

RETRANSMISSION-BASED ERROR CONTROL FOR

CONTINUOUS MEDIA TRAFFIC IN

PACKET-SWITCHED NETWORKS

A Dissertation
Presented to

The Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment
of the Requirements for the Degree

Doctor of Philosophy
in

Computer Science

by

Bert J. Dempsey
May 1994

Copyright c
 1994 by Bert J. Dempsey

Acknowledgments

There are three people without whom I could not have completed this dissertation. Alf

Weaver saw me through the entire process with a continuous stream of valuable advice,

multidimensional support, and excellent opportunities. I especially appreciated the encour-

agement and support he o�ered during the tough times. Jorg Liebeherr spent uncountable

hours with me, re�ning and improving the ideas in this dissertation. His clarity of thought

and creativity is much evidenced in the �nal product. Finally, my wonderful wife, Molly,

made the long process viable through her love and support at home.

The quality of the inhabitants of the Computer Networks Lab has been very high. Tim

Hartrick provided me with many spirited discussions that have signi�cantly broadened

my understanding of computer science, major league sports, and Cleveland. John Fenton

revealed to me the subtle workings of protocols and the importance of champagne. It was

a pleasure to work with Matt Lucas on the empirical study given in Chapter 5 of the

dissertation. Fraser Street and I had many fruitful conversations about the state-of-the-art.

I also enjoyed and bene�ted from conversations with many others, especially Alex Colvin,

James McNabb, Je�rey Michel, Robert Simoncic, Mark Smith, and Alex Waterman.

I thank my friends outside the department|Lee Cohen, Je� Herrin, Mark Lang�tt, and

Karen LeMaire|for their support and understanding during hectic times. I thank Louise

Gallager for covering the acolytes and Boots Mead for enduring periods of limited technical

support. Finally I thank my parents for their support and encouragement over the past 33

years|they have given me so much.

This work is supported in part by the Naval Command, Control, and Ocean Surveillance

Center, Naval Research and Development Division, William T. Gex, Technical Representa-

tive.

iii

Abstract

Distribution of digital audio and video, continuous media, over packet-switched networks has

become increasingly feasible due to technology trends leading to powerful desktop computers

and high-speed networks. Unlike reliable data transfers, transmission of continuous media

streams is sensitive to network delays and has some tolerance for limited data loss. End-to-

end protocols for continuous media tra�c are now emerging, and an area of active research

is error control in this context.

This dissertation provides a comprehensive and fundamental study of retransmission-based

error control for the distribution of digital continuous media over packet-switched net-

works. While widely dismissed in the current literature, a retransmission-based approach is

attractive since it imposes little overhead on network resources and since alternative tech-

niques have notable drawbacks with respect to complexity, portability, and cost. It must

be demonstrated, however, that retransmissions can provide signi�cant error coverage while

respecting delay constraints.

We de�ne a novel delay-constrained retransmission scheme, Slack ARQ, and develop a sim-

ulation model to determine its feasibility for distribution of packet voice in a local area

network (LAN). The evaluation uses a unique performance metric for retransmission ef-

fectiveness, incorporating both error and delay considerations that determine the overall

transmission quality. This work is extended with an analytical end-to-end model for Slack

ARQ, from which analytical expressions for our retransmission performance metric are de-

rived. A principle reason for the paucity of retransmission-based approaches in the literature

has been the lack of methodologies for assessing their e�ectiveness in a delay-sensitive en-

vironment. Our analysis provides, without resorting to lengthy simulations, quanti�cation

of the e�ects of transmission parameters, such as the packetization interval in the protocol

and the network delay distribution, on retransmission success. Numerical examples show

the applicability of Slack ARQ in many realistic transmission scenarios.

We design and carry out an empirical investigation of packet voice distribution across a

contemporary high-performance campus-wide network. This study is of interest since large

iv

multiple-segment LANs are likely candidates for near-term deployment of continuous media

applications and since little empirical work has been done in this area. It is concluded that

the campus-wide network in this study can indeed support real-time packet streams, but

that sporadic high delays in the network may threaten transmission quality. We discuss the

implications of the empirical measurements for our modeling, and, by calculating empirical

probabilities, we show that the measurement data substantially corroborates the results of

our simulation and analytical studies. That is, in total, the simulation, analysis, and em-

pirical measurements presented in this dissertation conclusively demonstrate the feasibility

of Slack ARQ in most packet-switched networks.

Finally, in Appendix A, we de�ne a novel connection-oriented service that provides limited

recovery from packet loss using delay-constrained retransmission within a next-generation

transport protocol, the Xpress Transfer Protocol (XTP). We implement this lightweight ser-

vice through minor modi�cations to an existing XTP implementation, and its performance

is demonstrated in experimental network transfers.

v

.

To Molly

vi

Contents

1 Introduction 1

1.1 Quality in Network Distribution of Continuous Media : : : : : : : : : : : : 3

1.1.1 Encoding : 3

1.1.2 Roundtrip Delay : 4

1.1.3 Delay Jitter : 5

1.1.4 Error Control : 6

1.2 Quality of Service Networking and Error Control : : : : : : : : : : : : : : : 8

1.3 Inadequacies of Conventional Error Control : : : : : : : : : : : : : : : : : : 9

1.4 Thesis Statement and Overview : 11

1.5 Document Organization : 13

2 Delay-Constrained Error Control 14

2.1 Continuous Media Requirements for Error Protection : : : : : : : : : : : : : 14

2.2 Open-Loop Error Control : 16

2.2.1 Forward Error Correction : 16

2.2.2 Hybrid FEC/ARQ : 18

2.2.3 Channel Coding : 19

2.3 Retransmission-Based Error Control : 21

2.3.1 Partially Error-Controlled Connections : : : : : : : : : : : : : : : : : 21

2.3.2 Application-Oriented Error Control : : : : : : : : : : : : : : : : : : 22

2.4 Delay-Constrained ARQ : 23

3 A Delay-Constrained Retransmission Scheme for Packet Voice 25

3.1 Slack ARQ : 25

vii

3.1.1 Delay Jitter Reduction : 26

3.1.2 Extending the Control Time for Timely Retransmission : : : : : : : 29

3.2 Evaluation of Slack ARQ : 31

3.2.1 Simulation Model : 32

3.2.2 Experiments : 34

3.3 Conclusions : 40

4 An Analytical End-to-End Model for Slack ARQ 41

4.1 End-to-End Model : 42

4.2 Analysis of End-to-End Model : 44

4.2.1 Probability of Continuous Playback Without Errors : : : : : : : : : 45

4.2.2 Probability of Continuous Playback in the Presence of Errors : : : : 46

4.3 Numerical Examples : 49

4.3.1 Example 1: E�ects of the Control Time on Retransmission : : : : : 51

4.3.2 Example 2: E�ects of Network Delay Variation : : : : : : : : : : : : 53

4.3.3 Example 3: E�ects of Average Network Delay : : : : : : : : : : : : : 54

4.3.4 Example 4: E�ects of Packetization Interval : : : : : : : : : : : : : : 56

4.4 Conclusions : 57

5 An Empirical Study of Packet Voice Distribution over a Campus-Wide

Network 59

5.1 Goals of the Study : 59

5.2 Packet Voice Experiments : 61

5.2.1 Experimental Approach : 61

5.2.2 Software Tools : 63

5.2.3 Measurements : 64

5.3 Analysis of Empirical Results : 69

5.3.1 Voice Tra�c Characteristics : 70

5.3.2 Network Measurements : 72

5.4 Summary : 76

viii

6 Conclusions 78

6.1 Summary of Contributions : 79

6.2 Future Work : 81

A A Lightweight Limited-Retransmission Service for the Xpress Transfer

Protocol 83

A.1 Introduction : 83

A.2 PECC Service Interface : 84

A.3 Retransmission Algorithm : 86

A.4 Lightweight Implementation Strategy : 89

A.5 Experiments : 90

A.6 Conclusions : 95

BIBLIOGRAPHY 97

ix

List of Tables

1.1 E�ect of Roundtrip Delays on Speech Quality. : : : : : : : : : : : : : : : : : 5

3.1 Default Parameters of the Simulation Model (in milliseconds). : : : : : : : : 34

3.2 Delay Parameters in Experiment 3 (in milliseconds). : : : : : : : : : : : : : 39

4.1 Parameters for Numerical Examples. : 50

5.1 Routes for Voice Transmissions. : 65

A.1 Performance of PECC Service under Various Con�gurations. : : : : : : : : 91

A.2 PECC Con�gurations with Window Criteria. : : : : : : : : : : : : : : : : : 93

x

List of Figures

3.1 Transmission and Playback of a Talkspurt. : : : : : : : : : : : : : : : : : : 28

3.2 Transmission of a Talkspurt in the Presence of Errors. : : : : : : : : : : : : 30

3.3 Probability of Continuous Playback (Tx = 10 ms). : : : : : : : : : : : : : : 35

3.4 Probability of Continuous Playback (Tx = 25 ms). : : : : : : : : : : : : : : 36

3.5 Probability of Continuous Playback (Tx = 50 ms). : : : : : : : : : : : : : : 37

3.6 Probability of Continuous Playback (TV = 50 ms). : : : : : : : : : : : : : : 38

3.7 Probability of Continuous Playback for Di�erent Distributions for Tnet. : : 39

4.1 Transmission Model of a Talkspurt. : 43

4.2 Retransmission E�ectiveness for an E2 (Erlang-2) Network Delay Distribution. 51

4.3 Delay Jitter for Di�erent Network Delay Distributions. : : : : : : : : : : : 52

4.4 Retransmission E�ectiveness for Di�erent Network Delay Distributions. : : 52

4.5 Delay Jitter for Di�erent Mean Network Delays. : : : : : : : : : : : : : : : 55

4.6 Retransmission E�ectiveness for Di�erent Mean Network Delays. : : : : : 55

4.7 Retransmission E�ectiveness for an ATM Cell-Level Protocol. : : : : : : : 56

5.1 University of Virgina Campus Network. : 62

5.2 Roundtrip Times over Path 1. : 66

5.3 High Delays in Path 1. : 67

5.4 Roundtrip Times over Path 2. : 67

5.5 Roundtrip Times over Path 3. : 68

5.6 Roundtrip Times over Path 3 (Reduced Scale). : : : : : : : : : : : : : : : : 68

5.7 Talkspurt Size as a Function of Hangover Time. : : : : : : : : : : : : : : : 70

5.8 Density Function of Interpacket Times at the Source. : : : : : : : : : : : : 71

xi

5.9 Packets in a Talkspurt. : 72

5.10 Control Times and the Elimination of Jitter Gaps. : : : : : : : : : : : : : : 74

5.11 Control Times and Retransmission Probabilities for Path 1. : : : : : : : : 75

A.1 Sequencing and Error Control in Communication Services. : : : : : : : : : 84

A.2 State Variables at the XTP Receiver. : 87

xii

Chapter 1

Introduction

New application areas are emerging that will bring radical changes to the �eld of computer

networking. High-speed �ber optic networks and increasingly powerful desktop computers

are driving the trend toward a much higher degree of connectivity and the incorporation of

new computing paradigms. Application domains such as wide-area distributed computing

and digital multimedia|the integration of images, video, and audio data types with tra-

ditional text and graphics in digital computers|will create a new network tra�c mix and

introduce network
ows with requirements quite di�erent from those of current applications.

The clearest trend in this shift to a new mix of distributed applications is the rapidly

growing emphasis on digital audio and video, or continuous media. 1 Digital representation

of audio and video signals is fundamentally attractive since it o�ers more
exibility in ma-

nipulating and processing these data types than that available with analog representations.

Integration of digital continuous media in general-purpose computing systems promises to

signi�cantly enhance the quality and bandwidth of human-computer interaction. As com-

puting and communication merge, new digital communication services will be created.

Standards for digital representations are important for widespread acceptance. Inter-

national standards for audio, images, and video have emerged in recent years, but standards

continue to evolve as new techniques push the state-of-the-art in the coding and compression

of audiovisual information [19]. At the present time (c. 1994) audio and video hardware is

increasingly common in desktop computers, and the experience base for creating and using

1Continuous media refers to the fact that audio and video are fundamentally analog data types. Digitizing
audio and video signals creates a bit stream that must be continuously transmitted across the network.

1

digital multimedia documents and interactive services is now expanding.

Continuous media services have traditionally been handled only in telephony and

television networks that use analog methods and are separate from digital computer com-

munications. With the convergence of enabling technology trends, the integration of digital

continuous media and computer data into a single physical network has now become fea-

sible, with potentially enormous economic bene�ts. Of particular importance is the highly

visible e�ort by the international telephony standards body, CCITT, to standardize a high-

speed integrated services network architecture known as Broadband ISDN, with its under-

lying packet-switched transport, the Asynchronous Transfer Mode (ATM) technology [11].

Broadband ISDN will enable high-speed delivery of digital continuous media over wide-area

networks.

Conventional networks for continuous media are based on circuit-switched technology

since circuit-switching allows for careful control of loss and delay. Integrated services net-

works, however, will use packet-based transport for digital voice and video services since

packet-switching utilizes network resources more e�ciently than circuit switching. The sta-

tistical multiplexing of packets exploits the fact that voice and video are inherently variable

rate sources [7, 33]. The potential gain in e�ciency is signi�cant. Studies show 20-30%

of the time in a voice conversation consists of silence [7], and the peak-to-mean ratio of

variable-rate video is typically in the range of 1.5 to 4.5 [20].

Accommodation of continuous media streams in packet-switched networks represents

a tremendous technical challenge. Distribution of continuous media streams is sensitive

to network delays and variations in those delays, and these real-time requirements contrast

with those for the applications that have traditionally dominated computer communications,

e.g., bulk data transfer and remote login. In addition, most continuous media data has an

inherent tolerance for limited data loss, unlike reliable data transfers. Current communi-

cation services in packet-switched architectures are ill-suited for distribution of continuous

media, and new services to handle this tra�c must be designed.

2

1.1 Quality in Network Distribution of Continuous Media

The distribution of continuous media across a packet-switched network requires considera-

tion of all factors that signi�cantly a�ect the quality of the playback at the receiving site.

In this section we discuss issues important for maintaining high quality transmissions and

the extant protocol methods for addressing these issues. The issues are encoding schemes,

end-to-end network delays, network delay variations, and errors.

1.1.1 Encoding

In recent years considerable progress has been made in the design of e�cient techniques for

digital encoding of analog audiovisual data [28]. When distributed across a network, the

quality of the reconstructed signal at the receiving site depends on the encoding scheme

and the distortions introduced by network imperfections. In most applications this quality

is ultimately judged by a human receiver and hence subjective metrics linked to human

perception factors are used.

Performance criteria for encoding schemes include e�ciency, sampling rate, complex-

ity, and processing time [28]. The digital encoding of an analog signal involves sampling

the signal with a certain period, known as the sampling rate. E�ciency is measured as the

number of bits used per sample to represent the signal. Typical sampling rates for audio for-

mats range from 8 kilohertz (kHz) for telephony to 48 kHz for compact disk quality sound.

Common encodings for 8 khz voice, for instance, include the ubiquitous pulse code mod-

ulation (PCM) encoding at 8 bits/sample and adaptive di�erential pulse code modulation

(ADPCM) encoding at 2-5 bits/sample.

Video sampling rates are often expressed in millions of pixels per second (Mp/s). One

encoding for High De�nition Television (HDTV) speci�es resolution of 1280 pixels by 720

pixels with 60 frame/s to yield a sampling rate of 60 Mp/s [28]. The CCITT standard video

format for visual telephony, the Common Intermediate Format (CIF) [38], has a spatio-

temporal resolution of 360 pixels by 288 pixels by 30 frame/s that yields a sampling rate

of 3 Mp/s The number of bits per pixel depends on many encoding-speci�c factors, e.g.,

3

the handling of color information. Uniform quantization at 8-24 bits/pixel yields enormous

bandwidths and is therefore seldom used. In [28], state-of-the-art signal processing and

compression techniques are estimated to generate on average much less than one bit/pixel/s

for good quality video.

The sampling rate and e�ciency of an encoding scheme determine the bandwidth

required for network distribution. Since low-bit-rate encoding schemes result in a less precise

reconstruction of the original analog signal, the selection of an encoding scheme represents

a trade-o� between consumption of bandwidth on the network and playback quality at the

receiving site. For voice, a common technique for bandwidth reduction without a loss in

quality is the suppression of transmissions during silence periods between speech activity

periods. For video, sophisticated signaling processing techniques and compression of the

encoded data are often necessary, though computationally demanding at the endsystems,

due to the size of digital motion video streams.

Other dimensions of an encoding algorithm are the complexity of the algorithm and

the processing time that it requires. The link between increased complexity and increased

processing delay is platform-dependent. While software-based encoding for audio is typi-

cally feasible, at this time video requires hardware assistance for real-time encoding under

most full-motion scenarios. Faster microprocessors and lower cost memory should enable

software-based video encoding in desktop workstations within the next 5-10 years. In any

case, whether an encoding algorithm introduces unacceptable delay is ultimately depen-

dent on the delay requirements of the continuous media stream and what portion of the

end-to-end delay can be allocated to the signal encoding/decoding process.

1.1.2 Roundtrip Delay

In an interactive continuous media session, human perception factors produce a requirement

for bounded roundtrip delays. If roundtrip delays are too long, the interactive nature of the

session is degraded. Quantifying this quality factor is di�cult since individual human users

may have di�erent tolerances for delay and these tolerances will vary with the application.

4

Roundtrip Delay E�ect on Speech Quality

> 600 ms Conversation becomes di�cult for untrained users.

400� 600 ms Conversation style increasingly a�ected by delays.

200 ms Imperceptible if listener hears only from network, not o� the air.

100 ms Imperceptible even if listener is in the same room with speaker

and hears o� the air and from the network.

Table 1.1: E�ect of Roundtrip Delays on Speech Quality.

The phenomenon has been studied extensively, however, for participants in inter-

active phone conversations [35], and these results provide �rst-order information on the

delays acceptable in other interactive applications. Table 1.1 gives a summary of the e�ects

of roundtrip delay on speech quality (adapted from [53]). In general, high-quality voice ap-

plications require less than 200 ms roundtrip delays, but delays of up to 600 ms have been

shown to be acceptable [35]. Recent guidelines from CCITT suggest that even roundtrip

delays of up to 800 ms have a limited impact on quality [10].

The requirement for bounded roundtrip delay is generally translated into a require-

ment for the network to bound the one-way end-to-end network delay. End-to-end de-

lay guarantees are not generally available in current packet-based networks. Protocols for

continuous media can o�er some support for end-to-end delay constraints by limiting the

amount of delay introduced by endsystem processing.

1.1.3 Delay Jitter

Statistical multiplexing of packets at internal network nodes introduces variations in the

network delay experienced by individual packets. These variations are referred to as delay

jitter. Delay jitter can lead to interruptions in the continuous playback at the receiver of

the continuous media stream.

Current packet-switched networks do not provide jitter control in the network, though

5

there are proposals in the literature to do so [21, 61]. Jitter control in the network would

relieve end-to-end protocols of delay jitter concerns, simplifying bu�ering and synchroniza-

tion. Jitter control, however, implies per-packet processing at internal network nodes that

estimates the delay bounds of packets and arti�cially delays any packets that are progress-

ing too quickly through the network. Drawbacks to putting jitter control in the network

thus include additional bu�ers at network nodes, management of timestamps on a per-

packet basis, and nonwork-conserving scheduling disciplines that reduce network e�ciency.

In addition, jitter control in the network cannot address packet jitter due to endsystem

e�ects such as variable network access delay in shared-media networks, operating system

scheduling, and protocol processing.

Current protocols typically deal with delay jitter through bu�ering at the receiving

site. When the �rst packet in a continuous media stream arrives at the receiver, the receiver

does not begin playback immediately, but delays the playback for some time. Packets

arriving from the network are held in a bu�er, and this bu�er provides protection from

network delay variations. Resynchronization points in the continuous media stream allow

the jitter bu�er to be maintained.

A voice stream, for example, consists of an alternating series of speech activity periods,

or talkspurts, and silence periods[6]. The natural resynchronization point in the stream is

at each talkspurt boundary, and studies have shown that in general the adjustment of the

playback of a talkspurt can be as much as 50% of the duration of the following silence

period without a�ecting the quality of the playback [62]. The tolerance of packet voice

for playback adjustment assumes that talkspurts are generally isolated from each other by

relatively long silence periods, a property reported in empirical studies [6, 8]. To ensure this

isolation, voice protocols enforce a minimum intertalkspurt time, or hangover time, when

marking talkspurt boundaries [24].

1.1.4 Error Control

In a packet-switched network end-to-end protocols may need to protect the client from the

misordering, duplication, corruption, and loss of packets in the network. Continuous media

6

streams require protection from misordering since the data stream carries time-ordered

information. The end-to-end protocol can eliminate misordering and duplication through

proper management of sequence numbers carried in packet headers.

Unlike the situation with reliable data transfers, the receiving site for a continuous

media stream may prefer to receive packets with corrupted data, as opposed to having

these packets discarded by the network. Encoding schemes in which each sample is encoded

independent of adjacent samples, such as PCM-encoded voice, are robust in the face of bit

errors in the data. End-to-end protocols can accommodate this requirement by providing

an option to disable their data integrity checks, i.e., defeating their checksumming option.

Packet loss occurs due to bit errors and resource contention. The network transmission

media is susceptible to random bit errors. In most networks, when a packet is corrupted

in transmission, it is subsequently discarded by the data link layer protocol at the next

receiving site. In �ber optic networks, random bit errors are rare, and packet loss is due to

resource contention, that is, hardware bu�ers and switches can lose packets during periods

of high load and transient periods of overload in the network. A fundamental trade-o� for

network designers is that the more aggressively the network uses statistical multiplexing

of packets for bandwidth e�ciency, the more likely packet loss will occur due to resource

contention.

Most continuous media streams do not require reliable delivery, though their toler-

ance for packet loss is low. The impact of individual packet losses on the quality of a

continuous media stream is variable since, in general, all bits in the encoded stream are not

equally important. Techniques for robust signal processing in the presence of packet loss

can signi�cantly improve loss tolerances, but even the loss of a single packet may noticeably

degrade playback quality at the receiver. The trend toward low-bit-rate encodings implies

an increased importance on reliable delivery, though many extant protocols for continuous

media [26, 43, 50, 59] do not provide any form of end-to-end error control.

It is important to recognize that error control in this context is fundamentally di�erent

from error control for data transfers. For traditional reliable data transfers, packet-level

error control is handled in the end-to-end protocol by a handshaking protocol, typically an

7

Automatic Repeat Request (ARQ) scheme. Reliability is de�ned as in-sequence delivery of

all the data injected into the network. For continuous media streams data completeness

must be balanced with delay constraints. The purpose of error control mechanisms for these

applications is to improve the quality of transmission from the viewpoint of the application

by delivering more data in a timely fashion than delivery without error control could provide.

Hence error control techniques must be evaluated in light of their impact on the overall

quality of the continuous media transmission.

1.2 Quality of Service Networking and Error Control

Network services for continuous media streams must balance the trade-o� between relying

on performance guarantees, such as bounds on loss, delay, or throughput, if any, that can be

provided by the underlying network and mechanisms to ensure transmission quality within

end-to-end protocols. Quality of service (QOS) networks o�er performance guarantees for

individual channels. While deployment of �rst-generation QOS networks is imminent, the

nature of supportable network performance guarantees is as yet uncertain. Many critical

issues regarding quality of service networking are open research questions, and a variety of

experimental techniques have been put forth, as surveyed in [36, 64].

Our work concerns the design of end-to-end error control. The demand for continuous

media applications is developing much faster than the design and deployment of integrated

service networks. There will thus continue to be considerable interest in the distribution

of continuous media streams across conventional networking technologies. In our work we

assume no performance guarantees from the network. If performance guarantees from the

network are available, however, they can simplify the construction of end-to-end protocol

mechanisms that we propose.

While it may be possible to engineer packet-switched networks to emulate the near-

zero loss characteristic of circuit-switching [21], the loss of e�ciency in the network will

likely be too costly. It follows that end-to-end error control will always have a place in

the network architecture, even if QOS networks become ubiquitous. Where QOS networks

8

are in use, reserving resources in internal network nodes is costly since these resources are

shared by all the hosts attached to the network. End-to-end mechanisms that enhance

the quality of service on a channel allow relaxation of the QOS needed from the network,

thereby lowering cost.

An important class of next-generation networks are Asynchronous Transfer Mode

networks, which transport data in small, �xed-size (53-byte) cells. Within the ATM com-

munity there are proposals for performance guarantees that provide bounds on cell loss

over an ATM virtual circuit. Experience with the loss characteristics of ATM cell-based

networking is not extensive, but mapping performance guarantees on cell loss bounds into

loss bounds on higher layer data framing (packets) will be di�cult. Speci�cally, multiplex-

ing at the cell level implies that a loss of n ATM cells could cause the receiving endsystems

to discard as many as n higher layer packets. Data in a higher layer packet is typically one

or two orders of magnitude more than in the payload of an ATM cell, e.g., the current IP

over ATM proposal has a maximum transmission unit (MTU) of 9000 bytes [14], while the

payload of an ATM cell is at most 48 bytes. The implication is that very low loss rates at

the ATM level can translate into relatively high observed loss rates for applications. This

con
ict is fundamental to the design of ATM networks. The �xed-size ATM cell is unlikely

to be increased from its current size while the overhead of packet headers and the processing

overhead at endsystems limits the feasibility of dramatically reducing the amount of data

in each higher layer packet.

1.3 Inadequacies of Conventional Error Control

Conventional end-to-end protocols o�er an all-or-nothing approach to error control. The

�rst type of service makes no attempt to detect or recover packets lost in the network. The

second type detects and recovers all packets lost in the network, i.e., 100% data completeness

is assured. Neither service pro�le is well-suited to error control for real-time tra�c
ows.

In the Internet protocol suite, the User Datagram Protocol (UDP) o�ers the �rst type

of service and the Transmission Control Protocol (TCP) o�ers 100% reliable delivery. As

9

researchers in the Internet community have begun to experiment with emerging applications

such as continuous media, remarks such as the following conclusion reached at the 1991 Joint

SIGGRAPH/SIGCOMM Workshop on Graphics and Networking [16] are representative:

TCP may not provide su�cient performance in some applications and does

not support a rich enough set of quality of service.

In particular, it would be desirable to have more control over the level of error

detection and correction that is available from the transport layer[...] By allowing

the application to select the amount of reliability supported by the transport layer,

the TCP overhead incurred can be reduced to the minimum possible for that

application, rather than the minimum possible for totally reliable transmission.

The granularity available to applications at present is either TCP with relatively

high overhead or UDP with relatively low functionality, and that is simply too

coarse a grain for the wide spectrum of distributed applications which are now

emerging on the Internet.

One type of service that was mentioned by several graphics experts was un-

reliable delivery with time constraints for applications like real-time video and

audio that can a�ord to lose some data but must have the next data delivered on

time.

One alternative to TCP is the connectionless transport, UDP. As a simple datagram

service, UDP o�ers no segmentation/reassembly, no sequencing for stream data, and no

ow control. Thus, like TCP, the UDP connectionless service is ill-suited to the needs

of continuous media applications. From a practical standpoint, a common approach for

designers of Internet-based tools to experiment with continuous media is summarized by

the comments of the designers of the INRIA IVS videoconferencing tool [59]:

Neither TCP or (sic) UDP is ideal for IVS. UDP lacks reliability guarantees,

while TCP has too many [...] delays generated by retransmission packets and

multicast emission led us to use UDP and construct additional reliability services

as necessary.

10

This situation has led to a variety of proposals for new forms of end-to-end error

control. In addition to protocols speci�c to the delivery of continuous media data [43],

emerging general-purpose transport protocols such as XTP [57] and TP++ [5] are exper-

imenting with novel error control mechanisms. In this literature (surveyed in Chapter 2),

considerable emphasis has been placed on the open-loop techniques of adding redundancy

to reduce the impact of losses (forward error correction) or of using priority channels in

the network to protect the loss of important data (channel coding). Most researchers have

dismissed altogether the viability of a retransmission-based approach. Our work challenges

this viewpoint.

1.4 Thesis Statement and Overview

Our thesis is that retransmission of continuous media data often is, contrary to conventional

wisdom, a feasible and e�ective strategy in most packet-switched networks. We de�ne a

new retransmission scheme that is architected to incorporate the delay sensitivities of the

continuous media stream. Due to network transit delays, retransmission is not applicable

under all network scenarios. Where applicable, error control based on delay-sensitive re-

transmission avoids the drawbacks of open-loop techniques, particularly the heavy demands

on network resources imposed by forward error correction and the network-speci�c and/or

encoding-speci�c factors underlying channel coding. When transmission quality requires it

and open-loop error control techniques are available, however, retransmission can be used

in conjunction with them.

The contribution of this thesis is a fundamental study of retransmission-based error

control for delay-constrained stream tra�c. Evaluation of delay-sensitive retransmission

is largely done within the framework of a speci�c application domain|interactive packet

voice. This approach was used for the following reasons. Packet voice is an important

application domain with stringent performance requirements. In multimedia applications,

the delay and error requirements for audio often dominate the requirements of other media

streams. Also, interactive voice is an application for which the human perception delay

11

thresholds and the statistical characteristics of the bit stream generated are well studied.

Finally, voice may be viewed as a simple �rst-order model for variable-rate video, whose

tra�c characteristics are not as well de�ned at this point in time. The components of the

thesis may be summarized as follow.

� We de�ne a novel retransmission-based error control technique for delay-constrained

packet streams. We develop a simulation model and show that in a local area envi-

ronment a signi�cant amount of transparent error recovery through retransmissions

is indeed feasible for realistic transmission scenarios.

� We develop an analytical end-to-end model for transmission of a delay-constrained

packet stream. The model considers all of the protocol issues for maintaining the

quality experienced by a continuous media stream and incorporates stochastic net-

work delay behavior. We formulate a performance metric for continuous media re-

transmission and use the model to derive analytic expressions for this metric. These

results allow the determination of retransmission e�ectiveness given the parameters of

a transmission scenario, without lengthy simulations. This enables rapid evaluation

of retransmission e�ectiveness under di�erent assumptions on protocol and network

parameters, which is particularly valuable for emerging network environments where

tra�c pro�les and delay behavior are not yet well-understood.

� We provide empirical measurements of real packet voice transmissions across a large

enterprise network. These empirical measurements are used to investigate to what

extent the assumptions underlying our model re
ect the complex dynamic behavior

of a real network. The measurements also provide some insight into the applicability of

retransmission-based error control in a network environment representative of current

networking technology. Little empirical work appears in the literature on continuous

media tra�c over contemporary networks, and no previous study has speci�cally

addressed packet voice over large, multiple-segment local area networks (LANs).

� Finally, Appendix A describes the de�nition, implementation, and evaluation of a

12

novel connection-oriented service that provides limited recovery from packet loss for

delay-sensitive applications. The service is constructed as a modi�cation to an existing

service de�ned by a next-generation transport protocol, the Xpress Transfer Protocol

(XTP). Our approach enables the application to control the aggressiveness of the un-

derlying retransmission algorithm in order to provide a limited-retransmission service.

A lightweight implementation is achieved through minor modi�cations to an existing

implementation of XTP. Experiments using the service show error coverage through

retransmission with signi�cantly less delay than in a reliable connection. The rela-

tionship of this XTP-speci�c work to the retransmission scheme in the main body of

the thesis is discussed in Section 2.3.1.

1.5 Document Organization

The remainder of the thesis is organized as follows. Chapter 2 surveys the literature on the

mechanisms proposed to address the problem of error control for continuous media streams.

Chapter 3 de�nes a novel retransmission scheme for packet voice and evaluates its feasibil-

ity through a simulation study. Chapter 4 presents our end-to-end transmission model for

delay-constrained streams. We show derivations of analytic expressions for retransmission

e�ectiveness across variations in transmission parameters. Chapter 5 reports on the results

of an empirical study of actual packet voice transmissions across an existing network. We

discuss the implications of these measurements for our end-to-end model and in applying

our error control ideas to contemporary campus-wide LANs. In Chapter 6 we summarize

our results and their impact on end-to-end protocol design for packet-based transport of

continuous media streams. Appendix A provides the details of the design and implemen-

tation of a
exible, retransmission-based error control service that enhances an unreliable

connection-oriented service proposed for the Xpress Transfer Protocol.

13

Chapter 2

Delay-Constrained Error Control

In this chapter we consider the range of extant error control techniques applicable to the

distribution of continuous media streams over a packet-switched network. We �rst discuss

the types of network imperfections from which continuous media clients need protection

and the extent to which they are tolerant of these imperfections. Our work focuses on

controlling packet loss, and we survey the techniques proposed for handling packet loss in

a delay-constrained manner. At the end of the chapter we outline our retransmission-based

approach to error control for continuous media and discuss its relationship to other proposed

techniques.

2.1 Continuous Media Requirements for Error Protection

Packet-switched networks in general can corrupt, resequence, duplicate, and lose packets.

We brie
y discuss the requirements of continuous media applications for protection from

these types of errors and the extant protocol mechanisms that can be incorporated into

continuous media transports to deal with errors.

� Data corruption is rare but not unheard of in modern networks. For cell-switched net-

works, for example, data loss due to bit errors becomes negligible when the bit error

rate is less than approximately 10�9, and high-quality switches using �ber optic trans-

mission exhibit bit error rates in the range of 10�12 to 10�15 [56]. In networks where

the underlying transmission media is susceptible to impulse noise, e.g., atmospheric

disturbances for radio waves, bit errors are a measurable source of packet corruption.

14

Continuous media streams are often tolerant of data corruption, and they may prefer

that the network deliver, and not discard, corrupted packets. To provide this
exibil-

ity, in theory the end-to-end protocol need only have an option for disabling integrity

checks over the user data. In practice, however, integrity checks at the data link layer

are seldom optional, resulting in the discard of all packets corrupted in transmission.

Since corruption above the data link layer occurs only in pathological cases, bit errors

in contemporary networks are most commonly manifested as packet losses.

� Continuous media streams require that the network preserve sequencing since playback

of the stream must be correctly sequenced in time. For end-to-end network services,

sequencing is naturally handled at the packet level. While this is not strictly necessary,

sequenced delivery is often preferred for some applications, e.g., in a video stream

where out-of-order packet delivery within a frame bu�er is acceptable within a frame

bu�er, but not across frame bu�er boundaries. Protocols use sequence numbers to

provide for sequenced delivery. Issues in properly managing the sequence number

space include initialization of the sequence number space, handling sequence number

wrap-around, and proper recovery from system failures to prevent aliasing. Sequence

number management techniques, however, are well understood from experience with

reliable transport layer protocols.

� Packet duplication in the network may occur due to retransmission of packets by

endsystems using retransmission-based error control. Duplicates are identi�ed and

discarded by the receiver through the use of sequence numbers.

� Continuous media applications are generally able to tolerate some packet losses with-

out a perception of degradation in service quality. The impact of packet loss depends

on the amount of redundancy in the stream, the robustness of the decoding scheme,

and the importance of the data lost. Digitized audiovisual streams exhibit a high de-

gree of redundancy, a fact exploited by many encoding algorithms. Highly compressed

or low bit-rate encoded streams have little redundancy and will be more sensitive to

losses in the network. Decoding schemes that perform interpolation for missing or

15

corrupted data mitigate the e�ects of loss, though recursive encodings, such as di�er-

ential PCM (DPCM) for voice, su�er substantial disruptions from a gap in the data

since the predictive components at the decoder will lose synchronization: error propa-

gation. Losses have a variable impact on quality for two reasons: measures of quality

are subjective and all bits in the stream are not equally important in reconstructing

the original signal. The quality of most continuous media streams is ultimately judged

by a human user, and human perception factors thus in
uence the impact of partic-

ular losses. Information loss can adversely a�ect the decoding algorithm|e.g., error

propagation|or the human user directly|e.g., the loss of an audio packet containing

a key word such as \not". For these reasons even the loss of a single packet may be

perceptible during playback.

The focus of this thesis is on controlling packet loss. Other types of errors are not

considered further, and except where explicitly stated otherwise, from this point forward,

the term error control in this document is synonymous with packet loss control.

2.2 Open-Loop Error Control

Much research has been focused on open-loop techniques that recover or limit the e�ects

of packet losses during continuous media transfers without the roundtrip network delays

associated with retransmission-based error control.

2.2.1 Forward Error Correction

Forward error correction (FEC) [33, 47] provides robustness in the presence of packet losses

by adding redundant information to the original data stream. If only a small number of

packets is lost, the added redundancy enables a reconstruction of the original data at the

receiver.

There are two types of error correction codes [39]. A block code divides a message into

coding blocks, containing both information and parities. These parities allow the receiver to

reconstruct the information content of a block correctly, provided enough of the block gets

16

through uncorrupted. A convolutional code operates under a continuous bit stream model.

At the transmitter, the constraint length determines how many bits of past information are

used to determine the parities; at the receiver the constraint length determines when to

decide about the decoded information. The ratio of parity bits to total bits is known as the

degree of overcoding for the code.

Forward error correction is often identi�ed with transmission-media level error han-

dling. In the language of coding theory [3], an error is de�ned as a corrupted bit (or symbol)

with an unknown value in an unknown location. An erasure is a corrupted bit (or symbol)

with an unknown value in a known location. Most extant error correction schemes were

designed to detect and/or correct random errors in a bit stream that exist in unknown

locations, e.g. for noisy media such as satellite or wireless links [9, 32, 37]. Fiber-optic

packet-switched computer networks require a di�erent error model. While random errors

are rare, losses occur on packet boundaries (burst erasures), and thus burst erasure correct-

ing codes are the appropriate form of forward error correction for these environments.

The e�ectiveness of burst erasure codes is strongly dependent on the burstiness of the

network loss process and the degree of overcoding. In [52] a block code for cell-switched

networks based on the exclusive-OR operation was used to generate one or two redundant

cells in a block of k cells. The study concluded that the coverage from this code was not

very useful and suggested the need for sophistication in multiplexing and/or cell dropping

at the cell switches to improve the performance of the FEC code. In [47] a two-dimensional

cell-level exclusive-OR scheme is applied to tra�c traveling on the same virtual path in an

ATM network. The scheme is evaluated using a simple two-state Markov model for the cell

discard process at a switching node. Dramatic reductions in cell loss rates are reported,

though the degree of overcoding used requires an estimation of the likelihood of consecutive

cells from the same virtual path being lost during congestion. The probability of multiple

cell losses within the same block is assumed to be low|the probability of consecutive cell

losses is varied between 0.01 and 0.1 for low-bandwidth virtual paths, and between 0.1 and

0.4 for high-bandwidth virtual paths.

A primary consideration with FEC schemes is the feasibility and cost of hardware

17

implementations since even moderate bandwidths require hardware support. The modi�ed

Reed-Solomon code presented in [39] was designed for VLSI implementation at speeds up

to 1 Gbit/s, and the hardware complexity is independent of the block size. The code takes

k data symbols as input and produces k + h data symbols as output. For a single chip

implementation operating at 400 Mbits/s the code is limited to h = 16 with 8 bits/symbol

and for operation at a data rate of 1 Gbit/s h = 4 with 32 bits/symbol. The parameter k

is variable.

Packet loss in the network results from congestion. The increase in bandwidth due to

FEC overcoding adds to network tra�c and therefore increases congestion. Thus, the use of

forward error correction causes additional packet losses in the network. In [4], this trade-o�

between loss recovery and additional loss is studied using the Reed-Solomon burst erasure

code just described. The network model is an ATM multiplexer with a set of 32 statistical

sources. Sources are of two types, bulk sources representing bulk data transfers, or video

sources representing video streams. Bulk sources are characterized with a statistical model

while the tra�c from video sources is based on an actual trace of a variable-rate encoded

movie. Three scenarios are presented. In the scenarios studied for homogeneous sources,

i.e., all bulk sources or all video sources, the FEC code was only marginally e�ective. With

a mixed scenario of 8 bulk sources intermixed with 24 video sources, the FEC algorithm

was judged advantageous, with a suggested overcoding of 14%. One conclusion of the study

is that the number of sources in a network using FEC may have to be limited in order for

the e�ect to be signi�cant.

2.2.2 Hybrid FEC/ARQ

Many hybrid schemes in which forward error correction is combined with the use of retrans-

missions have been studied [12, 32, 49], though only in the context of channel e�ciency, and

not for delay-constrained communication. Under these schemes the receiver uses the parity

bits in forward error correction to recover from losses, but when there are too many errors

a retransmission is requested from the transmitter. The retransmission may be the original

message [32] or additional parity bits that will allow recovery of the original message [12].

18

Hybrid schemes can be e�ective in reducing the bandwidth consumed through over-

coding since larger losses can be recovered through retransmissions. Overall performance

of the error recovery mechanisms as measured in terms of average throughput is generally

superior to pure FEC or pure ARQ [32, 49]. The drawbacks of hybrid FEC/ARQ are the re-

quirement for FEC hardware and the complexity of coordinating the retransmission scheme

with the FEC hardware. This coordination may not be cumbersome for data link protocols

employing a FEC/ARQ scheme, but protocols handling the transport of continuous media

streams are generally not at the data link. These protocols must then have an interface

that allows them adequate control over the FEC hardware in order to take advantage of

proposed hybrid FEC/ARQ schemes.

2.2.3 Channel Coding

Channel coding refers to a class of approaches that use multiple network channels to transmit

the components of a single encoded stream. A simple example of channel coding is odd-even

bit interleaving [29] for a voice transmission. For each B voice samples the odd-numbered

bits are stu�ed into one network channel, and the even-numbered bits into another channel.

Unless both the odd and the even packets are lost, missing odd (or even) samples can

be recovered with simple nearest neighbor interpolation using the surviving odd (or even)

samples.

The advantage of the technique is that, if the two network channels have a statistically

independent packet loss probability of �, the probability of losing both the odd and the

even packet of a sample is �2. Drawbacks include additional processing overhead and a

synchronization delay of B samples at the decoder. Also, nearest neighbor interpolation is

only e�ective with non-recursive encodings such as PCM since residual signals must have a

strong auto-correlation.

Channel coding techniques generally exploit the hierarchy of data importance created

by embedded or layered encoding, which are techniques that produce successive approxi-

mations to a signal. Examples include sub-band, pyramid, and transform coding [30, 33].

Signal components that contribute relatively little are sent with low priority in the network

19

while important signal components are given preference in the network. Speci�cally, in

networks such as ATM networks, the channel carrying the most signi�cant components can

be given higher priority in the network when congestion forces packet discard.

In the context of ATM networks, a number of techniques have been proposed [20, 33,

55, 63] to split signals into separate channels and use priority channels in controlling quality

degradation due to network loss. For example, one study on voice [58] has investigated a

least signi�cant bit LSB dropping scheme. Each set of B samples is divided into two

segments with the six signi�cant bits of each sample in one segment and the two least

signi�cant bits of each sample in the other. Using subjective scoring from a set of human

listeners, acceptable quality is reported at 2-5% loss on the LSB-channel for 32 kbit/s

embedded ADPCM voice and at over 5% for PCM-encoded voice. These results assume a

packet size of 32 bytes, or 4 ms for PCM and 8 ms for ADPCM.

In [20] a detailed investigation of a two-priority network model is presented using

simulations with actual Discrete Cosine Transform (DCT) encoded voice and video as input.

Under the model, the quality of the stream is shown to be quite sensitive to the fraction of

tra�c allocated to the high priority channel, and a method to adapt the channel distribution

based on feedback on network conditions is developed. A drawback to this study and

to channel coding in general is the assumed sophistication of the underlying network in

supporting selective dropping of packets during periods of congestion. This functionality

is not available in current LANs, and its implementation cost in high-speed cell switches

is of unknown complexity at this time. The methods of [20] assume a time-out driven loss

mechanism at the internal network queues, which requires sequential checking or sorting of

the packets by a time-to-live �eld. It is suggested that as VLSI technology improves it will

become feasible to use parallel hardware to actively discard packets that have timed out in

the queue.

20

2.3 Retransmission-Based Error Control

Most researchers have dismissed retransmission altogether as a form of error control for

continuous media. Two attempts to adapt retransmission to the needs of loss-tolerant,

delay-sensitive tra�c are presented in this section. These approaches construct connection-

oriented communication services parametrized by application-speci�c error tolerances. Due

to latency considerations, all packet losses in the network are not recovered, and the user of

these services is expected to tolerate occasional delivery of partially corrupt bu�ers from the

network service. In both cases the underlying ARQ schemes avoid timer-based detection

of packet losses in the network and go-back-n retransmissions. By contrast, both of these

mechanisms are part of the ARQ algorithm for the conventional transport protocol TCP.

2.3.1 Partially Error-Controlled Connections

A next-generation transport protocol, the Xpress Transfer Protocol [57], provides a novel

unreliable stream-based service, referred to as no-error mode. The service provides se-

quenced delivery with the full functionality of an XTP association, e.g., rate control, an

out-of-band data channel, and multicast, but with error control disabled. In [15] a new XTP

service for Partially Error-Controlled Connections (PECC) is proposed that generalizes the

no-error mode service to allow for application-speci�c parameterization of the underlying

XTP error control algorithm.

The PECC service enables limited recovery of packet loss for stream-based communi-

cations in which data completeness must be traded o� for low delay service. The application

provides a description of the frequency and density of losses that it expects to be able to

tolerate, and the underlying communication service uses this information to parametrize

its retransmission algorithm. Parameter settings exist for the emulation of the limiting

services, i.e., either a no-error mode connection or a 100% reliable connection.

The PECC service is properly viewed as an enhancement to the XTP no-error mode,

which has no active error control, since the PECC service provides no guarantees to the

user on the amount of corrupted data the user will be delivered. If the application-speci�ed

21

error bounds are exceeded, an indication of this violation is returned to the user but the

data is not recovered. The underlying assumption is that a temporary violation of the

error constraints of the stream is more desirable than excessive delays to recover the lost

data. The PECC service interface, however, gives an application the capability to increase

or tighten its error tolerance on an active network connection, if network loss becomes too

great.

A design goal underlying the PECC service was to demonstrate that application-

speci�c error control could be constructed by small modi�cations to an existing protocol. By

exploiting functionality implemented for reliable modes of the protocol, particularly man-

agement of retransmission bu�ers, the PECC service was constructed in a very lightweight

manner. Its implementation required only approximately 100 lines of additional code in an

existing XTP implementation, and the code modi�cations were only at the XTP receiver.

A more complete description of PECC, its implementation, and experimental results are

given in Appendix A of this thesis.

2.3.2 Application-Oriented Error Control

The application-oriented error control (AOEC) presented in [23] has the objective of satisfy-

ing an application's error tolerance with minimum retransmission overhead. Like the PECC

service, an application using the AOEC service interface gives a description of its maximum

error tolerance that parametrizes retransmission decisions in the protocol. Unlike the PECC

service, however, the AOEC scheme guarantees that the maximum error tolerance of the

application is always respected by retransmitting lost data whenever necessary.

A key di�erence between PECC and AOEC is that the latter has some knowledge of

the structure of the application data stream. Speci�cally, the AOEC service interface is

based on the notion of a segment, de�ned as the smallest unit of data that the application

accesses independently. Applications specify their requirements in terms of the maximum

number of losses per segment and the maximum size of any burst loss within a segment.

The underlying retransmission algorithms for the AOEC service are more complex

22

than the XTP algorithms on which PECC relies. Both positive and negative acknowledg-

ments appear in the AOEC protocol and three sequence numbers are carried in each packet.

The sequence numbers identify the segment number, the o�set within the segment of this

packet, and a shipment number to detect losses during retransmissions. The AOEC receiver

sends requests for retransmissions to the transmitter based on the total amount of data re-

ceived for a segment and the user-speci�ed tolerance for loss within a single segment. Data

stream events, e.g., a packet arriving out-of-order, trigger retransmission requests. For ro-

bustness the receiver uses an additional timer to detect very long burst losses during which

no subsequent packets will arrive to enable loss detection.

The analysis in [22] characterizes the AOEC protocol in terms of average end-to-end

delay of a segment, maximum end-to-end delay of a segment, and average throughput for a

stream. Through analysis and discrete-event simulation, expressions for these measures are

obtained, and the performance of AOEC is shown to compare favorably with the through-

put of SNR [46], an experimental transport with timer-driven control algorithms. The

performance analysis does not model stochastic network delays.

2.4 Delay-Constrained ARQ

This thesis focuses on the de�nition and evaluation of a novel retransmission-based error

control scheme for continuous media streams. This scheme is parametrized by the delay

sensitivities of the continuous media stream, and not by a statically de�ned application tol-

erance for gaps in the data, as with the retransmission-based error control services discussed

in Section 2.3. Our analysis of retransmission e�ectiveness uses a performance metric that

measures the quality of the transmission for the continuous media stream. It considers the

performance of the retransmission scheme in light of the interaction between stochastic net-

work delay behavior and timely playback of the continuous media stream at the receiving

site.

Possible drawbacks to a retransmission-based approach are the latency penalty for

recovering packet losses and bu�ering requirements at the transmitter in networks with high

23

bandwidth-delay products. Retransmission is indeed not applicable for delay-constrained

tra�c in networks with very long one-way delays, e.g. geosynchronous satellite links. We

note, however, that propagation delay for a high-quality �ber-optic link from New York to

San Francisco is approximately 15 ms in one direction. We contend that this amount of delay

does not a priori eliminate the possibility of using a retransmission-based approach to error

control. With high-speed switching and powerful endsystems, it is reasonable to assume

that packet loss can be discovered and retransmitted within a 50-150ms time frame, which is

within the tolerance of many interactive continuous media applications. More importantly,

this scenario represents an extreme|the majority of applications will span much smaller

geographic areas. As for bu�ering considerations, they are not a concern for low-bandwidth

tra�c, which includes virtually all audio formats and some low-bandwidth video formats.

For video streams with bandwidths of a few Mbits/s, the retransmission bu�ers maintained

at the transmitter are on the order of tens of kilobytes. The system cost of such bu�ers

will continue to decrease with the price of memory chips. We argue that, while not feasible

in all cases, there are a signi�cant number of transmission scenarios for video streams in

current systems under which retransmission bu�ering represents a reasonable system cost.

In order to focus on pure retransmission e�ects, we do not consider the e�ects of

combining retransmission with channel coding or forward error correction. We attempt to

quantify only the error coverage provided by delay-sensitive retransmissions. When retrans-

mission alone cannot meet the quality requirements of the application and open-loop meth-

ods are available, we expect hybrid techniques to be used, although a pure retransmission-

based approach is attractive in its portability and low overhead, as compared with open-loop

techniques.

24

Chapter 3

A Delay-Constrained Retransmission

Scheme for Packet Voice

We introduce a novel approach to error recovery for continuous media protocols and specif-

ically for packetized voice protocols. This scheme is referred to as Slack Automatic Repeat

Request or Slack ARQ, because the technique involves managing the bu�er time, or slack,

of packets at the packet voice receiver. In this chapter we develop a simulation model

for packet voice transmission over a loaded Fiber Distributed Data Interface (FDDI) local

area network and use it to establish the feasibility of Slack ARQ for packet voice in this

environment.

The remainder of this chapter is structured as follows. In Section 3.1 we present our

Slack ARQ scheme. In Section 3.2 we develop a simulation model of our error recovery

scheme for a local area network environment. Our simulation takes into account the delays

incurred at the endsystems due to operating systems scheduling and protocol processing.

We present several simulation experiments to evaluate the e�ectiveness of Slack ARQ. In

Section 3.3 we state our conclusions from this study.

3.1 Slack ARQ

Experiments with the transmission of packetized digital speech across computer networks

date to the earliest days of packet-switching, with a network voice protocol (NVP) for the

25

Internet having been speci�ed in 1976 [13]. The feasibility of high-quality voice transmis-

sion for large numbers of users has dramatically risen in the past �ve years with the advent

of high-speed LANs and powerful desktop computers with audio hardware as a standard

feature. Protocols and conferencing tools have become available for multiple-party connec-

tions. Examples of software from the research community include NVP, the vat protocol

[26], and the NEVOT audioconferencing tool [50].

In a local area network, delay and delay jitter is introduced by variable network

access delay, operating system scheduling, and protocol processing at the endsystems as

well as congested store-and-forward routers if the network has multiple segments. Packet

losses due to transmission errors are rare in a local area network, but hardware bu�ers and

routers can lose packets during periods of high load and transient periods of overload in the

network. Extant protocols have mechanisms to address packet delays that threaten quality,

but packet losses are not recovered.

The principle behind the Slack ARQ technique is to extend the bu�ering strategy

commonly used in packet voice protocols to handle delay jitter such that timely retrans-

missions of lost packets becomes feasible. We show that this extension can provide a high

probability of successful error recovery using retransmissions for realistic packet voice sce-

narios in a local area network setting. In this section we �rst describe bu�ering techniques

for delay jitter reduction and then the Slack ARQ technique.

3.1.1 Delay Jitter Reduction

If the network delay of voice packets is not constant, i.e., packets are subject to delay jitter,

the receiver may observe gaps, which result in interruptions in the continuous playback of the

voice stream. Delay jitter in packetized voice transmission is commonly addressed through a

control time at the receiving system. The �rst packet in a voice stream is arti�cially delayed

at the receiver for the period of the control time in order to bu�er su�cient packets to provide

for continuous playback in the presence of jitter. Note, however, that the the control time

cannot be arbitrarily large due to constraints on the end-to-end delay. Since voice data

consists of an alternating series of talkspurts and silence periods and since talkspurts are

26

generally isolated from each other by relatively long silence periods [6, 8], voice protocols

typically impose the control time on the �rst packet of each talkspurt.

We refer to the playback time of a packet as the point in time at which playback of

the packet must begin at the receiver in order to achieve a zero-gap playback schedule for

the talkspurt. We refer to the slack time of a packet to denote the time di�erence between

its arrival time at the receiver and its playback time. Note that, independent of whether a

control time is used or not, the arrival of the �rst packet in a talkspurt at the receiving site

determines the start of the zero-gap schedule and thus the playback time of all packets in

the talkspurt. Due to delay jitter, a packet may arrive before or after its playback time. In

the former case, the packet is placed in a queue, the so-called packet voice receiver (PVR)

queue, until it is due for playback. In the latter case, a gap has occurred and the packet is

played back immediately. 1

In Figure 3.1 we illustrate the occurrence of gaps due to delay jitter and the elimination

of gaps through the introduction of a control time. The time sequence shown in Figure 3.1

illustrates the transmission of a talkspurt consisting of 5 packets. The four timelines pictured

represent, from top to bottom, packet generation at the voice source, packet transmissions at

the sender, packet arrivals at the receiver, and the playback of voice samples at the receiver.

Packet generation is taken to occur periodically, at the end of a �xed-size packetization

interval. Packets are indicated by a vertical bar. Note that in a high-speed network the

transmission time of a packet is negligible compared to the length of a packetization interval.

In Figure 3.1 the delay incurred by a packet due to protocol processing, scheduling delay,

and media access delay is indicated by the arrows from the second timeline (Packetization)

to the third timeline (Arrival at the Receiver). We assume that propagation delay in a

LAN is negligible. At the bottom of Figure 3.1 we present two scenarios for the playback of

the voice packets. Scenario (a) depicts playback without a control time, scenario (b) with

a control time. In scenario (a) two gaps are observed, one between the �rst and second

packet, and another between the third and fourth packet. In scenario (b) the presence of a

1An alternative policy is to play back only that part of a late packet that has arrived within its playback
time, thus ensuring that the talkspurt has the same duration at the receiver as it did at the source.[18]

27

2

time

Protocol Processing
and Network Delay

time

time

3Voice
Sampling

Playback

Packetization

Arrival
at Receiver

Talkspurt

Packetization Intervals

1 2 4 5

1 2 3 4 5

1 3 4 5

Gaps

(b) with jitter control

(a) no jitter control 1 2 3 4 5

54321

time

Control Time

Figure 3.1: Transmission and Playback of a Talkspurt.

control time delays the �rst packet of the talkspurt and eliminates gaps. Thus, in scenario

(b), the playback of the voice samples is continuous.

A packet voice protocol with control times must be able to identify the beginning

of talkspurts. This can be done explicitly with a dedicated bit or with a combination of

timestamps and sequence numbers. Determination of the control time is more di�cult

since it requires knowledge of the network delay distribution. Note that to eliminate gaps

completely the control time must be set equal to the maximum variation of the network

delay. Numerous methods have been proposed for estimating the control time of a talkspurt,

based on network delay measurements [42], on stochastic assumptions of the network delay

[1, 2], or both [45]. One result of note for our work is that suitable control times were found

to be in the range of 2-3 times the mean network delay in one study [45].

28

3.1.2 Extending the Control Time for Timely Retransmission

Slack ARQ is an error control scheme based on the retransmission of lost packets. Recall

that due to the need for continuous playback of voice packets, retransmitted packets must

arrive before they are due for playback. The principle behind Slack ARQ is to extend the

control time at the beginning of a talkspurt and use the extended control time at the PVR

such that the slack time (as de�ned in Section 3.1.1) of arriving packets is lengthened. With

this simple mechanism timely retransmissions of lost packets can be achieved with a high

probability.

In Slack ARQ, whenever a lost packet is detected, the receiver requests a retransmis-

sion of the missing packet. The packet voice receiver assumes that a packet is lost if it

receives a packet out of sequence. Note that the packet voice receiver will wrongly assume

that a packet is lost if packets are misordered in the network. However, the misordering

of packets very rarely occurs in broadcast LANs. If the retransmission is attempted but

the packet is lost or late, the packet voice receiver does not hold back subsequent cor-

rectly received packets nor does it attempt any additional retransmissions of the lost data.

Therefore, Slack ARQ does not guarantee that lost packets are successfully recovered. The

percentage of retransmissions that are completed successfully is largely dependent on the

appropriate choice of the control time. Note that the likelihood of successful retransmissions

decreases if consecutive packets are lost.

We illustrate the advantages of Slack ARQ in Figure 3.2. The �gure depicts the same

transmission scenario as in Figure 3.1, i.e., the transmission of a talkspurt consisting of �ve

packets. Here, however, we assume that the second packet of the talkspurt is lost. At the

bottom of Figure 3.2 we show three scenarios. For all scenarios we assume the existence of

jitter control with an appropriately selected control time. Scenario (a) shows error handling

typically found in extant voice protocols, i.e., no retransmissions are attempted. If a packet

is lost, playback of the lost packet is skipped. As shown in Figure 3.2 skipping the playback

of a lost packet results in a gap equal to the time of the packetization interval. In scenarios

(b) and (c), the receiver requests a retransmission of the lost packet. In both scenarios

29

3 54

time

Protocol Processing
and Network Delay

time

time

time

3Voice
Sampling

Playback

Packetization

Arrival
at Receiver

Talkspurt

Packetization Intervals

Retransmission

lost

1 2 4 5

1 2 3 4 2 5

1 3 2 4 5

1

1 2 3 4 5

1 2 3 4 5

Control Time

Control Time

Extended Control Time

Gaps

 and retransmission

(a) with jitter control

(b) with jitter control

(c) with jitter control
 and Slack ARQ

Figure 3.2: Transmission of a Talkspurt in the Presence of Errors.

the lost packet is detected upon arrival of the third packet to the receiver. Scenario (b)

shows the drawback of a retransmission scheme without Slack ARQ. If a packet is lost,

playback of all packets is discontinued until the retransmission has been completed. Since

the retransmission of the second packet is not completed before its playback time, a gap

is observed. In scenario (c) we assume a Slack ARQ scheme. Due to the extended control

time, the retransmission of the second packet is completed before its playback time.

Slack ARQ depends on appropriately extending the control time of the PVR queue in

order to increase the slack time of arriving packets. Packet voice protocols provide control

times to account for delay jitter, but these control times do not consider the roundtrip time

of the network, which is central to packet retransmissions. In calculating control times

for jitter purposes, packet voice protocols must estimate the delay variation of packets

traversing the network, either through performing measurement of this variation or through

30

the use of network-speci�c constants. The additional amount of control time required for

Slack ARQ can be calculated using these same mechanisms to derive estimates for the

network roundtrip delay. Hence, the implementation of slack ARQ in an extant or future

packet voice protocol will add little overhead. Note that in the case where no packets in the

talkspurt are lost, the extended control time for Slack ARQ provides an additional measure

of protection from gaps in the playback due to delay jitter.

Note that Slack ARQ can be improved in the sense that retransmissions are suppressed

when the probability of timely retransmission is low. In this case, before Slack ARQ requests

retransmission of a lost packet it would examine the length of the PVR queue and compare

it against the measured or estimated retransmission time.

A possible drawback of Slack ARQ is that it increases the end-to-end delay of all voice

packets. Recall that the end-to-end delay in interactive voice transmissions signi�cantly

a�ects the speech quality (see Table 1.1 in Chapter 1). Therefore, before any re�nement

to the Slack ARQ schemes are given, e.g., for calculating the extended control time and

thresholds for retransmission suppression, one needs to show that the increase in end-to-end

delay due to Slack ARQ does not interfere with requirements for speech quality. In the next

section we will show that in a LAN environment, Slack ARQ can successfully recover from

almost all single packet losses in a talkspurt with only modest extensions to the control

time used for jitter control.

3.2 Evaluation of Slack ARQ

In order to evaluate the e�ectiveness of our Slack ARQ scheme we present a simulation

model of digital speech distribution across a local area network. We conduct experiments

with the simulation model and provide answers to the following questions:

� How much control time is needed for Slack ARQ to ensure a high probability of suc-

cessful retransmissions?

Note that the control time at the PVR results in increased end-to-end delays for all

packets. However, since voice transmission is sensitive to end-to-end delay, the control

31

time cannot be increased arbitrarily.

� How does the control time required for jitter control compare to the control time re-

quired for Slack ARQ ?

We expect that our Slack ARQ scheme will not be acceptable for extant packet voice

protocols if the control time needed for Slack ARQ is not in the same order of mag-

nitude as the control time used for jitter control.

� How does Slack ARQ perform if consecutive packets are lost?

Due to the simplicity of the error detection scheme in Slack ARQ we expect the

e�ectiveness of Slack ARQ to degrade if consecutive packets are lost. However, Slack

ARQ should be able to recover at least partially from consecutive packet losses.

� How sensitive is Slack ARQ to particular network delay distributions ?

Although we expect the e�ectiveness of Slack ARQ to vary for di�erent network delay

distributions, Slack ARQ should be applicable for a wide range of network delay

distributions.

In Section 3.2.1 we discuss the parameters of our simulation model. Then we present a set

of experiments to evaluate the Slack ARQ scheme for di�erent sets of system parameters.

3.2.1 Simulation Model

For our simulation model we chose a local network environment with multi-user worksta-

tions as endsystems and an FDDI network as the communication network. Since we are

primarily interested in studying the behavior of the queue at the packet voice receiver queue,

we model a single uni-directional voice channel. The voice tra�c stream is modeled as al-

ternating talkspurts and silence periods whose lengths are exponentially distributed with

means 350 ms and 650 ms, respectively. These �gures represent a talk activity of 35 percent

as suggested in [8]. The packetization interval, Tx, determines the duration of speech (in

milliseconds) captured by each network packet. The number of packets in a talkspurt will

be the length of the talkspurt in milliseconds divided by Tx.

32

The one-way delay of the network, Tnet, consists of three components: protocol pro-

cessing at the sender, Tsndr , network access delay, Taccess, and protocol processing at the

receiver, Trcvr :

Tnet = Tsndr + Taccess + Trcvr (3:1)

For simplicity, the processing characteristics of sender and receiver are assumed to be equiv-

alent. The processing delays Tsndr and Trcvr are assumed to consist of a �xed component

Cconst and a variable component Cvar as given here:

Tsndr = Trcvr = Cconst + Cvar (3:2)

The �xed component Cconst represents the minimum time required for processing a packet at

the endsystems. For representing the variable component of the processing delay we choose

a truncated Cox distribution �(x1; x2; x3) with mean value x1, coe�cient of variation x2,

and a maximum value of x3. Selecting values from a Cox distribution for the variable

delay allows us to consider di�erent degrees of variances of the distribution. For example,

selecting x2 = 1 as the coe�cient of variation will yield an exponential distribution, values

x2 < 1 will result in an Erlang distribution with low variations, and x2 > 1 will result

in a highly variable hyperexponential distribution. Since system measurements show that

values for processing delays do not grow arbitrarily large, we select a truncated distribution.

The minimum processing delays of packets at endsystems is assumed to be low, i.e., we set

Cconst = 1. However, due to multitasking at the endsystem the packet processing delay is

highly variable. Therefore, we select the variable component of processing delays Tsndr and

Trcvr from a truncated Cox distribution, speci�cally �(1; 6; 10).

We assume that the FDDI network is heavily loaded. Network measurements show

that non-negligible packet error rates in FDDI networks are observed only under conditions

of high network load. We assume that all voice data is transmitted as synchronous tra�c.

With the recommended default value for the Target Token Rotation Time (TTRT) of 8

ms [27] an upper bound of the access delay is given by 2 � TTRT [31]. Assuming that

Taccess is exponentially distributed, we obtain a truncated Cox distribution �(8; 1; 16) for

the network access delay.

33

Parameter Description Min. Max. Avg.

Tnet One-way network delay 2 36 12

Tsndr Processing delay at sender 1 10 2

Trcvr Processing delay at receiver 1 10 2

Taccess Network access delay 0 16 8

TV Control time - 150 -

Tx Packetization interval - 150 -

Table 3.1: Default Parameters of the Simulation Model (in milliseconds).

The key parameters of a packet voice protocol are the control time at the PVR queue,

TV , and the packetization interval, Tx. Both TV and Tx are constrained by the end-to-end

delay requirements of the channel. To achieve a voice channel with high speech quality, we

do not consider values of TV > 150 ms and Tx > 150 ms.

The error model of our simulation model arbitrarily generates a period of time in

the talkspurt where packets are dropped, the so-called error period. The start of the error

period is uniformly distributed among the duration of the talkspurt. There is at most one

error period in a talkspurt. However, in one error period multiple consecutive packets may

be lost. An error period in which one packet in a talkspurt is lost is called a 1-error, an

error period in which two consecutive packet are lost is called a 2-error, and so on. In the

case of a loss of multiple consecutive packets, the receiver sends a single request for the

retransmission of lost packets. This is a realistic assumption since FDDI frames are large

relative to the amount of data in a voice packet. In Table 3.1 we summarize the default

parameters of the simulation model.

3.2.2 Experiments

The simulation model was developed using the SES/Workbench simulation package [51]. All

simulation experiments were run on a Sun Sparc2 workstation. Each data point represents

34

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

1-error
2-error
3-error
4-error
5-error

TV

0-error

P
ro

b
[n

o
ga

p]

(ms)

Figure 3.3: Probability of Continuous Playback (Tx = 10 ms).

the observation of at least 6000 talkspurts.

We present three sets of experiments. In the �rst two experiments, we investigate the

degree to which packetization interval and control time a�ect the ability of Slack ARQ to

recover lost packets. In the third experiment we examine the sensitivity of our Slack ARQ

scheme towards variations in the network delay behavior. Our performance measure is the

probability Prob[no gap], the probability that no gaps are observed during the playback

of a talkspurt. If the talkspurt contains packet losses then Prob[no gap] is equivalent

to the probability of successful retransmissions. We show the values of Prob[no gap] for

single and multiple packet losses. For reference, we always include the simulation results of

Prob[no gap] for error-free voice transmissions.

3.2.2.1 Experiment 1|Control Time

Figures 3.3, 3.4 and 3.5 show the e�ect of increasing the control time both on jitter control

and on the probability of successful retransmissions using the Slack ARQ scheme. The

packetization interval is assumed to be constant and is given by Tx = 10 ms in Figure 3.3,

Tx = 25 ms in Figure 3.4, and Tx = 50 ms in Figure 3.5.

In each �gure, the curve labeled 0-error depicts the probability that in an error-free

35

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
TV

1-error
2-error
3-error
4-error

0-error

P
ro

b
[n

o
ga

p]

(ms)

Figure 3.4: Probability of Continuous Playback (Tx = 25 ms).

transmission a packet arrives at the receiver before its playback time. The other curves

show the probability that Slack ARQ will successfully recover from the loss of n consecutive

packets, where 1 � n � 5. Thus, the curve labeled 1-error in Figure 3.3 represents the

probability of recovery from single packet losses.

Note that without a control time, i.e., TV = 0, the probability that no gaps occur

ranges between 75 � 91 percent for all simulation runs in this experiment. A control time

of TV = 15 ms is needed to reduce the probability of a gap in the playback schedule to

less than 1 percent. Short control times of TV � 15 ms result in a low probability of error

recovery, only 20 to 30 percent for the 1-error case.

The extended control time necessary for Slack ARQ to be e�ective can be directly

obtained from Figures 3.3, 3.4, and 3.5. In Figure 3.4, for example, complete coverage of

single error losses is achieved with a control time of TV � 55 ms. The following argument

explains the observed behavior of Slack ARQ. De�ne the virtual slack of a lost packet as

the slack time of that packet if it had not been lost, but had instead arrived at the receiver.

When a single packet is lost, the slack time at the receiver of the packet following the lost

one is approximately the virtual slack of the lost packet minus one packetization interval, Tx.

In order for a retransmission to occur before the playback time of the lost packet, the slack

36

time of the out-of-sequence packet must be greater than a roundtrip time in the network,

i.e., 2Tnet. Thus, the virtual slack of the lost packet should have a value of Tx + 2Tnet. For

example, in the simulations shown in Figure 3.4, Tx = 25 ms while the maximum value of

the network roundtrip time is given by 2Tnet = 72 ms.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

1-error
2-error

TV

0-error

P
ro

b
[n

o
ga

p]

(ms)

Figure 3.5: Probability of Continuous Playback (Tx = 50 ms).

Therefore, we are guaranteed that a control time of Tx + 2Tnet = 97 ms allows the

successful retransmission of all single packet losses. Yet, in Figure 3.4 we observe that a

control time of TV = 60 ms allows us to almost certainly recover from single packet losses,

i.e., Prob[no gap] � 1 if TV � 60 ms in the 1-error case. An extension of the argument

above to the case of consecutive packet losses shows that each additional consecutive packet

lost in an error burst adds approximately the duration of one packetization interval Tx to

the control time TV required for successful recovery of the entire lost burst. This explains

why the retransmission curves in Figures 3.3, 3.4, and 3.5 are parallel with a separation of

approximately Tx ms.

Summarizing, we note that the additional control time needed by Slack ARQ to recover

from single packet losses is low for small values of the packetization delay Tx (Figures 3.3

and 3.4), but may be unacceptable for long packetization delays (Figure 3.5).

37

3.2.2.2 Experiment 2|Packetization Interval

In this experiment we investigate the e�ects of di�erent packetization intervals Tx on Slack

ARQ. We assume a �xed control time at the PVR queue, TV = 50 ms. Other simulation

parameters are as given in Table 3.1. The results of this experiment are summarized in

Figure 3.6. Recall from the previous experiment that since a control time of TV = 50 ms is

higher than that required for jitter control in an error-free environment, the 0-error scenario

always yields Prob[no gap] = 1.

1-error
2-error
3-error

0-error

x

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Pr
ob

 [
no

 g
ap

]

T (ms)

Figure 3.6: Probability of Continuous Playback (TV = 50 ms).

In Figure 3.6 we note the non-monotonic behavior of curves for successful error re-

coveries using Slack ARQ. Two opposing phenomena are in
uencing the behavior of the

curves. On the one hand, as Tx grows, the probability of successful retransmissions is less-

ened. However, as Tx is increased, the number of packets in a talkspurt decreases and fewer

packets per talkspurt increase the likelihood that the lost packet is the �rst packet in the

talkspurt. The simulation model assumes that the �rst packet in a talkspurt can always be

recovered since the playback schedule can still be changed until the �rst packet is played

back. Since network roundtrip times in a local area network are small relative to end-to-end

delay constraints for speech quality, retransmission of the �rst packet is always preferred

and always successful.

38

Distribution Taccess Tsndr ; Trcvr

Cconst Cvar

Exponential �(8; 1:00; 16) 1:0 �(8; 1:00; 24)

Erlangian �(8; 0:25; 16) 1:0 �(8; 0:25; 24)

Hyperexponential �(8; 1:50; 16) 1:0 �(8; 3:00; 32)

Table 3.2: Delay Parameters in Experiment 3 (in milliseconds).

3.2.2.3 Experiment 3|Network Delay

In this experiment we investigate the e�ects of di�erent distributions for the network delay

Tnet on the control times required for jitter and error control. The packetization time is

�xed at Tx = 25 ms. Three di�erent network delay scenarios are investigated, and the

parameters in these three scenarios are given in Table 3.2. Recall that �(x1; x2; x3) denotes

the truncated Cox distribution with mean x1, coe�cient of variation x2, and maximum x3.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

Exponential (1-error)
Erlangian (1-error)

Hyperexponential (1-error)

TV

Exponential (0-error)
Erlangian (0-error)

Hyperexponential (0-error)

P
ro

b
[n

o
ga

p]

(ms)

Figure 3.7: Probability of Continuous Playback for Di�erent Distributions for Tnet.

The curves in Figure 3.7 represent the 0-error and 1-error curves for the three Tnet

delay distributions. The 0-error curves in Figure 3.7 show that higher variation in Tnet

39

creates the need for a longer control time to handle jitter. The hyperexponential scenario,

for example, requires 35 ms for jitter control while the Erlangian scenario requires only

15 ms. The 1-error curves show di�erences as well in the control times required for full

coverage of single packet losses.

As the control time increases, the convergence toward full coverage is quite dependent

on the delay distribution of Tnet. The Erlangian scenario exhibits a convergence behavior

approximating a discrete jump as it approaches the control time that allows for successful

recovery of a single packet. Thus, for a control time of 40 ms, error recovery would be very

poor, while with 60 ms almost all lost packets are recovered. The high variation represented

by the hyperexponential scenario allows for better recovery at lower control times than the

other scenarios, but its convergence to full coverage takes longer.

While the distributions here represent a wide range of variation in the behavior of

Tnet, note that the overall e�ects are small. Single packet error recovery can be covered for

all the distributions with a conservative control time TV = 85 ms and 80 percent coverage

is provided with a control time of TV = 55 ms.

3.3 Conclusions

Slack ARQ represents a new uni�ed approach towards the delay and error constraints that

in
uence the quality of the distribution of a digitized voice channel over a packet-switched

network. For realistic packet voice transmission scenarios over a loaded local area network,

our simulation study indicates that Slack ARQ is a feasible approach to error control. An

extended control time for error recovery through retransmission can provide signi�cant error

coverage while remaining within the same order of magnitude as the control time required

for jitter control.

In the next chapter we develop an analytical end-to-end model for continuous media

stream transmission, similar to the simulation model, in order to evaluate the Slack ARQ

concept in more general network settings.

40

Chapter 4

An Analytical End-to-End Model for

Slack ARQ

In order to evaluate our retransmission-based error control approach more thoroughly, we

develop in this chapter an analytical end-to-end model for the distribution of continuous

media tra�c. While similar to the simulation model in Chapter 3, the analytical end-to-end

model provides a general abstraction for investigating the important protocol and network

parameters that drive the dynamic behavior of the playback queue at the receiver and

hence determine the e�ectiveness of delay-constrained retransmission under the Slack ARQ

scheme. Besides generality, the analytical approach o�ers much faster computation, given

that the simulation study in Chapter 3 requires hours of computer time on a contemporary

compute server in order to produce a single curve for one con�guration of parameters.

In Section 4.1 we develop an analytical model for end-to-end transmission of real-

time streams and note the di�erences between it and the simulation model in Chapter 3. In

Section 4.2 we use this model to derive analytic expressions for the probability of continuous

playback of a talkspurt in the presence of errors, that is, the performance metric for timely

retransmissions under Slack ARQ, as developed in Chapter 3. In Section 4.3 we present

numerical examples of di�erent end-to-end transmission scenarios to determine parameter

sensitivities. In Section 4.4 we summarize the conclusions of this study.

41

4.1 End-to-End Model

In this section we give a detailed description of the end-to-end retransmission model. The

model considers all of the protocol issues for transmission quality of continuous media

streams, as presented in Section 1.1 of Chapter 1.

We begin by noting the di�erences between the analytical end-to-end model and the

the simulation model of Chapter 3. The simulation model executed under the assumption

of a variable (i.e., exponentially distributed) number of milliseconds in each talkspurt with

a �xed packetization interval. The analytical model assumes a �xed number of packets in

a talkspurt. The simulation model had a slightly more complex and LAN-speci�c network

delay model. The network delay in the simulation uses truncated distributions to re
ect

the properties of the FDDI media access protocol and related endsystem behavior. The

analytical abstraction models all end-to-end network delays as a single delay variable. Both

models take into account reordering e�ects. Finally, when calculating the performance met-

ric, we assumed in the simulation model that, if lost, the �rst packet in each talkspurt could

always be recovered through retransmission, a realistic assumption in the LAN environment

of Chapter 3. As discussed in Section 4.2.2, in the analysis here we exclude consideration

of the loss of the �rst packet in a talkspurt.

The analytical model speci�cally addresses packet voice transmission. Since packets in

di�erent talkspurts rarely interfere with each other, the tra�c modeled is the transmission

of a single talkspurt within a single packet voice stream. Starting at time t = 0, the sender

generates voice packets after packetization intervals of length x. A talkspurt is assumed to

consist of a �xed number of N packets. The transmission time of packets is assumed to

be negligible compared to the packetization interval. Thus, x also represents the distance

between packets at the entrance of the network.

The network delay experienced by a packet is described by a distribution FD . Packet

delays are assumed to be independent, and Dj is used to denote the network delay of the

jth packet in a talkspurt. However, we enforce in-sequence delivery of voice packets by the

network. Thus, a packet with a long network delay may cause a number of packets to arrive

42

x x x

T
a

T
a

1

2

time

time

time

time

T
3

s
T

1

s
T

s

2
T

s

4

x

T
a

3
T

a

T
a

T
a

4

5

6

x x x x x x

1 2 3 4 5 6

xD +
2 1

D xD + 4
5

x
6

D + 5 x
4

D + 3x

xx
4 5 61 2 3

Times
Arrival

Times
Playback

Times
Submission

Packet

Network

Delay

Resequencer

Network

gap

V

3
D + 2

Figure 4.1: Transmission Model of a Talkspurt.

back-to-back at the receiver.

When the �rst packet of a talkspurt arrives to the receiver, playback of the talkspurt

is delayed for the duration of the control time, denoted by V (V > 0). Thus, playback of

the talkspurt is started at t = D1 + V . The playback duration of each packet is identical

to the packetization interval x.

The end-to-end transmission model is summarized in Figure 4.1 for a talkspurt con-

sisting of N = 6 packets. In the top of the �gure we show the transmission of packets with

a distance of x time units. Each packet experiences an independent network delay of Dj for

the jth packet of the talkspurt. In-sequence delivery of packets is enforced by the so-called

resequencer shown in Figure 4.1. Denoting the arrival time of the jth packet by T a
j , the

resequencer enforces that

T a
j = max

i=1;:::;j
fDi + (i� 1)xg (4:1)

43

Thus, packets arrive to the receiver in the order in which they were transmitted. Assuming

that no playback discontinuities have occurred before the arrival of the jth packet, the

scheduled playback time for the jth packet, denoted by T s
j , is fully determined once the

�rst packet has arrived at the receiver. T s
j is given by

T s
j = D1 + V + (j � 1)x (4:2)

The �rst packet in a talkspurt that arrives after its playback time, that is, T s
j < T a

j , causes

a discontinuity, the so-called gap, in the playback of the talkspurt. In Figure 4.1, a gap can

be observed before the fourth packet.

The error scenario for our end-to-end model speci�es that during the transmission of a

talkspurt there is an arbitrary period during which zero or more packets are dropped by the

network, the so-called error period. We assume only one error period per talkspurt, but allow

multiple consecutive packets to be dropped in the error period. Since packets of a talkspurt

arrive at the receiver in the order in which they were transmitted, the receiver detects

losses as soon as a packet arrives out-of-sequence. After detecting a loss, a retransmission

procedure is initiated. We assume that the time to recover lost packets via retransmission

is fully determined by a roundtrip network delay. Processing times for retransmissions at

the receiver or the sender are assumed to be small and not considered in our model. Also,

we assume that the sequence of lost packets in the error period can be retransmitted in a

single packet. This assumption is realistic for network or transport layer protocols since

the maximum packet size is much larger than the typical voice packet. Thus, denoting the

retransmission time by R, the distribution function of R is given by

FR = FD
 FD

where
 is the convolution operator.

4.2 Analysis of End-to-End Model

In this subsection we develop an analytic expression for the probability of continuous play-

back for a talkspurt. First, we derive the desired probability assuming an error-free scenario.

44

Then, we extend our expression to consider error periods in a talkspurt.

4.2.1 Probability of Continuous Playback Without Errors

We are concerned with the occurrence of a gap in the playback of a talkspurt. We thus

de�ne random variables Gi (1 � i � N) that can be used to indicate the presence of a

discontinuity in the playback. By setting

Gi :=

8>>>>>>>>><
>>>>>>>>>:

V if i = 1

0 if Gi�1 = 0; i 6= 1

max f0; T s
i � T a

i g otherwise

(4:3)

we obtain Gi = 0 if a packet with index i or less arrives after its playback time. Since

the arrival of the �rst packet sets the playback schedule and cannot cause a gap, that is,

T s
1 � T a

1 = V , we set G1 = V . For a talkspurt with N packets, GN > 0 indicates that no

discontinuity has occurred during playback of the entire talkspurt.

Note that in equation (4.3), Gi = 0 for the ith packet is feasible in two scenarios.

Either no gap has occurred before packet i and packet i arrives after its playback time, or

a gap has occurred before the arrival of packet i. Therefore, denoting by PfGi = 0g the

probability of Gi = 0, we obtain for 2 � i � N

PfGi = 0g = PfGi�1 = 0g+ PfGi�1 > 0 and T s
i < T a

i g (4.4)

Note that the second term on the right side of equation (4.4) is the probability that the ith

packet causes the �rst gap in the playback of the talkspurt. In this case, all packets with

index less than i have arrived before their respective playback times. It follows that packet

i could not have arrived earlier than any packet with a smaller index, that is,

T a
i = max

j=1;:::;i
fDj + (j � 1)xg = Di + (i� 1)x (4:5)

Substituting equation (4.5) into equation (4.4) yields

P fGi = 0g = P fGi�1 = 0g+ P fGi�1 > 0 and V +D1 < Dig (4.6)

45

We can now recursively compute the probability for continuous playback, i.e., GN > 0, by

P fGN > 0g = 1�

Z
1

0
PfGN = 0 jD1 = tgdFD(t) (4.7)

4.2.2 Probability of Continuous Playback in the Presence of Errors

In the presence of errors, gaps in the playback of a talkspurt may result from delay jitter or

from a failure of the retransmission procedure to recover lost packets before their playback

times. In this subsection we calculate the probability of continuous playback of a talkspurt,

given that the network loses k consecutive packets, say packets with index n � k; n � k +

1; : : : ; n�1. We exclude the loss of the �rst packets in a talkspurt, i.e., n > k+1. Note that

in a talkspurt containing an error period, the arrival time of the jth packet is obtained by

calculating the latest packet arrival with index less than j that is not lost in the network.

Thus we obtain for T a
j that

T a
j =

8>>>><
>>>>:

max
l=1;:::;j

fDl + (l� 1)xg if j � n� k � 1

max
l=1;:::;n�k�1;n;n+1;:::;j

fDl + (l� 1)xg otherwise

(4:8)

For calculating the probability of continuous playback in the presence of errors, we

must consider two cases which can result in gaps. First, a gap may be due to an untimely

retransmission of the lost packets. We refer to this case as an error gap or E-gap. Second, a

gap may result from excessive delay variations, independent of the lost packets. This case is

referred to as a jitter gap or J-gap. Thus, Pfgapg, the probability of a gap in the playback

of a talkspurt, is given by

Pfgapg = PfE-gapg+ Pfno E-gapgPfJ-gap j no E-gapg (4.9)

The calculation of Pfgapg is performed in three steps. We �rst calculate the proba-

bility of an E-gap. Next, using an approach similar to that of the previous subsection, we

de�ne random variables Gi, that indicate the occurrence of a J-gap at or before the arrival

of packet i. We then calculate PfJ-gap jno E-gapg, which is the probability of a J-gap in the

talkspurt under the condition that the lost packets are retransmitted in a timely fashion.

46

Note that a jitter gap can occur before or after the lost packets are due for playback. In

the latter case, the discontinuity occurs independent of the retransmission procedure.

First we consider the probability of gaps due to untimely retransmission. Recall that

the time necessary for retransmission is denoted by R with FR = FD
 FD and the arrival

of the nth packet, that is, the �rst packet after the sequence of lost packets, invokes the

retransmission procedure. For retransmission to be untimely, the di�erence between the

playback time of the (n � k � 1)st packet, i.e., the �rst lost packet, and the arrival time

of the nth packet must be less than R, the time necessary for retransmission. Thus, the

probability of an E-gap is

PfE-gapg = PfT s
n�k � T a

n < Rg

= P

�
max

j=1;:::;n�k�1;n
fDj + (j � 1)xg > V +D1 + (n� k � 1)x�R

�

(4:10)

Fixing the retransmission time to R � r, and the delay of the �rst packet to D1 � t, we

obtain from equation (4.10) that

P

�
max

j=2;::;n�k�1;n
ft; Dj + (j � 1)xg > (V + t + (n� k � 1)x� r) jD1 = t; R = r

�
= (4.11)

1�

0
@P fV + (n� k � 1)x > rgFD(V + t � kx� r)

n�k�1Y
j=2

FD(V + t + (n� k � j)x� r)

1
A

In equation (4.11), we have used the independence of network delays. Now we uncondition

the expression in equation (4.11) through integration over the retransmission delay and the

delay of the �rst packet in the talkspurt. That is,

PfE-gapg =
Z
t

Z
r

1� P fV + (n� k � 1)x > rgFD(V + t � kx� r)�

0
@n�k�1Y

j=2

FD(V + t + (n� k � j)x� r)

1
AdFR(r)dFD(t) (4.12)

= 1�
Z
t

Z V+(n�k�1)x

r=0
FD(V + t � kx� r)

n�k�1Y
j=2

FD(V + t + (n� k � j)x� r)dFR(r)dFD(t)

47

In the following we assume that retransmission is timely, that is, an E-gap has not

occurred. We compute PfJ-gap j no E-gapg, the probability that a J-gap occurs in the

talkspurt under the assumption of timely retransmission. Similarly to equation (4.3), we

de�ne random variables Gi, such that Gi = 0 if a packet with index i or less arrives after

its playback time. With our assumption that packets n�k; n�k+1; : : : ; n� 1 are lost and

do not arrive to the receiver we obtain for 1 � i � n � k � 1 or n � i � N

Gi :=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

V if i = 1

Gn�k�1 if i = n

0 if Gi�1 = 0; i 6= 1; i 6= n

max f0; T s
i � T a

i g otherwise

(4:13)

We are interested in PfGN = 0g. Since the de�nition of Gi is recursive, we must

compute PfGi = 0g for all values of i. From the de�nition in equation (4.13), PfG1 =

0g = 0. That is, the �rst packet sets the playback schedule and cannot cause a jitter gap.

Also, the nth packet cannot cause a jitter gap since its arrival invokes the retransmission

procedure, which could not be timely if the nth packet arrived after its playback time. Hence

PfGn = 0g is de�ned to be the probability that a jitter gap occurs before the nth packet,

i.e., PfGn = 0g = PfGn�k�1 = 0g. It remains to consider two cases: 2 � i � n� k� 1 and

n � i � N .

We �rst calculate the probability of a J-gap at or before the ith packet where i �

n � k � 1. Since no E-gap occurs, the ith packet arrives early enough to ensure successful

retransmission of the lost packets, but the ith packet can cause a jitter gap by arriving after

its playback time. That is, the conditions for the ith packet resulting in a jitter gap are

T a
i > T s

i and T a
i � T a

n < T s
n�k �R (4:14)

Hence, for 2 � i � n� k � 1,

PfGi = 0g = PfGi�1 = 0g+ PfGi�1 > 0 and T s
i � T a

i � T s
n�k � Rg (4.15)

48

The last term in equation (4.15) represents the probability of the �rst jitter gap in

the playback occurring at the ith packet. Following the argument for equation (4.5), the

arrival time of the ith packet is Di + (i� 1)x, and equation (4.15) can be rewritten as

PfGi = 0g = PfGi�1 = 0g

+ PfGi�1 > 0 and V +D1 � Di � V +D1 + (n� k � i)x�Rg

(4.16)

Equation (4.16) is equivalent to

PfGi = 0g =
Z
t

Z
r

PfGi�1 = 0 jD1 = t; R = rgdFR(r)dFD(t) +

Z
t

Z
r

PfGi�1 > 0 jD1 = t; R = rg(FD(V + t + (n� k � i)x� r)� FD(V + t))dFR(r)dFD(t)

(4.17)

We have shown how to compute PfGi = 0g for i � n�k�1. Next we consider PfGi =

0g for i > n. Since packets with index greater than n cannot a�ect the retransmission

procedure, we obtain with the de�nition in equation (4.13):

PfGi = 0g = PfGi�1 = 0g+ PfGi�1 > 0 and T s
i � T a

i g (4.18)

By an argument similar to that for equation (4.5), the arrival time of the ith packet in

the last term of equation (4.18) is T a
i = Di + (i � 1)x. Then, Equation (4.18) yields, for

n+ 1 � i � N ,

PfGi = 0g =

Z
t

PfGi�1 = 0 jD1 = tg+PfGi�1 > 0 jD1 = tg �PfV + t � DigdFD(t) (4:19)

We can now compute Pfgapg, the probability of a gap in the playback of a talkspurt,

from equation (4.9) since we have PfE-gapg in equation (4.13) and PfJ-gap j no E-gapg by

recursive evaluation of equations (4.17) and (4.19).

4.3 Numerical Examples

In this section we apply our analysis to four network transmission scenarios. In each example

the e�ectiveness of retransmissions is expressed in terms of the probability of maintaining

playback continuity during a talkspurt, as derived in the previous section.

49

Example Packetization Interval (x) N Avg. Net Delay Net Distribution (FD)

1 20 ms 20 15 ms E2

2 20 ms 20 15 ms E1, E2, E6

3 20 ms 20 10,20,30,40 ms E2

4 6 ms 60 15 ms E2

Table 4.1: Parameters for Numerical Examples.

For the network delay distribution, FD, we consider delay distributions with di�erent

levels of variance, namely Erlang-k distributions, denoted by Ek, for k � 1. Networks with

large delay variations are modeled by E1, that is, an exponential distribution; for moderate

and low delay variations we use, respectively, E2 and E6.

The parameters for our examples are presented in Table 4.1 in which the packetization

interval x and the average network delay are given in milliseconds. Example 1 investigates

the sensitivity of the probability of continuous playback in the presence of errors for a base

transmission scenario. In the base scenario, we have selected E2 as the default network

delay distribution. The selection re
ects that delay variations over short periods of times,

such as the duration of a talkspurt, are generally modest. The mean network delay is set to

15 ms. The packetization interval is �xed at x = 20 ms, a value commonly used in extant

voice protocols [50], and each talkspurt consists of N = 20 packets. Together with the

packetization interval, this corresponds to a talkspurt length of 400 ms, a value motivated

by our empirical measurements of packet voice tra�c in Chapter 5 (see Figure 5.7). The

other examples vary one or more parameters of the base transmission scenario. In Example

2 we show the degree to which retransmission-based error recovery is in
uenced by the

network delay distribution. In Example 3 we consider di�erent mean network delays with

the same (e.g., E2) network delay distribution. In Example 4 we consider the e�ects of

reducing the packetization interval and subsequently increasing the number of packets in a

talkspurt. A motivation for Example 4 is the consideration of our retransmission scheme in

50

2-error

0-error
1-error

3-error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120

Control Time (ms)

P
ro

b[
no

 g
ap

]

Figure 4.2: Retransmission E�ectiveness for an E2 (Erlang-2) Network Delay Distribution.

an ATM adaptation layer protocol [11], instead of an upper layer protocol.

4.3.1 Example 1: E�ects of the Control Time on Retransmission

Recall that in our end-to-end model, we specify a single error period during the transmission

of a talkspurt, but multiple consecutive packets can be lost during the error period. Here

we consider error periods in which zero, one, two, or three packets are lost. An error period

in which i packets are lost is referred to as an i-error scenario.

Figure 4.2 shows the probability of continuous playback of the talkspurt under vari-

ation of the control time. It has four curves representing the respective error scenarios.

The 0-error scenario gives the probability that delay jitter results in a discontinuity in

talkspurts whose end-to-end transmission is error-free. From the 0-error curve we see that

a control time of roughly V = 60 ms is required to compensate for the delay jitter in

the network. With V = 60 ms, approximately 70% of single-packet losses are successfully

recovered through retransmission as are 30% of 2-packet losses. As the control time is

lengthened, error coverage improves and at V = 100 ms, successful retransmission in both

the 1-error and 2-error scenarios occurs in 90% of the cases, while for the 3-error scenario

it is approximately 70%.

51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120

Control Time (ms)

0-Error Scenario

E_1 (Exponential)

E_6 (Erlang-6)
E_2 (Erlang-2)

Pr
ob

[n
o

ga
p]

Figure 4.3: Delay Jitter for Di�erent Network Delay Distributions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120

Control Time (ms)

1-Error Scenario

E_1 (Exponential)

E_6 (Erlang-6)
E_2 (Erlang-2)

Pr
ob

[n
o

ga
p]

Figure 4.4: Retransmission E�ectiveness for Di�erent Network Delay Distributions.

Recall that the feasible range of control time values is determined by the end-to-end

delay restriction. In our example, the sum of the packetization interval and the network

delay on the average account for only 35 ms of the total end-to-end delay. Control times on

the order of V = 100 ms are thus feasible for all but the most stringent delay requirements.

The packetization interval plays an important role in the retransmission algorithm.

In a k-error scenario, the average amount of time that elapses between the occurrence

of a loss in the network and its discovery at the receiver is kx since the receiver discovers

packet loss when the �rst out-of-sequence packet arrives. Hence the probability of successful

52

retransmission in a k-error scenario will be low when V < kx. This can be observed in

Figure 4.2 where the recovery rate for control times of less than kx is roughly 5%, e.g., for

the 3-error scenario at a control time of V = 60 ms, 6% of retransmission attempts are

successful. As with the curves from Experiment 1 in the simulation study in Chapter 3,

the in
uence of the packetization interval is graphically evident in Figure 4.2|to achieve a

�xed probability of successful retransmission, the control times required for the 1-error and

2-error scenarios di�er by approximately the size of the packetization interval. The same

relationship is observed between the control times for the 2-error and 3-error scenarios.

4.3.2 Example 2: E�ects of Network Delay Variation

Here we study the e�ects of di�erent network delay distributions on the probability of

successful retransmission. We select E1 to represent networks with high delay variations,

E2 for moderate delay variations, and the E6 for low delay variations. Before examining

retransmission behavior, we �rst consider the di�erences in the amount of delay jitter in

the network under these delay distributions.

Figure 4.3 shows the probability of continuous playback of a talkspurt for the respec-

tive network delay distributions, given that the transmission of the talkspurt is error-free.

The size of the control times necessary to compensate fully for the delay jitter in the net-

work varies widely| V = 100 ms for E1, but only V = 60 ms for E2, and V = 30 ms for

E6.

Figure 4.4 compares the probability of successful retransmission of single-packet losses.

For small control times, the higher variation of E1-distributed delays results in a greater

probability of successful retransmission than the other distributions. However, E1 results

in a lower probability of successful retransmission than E2 and E6 for larger control time

values. As shown in Figure 4.4, the E1 curve is crossed by the other curves at points where

the probability of successful retransmission is low, e.g., at about 0.35 for E6. Hence the

delay distributions with low variation will inherently recover more packets successfully. For

instance, when the control time is V = 70 ms, the probability of successful retransmission

is approximately 0.73 for E1, 0.85 for E2, and 0.93 for E6.

53

4.3.3 Example 3: E�ects of Average Network Delay

In this example we examine the e�ects of varying the mean network delay for a �xed network

delay distribution, i.e. E2. All other parameters are the same as in Example 1. The 0-error

curves for mean network delays of 2, 10, 20, 30, and 40 ms are shown in Figure 4.5 and the

1-error curves in Figure 4.6.

The curves in Figure 4.5 indicate that the control time required to compensate fully for

delay jitter is approximately four times the mean network delay under the parameters of this

example. Note that scenarios with mean network delays larger than 40 ms are marginally

feasible in this network, due to the interaction between bu�ering for jitter and the end-to-

end delay constraint. If the mean network delay is 40 ms and the end-to-end delay bound

is 200 ms, then the maximum feasible control time is approximately 200�20�40 = 140 ms

whereas the control time required to compensate fully for delay jitter is approximately

160 ms.

Figure 4.6 shows the e�ect on retransmission e�ectiveness of increasing the mean

network delay. Retransmissions are rarely successful whenever the control time is less than

20 ms since, as discussed in Example 1, the packetization interval represents the time

required for the discovery of a single-packet loss at the receiver. The curve for a mean

network delay of 2 ms graphically illustrates this lower bound on the control time required

for successful retransmissions.

The curves reveal a strong interaction between retransmission e�ectiveness and the

one-way network delay. As the average network delay increases so does the absolute size of

delay jitter in the network. Retransmission behavior is also linked to the roundtrip network

delay, amplifying the e�ects of increases in one-way network delays. Consider an 80 ms

control time in Figure 4.6. If the average network delay is 10 ms, this control time will

allow for the recovery of 100% of single-packet losses. If the average network delay is 20 ms,

coverage falls to 80%, for 30 ms to approximately 50%, and for 40 ms to approximately

25%.

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120

Control Time (ms)

Pr
ob

[n
o

ga
p]

0-Error Scenario

mean = 20
mean = 10

mean = 30
mean = 40

mean = 2

Figure 4.5: Delay Jitter for Di�erent Mean Network Delays.

mean = 10

mean = 40

mean = 2

mean = 30
mean = 20

1-Error Scenario

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120

Control Time (ms)

P
ro

b[
no

 g
ap

]

1

Figure 4.6: Retransmission E�ectiveness for Di�erent Mean Network Delays.

In summary, for the network scenario in Example 3, we conclude that our retransmission-

based approach to error control will not be advantageous if the mean network delay is at

or above roughly 30 ms. For mean network delays below 30 ms, the results suggest that

there will be signi�cant error coverage for small burst losses when using the retransmission

scheme.

55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
ob

[n
o

ga
p]

0-Error
1-Error
2-Error
3-Error

Control Time (ms)

Figure 4.7: Retransmission E�ectiveness for an ATM Cell-Level Protocol.

4.3.4 Example 4: E�ects of Packetization Interval

Example 4 investigates the e�ects of reducing the packetization interval and subsequently in-

creasing the number of packets in each talkspurt. We choose a packetization interval of 6 ms

and N = 66 packets in each talkspurt. The duration of a talkspurt is thus approximately

the same as in Example 1. The choice of parameters is motivated by consideration of Slack

ARQ being embedded into a lower layer protocol in an ATM network, i.e., a connection-

oriented service at the ATM adaptation layer. The packetization interval corresponds to

uncompressed PCM-encoded voice carried in a 48-byte ATM cell payload.

We observe from Figure 4.7 that the 0-error curve rises much slower than the corre-

sponding 0-error curve in Example 1 (see Figure 4.2). Both curves, however, show that the

control time to fully compensate for delay jitter is 70 ms. The elongated curve in Figure 4.7

re
ects the increased probability of a jitter gap since each talkspurt consists of N = 66,

as opposed to N = 20, packets. Note that the increase in the control time is relatively

modest, given that each talkspurt has over three times as many packets. In Example 1,

for instance, the control time required to reach a 0.9 probability of continuous playback is

46 ms; in Example 4 it is 52 ms. The implication is that the performance metric is relatively

insensitive to selection of parameter N .

56

Decreasing the packet size dramatically improves the error coverage provided by our

retransmission scheme. As discussed in Example 1, the \knee" of the k-error curve is found

at approximately kx. Figure 4.7 indicates that recovery of burst losses containing several

packets (cells) is feasible under this example, whereas the recovery of large bursts was not

feasible in Example 1, i.e., with x = 20.

4.4 Conclusions

We have employed analytical modeling techniques to determine the e�ectiveness of delay-

constrained retransmission for di�erent transmission scenarios. The analysis enables us to

quantify the interactions between network delay and protocol-controlled parameters. We

summarize our �ndings as follows:

� The analytical results support the simulation study of Chapter 3 in demonstrating

the feasibility of delay-constrained retransmission for many realistic transmission sce-

narios.

� For a �xed average network delay, the sensitivity of the retransmission scheme to

changes in the variability of network delays is not strong. The k-error retransmission

curves in our �gures display a characteristic S-shape. Less delay jitter causes the curve

to rise more rapidly whereas more delay jitter tends to
atten the curve. Relative to

the range of feasible control times, retransmission success was not observed to vary

greatly with varying delay jitter in the network.

� Retransmission e�ectiveness is closely tied to the average one-way network delay.

Small increases in the average network delay result in proportionally larger increases

in network jitter and roundtrip delays, which reduces retransmission e�ectiveness.

One important network characteristic is thus the rate at which increasing absolute

network delays will produce larger absolute variations in network delays.

� The packetization interval plays a key role in the retransmission process, primarily

due to the assumption that the discovery of a packet loss at the receiver is based on

57

the arrival of out-of-order packets. From a practical viewpoint, we believe that an

implementation of the Slack ARQ scheme must use gap-based error detection. Timer-

based detection is less responsive, and timers are notoriously di�cult to tune. The

implication of gap-based detection is that control times for e�ective retransmission of

a k-error loss must be at least kx in duration.

As shown in Example 4, reduction of the packetization interval has a dramatic e�ect

on the e�ectiveness of retransmission for recovery of multiple-packet burst losses.

Protocols can in
uence the retransmission behavior through the selection of small

packet sizes. As hosts become more powerful and operating systems provide �ner

granularity support for timers, higher layer protocols will be more likely to a�ord

small packet sizes.1 In particular we have considered the e�ect of packetization at the

level of an ATM cell.

To compare our theoretical results with the dynamic behavior of real network environ-

ments, in the next chapter we present empirical delay measurements of voice transmissions

over a large campus-wide network.

1The popularity of 20 ms as the packetization interval in current packet voice software packages is in part
driven by the timing characteristics of current audio hardware, which in turn is derived from the timing
support available from contemporary operating systems.

58

Chapter 5

An Empirical Study of Packet Voice

Distribution over a Campus-Wide

Network

In this chapter we empirically investigate packet voice distribution over a contemporary

campus-wide network. In Section 5.1 we outline the purposes of the study. In Section 5.2 we

describe the experimental environment and present the empirical data collected on delays in

packet voice transmissions. In Section 5.3 we analyze the data and consider its implications

for our work. We summarize our results in Section 5.4.

5.1 Goals of the Study

Our primary goal in this study is to provide insight into the extent to which the end-to-end

model of Chapter 4 captures the behavior of voice transmissions in a real network. The

empirical measurements allow us to test, at least for one network environment, certain un-

derlying assumptions in the analytical model and to compare empirically derived statistics

with the retransmission behaviors predicted in our analytical studies. Understanding net-

work delay characteristics is also a �rst step towards consideration of protocol mechanisms

that would best implement the Slack ARQ scheme.

A secondary goal of this study is to examine the potential of extant large LANs for

supporting continuous media tra�c. The network we study, which is the University of

Virginia campus-wide network, is representative of contemporary large enterprise networks

59

consisting of Ethernet segments connected by high-performance routers to high-speed back-

bones, e.g., FDDI rings. These networks are good candidates for near-term deployment of

continuous media applications. Unlike a small LAN, a campus-wide network is geograph-

ically distributed over a large area, making conferencing applications attractive. Unlike

most wide-area networks, a campus-wide network has high-bandwidth links and powerful

routers and therefore might be expected to have characteristics similar to small LANs. The

campus-wide network environment, however, was not designed with the delay sensitivities

of continuous media streams in mind, and current applications are largely insensitive to

delays at the timing granularity of our measurements.

Emerging high-speed multiservice networks will increase the bandwidth available for

continuous media and multimedia applications, and provide quality of service mechanisms

to aid in transporting delay-sensitive packet streams. In large enterprise networks these

technologies will �rst appear in backbone networks and isolated local area networks since

most enterprises will transition slowly from their current network infrastructure. We be-

lieve, however, that continuous media applications will become widely available during this

transitional period, and that there will be considerable interest in running continuous media

applications over enterprise-wide networks whose component LANs represent the current

networking technologies. Our study provides a contribution towards understanding how well

this type of network will support continuous media streams, without tuning or modi�cations

to the network.

Measurement studies to characterize large networks remain something of a black art

since the enormous number of potential communication pairs renders any systematic prob-

ing of a large network infeasible, and since there are di�erent measures of performance.

Generally, researchers have focused on roundtrip delays and packet losses, either to under-

stand dynamic behavior for a particular protocol, e.g., TCP [34, 41], or for characterization

of aggregate network tra�c [44, 48]. Of relevance to our study is the work in [48], in which

wide-area network delays are measured using small UDP packets sent every 39 ms from a

source to a destination node. These frequent packet probes are used to detect anomalous

behavior in the Internet. The timescale of the network delays observed is on the same order

60

of magnitude as that in our work, and our results suggest the existence of phenomena in

the University of Virginia network similar to those reported in [48].

Our focus, however, is the transport of continuous media, and speci�cally packet voice,

over large multiple-segment LANs. No previous empirical studies of continuous media have

been done in this environment, and little work has been done on the measurement of real-

time tra�c in current packet-switched networks. We obtain two types of measurements.

First, we measure the characteristics of a 5-minute packet voice stream created with contem-

porary workstation-based audioconferencing software. Second, we measure the distortions

due to network delay that occur during transmissions of this voice tra�c, when carried in

UDP datagrams, across di�erent paths in the campus-wide network. These experiments

allow comparison of empirical statistics with the retransmission probabilities obtained in

our simulation and analytical studies.

5.2 Packet Voice Experiments

5.2.1 Experimental Approach

The network for our experiments is the University of Virginia campus-wide network, shown

in Figure 5.1. Our measurements were taken over network paths that consist of local Eth-

ernet segments connected by high-performance routers (i.e., Cisco AGS+) to high-speed

backbone networks (i.e., FDDI rings). Our approach was to measure the performance over

a set of di�erent paths in the network from a single tra�c-generating node, located on

subnetwork 60, which is attached to the router labeled Olsson in Figure 5.1. We selected

three destination machines, which are desktop workstations, located on di�erent subnet-

works throughout the network. The three paths from the source node to the destination

machines explore a signi�cant portion of the network topology.

61

G
ilm

er
-1

G
ar

re
tt-

1

D
ar

de
n

G
ar

re
tt-

2

V
L

n
e
t

0
1
4

B
i
o
,

P
s
y
c

n
e
t

0
6
2

M
i
c
r
o

F
a
c
i
l
i
t
y

n
e
t

0
1
8

C
h
e
m
i
s
t
r
y

n
e
t

0
5
2

R
u
f
f
n
e
r

n
e
t

1
8
8

N
e
w

C
o
l
l
e
g
e

n
e
t

0
1
2

I
T
C

E
t
h
e
r

B

n
e
t

0
2
2

I
T
C

E
t
h
e
r

A

n
e
t

0
0
2

I
T
C

E
t
h
e
r

C

n
e
t

0
4
4

I
T
C

E
t
h
e
r

D

1
2
1
.
3

p
p
s

8
1
.
7

p
p
s

3
9
.
5

p
p
s

8
1
.
4

p
p
s

6
4
.
7

p
p
s

2
9
8
.
4

p
p
s

2
1
3
.
0

p
p
s

4
6
0
.
5

p
p
s

3
5
8
.
8

p
p
s

6
7
0
.
3

p
p
s

2
9
3
.
3

p
p
s

2
5
0
.
2

p
p
s

1
6
8
.
2

p
p
s

1
3
8
2
.
0

p
p
s

C
ar

ru
th

er
s

S
t
a
c
e
y

H
o
s
p
i
t
a
l

P
h
y
s
i
c
s

T
h
o
r
n
t
o
n

O
l
s
s
o
n

n
e
t

0
2
6

n
e
t

1
0
0

n
e
t

1
0
2

n
e
t

1
8
2

2
0
.
2

p
p
s

5
.
1

p
p
s

1
4
.
2

p
p
s

1
4
.
9

p
p
s

n
e
t

0
9
8

n
e
t

0
0
4

n
e
t

1
2
2

n
e
t

1
2
4

4
8
.
0

p
p
s

7
.
8

p
p
s

6
9
.
6

p
p
s

5
0
.
2

p
p
s

2
2
0
.
8

p
p
s

n
e
t

0
2
4

C
o
m
p
u
t
e
r

A
i
d
e
d

E
n
g
r

n
e
t

0
0
6

A
p
p
l
i
e
d

M
a
t
h

n
e
t

0
4
6

M
e
c
h
a
n
i
c
a
l

E
n
g
r

n
e
t

0
3
8

O
l
s
s
o
n

B
a
s
e
m
e
n
t

n
e
t

0
3
2

M
a
t
e
r
i
a
l
s

S
c
i
e
n
c
e

n
e
t

0
0
8

C
o
m
p
u
t
e
r

S
c
i
e
n
c
e

A

n
e
t

0
6
0

C
o
m
p
u
t
e
r

S
c
i
e
n
c
e

B

n
e
t

1
9
8

C
o
m
p
u
t
e
r

S
c
i
e
n
c
e

D

4
5
.
6

p
p
s

6
6
.
1

p
p
s

3
4
.
6

p
p
s

5
6
.
9

p
p
s

1
3
.
6

p
p
s

1
7
0
.
0

p
p
s

1
0
6
.
3

p
p
s

4
3
.
8

p
p
s

6
7
.
8

p
p
s

n
e
t

1
9
0

C
o
m
p
u
t
e
r

S
c
i
e
n
c
e

C

n
e
t

0
1
0

E
l
e
c
t
r
i
c
a
l

E
n
g
r

n
e
t

0
7
2

C
h
e
m
i
c
a
l

E
n
g
r

n
e
t

1
6
8

E
n
g
i
n
e
e
r
i
n
g

D
e
a
n

1
4
3
.
9

p
p
s

1
6
0
.
4

p
p
s

3
6
.
2

p
p
s

2
0
.
5

p
p
s

9
.
0

p
p
s

n
e
t

0
3
6

M
i
c
r
o

-

S
t
a
c
k
s

n
e
t

0
3
4

C
h
e
m

&

C
i
v
i
l

n
e
t

1
5
6

M
o
n
r
o
e

H
i
l
l

2
6
.
1

p
p
s

n
e
t

0
3
0

S
o
c
i
o
l
o
g
y

n
e
t

1
4
0

C
a
b
e
l
l

n
e
t

1
4
2

G
a
r
r
e
t
t

n
e
t

1
4
4

E
c
o
n
o
m
i
c
s

n
e
t

1
4
6

C
o
c
k
e

n
e
t

2
0
8

W
i
l
s
o
n

n
e
t

1
6
6

A
l
d
e
r
m
a
n

n
e
t

2
0
0

A
c
a
d

V
i
l
l
a
g
e

n
e
t

1
3
4

N
e
w
c
o
m
b

n
e
t

0
7
8

C
l
e
m
o
n
s

4
4
.
7

p
p
s

4
3
.
5

p
p
s

1
6
.
3

p
p
s

3
6
.
8

p
p
s

1
3
6
.
6

p
p
s

1
7
.
8

p
p
s

1
2
9
.
7

p
p
s

2
8
.
9

p
p
s

1
0
7
.
0

p
p
s

3
.
4

p
p
s

C
o
m
m
e
r
c
e

V
E
R
n
e
t
-
B

V
E
R
n
e
t
-
A

S
U
R
A
n
e
t

3
0
3
.
7

p
p
s

2
3
.
1

p
p
s

1
9
4
.
4

p
p
s

J
M
U

V
P
I

L
y
n
c
h
b
u
r
g

V
C
U

7
1
6
.
3

p
p
s

1
9
3
.
7

p
p
s

90
4.

1
pp

s

1
5
9
.
2

p
p
s

N
R
A
O

A
e
r
o
R
s
c
h

M
a
t
h
A
s
t
r
o

J
A
G

V
a
T
r
a
n
s

M
c
K
i
m

H
o
s
p
W
e
s
t

A
r
c
h
i
t
e
c
t
u
r
e

M
i
n
e
r
a
l

L
a
w

R
e
p
u
b
l
i
c

P
l
a
z
a

n
e
t

0
7
4

n
e
t

1
1
8

n
e
t

1
0
6

n
e
t

0
8
8

1
.
6

p
p
s

5
5
.
0

p
p
s

1
0
6

p
p
s

0
8
8

p
p
s

n
e
t

0
9
4

n
e
t

0
9
2

n
e
t

0
2
8

3
.
8

p
p
s

3
.
2

p
p
s

2
3
.
0

p
p
s F
a
c
i
l
i
t
i
e
s

M
a
n
a
g
e
m
e
n
t

C
o
n
t
i
n
u
i
n
g

E
d
u
c
a
t
i
o
n

M
a
d
i
s
o
n

n
e
t

1
5
0

1
.
6

p
p
s

n
e
t

0
2
8

2
3
.
0

p
p
s

n
e
t

0
2
0

5
3
.
7

p
p
s

n
e
t

1
5
8

1
2
.
4

p
p
s

n
e
t

0
9
6

1
2
9
.
4

p
p
s

n
e
t

1
2
8

6
.
5

p
p
s

0
.
3

p
p
s

9
.
8

p
p
s

2
5
.
5

p
p
s

6
.
7

p
p
s

6
3
.
4

p
p
s

3
.
0

p
p
s

n
e
t

1
3
0

M
a
d
i
s
o
n

H
a
l
l

n
e
t

1
7
0

C
a
r
r
s

H
i
l
l

n
e
t

1
7
2

F
a
y
e
r
w
e
a
t
h
e
r

2
2
.
2

p
p
s

1
7
0

p
p
s

1
.
4

p
p
s

2
3
.
7

p
p
s

n
e
t

1
0
8

O
l
d

H
o
s
p
i
t
a
l

n
e
t

1
7
6

W
e
s
t

2

3
2
.
3

p
p
s

n
e
t

1
6
4

M
a
i
n

6
6
.
7

p
p
s

n
e
t

1
2
0

M
c
K
i
m

A

n
e
t

1
1
4

M
c
K
i
m

B

1
8
9
.
7

p
p
s

1
7
9
.
7

p
p
s

1
7
2
.
3

p
p
s

1
1
.
7

p
p
s

2
8
.
0

p
p
s

5
3
.
4

p
p
s

2
2
.
1

p
p
s

0
.
3

p
p
s

0
.
3

p
p
s

1
9
.
2

p
p
s

n
e
t

0
7
6

0
.
3

p
p
s

n
e
t

0
8
0

0
.
5

p
p
s

n
e
t

1
9
2
.
3
3
.
1
1
5

3
8
.
9

p
p
s

n
e
t

1
3
8

A
r
c
h
i
t
e
c
t
u
r
e

1
1
.
0

p
p
s

n
e
t

2
3
4

C
u
l
b
r
e
t
h

1
.
3

p
p
s

5
.
6

p
p
s

U
V

A
N

E
T

--
 N

et
w

or
k

12
8.

14
3

W
or

kd
ay

 N
et

w
or

k
S

ta
tis

tic
s

N
ov

 3
0,

 1
99

3
 th

ro
ug

h
 D

ec
 3

, 1
99

3

pp
s

P
ac

ke
t R

ou
te

r

B
ac

kb
on

e
R

ou
te

r

FD
D

I R
in

g

M
ea

n
w

or
kd

ay
pa

ck
et

s/
se

co
nd

4
2
.
7

p
p
s

3
3
.
9

p
p
s

1
2
.
2

p
p
s

4
1
3
.
9

p
p
s

1
2
9
.
8

p
p
s

2
2
1
.
5

p
p
s

1
3
.
9

p
p
s

n
e
t

2
0
6

7
.
9

p
p
s

n
e
t

2
1
6

6
.
1

p
p
s

n
e
t

1
8
0

N
e
u
r
o
s
u
r
g
e
r
y

-

A

n
e
t

2
4
4

N
e
u
r
o
s
u
r
g
e
r
y

-

B

n
e
t

1
6
2

D
e
v
e
l
o
p
m
e
n
t

1
3
3
.
9

p
p
s

8
.
8

p
p
s

n
e
t

1
1
6

H
u
m
a
n

R
s
c
s

n
e
t

0
8
6

C
a
r
r
u
t
h
e
r
s

n
e
t

0
8
4

I
T
C

T
o
k
e
n

n
e
t

2
3
8

C
t
r

P
u
b
l
i
c

S
v
c

7
.
3

p
p
s

1
1
5
.
5

p
p
s

3
5
.
2

p
p
s

4
.
0

p
p
s

n
e
t

0
8
7

I
T
C

E
t
h
e
r

1
.
7

p
p
s

K
C
R
C

N
e
t
O
p
s

P
o
l
i
c
e

B
R
H

F
r
e
e

C
l
i
n
i
c

n
e
t

1
4
9

K
C
R
C

T
O
k
e
n

1
4
9

p
p
s

n
e
t

0
3
1

5
.
7

p
p
s

n
e
t

0
0
9

0
0
9

p
p
s

n
e
t

0
1
1

0
.
4

p
p
s

n
e
t

1
2
6

1
2
6

p
p
s

0
.
0

p
p
s

5
.
6

p
p
s

5
.
8

p
p
s

0
.
5

p
p
s

0
.
0

p
p
s

5
6

k
b
p
s

T
1

T
1 T
1

T
1

1
3
5
.
8

p
p
s

1
9
.
4

p
p
s

6
8
.
0

p
p
s

4
8
.
4

p
p
s

P
V
C
C

A
l
b
e
m
a
r
l
e

1
9
5
.
2

p
p
s

n
e
t

0
4
2

C
l
a
r
k

H
a
l
l

n
e
t

1
3
1

R
o
t
u
n
d
a

4
.
0

p
p
s

9
3
.
1

p
p
s

1
2
.
0

p
p
s

4
.
9

p
p
s

n
e
t

0
5
0

C
o
b
b

n
e
t

1
9
4

S
t
u
d
n
t

H
l
t
h

n
e
t

0
1
6

J
o
r
d
a
n

n
e
t

0
6
6

M
R
-
4

n
e
t

0
6
4

H
e
a
l
t
h

S
c
i

L
i
b

4
0
.
0

p
p
s

1
1
3
.
1

p
p
s

6
9
.
9

p
p
s

n
e
t

2
1
4

U
n
i
v
e
r
s
i
t
y

H
a
l
l

2
.
3

p
p
s

1
4
1
.
4

p
p
s

n
e
t

0
8
2

N
u
r
s
i
n
g

S
c
h
o
o
l

1
7
.
7

p
p
s

n
e
t

0
1
9

A
c
a
d

C
o
m
p

H
S

n
e
t

2
2
6

n
e
t

2
2
4

n
e
t

2
2
0

n
e
t

0
0
3

n
e
t

2
2
2

8
8
.
8

p
p
s

n
e
t

2
2
8

n
e
t

2
2
3

Figure 5.1: University of Virgina Campus Network.

62

Our goal was to observe the conditions under which a typical continuous media appli-

cation would run. Therefore, measurements were taken during the daytime, and no attempt

was made to regulate the use of the remote machines during the experiments, though we

observed very light usage. To control time-dependent behavior, experiments using the dif-

ferent paths were performed back-to-back.

Our work focused on two aspects of packet voice transmission: the tra�c pro�le gen-

erated by actual packet voice transmissions and the network delays experienced during voice

transmissions across the campus-wide network. In order to have tight control over network

delay measurements, we �rst captured the network tra�c pro�le of a packet voice stream,

i.e., the interpacket transmission times and packet sizes of a voice stream transmitted on the

network by an audioconferencing application. We then collected network delay statistics on

a packet stream transmitted according to the voice tra�c pro�le.

5.2.2 Software Tools

To obtain a network tra�c pro�le for packet voice, we used the voice transmission capability

of the INRIA Videoconferencing System (IVS), a public domain software videoconferencing

tool [59], running on a Sun SPARCstation. We selected 32 kbit/s ADPCM encoding with

silence detection and the default packetization interval of 20 ms. The voice transmitted was

monologue male speech.

Packet delays were measured by a software-based network monitoring tool [40] running

on an Intel 486 workstation, which was attached to the same local-area network as the

tra�c-generating workstation. This network monitor node captured each packet on the

local network segment and timestamped the packet with a clock accuracy of �1 ms. To

calculate roundtrip delays, packets were timestamped as they left and as they returned to

the local network segment. Examination of sequence numbers in packet headers veri�ed

that the network monitor did not drop packets.

63

5.2.3 Measurements

To obtain a tra�c pro�le of voice transmissions we �rst transmitted approximately 5 minutes

of male monologue speech using the IVS package and used the network monitor to determine

the size and interpacket times in this packet stream. The voice processing in the IVS software

does not mark talkspurt boundaries, which allows us to capture the audio packet stream

without distortions due to protocol-speci�c processing. 1

Ideally, we would like to measure the network delay experienced by each packet. The

network delay is de�ned to be the time between when the voice protocol software at the

source makes a system call to transmit a datagram (i.e., a voice packet) and when the voice

protocol software at the receiver is delivered the datagram by the operating system at the

remote machine. However, due to the di�culty of synchronizing clocks in di�erent machines

and the lack of support for precise timing within some current operating systems, we cannot

directly measure the network delay of packets. Instead we measure the roundtrip time in

the network as seen by the network monitor. These delays can be used to extrapolate the

one-way network delays.

In our experiments a source program at the tra�c-generating workstation, using the

standard UDP/IP protocol stack, sends a stream of datagrams to a process on a remote

machine. The size and interpacket times for the datagram stream are taken from the

tra�c pro�le for voice obtained using the IVS package. Each UDP datagram �ts easily

into a single IP packet, and each datagram carries a sequence number incremented by the

source program. At the remote machine a user-level program receives the datagrams and

immediately transmits a datagram of the same size and with the same sequence number

back to the tra�c-generating workstation. The roundtrip time is determined by packet

timestamps from the network monitor and represents endsystem processing at the remote

machine as well as the time to cross the network twice.

Table 5.1 shows the three di�erent paths through the network that this study exam-

ines. Routers are identi�ed by the names used in Figure 5.1, with the exception of the router

1We used Version 2:1 of the IVS software. Future versions of the IVS software will have a more sophisti-
cated voice protocol that does incorporate talkspurt marking [60].

64

Path Routers (see Figure 5.1) Destination Name Destination Type

1 Olsson, Thornton weyl.math.Virginia.edu RS 6000

2 Olsson, Gilmer-1, Adcom apollo.itc.Virginia.edu Sun4 IPC

3 Olsson, Gilmer-1, VL, Hospital crcsun1.med.Virginia.edu Sun4 IPC

Table 5.1: Routes for Voice Transmissions.

Adcom. This router is not pictured in Figure 5.1, but in the current network it is attached

to the large FDDI ring (subnetwork 226) in the middle of Figure 5.1. Path 1 consists of 3

network segments, two Ethernets with each connected to an FDDI ring. Path 2 includes 4

network segments| the source Ethernet, an FDDI ring (subnetwork 222), a second FDDI

ring (subnetwork 226), and the destination Ethernet. Path 3 spans 5 network segments

with 3 FDDI backbones between the source Ethernet and the destination Ethernet.

The data shown here was taken in consecutive experiments, all completed between

10:30 AM and 11:30 AM on the same weekday. (Other data sets, omitted for brevity here,

corroborate the essential aspects of the measurements presented.) There was a background

load on the local Ethernet segment (subnetwork 60) of 5 Mbits/s during each experiment.

The network loads at remote subnetworks at the time of the experiment are not known,

though the statistics in Figure 5.1 give an indication of typical workday loads. The source

machine is a Sun SPARCstation IPC with a single user. The remote machines are desktop

workstations that were lightly loaded while measurements were being taken.

The measured roundtrip delays for Path 1 are shown in Figure 5.2, with the negative

spikes indicating dropped packets. For the �rst 90 seconds the network has low delay, i.e.,

most of the roundtrip times are in the range of 2-8 ms. However, at around 90 seconds into

the experiment, the network experiences large
uctuations in roundtrip times with peaks

up to nearly 200 ms. This behavior continues for approximately 60 seconds, at which point

the network roundtrip times return to a lower range with a few spikes in the 30-50 ms range.

Thus, during quiescent periods, we observe low delays that indicate a very fast path

65

0

50

100

150

200

0 50 100
Elapsed Time (sec)

200 250 300150

R
ou

nd
tri

p
Ti

m
es

 (m
s)

Figure 5.2: Roundtrip Times over Path 1.

across the network and through the kernel-level processing at the endsystem. Figure 5.3

gives a closer look at the delay spikes during a period of increased network delays over

Path 1. In this �gure the roundtrip delay of individual packets are plotted, and the large

delay spikes clearly display a pattern whereby the end-to-end delays for consecutive packets

associated with a spike are regularly spaced. Since the packets were transmitted from the

source 20 ms apart, the 20 ms spacing in Figure 5.3 indicates that the packets were queued up

at some source and then released in a burst, arriving at the network monitor back-to-back.

We believe it is unlikely that processing interrupts at the endsystem would consistently

produce this e�ect, though, since we are interested in end-to-end network delays, for our

purposes it makes little di�erence whether these e�ects are caused by the endsystems or

routers in the network.

66

-20

0

20

40

60

80

100

120

140

160

180

200

110 115 120 125 130 135 140 145 150

R
ou

nd
tri

p
Ti

m
es

 (m
s)

Elapsed Time (sec)

Figure 5.3: High Delays in Path 1.

Elapsed Time (sec)

0

50

100

150

200

250

0 50 100 150 200 250 300 350

R
ou

nd
tr

ip
 T

im
es

 (
m

s)

Figure 5.4: Roundtrip Times over Path 2.

67

400

0

200

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

R
ou

nd
tr

ip
 T

im
es

 (
m

s)

Elapsed Time (sec)

Figure 5.5: Roundtrip Times over Path 3.

0

50

100

150

200

R
ou

nd
tr

ip
 T

im
es

 (
m

s)

Elapsed Time (sec)

200 210 220 230 240 250 260

Figure 5.6: Roundtrip Times over Path 3 (Reduced Scale).

68

The second path crosses the most heavily loaded router in the network, Gilmer-1,

which interconnects two FDDI backbones. The destination machine is a Sun SPARCstation

IPC. The roundtrip delays, shown in Figure 5.4, are generally in the 2-8 ms range. We

believe that the isolated incidents of high delay are due to periodic routing tables updates

since additional experiments with this router show periodic performance degradations every

30 seconds. Figure 5.4 supports this conclusion. Close observation reveals delay spikes (of

varying size) occurring at 27, 57, 87, and 117 seconds into the experiment. Based on other

experiments, we conjecture that the size of the spikes is a function of network load at the

router.

Path 3 was chosen because it is one of the longest possible paths in the network,

crossing two Ethernet segments and three FDDI rings. The destination machine here is a

Sun SPARCstation IPC with very light loads. The roundtrip times are shown in Figure 5.5,

and the path turns out to have delay spikes of 1:4 seconds that appear regularly every

13 seconds. This behavior is not transient, i.e., speci�c to the day and time at which the

experimental data shown was collected. For several days after the experiment we performed

sporadic checking using the Unix ping utility to con�rm that the observed behavior was not

speci�c to the time of our experiment.

Figure 5.6 shows the measured delays over Path 3 on a timescale similar to that for

Paths 1 and 2. The network is seen to be quite well-behaved between the large periodic delay

spikes. We conclude that the data from Path 3 gives the clearest example of router-based

delay problems.

5.3 Analysis of Empirical Results

We next discuss the implications of the empirical results for our analytical model and for

the potential of this campus-wide network to support continuous media tra�c. We �rst

discuss the characteristics of the packet voice stream and then consider the network delays

observed.

69

Silence Periods
Talkspurts

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160

Hangover Time (ms)

M
ea

n
L

en
gt

h
(m

s)

Figure 5.7: Talkspurt Size as a Function of Hangover Time.

5.3.1 Voice Tra�c Characteristics

Determining talkspurt boundaries is an important protocol mechanism since it a�ects play-

back timing at the packet voice receiver. In our experiment the encoding scheme uses a

silence detection algorithm, which occasionally suppresses transmission of a small number

of packets during a speech activity period. If the packet voice receiver incorrectly iden-

ti�es these small silence periods as talkspurt boundaries, the result will be inappropriate

pauses in speech playback. Even if short silence periods represent natural breaks in speech,

variations in short silence periods due to control times are more noticeable than in long

periods.

When using silence suppression, the voice protocol must therefore enforce a minimum

intertalkspurt time, or hangover time, when marking talkspurt boundaries. Figure 5.7

shows the e�ect of di�erent hangover times on the average duration of talkspurts and the

average duration of silence periods in our voice data. As seen in Figure 5.7 the use of even a

small hangover time signi�cantly increases the size of talkspurts and silence periods. If the

hangover time is 20 ms, for example, then each activation of the silence detection algorithm

e�ectively creates a new talkspurt, resulting in silence periods of 35 ms on average. A

hangover time of 30 ms joins speech activity periods separated by a single packetization

70

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

Interpacket Times (ms)

Figure 5.8: Density Function of Interpacket Times at the Source.

interval, and the average duration of silence periods increases to around 200 ms. Subsequent

increases in the hangover time cause a more gradual increase in the duration of talkspurts

and silence periods. We conclude that, to achieve silence periods of relatively long durations

(i.e., 250-300 ms), a hangover time of approximately 100 ms is necessary, in line with [24].

Figure 5.8 shows the frequency distribution for the interpacket times of packets in the

voice stream leaving the tra�c-generating workstation. In line with the analytical model,

the �gure shows that the packetization interval generally dominates protocol processing at

the transmitter. Approximately 83% of all packets are transmitted on the network with an

interpacket time in the range of 18-22 ms and over 91% with an interpacket time in the range

of 15-25 ms. (Recall that timestamping in the experiments is accurate to within �1 ms.)

Approximately 1% of packets have interpacket times between 39-41 s, 1% between 59-61

ms, and 1% between 79-81 ms. Packets in these intervals are being transmitted after one,

two, or three consecutive packets have been suppressed by the silence detection algorithm.

The set of packets that consists of the �rst packet in each talkspurt, which accounts for

approximately 5% of all packets, is excluded from this frequency distribution.

The frequency distribution for the number of packets in a talkspurt is given in Fig-

ure 5.9. the empirical data demonstrates a high variance in the number of packets, with

many talkspurts containing less than ten packets. This behavior is corroborated in [25].

71

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

Number of Packets in Talkspurt

Fr
eq

ue
nc

y
C

ou
nt

Figure 5.9: Packets in a Talkspurt.

This distribution improves the likelihood of continuous playback for a talkspurt since the

probability of a jitter gap is reduced by having fewer packets in the talkspurt. Thus, given

this empirical frequency distribution, the retransmission probabilities from our model, when

based on a single output derived from the mean number of packets in a talkspurt (as was the

approach in the numerical examples in Chapter 4), will underestimate the true probability

of successful recovery from packet loss.

5.3.2 Network Measurements

5.3.2.1 Observations

The �rst observation about the measured network delays is that all three paths exhibit

delay behavior feasible for the transport of real-time packet streams, though the very large

periodic delays on Path 3 seem likely to degrade the transmission quality. Excepting the

extreme delay spikes on Path 3, the measurements reveal a network that can be roughly

characterized as changing between a quiescent state with low stable delays to an unstable

state during which delays and delay variations are generally high. For instance, Path 1

demonstrates an unstable period for approximately 60 seconds, and Path 2 exhibits at least

two periods of moderately high delays that last for approximately 20 seconds each, i.e.,

in Figure 5.4, at around 30 seconds of elapsed time and at around 260 seconds of elapsed

72

time. Our data suggests that at least some increased delays are related to periodic router

behavior, which would correlate with observations in [17, 44], though this periodic behavior

does not explain all the high delays observed.

Packet losses are rare, but they do occur in the experiments. All losses that were

observed are isolated single-packet losses. Losses represent a very small percentage of the

total packets transmitted, e.g., in the data for Path 1, for example, there are 7 packet drops

out of the 7700 packets observed. Since our quality measure is the continuity of playback

for a talkspurt, however, a more meaningful measure is the percentage of talkspurts that

experienced at least one packet drop. Packet losses occur in 1.7% of the talkspurts in the

Path 1 experiment. If we isolate attention to the 60-second high-delay period for Path 1,

a packet loss occurs in 4.5% of talkspurts. Many of the losses that appear in the empirical

data occur during periods of low delay in the network, suggesting that these losses are not

strongly correlated with high network delays, as found in losses for wide-area transmissions

across the Internet [44].

5.3.2.2 Empirical Probabilities

For comparison with our theoretical results in Chapter 4, here we calculate the probability

of continuous playback of a talkspurt using the empirical delay measurements. Our delay

measurements are for roundtrip times in the network. However, in the following analysis,

these delays will be treated as conservative estimates of one-way network delay. We choose

this approach since the behavior shown in Figure 5.3 gives evidence that packets with high

delay accumulate their delay at a single point in the network, e.g., at a congested router.

Thus, if we were to employ the commonly-used strategy of dividing roundtrip delays by

half in order to estimate end-to-end delays, we risk severe underestimation of the largest

network delays. Also, by using roundtrip times, we obtain conservative measurements on

retransmission behavior.

In Figure 5.10 the 0-error probabilities for the delay measurements over all three

paths have been empirically determined and plotted over variations in the control time.

By \empirically determined" we refer to the reconstruction of the playback schedule using

73

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

Pr
ob

[n
o

ga
p]

Control Time (ms)

Path 1
Path 2
Path 3

Figure 5.10: Control Times and the Elimination of Jitter Gaps.

measured network delays and a given control time value. For our purposes we assume a �xed

control time value for all talkspurts. We observe that a �xed control time of approximately

120 ms will achieve continuous playback at the receiver for at least 98% of the talkpurts on

Paths 1 and 2, though only 95% on Path 3. For Path 3 a control time of 200 ms achieves

continuous playback for only 96% of the talkspurts, that is, the extremely high delay spikes

cannot be compensated for by any reasonable size control time at the receiver.

Figure 5.11 gives the k-error curves for the data from Path 1. To calculate the curves

in scenarios with errors, an estimate of the roundtrip time for retransmissions is required.

We estimate this delay by taking twice the average of the network delay of the four packets

arriving after the packet presumed lost, i.e., we look into the future to estimate the network

delay that the retransmission will encounter. As in the analytical model, the k-error curves

are calculated under the assumption that a single burst loss occurs with uniform distribution

within a talkspurt.

Note that the non-intuitive inversion for small control times in Figure 5.11, i.e., three-

error loss is more likely to be recovered than a one- or two-error loss, is purely an artifact

of our calculations. This anomaly occurs due to the fact that there are a number of short

74

0-Error
1-Error
2-Error
3-Error

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

P
ro

b[
no

 g
ap

]

Control Time (ms)

Figure 5.11: Control Times and Retransmission Probabilities for Path 1.

talkspurts in the data and each error scenario considers a di�erent set of loss positions.

When the probability of loss recovery is very low, the consideration of fewer loss positions

favors the scenarios with larger burst losses.

More signi�cantly, from Figure 5.11 we observe that, in the range of control time

values needed for jitter control, the probability of successful retransmission for moderate-

size burst losses is high. The empirical data thus supports the conclusion that retransmission

is a feasible strategy that provides a high degree of error coverage.

The most important result evident in Figure 5.11 is the reproduction of the char-

acteristic \S"-shaped curve from the analytical and simulation studies. That is, we have

experimentally veri�ed the curves for retransmission success over variations in the control

time predicted in our models. The \knee" of the curve for the probability of successful

recovery of k lost packets is located at the control time value of k times the packetization

interval. In this particular network the curves rise rapidly after the \knee", re
ecting the

large amount of tra�c that experiences low delays, followed by a long tail, due to the di�-

culty of recovering losses if they occur in the period of high delay and high delay variations.

Empirical retransmission probabilities calculated with the network measurements on Paths

75

2 and 3 exhibit curves very similar to those in Figure 5.11.

5.4 Summary

Our goals in this chapter were �rst to consider the impact of empirical measurements

on our analytical retransmission model, and second to assess the feasibility of campus-

wide networks supporting near-term deployment of continuous media applications. We

summarize the conclusions of the study below.

Measurements of voice tra�c con�rm the assumption in the analytical model of a

deterministic tra�c pattern for voice. Little variation in interpacket times is observed at

the tra�c-generating workstation, indicating that protocol processing at the transmitter is

dominated by the packetization interval. The number of packets in each talkspurt exhibits

high variance in our voice sample. In Chapter 4 it was shown that the retransmission

probabilities calculated from the analytical model, which assumes a �xed-length talkspurt,

are not strongly sensitive to the length of a talkspurt. However, due to the high variance

for the length of actual talkspurts, multiple runs of the model with di�erent settings for the

talkspurt length may be needed in order to capture the nature of real voice tra�c.

The network delays measured in this study are not well-suited to being modeled with a

single continuous delay distribution. The measurements clearly show that the network delay

distribution shifts with time, implying that more than one distribution is needed over long

time periods. From the measurements for this network, the network delay behavior appears

to separate into a low-variation distribution for periods of low delay and a high-variation

distribution for the periods of instability.

Retransmission probabilities generated with the empirical data, however, support the

conclusion from the simulation and analytic studies that retransmission is feasible under

the control times required to fully compensate for delay jitter in the network. In addition,

these empirical probabilities show that the overall e�ect of delays on retransmission behavior

follows the basic pattern predicted by the model, i.e., the characteristic \S"-shaped curves

from the models are empirically veri�ed.

76

Packet losses did occur during network transfers. The amount of loss was quite small

over the entire data set, but the impact on quality as measured in the playback continuity

of talkspurts appears to be non-negligible over some time intervals, speci�cally over the

1-minute period of high delay observed in Path 1.

Based on the measurement study it can be concluded that the University of Virginia

campus-wide network has good potential for supporting real-time tra�c streams. Sporadic

high delays in the network, however, are a threat to quality. We speculate that the high

delays observed in the measurements are largely an artifact of router design, and that,

as the importance of continuous media tra�c increases, mechanisms will be developed to

reduce or eliminate this behavior. But the sensitivity of continuous media tra�c will make

the transition to supporting real-time tra�c in the network a di�cult one. The extreme

delays observed on Path 3 in our measurements stand as an example of anomalous network

behavior that is of little consequence to data tra�c and hence goes unnoticed, but which is

disastrous for real-time tra�c.

77

Chapter 6

Conclusions

As the trend towards accommodating audio and video in digital processing environments

accelerates, computer communications must meet the challenge of providing services for

delay-sensitive tra�c streams. At �rst these services will emphasize connectivity and rel-

atively little emphasis will be placed on re�nement of the network delivery mechanisms.

As integrated services networks mature and tra�c demands increase, service providers will

increasingly focus on the construction of e�cient services that fully exploit statistical multi-

plexing gains in the network. Delay-constrained error control, in which endsystems recover

packet losses due to temporary network congestion, will allow aggressive use of network

resources without a catastrophic loss in transmission quality.

This thesis contributes to the construction of such services by providing a compre-

hensive and fundamental study of retransmission-based error control for the distribution

of digital continuous media over packet-switched networks. We have formulated a novel

retransmission scheme that avoids signi�cant drawbacks associated with proposed open-

loop error control techniques for continuous media. A major barrier to the consideration of

retransmission-based error control in the past has been the lack of a methodology by which

to assess its feasibility and e�ectiveness in the presence of stochastic network delays. We

have developed analytic techniques that provide a quantitative measure of retransmission

performance, based on the quality experienced by the continuous media stream. We per-

formed simulation and analytical studies of realistic transmission scenarios and supported

this work with empirical measurements of actual voice transmissions. Our results lead us to

78

conclude that, contrary to the current wisdom, retransmission-based error control can pro-

vide signi�cant error coverage for continuous media communications in many packet-based

transmission scenarios while respecting delay constraints that are critical to the overall

distribution quality.

We now highlight the contributions of this thesis by chapter and identify directions

for further research.

6.1 Summary of Contributions

In Chapter 1, we place the problem of error control for continuous media communications

in the context of maintaining the overall quality of the transmission, which implies respect-

ing the delay constraints of the stream. Error control in conventional reliable end-to-end

protocols are delay-insensitive and therefore inappropriate for continuous media.

In Chapter 2, we survey the techniques proposed for error control with continuous

media streams. While the literature on error control is quite large, error control under

real-time constraints is a relatively new topic. Retransmission schemes have generally been

eschewed or dismissed altogether. We conclude that, if timely retransmissions are achiev-

able, retransmission is attractive since it imposes little overhead on network resources and

since alternative techniques have notable drawbacks with respect to complexity, portability,

and cost.

In Chapter 3, we de�ne a novel retransmission-based approach to delay-constrained

error control, the Slack ARQ scheme. Feasibility of the approach for LAN-based packet

voice distribution is explored through a simulation study. A unique component of the

simulation model is the development of a performance metric for retransmission e�ectiveness

that is based on the overall transmission quality experienced by the delay-sensitive packet

stream. Experiments with the model presented in this chapter show that the bu�ering times

required for Slack ARQ are on a timescale that allows signi�cant error coverage through

retransmissions while respecting the delay requirements of interactive voice.

In Chapter 4, we develop an analytical end-to-end model for Slack ARQ. The model is

79

quite general, abstracting away the details of encoding schemes and details of the underly-

ing network architecture. Using the model we develop analytical expressions for the perfor-

mance metric developed in the simulation model. The analysis provides, without resorting

to lengthy simulations, quanti�cation of parameter interactions, such as the packetization

interval in the protocol and the network delay distribution, that a�ect retransmission suc-

cess. This methodology is an important contribution. No previous studies have developed

techniques by which the e�ectiveness of retransmission for a continuous media stream could

be evaluated over variations in network and protocol parameters.

In Chapter 5, we report the results of an empirical study on the tra�c character-

istics and network delays of actual packet voice streams transmitted across a contempo-

rary high-performance campus-wide network. Our study is of particular interest since large

multiple-segment LANs are likely candidates for near-term deployment of continuous media

applications and since there is little previous empirical work on continuous media streams

in this environment. We conclude that in general current large LANs can support contin-

uous media, though our measurements indicate that occasional periods of high delay will

threaten the quality of these real-time tra�c streams.

The empirical measurements support crucial assumptions underlying the analytical

model for retransmission in the following ways. First, we observe relatively small delay

variations for packets at the transmitting endsystem, leading to a tra�c pro�le, as in the

model, dominated by the packetization interval. Second, retransmission probabilities calcu-

lated using the empirical network delay measurements concur with the theoretical �ndings

in that the control time required at the packet voice receiver to compensate fully for delay

jitter in the network also provides for signi�cant error coverage under the Slack ARQ scheme.

Third, the curves representing the empirically determined retransmission probabilities have

the characteristic shape of the curves generated from our simulation and analytical models.

That is, at least for one real network, our approach models the retransmission probabilities

in an accurate fashion.

In Appendix A, we describe the design, implementation, and evaluation of a novel

retransmission-based error control scheme embedded in XTP, a next-generation transport

80

protocol. Constructed as a modi�cation to an existing unreliable service de�ned by XTP,

our service allows delay-sensitive clients such as continuous media applications to express

their error tolerances to the underlying XTP error control algorithm in order to tune the

aggressiveness of the retransmission algorithm in recovering lost packets. By exploiting

functionality implemented for reliable modes of XTP, particularly management of retrans-

mission bu�ers, the new error control service was created with very little additional protocol

code or complexity. Experimental network transfers con�rm that the new service can pro-

vide limited error coverage while maintaining essentially the same delay characteristics as

the unreliable stream communication in XTP.

6.2 Future Work

Our work has many possible future directions.

One area is the development of implementation techniques to take advantage of our

analytical results. This extension of the thesis has a number of challenges that are likely to

provide further insight into the applicability and power of delay-constrained error control.

Two important issues include development of an on-line approximation of our analytical

approach and adapting to changes in the network delay distribution during transmissions.

Hybrid approaches to error control represent another interesting area. Just as with

hybrid FEC/ARQ for data communications, we expect our Slack ARQ scheme to be used in

conjunction with other techniques, when available. In some ATM environments, for exam-

ple, cell-level forward error correction hardware will be available for use in conjunction with

a Slack ARQ scheme in the higher layer protocol. Interesting trade-o�s arise in determining

the parameters for the two error control schemes, e.g., packet size, degree of overcoding,

and amount of cooperation between the two schemes, that strikes the best balance between

performance and network overhead.

Our investigation in this thesis has been largely conducted in the context of interactive

packet voice, which, as we point out in Chapter 1, can be viewed as a very simple model of

81

video tra�c. The extent to which more sophisticated models for video are needed is cur-

rently unknown, but in any case a more thorough investigation of video tra�c is warranted.

In addition to tra�c modeling, many video transmission scenarios will require considera-

tion of the bu�er requirements for retransmission. An interesting approach for on-demand

video, for example, is to use feedback at the receiver to control the rate of delivery from

the transmitter. From an error control perspective, the bu�er at the receiver should be

maintained such that, without over
owing and losing data, it provides enough bu�er time

for retransmissions. The analytical end-to-end model developed in this thesis represents

a good framework for studying the closed-loop algorithms for both rate control and error

control in this problem and, by extension, similar rate control problems for packet video.

Extension of our concepts to multiple parallel streams is another possibility. In mul-

timedia applications, related parallel streams often have synchronization requirements that

will interact with other quality issues such as error control. Streams with higher priority or

greater sensitivity to loss will impose resynchronization actions on less important streams,

requiring a more complex structure for evaluating the trade-o� between error recovery and

stream delay constraints.

Error control in multicast communications has become increasingly important and

especially so for continuous media. A number of applications for continuous media, e.g.,

conferencing applications, have a natural need for multicast distribution. In multicast

transmission scenarios, the loss of packets at a single receiver may in general a�ect the

progress of all other receivers, and hence the quality of the transmission for the multicast

group, and not just the individual receiver, should determine protocol control actions. In

Appendix A we note the value of our work there to the multicast error control de�ned in

XTP, and schemes for other protocols are an exciting research area.

82

Appendix A

A Lightweight Limited-Retransmission

Service for the Xpress Transfer Protocol

A.1 Introduction

We de�ne a new class of transport layer service for applications that desire to trade o�

data completeness for latency considerations. Referred to as a Partially Error-Controlled

Connection (PECC), the new service is developed as an enhancement to a next-generation

transport protocol, the Xpress Transfer Protocol (XTP) [57]. PECC adapts the retransmis-

sion algorithm within XTP to construct connection-oriented communications under which

the retransmission of lost packets occurs only when it will not add additional delay to the

data delivery. The PECC client provides the transport layer protocol with application-

speci�c values that allow for estimation of the time available for retransmission and give

explicit knowledge of the error tolerance of the client.

Figure A.1 presents a perspective on end-to-end communication paradigms that fo-

cuses on data sequencing and data completeness. When an application requires fully in-

order sequencing and no data loss, the transport layer service provides a reliable connection.

Without the aspect of sequencing this service becomes an acknowledged datagram, and if

no e�orts are made to ensure delivery, the service degenerates to datagram. XTP �lls the

fourth option, o�ering a novel no-error mode connection in which the functionality of an

XTP connection, e.g., in-order data delivery, is provided but with no active error control.

83

reliable

connection

acknowledged

datagram

full loss

recovery

some loss

recovery
no loss

recovery

XTP no-error

connection
full

none

data completeness

PECC

datagram

se
qu

en
ci

ng

Figure A.1: Sequencing and Error Control in Communication Services.

Our new service �lls a middle position between the reliable connection and the XTP no-

error mode connection by providing in-order data delivery with limited loss recovery. While

this type of service is not available in conventional service models, it is useful for emerging

delay-sensitive applications such as continuous media.

The rest of this appendix is organized as follows. In Section A.2 we describe the

service interface and in Section A.3 the modi�cations to the XTP retransmission algorithm

that implement a PECC channel. In Section A.4 we present the implementation strategy

used to graft the PECC service onto XTP with very little additional complexity. We report

on measurements of our implementation under di�erent parameter settings in Section A.5,

and we summarize our conclusions in the closing section.

A.2 PECC Service Interface

The PECC service interface has four parameters: �fo min, window length, window density,

andmax gap. Under the PECC communication model, the XTP receiver logically places the

data received from the network into its bu�ers, which are �rst-in, �rst-out (FIFO) structures

emptied by the PECC client. The parameter �fo min indicates the minimum amount of

data in bytes that must be queued for the client before the XTP receiver will request a

84

retransmission of lost data. If the client empties its FIFO at a �xed or nearly �xed rate, as

with continuous media applications, the depth of the FIFO of the client translates directly

into an amount of time before the client will consume the data currently in its FIFO. The

�fo min value then represents the PECC client's estimate of the minimum time required for

lost packets to be recovered by retransmission from the source without the client's FIFO

under
owing.

In the PECC algorithm, when retransmission cannot take place in a timely fashion,

data is \skipped". That is, in order to make progress, the PECC receiver marks bu�ers that

have no client data in them as having been correctly �lled and updates its internal state

accordingly. When the client is delivered these bu�ers, the client is receiving \dummy"

data.

The parameters window length and window density describe the tolerance of the client

for the frequency and duration of errors during the transfer. The underlying protocol

implements a sliding data window of length window length. The service guarantee to the

client is that, if latency considerations result in more than window density bytes of missing

data having to be skipped in any interval of window length data bytes, the PECC service will

notify the client of the service violation. Finally, max gap represents the maximum number

of missing bytes that will be skipped during any one pass through the PECC algorithm.

Max gap controls the rate, relative to new data packets arriving, at which data is skipped.

Note that using packet arrivals to drive the aggressiveness of the retransmission algorithm is

motivated by the fact that this rate characterizes the amount of fresh data available to the

receiving PECC client. The PECC client can control this rate with the window parameters,

i.e., window length and window density.

The PECC service reports failure when the service guarantee on the spacing and size of

missing data must be violated in order for the data transfer to continue in a timely fashion.

When a failure occurs, the PECC implementation provides the client with an indication of

the service failure and continues the data transfer.

85

A.3 Retransmission Algorithm

We now describe in detail the retransmission algorithm embedded in the XTP receiver that

implements the PECC service. Presentation of the algorithm requires the terminology of

bu�er management at the XTP receiver, which we present in Figure A.2. The �gure shows

bu�ers at an XTP receiver. Dark areas represent data received, while light areas represent

portions of the data stream not yet received at the XTP receiver. In the situation depicted,

data has arrived out of order, and hence there are gaps in the bu�ered data. Since XTP

supports selective retransmission, the XTP receiver supports bu�ering for packets that

arrive out of order. Sequence numbers, which are byte-based in XTP, increase from left to

right in the bu�ers in the �gure, e.g., the packet shown arriving from the network, which is

assumed to represent new, in-sequence data, will be placed into the bu�ers at the right as

shown.

Figure A.2 shows three state variables associated with the XTP receiver's bu�ers:

dseq, rseq, and hseq. The value of dseq is one greater than the highest sequence number

of data delivered to the client; the value of rseq is one greater than the highest sequence

number of data received in sequence; the value of hseq is one greater than the highest

sequence number of data received. Note, once the packet shown arriving from the network

is placed in the bu�ers, hseq will be increased by the size of the payload of the packet.

The term current gap in the PECC algorithm refers to, upon arrival of a packet from the

network, the data between rseq and the next data bu�ered at the receiver. If no data is

present beyond rseq when a packet arrives out of order, the current gap is the data between

rseq and the sequence number of the �rst byte in the arriving packet.

For the XTP receiver, skipping data means increasing the value of rseq, even though

the client data for this part of the sequence space is not available. When data is skipped,

the XTP receiver advances its state as though the skipped data were correctly received, and

the new state of the receiver is eventually reported through normal protocol procedures to

the XTP transmitter. In this way the data transfer makes progress, and data sequencing is

handled as in a reliable connection.

86

XTP
Buffers

dseq rseq

arriving packet

hseq

current gap

Figure A.2: State Variables at the XTP Receiver.

We will now discuss the PECC algorithm itself, which is shown in pseudo-code in

Figure A.3. The algorithm is invoked by the arrival of an out-of-order packet, and it begins

by initializing two variables, curr gap and win credit. The value of curr gap is the size of

the current gap as de�ned above. The value of win credit is the maximum number of bytes

that can be skipped in the current window, as determined by the value of window length

and window density in the current PECC con�guration and the amount of data already

skipped data in the current window.

The �rst decision point (line 1) compares the current amount of data available to the

client but as yet unread with the the value of the parameter �fo min. If the amount of

unread data exceeds �fo min, the PECC receiver assumes that a retransmission can occur

in a timely fashion and sends a control packet to the transmitter requesting a retransmission

of all missing data in its bu�ers (line 2). Note that the packet processing to issue a control

packet and request retransmissions is the same as in a reliable transfer; no new protocol

code need be written.

If the condition in line 1 does not hold, line 4 then determines if the current gap in

the receiver's bu�ers is allowed to be skipped. The test in line 4 involves comparing the

size of the current gap to the minimum of the value of max gap and win credit. If the

87

Variable De�nitions:
dseq|one greater than the highest sequence number of data delivered

to the client.
rseq|one greater than the highest sequence number of data received

in sequence.
pseq|sequence number of �rst byte of data in arriving packet.
Invoking Event:

Packet arrives at the PECC receiver with pseq 6= rseq.

begin
0. initialize curr gap and win credit;
1. if (rseq � dseq � �fo min)
2. send control packet for retransmission;
3. else

4. if (curr gap < minfmax gap;win creditg)
5. skip curr gap bytes;
6. else
7. skip minfmax gap;win creditg bytes;
8. if (rseq � dseq � �fo min)
9. send control packet for retransmission;
10. else
11. skip curr gap �minfmax gap;win creditg bytes;
12. record service violation;

end

Figure A.3: Retransmission Algorithm at the PECC Receiver.

size of the current gap is su�ciently small, then the gap is skipped, and packet processing

continues under the new state. If the current gap in the data cannot be skipped, line 7 of

the algorithm speci�es skipping the maximum acceptable amount of data as determined by

the test in line 4.

The test from line 1 is now repeated in line 8 to see if, based on the new rseq value

obtained after skipping bytes in line 7, there is now su�cient bu�er time for the current

gap to be retransmitted. If the test in line 8 is successful, packet processing continues as it

would in a reliable transfer. If the test in line 8 fails, there is not enough time to recover the

88

missing data and the entire current gap is skipped. At this point the PECC receiver records

the fact that the PECC service guarantee on the size and frequency of gaps in the data

stream has been violated. The data transfer continues, and the PECC client is signaled in

an asynchronous manner of the service violation.

Our hypothesis is that a PECC service can provide an intermediate service between

a fully reliable connection and the XTP no-error mode connection. The �rst observation is

that the PECC service can mimic each of these bounding services. If the �fo min variable is

set to 0, then there is always time enough to recover lost data since there is always at least

0 bytes in the client's FIFO (line 1). For no-error mode service, the �fo min and max gap

variables are given very large values and no window criteria is speci�ed, e.g., window length

and window density are set equal. In this case the PECC algorithm always decides there is

not enough time to retransmit (the test in line 1 fails) and then always skips the missing

data in full (the test in line 4 and line 8 fails).

A.4 Lightweight Implementation Strategy

The sender-driven architecture of the XTP protocol o�ers a convenient framework for a

low-overhead implementation of the PECC service. Speci�cally, the XTP receiver uses the

technique of skipping data to maintain the desired rate of progress. The XTP sender is

unaware of the more sophisticated error-reporting algorithm, and there is no PECC-speci�c

code on the sending side.

We use this strategy of modi�ed error-reporting algorithm to implement the PECC

service as a lightweight enhancement to XTP. It is lightweight in two ways. First, it does

not require any change to the XTP protocol de�nition. The PECC mechanisms can be

introduced selectively at individual XTP nodes such that full interoperability with other

end-systems is preserved. This transparency is of particular interest in the case of the

multicast communication in XTP. Under the PECC scheme receivers in an XTP multicast

connection can have di�erent error tolerances using the PECC interface, and the e�ect

places no additional processing burden on the XTP transmitter. The PECC service is also

89

lightweight in that it does not interfere with normal packet processing when a PECC-based

transfer is error-free, nor does it add any processing burden to other protocol functions.

Our implementation of PECC is embedded in a software implementation of XTP. The

modi�cations made to the XTP code include an interface call to invoke the PECC behavior

and a small amount of additional code inside the module for processing packets received

from the network. Once a receiving XTP context is opened, the client invokes the PECC

option with an interface call on the receiving side of the transfer. All other XTP interface

routines are unchanged.

A.5 Experiments

The software XTP implementation in which the PECC algorithm is embedded runs as a

client process on Sun-4 workstations with the User Datagram Protocol as its underlying

network service provider. This version of the UVA XTP code uses the lightweight process

library provided in the SunOs 4.1.1 distribution to handle the shared-memory communi-

cation between the logical layers of the UVA XTP architecture [54]. Obviously, this XTP

implementation environment is most useful as a tool for studying protocol workings, which

is our purpose, rather than for actual continuous media transfers. The experiments in this

environment are not intended to represent performance data but to serve as a proof of

concept for the PECC service and to provide insight into the workings of the algorithm, at

least for a particular network environment.

The experiments involve the timed transfer of 1000 bu�ers of client data. Our ap-

proach is to measure the time necessary for the entire transfer of 1000 bu�ers, and then to

extrapolate from these numbers the degree to which retransmissions stall the progress of

data delivery from the network. The bu�ers are transmitted using a non-blocking reliable

SEND primitive de�ned in the UVA XTP interface. The last bu�er is sent with a blocking

reliable SEND primitive, after which the timer is stopped. The bu�ers are all transmitted

across a single XTP connection, which operates under reliable, no-error, or PECC modes as

determined by the con�guration of options chosen. The reliable and no-error mode transfers

90

�fo min max gap Total Transfer Time (sec) Bu�ers Skipped Bu�ers Dropped in Net

0 0 43.7 [41-49] 0 69.7 [41-100]

1000 1000 38.0 [37-40] 66.2 [44-100] 66.2 [44-100]

1 1 37.8 [37-39] 16.8 [14-20] 56.4 [39-69]

3 3 38.3 [37-40] 40.3 [29-48] 59.8 [39-76]

Table A.1: Performance of PECC Service under Various Con�gurations.

use only XTP-de�ned mechanisms. For the PECC transfer, on the sending side the XTP

connection is opened for reliable transfer while on the receiving side the PECC interface

call activates the new error reporting algorithm.

For the experiments arti�cial packet loss is introduced into the network. The trans-

mitting side drops packets in bursts, and packets carrying data retransmissions may be

dropped. The number of packets between successive error bursts is determined by a trun-

cated exponential distribution as is the number of packets suppressed in each error burst.

Burst durations are limited to nine consecutive packets in order to keep overall data loss in

the experiment to a small percentage of total data transferred. The net e�ect is to produce

packet losses in the range of 5% of the total data transferred. While unrealistically high for

a stable network, this error rate ensures that the PECC code is heavily exercised.

Table A.1 shows the results of 1000-bu�er transfers under various PECC con�gura-

tions. The parameters window length and window density were rendered inactive for this

experiment. For convenience the unit of measure for all parameters is given in application

bu�ers, which were very small (4 bytes). Small bu�ers were used so that each application

bu�er was carried in a single XTP packet. 1

The columns of Table A.1 present, from left to right, the values of PECC parameters

�fo min and max gap, followed by the measured total time for transferring 1000 bu�ers,

1Experiments conducted with larger bu�ers support the conclusions drawn from the small-bu�er exper-
iments. While the total transfer times are larger, the large-bu�er experiments o�er no substantially new
insights and are therefore omitted here.

91

the total number of bu�ers skipped at the PECC receiver, and the total number of bu�ers

(XTP packets) dropped by the random packet-discard mechanism in the experiment. The

values for network statistics are given as the average value over �fteen 1000-bu�er transfers

displayed beside the minimum and maximum values for any individual transfer in the set

of transfers.

The �rst row of Table A.1 shows a PECC con�guration that ensures fully reliable de-

livery. Since all dropped data is being recovered through retransmissions, the total number

of packets sent is slightly higher in these transfers, which results in the total packets dropped

being slightly higher than the other PECC con�gurations. As expected, the average transfer

time is longer, in this case about 6 seconds, than for the other PECC con�gurations. The

signi�cance of this number is that it implies that the PECC client at the receiving side was

blocked waiting on retransmissions at some points during the transfer.

The second row of Table A.1 shows a PECC con�guration that e�ectively provides

a no-error mode service. For the no-error mode case, the amount of data lost is exactly

the number of bytes contained in the bu�ers that are (arti�cially) lost in the network|

that is, the receiver skips all gaps in the data stream. No-error mode transfers �nish more

quickly than reliable transfers, and all the other PECC con�gurations take essentially the

same amount of time as the no-error con�guration. This is exactly the desired behavior

since the PECC algorithm is designed to suppress requests for data retransmission when

such a request will cause the client's FIFO to under
ow. Thus, the PECC con�gurations

only perform those data retransmissions that do not add additional delay to the data de-

livery service, as evidenced by comparison with the total transfer time for a no-error mode

connection.

Con�gurations such as those in the �rst two rows of Table A.1, i.e., con�gurations in

which �fo min is less than or equal to max gap and no window criteria is used, provide a

thresholding service. All losses of less than max gap bu�ers are skipped immediately. Larger

gaps are partially skipped, after which the remaining part of the gap may be recovered

through a retransmission. Since the PECC algorithm is invoked by every packet arriving

out-of-order, these threshold services do not guarantee, however, that the largest run of

92

�fo min max gap window window Transfer % of Bu�ers Max Bu�ers Fails

length density Time Not Recovered Skipped in Window

1 3 10 3 37.8 67% 3.4 2

3 3 10 3 37.8 67% 3.9 3

3 3 30 3 37.6 76% 8.0 14

Table A.2: PECC Con�gurations with Window Criteria.

\dummy" data delivered to the PECC client will be of size max gap bytes. As each new

packet arrives, the �rst max gap bu�ers in a large gap will be skipped. Nonetheless, by

thresholding at 1 bu�er, the PECC con�guration in the third row of the table reduces

bu�er lost to an average of less than 1.7% of the total data transferred where a no-error

mode connection for the same transfers would have lost, based on actual measurement of

the number of dropped packets, 5.6% of the data. As seen in the fourth row of the table,

thresholding at 3 contiguous bu�ers per skip raises the average amount of skipped data to

4% of the total data when 5.9% of the data is being dropped by the network.

In Table A.2 we performed the experiment with parameter con�gurations that activate

the window criteria in the PECC algorithm. Here the table presents only the average

values for measured quantities, gives the percentage of bu�ers unrecovered, and includes

two window-related measures| the average of the maximum number of packets lost in a

single window of window length bu�ers for each transfer and the number of transfers, out

of �fteen, for which at least one service violation was reported to the PECC client.

The performance under the con�gurations in the �rst two rows of Table A.2 is quite

similar to that for the con�guration in the fourth row of Table A.1. That is, the window

criteria in this case have little e�ect on the dynamic retransmission behavior. The informa-

tion in the last two column of Table A.2 does indicates, however, that the number of bu�ers

being skipped in any window is relatively few, and in fact the service constraint on errors

is often met.

93

Variable De�nitions:
dseq|one greater than the highest sequence number of data delivered to client.
rseq|one greater than the highest sequence number of data received

in sequence.
pseq|sequence number of �rst byte of data in arriving packet.
Invoking Event:

Packet arrives at the PECC receiver with pseq 6= rseq.

begin

0. initialize curr gap and win credit; (19.1)
1. if (rseq � dseq � �fo min)
2. send control packet for retransmission; (0.4)
3. else (18.7)
4. if (curr gap < minfmax gap;win creditg)
5. skip curr gap bytes; (10.3)
6. else (8.4)

7. skip minfmax gap;win creditg bytes;
8. if (rseq � dseq � �fo min)
9. send control packet for retransmission; (8.3)
10. else

11. skip curr gap �minfmax gap;win creditg bytes;
12. record service violation; (0.1)

end

Figure A.4: Trace of Average Behavior of PECC Algorithm.

To increase understanding of the behavior being observed, Figure A.5 presents trace

statistics of the PECC algorithm under the con�guration in the �rst row of Table A.2.

The labels on the algorithm represent the number of times this line of the algorithm was

execution in a single 1000-bu�er transfer, as determined by averaging the trace statistics

over all (�fteen) 1000-bu�er transfers in the experiment.

The trace statistics indicate that the PECC client reads the XTP bu�ers fast enough

that the bu�ers are often empty, e.g., line 2 in the algorithm is seldom executed. The

current gap is found to be su�ciently small that it is skipped about 50% of the time, e.g.

94

line 5 is executed. When the current gap is too large to be skipped, it is very often the

case that at least one bu�er can be skipped (line 7). Since �fo min is 1, this almost always

allows for a resumption of reliable mode packet processing (line 9). If three bu�ers have

already been skipped in the ten-bu�er window, however, it will be the case that no extra

bu�ers can be skipped with impunity at this point (lines 11 and 12).

We now explain the poor performance of the con�guration in the third row of Ta-

ble A.2. Since the window length parameter is larger than in the �rst two con�gurations,

the win credit variable in the PECC algorithm has a value of 0 at line 7 more often than in

the other two con�gurations of Table A.2. This reduces the likelihood that the test in line 8

is successful and thus increases the number of times that line 11 is executed. The result is a

higher percentage of unrecovered data than in PECC con�gurations with a smaller window

size.

A.6 Conclusions

In this appendix we have addressed the need for a new class of transport service for delay-

sensitive applications. We have de�ned a Partially Error-Controlled Connection service

that provides a very
exible interface for applications to parametrize the underlying delay-

sensitive retransmission algorithm. We have demonstrated that the PECC service can be

provided as a lightweight implementation enhancement to XTP. Measurements of exper-

imental transfers show that the total transfer time on a PECC connection is similar to

that for an XTP no-error mode connection and signi�cantly less than for a fully reliable

connection. Thus, through empirical measurements, we have demonstrated that a service

intermediate between a reliable connection and the unreliable XTP no-error mode connec-

tion can be achieved. Under some con�gurations in our experiments, which use conditions

of heavy loss, the PECC service is able to recover a high percentage (up to 70%) of the

packets dropped by the network.

For applications that do not require 100% data completeness, selectively ignoring data

loss, as done in a PECC channel, can improve the throughput of a transfer while retaining

95

the advantages of a connection-based service, e.g., data sequencing. The PECC service is

of particular bene�t to XTP multicast transfers. XTP de�nes an error-controlled multicast

that uses go-back-n retransmission at the transmitter. Since an isolated packet loss at

one receiver results in a retransmission of that packet for the entire multicast group, the

limited number of retransmissions in a PECC service will have a signi�cant impact on the

throughput and delay performance of an XTP multicast. Since the XTP transmitter is

unaware of the PECC mechanisms, the number of multicast receivers operating under the

PECC rules can vary without an impact on processing at the multicast transmitter.

A possible drawback to the PECC approach is the di�culty that the application may

have in choosing parameter values that result in the desired performance. The PECC pa-

rameters force the application to make judgements about the relative timing of network-level

behavior. Bringing the application closer to the network is a general trend in real-time com-

munication, but it does demand more of the application than in traditional communications.

At least in the case of the PECC service, poor choices for parameter values yield at worst a

no-error mode connection, i.e., no data will be recovered through retransmission. Since the

PECC service is very lightweight, there is no processing performance penalty for the small

amount of additional code executed by the protocol, though unsuccessful retransmissions

may waste a small amount of network bandwidth.

96

Bibliography

[1] G. Barberis. Bu�er Sizing of a Packet-Voice Receiver. IEEE Transactions on Commu-

nications, COM-29(2):152{156, February 1981.

[2] G. Barberis and D. Pazzaglia. Analysis and Design of a Packet-Voice Receiver. IEEE

Transactions on Communications, COM-28(2):217{227, February 1980.

[3] V. Bhargava. Forward Error Correction Schemes for Digital Communications. IEEE

Communications Magazine, pages 11{19, January 1983.

[4] E. Biersack. Performance Evaluation of Forward Error Correction in ATM Networks.

Computer Communications Review, 22(4):248{258, August 1992.

[5] E. Biersack, C. Cotton, D. Feldmeier, A. McAuley, and W. Sincoskie. Gigabit Net-

working Research at Bellcore. IEEE Network, 6(2):42{48, March 1992.

[6] P. T. Brady. A Technique for Investigating On-O� Patterns of Speech. Bell System

Technical Journal, 44:1{22, 1964.

[7] P. T. Brady. A Technique for Investigating On-O� Patterns of Speech. Bell System

Technical Journal, 44(1):1{22, January 1965.

[8] P. T. Brady. E�ects of Transmission Delay on Conversational Behavior on Echo-Free

Telephone Circuits. Bell System Technical Journal, 50(1):115{134, January 1971.

[9] K. Brayer and S. Natarajan. An Investigation of ARQ and Hybrid FEC-ARQ on an

Experimental High Altitude Meteor Burst Channel. IEEE Transactions on Commu-

nication, 37(11):1239{1242, November 1989.

[10] CCITT. Recommendation G.114.

97

[11] CCITT. Draft Recommendation I.321|B-ISDN Protocol Reference Model and its

application, June 1990.

[12] D. Chase. Code Combining| A Maximum-Likelihood Decoding Approach for Com-

bining an Arbitrary Number of Noisy Packets. IEEE Transactions on Communication,

33(5):385{393, May 1985.

[13] D. Cohen. Speci�cation for the Network Voice Protocol (NVP). Technical Report RFC

741, Information Sciences Institute, Los Angeles, CA, January 1976.

[14] R. Cole. IP over ATM: A Framework Document, January 1994. Internet Draft.

[15] B. Dempsey, W. Strayer, and A. Weaver. Adaptive Error Control for Multimedia Data

Transfer. IWACA 1992, pages 279{289, March 1992.

[16] R. Droms et.al. Report from the Joint SIGGRAPH/SIGCOMMWorkshop on Graphics

and Networking. Computer Communication Review, 21(2):17{25, 1991.

[17] S. Floyd and V. Jacobson. The Synchronization of Periodic Routing Messages. Com-

puter Communications Review, 23(4):33{45, September 1993.

[18] J. Forgie and C. McElwain. Some Comments on NSC Note 78 'E�ects of Lost Packets

on Speech Intelligibility'. Technical Report Network Speech Compression Note 92,

Lincoln Lab, Massachusetts Institute of Technology, March 1976.

[19] E. Fox. Advances in Interactive Digital Multimedia Systems. IEEE Computer Maga-

zine, 24(10):9{21, October 1991.

[20] M.W. Garrett and M. Vetterli. Joint Source/Channel Coding of Statistically Multi-

plexed Real-Time Services on Packet Networks. IEEE/ACM Transactions on Network-

ing, 1(1):71{81, February 1993.

[21] S. Golestani. Congestion-Free Communication in High-Speed Packet Networks. IEEE

Transactions on Communications, 39(12):1802{1812, December 1991.

98

[22] F. Gong. A Transport Solution for Pipelined Network Computing. PhD thesis, Com-

puter Science Department, Washington University at St. Louis, December 1992.

[23] F. Gong and G. Parulkar. An Application-Oriented Error Control Scheme for High-

Speed Networks. Technical Report WUCS-92-37, Department of Computer Science,

Washington University in St. Louis, November 1992.

[24] J. Gruber. Delay Related Issues in Integrated Voice and Data Networks. IEEE Trans-

actions on Communications, COM-29(6):786{800, June 1981.

[25] J. Gruber. A Comparison of Measured and Calculated Speech Temporal Parameters

Relevant to Speech Activity Detection. IEEE Transactions on Communications, COM-

30(4):728{738, April 1982.

[26] V. Jacobson. VAT Protocol Speci�cation, 1991. Lawrence Berkeley Laboratory, Uni-

versity of California, Berkeley.

[27] R. Jain. Performance Analysis of FDDI Token Ring Networks: E�ect of Parameters

and Guidelines for Setting TTRT. IEEE Lightwave Telecommunications Systems, pages

16{22, May 1991.

[28] N. Jayant. High Quality Networking of Audio-Visual Information. IEEE Communica-

tions, 31(9):84{95, September 1993.

[29] N. Jayant and S. Christensen. E�ects of Packet Losses on Waveform-Coded Speech

and Improvements Due to an Odd-Even Interpolation Procedure. IEEE Transactions

on Communication, COM-29(2):101{109, February 1981.

[30] N. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, Englewood Cli�s,

New Jersey, 1984.

[31] M.J. Johnson. Proof that Timing Requirements of the FDDI Token Ring Protocol Are

Satis�ed. IEEE Transactions on Communications, COM-35:620{625, June 1987.

99

[32] S. Kallel. Analysis of a Type II Hybrid ARQ Scheme with Code Combining. IEEE

Transactions on Communication, 38(9):1133{1137, August 1990.

[33] G. Karlsson and M. Vetterli. Packet Video and Its Integration into the Network Ar-

chitecture. IEEE Journal on Selected Areas in Communications, 7(3):739{751, June

1989.

[34] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in Reliable Transport

Protocols. ACM Transactions on Computer Systems, 9(4):364{373, November 1991.

[35] E. Klemmer. Subjective Evaluation of Transmission Delay in Telephone Conversations.

Bell System Technical Journal, 46:1141{1147, July 1967.

[36] J. Kurose. Open Issues and Challenges in Providing Quality of Service Guarantees in

High-Speed Networks. ACM Computer Communication Review, 23(1):6{15, January

1993.

[37] C. Leung and A. Lam. Forward Error Correction for an ARQ Scheme. IEEE Trans-

actions on Communication, COM-29(10):1514{1519, October 1981.

[38] M. Liou. Overview of the p-x-64 kbit/s Video Coding Standard. Communications of

the ACM, 34(4):59{63, April 1991.

[39] A.J. McAuley. Reliable Broadband Communication Using a Burst Erasure Correcting

Code. Computer Communications Review, 20(4):297{306, September 1990.

[40] J. McNabb. WIRETAP User's Manual, 1993. Internal Report, Department of Com-

puter Science, University of Virginia.

[41] D. Mills, December 1983. Internet RFC 889.

[42] W.A. Montgomery. Techniques for Packet Voice Synchronization. IEEE Journal on

Selected Areas in Communications, SAC-1(6):1022{1028, December 1983.

100

[43] M. Moran. Design of a Continuous Media Data Transport Service and Protocol. Tech-

nical Report TR-92-019, International Computer Science Institute, University of Cali-

fornia Berkeley, April 1992.

[44] A. Mukherjee. On the Dynamics and Signi�cance of Low Frequency Components of

Internet Load. Technical Report CIS-92-83, University of Pennsylvania, December

1992.

[45] W.E. Naylor and L. Kleinrock. Stream Tra�c Communication in Packet-Switched Net-

works: Destination Bu�ering Considerations. IEEE Transactions on Communications,

COM-30(12):2527{2534, December 1982.

[46] A. Netravali, W. Roome, and K. Sabnani. Design and Implementation of a High-

Speed Transport Protocol. IEEE Transactions on Communications, 38(11):2010{2024,

November 1990.

[47] H. Ohta and T. Kitami. A Cell Loss Recovery Method using FEC in ATM Networks.

IEEE Journal on Selected Areas in Communications, 9(9):1471{1483, December 1991.

[48] A. Sanghi, A. Agrawala, and B. Jain. Experimental Assessment of End-to-End Behav-

ior on the Internet. IEEE INFOCOM '93, pages 867{874, March 1993.

[49] T. Sato, M. Kawabe, T. Kato, and A. Fukasawa. Throughput Analysis Method for

Hybrid ARQ Schemes Over Burst Error Channels. IEEE Transactions on Vehicular

Technology, 42(1):110{118, February 1993.

[50] H. Schulzrinne. Voice Communication Across the Internet: A Network Voice Terminal.

Technical report, University of Massachusetts, July 1992.

[51] SES. SES Workbench Release 2.1, February 1992. Scienti�c and Engineering Software.

[52] N. Shacham and P. McKenny. Packet Recovery in High-Speed Networks using Coding.

INFOCOM 1990, pages 124{131, June 1990.

101

[53] A. Shah, D. Staddon, I. Rubin, and A. Ratkovic. Multimedia over FDDI. 17th IEEE

Conference on Local Computer Networks, pages 110{124, September 1992.

[54] R. Simoncic, A. Weaver, and A. Colvin. Experience with the Xpress Transfer Protocol.

15th IEEE Conference on Local Computer Networks, pages 123{132, September 1990.

[55] K. Sriram and W. Whitt. Tra�c Smoothing E�ects of Bit Dropping in a Packet

Multiplexer. IEEE Transactions on Communications, 37(7):703{712, July 1989.

[56] W. Stallings. Data and Computer Communications. Macmillan Publishing Company,

1991.

[57] W. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress Transfer Protocol. Addison-

Wesley Publishing, July 1992.

[58] J. Suzuki and M. Taka. Missing Packet Recovery Techniques for Low-Bit-Rate Coded

Speech. IEEE Journal on Selected Areas in Communications, 7(5):707{717, June 1989.

[59] T. Turletti. H.261 Software Codec for Videoconferencing over the Internet. Techni-

cal Report 1834, Institut National de Recherche en Informatique et en Automatique

(INRIA), January 1993.

[60] T. Turletti, February 1994. personal communication.

[61] D. Verma, H. Zhang, and D. Ferrari. Guaranteeing Delay Jitter Bounds in Packet-

Switching Networks. Tricomm '91, April 1991.

[62] S. Webber, C. Harris, and J. Flanagan. Use of Variable-Quality Coding and Time-

Interval Modi�cation in Packet Transmission of Speech. Bell System Technical Journal,

56:1569{1573, October 1977.

[63] N. Yin. Congestion Control for Packet Voice by Selective Packet Discarding. IEEE

Transactions on Communications, 38(5):674{683, May 1990.

[64] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines. Computer

Communications Review, 21(4):113{211, September 1991.

102

