

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Safety Kernel Enforcement of Software Safety Policies

Kevin G. Wika

May 1995

i

Abstract

Computing systems in which the consequences of failure are very serious are termed
safety-critical. Many such systems exist in application areas such as aerospace, defense,
transportation, power-generation, and medicine. The software in these systems is typically
large and complex, critical to system safety, and difficult to implement and verify. Even
when great effort is expended to develop the software, there is no assurance that the soft-
ware will operate with the required level of dependability.

We have investigated asafety kernelarchitecture that addresses part of the problem of
building and verifying dependable safety-critical software. An analogous construct, the
security kernel, has been used successfully to enforcesecurity policies in classified-infor-
mation systems. Similar requirements known assafety policies must be enforced in safety-
critical systems. Other researchers have developed some basic safety kernel concepts and
have proposed safety kernel designs. However, many feasibility issues have not been
addressed previously. Thus, the focus of this research has been the evaluation and develop-
ment of the safety kernel as a software architecture for enforcement of safety policies.

We have evaluated the feasibility of the safety kernel in four areas: policy enforcement,
reliable enforcement, implementation, and verification. The first area addresses the role of
the safety kernel and assesses its support for safety-critical systems. The second, area
examines the requirements for reliable policy enforcement by the safety kernel. The third
area focuses on the feasibility of a reuse-oriented implementation strategy. The fourth area
considers the verification of the safety kernel. Work in each of these areas has been sup-
ported by our involvement with two case studies: the Magnetic Stereotaxis System and the
University of Virginia Reactor.

The results presented in this dissertation demonstrate that it is feasible for the safety
kernel to enforce a significant set of safety policies — policies that are directly related to
device operation. Furthermore, operating in the system context, it can enforce policies reli-
ably in spite of certain component failures. We demonstrate that a special-purpose specifi-
cation language can be used to describe the safety kernel and that a source code
representation of the safety kernel can be mechanically generated from this policy specifi-
cation. Finally, we define the issues in verification of the safety kernel and demonstrate the
feasibility of several analysis and testing techniques.

ii

iii

Acknowledgments

This work was supported in part by the National Science Foundation under grant num-
ber CCR-9213427, and in part by NASA under grant number NAG1-1123-FDP.

iv

Table of Contents

1 Introduction . 1
1.1 Kernels for Security and Safety . 3
1.2 Feasibility Issues . 5
1.3 Safety Policies . 6
1.4 Reliable Policy Enforcement . 7
1.5 Implementation Strategy . 7
1.6 Verification . 8
1.7 Contents Summary . 8

2 Related Research . 11
2.1 Building Dependable Software . 11
2.2 Safety-Critical Applications . 12
2.3 Security Kernels . 14
2.4 Previous Research on Safety Kernels . 14
2.5 Software Fault Tolerance . 17
2.6 Summary . 18

3 Case Studies . 19
3.1 Magnetic Stereotaxis System . 19
3.2 University of Virginia Reactor . 22

4 Safety Policies . 23
4.1 Safety Policy Classes . 24
4.2 Issues in Kernel Enforcement . 27

4.2.1 Kernel Enforceability . 27
4.2.2 Weakened Safety Policies . 29

4.3 Kernel Enforced Policies . 30
4.3.1 System Operation . 31
4.3.2 Device Operation . 31
4.3.3 Device Failure . 31
4.3.4 Device Input From Computer . 32
4.3.5 Application Software Error . 32
4.3.6 Sensor Input . 33
4.3.7 Failure Response . 33

4.4 Kernel-Enforced Policy Evaluation . 34
4.4.1 MSS Safety Policies . 34
4.4.2 UVAR Safety Policies . 35

4.5 Conclusion . 35
5 Reliable Policy Enforcement . 37

5.1 Reliable Safety Policy Enforcement . 37
5.1.1 Exclusive Control Requirements . 38
5.1.2 Reliable Safety Kernel Operation Requirements 39

5.2 Safety Kernel Prototype Dependability Requirements 41
5.3 Meeting Prototype Dependability Requirements . 42
5.4 Ensuring Exclusive Control . 44
5.5 Ensuring Safety Kernel Reliability . 46

v

5.5.1 Data Integrity . 46
5.5.2 Dependable support services . 47
5.5.3 Dependable Computing Services . 48
5.5.4 Dependable Computing Resources . 48

5.6 Prototype System Design . 48
5.7 Conclusion . 51

6 Safety Kernel Implementation . 53
6.1 Requirements Analysis . 54

6.1.1 Policy Enforcement Requirements . 54
6.1.2 System Requirements . 56

6.2 Implementation Strategy . 58
6.2.1 Reuse Strategy . 58
6.2.2 Parameterization . 60

6.3 Safety Kernel Framework . 62
6.3.1 Machine Abstraction . 62
6.3.2 Built-in Context . 62
6.3.3 Application-Specific Context Data . 64
6.3.4 Policy Specification . 66
6.3.5 Built-in Control Mechanisms . 69

6.4 Translator Implementation . 71
6.5 Conclusion . 72

7 Verification and Analysis . 73
7.1 Safety Policy Specification Analysis . 77
7.2 Automated System Testing . 79
7.3 Testing for Verification of Properties . 81

8 Safety Kernel Prototype . 83
8.1 The MSS Safety Kernel Prototype . 83

8.1.1 Safety Policy specification . 83
8.1.2 System Design . 87
8.1.3 Integration of Safety Kernel with MSS Application Software 88

8.2 Evaluation of MSS Safety Kernel Prototype . 89
8.2.1 Impact on the application software . 89
8.2.2 Performance . 90
8.2.3 Operational Feasibility . 92

8.3 UVAR Safety Policy Specification . 94
8.4 Conclusion . 97

9 Conclusions and Future Work . 99
9.1 Conclusions . 99
9.2 Future Work . 100

References . 103
Appendix A - Case Study Safety Policies . 107
 Appendix B - Safety Kernel Translator Grammar . 115
 Appendix C - Safety Policy Specifications . 119

1

1 Introduction

Computing systems in which the consequences of failure are very serious are termed
safety-critical. Many such systems exist in application areas such as aerospace, defense,
transportation, power-generation, and medicine. Public exposure to these safety-critical
systems is increasing rapidly. Since the correct operation of these systems depends on soft-
ware, the possibility of serious damage resulting from a software defect is considerable and
growing.

The software present in safety-critical systems is frequently very large and tremen-
dously complex. The large size and complexity can be attributed to the functionality
demanded by modern applications. Functionality requirements have increased because of
the many benefits of computer-based control and the availability of inexpensive yet pow-
erful computing hardware. Hardware performance limits that formerly restricted software
complexity are rarely reached because of the remarkable hardware performance now avail-
able.

Experience with safety-critical systems has shown that significant software defects tend
to remain in such systems after deployment despite extensive effort on the part of the devel-
opers [16,34,41]. Building these systems to perform as desired is very difficult for a number
of reasons. Even the best software development processes cannot ensure that faults are
avoided completely during development. Similarly, fault detection techniques are imper-
fect. Research has shown, for example, that testing as an approach to verification cannot
demonstrate sufficient levels of reliability because of the sheer number of tests that are
required [9].

Building very small, simple software systems that achieve the extreme dependability
necessary with safety-critical applications has proven to be sufficiently challenging. The
complexity of large systems involving characteristics such as real-time operation and dis-
tributed processing is likely to preclude any significant assurance that the systems meet
desired dependability goals if traditional techniques are used in traditional ways. The pos-
sibility, for example, of being able to test adequately a system that is comprised of upwards
of 500,000 lines of source code, that executes on a network, that has sophisticated graphical
operator displays, and that performs some form of real-time control seems remote at best.
It is important when contemplating such an example, to keep in mind that defects in com-
pilers and system support tools are also an issue, and that the operating system and network
implementation must be viewed as part of the application. It does not matter which part is
responsible when something breaks.

Although formal techniques have made substantial progress and have been applied to
real systems in a number of cases, their application to large, complex systems remains elu-
sive. It is certainly possible to demonstrate useful properties of large systems using formal
techniques. For example, by using careful system design and appropriate proof techniques,

2

it is possible to show that a concurrent system is free of deadlock. However, although this
is an extremely valuable property, deadlock is just one class of fault. There are, of course,
many others and, to meet typical statistical dependability goals, all faults must be elimi-
nated or have suitably low probabilities of manifestation.

The fact that a significant number of safety-critical systems operate much of the time
without serious mishap could be presented as evidence that it is possible to build systems
that operate safely. This apparent success is a credit to careful engineering and commitment
of vast resources to develop these systems, rather than to any techniques which can provide
assurance that these systems are in fact safe. However, even if the argument is advanced
that present techniques are adequate for building systems that operate safely, it is certainly
the case that it would be desirable to be able to develop complex systems more cost effec-
tively.

The goal of the research described here is to investigate the feasibility of a new
approach to dealing with the situation outlined above. The premise is that no techniques
exist which can routinely show that a large, complex software system is sufficiently
dependable for use in a safety-critical application. We restrict our attention to systems
where safety is the overriding concern, i.e., systems in which reduced service or no service
is acceptable following a software error. Our approach is to assume that faults remain in the
application software and to try to deal with them at execution time rather than attempting
to eliminate all faults during development. The mechanism that we describe to implement
this approach is a software architecture termed asafety kernel, a concept directly analogous
to the security kernel used in security applications.

Security kernels have been covered extensively in the literature and have been imple-
mented with a number of systems [2,15,22,45]. Safety kernels, on the other hand, have been
proposed by a number of groups [33,38,44], but the development of the safety kernel con-
cept has been limited and to the best of our knowledge, none of the proposed systems has
been implemented. Given the relative novelty of the idea, the goal of this research is to
develop the safety kernel concept and evaluate its feasibility in four critical areas:

• investigating the role of the safety kernel as an enforcer of safety policies,

• analyzing requirements for reliable kernel enforcement of safety policies,

• developing an implementation strategy, and

• evaluating techniques for verification of the safety kernel implementation.

Each of these areas is covered in depth in the dissertation. A central goal of our research
has been to develop ideas and mechanisms that address the needs of real safety-critical sys-
tems. Toward that end, we have based our research on two case studies. The first of these
case studies is the Magnetic Stereotaxis System (MSS), an experimental neurosurgical
device. The second case study is the University of Virginia Research Reactor (UVAR).
These applications are described in detail in the dissertation. Working with these systems
has forced us to address the requirements of these two complex systems and it has also pro-
vided a context for evaluation of research ideas, processes, and tools. The case studies are
not case studies in the sense of finished systems that are analyzed for strengths and weak-

3

nesses. Instead, we are actually building the systems as a means of advancing the technol-
ogy employed in the development of software for these systems. A part of this effort has
been the implementation of a safety kernel prototype for the MSS.

Although evaluation is often considered to be a phase applied to a research product,
with the development of a concept the evaluation occurs from the initial stages through to
the final product. In fact, evaluation of ideas with respect to the two case studies was itera-
tive and continual, and ideas changed repeatedly in response to this process.

The next section of the introduction examines some of the basics of the safety kernel
concept. This is followed by a discussion of the issues that have been considered in evalu-
ating feasibility in each of the four areas. The balance of the introduction examines each of
the four evaluation areas summarizing major issues in each area.

1.1 Kernels for Security and Safety

The notion of a safety kernel derives from the concept of asecurity kernel —a tech-
nique developed extensively by the security community. Informally, the goal of a security
kernel is to provide assurance that a set of required fundamental properties of a computer
system hold at all times during execution [2]. These properties are specified assecurity pol-
icies and are enforced by the security kernel independent of the application program. In
other words, verification of the security kernel is sufficient to ensure enforcement of those
policies encapsulated within the security kernel. The application program need not enforce
the security policies, and it can, in fact, undertake actions that would normally lead to vio-
lation of the security policies with no danger of actual violations taking place. The result is
that adherence to critical security policies can be assured by analysis of the relatively sim-
ple kernel rather than from analysis of a complex application program. This has the addi-
tional benefit of simplifying application programs by freeing them from responsibility for
implementation and verification of policies that are enforced by a kernel. The general con-
cept of a security kernel is shown in Fig. 1.

The similarity between security concerns and safety concerns is considerable[4]. Secu-
rity kernels are used to enforce access-control policies in classified information systems.
The idea of trying to exploit this technique to implement safety rather than security, i.e., the
concept of a more generalsafety kernel, was proposed by Rushby [33,44], among others.
A security kernel (sometimes referred to as areference monitor) is in a position to enforce
security policies because it controls all access to secure information and it can therefore
monitor all references to that information. A safety kernel will exercise similar control over
the devices in a safety-critical system and will enforce a set ofsafety policies by monitoring
requests to devices, device actions, device status, application software status, and so on.
The safety policies for a given application are derived from the software safety specifica-
tion. Using a kernel architecture to ensure compliance with safety policies is attractive
largely because of the complexity of modern safety-critical applications alluded to above.
As with a security kernel, the rationale is that compliance with safety policies can be
assured mostly by analysis of a relatively simple safety kernel rather than a large and com-
plex application program.

4

The idea that Rushby suggested is different from other architectures described as safety
kernels because certain essential safety policies are enforced regardless of the actions of the
application software. This is in direct analogy with security kernels that enforce access con-
trol with a similar degree of generality. Other safety-kernel architectures that have been
developed tend to provide a set of services that enforce required safety policies,if used
appropriately by the application. This is a critical distinction.

The term “kernel” as used here refers to apolicy enforcement kernel as opposed to a
traditional system kernel. In some situations (e.g., some security kernels), an enforcement
kernel is also a system kernel. However, this is not necessarily essential to the success of
the kernel as a policy enforcer.

Fig. 2 illustrates the safety kernel concept. The kernel is situated between the applica-
tion software and the application devices. From this position, it is able to mediate all
exchanges between the software and the devices and has the following benefits to a safety-
critical system:

1. Ensured enforcement of safety policies
The kernel structure enforces a critical set of safety policies regardless of the
implementation, modification, or verification of the application software.

2. Simplicity and verifiability of the safety kernel structure
The kernel is a relatively small structure and as a result facilitates the implemen-
tation and verification of safety policies that it enforces.

3. Simplification of the application software
Kernel enforcement of selected safety policies frees the application software
from responsibility for implementation and verification of these policies.

4. Kernel control of devices
Acting as a reference monitor, the kernel is ideally situated to enforce device

Application
Software

Security Kernel

Information
Transfer

ClassifiedSecurity Policies
Information

Fig. 1. Security kernel concept.

5

control policies. Its access to devices also permits the kernel to monitor device
activities for consistency with software commands. It is only acting through
devices that software can cause a mishap, so it is significant and important to
enforce policies governing operation of devices.

5. Reuse of general functionality
The kernel architecture provides a set of general mechanisms and a framework
for the abstraction of general classes of safety policies.

1.2 Feasibility Issues

Assessment of the feasibility of an idea or mechanism, depends on establishing feasi-
bility in several areas. The first area istechnical feasibility. This area addresses the funda-
mental question of concept validity and implementability. Obviously this is the first issue
to be addressed in the evaluation of any product. Beyond the strict metric of technical fea-
sibility there are a set of pragmatic concerns that we have used to guide evaluation. Dis-
cussed below, these concerns derive from the goal of producing research results that are
applicable to real systems. Note that these concerns are used both in the evaluation of prod-
ucts, but also in choosing between design alternatives, implementation strategies, etc.

• Quality assurance
The goal of the safety kernel is to provide for a set of safety policies in a relatively
small, simple component. The intent is that this architecture would result in more
dependable enforcement of the set of safety policies. In order to realize an improve-
ment in dependability, it is essential to evaluate the safety kernel concept and design
choices with respect to their impact on quality assurance. Enforcing a particular
safety policy in the safety kernel simplifies the quality assurance necessary for the
application. However, at the same time, it can increase the difficulty of the verifica-
tion of the safety kernel.

Application
Software

Safety Kernel

Device
Actions

Application

Operator

Safety Policies
Device
Status

Fig. 2. Safety kernel concept.

Devices

6

• Cost
In addition, to quality assurance, there are issues related to the cost-effectiveness of
the safety kernel concept and design. Issues include the effort required to develop a
system, the portability of the system, the dependability provided by the design, and
the dependability required by an application or class of applications. As the safety
kernel concept and design are evaluated, the anticipated impact on the cost of a
safety-critical application will be a significant consideration.

• Functional performance
A goal of the safety kernel is that it should be compatible with a range of real safety-
critical systems. This has implications for the functional performance of the safety
kernel in regards to its compatibility with various application architectures and the
possible performance overhead it might impose. Although there are no firm require-
ments in either area, a knowledge of the needs of existing systems (e.g., the MSS
and the UVAR) can be used to promote safety kernel performance and general com-
patibility with a range of applications.

There are several points to stress regarding the above concerns. First, they are not spe-
cific requirements, but rather guidelines for evaluation. Second, it is not possible in the
abstract to directly measure any of these characteristics. However, it is possible to at least
roughly evaluate a concept or mechanism and place it along a continuum. Third, when
making an evaluation there will be trade-offs between each of these areas. For example, a
particular design might be amenable to extensive formal verification, but the cost to imple-
ment it might be prohibitive or its performance might be unacceptable. Ultimately, choices
need to be made based on the specific requirements of a system being developed. Since we
are developing a general concept, our goal is to outline what the choices are and to identify
the issues and trade-offs.

1.3 Safety Policies

The safety kernel will enforce a set of safety policies, i.e., safety requirements, for an
application. It is important to emphasize that for most systems the safety kernel is intended
to enforce asubset of the safety policies for the application. Not all safety policies are suit-
able for enforcement by a safety kernel. As a result, several critical questions must be
addressed in evaluating the contribution and role of the safety kernel. What proportion of
the safety policies for an application might the safety kernel enforce? What is the relative
importance of these kernel-enforced policies? Are there general classes of kernel-enforced
safety policies?

The initial step to address these questions was to itemize the safety policies for the two
case study applications. These policies were identified using techniques such as hazard
analysis, fault tree analysis, and failure modes and effects analysis. For purposes of defining
and clarifying the role of the safety kernel, it would be desirable to be able to classify the
safety policies. As a part of this research, classes of safety policies have been identified
based on their position on a canonical system fault tree.

Of the classes of safety policies, not all are equally suited for safety kernel enforcement.
Informally, the safety policies that are enforced by the safety kernel are generally those that

7

are closely tied to device operation and therefore have the most direct impact on safe oper-
ation of a system. Selection is based on considerations of the impact kernel enforcement
has on the dependability and complexity of the safety kernel and of the system as a whole.
Some policies that are not selected for complete kernel enforcement can nevertheless be
enforced in a modified form asweakened safety policies. With a weakened safety policy,
some aspect of the original safety policy is enforced by the safety kernel, but the application
software is also partially responsible for enforcement of the safety policy. Enforcing a
weakened safety policy is beneficial when its enforcement supports the demonstration of
the dependability of the original policy.

1.4 Reliable Policy Enforcement

To be viable the safety kernel must be able to enforce safety policies reliably. That is,
the probability that the safety kernel enforces its safety policies for a specified period of
time, must be acceptably high. It must do so in the system context in spite of failures of
devices, application software, support software, computer hardware, and so on. To estab-
lish a set of requirements for reliable kernel enforcement of safety policies, the effect of
these failures on policy enforcement has been analyzed. The resulting requirements have
been evaluated to assess the feasibility of reliable kernel enforcement. Techniques for meet-
ing the various requirements have also been identified.

Utilizing the various techniques, there are many system designs that could meet the
requirements for reliable enforcement of safety policies. We describe and evaluate several
different designs. The selection of the best design for a particular system depends on the
specific requirements for that system. Working with the reliability requirements and basic
guidelines concerning the pragmatic concerns, a system design is described that is targeted
for the MSS and UVAR applications.

1.5 Implementation Strategy

The basic safety kernel concept is to enforce a set of safety policies with a module that
is relatively small and simple compared to the complete software system. The rationale is
that this module is more amenable to verification than the complete application software
and therefore can enforce policies more reliably. The success of this idea doesnot depend
on the implementation techniques by which the safety kernel is realized as long as it is pos-
sible to demonstrate sufficient reliability. However, we have investigated alternatives for
the implementation of the safety kernel because of the potential benefits in the areas of cost
and reliability. More specifically, the existence of general classes of safety policies and
experience with a variety of applications has lead us to investigate the possibility that the
safety kernel architecture permits the use of a general framework that can be exploited to
support abstraction of general knowledge, system design, safety policies, and software arti-
facts. Such a reuse-oriented framework would promote the transfer of innovative and effec-
tive concepts and artifacts from one system to another.

Reuse can be applied at many levels from abstract general system knowledge to very
specific software artifacts [43]. The appropriate level of reuse for a class of systems
depends on the commonalities between systems and the identification of general require-

8

ments or characteristics. Owing to the unique safety and system hardware concerns, it is
obvious that a single safety kernel will not meet the needs of all systems. An alternative is
the development of a safety kernel that is parameterized to permit customization for spe-
cific applications. This level of reuse would permit exploitation of established mechanisms,
but it is likely that only a small class of systems could utilize a common mechanism.
Another reuse option is to reuse a more abstract product such as a design. This has the
potential for being applicable to a greater number of systems while still supporting the
goals of reducing cost and facilitating quality assurance.

It is instructive to note that design reuse is precisely the level of reuse that occurs with
security kernels. A security kernel is tailored for the processor on which it executes, for the
devices it must control, and for the means by which security will be ensured in a given sit-
uation. Certainly, the notion of an access matrix is quite general; however, interfacing with
devices, providing facilities for administration of the system, and dealing with other secu-
rity issues (e.g., covert channels) are general problems that have solutions configured for
each unique instance. In spite of this application dependence, security kernels are utilized
because they provide the same benefits cited above for the safety kernel.

We have developed a system that generates an instance of the safety kernel from an
application-specific, safety policy specification. The policy specification characterizes the
system and component devices and specifies the safety policies that will be enforced. The
combination of the information characterizing the system and information and mechanisms
provided by the generator provide a context for the expression of safety policies. Policies
governing application requests to the safety kernel, monitoring of devices, and response to
failures are specified in this context.

A safety policy specification has been developed for the MSS and the safety kernel gen-
erator has been used to produce an operating safety kernel for the MSS. A partial safety pol-
icy specification for the UVAR has also been documented to evaluate the suitability of the
implementation strategy for an application that is quite different from the MSS.

1.6 Verification

The final area of evaluation is the critical area of verification. How do we ensure that
the safety kernel as implemented enforces the specified safety policies? At present there are
no verification techniques that can routinely demonstrate the dependability of a system like
the safety kernel. We have examined some of the potential techniques and have evaluated
the role that they can play in the verification of the safety kernel. Particular emphasis has
been placed on the techniques of formal verification and testing.

1.7 Contents Summary

The next chapter looks at related work that has been done in the areas of safety-critical
applications, security kernels and safety kernels. The following chapter describes the two
case studies. Chapter4 examines the safety policies for the two case studies to develop a
taxonomy of safety policies and identify classes of safety policies for kernel enforcement.
Requirements for reliable kernel enforcement of safety policies are developed in the next
chapter along with system designs for meeting the reliability requirements. An implemen-

9

tation strategy for the safety kernel is investigated and evaluated in Chapter 6. Chapter 7
evaluates various verification techniques for the safety kernel. The safety kernel prototype
for the MSS is described in Chapter 8, along with the safety policy specification for the
UVAR. Finally, a summary evaluation and topics for future research are presented in the
conclusions.

10

11

2 Related Research

Previous research related to safety-critical software has focused on topics such as defin-
ing software safety, identifying methods for compiling requirements specifications,
improving the technology for developing an application from a set of specifications, and
verifying that an application meets its specification. In general, the research could be char-
acterized as an attempt to develop a reliable, repeatable process for producing safe soft-
ware. In addition to research of fundamental questions, considerable work has been done
in industry and to a lesser degree in the research community to produce a range of opera-
tional safety-critical systems. Common domains for these applications are avionics, air
traffic control, medicine and transportation. Finally, there is a collection of work that is not
directly related to safety (e.g., in the area of security) but which is relevant to the proposed
research. Previous work in these areas is reviewed in this chapter.

2.1 Building Dependable Software

Dependability is defined as that property of a computing system which allows reliance
to be justifiably placed on the service it delivers [29]. For software, the informal notion that
most people have is “Will the software perform as I wish?”. This question is not in the least
precise nor testable, and a clear statement of exactly what goal has to be met by software
developers is necessary. Without such a definition, the software, once built, might not pos-
sess the properties required for dependable operation of a target system.

When considered more carefully, it is clear that dependability has many different mean-
ings. The three most important arereliability, availability, andsafety:

• Reliability
Reliability is the probability that a particular device will function as required in a
specified environment for a particular period of time [46]. The notion of reliability
is important for devices that must provide continuous service. For example, even a
momentary failure of some implanted therapeutic devices is likely to have very seri-
ous consequences.

• Availability
Availability is the probability that a particular device will be able to provide service
at a particular time[46]. The notion of availability is important for devices that pro-
vide service where brief outages are acceptable; for some devices, even frequent
outages will not cause harm provided they are very brief. Over a given period of
time, however, a device that must achieve high levels of availability is required to
be operational for some very large fraction of the observed time period. Interest-
ingly, a device might have high availability yet poor reliability. For example, a
patient-monitoring device that fails on average once per hour but is restarted auto-

12

matically in less than a second is probably in this category. For such applications,
this might be perfectly acceptable.

• Safety
Safety is the property that a device will not cause harm by operating incorrectly.
This does not mean necessarily that such a device provides a useful service, merely
that it does not cause harm. For example, a radiation therapy device that is always
shut down is safe though not very useful. The goal of safety engineering is to pro-
duce useful devices that are also safe. Notice that a particular device may be useful
and safe yet have low availability and reliability.

A system failure is said to have occurred when the system no longer complies with its
specification[5]. This is an important definition because it illustrates the dependence
placed on the specification. If nothing is specified about how a system is to behave under
certain operating conditions then any behavior must be considered acceptable if those con-
ditions arise. Similarly, a specification must state what is required in terms of reliability,
availability, and safety, and these requirements must be technically reasonable.

The termsoftware safety is used frequently concerning software in safety-critical
systems[31]. It is generally accepted that because software acts through the other compo-
nents in a system, the process of building software must focus on the role of the software
in the system. However, there should be a specification of the requirements that the soft-
ware must meet to operate safely in the system. It is thissoftware safety specification that
the software must meet and it is this specification that establishes the standard for determin-
ing the safety of software. If the system safety analysis does not identify a critical software
safety requirement and an accident results during system operation, this is a case ofspeci-
fication errorand not an example of unsafe software [25].

2.2 Safety-Critical Applications

Various features that could be included in a safety kernel have been built into almost
every safety-critical system utilizing software. Common techniques include watchdog tim-
ers, input and output assertions[32], sequencing checkers[44], fault tolerant data
structures[48], software isolation[1], and software self checking[20]. These techniques
have been incorporated largely in an ad hoc fashion. Some of the systems that are presently
the state of art in this area are described below.

The control of an electric generation turbine is a safety critical task in that failure to con-
trol the speed (i.e., the flow of steam) can lead to a very expensive overspeed breakup.
Therefore, there is a need to ensure that steam valves will never open spuriously. In addi-
tion, the possibility of load rejection and the accompanying rapid increase in the speed of
the turbine requires that valves can be closed within a few hundred milliseconds. For eco-
nomic reasons, availability is also a significant system goal.

J. C. Higgs describes the design of a software-based electric turbine governing system
known as MICROGOVERNOR that has several novel features[20]. The author cites the
following:

13

1. Software assertions are utilized in order to obtain integrity through intelligent
self checking rather than through duplex comparison. Failure of the self checks
results in fail-safe hardware ensuring the safety of the system outputs.

2. The relatively low cost of microprocessor hardware allows a very simple dis-
tributed processing structure to be employed in which a complete, self-con-
tained, governing channel is dedicated to each controlled steam valve path.

3. A two-level structure is used consisting of a high integrity base level and an
upper level for less critical functionality. The base level contains the high integ-
rity, high availability governing functions. The upper level consists of less
important governing functions along with supervisory, coordination and man-
agement functions.

The system relies on the core software of the base level to provide the governing func-
tions, but also to detect failure of the hardware around it. To deal with potential software
failures, the system utilizes a watchdog timer that provides the system with a fail-safe
means to exit the software core. Should it expire, the timer closes the steam valves. Finally,
the system incorporates a state table that defines processing routes at the base level and also
determines the appropriate self checks based on the present state of the turbine. This
arrangement enables precise timing constraints to be applied to critical sections of the base
level code. This system appears to be well formulated making good use of hardware and
software strengths, and taking advantage of the characteristics of a turbine governing sys-
tem.

R. H. Taylor et al.[49,50] have developed a robotic system designed to aid in hip
replacement operations by performing the machining necessary for the insertion of a
cementless hip implant. To ensure safe operation of the robot, a range of techniques is
applied. Some basic measures include: position and velocity deadbands in the joint servos,
monitoring of selected robot activities by a separate computer, and a safety time-out mon-
itor. A force sensor is mounted on the cutter to detect excessive forces on the patient. In
addition, either the controller or the surgeon can disable the system in the event of some
exceptional condition. The most innovative measure is an independent motion monitoring
system that runs on a separate computer. This system is intended to ensure that the cutter
will stay within a specified volume relative to the bone by tracking both the motion of the
bone and the motion of the robot end effector.

The applications described above employ important safety measures and could likely
be shown to be quite safe in the informal sense. However, because they utilize ad hoc tech-
niques and are uniquely constructed for a particular application, they do not significantly
contribute to a general solution for developing safety-critical systems. In addition, the lack
of formality in their development makes it difficult to state precisely what these systems are
supposed to do - rendering it impossible to argue that the implementation provides for the
safety of the application.

The problems of lack of formality, the use of ad hoc measures, and custom-built sys-
tems have been common in many areas of computer science. In a few cases, however, an
area has managed to develop general, reusable solutions for basic problems. The area of

14

computer security is the most relevant, because of certain similarities between security and
safety.

2.3 Security Kernels

The security community has historically faced many of the same problems presently
being encountered within the field of safety. Early security systems were ad hoc, unique
systems that had no formal approach to ensuring security. The result was that the systems
were very difficult to build and, once built, it was almost impossible to verify whether the
required security was guaranteed. Over time however, concepts have been developed that
have made the development of secure systems more general, repeatable, and more amena-
ble to verification.

One technique employed in developing secure systems is based on the use a security
kernel [2,15,22,45]. The concept behind a security kernel is to enforce basic security poli-
cies using a relatively simple central mechanism. The typical security problem is to monitor
the access of users to objects (typically information). The security kernel approach is to
require all references to objects to be carried out through the kernel. The kernel then checks
each reference to ensure that it conforms to the specified security policy for the system.
With this exclusive control of access to objects and an assumption that the kernel must be
isolated to prevent modification, the security of the system can be ensured by verifying that
the security kernel correctly implements the specified security policy. As a result, there is
no need to ensure the trustworthiness of the software executing on top of the kernel.

The security community has also recognized that a system is only secure with respect
to its security policy. There is no attempt to build a system that is secure in an informal
sense - where secure would connote preventing any compromise of security. The safety
community would benefit from a similarly formal approach of building systems to ensure
a specified safety policy instead of striving for some informal notion of safety.

It should be noted that security kernels are not a panacea. Especially as they have been
incorporated into distributed systems, there are many security concerns that cannot be
addressed by the kernel architecture. In systems of this type, security requires not only pre-
clusion of a set of harmful actions, but also successful performance of many actions (e.g.,
the reliable delivery of a message). In a security system, there is not much to be gained by
enforcing a few security policies while leaving others unenforced. In a safety system how-
ever, enforcing a subset of safety policies has potential benefit.

2.4 Previous Research on Safety Kernels

The development of concepts such as the security kernel have not gone unnoticed in the
safety community. Several authors have used the term “safety kernel” for systems or con-
cepts that had the goal of supporting safe operation of application software. Others have
suggested schemes (known by other names) that have some of the features of a safety ker-
nel. These systems typically have some of the features of a security kernel with a relatively
small component providing some form of support for software safety.

15

Leveson et al.[33] appear to be the first to have used the term “safety kernel.” They
describe a concept based on a centralized location for a set of safety mechanisms. These
mechanisms are used to enforce usage policies that are established for a given system. The
policies detail how error detection and recovery will be carried out for the system.

 The kernel described by Leveson provides mechanisms for detection of errors and
recovery from errors. The two detection mechanisms are based on assertions and timers.
Four mechanisms are provided for recovery: change-schedule, init-module, consult-error-
history, and trace. The first two are used for reconfiguring the system by altering the exe-
cution of modules, and the second two aid in the selection of a recovery action by a human
operator. The actions of the mechanisms are determined by policies that are provided to the
kernel. These policies differ from those used in security kernels in that security policies are
more global (describing what) while those used here specify responses to particular errors
(describing how). The distinction is made to demonstrate that the term kernel, as used here,
is not directly analogous to its use in the security context.

Neumann[40] considers the idea of a safety-trusted computing base as a part of his
examination of whether the hierarchical design familiar in secure systems could be gener-
alized to other critical applications. In describing a hierarchical design approach Neumann
relies on the standard “uses” relation[42], but also introduces the notion of associating
degrees of criticality with the design levels. Degrees of criticality are applied in secure sys-
tems with the most critical component, the security kernel, occupying the lowest level.
Higher levels representing lower criticality include trusted servers, subsystem interfaces,
end-user interfaces and finally user programs. A safety hierarchy could also incorporate
criticality using, for example, the degrees of fail-operational, fail-soft, fail-safe, fail-stop-
safe, and fail-unsafe (although there may not be as distinct a relation to the design levels in
this case). A trusted computing base attempts to capture the critical aspects of a system and
focus efforts on ensuring their implementation. A major concern with the safety-trusted
computing base is that much of an application might be critical, meaning that safe operation
will depend on a significant portion of the application software. This is in contrast to secu-
rity systems where a relatively concise policy can be formulated and subsequently guaran-
teed by the security kernel and trusted functions.

Rushby has made the strongest theoretical argument for the development of a safety
kernel[44]. In the process, he has more clearly defined the role of a safety kernel and
addressed the concern raised by Neumann. Rushby considers whether the concept of a
small component that guarantees the enforcement of some system policy (typically secu-
rity) could be applied to safety-critical software systems. The observation is made that ker-
nel structures are potentially applicable for the enforcement of properties where the
following two conditions hold:

1. the properties of interest at the system level must be present at the kernel level, and

2. those properties must be expressed by a second-order assertion of the form

α∀ op∗∈ :P α()

16

This second-order assertion states that for any combination of operations,α, in the set
op*whereop is the set of all functions provided by the kernel (i.e., the first condition), the
predicateP over the input/output behavior of that set will hold.Informally, the assertion
says that the kernel can guaranteeP provided that every operation that can be performed
ultimately is effected through calls to kernel functions, and also that the kernel itself cannot
be modified. For example, ifP specified a maximum value for a device control signal, the
kernel could ensure that no greater values were sent by having exclusive access to the
device and providing only operations that would control the device below the maximum
value. This is precisely the situation with a security kernel, where all access to information
occurs via the security kernel, permitting the enforcement of security policies (e.g., infor-
mation with a given security level should never be given to an object with a lower security
level).

Second-order assertions define conditions that should always hold and are particularly
well suited to describing actions that should never occur (negative properties). Rushby con-
tends that kernels can exert control over the occurrence of “bad behaviors” via the functions
that they do provide. Enforcement of positive behaviors is much more doubtful because it
is difficult to ensure the proper use of functions that are provided. Positive behaviors can
generally be described using first order logic and can thus be verified by demonstrating con-
formance to pre- and post-conditions. Rushby concludes by offering a potential (although
quite limited) design for a safety kernel. The design is based on a separation kernel that
restricts and monitors communication between modules and resource managers that are
responsible for the safe operation of devices. Communications are monitored to enforce a
required status as specified in a “policy base.” In particular, Rushby mentions the potential
for enforcing policies that specify valid sequences of operations.

A report by the NATO ad hoc Working Group on Munition Related Safety Critical
Computing Systems [39] mentions a safety kernel that it defines as follows:

Safety Kernel: An independent computer program that monitors the state of
the system to determine when potentially unsafe system states occur or
when transitions to potentially unsafe system states may occur. The Safety
Kernel is designed to prevent the system from entering the unsafe state and
return it to a known safe state.

The report also details other safety requirements and provides a fairly comprehensive list
of the ad hoc techniques that are commonly applied to safety-critical systems.

More recently, Moffett et al. [38] have proposed a concept for enforcement of policies
in distributed systems. They identify two types of policies. Obligation policies describe
actions that must be initiated in order to enforce the policy. Authority policies place restric-
tions on actions within a system and are only invoked when a request is made for a partic-
ular action.

All of the research described in this section emphasizes the use of a relatively small
software component to enforce safety properties or provide services required by safety-crit-
ical software. This type of structure is utilized for two reasons. First, for a given safety-crit-
ical system, a significant subset (e.g., functionality with properties identified by Rushby) of
the safety specification can be implemented in a small component. Second, smaller compo-

17

nents are simpler and more amenable to verification than the application software, thereby
providing increased assurance that the subset of the safety specification has been met.

Previous research on safety kernels, especially that by Rushby, has established some
basic kernel concepts. However, little progress has been made in defining what policies
might be enforced, how the safety kernel would be incorporated into a system, what
requirements must be met to dependably enforce policies, and so on. As a result, the par-
ticular techniques presented are basically ad hoc. For example, the kernel proposed by
Leveson et al. provides mechanisms for detecting and recovering from software errors.
Although these mechanisms would likely be necessary (but not sufficient) for supporting
safety-critical software, their overall impact on software safety is not evaluated.

A critical shortcoming of the work described above is that none of these concepts or
designs have been implemented, let alone evaluated, with actual safety-critical applica-
tions. Research performed on paper or on “toy” systems does not have the benefit of dealing
with the challenges posed by an actual safety-critical system.

2.5 Software Fault Tolerance

The fundamental safety kernel concept of tolerating faults in the application software
is certainly not new. Software fault tolerance techniques have been investigated by many
researchers and are used in several operational systems. This class of techniques has the
objective of surviving the effects of faults by dealing with them at run-time. In essence, if
a fault exists and causes a problem (such as generation of a wrong output), the software
would survive the effects of the fault by detecting the problem and automatically masking
its effects.

Coping with the effects of faults during execution and thereby possibly improving the
dependability of the software is the goal ofsoftware fault tolerance. Researchers have pro-
posed various methods for building fault-tolerant software with the hope that they might
provide substantial improvements in the dependability of software for safety-critical appli-
cations. Most of the proposed methods for achieving software fault tolerance have been
adapted from similar approaches used to cope with hardware faults. Very high levels of
hardware dependability are achieved using hardware fault tolerance but the faults that are
tolerated are for the most part degradation faults.

To tolerate software faults, the commonly advocated techniques rely on redundant
implementations, i.e., the availability of several different programs that all implement the
same specification. Software engineers assume that the various programs are sufficiently
different that they contain different faults. Fault-tolerant software built in this manner is
referred to as design-diverse software. A well-known method for building design-diverse
software is N-version programming [6,11]. N-version programming requires multiple (i.e.,
“N”) programs (i.e., versions) to be built for a given specification, a decision algorithm or
voter for choosing which outputs to use (the majority for example), and a monitor or exe-
cution-time support system to manage the versions. The versions are developed separately
and frequently use different development tools and techniques. At execution time, the ver-
sions usually operate in parallel in the application environment; each receives identical
inputs, and each produces its version of the required outputs. The monitor collects the out-

18

puts and the decision algorithm determines what output should be used by the enclosing
system. For example, if the outputs are not all the same but should be, the majority value
might be selected, if there is one. If the outputs are floating-point numbers, the mean or
median might be used. Errors are detected by differences in the outputs of the various ver-
sions and, if N is three or more, faults are tolerated if a majority of the versions produce
acceptable outputs.

There are several technical problems with design-diverse software that should be rec-
ognized by practitioners but frequently are not. The problems are, in some cases, quite sub-
tle. Each has an impact on the final performance of a design-diverse software system, and
the effects of each must be weighed against any benefits that design diversity might pro-
vide. Certainly there are benefits that can accrue from the use of design diversity, such as
its application to secure systems [21], but it is not a panacea for achieving high software
dependability. It is possible that, by chance, the faults in the various implementations are
sufficiently different that their effects are masked. But this cannot be assured with high
probability. This problem with the assumption of independent failures has been well docu-
mented along with other possible difficulties [8,13,14,26,27,30].

A key difference between the general application of software fault tolerance and its
manifestation in the safety kernel is that whereas general software fault tolerance is targeted
at toleratingall software faults, the safety kernel is focused on a very specific set of failures.
This permits the safety kernel to be much simpler and smaller than the application software.
As a result, considerable effort can be expended to build a dependable safety kernel —
effort that would not be feasible if the safety kernel were a replicated version of the appli-
cation software.

2.6 Summary

Although safety-critical systems have been built that implement their safety specifica-
tion effectively, these systems have been built using ad hoc methods. The related area of
security has developed general methods based on a kernel approach that have made the
development of certain types of secure systems a general, repeatable, and verifiable pro-
cess. Rushby has recognized the potential for applying the concept of a kernel for the
enforcement of safety policies in safety-critical systems. In the process, Rushby also iden-
tified the conditions that must be met in order to qualify a policy as being kernel enforced.
The research described here expands on this work to clarify the safety kernel concept and
to address questions that arise when applying the concept to a real system.

19

3 Case Studies

Given the research goal of developing ideas, processes, and tools that address the needs
of safety-critical systems, it is essential to have access to safety-critical systems that exhibit
the complexity and challenging requirements of real systems. As such, the Magnetic Ster-
eotaxis System and the University of Virginia Research Reactor have provided a context
for problem exploration and evaluation of research results. In many cases simplistic solu-
tions were eliminated because they could not satisfy the requirements of these systems. The
case studies are not case studies in the sense of finished systems that are analyzed for
strengths and weaknesses. Instead, we are actually building the systems as a means of
advancing the technology employed in the development of software for these systems. This
chapter describes the operation, system hardware, and safety issues of these two case stud-
ies.

3.1 Magnetic Stereotaxis System

The safety kernel is being developed in the context of a case study with theMagnetic
Stereotaxis System (MSS). This is an investigational device for performing human neuro-
surgery that was originated by researchers from the Department of Physics and the Depart-
ment of Neurosurgery at the University of Virginia [17,19,53]. Presently, Stereotaxis, Inc.
is preparing the latest version of the MSS for animal trials and, ultimately, human clinical
trials that will be conducted at the Barnes Hospital of Washington University in St. Louis.

The MSS operates by manipulating a small permanent magnet (known as a “seed”)
within the brain using an externally applied magnetic field (see Fig.3). By varying the com-
posite structure (and, hence, the gradient) of the external field, the seed can be moved along
a non-linear path and positioned at a site requiring therapy, e.g., a tumor. The device can be
used for hyperthermia by radio-frequency heating of the seed from an external source, for
chemotherapy by using the seed to deliver drugs to a site within the brain, or for biopsy by
affixing an appropriate miniature instrument to the seed. The MSS concept promises to be
far less traumatic to the patient than present invasive approaches to such treatments. The
state of the MSS is that the concept is fully defined, the majority of the basic research in
physics is complete, and a fully functional prototype is nearing completion for demonstra-
tion and evaluation. A program of animal trials and subsequent human testing using the
prototype is expected to begin in the near future.

Fig. 4 shows the hardware used by the MSS to effect and monitor movement of the
magnetic seed within the patient’s brain. The patient is positioned at the center of six super-
conducting electromagnets. Under the direction of the computer, power supplies and cur-
rent controllers regulate the electric current in the electromagnets, thereby producing the
magnetic field that acts on the seed. Along both of the coil axes perpendicular to the

20

patient’s body, an x-ray source and camera produce fluoroscopic images for tracking the
seed.

During an operation with the MSS, a neurosurgeon directs the movement of the seed
from a console that displays preoperative Magnetic Resonance (MR) images. The com-
puter takes movement requests and computes the electromagnet currents required to pro-
duce the desired seed movement. During seed movement, a computer vision system
analyzes the images from the fluoroscopes to locate the seed and markers affixed to the
patient’s skull. Visible on both the MR and x-ray images, the markers enable the position
of the seed to be transformed into the MR frame of reference and subsequently superim-
posed on the MR images.

When the MSS is in operation, there are a large number of events that could lead to
patient injury. The complete set is determined by a hazard analysis including the use of
techniques such as system fault-tree analysis. Some examples of events that could lead to
patient injury include:

• Failure of electromagnets or current controllers.

• Incorrect calculation of currents required to provide a requested movement.

.
Brain

Permanent Magnet (Seed)

X-Ray Cameras

Treatment Site

Desired Path

Superconducting Coils

Fig. 3. Seed guidance by MSS.

21

• Misrepresentation of the position of the seed on the MR images.

• Inappropriate control of currents by the computer.

• Erroneous movement commands by the human operator.

• Failure to respond promptly to an increase in seed velocity.

• Incorrect response to the failure of an electromagnet or current controller.

• X-ray overdose.

Each of these could be the result of numerous different faults and, in fact, the software
could either initiate or prevent many of these failures.

For the MSS, safety is the key requirement. If a failure occurs it is both feasible and
acceptable to shut the system down, ensure the safety of the patient, and then address the
cause of the failure — thus system reliability is not a concern. At the same time, availability
is not a critical requirement because use of the MSS can be scheduled with little more con-
sequence than inconvenience.

Vision System

Coil Current Control

Display Management

Seed Guidance

Device Monitoring

To
Devices

Control Software

X ray
source

Camera

Coil

Operator Displays

Phosphor
Screen

Patient’s
Head

MR Images,
Patient Data, etc.

Fig. 4. Magnetic Stereotaxis System.

22

3.2 University of Virginia Reactor

The target of the second case study is the nuclear research reactor currently operated by
the University of Virginia (see Fig.5). It is a 2 MW, thermal, concrete-walled pool reactor.
It was originally constructed in 1959 as a 1 MW system, and it was upgraded to 2 MW in
1973. Though only a research reactor rather than a power reactor, the issues raised are sig-
nificant and can be related to the problems faced by full-scale reactor systems.

The system operates using 20 to 25 plate-type fuel assemblies placed in a rectangular
array. There are three scramable safety rods, and one non-scramable regulating rod that can
be put in automatic mode. The primary process variables that are measured are: 1) Gross
output, by movable fission chamber; 2) Neutron flux, by ion chamber; 3) Start-up neutron
flux and period, by BF3 counter; 4) Core inlet and outlet temperatures, by thermocouples;
5) Primary system flow, by pressure gauge; 6) Control and regulating rod positions, by
potentiometer; 7) Gross gamma-ray dose, by ion chamber; 8) Various limit-set switches to
monitor pool level, etc.

As with the MSS, there are a large number of events that could lead to a reactor accident
with the potential to cause extensive damage. Some examples of events that could result in
hazards include uncontrolled withdrawal of the reactor control rods, loss of water in the
reactor pool, failure of a coolant pump, and high radiation levels outside of the reactor pool.

Control
Console

Cooling
Tower

Pool

Experiments

Fig. 5. University of Virginia 2.0 MW Research Reactor.

Sensor Data

Safety Rods Regulator Rod

Pump

Header

23

4 Safety Policies

The goal of the safety kernel is to facilitate the development and verification of safety-
critical software. The safety kernel will provide this support by ensuring that certain safety
requirements are satisfied independent of (and even in spite of) the application software.
Analogous with the security kernel, these requirements for a safety-critical system are
known assafety policies. To this point, the discussion of kernel enforcement of safety pol-
icies has largely treated the kernel and policies from an abstract point of view, i.e., with the
kernel seen as a policy enforcer and a policy as some requirement that must be ensured to
support system safety. Before more specific requirements and a design can be pursued, the
understanding of the safety kernel role as a policy enforcer must become more detailed and
complete.

This chapter describes the results of an analysis of safety policy data from the two
safety-critical applications used as case studies, the MSS and the UVAR. The goal of the
analysis was to answer questions concerning safety policies. The questions addressed
include the following:

• Where does a safety policy come from?

• What are distinguishing characteristics of safety policies?

• How are safety policies organized?

• Are safety policies similar across applications?

• What safety policies are most appropriate for safety kernel enforcement?

• How are safety policies identified for safety kernel enforcement?

• What portion of safety policies could be best enforced by a safety kernel?

These questions are important for defining the role of the safety kernel, evaluating its con-
tribution to a safety-critical system, and informing choices related to implementation of an
instance of the safety kernel.

The approach that we have taken to address these questions is to conduct an experiment
in which the two safety-critical applications provide a target for study of safety policies.
For each application, safety policy data was gathered from a range of sources including ref-
erence to approved safety documents [52] and interviews with systems engineers. Although
likely not complete, the safety policy data represents a wide variety of requirements and we
believe it is sufficiently comprehensive to permit the questions posed above to be answered.
The safety policy data was analyzed to attempt to characterize the policies and to identify
an underlying organization of the policies. A policy taxonomy resulted from this analysis,
and it in turn was evaluated against the policy data.

24

With several classes of safety policies identified, these classes were evaluated for pos-
sible enforcement by the safety kernel. Using properties identified by Rushby and guide-
lines developed as a part of this experiment, several classes of safety policies were
identified for enforcement. The final phase was to analyze the policy data to determine
which policies were included in the classes of kernel-enforced policies. From this analysis,
preliminary conclusions were made concerning the effectiveness of the kernel and the
degree of support it provides to safety-critical software.

4.1 Safety Policy Classes

The safety policies that have been identified for the MSS and UVAR are presented in
Appendix A. The set of MSS safety policies is relatively static, but will change some as the
application software is modified. The safety policies dealing with UVAR system safety are
well understood and static. However, the UVAR policy data is incomplete with respect to
the application software because that software is still in the process of being specified.

In the initial analysis of the safety policy data, the focus was on identifying character-
istics that might permit a logical organization of the safety policies. Characteristics consid-
ered included the purpose of a policy, the origination and destination of the information to
which the policy is applied, and the generality of the policy. Although each brought some
order to the policies, none was sufficiently systematic, complete, or effective for classifying
all of the policies and relating the policies to the safety kernel. The identification of a useful
characteristic occurred when we considered where safety policies come from and how they
were obtained.

Safety-critical applications have a similar ultimate safety policy. This policy states that
the risk of a system failure causing injury to people or resulting in excessive damage must
be acceptably low. In the instantiation of a system, this general policy is decomposed into
many component policies that are intended to ensure system safety. To facilitate the iden-
tification of component safety policies, systems and software engineers perform a system
safety analysis utilizing techniques such as hazard and fault tree analysis to evaluate inter-
actions of components.

In a system safety analysis, an initial step is the identification of hazards that could
result in injury or damage. Each hazard is subsequently placed at the root of a fault tree and
the failures that could result in the hazard are analyzed [35]. From this analysis, a complete
fault tree is developed which details the failure conditions that could lead to a particular
hazard. The exact form of a fault tree depends on the hazard being considered and the
details of the particular application. However, working with the two case studies and other
systems, we have identified acanonical fault tree for systems incorporating computer-con-
trolled devices. Shown in Fig.6, this canonical representation documents the general types
of failures that can occur and produce a hazard. Since hazards are caused by the action or
inaction of system devices, the focus of this fault tree is the devices, device interaction, the
computer that controls the devices, and the control inputs to the computer.

The initial safety policies for a system are high-level policies that define safe operation
of the devices. These policies are typically stated in an abstract manner without any of the
details that enable system components to enforce the policies. However, working with the

25

Device Fails

Hazardous Operation
Device 2

Operator Error

Erroneous Input
To Software

Software Error

Erroneous Input
From Computer

Erroneous Sensor
Input

Erroneous Input
From Operator

Fig. 6. Segment of canonical system fault tree showing software-related nodes.

Hazardous System
Operation

Hazardous Operation
Device N

Hazardous Operation
Device 1

Erroneous Configuration
Or Application Data

Erroneous Information
To Operator

Hardware Error

26

fault trees and details of the system, safety policies are developed that specify the require-
ments the components must meet to ensure that failures do not result in hazardous opera-
tion. In this manner, safety policies are developed to address each of the types of failures.

The canonical fault tree contains several classes of failures that are identified by the
labels on the fault tree. Failures are grouped according to these classes. In the same way,
safety policies are classified based on the type of failure that the safety policy addresses.
The result is a taxonomy of safety policies. Obviously, additional types of failures, and thus
safety policies, could be identified by further subdividing the fault tree. However, from our
experience the classes listed below provide a sufficiently detailed set of classes for
analysis —particularly for evaluating the enforcement role of the safety kernel. The twelve
classes of safety policies are the following:

• System Operation • Device Operation

• Device failure • Device input from computer

• Application software error • Failure response

• Software input • Operator input to the software

• Sensor input • Configuration or application data

• Operator error • Operator information

One of the classes of safety policies, failure response policies, does not actually appear
on the canonical fault tree. This is because nodes for this policy are only added to the tree
whenever a safety policy is added that calls for detection of a particular failure. Addition
of a policy of this type results in a modification of the fault tree. To illustrate, consider the
type of failuredevice fails on the canonical fault tree. One way to deal with such a failure
would be to detect the failure and respond to it. The effect on the tree is to replace the single
device fails node with a subtree as shown in Fig.7. Now, the failure will only result in a
hazard if the device fails and either the failure cannot be detected or there is not an effective
failure response.

The classes of safety policies that appear lower on a branch of the canonical fault tree
address failures that could cause policies higher on the branch to be violated. For example,
system operation policies are concerned with safe device interaction and device operation.
Policies from the class software error address specific software failures that could lead to a
failure at the system level, i.e., the violation of a system operation policy. Violation of any
of the lower policies could result in a system operation failure.

Is the identified set of safety policies complete? In other words, is there a policy class
corresponding to any type of failure that could be identified? Given that the canonical fault
tree can be further decomposed, the classes identified here are obviously not complete. On
the other hand, we believe a strong argument can be made that a critical portion of the tree
is in fact complete. This argument is presented below.

The classsystem operation is complete by definition because it includes any policy that
addresses a system-level failure. Since a system can only affect its environment through

27

actions of devices,device operation policies address all failures that could lead to a system-
level failure. Continuing to the third level, a device that fails in its operation, does so either
because it was commanded erroneously or because the device itself has failed. At the next
level, the hardware and software of the computer calculate output values to devices based
on input to the computer. If there is a failure, in the computer output, the only possible
sources are either the hardware, software, or input data. Thus to this level, the classes of
policies are complete in that they account for all of the types of failures that could lead to
a hazard. Below this level, however, the tree is likely to be incomplete simply because there
are many more types of failures that could be enumerated. The lower portions of the tree
are less critical for evaluation of the safety kernel, however, because the classes corre-
sponding to these failures are not likely to be kernel-enforced.

The safety policies in Appendix A have been classified according to the safety policy
classes developed in this section. All of the safety policies for the two case studies have
been categorized using this grouping. Given the classes of safety policies, the question to
be addressed is, “What will the role of the safety kernel be in their enforcement?”. This
question is addressed in the next section.

4.2 Issues in Kernel Enforcement

4.2.1 Kernel Enforceability

A particular safety policy iskernel-enforced by a specific safety kernel if the two con-
ditions identified by Rushby are true. Policies that do not meet these conditions arenon-

Fig. 7. Subtree resulting from addition of detection and failure response policies.

Device Fails

Device Failure
Impacts System

Safety Kernel
Fails To Prevent Control

Device Failure Is
Not Detected

Response To Device
Failure Fails

28

kernel-enforced. A particular safety policy is neither inherently kernel-enforced nor inher-
ently non-kernel-enforced. The kernel enforcement status depends on the safety policy in
question and must be determined based on an analysis of the kernel responsible for enforce-
ment. To illustrate this point, we note that at one extreme the complete absence of a kernel
obviously makes all policies non-kernel-enforced. At the other extreme, the entire function-
ality of an application could be placed into a safety kernel thereby making all policies ker-
nel-enforced by definition. Of course, this latter choice would run counter to the objective
of having a relatively small, simple kernel.

Assuming a safety kernel that mediates access to devices, examples of kernel-enforced
policies are the following:

Device input from computer:
If device A is on, then device B should not be turned on.

Device operation:
Over some time period T, the fraction of time that device C is on must not
exceed K.

These are policies that ultimately depend only on kernel operations, i.e., the kernel can
enforce them without regard to application circumstances, and they are “for all” policies,
i.e., they are applied irrespective of the order and type of kernel operations invoked by the
application. Thus they satisfy the two conditions.

Examples of policies that would be non-kernel-enforced, except in the extreme case
where a large portion of application functionality is implemented in the safety kernel,
include the following:

An arithmetic calculation policy:
The result of an application-specific algorithm must never yield a result
greater than X.

A highly application specific policy:
A particular flight control system must set engine thrust correctly based on
parameters such as air speed, altitude, and fuel efficiency.

The first of these two examples can be described by a second-order assertion. However, the
policy cannot be readily enforced by the safety kernel because kernel operations are not
essential for the implementation of the policy. The policy says essentially that some part of
the application’s internal computation has to satisfy some assertion. Even if the safety ker-
nel provided an operation to perform the calculation, it could not guarantee that the opera-
tion would be neither replaced nor used improperly.

The policy in the second example would be expressed as a first-order assertion. The
safety kernel could ensure that the thrust requested of the engine would satisfy some rea-
sonableness check, but it would not be able to enforce the policy without its own version
of the software to perform either a reversal check or replicate the calculation.

29

4.2.2 Weakened Safety Policies

In general, safety policies are selected to be enforced by the kernel because such
enforcement provides significant benefits. However, the benefits must be balanced by con-
siderations such as the cost of kernel implementation and quality assurance, kernel perfor-
mance overhead, and the substantial effort that would result from trying to incorporate a
complex policy into the safety kernel. In some cases, there are safety policies for which it
would be beneficial for the safety kernel to enforce part of the policy but where enforce-
ment of the complete policy as it is derived from the application specification is inappro-
priate.

An example of a policy of this type for the MSS is the following:

Every 0.5 s the location of the seed must be determined. The seed must not
move more than 1.0 mm or faster than 2.0 mm/s with respect to a coordinate
system fixed to the markers.

This policy addresses the need for carefully controlled movement of the seed and relies
on the vision system for input. In principle, the safety kernel could incorporate the entire
vision system and actually compute the seed position to be used in enforcing this policy.
However, there are two problems with this approach. The first problem is that the vision
system is quite complex. Thus it would be difficult to incorporate it into the safety kernel
and do so in a manner that would ensure it would not interfere with the operation of the rest
of the safety kernel. The second problem is that operation of the vision system by the safety
kernel requires resources that are not available. In order to track the seed with the desired
frequency, the application software needs exclusive use of the cameras, x-ray sources, and
image capture hardware. In addition it uses a significant portion of the available processor
resources. Therefore, it is not feasible to require that the safety kernel repeat these calcula-
tions that are already being performed by the application software.

Some safety policies that cannot be kernel-enforced in their strictest form can be kernel-
enforced ifweakened. A weakened safety policy is defined as follows:

A weakened safety policy is a kernel-enforced policy for whichpart of the
enforcement responsibility is shifted from the safety kernel to the applica-
tion software.

Although the application software is given partial enforcement responsibility, it is held
accountable by the safety kernel. As an example, in the enforcement of a weakened safety
policy, the application software might perform some complex calculation and then be
required to report the results to the safety kernel which would then complete the enforce-
ment of the safety policy.

Returning to the example above. Since the application software is locating the seed
already, reporting the position does not add significant burden, yet the notification of the
position enables the safety kernel to ensure that the check is occurring. In its weakened
form the example from above becomes

Every 0.5 s the location of the seed must bereported to the safety kernel by
the application software. The seed must not move more than 1.0 mm or

30

faster than 2.0 mm/s with respect to a coordinate system fixed to the mark-
ers.

The advantages of enforcing weakened policies are that the relative simplicity of the
safety kernel is maintained while at the same time, by requiring notification, the application
software must either provide proper notification or make an erroneous notification. The dis-
advantages of the weakened policies are that assurance of the original policy requires ver-
ification of the application notification, the application software processing the data is more
prone to interference by other software than it would be if it were executed in the safety
kernel, and erroneous application software could generate notifications that would satisfy
the weakened policy but not the actual safety policy.

Justification for the use of weakened safety policies is based on the following:

• In a safety-critical system, it is assumed that the application software is not mali-
cious (although it may be faulty). Therefore, some assurance can be gained by
“trusting” the application software with certain aspects of policy enforcement. This
would not be a reasonable assumption in a security system.

• The actual policy that is enforced is the same whether it is a weakened policy or not.
There is a division of responsibility but otherwise the operations performed in
enforcing a safety policy can be identical. The level of isolation is better for code
incorporated inside the safety kernel, but for cases where this is not feasible, the
weakened safety policy provides a measure of assurance that the operations
required to enforce a policy are being performed.

4.3 Kernel Enforced Policies

Since safety policies are neither inherently kernel-enforced nor inherently non-kernel-
enforced, it is necessary to select policies for kernel-enforcement. Safety policies are
selected to be enforced by the kernel because, as discussed in the introduction, kernel
enforcement of policies provides significant benefits to a safety-critical system. Essentially,
the relative simplicity of the safety kernel has the potential to improve the dependability of
enforcement of selected critical safety policies. However, selection of a policy or class of
policies for enforcement impacts the design, implementation, and verification of the safety
kernel. The impact must be evaluated with respect to the pragmatic concerns of quality
assurance, cost, and functional performance discussed in the introduction.

We have selected seven of the policy classes identified in Section 4.1 for enforcement
by the safety kernel prototype. It is important to point out that not all of the policies in a
selected class will be kernel-enforced by the prototype. Some of the policies will be
enforced in a weakened form. Others, for example those that would add significant com-
plexity to the verification of the safety kernel, will be non-kernel-enforced.

With one exception, the classes of policies enforced by the prototype originate near the
top of the canonical fault tree shown in Fig.6. The exception is the class sensor input that
is included because sensor data is critical to safety kernel enforcement of the safety poli-
cies. Not coincidentally, these seven classes are the ones that are most closely associated
with operation of the application devices. Since devices actually cause mishaps, these pol-

31

icies have the most direct impact on system safety. Enforcing policies from the other classes
would in general not benefit system safety as substantially and would increase complexity,
thereby adversely impacting cost and quality assurance. It should be stressed that another
set of policy classes could have been chosen for kernel enforcement. The set above
addresses the requirements of the two case studies and likely a range of other systems, but
there are no precise rules for selection of policies for kernel enforcement.

The rest of this section looks at the classes of kernel-enforced safety policies. Within
the classes, types of safety policies have been identified. These are described and examples
are provided from the MSS and UVAR. The descriptions of the classes are intended to pro-
vide more detailed information on the safety policies that are enforced by the prototype
safety kernel.

4.3.1 System Operation

The policies in this class are concerned with the interaction of devices and the effects
of their operation on the physical environment. The safety kernel enforces policies in this
class using information obtained from sensors that observe the state of the physical system.
The enforced safety policies determine the expected state of the system and compare the
expected state and the observed system state. The policies enforced at a given time depend
on the commands issued to devices.

MSS: The seed must always be within 2 mm of its expected position as deter-
mined from the coil current-time profiles and a model of the seed movement
through the brain as a function of magnetic impulse.

UVAR: The reactor water inlet temperature must not exceed 105˚ F.

4.3.2 Device Operation

A critical role of the safety kernel is dealing with actual and apparent failures of appli-
cation devices. An actual failure occurs when a device has been commanded correctly, but
fails to execute the command as specified. An apparent failure occurs when a device oper-
ates correctly, but the application software fails to act or acts incorrectly. Both types of fail-
ures are detected through an inconsistency in the observed and predicted state of a device.
Therefore, there will be a component of the safety kernel that has the task of periodically
sensing the state of a device and comparing this state to the expected state.

MSS: The state of the x-ray source must match the most recent state com-
manded.

UVAR: The flow in the primary cooling system must be greater than 3,400
liters/min (900 gals/min).

4.3.3 Device Failure

Incorrect device operation can be caused either by a failure in the device itself or by an
erroneous request from the software. Data from sensors observing a device cannot distin-
guish between these two sources of failure. Therefore, detection of the failure of a device
itself must be based on status signals that come directly from the device.

32

MSS: If the servoamplifier that serves a coil detects an internal failure, it causes
a status line to go low.

4.3.4 Device Input From Computer

This class of safety policies dictates the manner in which devices may be operated by
the application software. There are a number of different types of policies within this class.
These policies define requirements that must be met before an application software request
for device action can be effected. The safety policy that is enforced at a given time depends
on the command being requested and the expected state of the system. The policy types in
this class include the following:

• Command history restrictions
Policies of this type describe the ordering of commands or require that some action
must be performed in order to satisfy a request for device action.

MSS: Before a coil can be charged, the load current command must be success-
fully executed.

MSS: Before the current in an x-ray source can be turned on the voltage must
be on.

• Timing requirements
This type of policy places limits on the timing of commands (e.g., the time between
commands) or on timing aspects of the device operation (e.g., the total operating
time of a device).

MSS: An x-ray device must be in the “off” state for 0.2 s before the invocation
of an “on” command.

MSS: The total x-ray dose during an operation must be less than 100 millirem.

• Parameter checks
Restrictions on command parameters (e.g., range checks) are specified by policies
of this type.

MSS: The current requested of the servoamplifier current controllers must be
less than 100 A.

• Operational state conditions
For a given command, policies of this type document restrictions that depend on the
physical state of a device or the system.

UVAR: Before the safety rods can be lifted the source range must be indicating
at least 2 counts per second.

4.3.5 Application Software Error

The basic model of the safety kernel is that it enforces policies that ultimately depend
on calls to safety kernel operations. In certain cases it is desirable to extend this interface
up into the application to enforce policies relating to actions of the application software.

33

For example, the calculation of output values for a device might have associated with it an
effective reversal check. In that case, a safety policy might be that the output values should
never be sent to the device without the reversal check being applied. If it is not feasible for
the safety kernel to perform the reversal check, then an alternative is to require the applica-
tion to notify the safety kernel when the check has been performed. This is an example of
a weakened safety policy. Much like the device control policies described above, applica-
tion software activity policies specify required sequences of actions, timing constraints on
those actions, or particular checks or activities to be performed when an action occurs.

MSS: Prior to setting the currents for the servoamplifier current controllers, a
reversal check must be executed to ensure that the requested currents provide
the desired force. The results of the reversal check must be reported to the safety
kernel.

MSS: The safety kernel must be notified that a seed movement has been
requested each time the coils are charged.

4.3.6 Sensor Input

Because it monitors the system and devices, the safety kernel has access to data from
sensors. These safety policies describe how erroneous sensor data is detected (e.g., using
reasonableness checks or by comparing the observations from redundant sensors).

UVAR: The reactor pool temperatures measured by two temperature sensors
must be within 3˚ F.

MSS: The current values reported by the current controllers and the indepen-
dent sensor must differ by less than 5.0 A.

MSS: A coil current sensor reading outside of the range -100 A to + 100 A indi-
cates a faulty sensor.

4.3.7 Failure Response

Detection of an error in the operation of application software, support software or sys-
tem devices, requires a response that can ensure that the system remains in or is returned to
a safe state. Typically a continuum of recovery procedures will be available. For example,
in a system where recovery was achieved by shutting devices off, a severe recovery policy
might call for disconnection of power to all devices, whereas a less severe policy would be
more sophisticated and would effect a more orderly shutdown of the system. For a given
error, the appropriate response will be selected based on the present system state.

MSS: If an x-ray source fails so that it cannot be activated and the coils are in
a discharged state, the x-ray sources and coils must be deactivated.

MSS: If the x-ray sources are on when they are expected to be off, the power to
the x-ray sources must be interrupted and the coils discharged.

UVAR: The control rods must be scrammed if a sensor indicates a power
greater than 125% of maximum power.

34

It is instructive to compare these classes of policies with the policies that are enforced
by asecurity kernel. A security kernel enforces policies concerned with device input from
software. It does so by accepting requests from application programs and then either fulfill-
ing or rejecting the request based on the status of both the requester and the desired infor-
mation. Rejection of a request is the failure response policy for a security kernel. A security
kernel does not need to be concerned with the system operation, device operation, or device
failure classes because these are all concerned with policies detecting the failure of one or
more devices or with erroneous operation of the devices by the application software. Other
than the basic issue of whether an information device is operational, a security kernel has
no responsibility for operating a device. The class of policies related to application software
error are also not a concern with a security kernel. Given the unlimited variety of applica-
tion programs that can execute on a security kernel, it is not feasible to offer any services
that enforce policies within these programs. On the other hand, a particularsafety kernel is
likely to serve a small number of application programs (typically one) and therefore can
beneficially provide for enforcement of policies that regulate the operation of application
software. Finally, as noted above, the failure response for a security kernel is rejection of
service as opposed to a potentially complicated safety failure response in which system
devices may need to be restored to a safe state.

4.4 Kernel-Enforced Policy Evaluation

The safety kernel prototype that we have developed enforces safety policies from the
seven classes described above. What specific safety policies are kernel enforced for the
MSS and UVAR? What does kernel enforcement contribute to the overall safety of these
two applications? In this section, the safety policies for the case studies are examined to
evaluate the role of the safety kernel in these systems.

4.4.1 MSS Safety Policies

Appendix A documents the safety policies for the MSS including an indication of
whether a policy is enforced by the safety kernel or the application software or whether it
is enforced as a weakened safety policy. Of the 45 safety policies listed, 16 are kernel-
enforced, 10 are kernel-enforced as weakened policies, and 19 are enforced by the applica-
tion software. This data makes it clear that the safety kernel does not ensure system safety.
On the other hand, it enforces a critical set of policies that are closely related to the opera-
tion of the application devices. To assess the overall impact of the safety kernel with the
MSS, the policies that are kernel-enforced, weakened, and non-kernel-enforced are exam-
ined below.

The kernel-enforced policies come from all but one of the seven classes of kernel-
enforced policies with application software error being the only class not represented. The
policies that are enforced are primarily concerned with system and device monitoring,
restricting control of the devices, and responding to failures.

The weakened safety policies come from the classessystem operation, input from com-
puter, andapplication software error. The two weakened, system operation policies deal
with monitoring the movement of the seed. As discussed previously, the policies are weak-

35

ened because it is not practical to incorporate the entire vision system into the safety kernel.
The weakened policies from the other classes are concerned with ensuring that critical com-
putations have been performed or that actions are sequenced in a particular manner. With
all of the weakened policies, the application software is responsible for the computation
and must report the results to the safety kernel. Reporting of results is required either on a
periodic basis or prior to executing a device control command.

The policies that are non-kernel-enforced are concerned primarily with input to the
application software and come from the classes that are designated as non-kernel-enforced.
Enforcing these policies with the safety kernel would add unnecessary complexity to the
safety kernel and they can be enforced effectively by the application software.

4.4.2 UVAR Safety Policies

All of the 47 safety policies listed for the University of Virginia reactor would be
enforced by the safety kernel. In general, these policies require some action based on the
status of a sensor(s) and are the same type as those that are enforced by either a hardware
or software shutdown system. Therefore, the significance of the safety kernel role in this
system should be clear. The variety of safety policies will increase as the software for this
system is developed and policies are added, particularly in the classes of device input from
software, software error, and failure response. As policies of this type are added there will
be policies that are not enforced by the safety kernel.

4.5 Conclusion

This chapter presents the results of an experiment in which safety policies from two
safety-critical applications were analyzed to answer questions concerning derivation, clas-
sification, and enforcement of these policies. Analysis of the policy data showed that safety
policies can be characterized based on their place of origin on a canonical fault tree. This
characterization was used to partition the policy data for the two applications. This classi-
fication system is especially suitable for identifying policies for enforcement by the safety
kernel; thereby contributing to the definition of its role.

Classes of safety policies were selected for kernel-enforcement using criteria based on
the ensuing benefits and the consideration of several pragmatic issues including quality
assurance, cost, and functional performance. Using these criteria, we identified seven
classes of policies that will be enforced by a prototype of the safety kernel. Most of these
classes are directly related to the operation of devices and therefore are significant policies
for system safety. Evaluation of these classes with respect to the policy data showed that
the safety kernel will enforce all of the policies identified for the UVAR and will enforce in
full or in a weakened form over half of the policies identified for the MSS.

36

37

5 Reliable Policy Enforcement

The focus of this chapter is an analysis of the requirements for reliable enforcement of
safety policies by the safety kernel. In particular, when striving for reliable policy enforce-
ment, what are the issues and alternatives concerning the design of the system in which the
safety kernel is a component? In security systems, reliable security policy enforcement has
typically required a system design in which the enforcement kernel is implemented as a
system kernel. Safety-critical systems have different requirements, however, so this design
may not be necessary or appropriate in the safety context.

Reliability is the probability that a particular device will function as required in a spec-
ified environment for a particular period of time [46]. Therefore, reliable policy enforce-
ment requires that the safety kernel enforce safety policies and do so with an acceptable
probability of functioning for a required period of time. In this chapter, the general require-
ments for reliable policy enforcement are examined. The actual system design that is devel-
oped to meet the requirements depends on the characteristics of the kernel-enforced
policies. For example, a set of policies might require a system design where reliability, i.e.,
continuous service, is essential. On the other hand, policies for systems such as the MSS
and UVAR require a system design where safety is the primary concern. We focus on safety
systems of this type and develop techniques and a system design for reliable safety kernel
policy enforcement.

5.1 Reliable Safety Policy Enforcement

A logical picture of the safety kernel in the system context is shown in Fig.8. In addi-
tion to the safety kernel, the other components in the system include the application
devices, the application software, and the computing platform. The computing platform
includes any software and hardware that provide support services to the safety kernel. The
application software includes the control software and other processes outside of the com-
puting platform that may be active. Operating in this context, the safety kernel must be able
to enforce a set of safety policies. Most importantly, it must be able to do so in spite of fail-
ures of these components

To identify the requirements for reliable kernel enforcement of safety policies, it is nec-
essary to analyze the safety kernel in the system context to determine in what ways the
enforcement of a policy can fail. Fault trees have been used to systematize this failure anal-
ysis. In the failure analysis, the root failure is hazardous operation of the system resulting
from violation of kernel-enforced policies. Note that violation of individual kernel-
enforced policies is not considered to be a reliable-enforcement failure unless the failures
lead to hazardous system operation. As shown in Fig.9, either of the following two high-
level failures could result in this root failure:

1. The safety kernel acting in the system context fails to enforce a safety policy.

38

2. Some entity other than the safety kernel is able to control the devices in a man-
ner that violates a safety policy.

These potential failures imply two high-level requirements that must be met to ensure
that policies are enforced:

1. Reliable safety kernel operation
Executing on the computing platform, the safety kernel must be able to interact
with the application software and devices to enforce safety policies.

2. Exclusive control
At all times during operation of the system, no other entity must be able to con-
trol a device in a manner that would violate any kernel-enforced policy.

Provided that the requirements of exclusive control and reliable operation are met,
safety policies will be reliably enforced by the safety kernel. The following sections look
at these requirements in more detail.

5.1.1 Exclusive Control Requirements

Exclusive control of application devices is a requirement that is similar to the security
kernel requirement forcompleteness[2]. Completeness in the security context means that
a security kernel mediates all access to information, i.e., it has exclusive access to the infor-
mation. Exclusive access is essential in security systems where any unauthorized access to
information has the potential for communication. In safety systems, access to information
is not a problem in itself. Rather, exclusivecontrol of devices is the concern. Access to a
device is not a concern as long as the safety kernel has sufficient control over the operation
of the device to enforce the specified safety policies. The conditions associated with suffi-

Safety Kernel

Application Software

Fig. 8. Logical view of safety kernel in system context.

Application Devices

 Computing Platform

Application
Requests

Device —
Safety Kernel

Communication

39

cient control are determined based on the requirements of an application and the nature of
the application devices. For some applications the safety kernel might need to ensure exclu-
sive control by having exclusive access to devices, but for many applications it can employ
techniques other than complete restriction of access. Techniques for ensuring exclusive
control will be examined in Section 5.4.

5.1.2 Reliable Safety Kernel Operation Requirements

In order to enforce safety policies reliably, the safety kernel itself must meet certain
dependability requirements. In addition, because the safety kernel both interacts with and
depends on other components in the system, additional dependability requirements are
placed on the components and on the system design that defines their interaction. Five
requirements have been identified for reliable safety kernel operation. The fault tree
in Fig. 10 shows the failures that the requirements address. The first two requirements,
safety kernel correctness anddata integrityare directly analogous to requirements that have
been established for security kernels [2]. The third and fourth requirements aredependable
support services anddependable computing services. Both of these are essential for secu-
rity kernels, but are often assumed since security kernels have typically been built with very
little underlying software. Support services in this case are defined to be those software and
hardware services that areinvoked by the safety kernel. Computing services are defined to
be the basic computing platform services essential to execution and management of pro-
cesses. The fifth requirement which is an issue in security systems, but critical for the safety
kernel isdependable computing resources. Denial of service can be a problem with a secu-
rity kernel, but it is essential that a safety kernel be able to act in a timely manner. Comput-
ing resources such as memory and the processor are necessary for timely operation.

These five requirements for reliable safety kernel operation are examined in more detail
below. In Section 5.5, techniques are presented for meeting these requirements.

• Safety kernel correctness
Central to the reliable operation of the safety kernel is the correctness of the execut-

Fig. 9. Top-level fault tree for system with safety kernel.

Violation of
Exclusive Control

Hazardous System Operation
Due to Violation of

Kernel-Enforced Policy

Safety Kernel
Enforcement Failure

40

able safety kernel. Correct, in this case, is defined as fulfilling the safety kernel obli-
gations for enforcement of safety policies. Note that correctness does not imply that
policies are necessarily enforced since enforcement of most safety policies depends
on other system components. The actual achievement and measurement of safety
kernel correctness might not feasible, but, from a conceptual point of view, it is a
critical requirement for reliable policy enforcement. The issues associated with ver-
ification of the safety kernel are addressed in Chapter 7.

• Data integrity
The safety kernel is a collection of executable instructions, configuration data, run-
time state, and hardware that is carefully constructed to enforce a set of policies. In
order for the safety kernel to operate as specified this information must not be cor-
rupted. In the security realm, protection of data is provided throughisolation of the
kernel from other components in the system that might be able to effect some alter-
ation of kernel data. In fact, in the security context the requirement is actually called
isolation. However, the essence of the requirement is that the kerneldata integrity
must be guaranteed, where data is defined to be the static instruction and configura-
tion data that constitutes the kernel software and the dynamic run-time state infor-
mation. Data integrity also includes the instructions and data of support services.

• Dependable support services
The safety kernel must invoke operations that are provided by the support software
and hardware. Support software is defined to be any software that is utilized by the
safety kernel but is not considered to be a part of the kernel at the source code
level (e.g., the system libraries). This class does not include fundamental comput-
ing services not called by the safety kernel, such as memory management.

• Dependable computing services
All of the entities executing on a computing platform depend on basic computing
services. These services are not invoked as the support services above are, but are

Safety Kernel
Enforcement Failure

Fig. 10. Fault tree for reliable safety kernel operation.

Failure Due to
Corrupted

Data Or State

Support
Service
Failure

Error In
Safety Kernel

Implementation

Insufficient
Computing
Resources

Compute
Service
Failure

41

a part of the computing platform services that manage the details of executing pro-
cesses. If one of these services fails in a manner that the system cannot tolerate, this
can interfere with policy enforcement.

• Dependable computing resources
A safety kernel will typically enforce a set of safety policies that require timely
action. This has implications for the dependability of critical resources. The safety
kernel must be able to either acquire critical resources in order to provide timely
support for an application or possess the ability to detect and respond to a lack of
computing resources. It must be able to do so from the beginning of operation up
until the point that the system is in a stable, safe state.

The argument that this comprises the complete set of requirements is as follows. Refer-
ring to Fig. 8, if the kernel is operating reliably, it performs specified actions that are com-
municated to the application devices via the support services. To accomplish this, the safety
kernel implementation must first of all implement the safety policies correctly. Second, the
requests of the safety kernel (e.g., for communication with devices or mathematical opera-
tions) must be carried out by the support services as specified. If these first two require-
ments were met, and an ideal computer platform supported it, the safety kernel would
perform the actions specified for enforcement of safety policies. An ideal platform would
ensure the data integrity of the safety kernel and support services. It would also provide the
basic computing services required for execution of the safety kernel. Finally, the ideal plat-
form would provide sufficient resources for operation of the safety kernel.

Note, that ensuring reliable safety kernel operation does not require that deviceactions
conform to the safety policies for a device. The safety kernel can only control a device via
the device interface and has no control over whether directives to a device are correctly exe-
cuted. In particular, the safety kernel is powerless to deal with device failures for which a
response has not been anticipated and appropriate provision has not been made in the
device interface. Therefore, the concern is that the requests that arrive at a device conform
to and implement the required safety policies.

5.2 Safety Kernel Prototype Dependability Requirements

The requirements outlined above define the areas that must be addressed to ensure reli-
able policy enforcement by the safety kernel. The manner in which the requirements can be
met depends on the nature of the policies that must be enforced. For example, policies that
require reliable (i.e., continuous) system operation imply dependability requirements very
different from those required when policies are oriented to safety.

The systems that we have been targeting for the safety kernel prototype are those such
as the MSS and UVAR where the primary concern is with safety. In systems of this type,
the concern is that no harm be done. Although desirable, the delivery of a useful service is
not critical. This has very important ramifications for the system design because it is accept-
able for a component or the system to fail as long as activity after the failure can be man-
aged to avoid hazardous operation. In the case study systems, there are established routines
for responding to failures and bringing the system to a safe state (scrammed for the UVAR

42

and coils and X-ray sources off for the MSS). The components and the system will both
leverage off of this characteristic.

5.3 Meeting Prototype Dependability Requirements

This section examines the general options available for meeting the requirements
described above. Issues in choosing between options are also considered. Specific tech-
niques for meeting the reliability requirements are discussed in Sections 5.4 and 5.5.

In order for a component to fail and interfere with policy enforcement, the component
must first fail and then the failure must not be detected or addressed by other system com-
ponents. This is the scenario that is depicted in Fig.12. The figure suggests that there exist
two options for a component to operate safely. The first is for the component to provide its
specified functionality without failing. The second is to ensure that if the component fails
it will do so in a manner that can be detected and managed by other components. To permit
this second option, a component must fail with acceptable failure semantics [12,25]. Thus
a reliability requirement can be satisfied either by correct functionality or correct failure,
where “correct” means that the behavior conforms to the specification.

The above discussion implies that the two basic options for meeting dependability
requirements areprevention anddetection-and-response.This is the case with all of the
requirements that will be examined in this chapter. The viability of detection-and-response
for meeting reliability requirements depends on a means of first detecting and then respond-
ing to a failure. Issues in selection between these options will be discussed below.

Fig. 11. Fault tree for component failure.

Component Fails

Failure
Propagated

Failure is Not
Managed

Failure Is
Not Detected

Response To
Failure Fails

43

Although, the options are presented as an either-or choice, the reality is that both pre-
vention and detection-and-response will often be employed. The argument for doing this is
that the probability of failure when independent methods are used is the product of their
individual failure probabilities. The result is that even two unacceptable failure probabili-
ties might result in an acceptably low failure probability when combined in this manner.
Additionally, in a system where safety is the primary concern (i.e., a system where the prob-
ability of reaching a safe state in the event of a failure is high), the probability of the safety
kernel failing to detect and respond to a failure is approximately the probability of failing
to detect the failure.

In the event that prevention and detection-and-response methods are not independent
or that the degree of independence cannot be assessed, the decrease in the failure probabil-
ity will not be as significant as in the case described above. However, assuming that the
detection-and-response method only fails by not detecting a failure, the resulting probabil-
ity of failure will be no worse than the probability of failure of prevention alone. If the
detection-and-response method can cause a failure even when no actual failure has
occurred, then the system fault tree would need to be modified to account for this additional
failure mode.

In developing both prevention and detection-and-response techniques we will make the
assumption that, although system components might be faulty, they are not malicious. This
is a very important difference between safety and security systems. The lack of malicious
components permits probabilistic arguments concerning component failure that would not
be appropriate in a security system.

In many cases requirements could be satisfied by more than one technique or design.
The pragmatic issues of quality assurance, cost, and functional performance provide addi-
tional criteria needed to evaluate design choices. These issues and their impact on the sys-
tem design are discussed below.

• Quality assurance
For a given reliability requirement, there will typically be several different tech-
niques or designs that could address the requirement. A critical factor in evaluating
alternatives is the feasibility and practicality of demonstrating reliability with
respect to the requirement. Toward this end, preference will be given to designs and
techniques that permit automation of development processes, reduce or simplify the
software to be verified, facilitate reuse and generally facilitate quality assurance.
For example, consider the problem of ensuring the integrity of data received from
a complex file system. One alternative is to demonstrate that the file system will
never corrupt data. Another alternative is to detect corruption utilizing redundant
information in the data. Assuming that the software required to detect corruption is
simpler than the file system, the second alternative is potentially a better choice.

• Cost
In addition, to quality assurance, design choices must be evaluated with respect to
cost. Issues include the effort required to develop a system, the generality of the sys-
tem, the reliability provided by the design, and the reliability required by an appli-
cation or class of applications.

44

• Functional performance
A goal of the safety kernel is that it should be compatible with a range of safety-
critical systems. This has implications for the functional performance of the safety
kernel in regards to its compatibility with various application architectures and the
possible performance overhead it might impose.

5.4 Ensuring Exclusive Control

Section 5.1.1 identified the requirements for exclusive safety-kernel control of the
application devices in a system. This section looks at options for meeting these require-
ments. The specific technique or combination of techniques that will be used with an appli-
cation depends on factors such as the characteristics of the devices and the requirements for
device operation. The techniques that are examined here have been employed in other sys-
tems and so are not presented here as novel techniques. However, their application to the
set of reliability requirements associated with the safety kernel is novel.

As shown in Fig.12, the obvious first condition for an exclusive control failure is that
some entity other than the safety kernel must gain access to and be able to control a device.
The second condition is that the safety kernel must either be unable to detect the unautho-
rized access or fail in its response. This indicates that there are two options available for
ensuring exclusive control. The first option is to prevent any control, e.g., by preventing
access to the device. The second option for ensuring exclusive control, is for the safety ker-
nel to be able to detect control by another entity and restore the control that is required by
the safety policies.

Fig. 12. Fault tree for exclusive control failure.

Control Achieved By
Entity Other

Than The Safety Kernel

Exclusive Control
Failure

Safety Kernel
Fails To Prevent Control

Loss Of Control Is
Not Detected

Response To
Regain

45

The security kernel approach to ensuring exclusive control is to provide the only means
of accessing an information device. To realize this, a security kernel is implemented as a
system kernel. A similar approach could also be employed with the safety kernel. However,
development of a system-kernel design can be expensive and for many safety-critical sys-
tems is not necessary. It is not necessary because of the distinction between exclusive con-
trol and exclusive access and the assumption that the safety kernel is not dealing with
malicious entities.

A means of ensuring exclusive control is through the use ofauthentication techniques.
For example, the file system protection offered by UNIX is an authentication technique that
could be used to restrict access to device drivers. Unfortunately, although this would pre-
vent direct access, it does not help with access resulting from failures in the computing plat-
form. A more effective authentication technique utilizes capabilities [47]. A capability is
typically a bit pattern that is sufficiently long to make it improbable to be arrived at ran-
domly. For an authentication technique, the capability serves as a key to a device. When a
request is made to a device, the key must be included in the request for the request to be
fulfilled. With a copy of this key, the safety kernel can control the device, but it is highly
improbable that any other entity would be able to achieve control.

Two additional techniques for providing exclusive control are based on the concept of
closed-loop control of devices. Essentially, they utilize a communication sequence to and
from the device to enable the safety kernel to evaluate the state of the device and identify
unauthorized control. The first technique of this type is a control prevention technique
known ascommand acknowledgment.In this scheme, a command is first sent to a device.
The device must echo the command, and then wait for safety kernel acknowledgment prior
to executing the command. By withholding acknowledgment, the safety kernel can prevent
execution of commands it did not initiate. The command acknowledgment interaction is
designed so that although some entity might be able to access a device it would be improb-
able (assuming that the entity is not malicious) that it could both send a reasonable com-
mand and a correct acknowledgment to cause the device to act.

The second closed-loop control technique is a detection-and-response method that
takes advantage of the fact that externally an exclusive control failure is indistinguishable
from a failure of the device itself [25]. In either case, the operation of the device deviates
from what has been directed by the safety kernel. Therefore,independent sensors, which
are typically employed to detect and respond to device failures, can also be used to ensure
exclusive control requirements. With this technique, an exclusive control failure is detected
as unexpected device behavior and a response is carried out to restore control of the device.

The independent sensor technique is an indirect method for ensuring that requests exe-
cuted by a device are valid. As a result, it is limited by the state observation delay and by
the need to have an effective response to meet the requirements for controlling the device.
Both of these factors restrict the number of situations for which this technique is appropri-
ate. For example, in a system like a missile launcher it is not feasible to detect and then
respond to an exclusive control failure that results in launching of the missile. In this situ-
ation, a more restrictive technique such as command acknowledgment would be essential.

46

5.5 Ensuring Safety Kernel Reliability

In order to meet the requirements outlined in Section 5.1.2, it is necessary to analyze
each requirement to determine the means by which components in a system could compro-
mise reliable operation of the kernel. This section will look at the requirements of data
integrity, dependable support services, dependable computing services, and dependable
resources. The other requirement, safety kernel correctness, is addressed in Chapter 7.

5.5.1 Data Integrity

This section examines issues and techniques for ensuring the integrity of instructions
and data of the safety kernel, support services, and basic computing services. During oper-
ation, the data resides primarily in memory, but the integrity of static instructions and data
from secondary storage is also a concern. The first concern with data integrity is the initial-
ization of the data in memory. The second concern is data integrity during operation.

Initialization

The data that is used in the operation of the safety kernel must be that which has been
developed to enforce the safety policies. This data includes the executable representation
and configuration data. The storage and handling of the executable representation needs to
be shown to not fail or some means of error detection needs to be employed (e.g., a check-
sum on the loaded instructions and data). The integrity of configuration data can be most
easily ensured through the inclusion of redundant information in the data to facilitate error
detection.

Operation

During operation, the primary data integrity concern is that some entity in the computer
system will be able to access and alter memory that is critical to policy enforcement.
Although, some sort of fault tolerant data structures [48] might be effective for detecting
corruption of this type, there is no means for detecting corruption of all of the data because
much of this data is never accessed directly by the safety kernel (e.g., process state data).

A primary means of ensuring data integrity is to employ memory protection to isolate
data and thereby eliminate many sources of corruption. In many systems, instructions are
protected in memory designated as read only. For the rest of the data, there are several
design alternatives that can potentially provide for protection. Two common choices are the
use of supervisor mode or utilization of the protection provided by the memory manage-
ment system (e.g., virtual memory). These two alternatives are explored below.

Implementing the safety kernel with supervisor status would provides protection from
user processes, but can involve potentially expensive modification of the system kernel.
However, some systems, for example the micro-kernel-oriented Chorus system, provide
support for moving a process into the system kernel [7]. An additional concern, particularly
in a monolithic system kernel is the lack of protection within the system kernel address
space. The use of a microkernel operating system[7,23] or an object oriented system [10]
would provide protection within the system kernel. The other protection option is to imple-

47

ment the safety kernel as a user-level process and utilize virtual memory for protection. The
protection provided by virtual memory is in theory just as good as that available within the
system kernel. Both, in fact, are contingent on the correct operation of computing services.

An additional protection issue is dealing with the failure of computing platform mem-
ory. Since the safety kernel cannot ensure detection of a failure of this type, it is essential
that underlying hardware and software address this problem.

Protection cannot guarantee data integrity because corruption can be caused by failures
occurring inside of a protection boundary or by failures that occur when memory access has
been provided to external entities. There is no certain means to detect corruption caused by
either of these sources. As a result, it will be necessary to verify that failures of this type
will not occur.

5.5.2 Dependable support services

In addition to the requirement for data integrity discussed above, it is necessary that the
support services invoked by the safety kernel produce correct results in a timely manner.
Options for meeting these requirements are discussed below:

• Correct support service functionality
The feasibility of detecting a failure in which information is incorrectly manipu-
lated depends on the nature of the operation. For example, when an operation is
used to communicate information there are many ways of incorporating redundant
information that enables the detection of a corrupted message. On the other hand,
in operations where information is being generated (e.g., data from a sensor, a timer
or dynamic memory allocation) there is usually no certain means of detecting a fail-
ure since there is no initial knowledge of the information. In general, the reliability
of software of this type must be demonstrated by verification, by comparison with
another independent source that has access to the same or correlated information,
or by a reasonableness test based on extreme or expected values. Other operations
apply a function to input data to produce a result. Operations of this type must either
be verified to have an acceptably low failure probability or must have some sort of
check (e.g., reversal or replication) to detect a failure.

An additional issue with communication services, is whether a request is delivered
to the specified destination, particularly a device. Failed communication to a device
appears the same as a device failing to execute a request, and so closed-loop control
can be used for detecting failed support service communication.

• Timely support services
An option for meeting this requirement is to demonstrate that a support service will
always be timely. This is a viable alternative for some support services. However,
although this method might effectively eliminate design faults, it does not deal with
hardware degradation failures.

Another approach is to detect delayed operation by requiring the safety kernel to
generate periodic “heartbeats” to indicate its liveness. For example, during critical
operation a device might require receipt of a valid safety kernel message everyT

48

seconds. If a message did not arrive in time, the device would transition to a safe
operational state. A related application of this technique extends the safety kernel
to include a component known as thesafetykernel watchdog. This component is
equipped with a watchdog timer and the resources to either bring the system to a
safe state or to maintain some minimum level of operation. The mode of operation
of the kernel watchdog is to direct the system to this basic, safe state unless timely
messages are received.

5.5.3 Dependable Computing Services

There is no certain way to detect failures of the basic computing services that permit
operation of the safety kernel. Therefore, it is essential that these services either function
as required or fail in a manner that can be handled by the safety kernel. Because of the pres-
ence of the safety kernel watchdog, fail-stop is an acceptable failure semantics for the basic
computing services. Failures that result in corruption of the safety kernel data or altered
operation of the safety kernel are not acceptable. Some of the basic computing services can
be eliminated. For example, by locking safety kernel pages into memory, swapping of the
safety kernel memory pages is no longer required and as a result is not a source of failure.

5.5.4 Dependable Computing Resources

As an active enforcer of safety policies, the safety kernel must be able to either acquire
essential resources to enforce safety policies or it must be able to detect and respond to a
lack of resources. The determination of what constitutes essential resources depends on the
system and safety kernel design, but possibilities include processor resources, memory, and
secondary storage. From the policy enforcement perspective the concern with a lack of
resources is that the safety kernel might not be able to act in a timely fashion. This presumes
that resource shortages (e.g., a lack of memory) will not lead to an uncontrolled failure
because the shortage can either be detected or because it has no other impact than to slow
down the operation of the kernel (e.g., when there is competition for the processor).

Resource shortages can occur as a result of competition for resources or because of a
failure in the element of the computing platform managing the resource. Competition for
resources can be managed to ensure that the safety kernel receives sufficient resources. For
example, to manage processor resources, a real-time operating system could provide pre-
emptive, priority-based scheduling that would permit the safety kernel to be given priority
access to the processor. Failures that affect resource availability must be detected and an
alternate resource must be available to permit timely operation. The safety kernel watchdog
described above for dealing with delayed support services can also be used to detect and
respond to a resource shortage.

5.6 Prototype System Design

Using the techniques described above, a range of system designs could be developed
that would meet the requirements for systems such as the MSS and UVAR. In this section
we look at one design option. The design that is presented is similar to the design that will
be used with the prototype for the MSS. However, some of the features will not be incor-

49

porated in the prototype at this time. Implementation and verification of a system design
that addresses all of the reliability requirements is left for future work. The features of the
system design (shown in Fig. 13) include the following:

• Safety kernel as a user-level process.

• Application software and safety kernel communication via network.

• Command authentication and error detection encoding for device communication.

• Closed-loop device control using independent sensors.

• Safety kernel watchdog.

• Restriction of application software resource usage.

• Microkernel architecture for system/support software.

• A core of dependable support services and basic computing services.

• Incorporation of redundant information into configuration data.

• Error detection analysis of safety kernel executable following loading into memory.

• Support for real-time operation of the safety kernel.

Network

Computer Hardware

Application Software

Safety Kernel

Application Devices

Fig. 13. Safety kernel system design.

System/Support Software

Additional
Hosts

(Optional)

Dependable
Support and
Computing

Services

Restricted
Support
Software
Interface

Safety
Kernel

Watchdog

50

The rest of this section evaluates the system design with respect to each of the require-
ments identified for reliable policy enforcement:

1. Exclusive control
Exclusive control is provided for by a combination of techniques including
authentication using capabilities and independent sensors. In the event that the
safety kernel cannot regain control communicating via the computing platform,
the safety kernel watchdog provides an alternate means of communicating with
the devices.

2. Safety kernel correctness
The system design has little impact on meeting safety kernel correctness
requirements.

3. Data integrity
Safety kernel memory protection in this architecture is provided by the virtual
memory system of the computing platform. Assurance of protection for the
safety kernel requires verification that the virtual memory will function as spec-
ified or fail with acceptable failure semantics.

Support services and computing services that are inside of the protection or
have access to safety kernel or support service data will need to be verified to
not corrupt that data. Correct initialization of executable safety kernel and con-
figuration data is verified by error detecting software.

4. Dependable support services
Where feasible, error detection will be used to monitor the operation of support
services (e.g., in communication with devices). Other operations will either
need to be reliable or appropriate techniques will need to be developed on a per-
operation basis to detect and cope with operation failures. The microkernel
organization of the system software facilitates the implementation and verifica-
tion of these services by providing “firewalls” that isolate the elements of the
system software. This enables one module of the system to be implemented and
verified to operate as specified with high probability without needing to worry
about other less trustworthy modules failing and causing a failure in the critical
module.

One of the significant implications of the safety kernel watchdog in this design
is that the support software and hardware do not need to be verified to be reli-
able. Instead they need to be verified to either operate as specified or stop if a
failure is detected. This presents a potentially easier implementation and verifi-
cation task than if the support software needed to achieve high reliability. For
example, this could be achieved in the hardware with a dual redundant system
that compared the results of each operation and stopped if there was a discrep-
ancy [51].

5. Dependable computing services
The basic computing services of the computing platform must either function as
specified or be fail-stop [31]. The memory pages of the kernel will be locked in
place to obviate the need for reliable swapping.

51

6. Dependable resources
The management of storage and processor resources used by the application
software provides assurance that competition will not prevent the safety kernel
from acquiring the resources required for operation. The safety kernel watchdog
provides for detection and response to resource failures.

Evaluating the system design with respect to the pragmatic concerns, the most signifi-
cant quality assurance and cost concerns are with the need for dependable support services
and computing services. However, it is important to note that the support services that are
required are primarily a function of the safety kernel functionality and not the system
design. In the same way a set of basic computing services are required regardless of the sys-
tem design. This design is sufficiently flexible that it could be compatible with a range of
applications and it also supports a parameterized safety kernel implementation.

5.7 Conclusion

This chapter has identified a set of requirements for reliable enforcement of kernel-
enforced safety policies. It should be noted that the requirements for reliable policy
enforcement by the safety kernel are no more stringent than those that would apply for reli-
able policy enforcement by the application software. It is reasonable to infer, therefore, that
the safety kernel does not complicate the reliability requirements for a software system.

Techniques for meeting the reliability requirements have been examined in this chapter.
These techniques make use of the fact that the requirement with the target systems is safety
rather than reliability. The implication is that components can operate dependably by either
correct function or correct failure. Additional flexibility for meeting the requirements for
reliable policy enforcement results from the assumption that components are not malicious.
Failure prevention and failure detection-and-response techniques have been identified to
address the requirements. In many cases, failure detection is a viable alternative that pro-
vides significant cost and quality assurance benefits. In other cases, detection-and-response
is not feasible or practical, and a component will need to be verified to operate dependably.
A system design has been developed for the MSS and UVAR using the various techniques
described.

52

53

6 Safety Kernel Implementation

To this point we have examined kernel enforcement of safety policies and have estab-
lished a set of requirements for reliable enforcement of these policies. A logical next step
is to consider alternatives for implementation. In looking at alternatives, the goal is to iden-
tify an implementation strategy that provides both reliability and cost benefits.

One implementation alternative is to “build from scratch.” This approach is certainly
acceptable for developing a safety kernel based on the concepts discussed in previous chap-
ters. However, “building from scratch” is typically expensive and more importantly does
not promote the transfer of innovative and effective concepts and artifacts from one system
to another. The transfer of information of this type can positively impact both the cost and
reliability of the system [43]. This transfer of information is known as reuse and is an
important area of research in the field of software engineering.

We are motivated to exploit reuse because of the potential cost and reliability benefits.
The existence of general classes of safety policies and experience with a variety of appli-
cations has lead us to believe that reuse techniques are feasible in the implementation of the
safety kernel. Therefore we have investigated the possibility that the safety kernel architec-
ture permits the use of a general framework that can be exploited to support abstraction of
general knowledge, system design, safety policies, and software artifacts.

In the development of a software system, many different forms of reuse can be
employed including knowledge, specification, design, and code reuse. For example, with
the safety kernel, alternatives include reuse of a canonical design, a parameterized applica-
tion generator, or a complete implementation. The level of reuse that is appropriate depends
on the requirements and characteristics of the system for which reuse will be employed. To
identify a form of reuse and thus an implementation strategy applicable to a range of sys-
tems, information from the two case studies and other applications was used to develop
general requirements and characteristics.

Fig. 14 represents in an abstract manner the vision that we are pursuing for implemen-
tation. A software safety specification details the software safety requirements for an appli-
cation. This is used as the input to some as yet unspecified process that produces an
implementation of the safety kernel from the specification data. The process will utilize
some form of reuse and in an ideal situation will be automated. To derive the most benefit
in the area of reliability, the implementation strategy must consider factors in addition to
reuse. For example, the process input data that is derived from the software safety specifi-
cation strategy should be in a format that permits verification analysis. It is also critical that
the design and implementation of the components and the system facilitate the demonstra-
tion of reliability.

54

6.1 Requirements Analysis

In this section we document the general requirements for the safety kernel. These
requirements can be derived from analysis of two areas. The first area is the functional
requirements and these are largely determined by the safety policies. The second area is that
of interaction with system components. By characterizing the safety kernel’s interactions
with other components, the general requirements of the context in which it operates can be
established. In the process of examining the interactions and characteristics, models can be
developed that represent an abstraction of the context within which the safety kernel must
operate.

In looking at the requirements for policy enforcement and for interaction with other sys-
tem components, the question to be addressed is what is the degree of generality of the
information and functions required by different applications. Questions of this type are
addressed by the process of domain analysis. For the purposes of establishing an appropri-
ate level of reuse, we have analyzed the information and functionality requirements with
respect to the following descriptions. The descriptions characterize the generality of the
requirement and correspond to points on a continuum of relative generality. Recognize that
this continuum is defined based on knowledge of systems which are potential target appli-
cations for the safety kernel.

1. General Value
The information or function is one that is general to the target applications.

2. General type
The type of the information or function is general to the target applications. The
actual value is application-specific.

3. Application-specific type
Both the type and value of the information or function are application-specific.

6.1.1 Policy Enforcement Requirements

In looking at the classes of safety policies it is apparent that they can be grouped accord-
ing to the means by which policy enforcement is invoked.

• Interlock policies
These policies are invoked as a result of an application software request for some

Fig. 14. Concept for safety kernel implementation.

Software
Safety

Specification

Safety
Kernel

Instance?

55

action. In this set are policies from the classes device input from software and appli-
cation software error. These policies specify conditions that must be met in order
for a request to be executed and are expressed as a function of the command, the
state of a device, the state of operation of a system, the parameters of a command,
timing requirements of device operation, etc. Policies of this form are general to the
applications we have examined, but the exact policies are unique to their specific
applications. Therefore, this is a situation where the type of the policy is expected
to be consistent, but the actual policies will not be general.

• Monitoring policies
These policies are invoked to enforce policies that check the operational state of the
system. Policies from the classes system operation, device operation, device failure
and some from software error comprise the monitoring policies. To enforce a policy
of this type, the safety kernel must be able to make a prediction of the expected
state. This prediction will be based on the commands that have been sent to the
device or devices and on a model of the operation of the device or system.

Monitoring policies can be invoked on a periodic or aperiodic basis. Periodic mon-
itoring activities are performed according to a static schedule. The schedule that is
used at a particular time is determined by the state of both the device and the system.
Periodic monitoring policies require the safety kernel to incorporate a mechanism
for scheduling these monitoring activities. Aperiodic monitoring activities are
scheduled relative to some event. For example, a check to ensure that an x-ray
source was on for no more than a certain period would need to occur the required
period of time after the source was activated. To enforce policies of this type, the
safety kernel might maintain a timer queue that permits these aperiodic events to be
scheduled.

Ensuring schedulability in systems with aperiodic events is a general problem in
real-time systems [28]. We will address this problem by requiring that aperiodic
events be limited or that they occur at times when their invocation will not result in
scheduling conflicts. The interlock policies can be used to regulate the occurrence
of aperiodic events. In systems where safety is the primary concern, another
approach is to detect situations in which events cannot be scheduled and then
invoke a failure response. The frequency with which monitoring activities can be
carried out depends on factors such as the timing characteristics of the computing
platform (e.g., the context switch time and the timer resolution), the number of
monitoring activities that need to occur, and the frequency of requests from the
application software.

• Failure response policies
Failure response policies are invoked in response to failures detected either by the
safety kernel or by the application software. In some cases there may be several
responses to a particular failure. The responses might range on a continuum from
the least to the most drastic. In a case such as this, the safety kernel failure response
mechanism will need to maintain a record of the failure responses that have been
attempted in order to select the appropriate response for a specific history of failures

56

and responses. The failure response state of a device or system can also impact the
policies that are applied to control of devices. It will be assumed that the most dras-
tic failure response will always be able to respond to a failure.

6.1.2 System Requirements

Beyond the requirements of policy enforcement, the safety kernel is also constrained
by the requirements and characteristics of its interaction with other components in the sys-
tem (see Fig.15). In the process of examining the interactions and characteristics, models
have been developed that represent an abstraction of the context within which that the
safety kernel must operate. Models have been developed to characterize the following:

• Application software
What will the application software require of the safety kernel and how will the two
interact? What is the interface between them?

• Device control and operation
How are devices controlled by software? How can the operation of a device be char-
acterized to facilitate expression of policies that relate to device operation?

• System component architecture and organization
How are the components in a system organized and what is the position of the safety
kernel? How should the interaction of these components be modeled to permit the
expression and enforcement of a range of safety policies that relate to operation of
multiple devices in a system?

The models that have been developed in these areas provide the context not only for
operation of the safety kernel, but also for the expression of the safety policies. Fig.15
shows the inputs and outputs of the safety kernel. IA and OA are respectively the inputs to

Fig. 15. Safety kernel in system context.

Application Devices

OD ID

Safety Kernel

Application Software

IA OA

57

the safety kernel from the application software and the outputs to the application software
from the safety kernel. Similarly, ID and OD represent data exchanged between the safety
kernel and application devices. Safety policies describe requirements that are placed on
inputs and outputs of the safety kernel. Therefore, a safety policy is expressed as a function
of these inputs and outputs. As a result, characterizing these is a critical aspect of defining
the safety kernel context. The remainder of this section look at each of the areas itemized
above and examines the models that have been developed.

Application Software Model

The primary interaction between the application software and the safety kernel consists
of application-software requests made via the safety-kernel interface. The safety-kernel
interface must provide parameterized commands for both control of devices and enforce-
ment of application software error safety policies. These commands must also provide a
means for the application software to acquire necessary system and safety kernel state
information. The interface might also include a set of requests that the application software
can call to invoke safety kernel failure response routines. The interface required by a given
application will be tailored for the devices in the system and the safety policies that need to
be enforced.

The requests to the safety kernel from the application software are asynchronous. These
requests must be serviced in a timely manner along with the scheduled system monitoring
activities. In particular, it is essential to be able to ensure that scheduled operations will
occur within a specified deadline relative to their scheduled time and that with some
assumptions about arrival patterns that requests will be responded to within a specified
period of time.

Device Model

An application device is a physical entity that is able to act on other devices or elements
of its environment. The safety kernel communicates with the device via a specified set of
control commands and parameters. A device has a physically observable state known here
as theoperational state. Included in the operational state are observables that are directly
tied to the operation of the device. For example, the current in a coil would be part of the
operational state for a current controller. The operational state can be observed by the
device itself or by independent sensors. The operational state of a device is determined by
the initial device state, commands received by a device, the timing of commands, and the
interaction between the device and its environment. As a part of the device model, we
assume that under normal operation, the operational state of the device can be predicted
based on this same information for the device.

The interlock policies to be enforced at a given time depend, among other things, on the
specific command being called, any parameters, and the command history. The monitoring
policies enforced at a given time depend on the expected state of the device. To attempt to
characterize the state of a device, the device model characterizes a device as a finite state
machine. The states for the device model are known asmodes. The mode of a device is
determined by the initial state of a device and the commands that have been received by the

58

device. Transitions from one mode to another are specified as safety policies and occur as
a result of the successful execution of commands.

In many cases modeling the device as a finite state machine will not be adequate. For
example, the operational state of a device may depend not only on the command history,
but also on parameters included with the commands. Therefore, a device can have associ-
ated with it a set ofcontrol parameters (e.g., the current setting of a servo amplifier) that
record values used to control a device and predict the operational state. These control
parameters can be updated when a command is successfully executed. The combination of
control parameters, mode, operational state, timing data, parameters and command infor-
mation are used to express safety policies for a device.

System Model

From the perspective of the safety kernel, a system is composed of interacting devices.
These devices can be grouped into subsystems and the entire collection of devices comprise
the system. In addition to devices, a system has some physical environment that the devices
act on. Associated with both the devices and the environment are physically measurable
quantities that must be observed to track the operation of the devices and the response of
the environment to the actions of the devices. Therefore, devices, subsystems, an environ-
ment and measurable quantities are the essential elements in the safety kernel’s abstraction
of the system.

A system has an operational state which consists of the observable elements of the
physical system state. Examples of system observables for the MSS include the seed posi-
tion and the field produced by superpositioning of the fields from the individual coils. To
perform monitoring of the system, the operational state of the system is predicted based on
the command states, control parameters, and timing variables of all of the devices in a sys-
tem.

A system can also have a mode associated with it. This mode can either be a result of
the states of the system devices or it can be used to define an operating mode which restricts
the operation of system devices. Such restrictions are expressed as policies that are a func-
tion of the system mode.

6.2 Implementation Strategy

It is intuitively clear, but the previous section provides convincing evidence, that no sin-
gle implementation of the safety kernel will be able to serve more than a few (likely one)
applications. Furthermore, given the wide variety of safety policies it is not practical to
develop a comprehensive software library where modules could be mixed and matched to
implement a safety kernel for a given application. What then is an appropriate reuse strat-
egy for implementing the safety kernel?

6.2.1 Reuse Strategy

The observations of the previous section concerning the functionality requirements of
the safety kernel and the characterization of component interactions point to the existence

59

of commontypes of functionality and to general features of the context. Therefore, the
implementation strategy that has been developed incorporates the basic types of informa-
tion that have been identified. Application-specific functionality and features are specified
through parameterization of the various models and policy frameworks.

Reuse in this implementation strategy occurs at many levels. First, design reuse is
employed by encapsulating a standard design into a translator. The design reflects the high-
level requirements associated with enforcement of the three types of safety policies and the
essential model of the system that views the system as including the application software
and a collection of devices. The translator reuses certain enforcement and support mecha-
nisms, so code reuse is also employed. Specification reuse is promoted by a uniform format
for specification of system configuration and safety policies. Finally, the use of consistent
abstractions and notations across applications supports the reuse of safety policies and the
knowledge and techniques used in their development. All of these different forms of reuse
are realized using the translator and the special-purpose programming language that is used
to specify the system configuration and safety policies.

The overview of the safety kernel implementation concept is shown in Fig.16. From
the software safety specification, a policy specification describing the system, devices, and
safety policies is developed. The process used to develop the policy specification from the
software safety specification is as yet informal and not automated. An area of future work
is to refine the transformation and/or the nature of the system safety specification and the
safety policy specification so that the transformation is as straightforward as possible and
preferably automated. The translator uses the safety policy specification in combination
with built-in mechanisms and context to produce an implementation of the safety kernel.

Adoption of this translator approach results from our observations that although the
specific devices, policies, etc. of applications would not be consistent, the characteristics of
the devices, policies, etc. would be. A kernel-enforced, safety policy expresses some con-
dition that is a function of the inputs to the safety kernel (commands, parameters, observa-
tions of system and device state), outputs from the safety kernel (requests to devices), and
state information maintained by the safety kernel (command histories, device operation his-
tories). Taken together all of these things form a context for the expression of safety poli-
cies. The safety kernel context is composed of the following elements:

• Common control mechanisms
Control mechanisms include support services of which the translator has an internal

Fig. 16. Translator-based implementation of the safety kernel.

Software
Safety

Specification

Safety Policy
Specification

Safety
Kernel

Instance

Translator

60

knowledge and incorporates into an instance of the safety kernel. The safety kernel
depends on some support services, such as a scheduler, that are used in each
instance of the safety kernel. However, the most important control mechanisms are
those that carry out the processes that have been established for enforcement of
safety policies. For example, when a request is made by the application software,
an established process is followed to enforce interlock policies. Steps in this process
include updating timing information, capturing relevant operational state, determin-
ing the mode of the device/system, checking if the command is valid for the mode,
performing the request if all policies have been satisfied, and finally updating the
mode and other state information. Similar well-defined processes exist for monitor-
ing devices and responding to failures.

• Common variables
There are common variables that are defined for the safety kernel for use in expres-
sion of safety policies. Examples include the present mode for a device, the total
time spent in a mode, the time a mode was entered, the time of the last command,
and the operational state vector for a device.

• System and device specific configuration information
This information is specific to each application, but the type of information is com-
mon across applications and has been identified. Therefore, providing this informa-
tion is a matter of developing the specific type of information for a given system.
Essentially, the translator expects certain data to be provided and uses this to build
the system context. Information of this type includes the number of devices in a sys-
tem, the modes for a device, the commands for a device and device control param-
eters.

Within this context the safety policies for a system are specified. Details of the system
context and the types of policies that are enforced will be presented in Section 6.3.

6.2.2 Parameterization

The specification of context information and of the safety policies can be looked at as
parameterization of a general safety kernel framework that is provided by the translator. An
obvious question, is what is the nature of this parametric information? For the purposes of
simplifying safety kernel verification and implementation, ideally, the parameters would be
as simple as possible. The simplest type of parameter is astatic parameter. A static param-
eter is information that is used to select between available options or that is used as a value
to control the actions of an operation. Examples of static parameters include numerical val-
ues and character strings. To be employed effectively, static parameterization would require
that any required operations and options be built into the translator. Experience with the
models above shows that this is unrealistic. The models demonstrate that although there
exist common operations, the diversity of application devices and safety policies makes it
infeasible to provide a basic set of operations that would be complete and general.

A more expressive parameterization alternative is to utilize a combination of static and
executable parameters. Executable parameters specify operations that are to be executed
by the safety kernel. An executable parameter would take the form of lines of software or

61

the name of a procedure. Use of an executable parameter is appropriate when the general
function and context of an operation is known but the specifics of the operation are not. For
example, with a request to a device it is likely that checks would be applied to any param-
eters each time the request was made. However, it is unlikely that a static parameter could
be used to select from a set of checks that performed even a fraction of the possible checks
required by even a few applications. On the other hand, executable parameters, possibly
modified by static parameters could be used to specify the desired checks.

Special requirements must be applied to the use of executable parameters due to their
potential for interfering with operation of the safety kernel. The executable parameters that
are incorporated into the safety kernel will need to exhibit certain desirable properties. The
one property that must be assured is that the executable parameter must not be able to inter-
fere with the operation of the rest of the safety kernel. For example, it would be essential
that an executable parameter not be able to corrupt the memory of other components of the
safety kernel and thereby lead to erroneous operation of those components. Another desir-
able property, is that an executable parameter operate as specified or fail in a specified man-
ner. This is a verification issue and cannot be addressed in the design of the safety kernel.
Another desirable, although not essential, property is that the executable parameter should
be guaranteed to complete in a specified time. This property is not essential because either
the external safety kernel watchdog or an internal watchdog timer is available to maintain
system safety in the event that operations are not timely. Table1 summarizes the executable
parameter failures modes and the effect that the failures have on the safety kernel. Where
possible, executable parameter reuse will be employed for common operations to utilize
components that demonstrate desirable properties.

Some policies will require that the safety kernel execute complex executable parame-
ters that cannot be shown to exhibit the properties essential for incorporation into the safety
kernel. Policies of this type can be enforced in a weakened form where responsibility for
execution of part of the parameter is given to the application software. Another means of
dealing with such parameters would be to execute them in an isolated safety kernel server,
e.g., as a separate process. In this environment, the possibility of the operation producing
incorrect results is still present, but failures resulting in corruption of the state would not

Failure Mode Safety Kernel Response Effect

Failure status returned Detected by safety kernel,
failure response invoked

Safe operation is maintained

Incorrect functionality Failure is not detected Policy is not enforced as speci-
fied

Corruption of safety kernel Failure is not detected Result is unpredictable

Operation does not complete Detected by safety kernel
watchdog

System is transitioned to shut-
down state

Table 1: Executable parameter failure mode analysis

62

affect safety kernel operation. The cost of this approach is additional communication over-
head.

6.3 Safety Kernel Framework

This section looks in detail at the elements of the safety kernel context discussed previ-
ously. In addition, the formal parameters that are used to specify safety policies are also
described. Together the context and the policy specification parameters form a framework
for the safety kernel. The safety policy specification for an instance of the safety kernel is
incorporated into this framework to produce a safety kernel for a particular application. As
a part of this section, the language for the safety policy specification is described. The
grammar for this language is presented in Appendix B and example policy specifications
for the MSS and UVAR are presented in Appendix C.

6.3.1 Machine Abstraction

To permit safety policies to be specified and enforced, the safety kernel has its own rep-
resentation of a device based largely on the device model described above. Each instance
of a device has a command interface that provides the means of controlling the device. To
model the operation of a device modes are also employed and transitions between these
modes can be specified for each command. Because of this finite-state-machine aspect the
abstraction for a device is called amachine. However, as described for the device model,
the finite state machine model is not sufficient and therefore control parameters are also
included in the model. Each machine has its own monitoring facilities and also has a mech-
anism for reporting and responding to failures. The machine abstraction is used for all
application devices.

Another issue to be considered is that the devices in a system can be grouped into sub-
systems and into a complete system as shown in Fig.17. Therefore, some model is also
required to represent subsystems and systems. In looking at this problem, we observed that
the interface for a system is similar to that for a device with a set of commands provided to
control the state of the system. In addition, systems such as the MSS and UVAR have sys-
tem states or modes that impact the operation of the component devices. Working with the
safety policies, we have observed that interlock, monitoring, and failure response policies
are also required at the system level. Therefore, the same abstraction that is used for devices
is applied to subsystems and systems. Only a few minor additions to the machine abstrac-
tion are required to support the hierarchical organization and interaction of the machines.

The parameters for a machine are discussed below. The first parameters examined are
those that are used to establish the context for expression of safety policies. The parameters
for each of the types of policies are examined subsequently, followed by an examination of
the built-in control mechanisms.

6.3.2 Built-in Context

Because a consistent abstraction is used for all devices and for subsystems and systems,
there are certain variables associated with the abstraction that are predefined. In other

63

words, these variables are a part of the built-in context. These variables, which can be used
for the expression of safety policies, include the following:

• Mode entry time
This is the time that the present mode was entered.

• Time of last command
This is the time of the last successful execution of one of the device control com-
mands. In the situation where a command causes a change in mode, this time will
be the same as themode entry time.

• Time in mode
This is the time that the device abstraction has been in the present mode. It is calcu-
lated by subtracting themode entry time from the present time.

• Time since last command
This quantity is the present time minus thetime of last command and indicates the
time since the last successfully executed command.

• Present operational state
This is a state vector made up of operational state variables (observable quantities)
that are monitored for a device. This vector is updated by the safety kernel when-
ever an interlock or monitoring policy might require it.

• Operational state at last command
A state vector identical to the one above, this vector contains the operational state
that was recorded at the time of the most recent successfully executed command.

• Total mode times
For each mode a record of the total time spent in that mode is maintained.

Fig. 17. Example safety kernel machine abstraction hierarchy.

System

Subsystem X Subsystem Y

Device 1
Type A

Device 2
Type A

Device 3
Type B

Device 4
Type C

64

6.3.3 Application-Specific Context Data

Each machine has associated with it a set of parameters that are application-specific.
The type of information included in the machine description is described in this section.

The machine at the very top of the hierarchy, i.e., the one that encompasses the com-
plete system has some information that applies to all of the system:

• Schedule descriptions
The translator supports specification of monitoring activities that are performed on
a scheduled basis. Because the scheduling is coordinated at the system level, rather
than for each individual machine, schedules are specified only at the system
machine level. A schedule consists of a schedule name, times of scheduled events,
an estimated activity completion time, and an activity completion deadline. The
event times are specified relative to a frame which is discussed below.

Support for aperiodic monitoring activities will be provided in a future version of
the translator. These activities would be specified relative to particular events. How-
ever, for purposes of analyzing the feasibility of scheduling monitoring activities
and application requests, the specification would include information concerning
these aperiodic events, e.g., their maximum frequency.

If the schedule descriptions for the periodic activities are used in combination with
information about the schedules that can be active at any time, static analysis can
be used to determine whether activities will be completed within deadlines. An area
for future work is to incorporate information describing the computing platform
timing characteristics such that the translator would be able to identify situations in
which it was not feasible to perform the specified monitoring activities.

• Frame length
Because the monitoring is expected to be periodic, a convenient method for speci-
fying events is relative to a schedule frame that has durationframe length.

• Watchdog schedule
The value of this variable must be one of the defined schedule names. It specifies
which schedule must be used to send “heartbeats” to the safety kernel watchdog.

For machines that are not at the leaves of the hierarchy (i.e., those that serve to group
other devices or subsystems) information is required to describe the subsystem. That infor-
mation is the following:

• Specification files
For every machine that has other machines as children the specification data files
for each type of child must be specified.

• Listing of component machines
The name and machine type must be specified for each child machine.

65

The parameters for a device are numerous. This information serves to provide a context
for expression of safety policies and also to specify how the safety kernel will actually
direct the device to act as requested.

• Machine type
This gives the type name for the machine that is being specified. This name is used
by a child or parent to identify the machine.

• Modes
As discussed previously, modes are used by the machine abstraction to describe the
state of a device or system. The present mode for a device is determined by com-
mand history and the initial mode.

• Initial mode
This simply specifies the starting mode when a machine is first instantiated.

• Interface commands
As a part of the safety kernel interface to the application, a machine has an interface
of parameterized commands. Included in this interface may be some commands that
are provided for the purpose of responding to failures.

• Action procedures
Associated with each command is an executable parameter that determines the
actions of a machine for that interface command.

• Control parameters
In many cases modeling the device as a finite state machine will not be adequate.
For example, the operational state of a device may depend not only on the command
history, but also on parameters included with the commands. Therefore, a device
can have associated with it a set of control parameters that record values used to
control a device and predict the operational state.

• Control parameter update procedures
The control parameters can be updated when a command is successfully executed.
These control parameter updates are specified as an executable parameter for a
given interface command.

• Operational state variables
These are the observables that make up the operational state of a machine.

• Operational state acquisition procedure
This procedure is essential to acquire the operational state information for the
machine. This procedure is called when any of the interlock and monitoring policies
are enforced and may also be called for failure response policies.

• Constant values
These values are defined for a machine and are used to parameterize the safety pol-
icies.

66

• Executable parameter definitions
The definitions of executable parameters can be specified in the specification file.

Some of the information that appears in the policy specification is not essential to the
context, but is required to support generation of legal source code and to facilitate the
expression of the other elements of the specification.

• Include files
The declarations for types or executable parameters that appear outside of the spec-
ification can be incorporated by specifying a header file.

• Base classes
This variable specifies a class that is used as a base class for the particular machine
abstraction.

• Base class constructor calls
When a base class is used, this information defines the call that will be made when
the base class is instantiated.

• Constructor parameters
This information identifies the type and name of parameters that are to be included
in the instantiation of the machine.

• Class declarations
Any types or variables that are to be local to a machine can be specified using this
parameter.

• Global declarations
This parameter specifies any types or variables that are to be global to the machine
and any machines lower in the hierarchy.

• Initialization procedure
If there are operations to perform upon instantiation of a safety kernel machine, they
are encapsulated in this procedure. Actions could include communication with
devices and setting of state variables associated with the device.

6.3.4 Policy Specification

This sections looks at the type of information that is used to specify the three types of
policies.

Interlock Policies

Interlock policies place conditions on the commands that can be executed by a machine.
The conditions depend on factors including the present mode of the machine, the mode of
a parent machine, the value of control parameters, and the present operational state. A set
of interlock policies is specified for each command in the command interface for a machine.
Within this set, policies can be specified for each mode of the machine. If there is a parent
machine then the mode of the parent machine can also be used to select policies.

67

Fig. 18 shows an example interlock policy specification for the commandactivate
for a simple two-state device. The device itself is part of a system that has modes of
enabled anddisabled . The actual interlock policies for a particular combination of
command, mode, and parent mode are specified in two parts. The first part is the
NEW_MODE which indicates whether there is a transition specified for this command from
the particular state. This specification ofNEW_MODE must appear for every combination of
command, mode, and parent mode. If there is no transition then a failure response is indi-
cated. In the example, for the modeoff and parent modedisabled , the presence of the
failure response nameSYSTEM_DISABLED indicates that the command is not valid in this
state. However, when the parent mode isenabled , then the new mode ison , which is a
valid mode for the device. The second part of the interlock policies is a condition that must
be satisfied before the command can be executed. In this case the condition is specified as
the executable parametercheck_power and if the condition is not satisfied then the fail-
ure response namedNO_POWER is invoked. A condition is not required for each combina-
tion of command, mode, and parent mode.

Conditions are specified as executable parameters and can utilize any of the context
information described above. The types of policies that can be specified as a condition were
discussed in Section 4.3 and include mode-command restrictions, timing requirements,
parameter checks, operational state conditions, and total duration restrictions.

Monitoring Policies

Monitoring policies specify checks that are to be applied to the operational state of a
device or system. A monitoring policy may also be applied to an internal state of the
machine abstraction as a way of monitoring the activity of the application software. Fig.19
shows an example specification of monitoring policies for the same two-state device used

INTERLOCK: activate
MODE: off

PARENT_MODE: disabled
NEW_MODE: SYSTEM_DISABLED
END:
PARENT_MODE: enabled
NEW_MODE: on
CONDITION: check_power(); NO_POWER
END:

END:

MODE: on
NEW_MODE: ALREADY_ON
END:

END:

Fig. 18. Example interlock policy specification.

68

in Fig. 18. A monitoring policy is specified for each of the modeson andoff . The state
could have been further subdivided by also including the parent mode, but in this case the
parent mode does not affect the monitoring policy, so it was not considered. For each mode
a schedule name is given that refers to a defined schedule. One or more conditions can be
provided for each mode. These conditions are composed of an executable parameter that
performs the check on the operational state and the name of a failure response that is
invoked if the check finds an error. The condition can be a check of device failure indica-
tors, of the consistency between expected and observed states, or of the consistency of
observed states.

Failure Response Policies

A failure response is provided for each of the failures that can be detected by the safety
kernel. The failure responses are described by executable parameters. As with the other pol-
icies a particular set of failure response policies is associated with each machine. Failure
response policies are invoked either from within the safety kernel or by the application soft-
ware. When a failure response has been executed by a machine, if there is a parent machine,
the failure response call is propagated upward.

Fig. 19 shows example data for three failure response policies. Each policy is identified
by the name of the error condition to which it is responding. In this case one failure
response is specified for each error condition name, but it is possible to select a failure
response based on the mode and parent mode. The response actions are encapsulated in an
executable parameter. As with other executable parameters used in the specification, the
name of a failure response is provided in case an error is detected in the process of carrying
out the failure response.

MONITOR: on
SCHEDULE: DEVICE_ON
CONDITION: check_on(); SHOULD_BE_ON
END:

END:

MONITOR: off
SCHEDULE: DEVICE_OFF
CONDITION: check_off(); SHOULD_BE_OFF
END:

END:

Fig. 19. Example monitoring policy data.

69

6.3.5 Built-in Control Mechanisms

To be of any use, all of the context and policy information described above must be
incorporated into the operation of the safety kernel. The specification information is used
by the following four mechanisms to control the operation of the safety kernel:

• Failure response

• Command execution

• Interlock policy enforcement

• Monitoring policy enforcement

These mechanisms are not static mechanisms into which the parametric information is
placed directly. Rather, the mechanisms define a process for performing each of the major
safety policy activities. The translator combines its knowledge of these mechanisms with
the specification to produce software procedures that carry out the processes defined by the
mechanisms. Each of the mechanisms is described below. The failure response mechanism
is discussed first because all of the other mechanisms rely on it.

Failure Response Mechanism

An important feature of the safety kernel use of executable parameters is the uniform
manner in which they are treated with respect to failures. Every executable parameter has
associated with it an error condition name. In addition, every executable parameter is
expected to return a status which indicates either that the parameter executed successfully
and no policy violation was detected or that either an error occurred or a policy violation
was detected. If the status indicates a failure, then the specified error condition name is
included in a call to an error handling mechanism associated with the machine. The error
handling mechanism is responsible for invoking the failure response specified for the par-
ticular error condition. If no error is detected then execution continues.

ERROR_CONDITION: SHOULD_BE_ON
RESPONSE: should_be_on(); RESPONSE_FAILED

END:

ERROR_CONDITION: SHOULD_BE_OFF
RESPONSE: should_be_off(); RESPONSE_FAILED

END:

ERROR_CONDITION: RESPONSE_FAILED
RESPONSE: pull_the_plug(); PANIC

END:

Fig. 20. Example failure response policy data.

70

Failure response policies are invoked by a call to the error reporting facility of a
machine. The error condition being reported is a parameter to the facility. This condition is
used to select the specified failure response. Each failure response also has associated with
it an error condition. Therefore, if an error is detected in carrying out the response, an error
is reported with the error condition. This process can continue until the ultimate response
available is called. The system will need to be designed such that this last response will suc-
ceed with high probability. When the failure response for a machine completes, then if there
is a parent machine, the error reporting facility for the parent is called, with the original
error condition. This propagation is performed because, although a lower-level machine
may be able to respond to a failure, the ultimate response is likely to depend on the state of
all the machines in the system. The parent machine handles the failure response just as has
been described above.

Command Execution Mechanism

When one of the interface commands provided by a machine is called, a precise set of
steps is followed that leads to either the execution of the command or a policy violation and
resulting error report. The steps are as follows:

1. Time variables such as the total time in state are updated so that they may be
used within safety policies.

2. The operational state of the machine is acquired so that it can be used by the
operations enforcing policies. The specified error condition is reported if the
operation fails.

3. The interlock policies are enforced for the particular command. Enforcement of
this policy involves several steps that are described below. If any of the inter-
lock policies fails, then control is returned to the application software with a sta-
tus identifying the particular failure.

4. Once the interlock policies have been passed, then the command to perform the
requested action is performed. Its return status is checked and once again the
error condition is reported if an error is detected.

5. If the command is successfully executed, then the state information is updated.
This information includes the present command mode and various time vari-
ables. The value ofoperational state at last command is also updated with the
value ofpresent operational state. A new monitoring schedule is also selected
if the mode has changed as a result of successful execution of the command.

6. The final step is to update any control parameters declared for the machine.

Interlock Policy Mechanism

As indicated above, the interlock policies are enforced each time an interface command
is called. The following steps are performed to enforce an interlock policy:

1. If there is a parent machine then its present mode is acquired.

2. Using the present mode of the machine and the present parent mode (if any), the
specified polices are selected.

71

3. Check the specified value forNEW_MODE. If the value is a valid mode then con-
tinue with the conditions, otherwise report the error with the specified error con-
dition and return control to the interface command execution mechanism
described above.

4. Invoke the executable parameters that implement the policy conditions. If all
complete successfully, then return to command execution, otherwise report the
error with the specified error condition.

Monitor Policy Mechanism

Monitoring is performed periodically at times specified by a schedule. The schedule
that is used for a machine at any given time depends on the present mode of the machine
and the present mode of the parent machine if there is one. The monitoring schedule is set
when the safety kernel is activated and is updated whenever the machine or its parent
change modes. The following steps are performed when a monitoring policy is enforced:

1. If there is a parent machine then its present mode is acquired.

2. Time variables such as the total time in state are updated so that they may be
used within safety policies.

3. The operational state of the machine is acquired so that it can be used by the
operations enforcing policies.

4. Using the present mode of the machine and the present parent mode (if any), the
specified polices are selected.

5. The monitoring conditions for the policy are applied. If no errors are detected
then operation continues. Otherwise, the error is reported using the error condi-
tion associated with the policy condition that failed.

As mentioned previously, support for aperiodic monitoring activities will be provided
in a future version of the translator. These activities will be scheduled relative to machine
interface commands. The actual enforcement of the policy will be carried out as described
above.

The periodic monitoring activities are scheduled statically by the safety kernel. These
activities are assumed to have a higher priority than application requests. The result is that
application requests will sometimes be delayed waiting for completion of monitoring activ-
ities. With knowledge of the maximum number and duration of periodic and aperiodic
monitoring activities the worst-case delay can be computed. Areas for future work include
permitting specification of scheduling priorities and incorporating a timer into the sched-
uler for detection of scheduling delays.

All of the information presented in Section 6.3 could be expressed much more precisely
in a formal language. This is an area for future work.

6.4 Translator Implementation

A translator has been developed that processes the safety policy specification described
above to produce a source code representation of the safety kernel. The specification data

72

for each type of machine is located in a separate file. Each line in the specification is started
with an identifier that indicates the type of the data. Thus, the specification has the appear-
ance of a form that has been filled in with the specific context and policy data. The translator
looks at the identifier at the beginning of each line to determine what actions will be
required to parse the line.

The translator functions as a typical compiler with parsing and a code generation
phases. In the parsing phase, the specification is read and stored in an internal representa-
tion. The internal representation consists of a class for each specification file, i.e., machine.
Within each class there are other classes that hold the data corresponding to schedules,
interface commands, modes, failure responses, and executable parameter definitions. The
parser was constructed without the use of a tool such as yacc because of the prototypical
nature of the translator and the relative simplicity of the input data. The actual parsing of
file input is relatively straightforward. In the code generation phase, C++ header and source
files that represent the safety kernel are produced. One C++ class, contained in one header
and one source file, is produced for each machine. Software that is generated includes the
class definition, procedures for executing commands, procedures that enforce the interlock
policies, a procedure for the monitoring policy, and a procedure that is called to report
errors.

The translation of a specification file is handled by the same translator regardless of
where the machine falls in the system hierarchy. The output software is affected by the posi-
tion in the hierarchy, but only in a few well-defined ways.

6.5 Conclusion

A reuse-oriented implementation strategy has been developed for the safety kernel
because of the potential reliability and cost benefits. An evaluation of whether these bene-
fits can be realized will require use of the translator with a number of applications. In a later
chapter we begin this effort by evaluating the translator with the MSS and UVAR. In addi-
tion to the general reliability and cost benefits, the translator also provides the following
benefits:

• The safety kernel framework provides a standard for expression of safety policies
that facilitates specification reuse. Therefore, the knowledge used to identify and
express policies for one application should be readily transferrable to others.

• The translator and its special-purpose programming can be reused and therefore the
effort required to develop a reliable translator can be applied once and then amor-
tized over a number of applications.

• As more is learned about policy enforcement in safety-critical systems, the transla-
tor can be refined to permit other systems to benefit from the advances in under-
standing and technology.

73

7 Verification and Analysis

One of the requirements for reliable enforcement of kernel-enforced safety policies is
the correctness of the safety kernel implementation. Correct in this case means that the
safety kernel is implemented to perform the actions specified for enforcement of the safety
policies. The question that is addressed in this chapter is, “What are the issues in assuring
that the executable version of the safety kernel actually performs as specified?”.

The process of showing that a software system complies with its requirements is known
as software verification. As shown in Fig.21, an executable representation of the safety
kernel is developed from the system safety specification. As the arrow in the figure shows,
verification is performed to demonstrate conformance between the specification and the
executable version. Because the development process is typically complex, direct verifica-
tion that the executable safety kernel meets the requirements of the safety specification is
not feasible with many verification techniques. As a result, verification techniques are typ-
ically applied to the input and output documents of the various stages of development. An
overall verification is achieved by demonstrating conformance between each of the individ-
ual stages.

What does it mean for two artifacts to “conform” or to demonstrate that a system “com-
plies” with its requirements? A software specification documents a set of properties that
must be true for its software implementation. Demonstrating conformance is the process of
ensuring that the specification properties are also true of the implementation. The same can
be said for any two corresponding artifacts. Demonstrating conformance does not mean
that the implementation is “correct” in the informal sense of “doing what it is supposed to
do” because the specification could be either erroneous (e.g., inconsistent) or incomplete
(i.e., lacking essential properties).

Fig. 21. Verification between specification and executable representation.

System
Safety

Specification

Executable
Safety Kernel

Development
Process

Verification

74

Many techniques can be employed to perform verification. Each has its strengths and
all have limitations. Formal verification encompasses a collection of techniques that are
used to develop a mathematical proof that two artifacts have equivalent properties. These
techniques are useful for proving certain properties. However, they are not appropriate for
all properties and often are not feasible for practical, complex systems. Verification tech-
niques also include approaches that are not strictly formal. The most common example is
testing. Testing is a technique that can perform direct verification between the safety spec-
ification and the executable program. Testing has many limitations, particularly for mea-
suring system properties such as reliability [9,36,37]. However, testing is still a critical
component of verification and is included in this analysis. Verification does not ensure that
the safety kernel will operate as required by the system. In particular, if the specification is
flawed, system operation can be erroneous. Techniques for analyzing the safety policy
specification are being developed to demonstrate properties of the specification.

The rest of this section looks at high-level issues in the verification and analysis of the
safety kernel. The three areas that are examined are formal verification, specification anal-
ysis, and testing. Later in the chapter we describe some verification and analysis techniques
that are presently being investigated. A more thorough analysis and development of verifi-
cation techniques for the safety kernel is an area for future work.

Formal Verification

We would like to be able to develop a mathematical proof that the executable safety ker-
nel will have the properties specified in the software safety specification. In this section, the
high-level issues in performing such a verification are examined.

The process developed as part of this research to produce an executable safety kernel
from the system safety specification is shown in Fig.22. As was discussed in Chapter6, the
system safety specification is used as the basis for development of the safety policy speci-
fication which is then processed by the safety kernel translator. The process proceeds from
the policy specification through the translator and a C++ compiler to an executable version
of the safety kernel. The arrows labeled “verification” between successive stages in the fig-
ure represent the individual verification steps that are required to perform the overall formal
verification. Employing this verification process with the safety kernel, it would first be
necessary to verify between the system safety specification and the safety policy specifica-
tion, then between the policy specification and the C++ source code, and finally between
the source code and the executable representation. In practice the process might be further
decomposed, but this picture is adequate for a high-level discussion. The following items
look at the three stages of verification depicted in Fig. 22.

1. Safety specification↔ policy specification
Verification between the safety specification and the policy specification is a
process that is being investigated. At this point in time, the definition of the pol-
icy specification is much farther along than the definition of the safety specifi-
cation which is not yet suitable for any formal verification techniques. Basic
concepts and guidelines are being developed for the safety specification and as
appropriate formal notations are chosen, verification of properties between the
two specifications will become feasible.

75

Verification between the safety specification and the policy specification could
be obviated if an automatic process could be developed for deriving the policy
specification directly from the safety specification. Presently, however, there is
sufficient human insight required for this process (e.g., to develop weakened
safety policies) that the feasibility of its automation is questionable. An area of
future investigation is whether the system safety specification could be tailored
to be compatible with the policy specification for purposes of facilitating partial
or full automatic translation and verification.

2. Policy specification↔ source code
Verifying that in general, the generated source code meets the policy specifica-
tion requires verification of the translator. Verification of the translator is a prob-
lem very much like verification of a compiler. For now we will assume that with
standard techniques and sufficient effort, the translator could be shown to imple-
ment the safety policy specification correctly. By successfully employing the
translator with more than one application, this verification effort can be amor-
tized. A thorough analysis of verification of the translator is an area for future
work.

For the purposes of verifying the translator in general and a particular instance
of policy specification and source code, an important consideration is that the
translator and thus its output and the policy specification input can be config-
ured to facilitate the process of verification. For example, the fact that the gen-
erated source code has a regular format, might permit it to be mechanically
analyzed. Such an analysis could produce a set of source code descriptions that
could then be compared with a similar set of descriptions generated for the

Fig. 22. Development of safety kernel executable from safety specification.

System
Safety

Specification

Safety Kernel
Policy

Specification

Translator
C++ Source

Code
Compiler

Executable
Safety Kernel

Translation
(Human)

1. Verification

3. Verification

2. Verification

76

safety policy specification. The result would be a reversal check for assessment
of the effectiveness of the translator. This and other techniques for verification
at this level will be investigated in ongoing work.

3. Source code↔ executable representation
A compiler is typically reused to generate executable programs for many appli-
cations. As a result, instead of focusing on verification between a specific source
code input and its executable representation, emphasis is placed on demonstrat-
ing that in general the compiler will produce an executable that conforms to its
source code. Demonstrating the general conformance between an executable
and source code is the focus of research into compiler verification. Although an
interesting area of investigation and important to the operation of an instance of
the safety kernel, it is not critical to the evaluation of the concept. Therefore, we
assume that standard techniques will be used to deal with this problem and that
the compiler performs the translation correctly.

Specification Analysis

If the assumption is made that the translator and compiler work correctly, then the deter-
mining factor in whether the safety kernel operates “correctly” is the safety policy specifi-
cation. The verification of this specification with respect to the system specification is
described above. However, even with this verification completed, it is possible that the
safety kernel would not operate as required by the system due to errors in the specification.
Therefore, in addition to verification there is a concern with being able to detect errors by
analyzing specifications. This analysis cannot validate that the specification reflects the sys-
tem requirements, but it can demonstrate that the specification exhibits desirable properties
such as internal completeness and consistency. A specification analysis technique and pre-
liminary results are presented in Section 7.1.

Testing

Testing is a technique for direct verification between the specification and the execut-
able safety kernel and, therefore, corresponds to the arrow on Fig. 21. As mentioned previ-
ously testing has definite limitations that must be understood. In particular, the only
conclusion that can safely be made after testing has been performed is that the system func-
tioned correctly on the inputs that were tested (note that even this conclusion depends on
the potentially suspect assumption of perfect error detection [3]). In a practical system
where the number of input combinations is huge, even extended testing will seldom test
more than a small fraction of this number. Therefore, testing at the system level cannot be
relied on as a verification technique in the sense of verification as a proof.

In spite of this limitation, testing of the safety kernel in the system context is an impor-
tant part of verification for the purpose of developing “confidence” in a software system.
With automated testing techniques and sufficient computing resources, it is possible, for
example, to exercise as many combinations of inputs as would be encountered by all of the
deployed systems for a particular application. Although this does not prove that there are
no errors, it is imminently doable and provides a check on the other verification techniques.
A system for performing this type of testing is described in Section 7.2.

77

Testing can also be employed in a manner that is equivalent to a proof [18]. Mathemat-
ical verification is used to demonstrate that certain properties, i.e., theorems, are true for
two development artifacts. We are investigating the potential for demonstrating certain
properties using testing. The technique which is described in Section 7.3 is used to demon-
strate properties by exhaustively testing the required inputs. To facilitate this effort, a con-
cept known as specification limitation is used to limit the input space.

7.1 Safety Policy Specification Analysis

The safety policy specification determines what safety policies are implemented by the
safety kernel. Therefore, it is critical that this specification not only correspond to the safety
specification, but that it also possess important internal properties such as completeness and
consistency.

We have developed a prototype tool for static analysis of the policy specification. The
concept for this tool is shown in Fig. 23. The policy specification is passed into a parser
which generates a set of facts represented in Prolog that describe the system configuration
and safety policies. The Prolog facts serve as the input to a Prolog interpreter and are eval-
uated with respect to a set of general rules that have been established for the safety policies.

Example interlock policy data first referred to in Chapter 6 is shown in Fig. 24. The
facts that the generator would produce for this example specification are shown in Fig. 25.
To analyze these facts, a set of rules has been developed which documents essential speci-
fication properties. The properties are expressed in Prolog and range from simple checks
that modes have been previously declared to more sophisticated analyses of potential state
transition errors. Examples of analyses that have been performed include the following:

• Every command used in an interlock policy must be declared as a command.

• Every command that is declared must have an interlock policy specified for it.

Fig. 23. Safety policy specification analysis tool.

Safety Policy
Specification

Fact
Generator

Fact
Analyzer

Safety Policy
Rules

Rule Violation
Report

78

• Either no parent modes or all parent modes must be included as a part of an interlock
policy for a specific mode.

• A NEW_MODE transition must be specified for each combination of mode and parent
mode.

• The value specified forNEW_MODE must be either a declared mode or error condi-
tion name.

INTERLOCK: activate
MODE: off

PARENT_MODE: disabled
NEW_MODE: SYSTEM_DISABLED
END:
PARENT_MODE: enabled
NEW_MODE: on
CONDITION: check_power(); NO_POWER
END:

END:

MODE: on
NEW_MODE: ALREADY_ON
END:

END:

Fig. 24. Example interlock policy data.

mode(‘on’).
mode(‘off’).
parent_mode(‘enabled’).
parent_mode(‘disabled’).
valid_state(‘on’, ‘enabled’).
interlock(‘activate’).
transition(‘activate’, ‘off’, ‘disabled’,

‘SYSTEM_DISABLED’).
transition(‘activate’, ‘off’, ‘enabled’, ‘on’).
transition(‘activate’, ‘on’, ‘no_modes’, ‘ALREADY_ON’).
condition(‘activate’, ‘off’, ‘enabled’, ‘check_power’).
parent_transition(‘enabled’, ‘disabled’).

Fig. 25. Facts for example interlock policy data.

79

• Every interlock condition must have an error condition name associated with it.

• A transition by the parent of a machine must not result in a state that would other-
wise be precluded by the interlock policies of the machine.

Additional properties of this type have been identified for the monitoring and failure
response policies. If the executable parameters were accompanied by predicate logic
descriptions, it would also be possible to develop properties related to the interlock and
monitoring conditions.

7.2 Automated System Testing

What role should system testing play in the overall software verification effort? With
an efficient testing arrangement, a large number of inputs can be tested even if they do not
represent a significant fraction of the input space. If, for example, the number of test inputs
could approach the total number of inputs that would be seen during the lifetime of all of
the instances of an application system, this could promote confidence in the software sys-
tem. Admittedly, “confidence” is an informal notion, but until feasible formal verification
techniques are available, this type of confidence will be important in the verification of any
complex system. We view testing of this type to be a “defense-in-depth” strategy that
should be used in combination with other more formal techniques (e.g., testing for verifi-
cation of properties described in Section 7.3).

The confidence gained from testing a system is tied to the fraction of the input space
that has been tested. This problem must be dealt with by both reducing the input space and
increasing the number of tests cases that are executed. We are investigating reduction of the
size of the input space using a concept known asspecification limitation that is described
in Section 7.3. To increase the number of test cases executed, an automated test harness is
being developed that is described below.

Testing has been conducted using the test harness depicted in Fig.26. This test harness
permits automated testing of the safety kernel operating with control systems such as the
UVAR and the MSS [24]. In this system, the safety kernel is executing along with the appli-
cation software which in this case consists of an operator display and a control program.
The testing of the application in this system is supervised by the test driver which is respon-
sible for maintaining a model of the application world, for generating operator requests, for
gathering information essential to error detection, and for performing the error detection
operations.

The operator display receives commands from the test harness that are identical to those
that would be entered by a human operator. A relatively small addition, known as apseudo
user has been made to the operator display that accepts these commands. As occurs outside
of the test harness, the operator display processes the operator commands making requests
to the control program as necessary. The control program in turn acts on the requests and
communicates with the safety kernel to effect device actions. In the test system, communi-
cation between the control program and the safety kernel is mediated by the test harness
command modifier. In this position, the command modifier is able to keep a record of all
commands that have been issued to the safety kernel. Furthermore, it is able to delete, sub-

80

stitute for, or modify the parameters of requests on their way from the control program to
the safety kernel. This enables the test harness to simulate failures of the application soft-
ware. This technique provides much better control of application failures than could be
achieved with other techniques such as software fault injection.

The safety kernel controls a set of devices that are simulated by the test harness. The
devices utilize the same interface as the actual application devices. The state of a device is
determined by the simulator and is used to provide feedback to the safety kernel device
monitors. The test harness uses the device state to detect errors in safety kernel operation
and to determine the effect that a device has on the other elements of a system. The device
simulators also provide a set of commands to the test harness that can be used to induce
various types of device failures.

The operation of systems such as the MSS and the UVAR are tied to the real world and
therefore to real time. In the test harness, this can greatly limit the number of test cases that
can be executed. In some cases, it is feasible to separate the system from the real world time
reference and instead rely on virtual time as provided by a source such as the test harness.

Fig. 26. Test harness for system testing.

Network

Pseudo User

TEST HARNESS

Device
Communication

Synthetic Operator Commands

State
Information

Command Modifier

Safety Kernel

Control Program

Operator Display

Test Driver

Simulated
Device

Simulated
Device

81

In making this change, the concern is that the operation of the software and other compo-
nents is not fundamentally altered. One way to increase the rate of operation safely is to
adjust the passage of time so that the idle time between operations is reduced, but so that
the computing operations and device operations are otherwise unaffected.

For example, from the perspective of the computer, the MSS operates at a very slow
pace. The current controllers change current at a rate of a few amperes per second and the
current requested of a current controller is updated no more than four times a second by the
control program. At this rate, the safety kernel is not likely to receive more than 30 requests
per second for device actions. The other safety kernel activity is monitoring of devices, and
measurements that are described in the next chapter indicate that the monitoring activities
require only a small fraction of the safety kernel operating time. Therefore, speeding up the
operation of the MSS by a factor of three to five would be reasonable. Factoring in the elim-
ination of the planning required by a human operator and continuous operation of the test
system, a number of inputs equivalent to those generated by the physical system operating
for one year could be produced by the test harness in approximately one week.

Another alternative for speeding up the testing is to accelerate the occurrence of fail-
ures. In a physical system, the occurrence of device failures is a relatively rare event. By
inducing device failures in the simulated devices, it should be possible in a short period of
time to generate failures that would require significantly more time (if ever) to be mani-
fested in the real system. Since preventing and responding to failures is the concern of the
safety kernel this technique permits extensive testing that would be difficult, expensive, or
infeasible in the physical system.

Preliminary results of testing of the MSS safety kernel prototype are described in Sec-
tion 8.2.3 in regard to the feasibility evaluation of the prototype. Extensive testing with the
test harness is an area for future work.

7.3 Testing for Verification of Properties

If the size of the input space can be reduced to a point where exhaustive testing can be
employed, then testing would be effective for proving selected properties. We are dealing
with the input space problem in two ways:

• Property identification
The first step in utilizing testing for verification of properties is careful identifica-
tion of desired properties. The goal is to identify useful, albeit possibly narrow
properties, that have input spaces that can be exercised exhaustively. For example,
it would be impossible to demonstrate a property such as system reliability which
would require exhaustive testing all of the functionality of the safety kernel. On the
other hand, testing for a property such as correct operation of an executable param-
eter might be feasible.

• Specification limitation
The concept ofspecification limitation or input limitation is that some software
inputs can be restricted in a manner that does not impact the operation of the system,
but greatly reduces the total number of possibilities for a particular input. For exam-

82

ple, in a system like the MSS, it would be acceptable to round the sensor input from
a superconducting coil to the nearest ampere. This would not interfere with policy
enforcement, but depending on the number of bits of sensor input could signifi-
cantly reduce the number of inputs to be considered. A greater impact would be
seen by restricting a value such as the requested current which is represented as a
floating point value. This would reduce the number of inputs from the number of
distinct computer floating point values between the minimum and maximum cur-
rent to the number of integral values in this range.

We have used testing to verify the two properties shown below. These properties cer-
tainly do not imply safety kernel correctness, but they contribute to the overall verification
and are properties that would be difficult to establish with other techniques. For example,
it is likely that random, system testing would not test these properties exhaustively. Formal
verification between the policy specification and the executable safety kernel would be
non-trivial.

• For any combination of machine mode and parent machine mode, a command will
not be executed if an interlock policy does not specify a transition to a valid mode.

• For any combination of machine mode and parent machine mode, a command will
be executed if an interlock policy specifies a transition to a valid mode. This
assumes that any conditions specified with executable parameters are met.

Using the specification-based test system shown in Fig.27, both of these properties
have been tested exhaustively. For the MSS safety kernel, a system machine and an X-ray
source machine were tested in this system. For each combination of modes for these two
machines, each of the commands for the two machines were invoked. Each command was
determined to be valid or invalid for that mode combination based on analysis of the spec-
ification. Invalid commands were expected to return a specific error code and valid com-
mands were expected to complete successfully.

System
Machine

X-Ray Source
Machine

Test Driver

Fact
Analysis

Fact
Generator

Safety Policy
Specification

Command
Generation

&
Error

Detection

Fig. 27. Testing for verification of properties.

83

8 Safety Kernel Prototype

In this chapter the prototypes that have been developed for the two case studies are
examined. An operational safety kernel prototype has been implemented with the MSS
using the implementation strategy described in the previous chapter. With the UVAR the
prototype is of the safety policy specification for the reactor safety kernel. Development of
the MSS safety kernel prototype has facilitated additional evaluation and refinement in all
areas, but particularly with the implementation strategy. The UVAR prototype specification
was developed to evaluate the applicability of the implementation strategy to an additional
safety-critical application.

The following section examines the structure of the MSS safety kernel prototype
including the policy specification, the system design, and the integration of the safety ker-
nel with the MSS application software. Section 8.2 discusses the evaluation of the safety
kernel in the areas of the impact on the application software, performance, and operational
feasibility. The last section describes the UVAR safety kernel prototype.

8.1 The MSS Safety Kernel Prototype

8.1.1 Safety Policy specification

An overview of the MSS safety kernel prototype as it is described by the policy speci-
fication for the MSS safety kernel is presented below. The actual safety policy specification
appears in Appendix C.

The MSS safety kernel prototype has been decomposed into three types of machines as
shown in Fig.28. At the top level is the system machine that serves to group the other
machines in the safety kernel. The system has its own set of commands, modes, and poli-
cies that are described in this section. Below the system machine are machines which cor-
respond to the MSS x-ray sources and the servoamplifiers. One type of machine is specified
for each type of device. The machine for an x-ray source is instantiated twice in the safety
kernel, once for each of the X and Y imaging axes. Similarly, the servoamplifier machine
is instantiated six times in the safety kernel, once for each of the six servoamplifiers that
control the current in one of the helmet coils. Both of these types of machines are also
described below.

In structuring the machines for the safety kernel, an additional layer for the group of
servoamplifiers and one for the two x-ray sources could have been added. However, the
interaction between devices in these groups is not that significant and the system is small
enough for the simpler grouping. For a larger system, further decomposition might be very
useful if not essential.

84

System Machine

The system machine is configured with six modes of operation. These modes are used
to establish higher-level operating goals for the system and to restrict operation of the
devices. In addition, the modes are used to specify policies for monitoring the system. The
modes for the system are described below along with a description of how each mode
affects system monitoring and the operation of the system devices.

• Inactive
In the inactive mode, the only actions that are permitted for the devices are the
emergency shutdown operations. Otherwise, other activities such as turning the X
ray sources on or controlling the current in a servoamplifier are precluded. No mon-
itoring takes place at the system level in this mode.

• Vision enabled
This mode permits operation of the x-ray sources, but not of the servoamplifiers. No
system-level monitoring takes place in this mode.

• Currents idling
In this mode both the x-ray sources and the servoamplifiers can be operational.
However, the currents in the coils are expected to produce a force that is below the
threshold for movement, so the position of the seed is not monitored in this mode.
Checks of the magnetic force on entry to this mode and continual monitoring of the
coils ensures that the force will not change. This assumes, of course, that the seed
does not move in the magnetic field due to movement of the patient’s head. The
position of the patient’s head will be fixed, so this is a reasonable assumption.

• Moving seed
In this mode it is expected that both x-ray sources and the servoamplifiers will be
operating. Furthermore, it is assumed that the current produced in the coils by the
servoamplifiers will result in a force above the threshold of movement for the seed.

System

Servoamp
XA

Servoamp
ZB

X ray
X Axis

X ray
Y Axis

Fig. 28. Organization of the MSS safety kernel prototype.

85

Therefore, in this mode the position of the seed must be periodically reported to the
safety kernel by the application software. In order to transition from this mode to a
mode such as currents idling, a check must be performed which shows that the mag-
netic force is sufficiently below the threshold for movement.

• Vision calibration
In the vision calibration mode, the x-ray sources can be active. No system-level
monitoring is performed and transitions from this mode to any except inactive are
precluded.

• Shutdown
This is the mode that is entered when a failure that prevents continued safe opera-
tion is detected. The only interface commands that can operate in this mode are
those that are used to respond to failures.

Changes in the modes are effected via the command interface to the system machine.
These commands are relatively simple and therefore are not discussed here. One command
that is of interest though is the commandregister_seed_position . This command
is used by the application software to report the seed position that has been computed by
the vision system. During the modemoving seed , this position must be reported at least
once every 0.5 s.

At the system level, failure responses are specified for error conditions originating both
within the system machine and from the device machines. The response that is performed
is a function of the error condition and the mode of the system.

Servoamplifier Machine

A servoamplifier machine enforces policies concerning the operation of the MSS ser-
voamplifier current controllers. A servoamplifier machine has the following four modes of
operation:

• Inhibited
In this mode the only commands that can be executed are those that read sensor val-
ues and the failure response commands. It is expected that the coil currents are zero
and the servoamplifiers are monitored to ensure that this is the case.

• Operating
In this mode, the physical servoamplifiers are operational and target current
requests can be sent to the servoamplifiers. The currents are monitored to verify that
they are as expected.

• Failure adjust
This is a failure response mode in which policies designed to prevent excessive cur-
rent change rates are not enforced. Rapid changes in current can cause a supercon-
ducting coil to switch to a resistive conducting mode, i.e., quench. An example of
a policy of this type is one that restricts the maximum change between the present
current and the new target current. This mode would be used when it is critical to
bring the coils to a current (likely 0) without the normal restrictions on how rapidly

86

that change can be effected. The commands used by the application to control a ser-
voamplifier are not executed in this mode.

• Shutdown
When in this mode, the servoamplifier machine does not permit any operations to
be performed other than the reset command. It is expected that the servoamplifiers
are inhibited and therefore the currents are monitored to ensure that they are zero.

The command interface to a servoamplifier machine includes methods for setting the
current, reading the current sensor, and for responding to failures detected by the safety ker-
nel. Failure responses range in severity from error return values and warning messages to
setting the servoamplifier requested current to zero, which has the potential for quenching
the coils but is also the quickest way to reduce the current in the coils.

X-ray Source Machine

The interface to an MSS x-ray source is provided by a safety kernel x-ray source
machine. This machine has the following four modes:

• Voltage off, current off
In this mode the voltage and current for the source can be set. The source is
expected to be off and monitoring is performed to ensure this.

• Voltage on, current off
This is the intermediate mode between the one above and the next mode in which
the source is active. In this mode the voltage may not be adjusted, but the current
may be. Monitoring is performed to verify that the source is off.

• Voltage on, current on
In this mode the source is expected to be producing X rays. Monitoring checks not
only that the source is on as expected, but that the single and accumulated dose are
below prescribed limits. In this case the dose is related to time and so the checks
performed check the time that the source has been on.

• Disabled
This mode is transitioned to when a failure has occurred and the source should not
be operated by the application software. The source is expected to be off in this
state.

The command interface for the x-ray source machine includes commands to get and set
both the current and the voltage and also to turn both the current and the voltage off and on.
Additional commands are provided to perform an emergency disable and to reset the
machine after it has been disabled. The most severe failure response options for the x-ray
sources are to turn them off using either the normal control interface or by using an alternate
device which disconnects power to the x-ray sources.

87

8.1.2 System Design

Chapter 5 documented the requirements for reliable enforcement of safety policies and
outlined a system design for applications such as the MSS and UVAR. This design has been
used as the basis for the system design used with the MSS safety kernel prototype. How-
ever, some of the features are not included because either they are well understood and
incorporating them would not address critical questions or because the techniques represent
areas of research in their own right. The development of a prototype system and safety ker-
nel that addresses all of the reliability requirements is beyond the scope of this research.
The prototype system design is discussed below followed by a discussion of the features
that have not been included in the prototype.

The system architecture of the prototype of the MSS is shown in Fig.29. The design
includes the following features originally listed in Section 5.6:

• Safety kernel as a user-level process.

• Application software and safety kernel communication via network.

• Closed-loop, device control using independent sensors.

• Safety kernel watchdog.

The following features are not incorporated in the system design:

• Command authentication and error detection encoding for device communication
These techniques have been widely used and therefore we will make a preliminary
assumption that their application to this situation would be relatively straightfor-
ward.

• Restriction of application software resource usage
This is another area where methods exist that could be employed.

• A core of dependable support services and basic computing services
The prototype does not address the dependability of the computing services. We

Fig. 29. MSS safety kernel prototype system architecture.

MSS Application
Software Safety Kernel

Safety Kernel
Watchdog

SunOS/Solaris

User-Level
Processes

88

will assume that traditional verification techniques could be employed. Comprehen-
sive treatment of this problem is an area for future research.

• Microkernel architecture for system/support software
This feature supports the verification of support services and is not necessary given
that the support services are not being verified.

• Incorporation of redundant information into configuration data
The safety kernel does not read any configuration data at run-time.

• Error detection analysis of safety kernel executable following loading into memory
We will assume that existing techniques could be applied to perform this analysis.

• Support for real-time operation of the safety kernel
This issue could be addressed by selecting a computing platform with support for
real-time operation. At the system-design level this is not a critical research issue.
We have attempted to mitigate concerns in this area by utilizing a processor that has
more than enough resources for timely safety kernel operation.

The application software, safety kernel prototype, and safety kernel watchdog are all
user-level processes compiled for SunOS 4.1.x. This choice is motivated by system avail-
ability and the existence of software libraries useful for prototyping rather than by any par-
ticular characteristics of SunOS. The processes communicate via the network using a
library implemented on top of TCP/IP. The safety kernel watchdog is simulated by a soft-
ware process that produces an error message anytime that its timer expires. This process
will not actually have access to the devices, since it is assumed that a hardware watchdog
would provide the necessary functionality and actually implementing this would not be par-
ticularly instructive.

8.1.3 Integration of Safety Kernel with MSS Application Software

The system design for the safety kernel requires the MSS control program and the
safety kernel to communicate via interprocess communication. The network communica-
tion in this case is implemented in a library that is built on top of TCP/IP. Using this library,
each of the three machines in the MSS safety kernel have been coupled with a local base
class and an external interface class that handle the packing, unpacking, and communica-
tion of messages. The interface with the machines uses remote procedure call semantics,
so, except for the latency, the operation is just as if a local procedure call were being made.

The safety kernel has been integrated with the MSS control program as shown in
Fig. 30. The figure depicts the uses relationship between the objects of the control program
and the safety kernel. The external network interface for the safety kernel servoamplifier
class is integrated as a base class for the coil class in the control program. The system
machine of the safety kernel is accessed by both the seed object and the vision system. The
x-ray source machines are called by the vision system.

89

8.2 Evaluation of MSS Safety Kernel Prototype

The evaluation of the MSS safety kernel prototype focuses on three areas: impact on
the application software, performance, and operational feasibility. Although targeted at a
particular instance of the safety kernel each of these areas has implications for the safety
kernel and system designs that have been developed.

8.2.1 Impact on the application software

An anticipated benefit of the use of the safety kernel is the simplification of the appli-
cation software. The most obvious simplification is that by performing the device and sys-
tem monitoring, the safety kernel completely relieves the application software of this
responsibility. This is particularly significant because the monitoring must occur on a
scheduled basis implying that the monitoring must be carried out, at least, logically in par-
allel with other activities. It is likely therefore that some sort of separate, independent mon-
itoring entity would be required if the safety kernel were not employed.

Since the safety kernel is partially being retrofitted to the MSS application software,
some of the safety policy enforcement is already being accomplished in the application
software. Examples include limit checks on parameters and conditions on devices states.
Therefore, the full benefits of simplifying the application software have not been realized.

The application software for the MSS is reasonably large and complex. A rough metric
is the number of lines of source code.

• Control program: ~20,000 lines

Fig. 30. Integration of the safety kernel with the MSS control program.

System

Marker Set

Seed

Vision System

X-ray Source X-ray Source

Helmet

Coil

Servoamp Servoamp

Coil

Safety Kernel
Interface

CONTROL PROGRAM

Safety Kernel Network Communication Layer

90

• Operator display: ~7,000 lines

• Libraries (not including X, system, etc.): ~40,000 lines

As more functionality is added, the quantity and complexity of the software will con-
tinue to increase. The basic safety policies for the system will not change significantly and
therefore, the safety kernel should maintain its present complexity. In addition, if the rea-
sonable assumption is made that the system safety requirements are well established, the
safety kernel should be much more static than the application software. The size of the
safety kernel is presently 6500 lines. The generated code of the safety kernel is quite simple
and regular with six types of procedures accounting for approximately 80% of the lines of
source code. Possibly a better measure of the safety kernel complexity is the length of the
safety policy specification which is less than 3000 lines.

If the application software were responsible for enforcement of all of the safety poli-
cies, its complexity and fluid nature would necessitate significant verification effort. The
use of a safety kernel obviates the need for verification of a critical set of safety policies for
the application software. Since maintenance (continued development) will persist through-
out the life of an application, the significance of being able to enforce safety policies with
a relatively static component should not be underestimated.

8.2.2 Performance

An issue in evaluating the feasibility of the safety kernel concept is the performance
overhead associated with its use. With our implementation of the prototype there are three
main sources of overhead. The first is the network communication required for the applica-
tion software to communicate with the safety kernel. For some applications, this source of
overhead may lengthen the response time enough that this design would not be appropriate.
In this situation, an alternative design, such as incorporating the safety kernel into the sys-
tem kernel would need to be considered. The latency added by network communication
will be measured.

The second source of overhead is associated with the enforcement of policies when a
request is made to the safety kernel by the application software. This overhead is not
expected to be significant. In addition, some of the policies that a safety kernel will enforce
would otherwise be enforced by the application software. Therefore, assuming that the pol-
icies must be enforced by either the application software or by the safety kernel, their
enforcement should have little additional impact on the overall performance of a software
system employing a safety kernel.

The third source of overhead comes from the monitoring of devices. However, as with
the policies above, since the monitoring must be performed either by the application soft-
ware or by the safety kernel, the overall system performance will be unchanged by giving
this responsibility to the safety kernel. In fact, since this monitoring can occur in parallel
with the operation of the application software, the overall system performance could even
improve. One concern with the monitoring, is that it not significantly impact the ability of
the safety kernel to respond to application software requests in a timely manner. The por-
tion of time available for satisfying requests will be measured.

91

As indicated above, most of the policy enforcement activities would need to be per-
formed by the application software if they were not the responsibility of the safety kernel.
Therefore, if overhead is defined as extra cost incurred in performing essential services,
there is little overhead with the safety kernel prototype except for that involved in network
communication. Given that lower overhead communication options exist, this is not a fun-
damental problem. Therefore, although the evaluation of performance is important to
understanding the characteristics of this particular kernel implementation, it is essentially
irrelevant to any discussion of performance pertaining to the general safety kernel concept.

Regardless of any of the above discussion, the real issue is: Can the safety kernel per-
form all of its required actions in a manner that meets the requirements of the MSS? A
direct measurement has been made to address this question. The measurement is of the
number of application software requests that the safety kernel can fulfill while performing
its required monitoring activities.

Methods and Results

Measurement of the network communication overhead has been performed using the
control program to generate a large number of requests to the safety kernel. The safety ker-
nel was configured to immediately respond to each request that it received meaning that it
did not enforce any safety policies. This was necessary to remove the effect of policy
enforcement overhead. The monitoring policies were not enforced for the same reason. The
wall-clock time required to satisfy a set of requests was measured.

The performance measurements were performed with two different physical configura-
tions of the two programs. The first configuration had both programs executing on the same
computer, a SPARCStation 20. Except for background system tasks, there were no other
active processes. Measurements in this configuration consistently resulted in excess of 500
empty requests per second (less than 2 ms per request) being processed by the safety kernel.

In the second configuration, the two programs were executing on different machines but
on the same subnet. Once again, an effort was made to minimize all other activity. The con-
trol program was executed on a Sun SparcServer 10/514 while the kernel was executed on
a SPARCStation 20. In this case the performance was slightly better with an excess of 550
requests per second being carried out. Other configurations were not evaluated, since a
safety-critical application would typically be executed on a dedicated network to reduce the
interference from other network traffic. This is definitely the case with the two case studies.

The overhead associated with the enforcement of monitoring policies was measured by
operating the safety kernel with just monitoring active, i.e., no requests from the application
software. Under these conditions, the amount of time spent idle was measured by determin-
ing the wall-clock time that was spent in the network select call which is entered only when
no monitoring activities are scheduled to be invoked. The total time of observation was also
measured. The difference between these values is the amount of time that was spent in mon-
itoring activities, scheduling, and other supporting activities. During the measurement, the
six servoamplifiers were monitored four times per second and the two x-ray sources were
monitored 20 times per second. In each case monitoring required acquiring the present
operational state from a sensor and then comparing this state to the expected state. Running

92

the safety kernel on a SPARCStation 20, the idle time on repeated observations conducted
for at least 60 s exceeded 99% of the observation time.

The measurements described above are addressing the question of how well the safety
kernel can respond to application software requests. Although the above measurements
help to answer questions of safety kernel performance the actual request throughput can be
measured directly. To measure this value, 10,000 sets of requests to set the current to a par-
ticular value and then to read the current sensor were sent to the safety kernel by the control
program. Once again, both programs were executing on a SPARCStation 20. With moni-
toring as described above, approximately 175 of these request pairs or 350 individual
requests were processed per second by the safety kernel. The throughput was roughly the
same with monitoring inactive which is not surprising given the minimal resources required
for monitoring operations. During the measurement, the safety kernel utilized approxi-
mately 55% of the processor time with the balance going to the program generating the
requests.

The MSS is expected to require no more than 50 requests per second to be fulfilled by
the safety kernel. Therefore, based on the measurements above, the safety kernel as imple-
mented should require less than 10% of the processor time and should very comfortably
meet the performance requirements of the MSS. With the UVAR, the requests are likely to
be even fewer, however, the monitoring activities will be significantly increased. Given the
efficiency with which the monitoring activities are performed, there is good reason to
believe that the safety kernel design and system architecture will also meet the performance
requirements of the UVAR control system.

8.2.3 Operational Feasibility

The prototype MSS safety kernel has been operated in a test harness like the one
described in the previous chapter. The customization of the test harness for the MSS is
described later in this section. The goal of exercising the safety kernel in this context is to
evaluate basic feasibility questions that need to be addressed for this research. The ques-
tions most relevant to this research are of the following type:

• Does the safety kernel provide the functionality required for control of the devices?

• What are the issues with operating the safety kernel in the system context?

• Do the monitoring policies detect and respond to device failures?

Answering questions of this type requires incorporating the safety kernel into the sys-
tem as described above, but the goal is concept and design evaluation rather than depend-
ability assessment. Evaluation will eventually need to be performed in the context of real
system hardware, but it is not presently accessible to us. With its simulated devices, the test
harness actually provides greater flexibility than the real system particularly with regard to
inducing device failures.

93

Test Harness

Testing of the safety kernel is conducted using a test harness based on the one described
in Chapter 7. The version of the test harness that has been developed for the MSS [24] is
shown in Fig.31. In this system, the devices for the MSS are six servoamplifier current con-
trollers and two fluoroscopic imaging systems. Each of the two imaging systems are simu-
lated as two separate components: an x-ray source and an image generator. The image
generator that has been developed produces synthetic fluoroscopic images using knowl-
edge of the physical arrangement of the imaging system components, the markers affixed
to the patient’s skull, and the seed within the patient’s head. These digital images are used
by the vision system of the control program to track the seed.

The test driver model of the MSS world consists of the application devices, the markers
on the patient’s head, the seed inside the head, and three sets of MR images. All of these
entities have a position in a world coordinate system and some of them are free to move
within this coordinate system. The test harness is responsible for controlling this move-
ment, keeping track of the positions, and transforming between the coordinate systems.

Fig. 31. MSS software system with test harness.

Superconducting
Electromagnets

Network

Synthetic Image
Generator

 Operator

Display

Test

Driver

Pseudo User

Simulator

TEST HARNESS
Safety

Kernel

Device
Communication

(via file)

Synthetic Operator Commands

State
Information

Control

Program

Command Modifier

94

Preliminary Results

The test harness has been configured to supervise the execution of a simple MSS surgi-
cal procedure. In this procedure, the seed is started at the middle of the head and moved
incrementally toward the right side of the brain. The servoamplifiers are adjusted to simu-
late the currents required to produce seed movement and the vision system tracks the seed
periodically during a movement. In the testing arrangement, when one procedure is com-
pleted, the seed is repositioned at the center of the head and the procedure is repeated.

Testing with this system is in progress with several different types of tests. The first test
is designed to exercise the safety kernel without any injected failures. The surgical proce-
dures are performed and the safety kernel is monitored to verify that it is not enforcing
safety policies when operation is in fact correct.

In the second set of tests the surgical procedures is repeated, but faults are injected at
random using the command modifier. The nature of a fault is a substitution of an invalid
command for the originally requested command. An invalid command is one that is pre-
cluded by the interlock policies for the present mode of the machine. It is expected that
invalid commands will return an error status. The test harness will monitor the return values
to detect erroneous operation.

The third type of test will execute the same surgical procedure except there will be
device failures induced by the test harness. The safety kernel is expected to detect and
respond to these failures within a specified period of time. Error detection will be based on
whether the device failure is successfully detected.

8.3 UVAR Safety Policy Specification

The UVAR case study has been used throughout the development and evaluation of the
safety kernel concept. It has provided another data point for understanding the problems of
software dependability in safety-critical systems and an additional context for evaluation
of research products. Eventually, the safety kernel will be developed for the reactor just as
it has been for the MSS. This work is not included in this dissertation. However, to provide
some additional information on the general applicability of the safety kernel translator, a
preliminary safety policy specification has been developed for a safety kernel prototype for
the UVAR. The specification is preliminary because the specification for the control soft-
ware for this system is just being developed. As a result, not all of the safety policies have
been identified. The data is also preliminary in that only enough of the specification (see
Appendix C) was completed to demonstrate the feasibility of the safety kernel for the
UVAR.

This section contains a high-level description of the machines of the prototype. The
safety kernel for the UVAR utilizes the hierarchy of machines shown in Fig.32. These
machines correspond to the components in the system that can be manipulated to control
the operation of the system. Safety rod machines 1 through 3 provide the interface to the
rods that are used to moderate the nuclear chain reaction. These are the rods that are
dropped into the reactor core to effect a scram of the reactor. The regulator rod machine
controls the rod that is adjusted to maintain constant reactor power once the reactor has

95

been brought up to operating power. This rod can be adjusted manually or automatically
using a simple feedback system. The header and coolant pump are components in the cool-
ing system. The header is placed up against the bottom of the reactor core and serves as the
inlet into the cooling system for water that has just passed through the core. The reactor can
be operated in a 0.2 MW convective cooling mode in which case the header must be posi-
tioned away from the core or in the 2.0 MW mode in which case the header must be up
against the reactor core to permit active cooling. Each of the safety kernel machines is
examined later in this section.

The reactor system includes a multitude of sensors that provide data for monitoring the
reactor operation and various safety conditions. With one exception, these sensors are not
modeled as machines because they are not controlled by the reactor operator. Rather they
provide input to the machines for the purpose of monitoring the system and individual
devices. The exception is the neutron detector for the source range that can be moved to
position it closer to or farther from the core. This detector is used for neutron detection at
relatively low power. Moving the detector away from the core when the reactor is operating
at high power slows the degradation of the detector.

Other than warnings to the operator, a scram is the sole failure response when failures
are detected. It is the only one necessary because there is a very high probability that this
will be an adequate response to the failure. It is invoked without intermediate failure
responses because, other than causing some inconvenience, a scram does not harm the sys-
tem and is the conservative choice for ensuring system safety. The safety kernel watchdog
for the reactor will consist of a timer and the functionality required to effect a scram. Shut-
down requirements for a power reactor will differ in that intermediate failure responses
would be desirable to attempt to sustain power generation. Scramming a power reactor is
also a much longer and more complicated process than it is with the UVAR. Later research
on this project will address the problems presented by these requirements.

Fig. 32. UVAR safety kernel machine hierarchy.

System

Coolant
Pump

Header

Regulator
Rod

Safety Rod 1

Safety Rod 2 Safety Rod 3 Neutron
Detector

96

The primary role of the system machine is monitoring of the operational state of the
reactor. It is the system machine that also determines when a scram is required as a failure
response. The modes of the system are the following:

• Inactive
In the inactive mode, the reactor is in a scram condition. The safety kernel monitors
to ensure that this is the case. In this state, none of the device commands can be exe-
cuted.

• Setup
This mode is used for configuration of the reactor prior to start-up. Typically, con-
figuration involves selecting either the 0.2 MW or the 2.0 MW power range for
operation and then setting the devices accordingly.

• Start-up low
When the reactor is to be operated at 0.2 MW of power, this mode is used for bring-
ing the system up to this power. The operational state is monitored during this time
to enforce policies applying specifically to the start-up process.

• Start-up high
This mode is the same as startup_low except it is used to bring the reactor to its full
power of 2.0 MW.

• Operating low
The reactor is operating at 0.2 MW in this mode. In this mode the reactor power can
be regulated by either manual or automatic adjustment of the regulator rod.

• Operating high
This mode is similar to operating low. The difference is in the position of the header
and the requirement that the pump be on in this mode.

• Scrammed
Normal operation is prohibited in this mode. The only transition from this mode is
to the inactive mode that occurs with the scram reset command.

The commands for the system cause the transitions between modes. The one command
that results in device action is the scram command.

The machines corresponding to the specific devices are relatively simple because little
functionality is required of the devices. The safety rod machines have very little state oper-
ation associated with the operation of the control rods. The only two modes areoperating
and failed. The regulator rod machine can be operated both manually and automatically;
therefore, it has the modesauto andmanual. The header has the modesup anddown. The
pump can be eitheron oroff. The neutron detector has the modesin_place andremoved. In
addition, all of the machines have the modefailed which is used to indicate that a failure of
the device itself has been detected. In thefailed mode, normal device operation is pre-
cluded.

A representative set of the safety policies for the reactor have been specified using the
machines and modes described above. Included in the specified safety policies are all of

97

those that relate to direct control of the devices and selected monitoring policies. The mon-
itoring policies are similar enough in function and specification that it was not necessary to
specify all of them to demonstrate the feasibility of describing the UVAR safety kernel with
the language provided by the translator.

8.4 Conclusion

The purpose for building the two prototypes described in this chapter was to evaluate
the feasibility of the safety kernel concept and mechanisms with real systems. Safety policy
specifications were developed for both systems to describe the systems and the policies to
be enforced for each. The safety kernel translator was used to generate a source code rep-
resentation of the safety kernel for the MSS which was then compiled to produce an oper-
ating safety kernel. Performance measurements of the safety kernel demonstrate that the
overhead due to either network communication and enforcement of monitoring policies is
minimal. The safety kernel is capable of handling more than five times the number of
requests that are expected to be generated by the MSS application software. Feasibility test-
ing of the safety kernel with the application software and simulated devices demonstrates
that the safety kernel provides the functionality required for system operation and, to the
extent tested, enforces the safety policies designated as being kernel-enforced.

98

99

9 Conclusions and Future Work

9.1 Conclusions

The subject of this research has been an evaluation of the feasibility of the safety kernel
as a software architecture for the enforcement of safety policies. Previous work has yielded
some basic enforcement kernel concepts and proposed safety kernel designs. However,
many of the basic feasibility issues in employing a safety kernel with practical safety-crit-
ical systems have not been previously addressed. In the evaluation of feasibility, four major
areas have been addressed.

• Policy enforcement
To facilitate evaluation and description of the role of the safety kernel we have
developed a classification system for safety policies. Rushby’s original ideas on
kernel-enforcement have been extended to define the issues in selection of classes
for enforcement. The concept of a weakened safety policy has been introduced that
facilitates enforcement of policies that might otherwise not be enforced. The seven
classes of safety policies identified for enforcement by the safety kernel prototype
are related to device operation and therefore are critical to system safety.

• Reliable enforcement
The safety kernel must be able to enforce safety policies reliably and do so in spite
of failures of other system components. Our analysis of potential component fail-
ures resulted in a set of requirements for reliable safety kernel policy enforcement.
For systems where safety is the primary concern, we have demonstrated that the
system-kernel design used withsecurity kernels is neither necessary nor the most
effective for meeting the reliability requirements. In safety systems, correct opera-
tion implies either correct functionality or correct failure. This permits a system
design in which both error prevention and error detection and response techniques
are employed to meet dependability requirements.

• Implementation
We have developed an implementation strategy employing a special-purpose spec-
ification language and translator. To identify this level of reuse, safety policy
enforcement was characterized and models were developed for the components
with which the safety kernel interacts. Although the particular policies and compo-
nents are application specific, the types of the policies and characteristics of the
components are general. From these general characteristics, a framework consisting
of a machine abstraction, built-in context information, built-in control mechanisms,
and user-supplied system description information has been developed. The frame-
work provides a context for specification of safety policies. The special-purpose
specification language is used for description of the application-specific context

100

information and the safety policies. The translator generates a source code represen-
tation of the safety kernel from the description.

• Verification
Safety kernel verification is facilitated by the use of the translator. In principle, the
translator and the compiler are reused, therefore verification should focus on their
operation rather than on individual artifacts that they process. If it can be shown that
the translator and the compiler are correct, then a correct policy specification results
in a correct safety kernel (although a specification error could still result in undesir-
able operation). The feasibility of analyzing this specification, to ensure important
properties, has been established. We have shown that exhaustive testing can be
employed for verification of non-trivial properties. In addition, a test system has
been developed that permits automated, high-volume testing.

To support research in the areas described above we have employed the MSS and
UVAR as case studies. We have identified safety policies for both of these systems and
grouped them according to the classes of safety policies. A system design suitable for reli-
able policy enforcement in systems of this type has also been developed. We have produced
safety policy specifications for both applications and have demonstrated the feasibility of
the translator and special-purpose specification language. The MSS safety kernel prototype
has been shown to have a positive impact on the application software and its performance
has been measured to be more than sufficient for the demands of the two systems. The pro-
totype has been operated in the test harness for 1000 surgical procedures under normal
operation and with erroneous commands. Static analysis has been used to demonstrate
properties of the MSS safety policy specification. Finally, exhaustive testing has been
employed to verify properties of the interlock policy mechanism for the MSS.

Examination of the four areas above indicates that it is feasible for the safety kernel to
enforce selected safety policies for a safety-critical application. Another way of evaluating
the safety kernel contribution is to consider a software control system for an application
like the MSS or UVAR without a safety kernel. It is clear that basic system safety policies
do not change with the presence or absence of a safety kernel. Hence, all of the safety pol-
icies would need to be enforced. The bottom line is that policy enforcement like that pro-
vided by the safety kernel is essential to system safety. We argue that providing for this
enforcement in a consistent, well-defined, and possibly reusable manner is feasible and is
superior to ad hoc implementation of policy enforcement functionality.

9.2 Future Work

In order to advance the safety kernel from the level of a feasible concept to a practical,
reliable technology, several open issues need to be addressed. The topics listed below focus
on continued development and evaluation of the safety kernel concept and on technology
required for reliable policy enforcement.

• Translation: system safety specification to safety policy specification
The translation from system safety specification to safety kernel description is pres-
ently informal. This translation could be much more structured and ideally would

101

be performed mechanically. To facilitate translation, the form of both the system
safety specification and the safety policy specification should be evaluated.

• Verification
The verification process outlined here needs to be developed to permit a systematic
demonstration of safety kernel reliability. Included in this effort will be techniques
for verification of the translator and for verification between the system safety spec-
ification and the policy specification. Formal specification of the translator and an
implementation tailored to facilitate verification will likely be required for the
development of verification techniques. The analysis of the policy specification
should be extended to include a more comprehensive set of properties. Finally, test-
ing for verification of properties and high-volume testing need to be integrated into
the verification process.

• Implementation
As mentioned previously, the safety kernel translator needs to be extended to sup-
port aperiodic device monitoring. In addition, when the safety kernel is applied to
systems beyond the MSS and UVAR, it is possible that the translator will need to
be adapted. This could result in additional functionality including more compli-
cated failure responses and mode updates resulting from a change in operational
state. Ensuring that periodic monitoring activities, aperiodic monitoring activities,
and application requests can be scheduled is an additional area for future work.

• Evaluation
To assess the system design, the effectiveness and generality of the translator, and
the domain of applicability of the safety kernel, the safety kernel should be
employed with other applications. The first target will be a prototype of the safety
kernel for the UVAR. Particularly useful information could be gained from systems
with different dependability requirements, e.g., systems where reliability is the pri-
mary concern.

102

103

References

1. Addy, E. A., “A Case Study on Isolation of Safety-Critical Software,” inProceed-
ings of COMPASS 1991, Washington, D.C., pp. 75-83.

2. Ames, S. R., Jr., M. Gasser and R. R. Schell, “Security Kernel Design and Imple-
mentation: an Introduction,”IEEE ComputerVol. 16-7 (July 1983) pp. 14-22.

3. Ammann, P. E., S. S. Brilliant, and J. C. Knight, “The Effect of Imperfect Error
Detection on Reliability Assessment via Life Testing,”IEEE Transactions on Soft-
ware EngineeringVol. 20-2 (February 1994).

4. Anderson, T. Ed.,Safe and Secure Computing Systems (Blackwell Scientific Publi-
cations, 1989).

5. Anderson, T. and P. A. Lee,Fault Tolerance Principles and Practice (Prentice Hall
International, Inc., London 1981) p. 64.

6. Avizienis, A., “The N -Version Approach to Fault-Tolerant Software,”IEEE Trans-
actions on Software EngineeringVol. SE-11 (1985) pp. 1491-1501.

7. Bricker, A., M. Gien, M. Guillemont, J. Lipkis, D. Orr, and M. Rozier, “Architec-
tural Issues in Microkernel-Based Operating Systems: the CHORUS Experience,”
Computer Communications Vol. 14-6 (July/August 1991) pp. 347-357.

8. Brilliant, S.S., Knight, J.C., and Leveson, N.G., “The Consistent Comparison Prob-
lem in N-Version software,”IEEE Transactions on Software EngineeringVol. 15-
11 (November 1989) pp. 1481-1485.

9. Butler, R. W. and G. B. Finelli, “The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software,”IEEE Transactions on Software Engineering
Vol. 19-1 (January 1993) pp. 3-12.

10. Campbell, R. H., N. Islam, D. Raila, and P. Madany, “Designing and Implementing
CHOICES: An Object-Oriented System in C++,”CACM Vol. 36-9 (Sept 1993) p.
117-126.

11. Chen, L., and A. Avizienis, “N-version Programming: A Fault-Tolerance Approach
to Reliability of Software Operation,” inDigest of papers of the 8th International
Symposium on Fault-Tolerant Computing, Tolouse, France, 1978, pp. 3-9.

12. Cristian, F., “Basic Concepts and Issues in Fault-Tolerant Distributed Systems,”
Operating Systems of the 90s and Beyond (Springer-Verlag, Berlin 1991) pp. 118-
149.

104

13. Eckhardt, D. E, and L. D. Lee, “A Theoretical Basis for the Analysis of Multiver-
sion Software Subject to Coincident Errors,”IEEE Transactions on Software Engi-
neering, Vol. SE-11 (1985), pp. 1511-1517.

14. Eckhardt, D. E, and L. D. Lee, “Fundamental Differences in the Reliability of N -
Modular Redundancy and N -Version Programming,”The Journal of Systems and
Software, Vol. 8 (1988) pp. 313-318.

15. Fraim, L. J., “Scomp: A Solution to the Multilevel Security Problem,”IEEE Com-
puter, Vol. 16-7 (July 1983) pp. 26-34.

16. Garman, J. R., “The Bug Heard ‘Round the World,” ACM Software Engineering
Notes Vol. 6-5 (October 1981) pp. 3-10.

17. Gillies, G. T. et al, “Magnetic Manipulation Instrumentation for Medical Physics
Research,”Review of Scientific Instruments, Vol. 65-3 (March 1994) pp. 533 - 562.

18. Goodenough, J. B. and S. L. Gerhart, “Toward a Theory of Test Data Selection,”
IEEE Transactions on Software Engineering SE-1 (June 1975).

19. Grady, M. S. et al, “Preliminary Experimental Investigation ofin vivo Magnetic
Manipulation: Results and Potential Application in Hyperthermia,”Medical Phys-
ics Vol. 16-2 (Mar/Apr. 1989) pp. 263 - 272.

20. Higgs, J. C., “A High Integrity Software Based Turbine Governing System,” inPro-
ceedings of Safety of Computer Control Systems (SAFECOMP ‘83). Pergamon,
Elmsford, N.Y. pp. 207-218.

21. Joseph, M.K., Architectural Issues in Fault-Tolerant, Secure Computing Systems,
Ph.D. Thesis, UCLA, Los Angeles, USA, 1988.

22. Karger, P. A., et al, “A Retrospective on the VAX VMM Security Kernel,” IEEE
Transactions on Software Engineering, 17-11 (Nov. 1991) pp. 1147-1165.

23. Kirschen, D., “An Overview of the Mach Operating System,”Operating Systems
Technical Committee Newsletter, Vol. 3-2, p. 57.

24. Knight, J. C., A. G. Cass, A. M. Fernandez, and K. G. Wika, “Testing a Safety-Crit-
ical Application,” Department of Computer Science, University of Virginia, Tech-
nical Report No. CS-94-08, February 1994.

25. Knight, J. C. and D. M. Kienzle.,”Safety-Critical Computer Applications: The Role
of Software Engineering,” Technical Report TR-92-23, Department of Computer
Science, University of Virginia, 1993.

26. Knight, J.C., and Leveson, N.G., “An Empirical Study of Failure Probabilities in
Multi-Version Software,”Digest of papers of the 16th International Symposium on
Fault-Tolerant Computing, Vienna, Austria, 1986, pp 165-170.

27. Knight, J. C., and N. G. Leveson, “An Experimental Evaluation of the Assumption
of Independence in Multiversion Programming,”IEEE Transactions on Software

105

Engineering Vol. SE-12 (1986) pp. 96-109.

28. Kopetz, H., “Event-Triggered Versus Time-Triggered Real-Time Systems,”Oper-
ating Systems of the 90s and Beyond (Springer-Verlag, Berlin 1991) pp. 86-101.

29. Laprie, J. C., “The Dependability Approach to Critical Computing Systems,” in
Proceedings of the 1st European Conference On Software Engineering, Strasbourg,
France, 1987, pp.233-243.

30. Leveson, N.G., “Software Fault Tolerance in Safety-Critical Applications,” inPro-
ceedings of the 3rd International Conference on Fault-Tolerant Computing Sys-
tems, Bremerhaven, Germany, 1987.

31. Leveson, N. G., “Software Safety: Why, What, and How,” ACM Computing Sur-
veys, Vol. 18 (June 1986) pp. 125-163.

32. Leveson, N. G. and T. J. Shimeall, “Safety Assertions for Process-Control Sys-
tems,” inProceedings of 13th International Conference on Fault Tolerant Comput-
ing, Milan, Italy, June, 1983.

33. Leveson, N. G., T. J. Shimeall, J. L. Stolzy, and J. C. Thomas, “Design for Safe Soft-
ware,” inProceedings AIAA Space Sciences Meeting, Reno, Nevada, 1983.

34. Leveson, N. G. and C. S. Turner, “An Investigation of the Therac-25 Accidents,”
IEEE Computer, Vol. 26-7 (July 1993) pp. 18 - 41.

35. McCormick, N. J.,Reliability and Risk Analysis (Academic Press, Inc., San Diego,
CA, 1981).

36. Miller, D. R., “Making Statistical Inferences About Software Reliability,” NASA
Contractor Report 4197, NASA Langley Research Center, Hampton, Virginia,
USA, 1988.

37. Miller, D. R., “The role of Statistical Modeling and Inference in Software Quality
Assurance,” inSoftware Certification, ed. B. de Neumann, (Elsevier Applied Sci-
ence, London, UK, 1989) pp. 135-152.

38. Moffett, J. D. and J. A. McDermid, “Policies for Safety-Critical Systems: the Chal-
lenge of Formalisation,”Fifth IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, Toulouse, France, Oct. 1994.

39. NATO AC/310 Ad Hoc Working Group on Munition Related Safety Critical Com-
puting Systems, “Safety Design Requirements and Guidelines for Munition Related
Safety Critical Computing Systems,” NATO Standardization Agreement
(STANAG) 4404 (Draft), March 1990.

40. Neumann, P. G., “On Hierarchical Design of Computer Systems for Critical Appli-
cations,” IEEE Transactions on Software Engineering Vol. SE-12
(September 1986) pp. 905-920.

41. Neumann, P.G., Editor, “Risks to the Public,”Software Engineering Notes.

106

42. Parnas, D. L., “On the Criteria to be Used in Decomposing Systems Into Modules,”
Communications of the ACMVol. 15 (Dec. 1972) pp. 220-225.

43. Prieto-Díaz, R., “Status Report: Software Reusability,” IEEE Software Vol. 10-5
(May 1993) pp. 61-66.

44. Rushby, J., “ Kernels for Safety?,” in Safe and Secure Computing Systems, T.
Anderson Ed. (Blackwell Scientific Publications, 1989) pp. 210-220.

45. Rushby, J. and B. Randell, “A Distributed Secure System,”IEEE Computer
Vol. 16-7 (July 1983) pp. 55-67.

46. Siewiorek, D.P., and Swarz, R.S.,The Theory and Practice of Reliable System
Design(Digital Press, Bedford, MA, USA, 1982).

47. Tanenbaum, A. S., R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender, J.
Jansen, and G. van Rossum, “Experiences with the Amoeba Distributed Operating
System,”CACM, 33-12 (Dec. 1990) pp. 46-63.

48. Taylor, D. J., D. E. Morgan, and J. P. Black, “Redundancy in Data Structures:
Improving Software Fault Tolerance,”IEEE Transactions on Software Engineering
Vol. SE-6 (Nov. 1980) pp. 585-594.

49. Taylor, R. H., et. al., “Augmentation of human precision in computer-integrated
surgery,” Innovation and Technology in Biology and Medicine Vol. 13 (1992)
pp. 450-468.

50. Taylor, R. H., et al., “Taming the Bull: Safety in a Precise Surgical Robot,” inPro-
ceedings Fifth International Conference on Advanced Robotics, Pisa, Italy, June
1991, pp. 865-870.

51. Toy, W. N., “Fault-Tolerant Design of Local ESS Processors,”Proc. IEEE Vol. 66
(Oct. 1978) pp. 1126-1145.

52. University of Virginia Reactor Safety Committee,University of Virginia Reactor
Design and Analysis Handbook, last modified July 7, 1989.

53. Wika, K. G., “A User Interface and Control Algorithm for the Video Tumor
Fighter,” Masters Thesis, University of Virginia, May 1991.

107

Appendix A - Case Study Safety Policies

Table 2: MSS Safety Policies

Policy Statement Class
Enforcement

Status

If the seed moves faster than 1.0 mm/s with respect to a coordinate sys-
tem fixed to the markers the current in the coils must be dropped to zero
and the operator notified. This check must be executed every 0.5 s
when there is current in the coils.

System
Operation

Weakened

The seed must always be within 2 mm of its expected position as deter-
mined from the coil current-time profiles and a model of the seed
movement through the brain as a function of magnetic impulse. This
check must be executed every 0.5 s when there is current in the coils.

System
Operation

Weakened

The coil current observed by the independent sensor must always be
within 2.0 A of the current predicted by the coil ramping model.

Device
Operation

Kernel

At anytime a current controller is regulating the current in a coil, the
independent sensor must be read and the value compared with the pre-
dicted current every 0.5 s.

Device
Operation

Kernel

From the time a current controller is turned on, the current must be read
and the value compared with the predicted current at least every 2.0 s.

Device
Operation

Kernel

The x-ray sources must never be active for more than 0.1 s at any one
time.

Device
Operation

Kernel

The status conditions indicated by the current controller must be moni-
tored to detect when the current controller has failed.

Device
Failure

Kernel

The x-ray source status indicators must be monitored to detect source
failure.

Device
Failure

Kernel

The current requested of a current controller must range from -100A to
+100 A.

Input from
Computer

Kernel

Except in an emergency shutdown situation the magnitude of the charg-
ing/discharging current change rate must be between 0.0 and 1.0 inclu-
sive.

Input from
Computer

Kernel

An x-ray device must be in the “off” state for 0.2 s before the invoca-
tion of an “on” command.

Input from
Computer

Kernel

The total x-ray dose during an operation must be less than 1.4 R. Input from
Computer

Kernel

108

Prior to the commencement of a ramping sequence, a reversal check
must be executed to ensure that the requested currents provide the
desired direction within 30 degrees and an impulse within 20%.

Input from
Computer

Weakened

Prior to executing a seed movement, a determination must be made if
there is the potential for “run-away” producing forces in the requested
direction of seed movement for the requested distance.

Input from
Computer

Weakened

When the helmet coordinate position of an object is computed from the
two screen positions the error in the fit must be less than 2.0 pixels.

Input from
Computer

Weakened

The 3D positions of the markers and seed must be within specified
expected containment volumes. The containment volume for the seed
will move with the seed, while the marker containment volumes will be
determined when objects are identified on the x-ray images and will
remain fixed. The initial position of the seed containment volume will
also be established at this time.

Input from
Computer

Weakened

The distances between all pairs of markers will be determined when the
objects are identified on the x-ray images. Each time the seed is located
the distances between all pairs of markers will be computed and must
be within 2.0 mm of the original values.

Input from
Computer

Weakened

When the transformation matrix between helmet and UCS coordinates
is computed, the root mean square error in the fit must be less than 2.0
pixels and the error in the fit for any marker must be less than 3.0 pix-
els.

Input from
Computer

Weakened

The calibration parameters computed for the vision system must satisfy
reasonableness checks that are based on physical measurements of the
vision system.

Input from
Computer

Application

New current control parameters must be entered each time before a
ramping sequence is initiated.

Software
Error

Weakened

A seed movement must have been requested each time the coils are
charged unless one of the explicit current control commands is used.

Software
Error

Weakened

If while there is current in the coils, the vision system cannot locate the
seed or marker(s) or one of the location or correspondence require-
ments is not met, the coil currents must be dropped to zero.

Failure
Response

Kernel

If the current in one or more coils is found to be inconsistent with its
expected value, the current in all coils must be dropped to zero.

Failure
Response

Kernel

If a current controller fails, the current in all coils must be dropped to
zero.

Failure
Response

Kernel

If the seed has moved too fast or too far, the current in the coils must be
adjusted at the maximum rate to zero.

Failure
Response

Kernel

If an x-ray source fails, the current in the coils must be dropped to zero
and the power to the source disconnected.

Failure
Response

Kernel

Table 2: MSS Safety Policies

Policy Statement Class
Enforcement

Status

109

A bounding volume must be specified for each marker and the marker
as identified by the user must be within this volume. An example vol-
ume would be the left half of the image set.

Operator
Input

Application

In the object identification, each object must be identified once. Operator
Input

Application

In developing the transformation from a view to the UCS, the ratio of
the common axis distance between pairs of markers in the reference
view and the view for which the transformation is being computed must
be within 10% of the weighted average of the ratio determined from the
distances between all pairs of markers. The one exception would be if
the common axis distance is less than 10 pixels on one of the views. In
this case, for each pair, the ratio of the common axis distance to the
total distance for all marker pairs must be within 0.02.

Operator
Input

Application

In developing the transformation from a view to the UCS, the differ-
ence between the common axis position of the center of mass and the
common axis position of the marker should be computed for both the
reference view and the view for which the transformation is being com-
puted. For each marker, these two distances should be within 2 mm.

Operator
Input

Application

The position of an object on an image must not be within 10 pixels of
any other object on the image.

Sensor
Input

Application

Checks must exist to evaluate the quality of the image that is received
from an imaging axis. These checks may occur as a result of some of
the other object location checks.

Sensor
Input

Application

When an object is located on an image, criteria specified for the object
and for the particular location method used must be met in order for the
location to be considered valid.

Sensor
Input

Application

A coil current sensor is faulty if its value is outside of the range -200 to
+200 A.

Sensor
Input

Kernel

All files for a given patient must be coded with a unique identifier that
is checked when the information from the file is read.

Application
Data

Application

The vision system parameters (e.g., camera constants) must match the
values for the components of the vision system.

Application
Data

Application

The constants used in the control of the currents must correspond to the
values for the current controllers and coils.

Application
Data

Application

The number of markers, their sizes, and their position descriptions must
conform to the markers used on a patient.

Application
Data

Application

Table 2: MSS Safety Policies

Policy Statement Class
Enforcement

Status

110

For each imaging axis and each marker, the expected bounding rectan-
gle for the marker must be specified using a set of terms such as left-
half, right-half, etc. When objects are identified by the operator, the
position of each object must fall within this bounding rectangle. These
bounding rectangles should not be specified by looking at the actual flu-
oroscope images. The intent is to provide a check on the operator’s
interpretation of the images.

Operator
Error

Application

The position of an object identified on an x-ray image must not be
within 5.0 pixels of the position of any of the other objects on the
image.

Operator
Error

Application

A request for seed movement must not exceed a distance of 15 mm.Operator
Error

Application

If the seed is towing a catheter, a warning must be issued if a requested
direction differs by more than 60 degrees from the previous direction of
seed movement. A confirmation is required to proceed with the move.

Operator
Error

Application

The MR images displayed must be those for the patient and must be the
set selected for the particular operation.

Operator
Information

Application

The MR images must be clearly labeled as to the imaging point of view. Operator
Information

Application

The seed must be represented with a color that is easily distinguished
from the background MR images and all other objects represented on
the display.

Operator
Information

Application

Table 2: MSS Safety Policies

Policy Statement Class
Enforcement

Status

111

Table 3: UVAR Safety Policies

Policy Statement Class
Enforcement

Status

During reactor start-up, the period, i.e., the effective “e-folding time,”
must not be below 100 seconds with a single status source or below 30
seconds with corroborating information.

System
Operation

Kernel

If any of the following conditions is true the control rods must be in the scram position.

Safety channel 1 indicates a power greater than 125% (2 MW mode) or
12.5% (0.2 MW mode).

System
Operation

Kernel

Safety channel 2 indicates a power greater than 125% (2 MW mode) or
12.5% (0.2 MW mode).

System
Operation

Kernel

The period amplifier reads a value less than 3.5 s. System
Operation

Kernel

The scram button on the console is pressed. System
Operation

Kernel

The radiation level on the bridge exceeds 30 mR/hr. In this case the ven-
tilation door and the reactor room personnel door should be closed auto-
matically.

System
Operation

Kernel

The primary coolant pump is turned on with the header down. System
Operation

Kernel

The primary coolant pump is turned off with the header up. System
Operation

Kernel

The flow in the primary cooling system is below 3,400 liters/min
(900 gpm).

System
Operation

Kernel

The scram button at the reactor room personnel door is pressed. System
Operation

Kernel

The scram button on the ground floor is pressed. System
Operation

Kernel

The reactor room truck door is open. System
Operation

Kernel

The emergency escape hatch is open. System
Operation

Kernel

The air pressure to the primary header is greater than or equal to 2 psi.System
Operation

Kernel

The reactor inlet water temperature exceeds 105˚ F. System
Operation

Kernel

The pool level falls below 19 ft., 3 1/4 in. System
Operation

Kernel

The radiation at the reactor face exceeds 2 mR/hr. System
Operation

Kernel

112

The key switch on the console is turned off. System
Operation

Kernel

The range switch is set to 2 MW with the header down. System
Operation

Kernel

Evaluation or fire alarm is active. System
Operation

Kernel

The primary coolant pump is on with the header down. System
Operation

Kernel

The following result in an intermittent tone being sounded.

The regulating rod shifts from automatic to manual. System
Operation

Kernel

High radiation is detected on any area monitor or on either argon moni-
tor.

System
Operation

Kernel

High radiation is detected on the core gamma monitor. System
Operation

Kernel

High radiation is detected on the criticality monitor. System
Operation

Kernel

High radiation is detected on the constant air monitor. System
Operation

Kernel

Entry into the demineralizer room is detected. System
Operation

Kernel

Entry into the heat exchanger room is detected. System
Operation

Kernel

A high ∆T is measured across the reactor core. System
Operation

Kernel

High demineralizer conductivity is detected. System
Operation

Kernel

The secondary pump is de-energized. System
Operation

Kernel

The following two policies have indicators other than a scram or intermittent tone

When the key switch is on, local alarm bells are activated by opening the
heat exchanger room door or the demineralizer room door.

System
Operation

Kernel

If the error signal, as displayed on the deviation meter, exceeds 7.5%,
then the regulating rod is switched from automatic to manual mode and
an alarm is sounded.

System
Operation

Kernel

Table 3: UVAR Safety Policies

Policy Statement Class
Enforcement

Status

113

The rods must not be withdrawn at a rate faster than 1.5 mm/s. Device
Operation

Kernel

The position of the regulating rods must be adjusted at least once per
second based on the power output of the reactor.

Device
Operation

Kernel

If the regulating rod is either at its top or bottom limit, then the regulat-
ing rod is switched from automatic to manual mode and an alarm is
sounded.

Device
Operation

Kernel

If any of the scram conditions identified above are true then it must not
be possible to withdraw the rods. The rods must remain in the scram
position.

Device
Operation

Kernel

Signals that indicate device status must be monitored to detect potential
device failures.

Device
Failure

Kernel

The source range must be indicating at least 2 cps to withdraw a safety
rod.

Input from
Computer

Kernel

The nuclear instrumentation must be out of test mode to withdraw a
safety rod.

Input from
Computer

Kernel

The reactor must be scrammed when any failure occurs that might inter-
fere with safe operation of the reactor.

Failure
Response

Kernel

Failures that do not pose an immediate threat to reactor safety, but that
require possible operator intervention must result in an audible alarm
being sounded.

Failure
Response

Kernel

The instrumentation must respond as specified to control inputs. Sensor
Input

Kernel

The instrumentation must respond to the removal of the neutron source.Sensor
Input

Kernel

If the normal control switch is used to move the regulating rod, then the
regulating rod is switched from automatic to manual mode and an alarm
is sounded.

Operator
Error

Kernel

If the linear power recorder is turned off, then the regulating rod is
switched from automatic to manual mode and an alarm is sounded.

Operator
Error

Kernel

If the switch that determines whether the mode is manual or automatic is
set to manual, then the regulating rod is switched from automatic to
manual mode and an alarm is sounded.

Operator
Error

Kernel

Table 3: UVAR Safety Policies

Policy Statement Class
Enforcement

Status

114

115

Appendix B - Safety Kernel Translator Grammar

Following is a context-free grammar for the language recognized by the prototype
safety kernel translator. Non-terminals that appear in bold, italic font are taken from the
grammar summary presented inThe C++ Programming Language by Stroustrup. Not all
of the C++ features are supported, so some elements such as argument declaration lists are
not taken directly from the C++ grammar. Note that there are context-sensitive rules
required. Thus, for example, the grammar does not indicate that a mode should be declared
in order to be referenced in a policy.

spec → spec_list

spec_list → spec_list spec_entry | spec_entry

spec_entry →
DEV_TYPE: machine_type |
DEV_CONFIG: configuration_file |
CHILD: machine_type child_name |
MODE: mode_name |
INIT_MODE: mode_name |
COMMAND: command_name (formal_parameter_list) |
ACT_PROC: command_name: procedure_call ;

error_condition_name |
OP_ST_VAR: variable_declararion |
ST_ACQ_PROC: acquire_state(state_vector);

error_condition_name |
CNT_PAR: variable_declaration |
CNT_PAR_UPD: command_name: procedure_call ;

error_condition_name |
SCHEDULE: schedule_name : time_list ; completion_time ,

deadline |
FRAME_LENGTH: time |
WDOG_SCHEDULE: schedule_name |
INCLUDE: filename |
CONST: simple_type constant_name = literal |
BASE_CLASS: access_specifier class_name |
CONST_PARAM: formal_parameter |
BASE_CONST: procedure_call |
INIT_PROC: procedure_call ; error_condition_name |
RESET_PROC: procedure_call ; error_condition_name |
DECL: variable_declararion |
DEV_DECL: variable_declararion |
PROC_DEF: fct_body |
INTERLOCK: command_name interlock_body END: |
MONITOR: mode_name error_detect_body END: |

116

ERROR_COND: error_condition_name failure_response_body
END:

interlock_body →
transition_condition |
interlock_body interlock_mode_condition

interlock_mode_condition →
mode_list transition_condition END: |
mode_list interlock_parent_mode_condition END:

interlock_parent_mode_condition → parent_mode_list
transition_condition END:

error_detect_body →
error_detect_condition |
parent_error_detect_condition

parent_error_detect_condition →
parent_mode_list error_detect_condition END:

error_detect_condition →
schedule_name condition |
error_detect_condition condition

failure_response_body →
response_procedure |
mode_failure_response_list

mode_failure_response_list →
mode_failure_response |
mode_failure_response_list mode_failure_response

mode_failure_response →
mode_list response_procedure END: |
mode_list parent_mode_failure_response response_procedure

 END:

parent_mode_failure_response →
parent_mode_list response_procedure END: |
parent_mode_failure_response parent_mode_list

response_procedure END:

response_procedure → RESPONSE: procedure_call ;
error_condition_name

mode_list →
mode_entry |
mode_list mode_entry

parent_mode_list →
parent_ mode_entry |
parent_mode_list parent_ mode_entry

mode_entry → MODE: mode_name

parent_mode_entry → PARENT_MODE: parent_mode_name

117

transition_condition →
new_state |
transition_condition condition

new_state → NEW_MODE: new_mode

new_mode →
mode_name |
error_condition_name

condition → CONDITION: procedure_call ; error_condition_name

procedure_declaration → procedure_name (formal_parameter_list)

procedure_call → procedure_name (actual_parameter_list)

formal_parameter_list →
|

formal_parameter |
formal_parameter_list, formal_parameter

formal_parameter →
simple_type identifier |
simple_type & identifier |
simple_type * identifier

actual_parameter_list →
 |

actual_parameter |
actual_parameter_list, actual_parameter

actual_parameter →
identifier |

&identifier |
literal

variable_declaration →
simple_type identifier |
simple_type * identifier

time_list →
time_list , event_time |
event_time

configuration_file → filename

schedule_name → identifier

machine_type → identifier

child_name → identifier
mode_name → identifier
command_name → identifier
error_condition_name → identifier
procedure_name →

identifier |
class_name::identifier

118

constant_name → identifier
event_time → time
completion_time → time
deadline → time
time → literal

119

Appendix C - Safety Policy Specifications

MSS Safety Policy Specification

System Machine

#include “config_macros.h”

INCLUDE: coordinate.h
INCLUDE: helmet.h
INCLUDE: local_system.h

DEV_TYPE: mss_system

DEV_CONFIG: servoamp.fil
DEV_CONFIG: xray.fil

CHILD: mss_servoamp XA_servo
CHILD: mss_servoamp XB_servo
CHILD: mss_servoamp YA_servo
CHILD: mss_servoamp YB_servo
CHILD: mss_servoamp ZA_servo
CHILD: mss_servoamp ZB_servo
CHILD: mss_xray X_xray
CHILD: mss_xray Y_xray

FRAME_LENGTH: 1.0

SCHEDULE: COIL_ON: 0.0, 0.25, 0.5, 0.75; 0.02, 0.5
SCHEDULE: COIL_IDLING: 0.0, 0.5; 0.02, 0.5
SCHEDULE: COIL_OFF: 0.0; 0.02, 0.5
SCHEDULE: XRAY_ON: 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, \

0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, \
0.8, 0.85, 0.9, 0.95; 0.01, 0.05

SCHEDULE: XRAY_OFF: 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, \
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, \
0.8, 0.85, 0.9, 0.95; 0.01, 0.05

SCHEDULE: WATCHDOG: 0.0, 0.33, 0.67; 0.01, 0.5

WDOG_SCHED: WATCHDOG

BASE_CLASS: public local_system
CONST_PARAM: int obj_id
CONST_PARAM: dispatcher *disp
BASE_CONST: local_system(obj_id, disp)

MODE: inactive
MODE: vision_enabled
MODE: currents_idling
MODE: moving_seed
MODE: vision_calibration
MODE: shutdown

120

INIT_MODE: inactive

COMMAND: vision_calibration_begin()
COMMAND: vision_calibration_end()
COMMAND: move_seed_begin(coordinate helmet_seed_pos, coordinate UCS_seed_pos)
COMMAND: move_seed_end(double present_force)
COMMAND: idle_currents_begin(double present_force)
COMMAND: idle_currents_end(double present_force)
COMMAND: enable_vision()
COMMAND: disable_vision()
COMMAND: emergency_shutdown()
COMMAND: shutdown_reset()

COMMAND: register_seed_position(coordinate helmet_seed_pos, coordinate UCS_seed_pos)

ACT_PROC: move_seed_begin: do_begin_move_seed(helmet_seed_pos, UCS_seed_pos); \
MOVE_SEED_BEGIN_FAILED

ACT_PROC: register_seed_position: do_register_seed_position (helmet_seed_pos, \
UCS_seed_pos); RUNAWAY_SEED

CNT_PAR: coordinate most_recent_helmet_seed_position
CNT_PAR: coordinate most_recent_UCS_seed_position
CNT_PAR: double position_update_time

CONST: double MAX_IDLE_PERIOD_MOVEMENT = 15.0
CONST: double MAX_INCREMENTAL_MOVEMENT = 5.0
CONST: double MAX_UCS_MOVEMENT = 2.0
CONST: double THRESHOLD_FORCE = 2.0
CONST: double MIN_UPDATE_PERIOD = 2.0

INTERLOCK: vision_calibration_begin
 MODE: inactive
 NEW_MODE: vision_calibration
 END:

 MODE: vision_enabled
 MODE: currents_idling
 MODE: moving_seed
 MODE: vision_calibration
 MODE: shutdown
 NEW_MODE: MUST_BE_INACTIVE
 END:
END:

INTERLOCK: vision_calibration_end
 MODE: vision_calibration
 NEW_MODE: inactive
 END:

 MODE: inactive
 MODE: vision_enabled
 MODE: currents_idling
 MODE: moving_seed
 MODE: shutdown
 NEW_MODE: NOT_IN_VISION_CALIBRATION
 END:
END:

INTERLOCK: move_seed_begin
 MODE: inactive
 MODE: vision_enabled
 MODE: currents_idling
 NEW_MODE: moving_seed

121

 END:

 MODE: moving_seed
 NEW_MODE: ALREADY_MOVING_SEED
 END:

 MODE: vision_calibration
 NEW_MODE: IN_VISION_CALIBRATION
 END:

 MODE: shutdown
 NEW_MODE: SHUTDOWN
 END:
END:

INTERLOCK: move_seed_end
 MODE: moving_seed
 MODE: currents_idling
 NEW_MODE: inactive
 CONDITION: servoamps_zero_currents(); CURRENTS_NOT_ZERO
 CONDITION: servoamps_inhibited(); SERVO_AMPS_NOT_INHIBITED
 END:

 MODE: inactive
 MODE: vision_enabled
 MODE: vision_calibration
 MODE: shutdown
 NEW_MODE: NOT_MOVING_SEED
 END:
END:

INTERLOCK: idle_currents_begin
 MODE: inactive
 MODE: vision_enabled
 NEW_MODE: currents_idling
 CONDITION: servoamps_zero_currents(); CURRENTS_NOT_ZERO
 END:

 MODE: moving_seed
 NEW_MODE: currents_idling
 CONDITION: servoamps_zero_currents(); CURRENTS_NOT_ZERO
 END:

 MODE: currents_idling
 NEW_MODE: ALREADY_IDLING
 END:

 MODE: vision_calibration
 NEW_MODE: IN_CALIBRATION
 END:

 MODE: shutdown
 NEW_MODE: SHUTDOWN
 END:
END:

INTERLOCK: idle_currents_end
 MODE: currents_idling
 NEW_MODE: inactive
 CONDITION: servoamps_zero_currents(); CURRENTS_NOT_ZERO
 CONDITION: servoamps_inhibited(); SERVO_AMPS_NOT_INHIBITED
 END:

122

 MODE: inactive
 MODE: vision_enabled
 MODE: moving_seed
 NEW_MODE: NOT_IDLING
 END:

 MODE: vision_calibration
 NEW_MODE: IN_CALIBRATION
 END:

 MODE: shutdown
 NEW_MODE: SHUTDOWN
 END:
END:

INTERLOCK: enable_vision
 MODE: inactive
 NEW_MODE: vision_enabled
 END:

 MODE: vision_enabled
 MODE: currents_idling
 MODE: moving_seed
 NEW_MODE: VISION_ALREADY_ENABLED
 END:

 MODE: vision_calibration
 NEW_MODE: IN_CALIBRATION
 END:

 MODE: shutdown
 NEW_MODE: SHUTDOWN
 END:
END:

INTERLOCK: disable_vision
 MODE: inactive
 NEW_MODE: VISION_ALREADY_DISABLED
 END:

 MODE: vision_enabled
 NEW_MODE: inactive
 END:

 MODE: currents_idling
 MODE: moving_seed
 NEW_MODE: CURRENTS_NOT_ZERO
 END:

 MODE: vision_calibration
 NEW_MODE: IN_CALIBRATION
 END:

 MODE: shutdown
 NEW_MODE: SHUTDOWN
 END:
END:

123

INTERLOCK: emergency_shutdown
 MODE: inactive
 MODE: vision_enabled
 MODE: currents_idling
 MODE: moving_seed
 MODE: vision_calibration
 MODE: shutdown
 NEW_MODE: shutdown
 END:
END:

INTERLOCK: shutdown_reset
 MODE: inactive
 MODE: vision_enabled
 MODE: currents_idling
 MODE: moving_seed
 MODE: vision_calibration
 NEW_MODE: SHUTDOWN
 END:

 MODE: shutdown
 NEW_MODE: inactive
 END:
END:

MONITOR: inactive
SCHEDULE: NO_SCHEDULE
END:

MONITOR: vision_enabled
SCHEDULE: NO_SCHEDULE
END:

MONITOR: currents_idling
SCHEDULE: COIL_IDLING
END:

MONITOR: moving_seed
SCHEDULE: COIL_ON
CONDITION: runaway(); POSITION_NOT_REGISTERED
END:

MONITOR: vision_calibration
SCHEDULE: NO_SCHEDULE
END:

MONITOR: shutdown
SCHEDULE: COIL_ON
CONDITION: servoamps_zero_currents(); SPURIOUS_ON
END:

ERROR_COND: CALIBRATION_BEGIN_FAILED
 RESPONSE: announce_error(“CALIBRATION_BEGIN_FAILED”); NO_RESPONSE
END:

ERROR_COND: MOVE_SEED_BEGIN_FAILED
 RESPONSE: announce_error(“MOVE_SEED_BEGIN_FAILED”); NO_RESPONSE
END:

ERROR_COND: NO_RESPONSE
END:

124

ERROR_COND: MUST_BE_INACTIVE
 RESPONSE: announce_error(“MUST_BE_INACTIVE”); NO_RESPONSE
END:

ERROR_COND: NOT_IN_VISION_CALIBRATION
 RESPONSE: announce_error(“NOT_IN_VISION_CALIBRATION”); NO_RESPONSE
END:

ERROR_COND: ALREADY_MOVING_SEED
 RESPONSE: announce_error(“ALREADY_MOVING_SEED”); NO_RESPONSE
END:

ERROR_COND: IN_VISION_CALIBRATION
 RESPONSE: announce_error(“IN_VISION_CALIBRATION”); NO_RESPONSE
END:

ERROR_COND: SHUTDOWN
 RESPONSE: announce_error(“SHUTDOWN”); NO_RESPONSE
END:

ERROR_COND: CURRENTS_NOT_ZERO
 RESPONSE: announce_error(“CURRENTS_NOT_ZERO”); NO_RESPONSE
END:

ERROR_COND: SERVO_AMPS_NOT_INHIBITED
 RESPONSE: announce_error(“SERVO_AMPS_NOT_INHIBITED”); NO_RESPONSE
END:

ERROR_COND: NOT_MOVING_SEED
 RESPONSE: announce_error(“NOT_MOVING_SEED”); NO_RESPONSE
END:

ERROR_COND: FORCE_ABOVE_THRESHOLD
 RESPONSE: announce_error(“FORCE_ABOVE_THRESHOLD”); NO_RESPONSE
END:

ERROR_COND: ALREADY_IDLING
 RESPONSE: announce_error(“ALREADY_IDLING”); NO_RESPONSE
END:

ERROR_COND: IN_CALIBRATION
 RESPONSE: announce_error(“IN_CALIBRATION”); NO_RESPONSE
END:

ERROR_COND: NOT_IDLING
 RESPONSE: announce_error(“NOT_IDLING”); NO_RESPONSE
END:

ERROR_COND: VISION_ALREADY_ENABLED
 RESPONSE: announce_error(“VISION_ALREADY_ENABLED”); NO_RESPONSE
END:

ERROR_COND: VISION_ALREADY_DISABLED
 RESPONSE: announce_error(“VISION_ALREADY_DISABLED”); NO_RESPONSE
END:

ERROR_COND: SPURIOUS_ON
 RESPONSE: announce_error(“SPURIOUS_ON”); NO_RESPONSE
END:

ERROR_COND: POSITION_NOT_REGISTERED
 RESPONSE: announce_error(“POSITION_NOT_REGISTERED”); NO_RESPONSE
END:

ERROR_COND: RUNAWAY_SEED

125

 RESPONSE: announce_error(“RUNAWAY_SEED”); NO_RESPONSE
END:

// mss_servoamp error conditions

ERROR_COND: mss_servoamp::NO_RESPONSE
 RESPONSE: announce_error(“mss_servoamp::NO_RESPONSE”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::INIT_FAILED
 RESPONSE: announce_error(“mss_servoamp::INIT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::RESET_FAILED
 RESPONSE: announce_error(“mss_servoamp::RESET_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SET_CURRENT_FAILED
 RESPONSE: announce_error(“mss_servoamp::SET_CURRENT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::GET_ACTUAL_CURRENT_FAILED
 RESPONSE: announce_error(“mss_servoamp::GET_ACTUAL_CURRENT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::GET_CURRENT_SETTINGS_FAILED
 RESPONSE: announce_error(“mss_servoamp::GET_CURRENT_SETTINGS_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::INHIBIT_FAILED
 RESPONSE: announce_error(“mss_servoamp::INHIBIT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::UNINHIBIT_FAILED
 RESPONSE: announce_error(“mss_servoamp::UNINHIBIT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::GET_AMP_STATUS_FAILED
 RESPONSE: announce_error(“mss_servoamp::GET_AMP_STATUS_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::READ_FAULT_FAILED
 RESPONSE: announce_error(“mss_servoamp::READ_FAULT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::EMERGENCY_SET_CURRENT_FAILED
 RESPONSE: announce_error(“mss_servoamp::EMERGENCY_SET_CURRENT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::EMERGENCY_DUMP_FAILED
 RESPONSE: announce_error(“mss_servoamp::EMERGENCY_DUMP_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::DO_SHUTDOWN_FAILED
 RESPONSE: announce_error(“mss_servoamp::DO_SHUTDOWN_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::FAILURE_RESET_FAILED
 RESPONSE: announce_error(“mss_servoamp::FAILURE_RESET_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::COILS_INACTIVE
 RESPONSE: announce_error(“mss_servoamp::COILS_INACTIVE”); NO_RESPONSE
END:

126

ERROR_COND: mss_servoamp::SYSTEM_IS_SHUTDOWN
 RESPONSE: announce_error(“mss_servoamp::SYSTEM_IS_SHUTDOWN”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULDNT_BE_OPERATING
 RESPONSE: announce_error(“mss_servoamp::SHOULDNT_BE_OPERATING”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::NON_ZERO_CURRENT
 RESPONSE: announce_error(“mss_servoamp::NON_ZERO_CURRENT”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SERVOAMP_FAULT
 RESPONSE: announce_error(“mss_servoamp::SERVOAMP_FAULT”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SERVOAMP_SHUTDOWN
 RESPONSE: announce_error(“mss_servoamp::SERVOAMP_SHUTDOWN”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::ALREADY_OPERATING
 RESPONSE: announce_error(“mss_servoamp::ALREADY_OPERATING”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::IN_FAILURE_ADJUST
 RESPONSE: announce_error(“mss_servoamp::IN_FAILURE_ADJUST”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::INHIBITED
 RESPONSE: announce_error(“mss_servoamp::INHIBITED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::CANT_SET_CURRENT
 RESPONSE: announce_error(“mss_servoamp::CANT_SET_CURRENT”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::CURRENT_CHANGE_TOO_LARGE
 RESPONSE: announce_error(“mss_servoamp::CURRENT_CHANGE_TOO_LARGE”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::STEP_TIME_TOO_SMALL
 RESPONSE: announce_error(“mss_servoamp::STEP_TIME_TOO_SMALL”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::NOT_AT_TARGET_CURRENT
 RESPONSE: announce_error(“mss_servoamp::NOT_AT_TARGET_CURRENT”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::CANT_RESET
 RESPONSE: announce_error(“mss_servoamp::CANT_RESET”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULD_BE_OFF
 RESPONSE: announce_error(“mss_servoamp::SHOULD_BE_OFF”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULD_BE_ON
 RESPONSE: announce_error(“mss_servoamp::SHOULD_BE_ON”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULD_BE_SHUTDOWN
 RESPONSE: announce_error(“mss_servoamp::SHOULD_BE_SHUTDOWN”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::STATE_ACQUISITION_FAILED

127

 RESPONSE: announce_error(“mss_servoamp::STATE_ACQUISITION_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_servoamp::NONZERO_CURRENT
 RESPONSE: announce_error(“mss_servoamp::NONZERO_CURRENT”); NO_RESPONSE
END:

// mss_xray error conditions
ERROR_COND: mss_xray::SET_CURRENT_FAILED
 RESPONSE: announce_error(“set_current failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::INIT_FAILED
 RESPONSE: announce_error(“INIT_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_xray::TEST_RESET_FAILED
 RESPONSE: announce_error(“TEST_RESET_FAILED”); NO_RESPONSE
END:

ERROR_COND: mss_xray::GET_CURRENT_FAILED
 RESPONSE: announce_error(“get_current failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::SET_VOLTAGE_FAILED
 RESPONSE: announce_error(“set_voltage failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::GET_VOLTAGE_FAILED
 RESPONSE: announce_error(“get_voltage failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_ON_FAILED
 RESPONSE: announce_error(“current_on failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_OFF_FAILED
 RESPONSE: announce_error(“current_off failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_ON_FAILED
 RESPONSE: announce_error(“voltage_on failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_OFF_FAILED
 RESPONSE: announce_error(“voltage_off failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::RESET_FAILED
 RESPONSE: announce_error(“reset failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::EMERGENCY_DISABLE_FAILED
 RESPONSE: announce_error(“emergency_disable failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::FAILURE_RESET_FAILED
 RESPONSE: announce_error(“failure_reset failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::STATE_ACQUISITION_FAILED

128

 RESPONSE: announce_error(“state acquisition failed”); NO_RESPONSE
END:

ERROR_COND: mss_xray::SYSTEM_IS_INACTIVE
 RESPONSE: announce_error(“system is inactive”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_PARAM_TOO_LOW
 RESPONSE: announce_error(“CURRENT_PARAM_TOO_LOW”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_PARAM_TOO_HIGH
 RESPONSE: announce_error(“CURRENT_PARAM_TOO_HIGH”); NO_RESPONSE
END:

ERROR_COND: mss_xray::NEGATIVE_CURRENT_PARAM
 RESPONSE: announce_error(“NEGATIVE_CURRENT_PARAM”); NO_RESPONSE
END:

ERROR_COND: mss_xray::SYSTEM_IS_SHUTDOWN
 RESPONSE: announce_error(“SYSTEM_IS_SHUTDOWN”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CANT_SET_WITH_CURRENT_ON
 RESPONSE: announce_error(“CANT_SET_WITH_CURRENT_ON”); NO_RESPONSE
END:

ERROR_COND: mss_xray::DISABLED
 RESPONSE: announce_error(“DISABLED”); NO_RESPONSE
END:

ERROR_COND: mss_xray::NOT_DISABLED
 RESPONSE: announce_error(“NOT_DISABLED”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_PARAM_TOO_LOW
 RESPONSE: announce_error(“VOLTAGE_PARAM_TOO_LOW”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_PARAM_TOO_HIGH
 RESPONSE: announce_error(“VOLTAGE_PARAM_TOO_HIGH”); NO_RESPONSE
END:

ERROR_COND: mss_xray::NEGATIVE_VOLTAGE_PARAM
 RESPONSE: announce_error(“NEGATIVE_VOLTAGE_PARAM”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_NOT_ON
 RESPONSE: announce_error(“VOLTAGE_NOT_ON”); NO_RESPONSE
END:

ERROR_COND: mss_xray::INSUFF_TIME_IN_STATE
 RESPONSE: announce_error(“INSUFF_TIME_IN_STATE”); NO_RESPONSE
END:

ERROR_COND: mss_xray::MAX_TOTAL_ON_TIME_EXCEEDED
 RESPONSE: announce_error(“MAX_TOTAL_ON_TIME_EXCEEDED”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_TOO_LOW
 RESPONSE: announce_error(“VOLTAGE_TOO_LOW”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_TOO_LOW
 RESPONSE: announce_error(“CURRENT_TOO_LOW”); NO_RESPONSE

129

END:

ERROR_COND: mss_xray::CURRENT_ALREADY_ON
 RESPONSE: announce_error(“CURRENT_ALREADY_ON”); NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_ALREADY_ON
 RESPONSE: announce_error(“VOLTAGE_ALREADY_ON”); NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_STILL_ON
 RESPONSE: announce_error(“CURRENT_STILL_ON”); NO_RESPONSE
END:

ERROR_COND: mss_xray::SYSTEM_MUST_BE_INACTIVE
 RESPONSE: announce_error(“SYSTEM_MUST_BE_INACTIVE”); NO_RESPONSE
END:

ERROR_COND: mss_xray::SHOULD_BE_OFF
 RESPONSE: announce_error(“SHOULD_BE_OFF”); NO_RESPONSE
END:

ERROR_COND: mss_xray::SHOULD_BE_ON
 RESPONSE: announce_error(“SHOULD_BE_ON”); NO_RESPONSE
END:

ERROR_COND: mss_xray::MAX_ON_TIME_EXCEEDED
 RESPONSE: announce_error(“MAX_ON_TIME_EXCEEDED”); NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present system mode: “ << present_mode << endl;

 return OK;
}
END:

PROC_DEF: int do_begin_move_seed(coordinate helmet_seed_pos, coordinate UCS_seed_pos)
{
 most_recent_helmet_seed_position = helmet_seed_pos;
 most_recent_UCS_seed_position = UCS_seed_pos;
 position_update_time = get_present_time();
 return OK;
}
END:

PROC_DEF: int do_register_seed_position(coordinate helmet_seed_pos, \
coordinate UCS_seed_pos)

{
 coordinate move_dist;

 most_recent_helmet_seed_position = helmet_seed_pos;
 move_dist = UCS_seed_pos - most_recent_UCS_seed_position;
 most_recent_UCS_seed_position = UCS_seed_pos;
 position_update_time = get_present_time();

 if(move_dist.magnitude() > MAX_UCS_MOVEMENT) {
 return ERROR;
 }

130

 return OK;
}
END:

PROC_DEF: int runaway()
{
 if((get_present_time() - position_update_time) > MIN_UPDATE_PERIOD) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int servoamps_zero_currents()
{
 if(XA_servo->get_coil_current() > LOW_CURRENT ||
 XB_servo->get_coil_current() > LOW_CURRENT ||
 YA_servo->get_coil_current() > LOW_CURRENT ||
 YB_servo->get_coil_current() > LOW_CURRENT ||
 ZA_servo->get_coil_current() > LOW_CURRENT ||
 ZB_servo->get_coil_current() > LOW_CURRENT) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int servoamps_inhibited()
{
 if(XA_servo->get_present_mode() != mss_servoamp::inhibited ||
 XB_servo->get_present_mode() != mss_servoamp::inhibited ||
 YA_servo->get_present_mode() != mss_servoamp::inhibited ||
 YB_servo->get_present_mode() != mss_servoamp::inhibited ||
 ZA_servo->get_present_mode() != mss_servoamp::inhibited ||
 ZB_servo->get_present_mode() != mss_servoamp::inhibited) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int sub_threshold_force(double present_force)
{
 if(present_force > THRESHOLD_FORCE) {
 return ERROR;
 }
 return OK;
}
END:

 X-ray Source Machine

#include “config_macros.h”

DEV_TYPE: mss_xray

INCLUDE: general_procs.h
INCLUDE: kevex_125.h

131

INCLUDE: local_xray.h

CONST: int MIN_I_ON_VOLTAGE = 50
CONST: int MIN_I_ON_CURRENT = 250
CONST: int MIN_VOLTAGE = 0
CONST: int MAX_VOLTAGE = 125
CONST: int MIN_X_RAY_CURRENT = 0
CONST: int MAX_X_RAY_CURRENT = 500
CONST: double MIN_OFF_TIME = 0.25
CONST: double MAX_ON_TIME = 0.1
CONST: double MAX_TOTAL_ON_TIME = 100.0

BASE_CLASS: private kevex_125
BASE_CLASS: private local_xray
CONST_PARAM: char *config_file
CONST_PARAM: int obj_id
CONST_PARAM: dispatcher *disp
BASE_CONST: kevex_125(config_file)
BASE_CONST: local_xray(obj_id, disp)
INIT_PROC: initialize_xray(); mss_xray::INIT_FAILED
RESET_PROC: reset_xray(); mss_xray::TEST_RESET_FAILED

MODE: Voff_Ioff
MODE: Von_Ioff
MODE: Von_Ion
MODE: disabled
INIT_MODE: Voff_Ioff

COMMAND: set_current(short the_current)
COMMAND: get_current(short &the_current)
COMMAND: set_voltage(short the_voltage)
COMMAND: get_voltage(short &the_voltage)
COMMAND: current_on()
COMMAND: current_off()
COMMAND: voltage_on()
COMMAND: voltage_off()
COMMAND: get_xray_status()
COMMAND: reset()
COMMAND: emergency_disable()
COMMAND: failure_reset()

ACT_PROC: set_current: do_set_current(the_current); mss_xray::SET_CURRENT_FAILED
ACT_PROC: get_current: do_get_current(the_current); mss_xray::GET_CURRENT_FAILED
ACT_PROC: set_voltage: do_set_voltage(the_voltage); mss_xray::SET_VOLTAGE_FAILED
ACT_PROC: get_voltage: do_get_voltage(the_voltage); mss_xray::GET_VOLTAGE_FAILED

ACT_PROC: current_on: do_current_on(); mss_xray::CURRENT_ON_FAILED
ACT_PROC: current_off: do_current_off(); mss_xray::CURRENT_OFF_FAILED
ACT_PROC: voltage_on: do_voltage_on(); mss_xray::VOLTAGE_ON_FAILED
ACT_PROC: voltage_off: do_voltage_off(); mss_xray::VOLTAGE_OFF_FAILED
ACT_PROC: reset: do_reset(); mss_xray::RESET_FAILED
ACT_PROC: get_xray_status: do_get_xray_status(); mss_xray::NO_RESPONSE

ACT_PROC: emergency_disable: do_emergency_disable();
mss_xray::EMERGENCY_DISABLE_FAILED
ACT_PROC: failure_reset: do_failure_reset(); mss_xray::FAILURE_RESET_FAILED

CNT_PAR: int current
CNT_PAR: int voltage
CNT_PAR: double most_recent_on_time

CNT_PAR_UPD: set_current: update_current(the_current); mss_xray::NO_RESPONSE
CNT_PAR_UPD: set_voltage: update_voltage(the_voltage); mss_xray::NO_RESPONSE
CNT_PAR_UPD: current_on: set_current_on_time(); mss_xray::NO_RESPONSE

132

CNT_PAR_UPD: reset: reset_I_V(); mss_xray::NO_RESPONSE
CNT_PAR_UPD: emergency_disable: reset_I_V(); mss_xray::NO_RESPONSE

OP_ST_VAR: int xray_sensor

ST_ACQ_PROC: acquire_state (state_vector); mss_xray::STATE_ACQUISITION_FAILED

INTERLOCK: set_current
 MODE: Voff_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: Voff_Ioff
 CONDITION: greater_than_min(the_current, MIN_X_RAY_CURRENT); \

mss_xray::CURRENT_PARAM_TOO_LOW
 CONDITION: less_than_max(the_current, MAX_X_RAY_CURRENT); \

mss_xray::CURRENT_PARAM_TOO_HIGH
 END:

 PARENT_MODE: vision_calibration
 NEW_MODE: Voff_Ioff
 CONDITION: greater_than_min(the_current, 0.0); mss_xray::NEGATIVE_CURRENT_PARAM
 CONDITION: less_than_max(the_current, MAX_X_RAY_CURRENT); \

mss_xray::CURRENT_PARAM_TOO_HIGH
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ioff
 PARENT_MODE: inactive
 NEW_MODE: SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: Von_Ioff
 CONDITION: greater_than_min(the_current, MIN_X_RAY_CURRENT); \

mss_xray::CURRENT_PARAM_TOO_LOW
 CONDITION: less_than_max(the_current, MAX_X_RAY_CURRENT); \

mss_xray::CURRENT_PARAM_TOO_HIGH
 END:

 PARENT_MODE: vision_calibration
 NEW_MODE: Von_Ioff
 CONDITION: greater_than_min(the_current, 0.0); mss_xray::NEGATIVE_CURRENT_PARAM
 CONDITION: less_than_max(the_current, MAX_X_RAY_CURRENT); \

mss_xray::CURRENT_PARAM_TOO_HIGH
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ion

133

 NEW_MODE: mss_xray::CANT_SET_WITH_CURRENT_ON
 END:

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:
END:

INTERLOCK: set_voltage
 MODE: Voff_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: Voff_Ioff
 CONDITION: greater_than_min(the_voltage, MIN_VOLTAGE); \

mss_xray::VOLTAGE_PARAM_TOO_LOW
 CONDITION: less_than_max(the_voltage, MAX_VOLTAGE); \

mss_xray::VOLTAGE_PARAM_TOO_HIGH
 END:

 PARENT_MODE: vision_calibration
 NEW_MODE: Voff_Ioff
 CONDITION: greater_than_min(the_voltage, 0.0); mss_xray::NEGATIVE_VOLTAGE_PARAM
 CONDITION: less_than_max(the_voltage,MAX_VOLTAGE);\

mss_xray::VOLTAGE_PARAM_TOO_HIGH
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: Von_Ioff
 CONDITION: greater_than_min(the_voltage, MIN_VOLTAGE);\

mss_xray::VOLTAGE_PARAM_TOO_LOW
 CONDITION: less_than_max(the_voltage, MAX_VOLTAGE); \

mss_xray::VOLTAGE_PARAM_TOO_HIGH
 END:

 PARENT_MODE: vision_calibration
 NEW_MODE: Von_Ioff
 CONDITION: greater_than_min(the_voltage, 0.0); mss_xray::NEGATIVE_VOLTAGE_PARAM
 CONDITION: less_than_max(the_voltage, MAX_VOLTAGE); \

mss_xray::VOLTAGE_PARAM_TOO_HIGH
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ion

134

 NEW_MODE: mss_xray::CANT_SET_WITH_CURRENT_ON
 END:

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:
END:

INTERLOCK: current_on
 MODE: Voff_Ioff
 NEW_MODE: mss_xray::VOLTAGE_NOT_ON
 END:

 MODE: Von_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: Von_Ion
 CONDITION: check_off_time(MIN_OFF_TIME); mss_xray::INSUFF_TIME_IN_STATE

 CONDITION: less_than_max (total_time_in_state(Von_Ion),MAX_TOTAL_ON_TIME);\
mss_xray::MAX_TOTAL_ON_TIME_EXCEEDED

 CONDITION: greater_than_min(voltage, MIN_I_ON_VOLTAGE); \
mss_xray::VOLTAGE_TOO_LOW

 CONDITION: greater_than_min(current, MIN_I_ON_CURRENT); \
 mss_xray::CURRENT_TOO_LOW

 END:

 PARENT_MODE: vision_calibration
 NEW_MODE: Von_Ion
 CONDITION: greater_than_min(voltage, MIN_I_ON_VOLTAGE); \

mss_xray::VOLTAGE_TOO_LOW
 CONDITION: greater_than_min(current, MIN_I_ON_CURRENT); \

mss_xray::CURRENT_TOO_LOW
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ion
 NEW_MODE: mss_xray::CURRENT_ALREADY_ON
 END:

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:
END:

INTERLOCK: current_off
 MODE: Voff_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed

135

 PARENT_MODE: vision_calibration
 NEW_MODE: Voff_Ioff
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 PARENT_MODE: vision_calibration
 NEW_MODE: Von_Ioff
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ion
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 PARENT_MODE: vision_calibration
 NEW_MODE: Von_Ioff
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:
END:

INTERLOCK: voltage_on
 MODE: Voff_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: Von_Ioff
 END:

 PARENT_MODE: vision_calibration
 NEW_MODE: Von_Ioff
 END:

136

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ioff
 NEW_MODE: mss_xray::VOLTAGE_ALREADY_ON
 END:

 MODE: Von_Ion
 NEW_MODE: mss_xray::VOLTAGE_ALREADY_ON
 END:

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:
END:

INTERLOCK: voltage_off
 MODE: Voff_Ioff
 MODE: Von_Ioff
 PARENT_MODE: inactive
 NEW_MODE: mss_xray::SYSTEM_IS_INACTIVE
 END:

 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 PARENT_MODE: vision_calibration
 NEW_MODE: Voff_Ioff
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: Von_Ion
 NEW_MODE: mss_xray::CURRENT_STILL_ON
 END:

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:

END:

INTERLOCK: reset
 MODE: Voff_Ioff
 MODE: Von_Ioff
 MODE: Von_Ion
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 PARENT_MODE: vision_calibration
 NEW_MODE: Voff_Ioff
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_IS_SHUTDOWN
 END:
 END:

137

 MODE: disabled
 NEW_MODE: mss_xray::DISABLED
 END:
END:

INTERLOCK: emergency_disable
 MODE: Voff_Ioff
 MODE: Von_Ioff
 MODE: Von_Ion
 MODE: disabled
 NEW_MODE: disabled
 END:
END:

INTERLOCK: failure_reset
 MODE: disabled
 PARENT_MODE: inactive
 NEW_MODE: Voff_Ioff
 CONDITION: off_state_consistency(present_op_state); mss_xray::XRAY_STILL_ON
 END:
 PARENT_MODE: vision_enabled
 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 PARENT_MODE: vision_calibration
 PARENT_MODE: shutdown
 NEW_MODE: mss_xray::SYSTEM_MUST_BE_INACTIVE
 END:

 END:
 MODE: Voff_Ioff
 MODE: Von_Ioff
 MODE: Von_Ion
 NEW_MODE: mss_xray::NOT_DISABLED
 END:
END:

// Device monitoring policies
MONITOR: Voff_Ioff
 SCHEDULE: XRAY_OFF
 CONDITION: off_state_consistency(present_op_state); mss_xray::SHOULD_BE_OFF
END:

MONITOR: Von_Ioff
 SCHEDULE: XRAY_OFF
 CONDITION: off_state_consistency(present_op_state); mss_xray::SHOULD_BE_OFF
END:

MONITOR: Von_Ion
 SCHEDULE: XRAY_ON
 CONDITION: on_state_consistency(present_op_state); mss_xray::SHOULD_BE_ON
 CONDITION: less_than_max (total_time_in_state(Von_Ion), MAX_TOTAL_ON_TIME);\

mss_xray::MAX_TOTAL_ON_TIME_EXCEEDED
 CONDITION: less_than_max (time_in_state, MAX_ON_TIME); mss_xray::MAX_ON_TIME_EXCEEDED
END:

MONITOR: disabled
 SCHEDULE: XRAY_OFF
 CONDITION: off_state_consistency(present_op_state); mss_xray::SHOULD_BE_OFF
END:

138

ERROR_COND: mss_xray::SET_CURRENT_FAILED
 RESPONSE: announce_error(“set_current failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::INIT_FAILED
 RESPONSE: announce_error(“INIT_FAILED”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::TEST_RESET_FAILED
 RESPONSE: announce_error(“TEST_RESET_FAILED”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::GET_CURRENT_FAILED
RESPONSE: announce_error(“get_current failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::SET_VOLTAGE_FAILED
RESPONSE: announce_error(“set_voltage failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::GET_VOLTAGE_FAILED
RESPONSE: announce_error(“get_voltage failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_ON_FAILED
RESPONSE: announce_error(“current_on failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_OFF_FAILED
RESPONSE: announce_error(“current_off failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_ON_FAILED
RESPONSE: announce_error(“voltage_on failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_OFF_FAILED
 RESPONSE: announce_error(“voltage_off failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::RESET_FAILED
 RESPONSE: announce_error(“reset failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::EMERGENCY_DISABLE_FAILED
 RESPONSE: announce_error(“emergency_disable failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::FAILURE_RESET_FAILED
 RESPONSE: announce_error(“failure_reset failed”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::STATE_ACQUISITION_FAILED
 RESPONSE: announce_error(“state acquisition failed”); mss_xray::NO_RESPONSE
END:
ERROR_COND: mss_xray::XRAY_STILL_ON
 RESPONSE: announce_error(“system is inactive”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::SYSTEM_IS_INACTIVE
 RESPONSE: announce_error(“system is inactive”); mss_xray::NO_RESPONSE
END:

139

ERROR_COND: mss_xray::CURRENT_PARAM_TOO_LOW
 RESPONSE: announce_error(“CURRENT_PARAM_TOO_LOW”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_PARAM_TOO_HIGH
 RESPONSE: announce_error(“CURRENT_PARAM_TOO_HIGH”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::NEGATIVE_CURRENT_PARAM
 RESPONSE: announce_error(“NEGATIVE_CURRENT_PARAM”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::SYSTEM_IS_SHUTDOWN
 RESPONSE: announce_error(“SYSTEM_IS_SHUTDOWN”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CANT_SET_WITH_CURRENT_ON
 RESPONSE: announce_error(“CANT_SET_WITH_CURRENT_ON”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::DISABLED
 RESPONSE: announce_error(“DISABLED”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::NOT_DISABLED
 RESPONSE: announce_error(“NOT_DISABLED”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_PARAM_TOO_LOW
 RESPONSE: announce_error(“VOLTAGE_PARAM_TOO_LOW”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_PARAM_TOO_HIGH
 RESPONSE: announce_error(“VOLTAGE_PARAM_TOO_HIGH”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::NEGATIVE_VOLTAGE_PARAM
 RESPONSE: announce_error(“NEGATIVE_VOLTAGE_PARAM”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_NOT_ON
 RESPONSE: announce_error(“VOLTAGE_NOT_ON”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::INSUFF_TIME_IN_STATE
 RESPONSE: announce_error(“INSUFF_TIME_IN_STATE”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::MAX_TOTAL_ON_TIME_EXCEEDED
 RESPONSE: announce_error(“MAX_TOTAL_ON_TIME_EXCEEDED”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::VOLTAGE_TOO_LOW
 RESPONSE: announce_error(“VOLTAGE_TOO_LOW”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_TOO_LOW
 RESPONSE: announce_error(“CURRENT_TOO_LOW”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_ALREADY_ON
 RESPONSE: announce_error(“CURRENT_ALREADY_ON”); mss_xray::NO_RESPONSE
END:

140

ERROR_COND: mss_xray::VOLTAGE_ALREADY_ON
 RESPONSE: announce_error(“VOLTAGE_ALREADY_ON”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::CURRENT_STILL_ON
 RESPONSE: announce_error(“CURRENT_STILL_ON”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::SYSTEM_MUST_BE_INACTIVE
 RESPONSE: announce_error(“SYSTEM_MUST_BE_INACTIVE”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::SHOULD_BE_OFF
 RESPONSE: announce_error(“SHOULD_BE_OFF”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::SHOULD_BE_ON
 RESPONSE: announce_error(“SHOULD_BE_ON”); mss_xray::NO_RESPONSE
END:

ERROR_COND: mss_xray::MAX_ON_TIME_EXCEEDED
 RESPONSE: announce_error(“MAX_ON_TIME_EXCEEDED”); mss_xray::NO_RESPONSE
END:

PROC_DEF: int acquire_state (state_vector &v)
{
 v.xray_sensor = read_sensor();
 if(v.xray_sensor == kevex_125::SENSOR_ERROR) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int initialize_xray()
{
 most_recent_on_time = get_present_time();
 current = 0;
 voltage = 0;
 return OK;
}
END:

PROC_DEF: int reset_xray()
{
 most_recent_on_time = get_present_time();
 current = 0;
 voltage = 0;
 return OK;
}
END:

PROC_DEF: int on_state_consistency(state_vector &v)
{
 if(v.xray_sensor != kevex_125::XRAY_ON) {
 return ERROR;
 }
 return OK;
}
END:

141

PROC_DEF: int off_state_consistency(state_vector &v)
{
 if(v.xray_sensor != kevex_125::XRAY_OFF) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int set_current_on_time()
{
 most_recent_on_time = get_present_time();
 return OK;
}
END:

PROC_DEF: int check_off_time(double min_off_time)
{
 double present = get_present_time();

 if((present - most_recent_on_time) < min_off_time) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int update_current(int the_current)
{
 current = the_current;
 return OK;
}
END:

PROC_DEF: int update_voltage(int the_voltage)
{
 voltage = the_voltage;
 return OK;
}
END:

PROC_DEF: int reset_I_V()
{
 current = 0;
 voltage = 0;
 return OK;
}
END:

PROC_DEF: int do_failure_reset()
{
 kevex_125::reset();
 return OK;
}
END:

PROC_DEF: int announce_error(char *message)

142

{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;

 return OK;
}
END:

PROC_DEF: int max_total_on_time_exceeded()
{
 announce_error(“Maximum total on time exceeded - disabled”);

 emergency_disable();
 return OK;
}
END:

PROC_DEF: int do_set_current(short the_current)
{
 if(kevex_125::set_current(the_current) != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_get_current(short &the_current)
{
 if(kevex_125::get_current(the_current) != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_set_voltage(short the_voltage)
{
 if(kevex_125::set_voltage(the_voltage) != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_get_voltage(short &the_voltage)
{
 if(kevex_125::get_voltage(the_voltage) != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_current_on()
{
 if(kevex_125::current_on() != XRAY_OK) {
 return ERROR;
 }

143

 return OK;
}
END:

PROC_DEF: int do_current_off()
{
 if(kevex_125::current_off() != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_voltage_on()
{
 if(kevex_125::voltage_on() != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_voltage_off()
{
 if(kevex_125::voltage_off() != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_reset()
{
 if(kevex_125::reset() != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_get_xray_status()
{
 if(kevex_125::get_xray_status() != XRAY_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_emergency_disable()
{
 kevex_125::current_off();
 kevex_125::voltage_off();
 // Pull the plug too

 return OK;
}
END:

144

 Servoamplifier Machine

#include “config_macros.h”

DEV_TYPE: mss_servoamp

INCLUDE: general_procs.h
INCLUDE: servoamp.h
INCLUDE: math.h
INCLUDE: local_servoamp.h

BASE_CLASS: private servoamp
BASE_CLASS: private local_servoamp
INIT_PROC: initialize_servoamp(the_inductance); mss_servoamp::INIT_FAILED
RESET_PROC: reset_servoamp(); mss_servoamp::RESET_FAILED

OP_ST_VAR: double coil_current
OP_ST_VAR: double sensor_current
OP_ST_VAR: double set_current
OP_ST_VAR: unsigned set_dac_value
OP_ST_VAR: int status
OP_ST_VAR: int fault_line
DEV_DECL: double inductance
CONST_PARAM: double the_inductance
CONST_PARAM: char *config_file
CONST_PARAM: int obj_id
CONST_PARAM: dispatcher *disp
BASE_CONST: servoamp(config_file)
BASE_CONST: local_servoamp(obj_id, disp)

ST_ACQ_PROC: acquire_state(state_vector); mss_servoamp::STATE_ACQUISITION_FAILED

COMMAND: set_current(double I)
COMMAND: get_actual_current(double &I)
COMMAND: get_current_settings(double &I, unsigned &dac_value)
COMMAND: inhibit()
COMMAND: uninhibit()
COMMAND: get_amp_status()
COMMAND: read_fault()
COMMAND: emergency_set_current(double I)
COMMAND: emergency_dump()
COMMAND: shutdown()
COMMAND: failure_reset()

ACT_PROC: set_current : do_set_current(I); mss_servoamp::SET_CURRENT_FAILED
ACT_PROC: get_actual_current : do_get_actual_current(I); \

mss_servoamp::GET_ACTUAL_CURRENT_FAILED
ACT_PROC: get_current_settings : do_get_current_settings(I, dac_value); \

mss_servoamp::GET_CURRENT_SETTINGS_FAILED
ACT_PROC: inhibit : do_inhibit(); mss_servoamp::INHIBIT_FAILED
ACT_PROC: uninhibit : do_uninhibit(); mss_servoamp::UNINHIBIT_FAILED
ACT_PROC: get_amp_status : do_get_amp_status(); mss_servoamp::GET_AMP_STATUS_FAILED
ACT_PROC: read_fault : do_read_fault(); mss_servoamp::READ_FAULT_FAILED
ACT_PROC: emergency_set_current : do_emergency_set_current(I); \

mss_servoamp::EMERGENCY_SET_CURRENT_FAILED
ACT_PROC: emergency_dump : do_emergency_dump(); mss_servoamp::EMERGENCY_DUMP_FAILED
ACT_PROC: shutdown : do_shutdown(); mss_servoamp::DO_SHUTDOWN_FAILED
ACT_PROC: failure_reset : do_failure_reset(); mss_servoamp::FAILURE_RESET_FAILED

CNT_PAR: double target_current

CNT_PAR_UPD: set_current: update_target_current(I); mss_servoamp::NO_RESPONSE
CNT_PAR_UPD: inhibit: update_target_current(0.0); mss_servoamp::NO_RESPONSE

145

CNT_PAR_UPD: emergency_dump: update_target_current(0.0); mss_servoamp::NO_RESPONSE
CNT_PAR_UPD: emergency_set_current: update_target_current(I); mss_servoamp::NO_RESPONSE
CNT_PAR_UPD: failure_reset: update_target_current(0.0); mss_servoamp::NO_RESPONSE
CNT_PAR_UPD: shutdown: update_target_current(0.0); mss_servoamp::NO_RESPONSE

MODE: inhibited
MODE: operating
MODE: failure_adjust
MODE: shutdown_mode
INIT_MODE: inhibited

CONST: double LOW_CURRENT = 5.0
CONST: double EXPECTED_CURRENT_TOLERANCE = 5.0
CONST: double MAX_CURRENT_CHANGE = 20.0
CONST: double ENERGY_CHANGE_RATE = 6000.0
CONST: double MAX_INHIBIT_CURRENT = 2.0
CONST: double CURRENT_CHARGE_RATE = 10.0
CONST: double TARGET_CURRENT_TOLERANCE = 5.0

// State-command policies
INTERLOCK: inhibit

 MODE: inhibited
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::COILS_INACTIVE
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: inhibited
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: operating
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::SHOULDNT_BE_OPERATING
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: inhibited
 CONDITION: zero_current(); mss_servoamp::NON_ZERO_CURRENT
 CONDITION: servo_faults (); mss_servoamp::SERVOAMP_FAULT
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: failure_adjust
 NEW_MODE: mss_servoamp::IN_FAILURE_ADJUST
 END:

146

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: uninhibit

 MODE: inhibited
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::COILS_INACTIVE
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: operating
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: operating
 NEW_MODE: mss_servoamp::ALREADY_OPERATING
 END:

 MODE: failure_adjust
 NEW_MODE: mss_servoamp::IN_FAILURE_ADJUST
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: set_current
 MODE: inhibited
 NEW_MODE: mss_servoamp::INHIBITED
 END:

 MODE: operating
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::SHOULDNT_BE_OPERATING
 END:

 PARENT_MODE: currents_idling
 NEW_MODE: operating
 CONDITION: less_than_max(I, target_current); mss_servoamp::CANT_SET_CURRENT
 END:

 PARENT_MODE: moving_seed
 NEW_MODE: operating
 CONDITION: less_than_max(I, MAX_CURRENT); mss_servoamp::CANT_SET_CURRENT
 CONDITION: greater_than_min(I, MIN_CURRENT); mss_servoamp::CANT_SET_CURRENT
 CONDITION: reasonable_current_param(I); mss_servoamp::CURRENT_CHANGE_TOO_LARGE
 CONDITION: at_target_current(); mss_servoamp::NOT_AT_TARGET_CURRENT
 END:

 PARENT_MODE: shutdown

147

 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: failure_adjust
 NEW_MODE: mss_servoamp::IN_FAILURE_ADJUST
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: get_actual_current
 MODE: inhibited
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::COILS_INACTIVE
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: inhibited
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: operating
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::SHOULDNT_BE_OPERATING
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: operating
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: get_current_settings
 MODE: inhibited
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::COILS_INACTIVE

148

 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: inhibited
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: operating
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::SHOULDNT_BE_OPERATING
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: operating
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: get_amp_status
 MODE: inhibited
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::COILS_INACTIVE
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: inhibited
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: operating
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::SHOULDNT_BE_OPERATING
 END:

 PARENT_MODE: currents_idling

149

 PARENT_MODE: moving_seed
 NEW_MODE: operating
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: read_fault
 MODE: inhibited
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::COILS_INACTIVE
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: inhibited
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: operating
 PARENT_MODE: inactive
 PARENT_MODE: vision_enabled
 PARENT_MODE: vision_calibration
 NEW_MODE: mss_servoamp::SHOULDNT_BE_OPERATING
 END:

 PARENT_MODE: currents_idling
 PARENT_MODE: moving_seed
 NEW_MODE: operating
 END:

 PARENT_MODE: shutdown
 NEW_MODE: mss_servoamp::SYSTEM_IS_SHUTDOWN
 END:
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: emergency_set_current

150

 MODE: inhibited
 NEW_MODE: mss_servoamp::INHIBITED
 END:

 MODE: operating
 NEW_MODE: failure_adjust
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: emergency_dump
 MODE: inhibited
 NEW_MODE: mss_servoamp::INHIBITED
 END:

 MODE: operating
 NEW_MODE: failure_adjust
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: shutdown
 MODE: inhibited
 NEW_MODE: mss_servoamp::INHIBITED
 END:

 MODE: operating
 NEW_MODE: failure_adjust
 CONDITION: zero_current(); mss_servoamp::NONZERO_CURRENT
 END:

 MODE: failure_adjust
 NEW_MODE: failure_adjust
 CONDITION: zero_current(); mss_servoamp::NONZERO_CURRENT
 END:

 MODE: shutdown_mode
 NEW_MODE: mss_servoamp::SERVOAMP_SHUTDOWN
 END:
END:

INTERLOCK: failure_reset
 MODE: inhibited
 NEW_MODE: mss_servoamp::INHIBITED
 END:

 MODE: operating
 NEW_MODE: mss_servoamp::CANT_RESET

151

 END:

 MODE: failure_adjust
 NEW_MODE: inhibited
 CONDITION: zero_current(); mss_servoamp::NONZERO_CURRENT
 END:

 MODE: shutdown_mode
 NEW_MODE: inhibited
 END:
END:

// Device error detection policies
MONITOR: inhibited
 SCHEDULE: COIL_OFF
 CONDITION: inhibit_state_consistency(present_op_state); mss_servoamp::SHOULD_BE_OFF
END:

MONITOR: operating
 SCHEDULE: COIL_ON
 CONDITION: operating_state_consistency(present_op_state); mss_servoamp::SHOULD_BE_ON
END:

MONITOR: failure_adjust
 SCHEDULE: COIL_ON
 CONDITION: operating_state_consistency(present_op_state); mss_servoamp::SHOULD_BE_ON
END:

MONITOR: shutdown_mode
 SCHEDULE: COIL_OFF
 CONDITION: inhibit_state_consistency(present_op_state); \

mss_servoamp::SHOULD_BE_SHUTDOWN
END:

// Error conditions
ERROR_COND: mss_servoamp::NO_RESPONSE
 RESPONSE: announce_error(“mss_servoamp::NO_RESPONSE”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::INIT_FAILED
 RESPONSE: announce_error(“mss_servoamp::INIT_FAILED”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::RESET_FAILED
 RESPONSE: announce_error(“mss_servoamp::RESET_FAILED”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SET_CURRENT_FAILED
 RESPONSE: announce_error(“mss_servoamp::SET_CURRENT_FAILED”);
mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::GET_ACTUAL_CURRENT_FAILED
 RESPONSE: announce_error(“mss_servoamp::GET_ACTUAL_CURRENT_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::GET_CURRENT_SETTINGS_FAILED
 RESPONSE: announce_error(“mss_servoamp::GET_CURRENT_SETTINGS_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::INHIBIT_FAILED

152

 RESPONSE: announce_error(“mss_servoamp::INHIBIT_FAILED”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::UNINHIBIT_FAILED
 RESPONSE: announce_error(“mss_servoamp::UNINHIBIT_FAILED”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::GET_AMP_STATUS_FAILED
 RESPONSE: announce_error(“mss_servoamp::GET_AMP_STATUS_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::READ_FAULT_FAILED
 RESPONSE: announce_error(“mss_servoamp::READ_FAULT_FAILED”);
mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::EMERGENCY_SET_CURRENT_FAILED
 RESPONSE: announce_error(“mss_servoamp::EMERGENCY_SET_CURRENT_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::EMERGENCY_DUMP_FAILED
 RESPONSE: announce_error(“mss_servoamp::EMERGENCY_DUMP_FAILED”);\

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::DO_SHUTDOWN_FAILED
 RESPONSE: announce_error(“mss_servoamp::DO_SHUTDOWN_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::FAILURE_RESET_FAILED
 RESPONSE: announce_error(“mss_servoamp::FAILURE_RESET_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::COILS_INACTIVE
 RESPONSE: announce_error(“mss_servoamp::COILS_INACTIVE”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SYSTEM_IS_SHUTDOWN
 RESPONSE: announce_error(“mss_servoamp::SYSTEM_IS_SHUTDOWN”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULDNT_BE_OPERATING
 RESPONSE: announce_error(“mss_servoamp::SHOULDNT_BE_OPERATING”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::NON_ZERO_CURRENT
 RESPONSE: announce_error(“mss_servoamp::NON_ZERO_CURRENT”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SERVOAMP_FAULT
 RESPONSE: announce_error(“mss_servoamp::SERVOAMP_FAULT”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SERVOAMP_SHUTDOWN
 RESPONSE: announce_error(“mss_servoamp::SERVOAMP_SHUTDOWN”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::ALREADY_OPERATING

153

 RESPONSE: announce_error(“mss_servoamp::ALREADY_OPERATING”); \
mss_servoamp::NO_RESPONSE

END:

ERROR_COND: mss_servoamp::IN_FAILURE_ADJUST
 RESPONSE: announce_error(“mss_servoamp::IN_FAILURE_ADJUST”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::INHIBITED
 RESPONSE: announce_error(“mss_servoamp::INHIBITED”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::CANT_SET_CURRENT
 RESPONSE: announce_error(“mss_servoamp::CANT_SET_CURRENT”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::CURRENT_CHANGE_TOO_LARGE
 RESPONSE: announce_error(“mss_servoamp::CURRENT_CHANGE_TOO_LARGE”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::STEP_TIME_TOO_SMALL
 RESPONSE: announce_error(“mss_servoamp::STEP_TIME_TOO_SMALL”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::NOT_AT_TARGET_CURRENT
 RESPONSE: announce_error(“mss_servoamp::NOT_AT_TARGET_CURRENT”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::CANT_RESET
 RESPONSE: announce_error(“mss_servoamp::CANT_RESET”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULD_BE_OFF
 RESPONSE: announce_error(“mss_servoamp::SHOULD_BE_OFF”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULD_BE_ON
 RESPONSE: announce_error(“mss_servoamp::SHOULD_BE_ON”); mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::SHOULD_BE_SHUTDOWN
 RESPONSE: announce_error(“mss_servoamp::SHOULD_BE_SHUTDOWN”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::STATE_ACQUISITION_FAILED
 RESPONSE: announce_error(“mss_servoamp::STATE_ACQUISITION_FAILED”); \

mss_servoamp::NO_RESPONSE
END:

ERROR_COND: mss_servoamp::NONZERO_CURRENT
 RESPONSE: announce_error(“mss_servoamp::NONZERO_CURRENT”); mss_servoamp::NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;
 return OK;

154

}
END:

PROC_DEF: int acquire_state(state_vector &v)
{
 servoamp::get_actual_current(v.coil_current);

 servoamp::get_current_settings(v.set_current, v.set_dac_value);

 v.status = servoamp::get_amp_status();
 v.fault_line = servoamp::read_fault();

 return OK;
}
END:

PROC_DEF: int inhibit_state_consistency(const state_vector &v)
{
 if(fabs(v.coil_current) > MAX_INHIBIT_CURRENT) {
 cout << v.coil_current << endl;
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int operating_state_consistency (state_vector &v)
{
 if(fabs(v.coil_current - target_current) < MAX_CURRENT_CHANGE &&
 fabs(v.coil_current - expected_current()) < EXPECTED_CURRENT_TOLERANCE) {
 return OK;
 }
 cout << v.coil_current << “ “ << target_current <<
 “ “ << expected_current() << endl;
 return ERROR;
}
END:

PROC_DEF: int failure_adjust_state_consistency (state_vector &v)
{
 if(fabs(v.coil_current - target_current) < MAX_CURRENT_CHANGE &&
 fabs(v.coil_current - expected_current()) < EXPECTED_CURRENT_TOLERANCE) {
 return OK;
 }
 return ERROR;
}
END:

PROC_DEF: int update_target_current(double I)
{
 target_current = I;
 return OK;
}
END:

PROC_DEF: int at_target_current ()
 {
 if (fabs (target_current - present_op_state.coil_current) > TARGET_CURRENT_TOLERANCE) {
 cerr << “Not at target current of “ << target_current <<

155

 “ present: “ << present_op_state.coil_current << “\n”;
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int reasonable_current_param (double I)
{
 if (fabs(I - target_current) > MAX_CURRENT_CHANGE ||
 0.5 * inductance * fabs (sqr (I) - sqr (target_current)) > ENERGY_CHANGE_RATE)
 {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int servo_faults()
{
 if (present_op_state.fault_line != AMP_OK){
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int zero_current()
{
 if (fabs(present_op_state.coil_current) > LOW_CURRENT ||
 target_current != 0) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: double expected_current()
{
 double I;
 I = op_state_at_last_cmd.coil_current +
 sign (target_current - op_state_at_last_cmd.coil_current)
 * CURRENT_CHARGE_RATE * time_since_last_cmd;

 if ((fabs(I - op_state_at_last_cmd.coil_current)>
 fabs(target_current - op_state_at_last_cmd.coil_current)) ||
 (fabs(target_current - I) < TARGET_CURRENT_TOLERANCE)) {
 I = target_current;

 }
 return I;
}
END:

PROC_DEF: int do_set_current(double I)
{
 if(servoamp::set_current(I) != AMP_OK) {
 return ERROR;
 }
 cout << device_name << “ set to “ << I << endl;

156

 return OK;
}
END:

PROC_DEF: int do_get_actual_current(double &I)
{
 if(servoamp::get_actual_current(I) != AMP_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_get_current_settings(double &I, unsigned &dac_value)
{
 if(servoamp::get_current_settings(I, dac_value) != AMP_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_inhibit()
{
 servoamp::inhibit();
 return OK;
}
END:

PROC_DEF: int do_uninhibit()
{
 servoamp::uninhibit();
 return OK;
}
END:

PROC_DEF: int do_get_amp_status()
{
 if(servoamp::get_amp_status() != AMP_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_read_fault()
{
 if(servoamp::read_fault() != AMP_OK) {
 return ERROR;
 }
 return OK;
}
END:

PROC_DEF: int do_emergency_dump()
{

 return OK;

157

}
END:

PROC_DEF: int do_failure_reset()
{

 return OK;
}
END:

PROC_DEF: int do_shutdown()
{

 return OK;
}
END:

PROC_DEF: int do_emergency_set_current(double I)
{
 servoamp::set_current(I);
 return OK;
}
END:

PROC_DEF: int initialize_servoamp(double the_inductance)
{
 inductance = the_inductance;
 target_current = 0.0;
 servoamp::uninhibit();
 servoamp::set_current(target_current);
 servoamp::inhibit();
 return OK;
}
END:

PROC_DEF: int reset_servoamp()
{
 target_current = 0.0;
 servoamp::uninhibit();
 if(servoamp::get_amp_status() == AMP_OK) {
 servoamp::set_current(target_current);
 }
 servoamp::inhibit();
 return OK;
}
END:

 UVAR Safety Policy Specification

System Machine

#include “config_macros.h”

INCLUDES: coordinate.h
INCLUDES: local_system.h

158

DEV_TYPE: uvar_system

DEV_CONFIG: header_dev.fil
DEV_CONFIG: regulator_rod.fil
DEV_CONFIG: safety_rod.fil
DEV_CONFIG: pump_dev.fil
DEV_CONFIG: neutron_detector.fil

CHILD: header_dev header
CHILD: pump_dev pump
CHILD: neutron_detector detector
CHILD: regulator_rod regulator
CHILD: safety_rod control1
CHILD: safety_rod control2
CHILD: safety_rod control3

FRAME_LENGTH: 2.0

SCHEDULE: REACTOR_OFF: 0.0, 0.5, 1.0, 1.5; 0.02, 0.5
SCHEDULE: REACTOR_ON: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, \

0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9; 0.02, 0.1
SCHEDULE: WATCHDOG: 0.0, 0.4, 0.8, 1.2, 1.6; 0.02, 0.5
WDOG_SCHED: WATCHDOG

OP_ST_VAR: double channel1_power
OP_ST_VAR: double channel2_power
OP_ST_VAR: double period_amp
OP_ST_VAR: double bridge_radiation
OP_ST_VAR: double reactor_face_radiation
OP_ST_VAR: int scram_button_reactor_room
OP_ST_VAR: int scram_button_ground_floor
OP_ST_VAR: int reactor_room_truck_door
OP_ST_VAR: int emergency_escape_hatch
OP_ST_VAR: double primary_header_air_pressure
OP_ST_VAR: double reactor_inlet_water_temp
OP_ST_VAR: double pool_level // multiple
OP_ST_VAR: int fire_alarm
OP_ST_VAR: double radiation_monitor // multiple
OP_ST_VAR: double argon_monitor // multiple
OP_ST_VAR: double core_gamma_monitor
OP_ST_VAR: double criticality_monitor
OP_ST_VAR: double constant_air_monitor
OP_ST_VAR: int demin_room_door
OP_ST_VAR: int heat_exch_room_door
OP_ST_VAR: double core_delta_t
OP_ST_VAR: double demin_conductivity

ST_ACQ_PROC: acquire_state(state_vector); STATE_ACQUISITION_FAILED

MODE: inactive
MODE: setup
MODE: startup_low
MODE: startup_high
MODE: operating_low
MODE: operating_high
MODE: scrammed

INIT_MODE: inactive

COMMAND: setup_begin()
COMMAND: setup_end()
COMMAND: startup_low_begin()
COMMAND: startup_high_begin()
COMMAND: operating_low_begin()

159

COMMAND: operating_high_begin()
COMMAND: scram()
COMMAND: scram_reset()

ACT_PROC: setup_begin: do_setup_begin(); SETUP_BEGIN_FAILED
ACT_PROC: setup_end : do_setup_end(); SETUP_END_FAILED
ACT_PROC: startup_low_begin : do_startup_low_begin(); STARTUP_LOW_BEGIN_FAILED
ACT_PROC: startup_high_begin : do_startup_high_begin(); STARTUP_HIGH_BEGIN_FAILED
ACT_PROC: operating_low_begin : do_operating_low_begin(); OPERATING_LOW_BEGIN_FAILED
ACT_PROC: operating_high_begin : do_operating_high_begin();
OPERATING_HIGH_BEGIN_FAILED
ACT_PROC: scram: do_scram(); SCRAM_FAILED
ACT_PROC: scram_reset : do_scram_reset(); SCRAM_RESET_FAILED

CONST: double MAX_IDLE_PERIOD_MOVEMENT = 15.0
CONST: double MAX_INCREMENTAL_MOVEMENT = 5.0
CONST: double MAX_UCS_MOVEMENT = 2.0
CONST: double THRESHOLD_FORCE = 2.0

INTERLOCK: setup_begin
 MODE: inactive
 NEW_MODE: setup
 END:

 MODE: setup
 MODE: startup_low
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: MUST_BE_INACTIVE
 END:
END:

INTERLOCK: setup_end
 MODE: setup
 NEW_MODE: setup
 END:

 MODE: inactive
 MODE: startup_low
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: MUST_BE_IN_SETUP
 END:
END:

INTERLOCK: startup_low_begin
 MODE: setup
 NEW_MODE: startup_low
 CONDITION: check_setup_low(); ILLEGAL_LOW_CONFIG
END:

 MODE: inactive
 MODE: startup_low
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: MUST_BE_IN_SETUP
 END:

160

END:

INTERLOCK: startup_high_begin
 MODE: setup
 NEW_MODE: startup_high
 CONDITION: check_setup_high(); ILLEGAL_HIGH_CONFIG
 END:

 MODE: inactive
 MODE: startup_low
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: MUST_BE_IN_SETUP
 END:
END:

INTERLOCK: operating_low_begin
 MODE: startup_low
 NEW_MODE: operating_low
 END:

 MODE: inactive
 MODE: setup
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: MUST_BE_IN_STARTUP_LOW
 END:
END:

INTERLOCK: operating_high_begin
 MODE: startup_high
 NEW_MODE: operating_high
 END:

 MODE: inactive
 MODE: setup
 MODE: startup_low
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: MUST_BE_IN_STARTUP_HIGH
 END:
END:

INTERLOCK: scram
 MODE: inactive
 MODE: setup
 MODE: startup_low
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 MODE: scrammed
 NEW_MODE: scrammed
 END:
END:

161

INTERLOCK: scram_reset
 MODE: inactive
 MODE: setup
 MODE: startup_low
 MODE: startup_high
 MODE: operating_low
 MODE: operating_high
 NEW_MODE: MUST_BE_SCRAMMED
 END:

 MODE: scrammed
 NEW_MODE: scram_reset()
 END:
END:

CONST: double MAX_POWER = 125.0

MONITOR: inactive
SCHEDULE: REACTOR_OFF
END:

MONITOR: setup
SCHEDULE: REACTOR_OFF
END:

MONITOR: startup_low
SCHEDULE: REACTOR_ON
END:

MONITOR: startup_high
SCHEDULE: REACTOR_ON
CONDITION: runaway(); RUNAWAY_SEED
END:

MONITOR: operating_low
SCHEDULE: REACTOR_ON
END:

MONITOR: operating_high
SCHEDULE: REACTOR_ON
CONDITION: less_than_max(present_op_state.channel1_power, MAX_POWER); \

MAX_POWER_EXCEEDED
CONDITION: less_than_max(present_op_state.bridge_radiation, MAX_BRIDGE_RADIATION); \

MAX_BRIDGE_RADIATION_EXCEEDED

// Other conditions would follow for all of the operational state
// variables.
END:

MONITOR: scrammed
SCHEDULE: REACTOR_ON
END:

// All of the error responses will be warnings or scrams
ERROR_COND: MAX_POWER_EXCEEDED
 RESPONSE: do_scram(); NO_RESPONSE
END:

ERROR_COND: MAX_BRIDGE_RADIATION_EXCEEDED
 RESPONSE: do_scram(); NO_RESPONSE
END:

PROC_DEF: int do_scram();

162

{
 // invoke scram here

 return OK;
}
END:

Safety Rod Machine

#include “config_macros.h”

DEV_TYPE: safety_rod

INCLUDES: general_procs.h
INCLUDES: math.h

INIT_PROC: initialize_safety_rod()

OP_ST_VAR: double position

ST_ACQ_PROC: acquire_state(state_vector); safety_rod::STATE_ACQUISITION_FAILED

MODE: operating
MODE: failed
INIT_MODE: operating

COMMAND: up()
COMMAND: down()
COMMAND: scram()
COMMAND: set_failed()
COMMAND: reset()

ACT_PROC: up : do_up; safety_rod::UP_FAILED
ACT_PROC: down : do_down; safety_rod::DOWN_FAILED
ACT_PROC: scram : do_scram; safety_rod::SCRAM_FAILED
ACT_PROC: set_failed : do_set_failed(); safety_rod::SET_FAILED_FAILED
ACT_PROC: reset : do_reset(); safety_rod::RESET_FAILED

// State-command policies
INTERLOCK: up
 MODE: operating
 PARENT_MODE: inactive
 NEW_MODE: safety_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: operating
 END:
 END:

 MODE: failed
 NEW_MODE: safety_rod::FAILED
 END:
END:

163

INTERLOCK: down
 MODE: operating
 PARENT_MODE: inactive
 NEW_MODE: safety_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: operating
 END:
 END:

 MODE: failed
 NEW_MODE: safety_rod::FAILED
 END:
END:

INTERLOCK: scram
 MODE: operating
 MODE: failed
 NEW_MODE: operating
 END:
END:

INTERLOCK: set_failed
 MODE: operating
 PARENT_MODE: scrammed
 PARENT_MODE: inactive
 PARENT_MODE: setup
 NEW_MODE: failed
 END:

 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: safety_rod::NOT_SCRAMMED
 END:
 END:

 MODE: failed
 NEW_MODE: failed
 END:
END:

INTERLOCK: reset
 MODE: operating
 NEW_MODE: safety_rod::NOT_FAILED
 END:

 MODE: failed
 NEW_MODE: operating
 END:
END:

MONITOR: operating
 SCHEDULE: REACTOR_ON

164

END:

MONITOR: failed
 SCHEDULE: NO_SCHEDULE
END:

// Error conditions
// All of the error responses will be warnings or setting failed
// Scram is triggered at the system level

ERROR_COND: safety_rod::NO_RESPONSE
 RESPONSE: announce_error(“safety_rod::NO_RESPONSE”); safety_rod::NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;
 return OK;
}
END:

Regulator rod Machine

#include “config_macros.h”

DEV_TYPE: regulator_rod

INCLUDES: general_procs.h
INCLUDES: math.h

INIT_PROC: initialize_regulator_rod()

OP_ST_VAR: double position

ST_ACQ_PROC: acquire_state(state_vector); regulator_rod::STATE_ACQUISITION_FAILED

MODE: auto
MODE: manual
MODE: failed
INIT_MODE: manual

COMMAND: up()
COMMAND: down()
COMMAND: auto_up()
COMMAND: auto_down()
COMMAND: set_auto()
COMMAND: set_manual()
COMMAND: set_failed()
COMMAND: reset()

ACT_PROC: up : do_up; regulator_rod::UP_FAILED
ACT_PROC: down : do_down(); regulator_rod::DOWN_FAILED
ACT_PROC: auto_up : do_auto_up(); regulator_rod::AUTO_UP_FAILED
ACT_PROC: auto_down : do_auto_down(); regulator_rod::AUTO_DOWN_FAILED
ACT_PROC: set_auto : do_set_auto(); regulator_rod::SET_AUTO_FAILED

165

ACT_PROC: set_manual : do_set_manual(); regulator_rod::SET_MANUAL_FAILED
ACT_PROC: set_failed : do_set_failed(); regulator_rod::SET_FAILED_FAILED
ACT_PROC: reset : do_reset(); regulator_rod::RESET_FAILED

CLASS_DECL: double last_position

// State-command policies
INTERLOCK: up
 MODE: auto
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: manual
 END:
 END:

 MODE: manual
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: manual
 END:
 END:

 MODE: failed
 NEW_MODE: regulator_rod::FAILED
 END:
END:

INTERLOCK: down
 MODE: auto
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: manual
 END:
 END:

 MODE: manual
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low

166

 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: manual
 END:
 END:

 MODE: failed
 NEW_MODE: regulator_rod::FAILED
 END:
END:

INTERLOCK: auto_up
 MODE: auto
 PARENT_MODE: inactive
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::ILLEGAL_MODE_AUTO
 END:

 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: auto
 END:
 END:

 MODE: manual
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::IN_MANUAL_MODE
 END:
 END:

 MODE: failed
 NEW_MODE: regulator_rod::FAILED
 END:
END:

INTERLOCK: auto_down
 MODE: auto
 PARENT_MODE: inactive
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::ILLEGAL_MODE_AUTO
 END:

 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: auto
 END:
 END:

167

 MODE: manual
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::IN_MANUAL_MODE
 END:
 END:

 MODE: failed
 NEW_MODE: regulator_rod::FAILED
 END:
END:

INTERLOCK: set_auto
 MODE: auto
 PARENT_MODE: inactive
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::ILLEGAL_MODE_AUTO
 END:
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: regulator_rod::ALREADY_AUTO
 END:
 END:

 MODE: manual
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::NOT_IN_OPERATING_MODE
 END:

 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: auto
 END:
 END:

 MODE: failed
 NEW_MODE: regulator_rod::FAILED
 END:
END:

INTERLOCK: set_manual
 MODE: auto
 PARENT_MODE: inactive
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high

168

 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::ILLEGAL_MODE_AUTO
 END:
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: manual
 END:
 END:

 MODE: manual
 PARENT_MODE: inactive
 NEW_MODE: regulator_rod::COILS_INACTIVE
 END:
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: scrammed
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: regulator_rod::ALREADY_MANUAL
 END:
 END:

 MODE: failed
 NEW_MODE: regulator_rod::FAILED
 END:
END:

INTERLOCK: set_failed
 MODE: auto
 MODE: manual
 MODE: failed
 NEW_MODE: failed
 END:
END:

INTERLOCK: reset
 MODE: auto
 MODE: manual
 NEW_MODE: regulator_rod::NOT_FAILED
 END:

 MODE: failed
 NEW_MODE: manual
 END:
END:

// Device error detection policies

MONITOR: auto
 PARENT_MODE: inactive
 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: scrammed
 SCHEDULE: REACTOR_ON
 CONDITION: return_ERROR(); regulator_rod::ILLEGAL_MODE_AUTO
 END:
 PARENT_MODE: operating_low
 PARENT_MODE: o perating_high
 CONDITION: check_auto(); regulator_rod::AUTO_FAILURE
 END:

169

END:

MONITOR: manual
 SCHEDULE: REACTOR_ON
 CONDITION: check_manual(); regulator_rod::MANUAL_FAILURE
END:

MONITOR: failed
 SCHEDULE: NO_SCHEDULE
END:

// Error conditions
// All of the error responses will be warnings or setting failed
// Scram is triggered at the system level

ERROR_COND: regulator_rod::NO_RESPONSE
 RESPONSE: announce_error(“regulator_rod::NO_RESPONSE”);
regulator_rod::NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;
 return OK;
}
END:

 Pump Machine

 #include “config_macros.h”

DEV_TYPE: pump_dev

INCLUDES: general_procs.h
INCLUDES: math.h

INIT_PROC: initialize_pump_dev

OP_ST_VAR: double cooling_flow

ST_ACQ_PROC: acquire_state(state_vector); regulator_rod::STATE_ACQUISITION_FAILED

MODE: off
MODE: on
MODE: failed
INIT_MODE: off

COMMAND: turn_off()
COMMAND: turn_on()
COMMAND: set_failed()
COMMAND: reset()

ACT_PROC: turn_on : do_turn_on; pump_dev::TURN_ON_FAILED

170

ACT_PROC: turn_off : do_turn_off; pump_dev::TURN_OFF_FAILED
ACT_PROC: set_failed : do_set_failed(); pump_dev::SET_FAILED_FAILED
ACT_PROC: reset : do_reset(); pump_dev::RESET_FAILED

// State-command policies
INTERLOCK: turn_off
 MODE: off
 PARENT_MODE: inactive
 NEW_MODE: pump_dev::COILS_INACTIVE
 END:
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: pump_dev::ILLEGAL_MODE_OFF
 END:
 PARENT_MODE: setup
 PARENT_MODE: scrammed
 NEW_MODE: regulator_rod::ALREADY_OFF
 END:
 END:

 MODE: on
 PARENT_MODE: inactive
 NEW_MODE: pump_dev::COILS_INACTIVE
 END:
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: pump_dev::REACTOR_IS_OPERATING
 END:
 PARENT_MODE: setup
 PARENT_MODE: scrammed
 NEW_MODE: off
 END:
 END:

 MODE: failed
 NEW_MODE: pump_dev::FAILED
 END:
END:

INTERLOCK: turn_on
 MODE: off
 PARENT_MODE: inactive
 NEW_MODE: pump_dev::COILS_INACTIVE
 END:
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: pump_dev::SHOULD_BE_ON
 END:
 PARENT_MODE: setup
 PARENT_MODE: scrammed
 NEW_MODE: on
 END:
 END:

 MODE: on
 PARENT_MODE: inactive
 NEW_MODE: pump_dev::COILS_INACTIVE

171

 END:
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: setup
 PARENT_MODE: scrammed
 NEW_MODE: pump_dev::ALREADY_ON
 END:
 END:

 MODE: failed
 NEW_MODE: pump_dev::FAILED
 END:
END:

INTERLOCK: set_failed
 MODE: on
 MODE: off
 MODE: failed
 NEW_MODE: failed
 END:
END:

INTERLOCK: reset
 MODE: on
 MODE: off
 NEW_MODE: pump_dev::NOT_FAILED
 END:

 MODE: failed
 NEW_MODE: off
 END:
END:

// Device error detection policies

MONITOR: off
 PARENT_MODE: inactive
 PARENT_MODE: setup
 SCHEDULE: REACTOR_OFF
 CONDITION: return_ERROR(); pump_dev::ILLEGAL_MODE_AUTO
 END:

 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 SCHEDULE: REACTOR_ON
 CONDITION: return_ERROR(); pump_dev::ILLEGAL_MODE_OFF
 END:

 PARENT_MODE: scrammed
 CONDITION: check_off(); pump_dev::SHOULD_BE_OFF
 END:
END:

MONITOR: on
 PARENT_MODE: inactive
 SCHEDULE: REACTOR_OFF
 CONDITION: return_ERROR(); pump_dev::ILLEGAL_MODE_ON
 END:

172

 PARENT_MODE: setup
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 SCHEDULE: REACTOR_ON
 CONDITION: check_on(); pump_dev::SHOULD_BE_ON
 END:
END:

MONITOR: failed
 SCHEDULE: NO_SCHEDULE
END:

// Error conditions
// All of the error responses will be warnings or setting failed
// Scram is triggered at the system level

ERROR_COND: mss_servoamp::NO_RESPONSE
 RESPONSE: announce_error(“mss_servoamp::NO_RESPONSE”);
mss_servoamp::NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;
 return OK;
}
END:

 Header Machine

#include “config_macros.h”

DEV_TYPE: header_dev

INCLUDES: general_procs.h
INCLUDES: math.h

INIT_PROC: initialize_header()

ST_ACQ_PROC: acquire_state(state_vector); header_dev::STATE_ACQUISITION_FAILED

MODE: up
MODE: down
MODE: failed
INIT_MODE: operating

COMMAND: move_up()
COMMAND: down()
COMMAND: set_failed()

173

COMMAND: reset()

ACT_PROC: move_up : do_move_up; header_dev::MOVE_UP_FAILED
ACT_PROC: move_down : do_move_down; header_dev::MOVE_DOWN_FAILED
ACT_PROC: set_failed : do_set_failed(); header_dev::SET_FAILED_FAILED
ACT_PROC: reset : do_reset(); header_dev::RESET_FAILED

// State-command policies
INTERLOCK: move_up
 MODE: down
 PARENT_MODE: setup
 NEW_MODE: up
 END:

 PARENT_MODE: inactive
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: header_dev::NOT_IN_SETUP
 END:
 END:

 MODE: up
 NEW_MODE: header_dev::ALREADY_UP
 END:

 MODE: failed
 NEW_MODE: header_dev::FAILED
 END:
END:

INTERLOCK: move_down
 MODE: up
 PARENT_MODE: setup
 NEW_MODE: down
 END:

 PARENT_MODE: inactive
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: header_dev::NOT_IN_SETUP
 END:
 END:

 MODE: down
 NEW_MODE: header_dev::ALREADY_DOWN
 END:

 MODE: failed
 NEW_MODE: header_dev::FAILED
 END:
END:

INTERLOCK: set_failed
 MODE: operating
 PARENT_MODE: scrammed
 PARENT_MODE: inactive

174

 PARENT_MODE: setup
 NEW_MODE: failed
 END:

 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: header_dev::NOT_SCRAMMED
 END:
 END:

 MODE: failed
 NEW_MODE: failed
 END:
END:

INTERLOCK: reset
 MODE: operating
 NEW_MODE: header_dev::NOT_FAILED
 END:

 MODE: failed
 NEW_MODE: operating
 END:
END:

MONITOR: up
 SCHEDULE: REACTOR_ON
 CONDITION: header_is_up(); header_dev::SHOULD_BE_UP
END:

MONITOR: down
 SCHEDULE: REACTOR_ON
 CONDITION: header_is_down(); header_dev::SHOULD_BE_DOWN
END:

MONITOR: failed
 SCHEDULE: NO_SCHEDULE
END:

// Error conditions
// All of the error responses will be warnings or setting failed
// Scram is triggered at the system level

ERROR_COND: header_dev::NO_RESPONSE
 RESPONSE: announce_error(“header_dev::NO_RESPONSE”); header_dev::NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;
 return OK;
}
END:

175

Neutron Detector Machine

include “config_macros.h”

DEV_TYPE: neutron_detector

INCLUDES: general_procs.h
INCLUDES: math.h

INIT_PROC: initialize_header()

ST_ACQ_PROC: acquire_state(state_vector); neutron_detector::STATE_ACQUISITION_FAILED

MODE: operating
MODE: failed
INIT_MODE: operating

COMMAND: forward()
COMMAND: backward()
COMMAND: set_failed()
COMMAND: reset()

ACT_PROC: forward : do_forward; neutron_detector::FORWARD_FAILED
ACT_PROC: backward : do_backward; neutron_detector::BACKWARD_FAILED
ACT_PROC: set_failed : set_failed(); neutron_detector::SET_FAILED_FAILED
ACT_PROC: reset : reset(); neutron_detector::RESET_FAILED

// State-command policies
INTERLOCK: forward
 MODE: operating
 PARENT_MODE: setup
 PARENT_MODE: inactive
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: operating
 END:
 END:

 MODE: failed
 NEW_MODE: neutron_detector::FAILED
 END:
END:

INTERLOCK: backward
 MODE: operating
 PARENT_MODE: setup
 PARENT_MODE: inactive
 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 PARENT_MODE: scrammed
 NEW_MODE: operating
 END:
 END:

176

 MODE: failed
 NEW_MODE: neutron_detector::FAILED
 END:
END:

INTERLOCK: set_failed
 MODE: operating
 PARENT_MODE: scrammed
 PARENT_MODE: inactive
 PARENT_MODE: setup
 NEW_MODE: failed
 END:

 PARENT_MODE: startup_low
 PARENT_MODE: startup_high
 PARENT_MODE: operating_low
 PARENT_MODE: operating_high
 NEW_MODE: neutron_detector::NOT_SCRAMMED
 END:
 END:

 MODE: failed
 NEW_MODE: failed
 END:
END:

INTERLOCK: reset
 MODE: operating
 NEW_MODE: neutron_detector::NOT_FAILED
 END:

 MODE: failed
 NEW_MODE: operating
 END:
END:
MONITOR: operating
 SCHEDULE: REACTOR_ON
END:

MONITOR: failed
 SCHEDULE: NO_SCHEDULE
END:

// Error conditions
// All of the error responses will be warnings or setting failed
// Scram is triggered at the system level

ERROR_COND: neutron_detector::NO_RESPONSE
 RESPONSE: announce_error(“neutron_detector::NO_RESPONSE”); \

neutron_detector::NO_RESPONSE
END:

PROC_DEF: int announce_error(char *message)
{
 cerr << “ERROR for device “ << device_name << “ -- “ <<

message << “\n” << endl;
 cerr << “Present device mode: “ << present_mode << endl;
 return OK;
}
END:

