse engineering. We demonstrated that CVMs can successfully

obfuscate the code present in the software cache. We also demonstrated that CVMs obfuscated the

CFG of the protected application. These protection comes with a higher performance overhead.

Consequently, we provided an optimization technique to alleviate such overheads. Further analysis is

required on the trade-off between security and performance. Our hope is that this work will initiate

further discussion on CVMs, and lead to innovative and robust techniques that make it hard for the

adversary to extract critical information.



Chapter 10

Related Work

In Chapter 1 we stressed the need of tamper-resistance schemes in today’s world. This need has

naturally led to research directed at protecting programs from tamper and reverse engineering. In

this chapter, we chronicle some of this past research. We describe several program protection schemes

developed over the past few years, and also discuss notable attacks that defeated previously-robust

defenses.

When discussing tamper-resistance tehcniques, it is useful to classify them according to their

major characteristics. In Chapter 1, we described tamper resistance schemes as consisting of tamper-

detection techniques and code obfuscations techniques. We can further divide these categories based

on their nature (i.e., hardware or software), their domain (e.g., static or dynamic), use of an extra

software layer (i.e., a VM) to apply the protections, etc. Based on our analysis, we classify past work

into the following categories:

• Self-aware tamper-detection schemes, where the system performs introspection from time to

time to verify the code being executed [2, 3, 1].

• Obfuscation schemes, where the protection schemes thwart reverse engineering, making it hard

to identify critical aspects of the application [81, 23]. Obfuscation schemes have been applied

to various domains, so this class is subcategorized as follows:
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– Static obfuscation schemes, where the application is protected from static analysis [9, 7].

– Dynamic obfuscation schemes, where the run time of the application is protected from

analysis [132, 133].

• Remote tamper-resistance techniques, where the critical part of the application code is mediated

by a remote server [5, 6, 134].

We proceed to describe past research in each of these categories.

10.0.1 Self-aware Integrity Verifiers

The first major technique of tamper resistance involves self-aware systems (i.e., the program is

augmented to compute a checksum over a region of code which was then compared to a pre-calculated

value. Aucsmith introduced an implementation called Integrity Verification Kernels (IVK), which

verifies the integrity of critical code segments [1]. Much of the work in tamper resistance is based

one or more of Aucsmith’s ideas. Another introspection scheme was introduced by Horne et al. [3]

At run time, a large number of embedded code blocks, called testers, verify the integrity of code

(using a linear hash function and an expected hash value); if the integrity check fails, an appropriate

response is pursued. The use of a number of testers increases the attacker’s difficulty of disabling

testers. Chang and Atallah, proposed a scheme involving a set of guards which can be programmed

to carry out arbitrary tasks: one example is checksumming code segments for integrity verification

providing software tamper resistance [2]. Another suggested guard function is repairing code (e.g., if

a damaged code segment is detected, downloading and installing a fresh copy of the code segment).

Jacob, et al. proposed oblivious hashing, which involves compile-time code modifications resulting

in the computation of a running trace of the execution history of a program. Here a trace is a

cumulative hash of the values of a subset of expressions which occur within the normal program

execution [4]. This technique does not prevent attackers from using dynamic techniques to identify

and remove guards.
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Tamper detection can be implemented by checking the the validity of computed results [135]. The

application can also check for the validity of the execution environment, although the actual methods

are system-specific [136]. Tan et al. investigated response techniques to software tampering [93].

Self-aware systems work on the assumption that the underlying platform is based on the Von

Neumann architecture. The Von Neumann architecture uses the same memory to code and data. So

reads, writes, and instruction fetches all access the same memory. Most software systems assume the

underlying platform follows the Von Neumann architecture as well.

On the other hand, many modern architectures use a Harvard architecture, where code and data

are stored in different memory spaces. Typically, it is the responsibility of the Operating System to

handle consistency issues with regardd to the two memory spaces.

Wurster, et al. were able to craft an attack on self-checking systems using a modified OS [20]. In

the attack, the authors created a copy of the application and made modifications to the code. At

run time, the original, untampered application was placed in the data memory unit, whereas the

tampered application was placed in the code memory unit. Data reads (for the integrity verification)

accessed the data memory unit, and did not report any modifications. Instruction fetches, on the

other hand, accessed the code memory unit, which fetched code from the tampered application. In

this manner, the authors were able to invalidate the checking mechanism. This attack is referred to

as the split-memory attack.

Giffin, et al. proposed a novel solution to the split-memory attack [98]. Their solution involved the

insertion of self-modifying code to applications. Successfully executing self-modifying code indicates

that the underlying system follows the Von Neumann architecture. Thus, the authors suggested

running self-modifying code at application start up, to ensure that the underlying platform has not

been tampered.

Self-checking systems are still popular. Many applications such as Skype, Adobe, Arxan etc. use

software guards to protect against code tampering.
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10.1 Obfuscation

To successfully reverse engineering an application, the adversary must first be able to analyze and

comprehend its flow. Obfuscation techniques focus on defeating analysis of code. Obfuscation

techniques can primarily be classified as static or dynamic. A subclass of obfuscation techniques use

an addition software virtualization layer to protect programs. Because this dissertation deals with

PVM-enabled protections, we will discuss these techniques as well.

10.1.1 Static Obfuscations

Static analysis is a common technique, and is used by most adversaries to extract information about

the instructions implementing the application. Disassembly is usually the first step in the process of

static analysis, and involves statically disassembling the binary executable code and restoring its

corresponding assembly code. However, generating completely accurate assembly code is difficult,

and researchers have developed several methods to improve the processs accuracy [137]. Linear sweep

linearly scans over the code, disassembling instructions, assuming that every instruction is followed

by another instruction. GNUs gdb implements this technique. Recursive traversal takes control flow

into account. However, as some branches are input-dependent, usually not all target addresses can

be statically derived and disassembled. Disassembling such instructions often requires the use of

techniques that recover indirect jump tables [138].

Protecting applications from such static analysis has been investigated extensively and has

produced encouraging results. Collberg, et al. presented a seminal work on software obfuscations [8].

Their work categorized different types of code transformations (e.g., control flow obfuscation, layout

obfuscation, data obfuscation, etc.). Collberg also proposed the concept of opaque predicates. Opaque

predicates are expressions which are hard to predict statically [7].

Control flow obfuscation is one of the more commonly-used approaches against reverse engineer-

ing. Saumya Debray and his research group have proposed several novel techniques in this area.

Popov, Debray, et al. proposed using operating system signals to obfuscate the static CFG of the

application [81]. Linn, Debray, et al. designed the concept of branch functions, to obscure the
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target of call instructions [23]. Any call to functions are rerouted through a branching function

that performs complex calculations to retrieve the target address. These calculations were hard to

identify statically. Chenxi Wang, et al. devised the concept of control flow flattening, in which the

control flow graph of the application was transformed into a series of switch-case statements. The

authors demonstrated that attempting to statically locate the target of the switch statements was

NP-complete.

Encryption is also a commonly-used technique to thwart static assembly. Previous encryption

techniques have suffered from coarser levels of decryption granularity. Biondi, et al. successfully

reverse engineered Skype, by extracting the plaintext code from memory [19]. Cappaert, et al.

presented a partial encryption approach, in which application code is partitioned into small segments

and encrypted [12]. The encrypted code segments are decrypted at run time by users. Thus, the

partial encryption ameliorates the faults of illuminating all of the binary code at once as only the

essential segments of the code are decrypted at run time.

Software defenders often try to ensure that a successful attack against one instance of an application

will not be effective against another instance. This property can be implemented via the use of

software diversity. Cohen was among the first researchers to address the potential of code diversity as

a defense mechanism against attacks [95]. Collberg, et al. looked at models from biology and history,

classify them into primitives, and illustrate how to map them onto a digital world where software also

requires defense mechanisms [139]. Code polymorphism is a common example of software diversity.

Malware writers often use this technique to evade virus scanners [61]

These static techniques provide viable protection to the application from attacks. However, these

techniques are susceptible to dynamic attacks. In the next section, we describe some techniques to

thwart such dynamic attacks.

10.1.2 Dynamic Protection Techniques

Recently, adversaries have started using dynamic schemes to extract critical information from the

application. Dynamic schemes typically involve running the application on a simulator, and providing
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forged inputs to break protection techniques. Such attacks have been shown to be very effective.

Barak, et al. were able to successfully prove that perfect obfuscation of general applications is

impossible when they are run in an environment under the complete control of the adversary [22].

A number of researchers have attempted to decrease the rate of information leakage at run

time. These techniques usually involve discovering the critical application instructions in stages. For

example, on-demand decryption consists of decrypting parts of the application that are scheduled to

be executed. Consequent to execution, the parts can be re-encrypted. This scheme was implemented

in the Shiva system [140].

Kanzaki, et al. describe a technique to overwrite program instructions with dummy ones. The

application is crafted in such a way that each dummy instruction is restored prior to executing

it. Similarly, Madou, et al. propose a rewriting engine that updates function bodies at run

time [133]. Additionally, the authors propose to cluster similar functions into a common template.

Finally, Mavrogiannopoulos, et al. classify self-modification techniques based on the attackers toolset

capabilities [141].

Software virtualization has also been previously used to create a trusted execution environment,

both at the system level and at the process level. The Proteus system uses software diversity to

prevent tampering [11]. The authors discuss diversifying multiple characteristics such as instruction

semantics, construction encoding and operand encoding to ensure that successful attacks on one

instance of the application do not succeed against any other instance. However the high overhead,

(more than 50X), makes it impractical for use in most settings.

The Terra system implements a trusted virtual machine monitor which can be used to create

closed-box platforms where the developer has complete control, which co-exist with standard open

platforms [40]. However, it requires hardware support to validate the software stack. Chen et al.

discuss Overshadow, a system that cryptographically isolates an application inside a Virtual Machine

Monitor from the guest OS it is running on. This system offers another layer of tamper resistance,

even in the case of total OS compromise [142]. However the VMM is open to compromise [143]. This

research provides a uniform protection mechanism in which all components are protected.
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10.2 Remote Tampering of Software

As we mentioned previously, Barak, et al results indicate that it is impossible to protect applications

when they are run under the control of the adversary [22]. Many researchers advocate partitioning

the application based on criticality and running the most critical parts on a secure server. The

non-essential parts can run on the user’s machine. When a crucial computation needs to be performed,

a request is sent to the server. When the server concludes its computations, it transmits the results

to the client. In this manner, the assets of the applications are not not directly accessibly by the

adversary. Shesadri, et al. proposed the Pioneer system, in which a software-based primitive ensures

verifiable code execution [5]. This system is based on a challenge-response protocol between an

external trusted entity, called the dispatcher, and an untrusted computing platform, called the

untrusted platform. The dispatcher communicates with the untrusted platform over a communication

link, such as a network connection. After a successful invocation of Pioneer, the dispatcher obtains

assurance that the application on the untrusted platform is unmodified.The authors then implemented

this scheme for embedded devices as well [6].

Collberg, et al. proposed a similar scheme, in which the server side continuously obfuscates and

replaces the application code blocks on the client side, to thwart analysis and modification [144].

Such systems have shown to be effective at thwarting analysis and modification. However, they

need stringent Quality-of-Service guarantees from the underlying hardware and network connections,

thereby constricting their use, specially for mobile devices [33]. Such guarantees reduces their

applicability in various situations.

10.3 Hardware Approaches

A number of hardware-based protection techniques have also been proposed [145, 146, 26]. Since this

research focuses on software-only solutions to reverse engineering, we will not be discussing these

approaches.



Chapter 11

Summary

In this chapter, we summarize the contributions from this dissertation, and describe some avenues

for future research.

11.1 Conclusions

Many software systems perform critical tasks and need to be protected from analysis and tamper. Of

particular interest is the improvement of the dynamic security of the application. The thesis of this

dissertation is that composing applications with process-level virtual machines can effectively hamper

reverse engineering and tamper attacks on software. To support this thesis, we have proposed several

new techniques, and evaluated them via metrics, as well as attack methodologies.

Chapter 1 discussed the motivation for improved program protections. Current techniques are

not adequate against dynamic analysis. Novel schemes are required that provide a moving attack

surface. PVMs can provide such a fluctuating surface. Techniques that are based on PVMs will be

much more dynamic and harder to reverse engineer.

Chapter 2 introduced the concept of virtualization. Virtualization involves the insertion of an

extra layer of software between the application and the underlying platform. The software layer

can be at the process-level, or at the system level. The focus of this dissertation is exclusively on

process-level virtualization. This chapter also discussed the concept of software dynamic translation,
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which is an efficient technique for virtualizing software. One of the main attributes of a software

dynamic translator (SDT) involves a software cache, where translated code is stored. The ideas

presented in this work were prototyped using the Strata SDT library, developed at the University of

Virginia [51].

One of the research contributions of this dissertation is the design of a model, in Chapter 3.

The purpose of this model is to to describe software applications and interpretation. This model

provides an insight into attack methodologies targeted at software, as well as techniques to thwart

such attacks. This model was utilized in later chapters to illustrate attack methodologies, and their

solutions.

Although the focus of this dissertation was to improve the dynamic protection of application,

PVMs can protect on-disk binaries as well. Chapter 4 demonstrated that PVMs can be used to

increase the entropy of the binary. The increase in entropy is achieved by interleaving code from

the application and the PVM. The increased entropy provide higher levels of protection from static

analysis.

Chapter 5 explored software guards in the context of process-level virtualization. The fluctuating

nature of PVM mediation enables guards to execute from random locations in memory, making it

difficult for the adversary to locate them. The use of instantiation polymorphism introduced diversity

into the scheme, preventing the adversary from using a generic attack methodology on all instances

of the protected software. The chapter also introduced knots, to protect code located in the software

cache of the SDT. Previously, this code was left unprotected.

The ability of PVMs to continuously shift the attack surface was extensively investigated in

Chapter 6. The software cache can be flushed periodically to thwart attackers. After each flush,

the SDT continues translating the application, and caching them in a different memory location.

Also, the instruction opcodes used to implement the application’s semantics can be varied. All these

techniques taken together, constitute temporal polymorphism, which creates a widely-shifting attack

surface. The chapter described the evaluation of various properties of temporal polymorphism, and

demonstrated its effectiveness against established dynamic analysis techniques.
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Having demonstrated the effectiveness of PVMs at thwarting attacks, the focus of research turned

to investigating weaknesses in the PVM itself. Chapter 7 illustrated that the PVM can be replaced

dynamically, enabling the adversary to analyze the program unhindered. The primary weakness in

current PVMs is the lack of binding between the application and the PVM. To combat this weakness,

we proposed the concept of homographic instructions. The basic idea involves customizing the

semantics of selected instructions according to the associated protective PVM instance. Interpreting

these instructions under any other context will yield different semantics, and can be used to detect

a replacement attack. The solution scheme is termed as Point-ISA. Point-ISA can be used to

semantically bind the application to its protective PVM.

Coogan, et al. demonstrated that, by analyzing the execution trace of a PVM-protected application

an adversary can identify critical instructions. The approach involves tracking instructions accessing

certain data values. Chapter 8 extensively investigates this attack methodology termed Value-based

Dependence Analysis (VDA). We extended this idea to include attacks on SDTs as well. We then

proposed a novel defense against this attack scheme, termed as DataMeld. The approach involves

interleaving the data flow of the application with that of the PVM. This interleaving results in

obfuscation of dataflow analyses. Our results indicated that VDA attacks lose their effectiveness

significantly in the presence of DataMeld.

Finally, we expand the scope of PVM-based protection by proposing the novel concept of

composable virtualization. The basic idea involves partitioning the application, and assigning each

partition to a set of protective PVM instance. The PVM instances can protect each other as well,

creating a network of protection. Our preliminary results indicate that composable virtual machines

can significantly increase the effort required by the adversary to extract vital information from

protected applications.

This research has proposed several new ideas on program protection, and has also opened up new

avenues for research. We discuss some of these avenues in the next section.
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11.2 Scope for Future Work

The research presented in this dissertation significantly advances the state-of-the-art. This assertion

has been amply demonstrated by evaluating some of the proposed protection techniques against

published attack methodologies. There still exist topics that need to be investigated further. In this

section, we describe some of these new avenues for research.

11.2.1 Expanding the Scope of Homographic Instructions

In Chapter 7, we introduced the concept of homographic instructions. Such instructions possess

custom semantics when they are interpreted by the protective PVM instance. These custom semantics

are different from their standard semantics, which is determined by the ISA. The scope of these

instructions can be expanded beyond software virtualization. One such area is hardware-software

codesign for software anchoring. Software anchoring is defined as binding an instance of a software

application with a particular hardware system, i.e., that instance of the software can only run on that

particular hardware platform [147]. There are many scenarios where software anchoring is useful,

such as loss of critical armament technology, where it is paramount that the adversary is unable to

rehost the software on possibly counterfeit hardware.

Researchers have advocated using Physically Uncloneable Functions (PUFs) for software anchor-

ing [147]. However, PUFs do not provide any protection from software reverse engineering. With

the use of homographic instructions, the adversary is no longer aware of the complete semantics

of the application (because the semantics of these homographic instructions are not known to the

adversary). Consequently, the adversary will be unable to extract high level information from the

software.

An area of future research could involve techniques to make this hardware design for homographic

instructions easier.
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11.2.2 Alternate Threat Models

The protection techniques in this work addressed a restrictive threat model (on the part of the

software defender). Once the software is released and obtained by an adversary, they could perform

various analyses to extract vital information. An innovative area of research involves evaluating these

techniques under different threat models. For example, it would be interesting to study the impact

of protective PVMs if the application ran partly on a secure server.

Changing the threat model could uncover weakness in the current techniques, as well as provide

new avenues for protection.

11.2.3 Expanding the Scope of Protections

The protection techniques proposed in this work, are closely tied to software dynamic translation.

Consequently, the practicality and acceptability of these techniques depends on SDTs. As SDTs are

expanded to newer platforms and environments, their use in program protection will also increase.

The techniques described in this work were prototyped using Strata on 32-bit Intel machines,

running the Linux kernel. Currently, work is being done to expand Strata to run on 64-bit machines,

as well as the Microsoft Windows platform. Mobile systems also represent a new frontier for software

dynamic translation. The instances of reverse engineering on mobile computing devices is increasing

significantly, and it is our belief that these protection techniques will be notably effective on such

platforms. Architectures often have idiosyncrasies that need to be considered (for example, on ARM

platforms, the pc can be used as a general-purpose register). Issues such as power consumption, and

memory footprint can often cause problems when techniques are transfered from general-purpose

computing systems to mobile platforms [148]. Therefore, these issues need to be studied carefully for

proper adoption of these techniques on mobile systems.

11.2.4 Appropriate Program Partitioning

An integral part of composable virtualization involves partitioning the application. In Section 9.1,

we enumerated several established schemes to partition the application for security purposes. An
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interesting avenue for research involves testing the suitability of these partitioning schemes with

respect of CVMs. Research could also focus on designing new partition schemes, which may be more

appropriate for composable virtualization.

11.2.5 Incorporating Protections into CVMs

Chapter 9 provided a preliminary insight into the potential of Composable Virtual Machines to

provide protection. The next stage of research involves incorporating various techniques discussed

in Chapters 4, 5, 6, 7, and 8 into CVMs, and evaluating their strength. There are numerous

configurations that can be applied to protect the applications. For example, the software defender

could vary the rate of software cache flushing, or rate of insertion of guards. We believe that further

investigation of CVM protections to be one of the more interesting avenues.

11.3 Summary

The software defender and the adversary are engaged in a constant battle for control of critical

software. The defenders continue to design new mechanisms to protect applications from reverse

engineering and tamper. The adversary continually attempts to break these protections, and extract

valuable assets from the application. In this dissertation, we have investigated the use of PVMs

in the area of program protections. Our research indicates that a holistic design of a protected

package, comprising of virtual machines and the application, can provide robust security. As part

of our research, we have devised several PVM-based protection techniques that advance the state

of the art. Our evaluation has demonstrated that these techniques can withstand current attacks

methodologies, and will require significant effort on the part of the adversary to disable them. Based

on past experience, it is likely that the adversary will keep devising new strategies in an attempt to

disable these protections. Continuous innovation is required to keep the adversary at bay.



Glossary

Checker Sequence of instructions that verify the integrity of code.

Composable virtualization Multiple virtualization layers applied to different partitions of an
application, to protect it from attacks.

Guard Sequence of instructions that verify the integrity of statically -generated code.

Knot Sequence of dynamically-generated instructions that verify the integrity of PVM-
generated code.

Output equality A transformed version of an application is said to possess output equality, if it
produces the same output as the original version, for any set of inputs.

Patch Overwriting of a trampoline in the software cache, to transfer control to the translated
instruction.

Software cache Software-managed memory buffer where software dynamic translators cache the
translated code, to amortize the overhead of translation. This region is also known as
a code cache.

Trampoline A code sequence appended to the end of a translated block, that returns control back
to the software dynamic translator. It is also responsible for passing as argument, the
address containing the next application instruction scheduled for execution

ABI Application Binary Interface

CIF Code Introspection Framework, which is capable of monitoring and instrumenting the
code being executed

CVM Composable Virtualization Machines.

DIC Dynamic Instruction Count. The dynamic instruction count of the application.

EP The function in the VM code which initiates the process of application virtualization.
To mount a successful attack, the attacker has to locate this function

ICV Instruction Coverage for Variablesr. Number of instructions that affect the value of a
variable.

PVM Process-level Virtual Machine. A software layer that virtualizes one single process.

SDT Software Dynamic Translator. A process-level virtual machine that implements binary
translation with caching.
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SSA Static Single Assignment. An intermediate representation in which each variable is
assigned only once

SVM System-level virtual machine. A software layer that virtualizes an entire Operating
System.

VDA Value-based Dependence Analysis. An analysis technique which consists of identifying
application data values from an execution trace, and performing flow analysis on these
values in the reverse execution order.

VMM Virtual Machine Monitor

IHG The set of instructions that are classified as homographic for a particular benchmark

PT (A) An application that has been tampered by an adversary.

PTR(A) An application that is protected by tamper-resistance techniques, static and dynamic
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