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Abstract

The brain is an energy-efficient computation device. At rest, it runs on 15 Watts of power.

What can scientists and engineers learn from the brain to make computational devices more

energy-efficient? This dissertation begins to address that question by studying the behavior

of cortical neurons in the sensory cortex.

The task of the cortical neuron is to send information about its input to other target

neurons. It performs this task by expending as little energy as possible. To quantify the

performance of the neuron, Shannon’s mutual information (MI) is used as a measure of neural

information. The neuron is assumed to maximize MI for a fixed energy budget. Thus, an

information theoretic framework can be used to analyze the energy efficiency of the neuron.

This dissertation consists of four major parts: the generalized inverse Gaussian (GIG)

neuron model, assessing the energy efficiency of the model, optimizing the model, and a

rate-distortion (R-D) problem inspired by the model. The GIG neuron model takes into

account the fast sodium channels that allow a fast rate of increase of the postsynaptic

potential (PSP). This behavior of the PSP determines the input-output behavior of the

neuron, which allows the neuron to be modeled as a communication channel. Next, methods

for estimating the parameters of the GIG neuron model are developed. The accuracy of the

model is evaluated with simulations.

After that, the maximum MI transmitted by the GIG neuron model for a fixed energy

budget is determined. Surprisingly, the input distribution that achieves the constrained

capacity is discrete with a finite number of mass points for some parameter sets. This implies
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that the neural network (NN) should exist in discrete states to maximize the MI transmitted

by the neuron. To further optimize the GIG neuron model, the parameter sets that produces

the most MI for a given energy budget is discussed. An additional variance constraint is

imposed to prevent MI from increasing without bound. A numerical example is used to

illustrate the theory.

Finally, a R-D problem inpsired by the GIG neuron model is developed. The source

distribution is given by the GIG distribution and the distortion function is related to the

energy expenditure of the GIG neuron model. The result is that for some parameter sets, the

reconstruction alphabet is discrete.

This dissertation is part of a nascent approach to the study of energy-efficient computing.

The next steps must involve studying the network in which the neuron operates. This includes

studying feedback loops that exist within the network.
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Chapter 1

Introduction

1.1 Motivation

One of the biggest mysteries to both engineers and scientists is the inner workings of the brain.

The human brain consists of 100 billion individual units called neurons, which collectively

form a neural network (NN). Figure 1.1 shows an image of stained neurons. The network can

perform a wide range of tasks, e.g., prediction, estimation, discrimination, decision-making,

along with keeping the organism alive and well. A single neuron may make connections to

as many as 10 thousand neurons. This high level of connectivity creates an overwhelmingly

complex system that requires expertise from numerous fields to analyze.

Astoundingly, NN’s are highly energy efficient. The human brain functions on approx-

imately 15 watts of power when it is at rest [1]. For comparison, a modern desktop uses

power on the order of 100 watts. To further illustrate the efficiency of the brain, consider

the following: when the IBM Almaden Research Center simulated the visual cortex of a cat,

which contains 10 million neurons, the simulation uses power at a rate of 10 billion times

that of the real thing [2]. This demonstrates that there is much to learn from the energy

efficiency of the brain.

Engineers and scientists have drawn inspirations from NN’s and developed artificial neural

1
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Figure 1.1: An image of stained pyramidal neurons. Image by UC Regents Davis campus is
licensed under CC-BY-SA-3.0.

networks (ANN’s). ANN’s are heavily present in big data and artificial intelligence, two

topics that dominate the field of computer science. As the push for “machine intelligence”

grows, a better understanding of NN’s is useful in creating not just more powerful algorithms,

but energy efficient ones as well. As the size of computational devices shrink, heat density

becomes a bigger concern. Hence, energy efficiency is needed so that computation generates

less heat.

This dissertation addresses the energy efficiency of NN’s by focusing on the energy-efficient

design of a single neuron that is operating in the network. The purpose of the neuron is to

transmit information efficiently. Thus, information theory is used as a tool of analysis for

the neuron. Even though the single neuron is the focus, certain conclusions on NN’s can be

made based on the results presented in this dissertation.
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1.2 Background

There are numerous types of neuron, but this dissertation focuses on pyramidal neurons in

the sensory cortex. Let neuron η be a neuron of such type. Neuron η will also be referred

to as just η. The reason for focusing on pyramidal neurons is because they receive input

from many neurons, i.e., around 10 thousand. With a large number of input size, certain

approximations need to be used to simplify the analysis.

1.2.1 Information Theory and Neural Networks

It is widely believed that neural networks process information. Sensory cells sense external

stimuli and the information is passed up along the hierarchy of the NN. In each level,

information is processed so that irrelevant ones are discarded and relevant details are

extracted. On an individual level, it is believed that the purpose of η is to convey to its

targets information about the state of its input. A quantifiable notion of information is

therefore needed so that analysis on η can be performed.

A popular measure of neural information is Shannon’s average mutual information, which

is referred to as just mutual information (MI) in this dissertation [3]. Other notions of

information exist, such as Hartley and Fisher information. However, MI is robust and can

be derived from a set of intuitive axioms [4, chapter]. Mutual information has numerous

interpretations, but the one adopted in this dissertation is that MI is the reduction in

uncertainty of the input upon learning the output. Mutual information can be written as a

difference of entropies: the entropy of the input minus the entropy of the input given the

output. Entropy is a measure of uncertainty. Thus, MI is the reduction of entropy of the

input upon learning the output. Entropy and MI are precisely defined in Chapter 3. By using

MI, theories and developments from information theory can be used as a tool for assessing

neural information.
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The most widely used interpretation of MI is through the channel coding theorem. Each

communication channel has a capacity given by the maximum MI that can be transmitted

across the channel. The theory states that in order to send data through the channel with

arbitrarily small probability of error, the transmission rate must be below the capacity of the

channel. Otherwise, the error cannot be made as arbitrarily small as possible. To achieve low

error, the input must be coded in a certain way. Since such coding schemes cannot exist in

neurons, the channel coding theorem is not applicable. In essence, MI is not interpreted as a

bound on information rate. Rather, it is simply a measure of how much information η has

transmitted.

Despite the naturalness of MI, it has shortcomings. Mutual information does not identify

useful information. For example, the NN may respond to a certain stimuli, e.g., Vivaldi’s

Four Season Suite. However, MI does not indicate from where in Vivaldi is this information

coming. It just indicates that there is information extracted from Vivaldi. Regardless, MI is

still a useful tool in understanding neurons and NN’s as used by neuroscientists, biologists,

physicists, and electrical engineers.

1.2.2 Energy-Efficient Neural Communication

Since η is energy efficient and its task is to transmit information, it is assumed that η seeks

to minimize the average energy expended to send a certain value of MI. Looking at it from

another perspective, η seeks to maximize the MI it transmits given an average energy budget.

When η is thought of as a communication channel, neural information transmission can be

related to the constrained capacity of the channel. This is what information theorists use to

describe how well a power-limited channel can be made to perform.

Neuron η must also communicate using an energy-efficient scheme. This is done by

communicating via all-or-none electrical pulses known as action potentials (AP’s). The AP is

generated when the neuron’s postsynaptic potential (PSP) reaches a threshold. The time it
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Figure 1.2: A diagram of two action potentials. The IPI is the time interval between two of
the pulses.

takes the PSP to reach the threshold depends on the input intensity of the neuron. Hence,

the AP’s contain information about the input intensity of the neuron.

There are two major hypotheses as to how information is encoded by η: the rate coding

and time coding hypotheses. In the rate coding hypothesis, information is encoded by

the rate at which the AP’s are produced. In the time coding hypothesis, information is

encoded in the time interval between subsequent AP’s. This time interval is called the

interpulse interval (IPI) and is illustrated in Figure 1.2. Time coding is also considered to

be more energy-efficient than rate coding. For a given energy cost, time coding provides

more information than rate coding. Because η is energy efficient, it is assumed to use the

time coding scheme. To communication engineers, the time coding scheme is also known as

time-continuous differential pulse position modulation (TCDPPM). This coding scheme is

further described in Chapter 2.

Furthermore, the time coding scheme allows for instantaneous decoding. Compare that to

rate coding, where several pulses must be received before the message can be decoded. This

is advantageous for when quick decisions are necessary, i.e., when danger is present to the

organism. However, rate coding is less prone to error because it uses more pulses to encode a
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message. Regardless, it is argued in Chapter 2 that the noise in decoding the IPI duration is

small. Thus, time coding is more advantageous overall for η than rate coding.

1.3 Literature Review

Information theory was first applied to neuroscience in [5], where entropy was used to analyze

the information carried by neural spikes. It was not until many years later that information

theory was used in experimental studies to decode the train of AP signals [6] and to measure

the amount of information transmitted by a single AP [7, 8]. For cortical neurons with

thousands of input lines, theoretical developments and simulations are more appealing. In

[9], energy-efficient population codes for a neuron model were analyzed. In [10], information-

energy tradeoff was analyzed for a neuron model with discrete inputs. The information-energy

tradeoff was also analyzed for discrete poisson arrival neural models in [11, 12], diffusion

models in [13, 14], and the Hodgkin-Huxley model in [15].

With regards to energy efficiency, energy minimization subject to functional constraints

as a unifying principle for all neurons has been proposed [16]. Energy efficiency has also been

experimentally observed in ion channels of neurons [16, 17] and action potentials [18].

1.4 Contributions

The contributions of this dissertation, along with the relevant publications, are the following:

• Connecting the generalized inverse Gaussian (GIG) neuron model to the neurobiological

process of generating AP’s, especially with regards to the fast sodium (Na+) ion channels

[19, 20]

• Interpreting the parameters of the GIG neuron model and estimating them from data

[19, 20]
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• Solving for the constrained capacity of the GIG neuron model and showing that the

optimizing input distribution is discrete [21, 22]

• Formulating a MI maximization problem for the GIG neuron model over the model

parameters and solving it for a special case of the GIG neuron model [23]

• Developing the conditions for the solution of the rate-distortion (R-D) problem for a

general measure [24]

• Proposing a R-D problem inspired by the GIG neuron model and proving that the

reconstruction alphabet is discrete for some cases [24]

1.5 Overview

In Chapter 2, the generalized inverse Gaussian neuron model is described. The role of the

parameters on the behavior of the model is explored. Finally, estimation techniques of the

parameter from a sample path of the model is described.

In Chapter 3, the information-energy tradeoff of the GIG neuron model is examined. In

particular, the constrained capacity of the GIG neuron model is obtained. Also, it is shown

that in certain cases, the input distribution that achieves the constrained capacity for the

GIG neuron model is discrete. Implications of the results on the NN are discussed.

In Chapter 4, the MI maximization problem for the GIG neuron model over the model

parameters is presented. Also, it is solved for a special case of the GIG neuron model.

In Chapter 5, the optimality conditions for R-D problems for a general distribution is

derived. Then a R-D problem inspired by the GIG neuron model is proposed. It is proven

that for certain cases, the reconstruction alphabet is discrete.

The conclusion is found in Chapter 6. Also, suggestions for future research are presented.



Chapter 2

The Generalized Inverse Gaussian

Neuron Model

In order to analyze the energy efficiency of neuron η, i.e., a cortical neuron in the primary

sensory cortex, the generalized inverse Gaussian (GIG) neuron model is used. It is a stochastic

model based on the generalized inverse Gaussian (GIG) distribution. Associated with the

GIG distribution is the generalized inverse Gaussian first hitting time (GIGHT) stochastic

diffusion, which can model the postsynaptic potential (PSP) of η. The advantages of the

GIG neuron model is that it gives a relatively simple mathematical description of η while

also being able to capture the complexity of signaling of η.

Contributions presented in this chapter were originally published in [19] and [20]. Back-

ground on the PSP and the action potential (AP) are first discussed. Special attention

is given to the fast sodium (Na+) ion channels that give rise to the shape of the leading

edge of the AP. Then the GIG neuron model is described. The GIG distribution and the

GIGHT diffusion are then defined. In fact, the first hitting time (FHT) of the GIGHT

diffusion is described by the GIG probability density function (PDF). The GIG PDF gives

the input-output relationship for η. This leads to the development of the GIG neuron model.

Then it is explained how the GIGHT diffusion can be used to model the behavior of the

8
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PSP of η under normal circumstances. The parameters of the GIG neuron model are also

described and given meanings.

Finally, techniques to estimate from data the GIG neuron model parameters are presented.

The estimators are based on the Euler-Maruyama approximation of the GIGHT diffusion and

based on the maximum-likelihood estimator (MLE). Simulation results of the performance of

the estimators are presented. Then a possible experiment set up to test the accuracy of the

GIG neuron model is discussed in the conclusion.

2.1 Background

2.1.1 Parts of Cortical Neurons

Neuron η consists of three major parts: dendrite, soma, and axon. Figure 2.1 shows a

simplified diagram of η, along with the three major parts. The dendrite is essentially the

input line to η. There are roughly 10 thousand neurons that connect to η’s dendrite. This set

of neurons is called the afferent cohort of η. The dendrite structure is tree-like to create space

for connections made by the many members of η’s afferent cohort. Neuron η receives signals

from the members of its afferent cohort in an asynchronous fashion. That is, there is no clock

that synchronizes the timing of the signals produced by each member of η’s afferent cohort.

The signals received from η’s afferent cohort is “integrated” into the PSP in the soma,

which is the main body of the cell. The PSP is the voltage across the cellular membrane of η.

To simplify the discussion, a small cell approximation for the soma is used, i.e., the voltage

of the soma is assumed to be the same within the cell membrane. Thus for a “small cell”,

the PSP can be viewed as the internal voltage with respect to the voltage of the extracellular

fluid outside the cell membrane. In this dissertation, the “excitation” of η is synonymous to

its PSP.

The axon is the output line of η that carries voltage signals called action potentials (AP’s).

The AP’s are generated at the axon initial segment (AIS), which is the junction between
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Figure 2.1: A simplified diagram of η. The dendrite is a branching structure that acts as the
input line. The soma is the cell body where the vital parts, such as the nucleus, are located.
The axon is an extension of the cell that branches out in the end to connect to other cells
and acts as the output line.

the soma and the axon. Each AP is the same in shape and amplitude. Thus, information is

encoded in the timing of the AP’s. Recall from Chapter 1 that the information is encoded in

the interpulse interval (IPI), which is the time interval between two adjacent AP’s.

The axon is an extension of the cell that connects to η’s targets. The AP traveling through

the axon is regenerated either periodically or continuously, depending on the type of axon.

This functions much like a repeater in the sense that it maintains the shape and strength

of η’s output signal, which gets attenuated and distorted as it travels along the axon. The

axon terminal connects to a set of neurons called η’s efferent cohort, which contains roughly

10 thousand members. The same signal generated by η is broadcasted to all members of its

efferent cohort.

The connection between a neuron’s axon and another’s dendrite is called a synapse. A

diagram of the synapse is shown in Figure 2.2 The synapse consists of a gap between the

axon terminal and the dendrite called the synaptic cleft. Upon arrival of a signal at the axon

terminal, chemicals called neurotransmitters are released across the synaptic cleft to receptors

on the dendrite. Once the neurostransmitter binds to a receptor, a signal is generated at the
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Figure 2.2: A diagram of a synapse. The synapse is the connection between the presynaptic
neuron’s axon to the postsynaptic neuron’s dendrite. Upon arrival on an AP, the axon
terminal releases neurotransmiters that diffuse across the synaptic cleft and binds to receptors
at the dendrite. Image by OpenStax College is licensed under CC-BY-3.0.

dendrite and travels to the soma. The synapse can be excitatory, where the generated signals

are called excitatory PSP’s (EPSP’s). The EPSP’s add positive contributions to the PSP.

In inhibitory synapses, the generated signals are called the inhibitory PSP’s (IPSP’s) and

they negatively contribute to the PSP. Associated with each synapse is the synaptic weight,

which determines the magnitude of the contributions of the signal to the PSP. Thus, a signal

generated by η affects the members of its efferent cohort differently. Likewise, the signals

from different members of η’s afferent cohort affect η differently.

A more thorough background on neurons can be found in [25] and [26].
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2.1.2 Generating an Action Potential

In η’s dendrite, there are more excitatory synapses than there are inhibitory ones. Thus,

the net contribution of the EPSP’s and IPSP’s is positive and the PSP is increasing over

time. As the PSP increases, voltage-gated ion channels that are present on the cell membrane

of η comes into play. There are two primary types of ion channels: sodium ion (Na+) and

potassium ion (K+) channels. The Na+ channels are composed of “gates” and an inactivation

particle. The gates and the particle exist in an open or closed state and jump back and forth

between the two states due to thermal noise. The probability of the gates being in the open

state increases with voltage. The reverse is true for the inactivation particle; its probability of

being in the open state decreases with voltage. When the Na+ channels are open, positively

charged Na+ are propelled into the cell due to its concentration gradient. The K+ channels

are composed only of gates. Likewise, these gates are more likely to open if the voltage is

high. However, when the gates are open, positively charged K+ are propelled out of the cell

due to its concentration gradient.

Initially, the PSP is in equilibrium where the majority of Na+ and K+ channels are closed.

The rising PSP causes the Na+ channels to open bringing in an influx of positively charged

Na+. An increase of positive charges in η further increases the PSP. This in turn increases

the number of Na+ channels that are open. A positive feedback loop is created and this

feedback increases the voltage at a fast rate. As the voltage keeps increasing, the inactivation

particles start to close and the Na+ ion channels enter an inactivated state. This slows down

the rate of increase of the PSP. The K+ channels also begin to open, which rapidly slows the

increasing voltage and brings it back down towards equilibrium. There is a delay between

the rise of the PSP and the opening K+ channels, which allows the Na+ channels to push up

the PSP before the K+ channels can bring the PSP back down. When the voltage is low,

the K+ channels close and the PSP attempts to reach equilibrium. This surge of voltage

propagates along the axon as the AP. A mathematical model for the generation of the AP

was first developed in [27].
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After firing an AP, there is a refractory period in which η cannot fire another AP. Not

enough Na+ channels are out of the inactivated state and cannot produce an AP. This is the

absolute refractory period. Following the absolute refractory period is the relative refractory

period in which η can fire an AP, but with a higher energy cost. Enough Na+ are out of the

inactivated state, but a higher voltage, thus a higher energy, is needed to open enough Na+

to fire an AP.

As Na+ and K+ move in and out of η, ion pumps maintains the concentration of Na+ and

K+ within the cell. The pump brings Na+ into η while removing K+. Thus, it is assumed

that the ion concentrations that propel the K+ and Na+ remain the same at any given time

for η.

The ion channels dynamics are described in greater detail in [25].

2.1.3 The Fast Sodium Channels

In η’s AIS, there are multiple types of Na+ channels. The two types of interest are the NaV1.6

channels and the NaV1.2 channels [28, 29]. They open at a faster rate than other types of

Na+ channels and are crucial in forming the leading edge of AP’s. Both types of channels

will be referred to as the fast Na+ channels. The fast Na+ channels causes the voltage to rise

more rapidly, which forms a steep leading edge for the AP. This increases the bandwidth of

the AP. In high signal-to-noise ratio (SNR) regimes, the error in estimation of the time of

arrival of a signal is inversely proportional to the square of the signal’s bandwidth [30]. For

the AP, this error is referred to as jitter. Since the AP traveling along the axon is considered

to have high SNR, the large bandwidth of the AP reduces jitter. This in turn preserves the

information carried by the AP’s. Since η reduces jitter, it is assumed to be negligible.

The opening of the fast Na+ channels can be used to indicate the timing of the generation

of AP’s. Once a few of the NaV1.2 channels begin to open, the positive feedback loop that

creates the AP is virtually irreversible. Hence, the voltage where the NaV1.2 channels have a

high likelihood of opening can be set as a threshold level. Once the PSP reaches the threshold,
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η is said to have generated an AP. This creates a precise distinction between the PSP and

the AP.

2.1.4 Diffusion Models for the Postsynaptic Potential

There are numerous neurons in η’s afferent cohort and each member contributes a small

amount to η’s PSP. It is natural to assume that each contribution is infinitesimally small

and that the time interval between two input signals is also infinitesimally small. From the

perspective of η, the set of input signals is random. Furthermore, it is assumed that given a

height of the PSP, the dynamics of the neuron behaves independently of time. Let Yt be the

PSP at time t. With these assumptions, Yt can be approximated by a time-homogeneous

stochastic differential equation (SDE):

dYt = µ(Yt)dt+ σ(Yt)dWt, t ≥ 0, (2.1)

where {Wt} is the classical Wiener process (WP), µ is the drift, and σ is the square root of

the infinitesimal variance σ2. The infinitesimal contribution to the PSP is assumed to be

normally distributed. The drift can be viewed as the average contribution of the afferent

cohort to the PSP when the voltage is y. The infinitesimal variance can be viewed as the

variance of those contributions when the voltage is y. The solution to SDE’s is often called a

diffusion.

All SDE’s presented in this thesis are of the Itô kind, which is appropriate for modeling

small and frequent events as infinitesimally small and frequent. Stochastic differential

equations are rigorously defined and elaborated upon in [31].

The first diffusion model for a neuron is the classical WP with (constant) drift [32].

This model can be attained by assuming that η’s cell membrane is electrically equivalent

to a resistor before hitting the threshold. It can also be attained by assuming that the ion

channels function to keep the drift of the diffusion constant before the threshold is hit. This
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linearization of the drift has been observed [33–36]. Another popular diffusion model is the

Ornstein-Uhlenbeck (O-U) diffusion, which can be attained by modeling η’s cell membrane

with a resistor and a capacitor in parallel [37–42]. The Feller model imposes a lower bound on

the diffusion model of η’s PSP [43–45]. The lower bound is imposed because in a real setting,

the PSP of η cannot be unbounded from below. Finally, another approach to modeling

the PSP is to take existing neuron models and use a white noise input to create diffusion

models. The approach has been applied to the Hodgkin-Huxley (H-H) model [46, 47] and the

Fitzhugh-Nagumo (F-N) model [48].

2.2 The GIG Neuron Model

The GIG distribution and the GIGHT diffusion were first proposed as a model for a neuron’s

behavior in [49]. A contribution of this dissertation is to describe in detail how the GIGHT

diffusion can model the behavior of the PSP of η brought about by the fast Na+ channels.

Before the GIG neuron model is explained, the input and output model for η is described.

2.2.1 Output and Input Models

Let Sk be the time of generation the kth AP of η. An AP is defined to be generated when

the PSP of η hits the threshold. Let Sk be modeled by a random variable (RV). The times of

the generation of the AP is given by the sequence of RV’s {Sk}∞k=1. Let S0 = 0 and define

Tk = Sk − Sk−1. The random variable Tk is then the duration of the kth IPI. Under the

timing code hypothesis, the information trasmitted by η is encoded in the sequence of IPI’s,

whose durations given by {Tk}∞k=1. Hence, let {Tk} be the sequence of the output of η.

The input to η is an underlying net rate of bombardment from η’s afferent cohort.

Equivalently, η’s afferent cohort wishes to convey some scalar to η and does so by bombarding

η with AP’s at some frequency. Let the underlying net rate at time t be Λ(t). Hence, the

input to η can be modeled by a random process (RP) {Λ(t)}t>0. However, η only observes a
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noisy version of {Λ(t)} due to the nature of the input signals. For example, the Stein-Chen

approximation can be used to approximate the arrivals of signals from η’s afferent cohort as a

Poisson process since the number of input size is large and the signals arrive asynchronously

[50]. The underlying Poisson rate is not directly observable, but can be estimated using the

number of arrivals. Similarly, η can only estimate Λ(t) from the arrivals of pulses from its

afferent cohort.

To simplify the problem, Λ(t) is approximated by a sequence of RV’s. In the kth IPI, the

average input intensity is given by

Λk =
1

Tk

∫ Sk

Sk−1

Λ(t)dt, (2.2)

The input intensity is approximated by a step process whose height in the kth IPI is Λk.

Hence, the input of η is given by the sequence {Λk}∞k=1. Upon completion of the kth IPI, η

received input Λk and sent output Tk.

To further simplify the model, a memoryless assumption is made. The PSP in a given IPI

is assumed to be independent of the PSP in the previous IPI’s. Thus, given the input, the

output of η has the same statistics in any IPI and is independent of past inputs. In reality,

the PSP of η may not reset to the same exact level every time, which affects the output of

the next IPI. It is assumed that η’s PSP starts at the same level during each IPI and the ion

channels are reset by the start of the IPI. Partial reset of the ion channels during the relative

refractory period is handled by increasing the energy required to fire an AP. This will be

discussed in Chapter 3 when discussing the energy cost model of η’s function. Hence, the

focus can remain on a single IPI.

Let the prototypical input and output RV’s for η be given by Λ and T , respectively.

Note the abuse of notation for Λ, which represents a RV here. To make a distinction, the

continuous RP that is the input intensity of η is denoted by {Λ(t)} and the input intensity

at any given time is given by Λ(t). Thus, when one refers to simply Λ, it is the average input



2.2 The GIG Neuron Model 17

intensity of η for a typical IPI, and it is a RV.

2.2.2 Input-Output Relationship

For the GIG neuron model, the distribution of output T = t given input Λ = λ is given by

QGIG(t|λ) = M(α, β, γ)−1λαtα−1 exp

(
− β

λt
− γλt

)
, λ, t > 0, (2.3)

where α ≤ −1/2, β > 0, γ ≥ 0, and

M(α, β, γ) =


2
(
β
γ

)α/2
Kα(2

√
βγ) β > 0, γ > 0

βαΓ(−α) α < 0, β > 0, γ = 0.

(2.4)

The function Γ is the gamma function and Kα is the modified Bessel function of the second

kind of order α, also known as the Hankel function. The PDF (2.3) is an instance of the GIG

distribution, hence the name, GIG neuron model.

The GIG neuron model is appealing because (2.3) as the relationship between the input

and output of η can be derived from first principles [51]. In addition, there also exists a

diffusion associated with (2.3), namely the GIGHT, that can model the PSP of η. Thus, the

GIG neuron model can also be considered as a diffusion model. This diffusion is described in

the next subsection.

2.2.3 The GIG distribution and the GIGHT diffusion

In general, the GIG distribution is given by

fGIG(t) = M(α, β, γ)−1tα−1 exp

(
− β

t
− γt

)
, t > 0, (2.5)
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Figure 2.3: An plot of GIG distributions.

where,

M(α, β, γ) =


2
(
β
γ

)α/2
Kα(2

√
βγ) β > 0, γ > 0

γ−αΓ(α) α > 0, β = 0, γ > 0

βαΓ(−α) α < 0, β > 0, γ = 0.

(2.6)

The parameter space for the GIG PDF is

β ∈ (0,∞), γ ∈ [0,∞) if α ∈ (−∞, 0),

β ∈ (0,∞), γ ∈ (0,∞) if α = 0,

β ∈ [0,∞), γ ∈ (0,∞) if α ∈ (0,∞).

This distribution is denoted as GIG(α, β, γ). A plot of GIG distributions is shown in Figure

2.3.

When α = −1/2, (2.5) is also known as the inverse Gaussian (IG) distribution and it is

the FHT of the WP with drift [52]. When β = 0, it is also known as the gamma distribution
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and when γ = 0, it is also known as the inverse gamma distribution.

For α ≤ 0, the GIG distribution is the first hitting time (FHT) distribution of the GIGHT

diffusion, which is the solution to the SDE (2.1) with drift given by [53]

µ(y) = σ(y)

(
2α− 1

2χθ(y)
+

√
2γKα−1(χθ(y)

√
2γ)

Kα(χθ(y)
√

2γ)

)
+

1

4

d

dy
σ2(y), y < θ, (2.7)

for γ > 0. For α < 0 and γ = 0, the drift is given by the limit of (2.7) as γ → 0, which is

µ(y) = σ(y)
2α + 1

2χθ(y)
+

1

4

d

dy
σ2(y), y < θ. (2.8)

For both cases, θ > 0 and the drift is a function of the infinitesimal variance σ2. The function

χθ(y) =

∫ θ

y

dy′

σ(y′)
, y < θ. (2.9)

The parameter β in (2.5) is given by

β = χθ(0)2/2. (2.10)

The diffusion begins at 0, so Y0 = 0. The infinitesimal drift σ2 satisfies

χθ(y) <∞ for θ − y <∞

and

χθ(y)→∞ as θ − y →∞.

The GIGHT diffusion takes value in (−∞, θ] and is defined while Yt ≤ θ. Once θ is hit,

the diffusion is no longer defined. Hence, θ is a threshold level for the diffusion. A plot of the

GIGHT diffusions that correspond to the GIG PDF’s of Figure 2.3 is shown in Figure 2.4.

A property of the GIG distribution is that if T is distributed as GIG(α, β, γ), then T−1
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Figure 2.4: Three sample paths for the GIGHT diffusion with constant infinitesimal variance.
The horizontal line is the threshold. The further the value of α gets below zero, the stronger
the attraction to the threshold. For α = −1/2, the GIGHT diffusion is also the WP with
drift. The time and height units in this example are arbitrary.

is distributed as GIG(−α, γ, β) [54]. Therefore, any GIG distribution with a positive α

parameter is the reciprocal of the FHT of the corresponding GIGHT diffusion.

2.2.4 The GIGHT Diffusion with Constant Infinitesimal Variance

Like the WP with drift and O-U diffusion, take the infinitesimal variance of the GIGHT

diffusion to be constant. This allows the diffusion to be described in a simple way. Using

a slight abuse of notation, let this constant value be σ2. Henceforth, σ2 and σ =
√
σ2 are

constants. Then (2.7) reduces to

µ(y) = σ2α−
1
2

θ − y
+ σ

√
2γKα−1( θ−y

σ

√
2γ)

Kα( θ−y
σ

√
2γ)

, y < θ. (2.11)
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In this case, The GIGHT diffusion initially increases at an approximately steady rate. For

α < −1/2, the diffusion is attracted to the threshold as it is approached. For α > −1/2,

the threshold is repulsive. For α = −1/2, the diffusion is indifferent to the threshold. The

parameter γ controls the component of the drift that is independent of the threshold. The

parameters are further described in Section 2.2.7.

The behavior of GIGHT diffusions is better understood when it is either far from the

threshold or near it. Define the function

Oα(x) = α− 1

2
+ x

Kα−1(x)

Kα(x)
, x > 0. (2.12)

Then the drift (2.11) can be written as

µ(y) =
σ2

θ − y
Oα

(
θ − y
σ

√
2γ

)
, y < θ. (2.13)

The function Oα can be simply described at its asymptotes. From Appendix A.3, it is clear

that as x→∞,

Oα(x) ∼ x+ α− 1

2
, (2.14)

where ∼ refers to asymptotic equality (also see Appendix A.3). The asymptote of Oα is an

oblique line with slope 1. Thus, as θ − y →∞,

µ(y)→ σ
√

2γ. (2.15)

Thus, when y � θ, the GIGHT diffusion has approximately constant drift. Thus the GIGHT

diffusion is approximately a WP with drift when y � θ.

On the other hand, as x→ 0,

Oα(x)→ −α− 1

2
. (2.16)
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The function Oα approaches a constant, which may be positive, depending on the value of α.

Then, as y → θ,

µ(y) ∼
(
− α− 1

2

)
σ2

θ − y
. (2.17)

The drift approaches a negative number if α > −1/2, which shows that the threshold is

repulsive. Likewise, if α < −1/2, the drift grows as the threshold is approached. Thus,

the threshold is attractive. The drift is inversely proportional to the distance between the

diffusion and the threshold. In the case that it is attractive, as the diffusion approaches the

threshold, the drift approaches infinity. Hence, the threshold is hit by a rate that is infinitely

big.

For α = −1/2 it can be shown that the GIGHT diffusion is exactly a WP with drift when

it is below θ. From the Hankel’s expansion for Kα (see Appendix A.2),

K−1/2(x) =

√
π

2x
e−x, x > 0 (2.18)

and

K−3/2(x) =

√
π

2x
e−x
(

1 +
1

x

)
, x > 0. (2.19)

Hence,

O−1/2(x) = x (2.20)

and (2.11) reduces to

µ(y) = σ
√

2γ, y < θ. (2.21)

Thus the drift is exactly constant, which gives the WP with drift when Yt ≤ θ. Hence, the

GIGHT diffusion is a generalization of the WP with drift. This is consistent with the fact

that for α = −1/2, the GIG distribution is the FHT of the WP with drift.
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2.2.5 The Role of the Input Distribution on the Diffusion Model

What role does the input Λ have on η’s PSP? To address the question, the following assumption

is made: the drift and infinitesimal variance is proportional to Λ. Consider the ideal integrate-

and-fire model in [11] where the arrival of input signal to η is modeled as a Poisson process.

For this model, the mean and variance of the PSP is proportional to Λ. This same property

can be extended to the GIGHT diffusion by letting the drift and infinitesimal variance be Λµ

and Λσ2, respectively. For a given Λ = λ, the corresponding SDE is

dYt = µ(Yt)λdt+ σ
√
λdWt, t ≥ 0. (2.22)

The resulting diffusion is still a GIGHT diffusion with λγ and χθ/
√
λ replacing γ and χθ,

respectively. Hence, β and γ in (2.5) is replaced with β/λ and γλ, respectively. Note that

M(α, β/λ, γλ) = M(α, β, γ)λ−α, (2.23)

so λ does not appear in the argument of M . Therefore, given Λ = λ, T is distributed as

GIG(α, β/λ, γλ), whose PDF is (2.3). This gives the GIG neuron model for η. Note that for

the model, α ≤ −1/2. This is explained in the next subsection.

Equation (2.3) gives the statistical relationship between the input and the output for the

GIG neuron model. This can also can be viewed as a communication channel. Therefore, the

GIG neuron model is also be referred to as the GIG neuron channel.

2.2.6 GIGHT Diffusion Approximates PSP of Cortical Neurons

To fit the GIGHT diffusion to the PSP of η, define the PSP level at the beginning of the

IPI to be 0. Then let θ be slightly above the firing threshold of η. This is done because

the GIGHT diffusion hits θ with infinite rate. Although the firing threshold of η is hit with

high rate, it cannot be hit with infinite rate. Thus, the GIGHT diffusion is no longer a
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Figure 2.5: An example of a GIGHT diffusion as the PSP of a neuron leading up to an AP.

good model right before it hits θ. However, the time difference between η’s PSP hitting the

firing threshold and the GIGHT diffusion hitting θ is small because the GIGHT diffusion

is increasing at a very fast rate. With high probability, once the GIGHT hits the firing

threshold, it will hit θ in a small amount time. Thus, the first hitting time (FHT) of the

GIGHT diffusion approximates the duration of the IPI of η.

The GIGHT Diffusion has certain properties that make it a good model for the behavior of

the PSP of η. When the diffusion is away from the threshold, it appears to build up steadily.

Likewise for neurons, it has been observed that in the beginning of an IPI, the PSP builds

up approximately linearly [33–36, 55]. As described in Section 2.1, as the PSP increases, its

rate of increase goes up due to the Na+ channels, especially the NaV1.2 and NaV1.6 channels.

For α < −1/2, the GIGHT diffusion exhibits this behavior. This is illustrated in Figure 2.5,

where the GIGHT diffusion is superimposed on the PSP leading up to an AP. Thus, for the

GIG neuron model, α ≤ −1/2, where equality is allowed to include the linear case.

There several advantages of the GIGHT diffusion over other diffusion models. The GIGHT
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diffusion generalizes the WP with drift and allows for an increase in the drift of the diffusion

as it approaches the threshold. Thus, the GIGHT is able to model the PSP more accurately

than the WP with drift. Likewise, the O-U diffusion model does not exhibit an increasing

drift as threshold is approached. In fact, it is assumed that the effects of the ion channels are

negligible until the threshold is hit, and thus the drift is actually decreasing as the threshold

is approached. As previously mentioned, the PSP should grow at a linear rate, followed by

an upswing. This is not exhibited by the O-U diffusion model.

There are other diffusion models that include the upswing exhibited by PSP’s, such

as the quadratic and exponential integrate-and-fire models [56, 57]. More biophysically

accurate models, such as the stochastic (H-H) and (F-N) models, also include this upswing.

However, the FHT distribution of these models are not given explicitly, which makes analysis

intractable. On the other hand, the FHT distribution of the GIGHT diffusion is the desired

GIG distribution. This makes the input-output model relatively simple and makes analysis

feasible.

As a note, there may be occasional cases where the GIGHT diffusion model does not fit

the behavior of the PSP of η. This model only applies under normal circumstances. Long

IPI’s may be terminated by higher regions in the brain in order to save energy. As a result,

the PSP resets to its initial value or η is forced to fire an AP. In such a case, the GIGHT

diffusion is not an appropriate model.

2.2.7 The GIG Neuron Model Parameters

For a constant infinitesimal variance, the parameters of the GIGHT diffusion and GIG

distribution is related to the physical entities of the diffusion in the following ways [19, 20]:

α = −µ0θ

σ2
− 1

2
, (2.24)

β =
θ2

2σ2
, (2.25)

γ =
µc

2

2σ2
, (2.26)
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where µ0 is the initial drift solely due to the attraction of the threshold and µc is the constant

drift sans the effect of the barrier. Note that µ(0) 6= µ0 + µc. The drift components are

not additive but interact in a more complex way. This can be observed by letting y = 0

and substituting (2.24) and (2.26) into (2.11). Also, the product µ0θ is the proportionality

constant between the the drift near the threshold and the reciprocal of the distance between

the threshold and the drift. This can be observed from (2.17) by letting y = 0.

To derive the expression for γ, let θ − y →∞. Then the drift approaches a constant as

shown in (2.15). Therefore

µc = σ
√

2γ, (2.27)

where µ(y) from (2.15) has been replaced by µc to indicate that this is the drift when

θ − y →∞. Since it is not a function of y, this dependence is dropped. Solving for γ givens

(2.26).

Since µc is constant, the drift under the θ − y →∞ assumption is a Wiener process with

constant drift, which exhibits no attraction to nor repulsion from the threshold. This same

effect can be achieved by letting α = −1/2. Since the threshold is infinitely far, it is too

distant to attract or repel the diffusion. Thus µc can be interpreted as the drift sans the

effect of the barrier.

The value of β is given in (2.10). Assuming a constant infinitesimal variance yields

χθ(y) =
θ − y
σ

, y < θ. (2.28)

Therefore, β reduces to (2.25).

Finally, to get an expression for α, let µc → 0. As a consequence, γ → 0. Using one of

the asymptotic properties of Kα (see Appendix A.3), the drift becomes

µ̃(y) =

(
− α− 1

2

)
σ2

θ − y
, y < θ, (2.29)
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where µ has been replaced by µ̃, which is the drift when γ = 0. Define µ0 = µ̃(0). Then

letting y = 0 and solving for α yields (2.24). Since the expression for α was attained by letting

µc → 0, the drift µ̃ is solely due to the attraction of the threshold without a constant drift

component. Hence, α is linearly dependent on the initial value of the threshold-dependent

drift.

Naturally, the next question is how to estimate the parameters given a sample path of

the GIGHT diffusion.

2.3 Estimation of the GIG Neuron Model Parameters

The goal is to estimate σ2, α, and γ from a realization of a GIGHT diffusion that is sampled

at regular intervals. Since the PSP of η behaves like a GIGHT diffusion, the same techniques

could be applied to recordings of η’s PSP. Thus, a systematic way to acquire the parameters

of the GIG neuron model is developed. The values of the parameters may reveal important

qualities of η and can be used to test the accuracy of the GIG neuron model. Furthermore,

once the parameters of the model are determined, estimators for the input intensity of the

neuron are also developed. Hence, the value of Λ can be estimated from recordings. Repeated

trials can be used to attain a distribution of Λ. The distribution of Λ is further discussed in

Chapter 3.

Parameter estimation of diffusions has been studied in depth [58]. However, to the

author’s knowledge, applications to neural models have appeared only recently. Work has

been done on parameter estimation of neural diffusion models, such as the O-U and Feller

models [20, 45, 59–61]. Other works involve estimating parameters of stochastic models that

were more biophysical, such as a stochastic version of Hodgkin-Huxley and Fitzhugh-Nagumo

models [62–65].
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2.3.1 The Euler-Maruyama Approximation

Two methods for estimating the parameters are developed [20]. The first is an approximation

of the maximum likelihood estimators (MLE’s) by using the Euler-Maruyama method [66].

These estimators are called the pseudo-maximum likelihood estimators (pMLE’s). The second

method involves approximating Oα via the pMLE. Then a least square fit is used to extract

the estimates of α and γ. These estimators are called the pseudo-least square fit estimates

(pLSFE’s). Throughout the development, the value of θ is assumed to be known, whereupon

β is given by (2.25) in terms of θ and σ2.

Let T be the FHT of the GIGHT diffusion. Let time be discretized with a sampling

period of ∆. Then, given that Λ = λ and assuming a constant infinitesimal variance, (2.22)

can be approximated by the Euler-Maruyama method:

Ŷk − Ŷk−1 = µ(Ŷk−1)λ∆ + σ
√
λ(Ŵk − Ŵk−1), k = 1, 2, . . . , K, (2.30)

where Ŷk = Yk∆, Ŵk = Wk∆, and K is the maximum number of samples taken by the

discretization scheme, excluding the initial point Y0 = 0. The value of K is given by

K = bT/∆c where b·c is the floor function. Also, K∆→ T as ∆→ 0. It is clear that the

discrete RP {Ŷk} forms a time-homogeneous Markov process.

Given Ŷk−1 = yk−1, Yk is a normally distributed RV with mean yk−1 + µ(yk−1)∆λ and

variance σ2∆λ. Let Y = {Ŷk}Kk=1, y = {yk}Kk=1, and y0 = 0. Then the joint PDF of Y is

fY |Λ(y|λ) =
exp(− 1

2σ2∆λ

∑K
k=1(vk − vk−1 − µ(yk−1)∆λ)2)

(2πσ2∆λ)K/2
. (2.31)

This distribution is not necessarily jointly Gaussian because µ may be a non-linear function.

Therefore, Y is not necessarily a Gaussian process. The log-likelihood is attained by taking
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the logarithm of (2.31), which yields

LY |Λ(y|λ) = − 1

2σ2∆λ

K∑
k=1

(vk − vk−1 − µ(vk−1)∆λ)2 − K

2
log(2πσ2∆λ), (2.32)

where log is the natural logarithm function.

2.3.2 The Pseudo-Maximum Likelihood Estimator

For now, assume that Λ = 1. Without a reference, the value of Λ is arbitrary. To demonstrate,

suppose the estimates for σ2, α, and γ are σ2
0, α0, and γ0, respectively. Then suppose that the

“real” value of Λ is λ0. Then the estimated parameters can be scaled to form new estimates

that correspond with Λ = λ0: σ2
0/λ0, α0, and γ0/λ0, respectively.

The MLE of α based on Euler-Maruyama approximation can be attained by differentiating

(2.32) with respect to α and setting it equal to 0, which results in

K∑
k=1

(yk − yk−1 − µ(yk−1)∆)
∂

∂α
µ(yk−1) = 0. (2.33)

This equation is not analytically tractable. By considering the GIGHT diffusion near the

threshold, the drift can be approximated by (2.17). Since the diffusion ends by hitting the

threshold, the last samples are assumed to be near the threshold. By considering the last m

samples of the diffusion and using the approximation, the estimator for α is

α̂(y) = −
∑K

k=K−m+1
yk−yk−1

θ−yk−1

σ̂2(y)
∑K

k=K−m+1(θ − yk−1)−2∆
− 1

2
, (2.34)

where σ̂2(y) is an estimator for σ2. Potential estimators for σ2 are considered in Section 2.3.3.

Similarly for γ, the following condition for the approximate MLE be attained:

K∑
k=1

(yk − yk−1 − µ(yk−1)∆)
∂

∂γ
µ(yk−1) = 0. (2.35)
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This is also not analytically tractable. However, by considering the diffusion in the beginning

and assuming that θ is large, the drift can be approximated by (2.15). By considering the

first n samples of the GIGHT diffusion, the estimator for γ is

γ̂(y) =
1

2σ̂2(y)

(
yn
n∆

)2

. (2.36)

This is also an estimator for a constant drift [58].

2.3.3 Infinitesimal Variance Estimator

There are multiple ways to estimate σ2. The first is based on the quadratic variation [66]:

σ̂2(y) =

∑K
k=1(yk − yk−1)2

K∆
. (2.37)

This estimator is referred to as the “simple” estimator of σ2. Note that this estimator does not

use any information on the drift. It is not necessarily unbiased, which can lead to inaccurate

estimation as shown in a later subsection.

A similar approach to estimating γ can be used in improving the estimate of σ2. Assume

that the threshold is large and only the beginning of the diffusion is considered. Then the

drift is approximately given by (2.15). Suppose only the first ` samples are used. Then taking

the derivative of (2.32) with respect to σ2, setting it equal to zero, and some algebra yields

∑̀
k=1

(yk − yk−1)2

2∆σ4
−
√
γ

2

y`
σ3
− `

2σ2
= 0. (2.38)

Using the estimator for γ in (2.36), the estimator for σ2 is then given by

σ̂2
b (y) =

∑`
k=1(yk − yk−1)2

∆`
− y2

`

`2∆
. (2.39)
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To make σ̂2
b unbiased for α = −1/2 or under the constant drift assumption, a scale factor

of `
`−1

may be applied. Hence, the estimator for σ2 is σ̂2 = `
`−1

σ̂2
b , i.e.,

σ̂2(y) =

∑`
k=1(yk − yk−1)2

∆(`− 1)
− y2

`

`(`− 1)∆
. (2.40)

This is called the constant drift estimator (CDE) of σ2.

Thus, the parameters of the GIG neuron model can be estimated via the pMLE. To

reiterate, these are MLE’s. These are analytical estimators based on approximations of the

likelihood. There exist other estimators that are more favorable in terms of maximizing the

likelihood, namely the MLE’s; however, the MLE’s are intractable and require a numerical

solution.

2.3.4 The Pseudo-Least Square Fit Estimator

For the pLSFE, σ2 is first estimated via the simple estimator or the CDE. Then, the sequence{
Oα

(
θ−yk
σ

√
2γ
)}K

k=1
, where Oα was defined in (2.12), is estimated via the approximated MLE,

i.e., by maximizing over the approximated log-likelihood function (2.32). Then a least square

fit regression is used to estimate α and γ. For a sample path of the GIGHT diffusion {y}, Let

ok = Oα

(
θ − yk
σ

√
2γ

)
, k = {0, 1, . . . , K − 1}. (2.41)

Then, by using (2.13), the log-likelihood can be written as

LY |Λ(y|1) = − 1

2σ2∆

K∑
k=1

(
yk − yk−1 −

σ2∆

θ − yk−1

ok−1

)2

− K

2
log(2πσ2∆), (2.42)

where Λ is still assumed to have taken a value of 1. Using the estimate for σ2, the approximate

MLE for each ok can be determined and is given by

ôk−1(y) =
(yk−1 − yk)(θ − yk−1)

∆σ̂2(y)
, k = {1, . . . , K}. (2.43)
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Then the least squares fit to Oα can be numerically determined by finding the values of α

and γ that minimizes the mean square error (MSE), i.e.,

(α̂(y), γ̂(y)) = arg min
(α,γ)

K∑
k=1

(
Oα

(
θ − yk−1

σ̂(y)

√
2γ

)
− ôk−1(y)

)2

, (2.44)

where σ̂ =
√
σ̂2.

2.3.5 Estimator for the Input Intensity

To estimate the input intensity, the approximate log-likelihood, (2.32), is again used. Let Λ

take on the value of λ. The other parameters are assumed to be known and that λ is the

only unknown. Then take the partial derivative with respect to λ and set it equal to zero.

Then, some algebra yields

λ2∆2

K∑
k=1

µ(vk−1)2 + λ∆Kσ2 −
K∑
k=1

(vk − vk−1)2 = 0. (2.45)

This is a quadratic equation in λ with possibly two solutions. Since λ > 0, the only sensible

solution to (2.45) is the positive one, i.e.,

λ̂(y) =
−Kσ2 +

√
K2σ4 + 4d

∑K
k=1(yk − yk−1)2/∆

2d
, (2.46)

where

d =
K∑
k=1

µ(yk−1)2∆.

This is the the MLE based on the approximate likelihood of λ.

As ∆→ 0, it can be shown that λ̂ approaches something like the simple estimator for σ2

in (2.37). Consider the diffusion in the interval [0, t−], where t− < T . Note that for t ∈ [0, t−],

µ(Yt) <∞. Let K− be the number of samples in the interval [0, t−]. Then d is a Riemann
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sum that converges to a finite limit:

d =
K−∑
k=1

µ(Yk−1)2∆→
∫ t−

0

µ(Yt)
2dt as ∆→ 0. (2.47)

Hence, λ2∆d→ 0 and (2.45) can be approximated as

λ∆K−σ2 −
K−∑
k=1

(yk − yk−1)2 = 0. (2.48)

If K− = K, the estimator of λ is approximately

λ̂(y) =

∑K
k=1(yk − yk−1)2

∆Kσ2
, (2.49)

for small values of ∆. This solution is almost the same the simple estimator in (2.37), except

the divisor has an additional factor of σ2 in (2.49). It is clear that (2.49) is estimating λσ2/σ2,

i.e., just λ.

2.4 Simulation Results

To test the accuracy of the estimators, GIGHT diffusions were simulated and the accuracy of

the estimators are evaluated [20]. Two sets of parameters, called set 1 and set 2, were used

and is shown in Table 2.1. Table 2.2 contains values used for the setup of the simulations. To

test the estimators for σ2, α, and γ, the value of Λ is set to λ = 1. Then to test the estimator

for Λ, its value is set to λ = 3 and the values of σ2, α, and γ are assumed to be known.

The diffusion is approximated using the Euler-Maruyama method with step size τ = 0.0001.

The simulation stops when the value of the diffusion hits or surpasses the threshold. Any

points above the threshold are removed. Sampling was simulated by taking every other κ

samples. The values of κ used are in Table 2.2. The “sampling period” is given by ∆ = κτ .
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Parameter Set 1 Set 2
θ 100 100
α −50 −100
γ 10 20
σ2 5 25

Table 2.1: The values of the parameters for set 1 and set 2.

Parameter Value
τ 0.0001

κ 10, 50, 100, 150, 200, 300, 400,
500, 600, 700, 800, 900, 1000

number of trials 1000

Table 2.2: The parameter set used in the simulations.

For each value of the sampling period, the experiment was repeated a thousand times. The

sample mean and mean square error (MSE) for each estimator was calculated.

For the pMLE, define m̃ and ñ as the fraction of the samples used in estimating α and γ,

respectively. For the CDE, define ˜̀ as the fraction of samples used in estimating σ2.

This simulations are intended to show how well the estimators work for a GIGHT diffusion.

The parameters chosen for the simulations are not tied in anyway to biological neurons. Hence,

the units in the simulations are arbitrary. Before the estimators are used in experimental

data, testing on data from more biophysical simulations, such as ones using stochastic H-H

models, is required.

2.4.1 Variance Estimators

Figure 2.6 shows the sample mean and MSE of the variance estimators for parameter sets 1

and 2. The sample mean of the simple estimator increases roughly linearly with ∆. Excluding

the case where ˜̀= 1, the sample means of the CDE’s are near the true value of σ2 and do

not change significantly with ∆. In other words, the CDE’s are unbiased, except for ˜̀= 1.

When ˜̀ = 1, every sample is used in the estimate, including near the end of the diffusion,
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where the drift increases drastically. In the CDE, a constant drift assumption is used. By

including points in the non-linear regime, the drift is overestimated when using the CDE.

This introduces a bias to the CDE when ˜̀ = 1. This bias increases with ∆, as shown in

Figure 2.6. For the other values of ˜̀, the drift is approximately constant, so the estimators

are approximately unbiased. The simple estimator is the most biased among the estimators

here. This is expected since the simple estimator did not use any information on the drift of

the diffusion.

As for the MSE of the estimators, the rate of increase is linear in ∆ when plotted on a

log-log scale for all of the estimators. Therefore, the MSE data points can be fitted with a

power function described by f(∆) = x(∆)y. The MSE data points for the CDE’s, except

for ˜̀ = 1, are collinear with a slope of approximately 1. This strongly suggests that the

MSE increases linearly with ∆. On the other hand, the slope is greater than 1 for the simple

estimator and CDE with ˜̀= 1. The MSE grows supralinearly in ∆ in these two cases. The

use of the simple estimator is limited to small values of ∆ due to large error and bias. The

best estimator in terms of the MSE is the CDE with ξ̂ = 0.75 for both parameter sets. This

suggests that the GIGHT diffusion has approximately constant drift for the first 75% of it

for parameter sets 1 and 2.

Figure 2.6 supports the fact that the simple estimator and CDE’s are consistent because

from the figure, it appears that the sample mean and MSE approach the values of σ2 and 0,

respectively, for decreasing ∆.

2.4.2 Parameter Estimators

Since estimating α requires estimating σ2, the CDE with ˜̀= 0.75 was used as the estimator

for σ2 for both parameter sets 1 and 2. This estimator was used because it had the least

MSE for any ∆ for both parameter sets.

The sample mean and MSE for the α estimators for parameter sets 1 and 2 are plotted in

Figure 2.7. For the pMLE, the sample mean of the α estimator is below the true value of
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Figure 2.6: (A) The sample mean of the estimators of σ2 is plotted against the sampling
period. The sample mean of the simple estimator continues to increase beyond the plot in
an approximately linear fashion. On the other hand, the CDE appears to be unbiased for
˜̀= 0.1, 0.25, 0.5, and 0.75. For ˜̀= 1, the mean of the CDE increases with ∆ because the
constant drift assumption is not applicable in this case. (B) The MSE of the estimators
of σ2 is plotted against the sampling period. For all of the estimators presented here, the
data can be fitted with a power function, which is a straight line under log-log scaling. The
higher slope of the simple estimator indicates a higher power and worse scaling with longer
sampling periods. For the CDE’s, with the exception of ˜̀= 1, the slope of the linear fit is
approximately 1. This suggests that the MSE grows linearly with ∆. In parameter set 2,
the pMLE for ˜̀ = 0.1 cannot be determined past a certain value of ∆ because with a low
sampling period, not enough samples were taken to produce a proportion of 0.1.

α because it was assumed that the constant drift is non-existent. The estimated threshold-

dependent drift must be higher to compensate for the lack of the constant drift. This

corresponds to lower estimated values of α. The sample mean of the pMLE decreases with ∆.

Likewise, the sample mean of the pLSFE also decreases with ∆, but at a slower rate. The
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sample mean of the pLSFE is closer to the true value of α, which indicates the pLSFE is less

biased than the pMLE.

The MSE increases as ∆ increases, which is expected. However, for the pMLE, it increases

faster than that of the pLSFE. For low values of ∆, the pMLE is better than the pLSFE. As

∆ increases, the pLFSE becomes the better estimator because its MSE grows more slowly

than that of the other estimators.

With regards to the value of m̃, the MSE of the pMLE first improves by increasing m̃.

Then as m̃ increases even further, the MSE worsens. There is a balance between using too

few samples where there is not enough data points and using too many samples in the region

where the zero constant drift assumption does not hold. This assumption is approximately

true at the end of the diffusion where the barrier dependent drift swamps the constant drift.

As more points farther away from the threshold are used, the estimator becomes more biased.

Note that for the pLSFE, there were a few instances where the computer program

terminated early without solving for the minimum because the maximum number of iterations

was reached. This was included in the results for the calculations of the mean and MSE,

nonetheless. This affects the results for the pLSFE for both α and γ.

Likewise for γ, the CDE with ˜̀ = 0.75 for the estimate of σ2 was adopted for both

parameter sets. The sample mean and MSE of the estimators of γ is plotted in Figure

2.8. For the pMLE, the sample mean is greater than the true value of γ. This is because

threshold-dependent drift is assumed to be 0, so the estimated constant drift must be larger

to compensate for the lack of the threshold-dependent drift. In the case of ñ = 1, the mean

of the pMLE decreases slightly with ∆. This is because if ñ = 1, the last sample before the

barrier is hit is used for the estimate. With larger sampling times, the last sample does not

get as close to the threshold. This effect is amplified near the threshold since the effect of

the attraction is more significant the closer the diffusion is to the threshold. For the other

cases of the pMLE, the sample mean increases only slightly with ∆. The sample mean of

the pLSFE does not change significantly with ∆ for parameter set 1 and actually decreases
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Figure 2.7: (A) The sample mean of the estimators of α is plotted against the sampling
period. The sample mean decreases with ∆ for all the estimators. The rate of decrease is
higher for the pMLE. The pLSFE is less biased overall. (B) The MSE of the estimators for α
is plotted against the sampling period. The MSE increases with ∆ for all estimators. The
MSE is initially lower for the pMLE, but increases and surpasses that of the pLSFE due
to the higher rate of increase. Note that for parameter set 2, the scale of the ordinate is
logarithmic. For a low values of m̃, the pMLE cannot be determined for large values of ∆.
There were not enough samples to get a proportion of m̃ in these cases.

with ∆ for parameter set 2. Its sample mean has approximately the same value as γ, which

suggests that the pLSFE is approximately unbiased.

When ñ = 1, the MSE of the pMLE initially decreases with ∆, but then increases. This

is because the estimator becomes less biased as the value of the sample mean decreases.

However, the reduction of the MSE due to the unbiasedness is offset by the increase in the

MSE from longer sampling periods and is eventually overcome by it. For the rest of the
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pMLE, the MSE increases with ∆. Likewise, the MSE of the pLSFE increases with ∆. When

the bias of the pMLE is low, its MSE and that of the pLSFE are close. However, when the

bias of the pMLE is high, the MSE of the pLSFE is lower. Thus, the bias of the pMLE

increases the error significantly.

The value of ñ that produces the least error here lies somewhere between 0.5 and 0.75,

which suggests that the drift of the GIGHT diffusions for these two parameter sets is

approximately constant for the first 50% to 75% of it. This agrees with the result of the

CDE. Although it is constant, the threshold-dependent drift still has some contribution to

the total drift, which adds to the bias in the estimator.

It is important to have large θ and µc for the pMLE; otherwise, the assumption that the

drift is described as (2.15) in the beginning of the diffusion may not hold. This results in

biased estimators such as in parameter set 2. In such a case, the pLFSE is a better choice for

the estimator.

In these two parameter sets, it seems that the best choice of ˜̀ and ñ is around 0.75. This

is yet to be proven, but this suggests that the GIGHT diffusion behaves linearly for at least

the first half of the diffusion. Further studies are needed but perhaps a number between 0.5

and 0.75 is a good choice for both ˜̀ and ñ. As for m̂, the optimal choice is different for the

two parameter sets.

What can be done is to anticipate the range of values the parameters σ2, α, and γ can

take and simulate many instances of the GIG diffusion. Then k-fold cross-validation can be

used to find the value of ˜̀, m̃, and ñ. However, such anticipation is difficult at this point and

the optimal selection is an open question.

2.4.3 Improved Estimators for the Parameters

The pMLE hinges on the approximation for Oα during parts of the GIGHT diffusion. However,

if Oα can be approximated for the entire diffusion, a more accurate estimator can be developed.

Furthermore, the hyperparameters ˜̀, m̃, and ñ would not be necessary. This is especially a



Chapter 2 The Generalized Inverse Gaussian Neuron Model 40

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

∆

9

10

11

12

13

14

15

16

17

M
e
a
n

Sample Mean of the Estimators of γ=10 (Set 1)

γ

pLSFE

ρ=0.10

ρ=0.25

ρ=0.50

ρ=0.75

ρ=1.00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

∆

10

20

30

40

50

60

70

80

90

M
e
a
n

Sample Mean of the Estimators of γ=20 (Set 2)

γ

pLSFE

ρ=0.10

ρ=0.25

ρ=0.50

ρ=0.75

ρ=1.00

(a)

0 0.02 0.04 0.06 0.08 0.1

∆

5

10

15

20

25

30

35

40

45

M
S

E

MSE of the Estimators of γ = 10 (Set 1)

pLSFE

ρ=0.10

ρ=0.25

ρ=0.50

ρ=0.75

ρ=1.00

0 0.02 0.04 0.06 0.08 0.1

∆

0

1000

2000

3000

4000

5000

6000

7000

M
S

E

MSE of the Estimators of γ = 20 (Set 2)

pLSFE

ρ=0.10

ρ=0.25

ρ=0.50

ρ=0.75

ρ=1.00

(b)

Figure 2.8: (A) The sample mean of the estimators of γ is plotted against the sampling
period. For the pMLE, the mean is higher than the true value of γ. With ñ = 1, the sample
mean decreases as a function of ∆. For the other values of ñ, the sample mean increases
slightly with ∆. As for the pLSFE, the sample mean is constant for parameter set 1 and
decreases slightly with ∆ in parameter set 2. The pLSFE is less biased than the pMLE.
(B) The MSE of the estimators of γ is plotted against the sampling period. For the pMLE
with ñ = 1, the MSE initially decreases with ∆ due to the decreasing mean. Then the MSE
increases due to error with longer sampling periods. In all other cases, the MSE increases
with ∆.

problem for γ. When the threshold is too low, the pMLE do not give an accurate estimate

for γ because the drift approximation is not accurate. Since the behavior of Oα(x) is known

for large x, it is more crucial to approximate its behavior as x approaches 0.
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2.4.4 Simulations for the Input Intensity Estimator

Here, Λ was estimated with the approximate MLE. The parameters σ2, α, and γ are assumed

to be known. Let Λ = 3. The other simulation parameters are the same as in Table 2.2 and

Table 2.1. Thus, the simulation was done for both parameter set 1 and set 2.

The sample mean and MSE of the estimator for Λ is plotted in Figure 2.9. The sample

mean increases with ∆ but with decreasing rate. The MSE is also small compared to the

value of Λ, which suggests that this is a good estimator. The figure seems to indicate that

MSE approaches 0 as ∆ decreases. This suggests that the MLE estimator is consistent.

The approximate MLE for set 1 produces less error on average than for set 2, though more

research is needed to understand why.

Note that the accuracy of the estimator depends on accurate estimation of α, γ, and σ2.

In this simulation, the best case possible was assumed, i.e., the values of the parameters are

known. Good parameter estimation is required in order to accurately estimate Λ.

2.5 Conclusion

Neuron η’s PSP can be modeled by an SDE whose solution is the GIGHT diffusion. This

diffusion can capture the upswing exhibited by η’s PSP as it approaches the threshold. The

GIGHT diffusion has the advantage of having an explicit form for the FHT distribution,

which is given by the GIG distribution. This allows for analysis of the information-energy

tradeoff of η, which is developed in Chapter 3.

In addition to developing the GIG neuron model, estimation of the parameters of such

model from data was presented. The focus of this thesis was not on data collection from

experiments. This requires more collaboration between information theorists and neuroscien-

tists. Experiments are needed to see how well GIG diffusions match up to the η’s PSP and

to determine the values of the parameters of the model. A possible experiment to perform is

to make intracellular and extracellular recordings of a neuron in V1 with the experimenters
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Figure 2.9: The sample mean (A) and MSE (B) of the Λ estimators is plotted against the
sampling period. The black line indicates the true value of Λ. The sample mean and the
MSE increases with ∆, but with decreasing rate. As ∆→ 0, the sample mean approaches
the true value and the MSE approaches 0, which indicates that the estimator is consistent.
On average, the estimator for set 1 has less error than for set 2.

controlling its input intensity. To control the input to the neuron, find its afferent lateral

geniculate nucleus (LGN) cells and transfect them with channelrhodopsin. This allows the

LGN cells to be activated by light. Thus, the experimenters can use a laser scanning device

to activate the transfected LGN cells to control the input intensity to the neuron. Then

intracellular and extracellular recordings can be used to verify the GIG neuron model. This is

a possible next step for research, which will encourage interdisciplinary approach in addressing

energy-efficient neural computation.



Chapter 3

The Channel Capacity of the GIG

Neuron Model

As mentioned in Chapter 1, neuron η seeks to maximize the mutual information (MI) it

transmits given an average energy budget. In this chapter, η is modeled with the generalized

inverse Gaussian (GIG) neuron model (see Chapter 2). This is equivalent to finding the

capacity-cost (C-C) curve of the GIG neuron channel. From this curve, the tradeoff between

energy and MI can be analyzed. Furthermore, the point of maximum MI per energy, i.e., bits

per Joule, can be identified. It is given by the point on the curve whose tangent line passes

through the origin [67]. This point of operation is the most efficient in the sense of the using

the most MI per energy unit.

It turns out that the result of Smith is relevant to finding the constrained capacity of

the GIG neuron channel [68]. In Smith, it was shown that for an additive white Gaussian

noise channel (AWGN) and an amplitude-constrained input (or equivalently, a peak power-

constrained input), the capacity-achieving input distribution is discrete. In other words, the

set of input alphabet that achieves maximum MI is discrete and finite. The main contribution

of this chapter is to show that the discrete result applies to the GIG neuron model as well.

This chapter begins with a brief introduction on MI and the constrained capacity, which

43
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will be referred to as just capacity henceforth. Then the energy model for the GIG neuron is

presented. Finally, it is shown that for some parameters, the capacity for the energy neuron

model is achieved by a discrete input distribution. The approach is measure-theoretic, which

is necessary for some of the proofs in this chapter. However, proofs of theorems are shown in

Section 5.4 rather than immediately after the respective theorems. Then implications of the

results are discussed, followed by the conclusion.

3.1 Background

In this section, relevant notations and definitions, including MI, are introduced. Then, the

capacity problem is defined. This is followed by the conditions for the input distribution in

order to achieve the capacity.

3.1.1 Notation

Let F , F1, and F2 be cumulative density functions (CDF’s) of a random variable (RV) or

joint CDF’s of a set of RV’s. The unique probability measure associated with F is denoted

by µF . The relationship µF1 � µF2 denotes that µF1 is absolutely continuous with respect to

µF2 . The relationship µF1 ≡ µF2 denotes that µF1 � µF2 and µF2 � µF1 . If µF1 � µF2 , the

Radon-Nikodym (R-N) derivative [69] of µF1 with respect to µF2 is given by dF1

dF2
.

All integrals in this chapter are of the Lebesgue-Stieltjes kind unless otherwise stated.

Lebesgue-Stieltjes integrals are described in [69]. The symbol R denotes the set of real

numbers and Rn is the n-fold product of R. If the limits of integration are absent, it is

assumed that the integral is over Rn for the appropriate n. The symbol C denotes the set of

complex numbers and Cn is the n-fold product of C.
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3.1.2 Mutual Information

Let X and Y be a pair of RV’s. Let the joint CDF of (X, Y ) be F . Let the marginal CDF’s of

X and Y be v and w, respectively. Define F ∗(x, y) = v(x)w(y). The function F ∗ is the CDF

of (X, Y ) if X and Y are mutually independent while retaining their respective marginal

CDF’s. If µF � µF ∗ , the MI is given by [70]

I(X;Y ) =

∫
R2

log
dF

dF ∗
dF. (3.1)

Otherwise, I(X;Y ) =∞.

Mutual information can also be described by the CDF of X and the conditional CDF of

Y given X. Let them be described by v and W , respectively. Then MI can be expressed as

I(v,W ) =

∫∫
log

dW (y|x)

dw(y; v,W )
dW (y|x)dv(x), (3.2)

where,

w(y; v,W ) =

∫
W (y|x)dv(x) (3.3)

is the marginal CDF of Y . Note that the function I has been “overloaded”. When the

arguments are separated by a semicolon, its arguments should be random variables. When

separated by a comma, its respective arguments should be distributions. It can be shown that

dF
dF ∗

= dW
dw

, µF -a.e. (almost everywhere with respect to µF ), which implies the equivalence of

(3.1) to (3.2).

If the conditional CDF can be written as a conditional probability density function (PDF),

then MI can be written in terms of the conditional PDF. Let Q be the conditional PDF

associated with W . Then the MI is

I(v,W ) =

∫∫
log

Q(y|x)

q(y; v,Q)
Q(y|x)dydv(x), (3.4)
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where

q(y; v,Q) =

∫
Q(y|x)dv(x) (3.5)

is the marginal PDF of Y . The PDF q must exist because Q exists.

If the conditional PDF of Y given X exists, MI can also be written in terms of difference

of entropy. The differential entropy of Y is

hY (v,Q) = −
∫
q(y; v,Q) log q(y; v,Q)dy. (3.6)

The value hY (v,Q) is not an entropy, i.e., it does not represent the uncertainty in the RV Y .

In fact, the entropy of Y is not finite because it is a continuous RV [71]. However, it can

be viewed as the entropy of Y subtracted by the entropy of the uniform distribution with

density 1, hence the term differential entropy.

The conditional differential entropy of Y given X is

hY |X(v,Q) = −
∫∫

Q(y|x) logQ(y|x)dydv(x). (3.7)

This gives the average differential entropy of Y given that X has taken on a particular value.

Again, this can be viewed as the conditional entropy of Y given X subtracted by the entropy

of the uniform distribution with density 1. Then MI can be written as

I(v,Q) = hY (v,Q)− hY |X(v,Q). (3.8)

Since the two terms are subtracted, the reference to the entropy of the uniform distribution

cancels. Thus, MI is a difference of entropies. It is the reduction from hY (v,Q) to hY |X(v,Q).

If entropies are interpreted as uncertainties, then I(v,Q) is, on average, the reduction of the

uncertainty in Y by learning the value of X.
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3.1.3 The Constrained Capacity Problem

In capacity or C-C problems, the objective is to maximize I(·,W ) over the space of CDF’s of

X subject to a cost constraint. Additional constraints on the allowable values of X may be

imposed. Since W is fixed and known for C-C problems, the MI I(v,W ) will be written as

I(v) without W . If W has PDF Q, the entropies will be written as hY (v) and hY |X(v). Also,

the marginal CDF of Y is written as w(y; v).

Let S ∈ B(R), where B(R) is the Borel algebra of R. Let V(S) be the set of CDF’s of X

whose points of increase is a subset of S. In other words, if v ∈ V(S), then µv(S) = 1. This

set will be indicated by just V when the set S is understood. Let g be the cost function and

define the average cost operator on v ∈ V as

G(v) =

∫
g(x)dv(x), v ∈ V . (3.9)

Also, define the set

VE(S) = {v ∈ V(S) : G(v) ≤ E}, (3.10)

i.e., the subset of V whose average cost is no greater than E. The C-C function is given by

C(E) = sup
v∈VE

I(v), E ∈ E , (3.11)

where E = {E : G(v) ≤ E, v ∈ V}, i.e., the set of possible average costs. Define Emin =

infx∈S g(x), i.e., the infimum of the cost function over S. Note that Emin is also the infimum

of E .

3.1.4 Solution of the Capacity-Cost Problem

Equip V with the weak topology of probability. It should be noted that this topological space

is metrizable and is therefore a metric space [69]. Then from [72] and [68], the following

theorem can be stated
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Theorem 3.1. If VE is compact and I is continuous, then

C(E) = max
v∈VE

I(v), E ∈ E , (3.12)

and is achieved by some v∗ ∈ VE. If I is strictly concave, then v∗ uniquely achieves the

constrained capacity. Furthermore, if E > Emin and C(E) is finite, v∗ maximizes I if and

only if for some value of s ≥ 0,

i(x; v∗)− sg(x) ≤ C(E)− sE, x ∈ S, (3.13)

i(x; v∗)− sg(x) = C(E)− sE, x ∈ SX . (3.14)

The set SX is the set of points of increase of v∗ and the function i is the conditional information

given that X = x, which given by

i(x; v) =

∫
log

dW (y|x)

dw(y; v)
dW (y|x). (3.15)

Proof. See [72, Sec. 5.10 Th. 2] for existence proof. See [72, Sec. 8.3 Th. 1, Sec. 8.4

Th. 1] for the optimality conditions. See [68] for its application to capacity problems and

uniqueness.

The following theorem can be stated for the C-C curve:

Theorem 3.2. The constrained capacity C(E) is an increasing concave function of E.

Furthermore, if C is differentiable at E, its derivative is given by s, i.e., s = dC
dE

.

Proof. See [72, Sec. 8.5 Th. 1].

With regards to the compactness of VE, the following theorem can be stated,

Theorem 3.3. Let S be closed and g be continuous. If g(x)→∞ for x→ −∞ and x→∞,

then VE(S) is compact in the weak topology of probability.
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The proof is presented in Section 3.4.1. Note that g(x) can be redefined for x /∈ S and not

change the solution to C-C problem. Hence, if S is bounded from below, g can be redefined

so that g(x) → ∞ as x → −∞. The same holds if S is bounded from above. This also

implies that if S is closed and bounded (and hence compact) and g is continuous over S, VE

is compact in the weak topology of probability.

3.2 The Constrained Capacity of the GIG Neuron Chan-

nel

Recall that the input to the GIG neuron channel is given by the input intensity Λ, which

is modeled as a RV. The output is given by the duration of the interpulse interval (IPI)

T , which is also a RV. Recall that the conditional PDF of T given Λ is given by the GIG

distribution,

QGIG(t|λ) = M(α, β, γ)−1λαtα−1 exp

(
− β

λt
− γλt

)
, λ, t > 0.

Since for the GIG neuron model, it is assumed that α ≤ −1/2. Hence, β > 0 and γ ≥ 0. The

normalization term is given by

M(α, β, γ) =


2
(
β
γ

)α/2
Kα(2

√
βγ) γ > 0

βαΓ(−α) γ = 0.

The GIG neuron channel can be viewed as a multiplicative noise channel with 1/Λ as the

input and T as the output. It is described by

T =
U

Λ
, (3.16)
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Figure 3.1: A representation of the GIG neuron channel.

where U is a RV independent of Λ. The RV U is the “noise” and is distributed as GIG(α, β,γ).

So, the PDF of U is

fU(u) = M(α, β, γ)−1uα−1 exp

(
− β

u
− γu

)
. (3.17)

A representation of this channel is shown in Figure 3.1.

3.2.1 Energy Model for Cortical Neurons

Let gtotal(λ, t) be the energy cost during an IPI for input intensity λ and output IPI duration

t. According to the model, there are five major types of energy expenditures in a given IPI,

denoted by the functions gi(λ, t), i = 1, . . . , 5:

1. g1(λ, t) = z, where z > 0. This term is associated with fixed energy costs such as

creating and propagating an AP.

2. g2(λ, t) = ct, where c > 0. This term is associated with energy costs that vary linearly

in time, such as metabolic costs to maintain the neuron and keep it healthy.

3. g3(λ, t) = b/t, where b > 0. This term increases the energy of two adjacent AP’s that

are separated by a short duration. This is because in the relative refractory period, it

takes more energy to open enough channels to produce another AP (see Chapter 2).
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4. g4(λ, t) = −a log(t), where a < 0. This term is associated with maintaining neural

“clocks.” The clocks here are diffusive clocks where particles diffuse out of a compartment.

The number of particles that left the compartment is approximately a logarithmic

function and therefore should require an energy cost that is logarithmic to reset. Note

that g4(λ, t) < 0 for t < 1. However, this term is dominated by a positive g3(λ, t) as

t→ 0.

5. g5(λ, t) = rλt, where r > 0. This is the cost of processing incoming spikes. For an IPI

duration of t, the total intensity of input to η is given by the average intensity times

the duration, i.e., λt.

The total energy is the sum of the five components,

gtotal(λ, t) = z + b/t+ ct− a log t+ rλt. (3.18)

It is useful to use the average cost given that Λ = λ, which is given by

gΛ(λ) =

∫
gtotal(λ, t)QGIG(t|λ)dt, λ > 0. (3.19)

The mean of the cost functions gtotal and gΛ are equivalent. Therefore, for the purpose of

analysis, these two are equivalent cost functions when QGIG is specified. From Appendix B,

gΛ is given as

gΛ(λ) = zΛ + bΛλ+ cΛ/λ+ aΛ log λ, λ > 0, (3.20)

where,

zΛ = z + k1r − kga, (3.21)

aΛ = a, (3.22)

bΛ = k−1b, (3.23)

cΛ = k1c. (3.24)
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The terms k−1, k1, and kg are constants that depend on α, β, and γ and are defined in

Appendix B. The function gΛ has a minimum at

λ∗ =
−aΛ +

√
a2

Λ + 4bΛcΛ

2bΛ

. (3.25)

The minimum energy is then given by Emin = gΛ(λ∗).

3.3 Finding the Constrained Capacity of the GIG Neu-

ron Channel

To use Theorem 3.3, S must be closed. For the GIG neuron channel in its current form,

S = (0,∞), which is not closed. However, by using a certain transformation on Λ and T ,

the resulting set S will be closed. Then Theorems 3.1 and 3.3 can be applied to find the

constrained capacity for the GIG neuron channel.

3.3.1 Representing the Input and Output Random Variables

Define the RV’s X = − log Λ, Y = log T , and N = logU . The new RV’s are transformations

on the input, output, and noise RV’s, respectively, of the GIG neuron channel. A new channel

is formed by the new RV’s, which is given by

Y = X +N, (3.26)

where N is independent of X. The PDF of the noise is given by

fN(n) = M(α, β, γ)−1 exp
(
αn− βe−n − γen

)
. (3.27)

This type of distribution is referred to as an exponentiated GIG (EGIG) distribution, which

is denoted by EGIG(α, β, γ).
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Thus, the multiplicative noise channel (3.16) is converted into an additive noise channel.

The conditional PDF that describes the channel is

Q(y|x) = M(α, β, γ)−1 exp
(
α(y − x)− βe−(y−x) − γey−x

)
. (3.28)

Since the RV X is onto R, S = R, which is a closed set.

The cost function for input X = x is given by g(x) = gΛ(e−x), which is equavalent to

g(x) = zΛ − aΛx+ bΛe
−x + cΛe

x. (3.29)

The minimum of g occurs at x∗ = exp(−λ∗) and the value of the minimum cost is Emin =

g(x∗) = gΛ(λ∗).

3.3.2 Existence and Uniqueness of Solution

The conditions in Theorem 3.1 must be satisfied to guarantee the existence of a solution.

One of the conditions is that VE(S) is compact. The function g is continuous and g →∞

for both x → −∞ and x → ∞. The set S = R is closed. Therefore, VE(S) is compact by

Theorem 3.3.

The continuity of I is given by the following theorem:

Theorem 3.4. For the GIG neuron channel (3.28), the mutual information I is continuous

over VE, E ∈ E..

The conditions of Theorem 3.1 is met. Therefore, a solution exists.

To show that the solution is unique, it must be shown that I is strictly concave. the MI I

can be expressed as (3.8), i.e., a difference of two entropies, because the conditional PDF

of Y given X exists. Since hY |X is a linear function, it suffices to show that hY is strictly

concave.
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Define vδ = δv1 + (1 − δ)v2, where 0 < δ < 1, and v1, v2 ∈ V. Since x log x is strictly

convex in x, for a given value of t,

q(y; vδ) log q(y; vδ) = (δq(y; v1) + (1− δ)q(y; v2)) log(δq(y; v1) + (1− δ)q(y; v2))

≤ δq(y; v1) log q(y; v1) + (1− δ)q(y; v2) log q(y; v2), (3.30)

with equality if and only if q(y; v1) = q(y; v2). Hence hY (vδ) ≥ δhY (v1) + (1− δ)hY (v2) with

equality if on only if q(y; v1) = q(y; v2), for y ∈ R (necessity is due to continuity of q(y; v) in

y for any v ∈ V). If it is shown that q(·; v) is an injective (one-to-one) transform on v, hY

must be strictly concave because hY (vδ) = δhY (v1) + (1 − δ)hY (v2) if and only if v1 = v2.

Suppose that v1 6= v2 but q(y; v1) = q(y; v2) for all y ∈ R. Then q(y; v1)− q(y; v2) = 0, i.e.,

∫
Q(y|x)d(v1(x)− v2(x)) = 0. (3.31)

Let v− = v1− v2. Multiply both sides by e−ζy for some complex ζ, and integrate with respect

to y, which yields

∫∫
exp

(
(α− ζ)(y − x)− βe−(y−x) − γey−x

)
e−ζxdv−(x)dy = 0, (3.32)

where Q, defined in (3.28), has been substituted into the expression. By Fubini’s theorem,

the order of integration can be changed. From a change in variables and Appendix A.1, the

inner integral can be evaluated, which yields

∫
2(β/γ)(α−ζ)/2Kα−ζ(2

√
βγ)e−ζxdv−(x) = 0. (3.33)
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Since Kα−ζ(
√
βγ) 6= 0 for real values of

√
βγ [73],

∫
e−ζxdv−(x) = 0. (3.34)

Equation (3.34) is a Laplace transform, which is invertible. The inverse is given by v−(x) = 0

for all x ∈ R. Hence, v1 = v2, which is a contradiction. As a consequence, q(·; v) is an

injective transform on v. Thus, I is strictly concave.

Thus, the capacity achieving input distribution is unique.

3.3.3 The Constrained Capacity at the Point of Least Energy

If the energy cost E = Emin, the second half of Theorem 3.1 is not applicable. However, the

constrained capacity is still achievable by a unique input CDF. Thus, this case is handled

separately in this section [21].

Since the energy cost is minimized uniquely by the input x∗, the only input CDF that

achieves Emin is

v∗(x) = Θ(x− x∗), (3.35)

where Θ is the unit step function. Since this is the only element in VE, this distribution

achieves the minimum of I. The output PDF is given by

q(y; v∗) = M(α, βex
∗
, γe−x

∗
)−1 exp

(
α(y − x∗)− βe−(y−x∗) − γey−x∗

)
(3.36)

In fact, since Q(y|x) = q(y; v∗), µv∗-a.e., I(v∗) = 0, which is the minimum achievable MI.

Hence, C(Emin) = 0.

Of interest is also the rate of change of C at Emin as E increases. Let this rate be denoted

by s0. Note that since C is concave, s0 is also the maximum rate of change of C(E). From
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[74], the maximum rate of change is given as

s0 = sup
x 6=x∗

i(x; v∗)

g(x)− Emin

. (3.37)

Thus, the following must be satisfied for all x ∈ R:

i(x; v∗)− s0g(x) ≤ −s0Emin (3.38)

For v∗, the conditional information given that X = x is

i(x; v∗) =

∫∫
Q(y|x) log

Q(y|x)

Q(y|x∗)
dy (3.39)

= −α(x− x∗) + k−1βe
−(x−x∗) + k1γe

x−x∗ − (βk−1 + γk1). (3.40)

This has similar terms to g and (3.38) can be expressed as

− arx+ bre
−x + cre

x + zr ≤ 0, (3.41)

where,

ar = α− s0aΛ, (3.42)

br = k−1βe
x∗ − s0bΛ, (3.43)

cr = k1γe
−x∗ − s0cΛ, (3.44)

zr = arx
∗ − bre−x

∗ − crex
∗
. (3.45)

The values of ar, br, cr, and zr must be so that (3.41) holds. Note that the LHS of (3.41) is

0 when evaluated at x∗. Thus, its maximum must be achieved at x∗. For ar > 0, it must be

that br < 0 and cr ≤ 0. Otherwise, the LHS of (3.41) is unbounded as x→∞ or Likewise, if

ar < 0, it must be that cr < 0 and br ≤ 0. For ar = 0, it must be that br < 0 and cr < 0 or
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br = cr = 0. Otherwise, the maximum will not be achieved at x∗, which means the LHS of

(3.41) can become positive. This puts bounds on s0,

s0 ≥
k−1βe

x∗

bΛ

and s0 ≥
k1γe

−x∗

cΛ

. (3.46)

Since s0 is a supremum, the value of s0 is the minimum possible value imposed by the two

bounds. Hence,

s0 = max

{
k−1βe

x∗

bΛ

,
k1γe

−x∗

cΛ

}
. (3.47)

Written in another way,

s0 = max

{
β

bλ∗
,
γλ∗

c

}
. (3.48)

Thus, 0 ≤ s ≤ s0.

3.3.4 The Constrained Capacity for the General Energy Cost

There are three exhaustive possibilities for SX , i.e., the points of increase for v∗:

1. The set SX is discrete and infinite, but with finite number of points in any finite interval.

2. The set SX contains an infinite number of points in some finite interval. This includes

the case where SX contains an interval.

3. The set SX is discrete and finite.

Recall that a unique solution must exist. Therefore, one of these possibilities must be true.

Possibilities 1 and 2 will be proven false which leaves only possibility 3.

Disproving Possibility 1

The presented argument for disproving possibility 1 is modified from [75]. Suppose possibility

1 is true. Then SX must be countable and its elements can be indexed by whole numbers.
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Then

q(y; v∗) =
∞∑
k=1

pkQ(y|xk), k = 1, 2, . . . , (3.49)

where xk, k = 1, 2, . . . is an element of SX with probability pk. Since for any k and y,

pkQ(y|xk) > 0, taking one addend from the right-hand side (RHS) yields

q(y; v∗) > pkQ(y|xk). (3.50)

Taking the logarithm of both sides, multiplying by Q(y|x) and integrating with respect to y

yield ∫
Q(y|x) log q(y; v∗)dy >

∫
Q(y|x) log(pkQ(y|xk))dy. (3.51)

Then, add −
∫
Q(y|x) logQ(y|x)dy + sg(x) + C(E)− sE to both sides. Evaluating the RHS

yields

(C(E)− sE)− (i(x; v0)− sg(x)) > −(saΛ−α)x+ (sbΛ−
βk−1

e−xk
)e−x +

scΛ − γk1e
−xk

e−x
+ kcons,

(3.52)

where

kcons = −αxk + log pk + βk−1 + γk1 + C(E)− sE. (3.53)

It must be that {xk} is unbounded from above or below, otherwise, possibility 1 is untrue.

Assume that it is unbounded from above. As x gets large, the ex term dominates:

(C(E)− sE)− (i(x; v0)− sg(x)) > (scΛ − γk1e
−xk)ex + o(ex). (3.54)

It must be that s > 0. If s = 0, the optimality conditions (3.13) and (3.14) in Theorem 3.1 is

the same as for an unconstrained problem. However, the unconstrained problem does not

have a solution. Hence, s > 0. Therefore, for any value of s > 0, there is a value of k such

that scΛ − γk1e
−xk > 0. Since ex is the dominating term in the RHS of (3.54), it increases

without bound as x → ∞. This violates the optimality condition (3.13) since it must be
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satisfied for any value of k. Hence, a contradiction is reached.

Now assume that {xk} is unbounded from below. As x gets further below zero,

(C(E)− sE)− (i(x; v0)− sg(x)) > (sbΛ − βk−1e
xk)e−x + o(e−x). (3.55)

The same argument can be applied here and another contradiction is reached. Hence,

possibility 1 cannot happen.

Evaluating Possibility 2

Assume possibility 2 is true. Recall that for v ∈ V, the conditional information of Y given

that X = x is

i(x; v) =

∫
Q(y|x) log

Q(y|x)

q(y; v)
dy. (3.56)

Consider the optimality condition (3.14) of Theorem 3.1,

i(x; v∗)− sg(x) = C(E)− sE, x ∈ SX .

The left-hand side (LHS) is well defined for complex x where the principle branch of the

logarithm is used. Thus, let ζ be a complex number and let ZX be the set SX embedded into

the complex plane and the following is attained:

i(ζ; v∗)− sg(ζ) = C(E)− sE, ζ ∈ ZX . (3.57)

Note that the LHS is an analytic function of ζ.

Since SX , and thus ZX , has an infinite number of points in some bounded interval, ZX

has a limit point in the complex plane C. Since (3.57) holds for a set of points with a limit

point, by the identity theorem [76], (3.57) holds for all points in C. Thus, for all x ∈ R,

i(x; v∗)− sg(x) = C(E)− sE. (3.58)
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In [14], it was shown that the output PDF q(·; v∗) that satisfies (3.58) is another exponentiated

GIG distribution:

q(y; v∗) = M(as, bs, cs)
−1 exp(asy − bse−y − csey), (3.59)

where as = as, bs = bs, and cs = cs. To show that this PDF uniquely satisfies (3.58), note

that (3.58) can be rewritten as

∫
Q(y|x) log q(y; v∗)dy = −sg(x) + k′cons, (3.60)

where k′cons = C(E)− sE + αkg − βk−1 − γk1 − logM(α, β, γ). It can be verified that (3.59)

satisfies the equality above. The LHS is a transform on log q(·; v∗). From Section 3.3.2, it

was shown that this transform is invertible. Therefore, (3.59) satisfies the equation uniquely.

From (3.59), the input PDF v∗ can be attained. In [14], the characteristic function (CF)

of X was determined. In theory, the PDF of X can then be recovered from the CF. Since

Y = X +N and X and N are independent, the relationship among the respective CF’s is

ρY (ω) = ρX(ω)ρN(ω), (3.61)

where ρY , ρX , and ρN are the CF’s for Y , X, and N , respectively. Recall that Y is the

exponentiated GIG distribution. Its CF is given by

ρY (ω) = M(as, bs, cs)
−1

∫
exp

(
jωy + asy − bse−y − csey

)
dy (3.62)

=
M(as + jω, bs, cs)

M(as, bs, cs)
. (3.63)
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This integral can be evaluated by a change in variable and Appendix A.1. Since N is also

distributed as an exponentiated GIG, its CF can be attained in a similar way, which yields

ρN(ω) =
M(α + jω, β, γ)

M(α, β, γ)
. (3.64)

The CF of X is then the ratio of the CF’s of Y and N, which yields

ρX(ω) =
M(α, β, γ)

M(as, bs, cs)

M(as + jω, bs, cs)

M(α + jω, β, γ)
. (3.65)

It turns out that this may not be a valid CF. The inverse of the CF may be a function with

negative values. In this case, possibility 2 cannot happen and only possibility 3 is left, which

implies that the input distribution is discrete with finite masses.

When the Input Distribution is Discrete

Recall that for the GIG neuron channel, α < 0. For γ = 0 and c = 0, the input distribution

has been determined in [11]. In this case, the CF of X is given by

ρX(ω) =
Γ(−α)

Γ(−as)
Γ(−as − jω)

Γ(−α− jω)

(
bs
β

)jω
=
B(−α + as,−as − jω)

B(−α + as,−as)

(
bs
β

)jω
. (3.66)

The associated PDF is given by an exponentiated beta distribution:

p(x) =
eas(x−x0)

(
1− e−(x−x0)

)−α+as−1

B(−as,−α + as)
, x > x0, (3.67)

where x0 = log(bs/β) is the shift. This is a valid PDF that satisfies the optimality conditions

(3.13) and (3.14). So for the case γ = 0 and c = 0, the input distribution is continuous.

Now, let γ = 0, but c > 0. In this case, it is easier to work with the RV’s Λ, U , and T .

Since Y is an exponentiated GIG RV, T is a GIG RV whose PDF is given by

qT (t) = M(as, bs, cs)
−1tas−1 exp(−bs/t− cst), t > 0. (3.68)
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Let pΛ be the PDF of Λ. Then for t > 0,

qT (t) =

∫
QGIG(t|λ)pΛ(λ)dλ (3.69)

=

∫
β−αλαtα−1 exp

(
− β

λt

)
pΛ(λ)dλ. (3.70)

Let λ′ = β/λ and t′ = 1/t. Then

∫
(λ′)−α−2t′−α+1 exp(−λ′t′)pΛ(β/λ′)dλ′ = qT (1/t′; v̂0), t′ > 0. (3.71)

The expression on the LHS is well defined for a complex λ′. For complex λ′, the LHS is a

Laplace transform. Taking the inverse transform of both sides yield [77]

pΛ(β/λ′) = λ′α+2(λ′ − bs)(as−α−1)/2Jas−α−1

(
2
√
cs(λ′ − bs)

)
, λ′ > bs, (3.72)

where Jα is the Bessel function of the first kind of order α. However, Jα for α ∈ R has some

negative values, which disqualifies pΛ, and therefore p, as a viable PDF. However, pΛ is the

only solution that satisfies (3.58). This is a contradiction, which implies that possibility 2

cannot occur in this case. Hence, possibility 3 is the only one that can occur. Therefore, the

input distribution must be finite and discrete for γ = 0 and c > 0. The value and probability

of the atoms are not known analytically, but can be determined numerically.

For γ > 0 and c > 0, (3.65) can be written as

ρX(ω) =
Kα(
√
βγ)

Kas(
√
bscs)

Kas+jω(
√
bscs)

Kα+jω(
√
βγ)

(
γbs
βcs

) jω
2

. (3.73)

The inverse of the of the CF is given by its Fourier transform:

p(x) =
1

2π

∫
ρX(ω)e−jωxdω. (3.74)
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To the best of the author’s knowledge, there is no known analytical expression for the integral.

Thus, such integrals must be calculated numerically. Alternatively, the discrete Fourier

Transform (DFT) algorithms can be used to approximate the function p.

In numerical analysis, it turns out that p can be either non-negative or have negative

values, depending on the parameters α, β, γ, a, b, c, and the energy constraint E [67]. In

the case that p is non-negative, it is the capacity-achieving input distribution. However, if p

has negative values, then possibility 2 cannot happen. In such a case, p is finite and discrete.

The values and probabilities of the masses can be determined numerically.

An analytical way of determining whether (3.73) is a valid CF of a RV is to determine

whether (3.73) is positive definite. For ρX to be positive definite, the matrix formed by any

ωi ∈ R, i = 1, . . . , K,

[ρX(ωi − ωj)], (3.75)

is positive semidefinite [78]. Let this matrix be MX . The matrix MX is positive semidefinite

if for any complex vector ζ ∈ CK ,

ζ†MXζ ≥ 0, (3.76)

where ζ† is the conjugate transpose of ζ. Then Bochner’s theorem states that p is a non-

negative function. However, this is difficult to determine analytically, but can serve as a

possible check of whether the inverse of (3.73) is a non-negative function.

3.3.5 Upper Bound of the Capacity-Cost Curve

Equation (3.74) can be used to obtain an upper bound on the C-C curve. It is the solution

to the constrained capacity problem if probability is allowed to be negative [14]. Suppose p
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is given by (3.74). For C > 0, the energy is given by [14]

Eb = z + rk1 +
√
bc

(
Kas+1(2

√
bscs) +Kas−1(2

√
bscs)

Kas(2
√
bscs)

)
−a
( ∂

∂u
[Ku(2

√
bscs)]u=as

Kas(
√
bscs)

+
1

2
log

bs
cs

)
. (3.77)

Using the recurrence relationship of Appendix A.4, this expression can be simplified to

Eb = z + rk1 −
∂

∂s
log

[(
bs
cs

)as/2
Kas(2

√
bscs)

]
. (3.78)

In terms of the function M , this is given by

Eb = z + rk1 −
∂

∂s
logM(as, bs, cs). (3.79)

It can be shown that the expression is also valid for c = 0.

The upper bound of the constrained capacity when b, c > 0 and β, γ > 0 was determined

in [14]. In [20], it was simplifed to

Cb = log
Kas(2

√
bscs)

Kα(2
√
βγ)

+
∂

∂u

[
log

Kαu(2u
√
βγ)

Kasu(2u
√
bscs)

]
u=1

. (3.80)

This derivation is also presented in Section 3.4.3. In terms of the function M , this is given by

Cb = log
M(as, bs, cs)

M(α, β, γ)
+

∂

∂u

[
log

M(αu, βu, γu)

M(asu, bsu, csu)

]
u=1

. (3.81)

It can also be shown that this expression is valid for c = 0 or γ = 0.

The graph (Eb, Cb) for all values of s > 0 describes the upper bound of the constrained

capacity for the GIG neuron channel. This bound is tight if the input distribution to the

GIG neuron channel is continuous, since p would be a non-negative function. Hence, this

bound is tight for γ = 0 and c = 0, simultaneously.
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3.3.6 Numerical Examples

First, define the RV:

Xc =
exp(−X)

exp(−X) + exp(−x∗)
, (3.82)

which is invertible. By using Xc as the input variable, the input space is compressed from

(−∞,∞) to (0, 1). Note that I(X;Y ) = I(Xc;Y ), so the constrained capacity is unchanged

by this substitution. The value X = x∗ corresponds with Xc = 1/2, so the energy is minimized

at this point. This is desirable because the distribution of Xc should center around the point

of least energy, x = 1/2, so that minimal energy is used. This makes it relatively easy to

inspect the distribution visually. The space of Xc was discretized and a numerical solver in

MATLAB was used to obtain the optimal input distribution. The Gauss-Laguerre quadrature

was used to approximate integrations.

Figure 3.2 shows the constrained capacity curve for a certain parameter set along with

the input distribution for certain energy budgets. In this case, the actual curve is close to the

upper bound. Indeed, for some points on the curve, the optimal input distribution appears

to be continuous. In such a case, the upper bound and the curve coincide. For energy use

above a certain level, the optimal input distribution appears continuous.

However, it cannot be said with absolute certainty that the presented continuous input is

actually continuous. Using the DFT to approximate (3.74) yields a solution with a minimum

negative value on the order of 10−10. It is difficult to ascertain whether this is due to machine

error or is part of the actual solution. Furthermore, Even though using a numerical solver

seems to yield a continuous answer, at times, pushing for higher numerical accuracy yields a

discrete result. This did not happen for the example in Figure 3.2. However, pushing the

accuracy even further may possibly produce discrete results. There is a caveat, however.

Since the space was discretized, the obtained solution is the solution to an approximation of

the problem. It could be that the solution to the approximation of the problem is discrete

whereas the solution to the actual problem is continuous. Thus, increasing the accuracy of
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Figure 3.2: (A) The constrained capacity curve of the GIG neuron channel with parameters
(α, β, γ) = (−50, 20, 0.1) and energy parameters (z, a, b, c, r) = (1, 1, 1, 1, 0). The actual curve
follows the upper bound closely. The mutual information is given in nats, while the energy
unit is arbitrary. (B) The approximate input distribution when E = 2.79. Probability
density is plotted against Xc = x. The input distribution appears to be discrete. (C) The
approximate input distribution when E = 3.33. Probability density is plotted against Xc = x.
The input distribution appears to be continuous.

the numerical solver will cause the more correct continuous solution to a discrete solution.

However, if the problem is well approximated, the difference in the constrained capacity

would be small, though with very different input distributions: one is discrete and the other

is continuous.

Figure 3.3 shows the constrained-capacity curve for a different parameter set. The upper

bound is noticeably higher than the actual curve. The input distributions are all discrete for

the plotted curve. Figure 3.2 also shows the maximizing input distributions for some values

for the energy budget. In this case it is easy to ascertain that the input distribution is discrete.

This is because the gap between the upper bound and the actual constrained-capacity curve
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(b) Input Distribution for E = 48
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(c) Input Distribution for E = 244

Figure 3.3: (A) The constrained capacity curve of the GIG neuron channel with parameters
(α, β, γ) = (−1.1, 0.1, 0.01) and energy parameters (z, a, b, c, r) = (1, 5, 5, 10, 5). The upper
bound is noticeably higher than the actual curve. The mutual information is given in nats,
while the energy unit is arbitrary. (B) The approximate input distribution when E = 47.69.
Probability density is plotted against Xc = x. The input distribution appears to be discrete.
(C) The approximate input distribution when E = 243.58. Probability density is plotted
against Xc = x. The input distribution also appears to be discrete with more mass points.

is apparent.

For both examples, it seems that as the energy increases, the number of mass points

increases. In the first example, after a certain point, it seems that a continuous input

distribution is optimal, though this cannot be stated with certainty.

3.4 Proofs

3.4.1 Proof of Theorem 3.3

The following is the proof of Theorem 3.3:
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Proof. First, it is shown that VE(S) is tight. By Prokhorov’s theorem, it is then relatively

compact [69]. Then it is shown that VE(S) is a closed set, which makes it sequentially

compact. Sequentially compact sets are compact in a metric space. Since the weak topology

of probability is metrizable [69], VE(S) is a metric space therefore compact.

To show that VE(S) is tight, define gmin as a monotonically increasing continuous function

over [0,∞) where gmin(x) ≤ min{g(x), g(−x)} and limx→∞ gmin(x) = ∞. Let K = [−`, `]

for ` > `∗, where `∗ = max{` > 0 : gmin(`) = 0}. Note that `∗ must be finite. Then for

v ∈ VE(S),

µv(Kc)
(a)

≤ E[gmin(|X|)]
gmin(`)

(b)

≤ E[g(X)]

gmin(`)
≤ E

gmin(`)
, (3.83)

where E is the expectation operator. Markov’s Inequality was applied for (a) whereas (b)

arises from the definition of gmin. For any value of ε > 0, a finite value of ` can be chosen

such that E
gmin(`)

< ε. Therefore VE(S) is tight.

To show that VE is closed, let {vn} be a sequence in VE(S) that converges to v∗. Then

[69],

µv∗(S) ≥ lim sup
n

µvn(S) = 1, (3.84)

since S is closed. Let ` > 0 and define the operator

G`(v) =

∫
S

min(g(x), `)dv(x). (3.85)

Since the integrand is a continuous bounded function, G` is continuous. Note that G`(v) ≤

G(v) ≤ E for any ` > 0 and v ∈ VE. By continuity of G`, G`(vn) → G`(v
∗) for any ` > 0.

Note that G`(v
∗) ≤ E and that G`(v

∗) is increasing in `. By the monotone convergence

theorem, G`(v
∗)→ G(v∗). Therefore, G(v∗) ≤ E. Hence VE(S) is closed and is sequentially

compact. Therefore, VE(S) compact.
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3.4.2 Proof of Theorem 3.4

Proof. Recall from 3.8,

I(v) = hY (v)− hY |X(v). (3.86)

However,

hY |X(v) =

∫∫
fN(y − x) log fN(y − x)dydv(x) (3.87)

=

∫∫
fN(n) log fN(n)dndv(x) (3.88)

= hN , (3.89)

where hN = intfN(n) log fN(n)dn is the differential entropy of N , which is a constant

independent of v. Thus, I is continuous if hY is continuous.

Let {vn} be a sequence in VE that converges weakly to v. Note that q(y; v) = E[fN(y −

X)] ≤ maxnfN(n) for any y ∈ R. Thus q is bounded.

Define the function glb(x) = min{g(−x+x∗), g(x+x∗)}. In words, this is the cost function

that is translated so that the minimum occurs at x = 0 and is made symmetric by taking the

minimum of the function values at equal distance away from x = 0. Note that the growth of

glb is greater than the growth of the logarithmic function.

From Theorem 3.3, VE is closed, so v ∈ VE. Also, q(y; vn)→ q(y; v) for every y ∈ R, i.e.,

pointwise, since Q(y|·) is a continuous bounded function for fixed y. Thus, the conditions of

Theorem 1 in [79] are met. Therefore, hY (vn)→ hY (v), which means that hY , and therefore

I, are continuous over VE.
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3.4.3 Derivation of the Compact Form of Information

The upper bound of the constrained capacity is [14]

Cb =
√
bscs

[
Kas+1(2

√
bscs) +Kas−1(2

√
bscs)

Kas(2
√
bscs)

]
− as

∂
∂as
Kas(2

√
bscs)

Kas(2
√
bscs)

−
√
βγ

[
Kα+1(2

√
βγ) +Kα−1(2

√
βγ)

Kα(2
√
βγ)

]
+ α

∂
∂α
Kα(2

√
βγ)

Kα(2
√
βγ)

+ log
Kas(2

√
bscs)

Kα(2
√
βγ)

. (3.90)

To simplify the expression, first define

K(1,0)
ω (u) =

∂

∂ω
Kω(u) (3.91)

and

K(0,1)
ω (u) =

∂

∂u
Kω(u). (3.92)

Next, insert a dummy variable u with value 1 into (3.90), which yields

Cb =

[√
bscs

[
Kuas+1(2u

√
bscs) +Kuas−1(2u

√
bscs)

Kuas(2u
√
bscs)

]
− as

K
(1,0)
uas (2u

√
bscs)

Kuas(2u
√
bscs)

−
√
βγ

[
Kuα+1(2u

√
βγ) +Kuα−1(2u

√
βγ)

Kuα(2u
√
βγ)

]
+ α

K
(1,0)
uα (2u

√
βγ)

Kuα(2u
√
βγ)

]
u=1

+ log
Kas(2

√
bscs)

Kα(2
√
βγ)

. (3.93)

Using Appendix A.4, the recurrence relationship of Kα can be exploited. The constrained

capacity can then be written as

Cb =

[
− asK

(1,0)
uas (2u

√
bscs) +

√
bscsK

(0,1)
uas (2u

√
bscs)

Kuas(2u
√
bscs)

+
αK

(1,0)
uα (2u

√
βγ) +

√
βγK

(0,1)
uα (2u

√
βγ)

Kuα(2u
√
βγ)

]
u=1

+ log
Kas(2

√
bscs)

Kα(2
√
βγ)

. (3.94)
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Exploiting the differentiation yields

Cb =

[
−

d
du
Kuas(2u

√
bscs)

Kuas(2u
√
bscs)

+
d

du
Kuα(2u

√
βγ)

Kuα(2u
√
βγ)

]
u=1

+ log
Kas(2

√
bscs)

Kα(2
√
βγ)

. (3.95)

Again, exploiting differentiation yields

Cb =

[
d

du
log(Kuα(2u

√
βγ))− d

du
log(Kuas(2u

√
bscs))

]
u=1

+ log
Kas(2

√
bscs)

Kα(2
√
βγ)

. (3.96)

Combining the two expressions with logarithm yields

Cb = log
Kas(2

√
bscs)

Kα(2
√
βγ)

+
d

du

[
log

(
Kuα(2u

√
βγ)

Kuas(2u
√
bscs)

)]
u=1

,

which is the same as (3.80).

3.5 Discussions

3.5.1 Implications for Neural Networks

The result presented in this chapter suggests that for certain parameter sets, discrete and

finite possibilities for the average input intensities to neuron η are desirable. Since the neural

network controls the input intensity to η, it may be beneficial for the network to exist in

discrete states to optimize the information transmission of η. This statement hinges on the

GIG neuron model assumptions. However, there has been some evidence that neural networks

have a set of possible discrete states [80–85]. If the results apply when the input intensity in

each IPI forms a Markov chain, then the GIG neuron model can be related to the hidden

Markov model with finite and discrete states. The input intensity Λ acts as an unobservable

state and Λ can only be estimated from the output T .

However, it is also possible for the average input intensity to be continuous. Perhaps

it is the case that some parts of the network exist in finite states and some in continuous
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Figure 3.4: The L1-norm constraint promotes sparse solutions as opposed to the L2-norm
constraint. The black ellipses are the contour lines for the objective function, i.e., the function
to be optimized. The blue region is the space of possible solutions. Optimization solutions
from an L1-norm constraint tends to be on an axis, which implies a sparse solution.

states. Experiments are also needed to obtain good values for the parameters of the model

and determine whether the states need to be discrete to reach optimal performance.

3.5.2 Possible Connection to L1 Norm Constraint

Recent machine learning algorithms and compressed sensing techniques have used an L1-norm

constraint to promote sparse solutions. The shape created by the L1-norm increases the

likelihood of solutions to occur on the axes. This is illustrated in Figure 3.4. However, it is

still possible for the solution to be not sparse. This depends on the shape and peak of the

objective function.

The discrete result of the GIG neuron model can be viewed in some sense as a sparse

solution. To explain why the solution of the GIG neuron model may be sparse, the constrained-

capacity problem can be posed differently. It can be posed as searching the constrained

space of generalized functions for maximizing MI. The space of generalized functions include

functions and other entities like the Dirac-delta “function.” Let G be the space of generalized

functions. The constraint on the elements of G are the non-negativity and normalization to 1
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constraints. That is, for f ∈ G, the constraint space is

∫
f(x)dx = 1

f(x) ≥ 0, x ∈ R. (3.97)

By rewriting the normalization constraint as two inequality constraints, the following is

acquired,

∫
|f(x)|dx ≤ 1∫
|f(x)|dx ≥ 1

f(x) ≥ 0, x ∈ R. (3.98)

The integrand has been replaced by |f(x)|, i.e., its absolute value. This is is equivalent

because the function is non-negative. Note that the first constraint is now the L1-norm

constraint. Hence, the constraint space is a subset of the L1 unit ball. This is perhaps a

starting point in analyzing the connection between the discrete input distribution for the

constrained-capacity and the L1-norm constraint.

3.6 Conclusion

In this chapter, the constrained capacity was determined for the GIG neuron model. It

turns out that for certain cases, the capacity-achieving input distribution may be discrete,

depending on the parameter set. This was demonstrated with a numerical example, where it

was shown that the optimal input distribution can change from discrete to continuous by

changing the energy budget. This finding implies that for certain parameter sets, it is optimal

to use a discrete number of possible average input intensity values in terms of maximizing MI.

Since the network controls the input intensity to η, this implies that the network may exist in

discrete states to maximize information transmission. More study is needed to determine the
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possible set of parameters that exists in neurons to determine which require discrete inputs

to perform optimally.



Chapter 4

Optimal Parameters for the GIG

Neuron Model

This chapter addresses how the generalized inverse Gaussian (GIG) neuron model can be

optimized over its parameter set. The assumption remains the same: neuron η seeks to

maximize the mutual information (MI) transmitted to its targets while adhering to an average

energy budget. However, additional constraints are necessary for the problem to be well-posed.

The optimization problem is illustrated for the GIG neuron model when γ = 0.

4.1 Background

As discussed in Chapter 1, neuron η seeks to maximize the MI it transmits while adhering

to an average energy budget. In Chapter 3, it was shown how the input to η should be

configured so that it transmits the maximum MI. This is a problem for η and the neural

network (NN) since the NN controls the input to η. The question that will be partially

addressed here is how does η configure itself so that it transmits MI efficiently.

The structure of η determines the input-output model of the neuron. The input-output

model can be viewed as a channel, whose conditional probability density function (PDF) of

the output given the input is Q. Hence, η seeks a configuration such that when modeled by

75
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Q, it transmits MI efficiently. More specifically, given a distribution for the average input

intensity Λ, what is the channel Q that can transmit the most MI given an average energy

budget. Compare this to Chapter 3, where the goal is to find the optimal input distribution

for a given channel model. Therefore, there is a notion of double matching: the matching of

the channel to the source and the matching of the source to the channel. There is a joint

effort of optimizing the η by η itself and the rest of the NN.

There are restrictions on Q. Recall from Chapter 2 that η produces an output when

its postsynaptic potential (PSP) hits a threshold level θ. If the PSP is modeled as a

stochastic diffusion, Q must be a first hitting time (FHT) distribution. This limits the class of

distributions that is possible for Q. Also, the average input rate Λ and the output interpulse

interval (IPI) duration T are negatively correlated. If the input rate is high, then the rate

of increase of the PSP should increase. This leads to hitting the threshold sooner, which

shortens the duration of the IPI. Thus, Q should exhibit this relationship.

However, it is difficult to define the space of conditonal PDF’s that are FHT’s of stochastic

diffusions. To simplify the problem, the space of conditional PDF’s is restricted to the space

of GIG distributions

4.2 Theory

4.2.1 Maximizing Over the Mutual Information

Assume that the input cumulative density function (CDF) of Λ is known and denote it by vΛ.

For the GIG conditional PDF, the MI is given by

I(Λ;T ) =

∫∫
QGIG(t|λ)

logQGIG(t|λ)

qT (t)
dtdvΛ(λ), (4.1)
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where qT is the induced output PDF of T , given by

qT (t) =

∫
QGIG(t|λ)dvΛ(λ), t > 0. (4.2)

Recall that the GIG conditional PDF is given by (see Chapter 2)

QGIG(t|λ) = M(α, β, γ)−1λαtα−1 exp

(
− β

λt
− γλt

)
, λ, t > 0, (4.3)

which is parameterized by three parameters: α, β, γ. Hence, elements of the set of GIG

conditional PDF’s can be identified with elements of a subset of R3. In fact, for GIG PDF’s

that are FHT’s of diffusions, α ≤ 0. Hence, the parameter space of interest is given by

A = {(α, β, γ) ∈ R3 : α ≤ 0, β > 0, γ ≥ 0 and γ > 0 if α = 0}. (4.4)

The set A is convex, whereas the space of GIG PDF’s are not convex. Hence, it is more

convenient to use A in place of the set of GIG PDF’s, though they are essentially equivalent.

When considering the MI over the space of GIG parameters, the convexity of the MI is

not guaranteed over the s. Define IGIG(α, β, γ) = I(Λ;T ) for the GIG neuron channel with

its respective parameters α, β, and γ. The function IGIG is not guaranteed to be convex over

A. However, it will be argued that the supremum of IGIG must occur on the boundary. Thus,

the search for the supremum of IGIG can be restricted to the boundary.

4.2.2 Constraints

Neuron η seeks to maximize MI given an average energy budget. As mentioned in Chapter 3,

the energy expended by η for average input intensity λ and output IPI duration t is given by

g(λ, t) = z + b/t+ ct− a log t+ rλt, λ, t > 0. (4.5)
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The average energy associated with the GIG model is given by

GGIG(α, β, γ) =

∫∫
g(λ, t)QGIG(t|λ)dtdv(λ). (4.6)

Evaluating the integral yields

GGIG(α, β, γ) = z + bk−1(α, β, γ)E[Λ] + (bE[Λ−1] + r)k1(α, β, γ)− a(kg(α, β, γ)− E[log Λ]),

(4.7)

where k−1, k1, and kg are defined in Appendix B and E is the expectation operator, which is

given by

E[f(Λ)] =

∫
f(λ)dv(λ). (4.8)

Thus, it is assumed that E[Λ], E[Λ−1], and E[log Λ] exist. Also note that here, k−1, k1, and

kg are expressed explicitly as functions of (α, β, γ) to emphasize that their values vary as

(α, β, γ) is varied.

For energy budget E, the constraint is given by

GGIG(α, β, γ) ≤ E. (4.9)

The constrained space to be over which IGIG is optimized is

AE = {(α, β, γ) ∈ A : GGIG(α, β, γ) ≤ E}. (4.10)

It turns out that this constraint is not enough. The MI is unbounded over this set. This can

be illustrated by the following example. The energy function with fixed input λ, g(λ, ·), has

a minimum. Let t∗(λ) be that minimum. Consider a sequence of GIG conditional PDF’s,

each with conditional mean t∗(λ). Suppose that the conditional variance across all λ > 0 is

decreasing. The average energy in the sequence is then decreasing because the PDF’s become

more concentrated around t∗(λ). Furthermore, MI is also increasing because the channel is
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less noisy. Hence, IGIG is unbounded over AE.

This does not model real neurons, where the transmitted MI is expected to be finite. Thus,

when considering the neuron model that maximizes MI, constraints should be considered in

addition to the average energy.

Recall that the GIG neuron channel is given by T = U/Λ where U is independent of Λ

and U is distributed as GIG(α, β, γ). The random variable (RV) U is the noise, and thus, it

is expected to have a positive variance. Otherwise, T is a deterministic function of Λ and the

channel is noiseless. As described in Chapter 2, η receives a noisy version of Λ due to the

random nature of incoming signals from η’s afferent cohort. Thus, there should be a bound

on the spread of U . The most common measure of spread is variance, thus

Var(U) ≤ Ψ (4.11)

where Ψ is bound on variance. The variance is defined as

Var(U) = E
[
(U − E[U ])2

]
. (4.12)

Since U = ΛT , the bound can also be written as Var(ΛT ) ≤ Ψ.

Define ν(α, β, γ) = Var(ΛT ) for the GIG neuron model. Its value is given by

ν(α, β, γ) = k2(α, β, γ)− k1(α, β, γ)2, (α, β, γ) ∈ A, (4.13)

where k2 is defined in Appendix B. The set of PDF’s of interest is now

AE,Ψ = {(α, β, γ) ∈ A : GGIG(α, β, γ) ≤ E, ν(α, β, γ) ≥ Ψ}. (4.14)

Even though the variance constraint is imposed with an inequality, it must actually be

satisfied by an equality for any value of Ψ > 0. If it were not satisfied by an equality for Ψ0,



Chapter 4 Optimal Parameters for the GIG Neuron Model 80

then it would not be in that case. It was argued that if the variance is unconstrained, it will

tend to 0. Thus, the variance constraint is necessary for any value of Ψ > 0, which implies

that it must be satisfied with equality for any Ψ > 0. The energy constraint must also be

satisfied with equality. Otherwise, the means of T given Λ = λ can be spaced infinitely apart,

which would yield infinite MI. Thus, the solution lies on the boundary of the constraint space.

4.2.3 Optimization

Since the solution lies on the boundary, it is assumed that the inequality constraints are

satisfied with equality, i.e., GGIG(α, β, γ) = E and ν(α, β, γ) = Ψ. Then the approach to use

is the Lagrange method. The Lagrangian is given by

L(α, β, γ) = IGIG(α, β, γ)− s1(GGIG(α, β, γ)− E)− s2(ν(α, β, γ)−Ψ), (4.15)

where s1 and s2 are the Lagrange multipliers associated with the energy and variance

constraints, respectively. However, the set AE,Ψ is not compact, so the maximum is not

guaranteed. Numerical trials seem to indicate that the set AE,Ψ is bounded and the supremum

of IGIG is finite.

To find the maximum of L, take the partial derivative with respect to each of the parameter

and the Lagrange multiplier and set it equal to zero. Then the solution can be obtained.

With regards to the partial derivatives, the following theorems are presented:

Theorem 4.1. Let

F (x;α) =
n(x;ω)

m(ω)
(4.16)

be a joint PDF of a random vector X with parameter α. Then for function f ,

∂

∂ω
E[f(X)] =

∫
nω(x;ω)

d(ω)
{f(x)− E[f(X)]}dx+ E[fω(X)], (4.17)
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where nω and fω are the partials of n and f with respect to ω,respectively. The notation∫
. . . dx represents the nth fold integral with respect to each element of x.

Proof. Take the partial derivative with respect to ω:

∂

∂ω
E[f(X)] =

∫ (
[nω(x;ω)f(x) + n(x;ω)fω(x)]

d(ω)
− n(x;ω)f(x)dω(ω)

d(ω)2

)
dx, (4.18)

where dω is the partial derivative of d with respect to ω. However, since F is a PDF,

d(ω) =

∫
n(x;ω)dx. (4.19)

so

dω(ω) =

∫
nω(x;ω)dx. (4.20)

Then using the definition of expectations yields

∂

∂ω
E[f(x)] =

∫
nω(x, ω)

d(ω)
f(x)dx+ E[fω(X)]− E[f(X)]

∫
nω(x;ω)

d(ω)
dx. (4.21)

Rearranging the terms reveals that this is equal to (4.17).

Theorem 4.2. The following statement is true:

E[ιω(X, Y )] = 0, (4.22)

where ι(x, y) = logQ(y|x)/q(y) is the information density and ιω is its partial derivative with

respect to ω. The function Q is a conditional PDF of Y given that X = x and q is the PDF

of Y .

Proof. Note the following:

ιω(x, y) =
Qω(y|x)

Q(y|x)
− qω(y)

q(y)
, (4.23)
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where Qω and qω are the respective partial derivatives of Q and q with respect to ω. Integrating

over the joint distribution yields

E[ιω(X, Y )] =

∫∫
Q(y|x)

(
Qω(y|x)

Q(y|x)
− qω(y)

q(y)

)
dydv(x) (4.24)

=

∫∫
Qω(y|x)dydv(x)−

∫
qω(y)dy = 0, (4.25)

where v is the CDF of X.

Lemma 4.3. The following statement is true:

E
[
∂

∂ω
(X − E[X])2

]
= 0. (4.26)

Proof. Note the following:

∂

∂ω
(x− E[X])2 = −2(X − E[X])

∂

∂ω
E[X]. (4.27)

It is clear that the expected value is 0.

Hence, the partial derivatives of the Lagrangian are

∂L

∂α
= E

[
log(ΛT )

(
ι(Λ, T )− s1g(Λ, T )− s2(ΛT − E[ΛT ])2

)]
= 0 (4.28)

∂L

∂β
= −E

[
(ΛT )−1

(
ι(Λ, T )− s1g(Λ, T )− s2(ΛT − E[ΛT ])2

)]
= 0 (4.29)

∂L

∂γ
= −E

[
ΛT
(
ι(Λ, T )− s1g(Λ, T )− s2(ΛT − E[ΛT ])2

)]
= 0. (4.30)

Also, the original constraints are obtained. The expectations can be approximated with the

Gauss-Laguerre quadrature and the equations can be solved numerically. This is illustrated

in the next section for the case γ = 0 and c = 0.
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4.3 Numerical Example

In [23], the optimal model parameters were determined for β = 0 and b = 0. In this thesis,

the case γ = 0 and c = 0 is shown.

Let the input PDF be a GIG distribution with γ = 0, i.e., an inverse Gamma distribution.

This is given by

pΛ(λ) =
exp(−bi/λ)

baii Γ(−ai)
, λ > 0, (4.31)

where bi > 0 and ai < 1. From (4.7) and Appendix B, the average energy is given by

GGIG(α, β) = r+ b
bi

ai + 1

α

β
+

(
c
ai
bi

+ r

)
β

α + 1
− a(log β − ψ(−α)− log bi + ψ(−ai)) (4.32)

. From Appendix B, the variance is given by

ν(α, β) =
β2

(−α− 1)2(−α− 2)
. (4.33)

In this case, it must be that α < 2 so that the energy and variance exists. Hence, that

additional restriction is added to AE,Ψ.

To find the mutual information, the marginal of T is first determined:

qT (t) =

∫
tα−1λα+ai−1 exp(−(β/t+ bi)/λ)

βαbaii Γ(−α)Γ(−ai)
dλ (4.34)

=

(
bi
β

)α
tai−1(t+ β/bi)

α+ai

B(−α,−ai)
, (4.35)

for t > 0 and where B is the beta function. The PDF qT is a beta prime distribution. The

information density for Λ = λ and T = t is given by

ιGIG(λ, t) = − β
λt

+ α log λ− (α + ai) log(1/t+ bi/β) + log
baii Γ(−ai)
βα+aiΓ(−α)

. (4.36)
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Note that

E[log(1/T + bi/β)] =
(β/bi)

ai

B((−α,−ai)
∂

∂ai

∫
tα−1(1/t+ bi/β)α+aidt (4.37)

=
(β/bi)

aiΓ(−α− ai)
Γ(−α)Γ(−ai)

∂

∂ai

Γ(−α)Γ(−ai)
(β/bi)aiΓ(−α− ai)

(4.38)

= −ψ(−ai)− ai log(β/bi) + ψ(−α− ai). (4.39)

Thus, the MI is given by the expectation of the information density. So,

IGIG(α, β) = E[ιGIG(Λ, T )]

= α + aiψ(−ai)− (α + ai)ψ(−α− ai) + log
Γ(−ai)

Γ(−α− ai)
, (4.40)

where ψ is the digamma function, given by

ψ(x) =
d

dx
log Γ(x). (4.41)

Note that IGIG is not a function of β and the parameter bi does not appear. The factor bi

acts a scaling factor for Λ, which does not affect MI. Likewise, β also acts as a scaling factor

for T , so it does not have an impact on MI. However, β and bi affects the average energy

and the variance and thus cannot be ignored. Then observe that the derivative of IGIG with

respect to α is

∂I

∂α
= 1− ψ(−α− a) + (α + a)ψ1(−α− a) + ψ(−α− a) (4.42)

= 1 + (α + a)ψ1(−α− a), (4.43)

where ψ1 is the trigamma function given by

ψ1(x) =
d

dx
ψ(x). (4.44)
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Figure 4.1: The feasibility region AE,V for some values for the energy budget. The values
of the energy parameters are z = 10, a = 3, b = 5, c = 7, and r = 3. The parameters of
the input distribution are ai = −5 and bi = 10. Here Ψ = 7, while the the energy budget is
shown for three values: E = 100, 125, and 150. The feasibility region is bounded, though not
necessarily closed. The point that maximizes MI is the one furthest to the left.

The derivative is strictly negative. Hence, MI increases as α gets further below zero.

Some feasibility regions are plotted in Figure 4.1. The feasible point with the smallest

value of α is one of the intersections of the boundaries of the constraints. Hence, as previously

argued, the inequality constraints can be replaced with equality. A constrained optimization

algorithm can be used to find the solution. However, since there are two equations and

two unknown parameters, only the intersection of the boundaries are required to find the

point of maximum MI. Note that the intersections between the two constraint boundaries are

not unique. Hence, the intersection with the lowest value of α is the point that maximizes

information.

The information-energy curve for different values of Ψ are shown in figure 4.2. The MI is

an increasing concave function of the energy budget. As the variance constraint is decreased,
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Figure 4.2: The information-energy curve for energy parameters z = 10, a = 3, b = 5, c = 7,
and r = 3 and input distribution parameters ai = −5 and bi = 10. The MI is an increasing
concave function of the energy budget. As the variance is decreased, MI increases. The units
of MI are expressed in nats, whereas the energy units are arbitrary.

information increases. This is intuitive because as the noise decreases in variance, there is

less distortion in the output, which increases information.

More investigation is needed to determine the value of the energy parameters that reflect

neuron η. Likewise, more investigation is needed to determine the value for the variance

constraint.

4.4 Discussion

This problem has not yet been applied to the general GIG PDF. However, as mentioned,

initial studies have suggested that AE,Ψ is bounded and IGIG is finite over AE,Ψ in the general

case. Also, the MI can be reduced to a function of α and
√
βγ. This is similar to the case

γ = 0, the MI is only a function of α. The GIG PDF can be written as

Q(t|λ) = M(α, β, γ)−1λαtα−1 exp

(
−
√
βγ

(√
β

γ

1

λt
−
√
γ

β
λt

))
, λ, t > 0. (4.45)
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Hence, the factor
√
γ/β is a scale factor on the output RV. Often times, the GIG PDF is

parameterized with the scale parameter
√
γ/β, the concentration parameter

√
βγ, and α

[54].

This process of matching the channel to the source can be followed by matching the source

to the channel. Once the procedure generates the optimal channel, the theories in Chapter 3

can be used to find the optimal input distribution. Then the channel can be matched again

to the new source and the process repeats. It is not yet known if MI would converge to a

finite value. It is also not yet known whether the input distribution and the channel would

converge. This is a possible next step for this research.

4.5 Conclusion

In this chapter, the optimal parameters for the GIG neuron model was investigated. In

addition to an energy budget, a variance constraint on the model noise U was imposed so

that the problem is well-posed. Optimality conditions for the problem were developed. Then,

a numerical example for a simplified GIG neuron model was shown.

More research is needed to extend this to the general GIG neuron model. Also, an iterative

procedure to find the input distribution and channel pair that maximizes MI given an energy

budget and variance constraint was suggested. However, more research is needed to show

that this procedure converges. Ultimately, it would be interesting to compare the result of

the iterative procedure to real cortical neurons, i.e., will the result of the iterative procedure

closely model the cortical neuron.



Chapter 5

The GIG Distribution and

Rate-Distortion

A counterpart to the capacity-cost (C-C) problem is the rate distortion (R-D) problem.

The goal is to reduce the rate of information with an acceptable level of distortion. It was

introduced by Shannnon in 1959 [86]. Since then, R-D problems had been posed and solved

for a variety of cases, including multi-terminal coding.

In R-D problems, the input distribution is assumed to be known and the mutual informa-

tion (MI) is minimized over a set of “test” channels subject to a distortion constraint. The

output alphabet is also referred to as the reconstruction alphabet. This is because the output

is often desired to be close to the input, i.e., a reconstruction of the input.

Throughout this chapter, only the discrete memoryless source (DMS) will be studied. In

a DMS, the output of a source at one time is independent of the output of the source at any

other times. Also, the distribution of the source does not change over time.

This chapter shows that the reconstruction letter can be discrete even when the DMS is

continuous. To the best of the author’s knowledge, this result was first presented by Fix in

1978 [87]. This chapter will give a more complete background on the discreteness result. This

will be demonstrated with a Gaussian input distribution with peak-limited reconstruction

88
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alphabet. Then, based on the results of Chapter 3, a discrete reconstruction result is obtained

for a similar R-D problem. Namely, when the DMS is distributed as a generalized inverse

Gaussian (GIG) distribution, the reconstruction alphabet is discrete for certain cases.

5.1 Rate-Distortion Problems

The same convention as Chapter 3 is used here. The reader is encouraged to refer to Sections

3.1.1 and 3.1.2 for notation and definition of MI.

Let X be designated as the input letter from a DMS. Let Y be the reconstruction, or

output, letter. Let S ∈ B(R2), i.e., S is an element of the Borel algebra of R2. Define F0(S)

as the set of joint CDF’s whose points of increase is a subset of S. That is, if F ∈ F0(S),

then µF (S) = 1. This set will be indicated by just F0 when S is understood. The set S

contains all possible input-output pairs.

Define F(S) as

F(S) =
{
F ∈ F0(S) : lim

y→∞
F (x, y) = v(x), x ∈ R

}
, (5.1)

i.e., the set of CDF’s where the marginal CDF of X is given by v. Also, define the set of

allowable inputs:

X = {x ∈ R : (x, y) ∈ S, y ∈ R}. (5.2)

Likewise, define the set of allowable outputs:

Y = {y ∈ R : (x, y) ∈ S, x ∈ R}. (5.3)

Let SX be the points of increase for v. For every CDF F ∈ F , there exists a conditional CDF

of Y given X defined by

W (y|x) =
dF (x, y)

dv(x)
, x ∈ SX , y ∈ R. (5.4)
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The value of W (y|x) can be any real number for x /∈ SX , but for convention, let W (y|x) = 0

for x /∈ SX . Define W as the space of such conditional CDF’s. Each element of F can

be identified with an element in W and vice-versa. Equip F with the weak topology of

probability. Then W is also equipped with the weak topology of probability. A sequence

{Wn} in W converges weakly in measure to W if

∫∫
f(x, y)dWn(y|x)dv(x)→

∫∫
f(x, y)dW (y|x)dv(x) (5.5)

for every continuous bounded function f . Since v is known, the MI is a function of W . Hence,

the MI will be indicated by I(W ) and is given by

I(W ) =

∫∫
log

dW (y|x)

dw(y; v,W )
dW (y|x)dv(x),

where,

w(y; v,W ) =

∫
W (y|x)dv(x)

is the marginal CDF of Y .

Suppose that distortion is measured by a real number and the distortion measure between

input x and output y is given by the function φ. The average distortion operator on W ∈ W

is

Φ(W ) =

∫∫
φ(x, y)dW (y|x)dv(x). (5.6)

Then, define WD(S) as the set of conditional CDF’s that satisfy Φ(W ) ≤ D, i.e.,

WD(S) = {W ∈ W(S) : Φ(W ) ≤ D}. (5.7)

In a R-D problem, the goal is to minimize I over WD,

R(D) = inf
W∈WD

I(W ), D ∈ DminD, (5.8)
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where D = {D : Φ(W ) ≤ D, W ∈ W} is the set of possible average distortions. Define

Dmin =
∫

infy φ(x, y)dv(x), i.e., the infimum of the average distortion. Note that Dmin is also

the infimum of D.

5.2 Solution of the Rate-Distortion Problem

The following theorem states the existence of the solution to the R-D problem and gives the

optimality condition. The proof is shown in Section 5.4.1.

Theorem 5.1. If WD(S) is compact, then

R(D) = min
W∈WD

I(W ), D ∈ D, (5.9)

for some W ∗ ∈ WD. Furthermore, if D > Dmin and R(D) is finite, W ∗ minimizes I if and

only if ∫∫
[ι(x, y;W ∗)− sφ(x, y)]dW (y|x)dv(x) ≥ I(W ∗)− sD, (5.10)

for all W ∈ W(S) and for some value of s ≤ 0. The function ι is the information density

and is given by

ι(x, y;W ) = log
dW (y|x)

dw(y;W )
. (5.11)

For the compactness of WD, the following theorem can be stated:

Theorem 5.2. Suppose that φ(x, y) = g(f(x, y)), where there is a one-to-one correspondence

between (x, y) and (x, f(x, y)) and f is a continuous function. If g is continuous, and

g(x)→∞ for x→ −∞ and x→∞, then WD is compact in the weak topology of probability.

The proof is presented in Section 5.4.2. Like Theorem 3.3, g(x) can be redefined for x /∈ S

and not change the solution to the R-D problem.
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5.2.1 Optimality Condition

The optimality condition for R-D problems are well known if W has either a conditional

probability mass function (PMF) or a conditional PDF [88]. However, to the best of the

author’s knowledge, it was first shown for general W in [24]. It is given by the following

corollary:

Corollary 5.3. The optimality condition (5.9) is equivalent to

dW ∗(y|x)

dw(y;W ∗)
≥ λ0(x)esφ(x,y), x ∈ SX , y ∈ Y , (5.12)

dW ∗(y|x)

dw(y;W ∗)
= λ0(x)esφ(x,y), x ∈ SX , y ∈ SY , (5.13)

where λ0(x) =
( ∫

esφ(x,y)dw(y;W ∗)
)−1

and SY is the set of points of increase for the marginal

CDF w(·;W ∗).

The proof is presented in Section 5.4.

In addition to the optimality condition, the following can be stated:

Corollary 5.4. The optimality condition (5.9) implies

∫
λ0(x)esφ(x,y)dv(x) = 1, y ∈ SY . (5.14)

The proof is shown in Section 5.4.3. Based on R-D problems with discrete output letters,

another condition can be postulated:

∫
λ0(x)esφ(x,y)dv(x) ≤ 1, y ∈ Y , (5.15)

where Y = {y ∈ R : (x, y) ∈ S, x ∈ R}. However, no satisfactory proof has been produced

yet. Nevertheless, (5.14) is sufficient to prove that certain R-D problems admit a discrete

output even when it is allowed to be continuous.
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5.3 Discrete Reconstruction Alphabets

Here, it is shown that the resulting reconstruction alphabet is discrete for two R-D problems.

The first is the classical Gaussian distributed input with the squared error distortion measure,

but the amplitude of the reconstruction alphabet is restricted. The second is a GIG distributed

input with a certain distortion measure based on the energy of the GIG neuron model (see

Chapter 3).

5.3.1 Gaussian Input Source with Output Amplitude Constraint

Let the DMS be distributed as a Gaussian distribution with mean 0 and variance σ2. Let the

distortion function be given by the square error, φ(x, y) = (x− y)2. The change to this classic

problem is this: suppose that S = X × Y where X = R and Y = [−L,L], L > 0. What is

R(D)?

First note that φ satisfies the conditions in Theorem 3.3, hence WD is compact and

R(D) is attainable. Assume that D > Dmin. The points of increase of the solution, SY ,

contains either an infinite or finite number of points. Assume the former is true. By the

Bolzano-Weierstrass theorem, SY has a limit point in Y [76]. Observe condition (5.14) and

note that the left-hand side (LHS) is well defined for complex y where the principle branch

of the logarithm is used. Hence, for a complex ζ,

∫
λ0(x)esφ(x,ζ)dv(x) = 1, ζ ∈ ZY , (5.16)

where ZY is SY embedded into C. The LHS is analytic with respect to ζ. So it is satisfied

over a set with a limit point, and by the identity theorem, both sides are equal over the

entire complex plane [76]. Therefore, (5.14) is satisfied for y ∈ R. Fix also arrived at this

conclusion by the use of Liouville’s theorem [87].

Since X is Gaussian distributed, its PDF and PDF conditioned on Y exist. Let those

PDF’s be p and P , respectively. It can be shown that dW (y|x)
dw(y;W )

= P (x|y;W )
p(x)

for x ∈ SX and
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y ∈ SY . So P can be obtained:

P (x|y;W ∗) = p(x)
dW ∗(y|x)

dw(y;W ∗)
(5.17)

=

√
2|s|
π
es(x−y)2 , (5.18)

where the second equality is obtained from the fact that condition (5.14) is satisfied for y ∈ R.

However, there is a contradiction. Since p is a Gaussian distribution, w has to be the CDF of

a Gaussian distribution. This cannot be the case as Y is bounded. Thus, SY cannot contain

infinite points and must be discrete.

For the case D = Dmin, it is clear that the following CDF achieves Dmin,

W ∗(y|x) =


Θ(y + L), x < −L

Θ(y − x), −L ≤ x ≤ L

Θ(y − L), x > L,

(5.19)

where Θ is the unit step function. This is the only conditional CDF that achieves Dmin. For

any x ∈ X , W (y|x) is the CDF of a discrete RV. However, the resulting output CDF is

w(y;W ∗) =


0, y < −L

v(y), −L ≤ y < L,

1, y ≥ L.

(5.20)

Its points of increase is the entire Y . This CDF has both continuous and discrete parts. Also,

the MI for W ∗ is given by I(W ∗) =∞ since for any −L ≤ x ≤ L, the output value is exactly

the input. The RB X is continuous, so infinite bits (or nats) has been transmitted. Since

infinite bits is transmitted with a non-zero probability, the average transmitted MI is infinite.

Hence, R(Dmin) =∞. This illustrates that Theorem 5.1 only applies for D > Dmin and finite
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Figure 5.1: (a) For L = 1 and σ2 = 1, the PMF of Y is plotted with y as the ordinate
an the probabilities as the color and distortion as the abscissa. The darker colors indicate
higher probabilities. For D > Dmin, four atoms first appear with two at the edges of Y.
As D increases, the middle two atoms converge and eventually split again. As D = σ2 is
approached, all of the atoms converge to y = 0. (b) The R-D curves are plotted for σ2 = 1 and
various values of L. Although only a part of the curve is shown, each curve actually begins
at (Dmin,∞) and descend in a convex manner to (σ2, 0). As L decreases, Dmin decreases and
for a fixed value of R, the distortion increases.

R(D).

The infimum of the average distortion value where R(D) = 0 is given by Dmax =

infy
∫
φ(x, y)dv(x). In this case, it is the same for classical problem, which is given by

Dmax = σ2.

The location and weight of the discrete points were obtained numerically and is plotted

in Figure 5.1. The R-D curve is also given in Figure 5.1. As a comparison, the solution to

the classic R-D problem, where L =∞, is also plotted.

The value of Dmin depends on L. As L increases, Dmin approaches 0. The R-D curve

begins at infinity at Dmin and decreases in a convex fashion to 0 at Dmax = σ2. For smaller

values of L, the distortion is larger as the range for the reconstruction letter is decreased.

For the evolution of the PMF as D increases, there are three points of interest. The first is

that the number of masses changed from four to three as the middle two converge. Then the

middle mass splits to become four masses. The final point of interest is when the two middle

mass combined again and the masses at the end of Y start moving in towards the middle.

Eventually, all the masses combine at y = 0 at Dmax.
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5.3.2 GIG Distributed Memoryless Input Source

Let Λ be distributed by the generalized inverse Gaussian (GIG) distribution, given by

pGIG(λ) = M(α, β, γ)−1λα−1 exp(−β/λ− γλ), λ > 0, (5.21)

where M was defined in (2.6). Let the distortion measure be

φGIG(λ, t) = z − a log(λt) + b/λt+ cλt, (5.22)

where,

b ≥ 0, c > 0 if a > 0 (5.23)

b > 0, c ≥ 0 if a < 0 (5.24)

b > 0, c > 0 if a = 0. (5.25)

To see how this can be a distortion measure, consider the following channel

T =
U

Λ
, (5.26)

where Λ is the input, T is the output, and U is the multiplicative noise and is independent of

Λ. This is exactly the GIG neuron channel of Chapter 3. The noise U is responsible for the

distortion. Since U = ΛT , it is reasonable for the distortion function to be a function of λt,

which is the noise for having input λ and output t.

Now consider the function

gRD(u) = z − a log(u) + b/u+ cu, u > 0, (5.27)
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where a, b, and c obeys (5.25). This function is similar to the conditional energy function g

of Chapter 3. As shown previously, this function has a minimum given by

u∗ =
a+
√
a2 + 4bc

2c
. (5.28)

The value of z can be chosen so that the minimum of gRD is 0, hence

z = −cu∗ − b/u∗ + a log(u∗). (5.29)

Also note that with this choice for z, the function gRD is non-negative. The value gRD(U) is

a viable measure of deviance of U from the value u∗. Hence, gRD(λt) is a viable distortion

measure between λ and t and is given by (5.22). No distortion occurs when t = u∗/λ.

Like the C-C problem in Chapter 3, it is more convenient to work with the following RV’s:

X = log Λ and Y = − log T . The input distribution is then given by

p(x) = M(α, β, γ)−1 exp(−αx− βe−x − γex), (5.30)

which is an exponentiated GIG distribution. The distortion function is then

φ(x, y) = z − a(x− y) + be−(x−y) + cex−y. (5.31)

Note that in order to make the minimum distortion 0, the value of z remains the same as in

(5.29). Now the distortion is 0 when x− y = n∗, where n∗ = log u∗. Let the set of allowable

input-output pair be S = R2, which is a closed set.

The distortion φ satisfies the conditions of Theorem 5.2. Hence, WD is compact and R(D)

is achievable. For D = Dmin = 0, the only element of WD is

W ∗(y|x) = Θ(y − x− n∗). (5.32)
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Since in this case the channel is deterministic, the transmitted MI is infinite. Thus, R(Dmin) =

∞. The output PDF is q(y;W ∗) = p(y − n∗). The output is continuous in this case.

For D > Dmin, SY either has an infinite number of points in some finite interval or a finite

number in every interval. Assume that the former is true. The LHS of condition (5.15) is

well defined for complex y and is analytic with respect to the complex y. Then using the

same identity theorem argument as in the previous example (Section 5.3.1), the condition

(5.15) is satisfied for all y ∈ R. This implies that the PDF of X conditioned on Y is

P (x|y;W ) = M(as, bs, cs)
−1 exp(as(x− y)− bse−(x−y) − csex−y), (5.33)

where as = −sa, bs = −sb, and cs = −sc. In order to get w, the following relationship can

be stated

p(x) =

∫
P (x|y;W )dw(y;W ). (5.34)

As shown in Chapter 3, the only value of w that satisfies this equation has as its characteristic

function (CF)

ρY (ω) =
M(α, β, γ)

M(as, bs, cs)

M(as + jω, bs, cs)

M(α + jω, β, γ)
. (5.35)

As discussed in Chapter 3, this may not be a valid CF because its inverse may not be a

non-negative function. In particular, if γ = 0 and c > 0 (or similarly β = 0 and b > 0),

then the inverse of ρY contains a Bessel function of the first kind, which is an oscillatory

function with negative values. This is a contradiction and SY cannot contain infinite points

in some interval. In other words, SY must contain at most countable discrete points. The

location and probabilities of the points were calculated numerically and is plotted in Figure

5.2. Numerical integrations were approximated with the Gauss-Laguerre quadrature. The

R-D curve is also plotted in Figure 5.2.

The R-D curve starts at infinity for D = 0 and decreases in a convex fashion towards to

0 at about D = 0.6. As for the PMF, the number of masses decrease as D increases. The

masses seem to to just die out rather than combine like the Gaussian example in Section
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Figure 5.2: (a) For each value of the distortion, the PMF of Y is plotted with y as the ordinate
an the probabilities as color. The more blue content indicates a higher probability and for
visibility, low probabilities are indicated by the color red. Here, α = 5, γ = 20, a = b = c = 1
and z is chosen so that Dmin = 0. For D > Dmin, there are four mass points that initially
move closer together as D is increased. However, some of the atoms disappear as D keeps
increasing, until eventually, only one atom remain. (b) Only part of the R-D curve is plotted,
but it would begin at (Dmin,∞) and decrease in a convex fashion towards the abscissa. There
is not much difference between the actual R-D curve and the lower bound.

5.3.1. As D increases, one mass point becomes dominant and remains that way until at Dmin,

where it is the only mass point that survives. The path of the masses as D increases do not

follow a predictable trajectory, but seems to follow a smooth path. Though it has not yet

been proven that the number of mass points are finite, numerical results seem to suggest that.

This would make it consistent with the C-C result for the GIG neuron channel in Chapter 3.

Lower Bound on the Rate-Distortion Curve

Similar to the C-C problem, the lower bound of the R-D problem with a GIG input source

can be obtained. Based on (5.33), the conditional PDF of Λ given T is

PGIG(λ|t;W ) = M(as, bs, cs)
−1tasλas−1 exp(−bs/tλ− cstλ). (5.36)
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Since this conditional PDF allows the output PDF q with negative values, using this condi-

tional PDF gives a lower bound on the MI. The average distortion is then given by

Db =

∫∫
qT (t)PGIG(λ|t)φGIG(λ, t)dλdt (5.37)

= z − a
∂
∂as
M(as, bs, cs)

M(as, bs, cs)
+ b

M(as − 1, bs, cs)

M(as, bs, cs)
+ c

M(as + 1, bs, cs)

M(as, bs, cs)
, (5.38)

where qT is the inverse CF of (5.35). Using the identities in Appendix B, this can be simplified

to

Db = z − ∂

∂s

[
log

(
bs
cs

)as/2
Kas(2

√
bscs)

]
. (5.39)

A similar derivation was done for the the average energy of the GIG neuron channel in

Chapter 3.

Using this assumption, it can be shown that the lower bound on the rate is given by

Rb = log
M(α, β, γ)

M(as, bs, cs)
+

∂

∂u

[
log

M(as, bs, cs)

M(α, β, γ)

]
u=1

. (5.40)

This derivation is similar to the one for the upper bound of the constrained capacity of the

GIG neuron channel in Section 3.4.3 in Chapter 3. In fact, the lower bound for the rate is

the same expression as the upper bound of the C-C problem with the roles of (α, β, γ) and

(a, b, c) reversed. The graph (Db, Rb) describes the lower bound of the R-D curve. The bound

is tight for γ = 0 and C = 0, or β = 0 and B = 0 because the reconstruction alphabet is

continuous in this case. The lower bound is plotted for the numerical example in Figure 5.2.

It seems that the actual R-D curve follows the lower bound closely.
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5.4 Proofs

5.4.1 Proof of Theorem 5.1

Proof. A minimum exists if WD is convex and compact and I is lower semicontinuous [72]. It

is clear that WD is convex and by assumption, it is compact. For Borel measures, I is lower

semicontinuous (LSC) [89]. Since X and Y are real, F ∈ FD is a Borel measure. Hence I is

LSC and the minimum exists.

The mutual information I is a convex function [88]. Also, Φ is a convex function. For any

D > Dmin, there exists W ∈ WD such that Φ(W ) < D because Dmin is the infimum of the

possible average distortion. Then by [72], if D > Dmin and R(D) is finite,

R(D) = min
W∈W

J(W ), (5.41)

where J(W ) = I(W )− sΦ(W ) for some s ≤ 0 [72]. Also sΦ(W ∗) = sD. It is easy to show

that J is Gateaux differentiable everywhere on W . The Gateaux differential of J at W with

increment f is

δJ(W ; f) = lim
ε→0

1

δ
(J(W + εf)− J(W )). (5.42)

If W ∗ minimizes J , δJ satisfies [72, Sec. 7.4 Th. 2],

δJ(W ∗;W −W ∗) ≥ 0, (5.43)

for all W ∈ W . Then using sΦ(W ∗) = sD yields (5.9).

5.4.2 Proof of Theorem 5.2

This proof is similar to the proof of Theorem 3.3, but with more nuance.

Proof. It is first shown that WD is tight, which makes it relatively compact by Prokhorov’s

theorem [69]. Then it is shown that WD is a closed set, which makes it sequentially compact.
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Finally, since sequentially compact sets are compact in a metric space, it can be concluded

that WD is compact.

First, define the random variable Y ′ = ξ(X, Y ). Let gmin be a monotically increasing

function over [0,∞) such that gmin(u) ≤ min{g(u), g(−u)} and limu→∞ g(u) =∞. Let S ′ be

the corresponding set of allowable input-output pairs where X is the input and Y ′ is the

output. Let the CDF of Y ′ given X be W ′ and let the joint CDF of X and Y ′ be F ′.

Let K = [−k, k]× [−`, `] for k > 0 and ` > `∗, where `∗ = max{` > 0 : gmin(`) = 0}. Note

that `∗ must be finite. Then,

µW ′(·|x)([−`, `]c)
(d)

≤ E[gmin(|U |)|X = x]

gmin(`)

(e)

≤ E[g(U)|X = x]

gmin(`)
. (5.44)

Markov’s Inequality was applied for (d), and (e) arises from the definition of gmin. Then

∫
µW ′(·|x)([−`, `]c)dv(x) ≤ D

gmin(`)
. (5.45)

Let δ be a value such that µv([−k, k]) ≥ 1− δ. Then,

1− D

gmin(`)
<

∫
µW ′(·|x)([−`, `])dv(x) (5.46)

=

∫
[−k,k]

µW ′(·|x)([−`, `])dv(x) +

∫
[−k,k]c

µW ′(·|x)([−`, `])dv(x) (5.47)

< µF ′(K) + δ. (5.48)

Hence,

µF ′(Kc) ≤
D

gmin(`)
+ δ. (5.49)

For any value of ε > 0, we can pick a finite value of k and ` such that the right-hand side

(RHS) above is smaller than ε. Since K is compact in X × Y ′, K is also compact in X × Y

because ξ is continuous. Therefore WD is tight.

To show that WD is closed, let {W (n)} be a sequence in WD whose limit is W (0). The
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conditional CDF W (0) is an element of W by relative compactness of WD. For ` > 0, define

the operator

Φ`(W ) =

∫∫
min(φ(x, y), `)dW (y|x)dv(x). (5.50)

Note that min(φ(x, y), `) is a continuous bounded function. Also note that Φ`(W ) ≤ Φ(W ) ≤

D for any ` > 0 and W ∈ WD. By weak convergence, Φ`(W
(n)) → Φ`(W

(0)) for any

` > 0. Note that Φ`(W
(0)) is increasing in `. By the monotone convergence theorem,

Φ`(W
(0)) → Φ(W (0)). But since Φ`(W

(0)) ≤ D, Φ(W (0)) ≤ D. Hence WD is closed and is

sequentially compact.

Finally, since the weak topology is metrizable, it is a metric space [69]. Hence WD is

compact.

5.4.3 Proof of Corollary 5.3

Proof. To simplify, let w∗ = w(·;W ∗). To prove that (5.12) and (5.13) implies (5.9), it suffices

to show that ∫
log λ0(x)dv(x) = I(W ∗)− sD. (5.51)

Recall that R(D) is finite by assumption, hence µW ∗(·|x) � µw∗ , µv-a.e. Also, note that the

right-hand sides (RHS’s) of (5.12) and (5.13) are strictly greater than 0. Hence, dw∗

dW ∗(·|x)
=(dW ∗(·|x)

dw∗

)−1
is finite for x ∈ SX , which implies µw∗ � µW ∗(·|x), µv-a.e. Consequently,

log λ0(x) = − log

∫
esφ(x,y)dw∗(y)

= − log

∫
dw∗(y)

dW ∗(y|x)
esφ(x,y)dW ∗(y|x)

(a)

≥ −
∫

log

(
dw∗(y)

dW ∗(y|x)
esφ(x,y)

)
dW ∗(y|x)

=

∫
log

(
dW ∗(y|x)

dw∗(y)
e−sφ(x,y)

)
dW ∗(y|x), µv-a.e., (5.52)
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where Jensen’s inequality was used for (a). However, (a) is satisfied by equality if and only if

(5.13) is true. Hence, (a) is satisfied with an equality and integrating both sides with respect

to v yields (5.51).

Now the converse is proven. Suppose that (5.12) is false and (5.13) is true. There must

exist y∗ ∈ Y , such that the set

G =

{
x ∈ SX :

dW ∗(y∗|x)

dw(y∗;W ∗)
< λ0(x)esφ(x,y∗)

}
. (5.53)

has positive measure, i.e.,
∫
G dv(x) > 0. Let y+ ∈ SY . Then let

W (y|x) =


Θ(y − y∗), x ∈ G

Θ(y − y+), x ∈ SX\G,
(5.54)

where Θ is the unit step function and \ is the set difference operation. Consequently,

∫∫
S

[i(x, y;W ∗)− sφ(x, y)]dW (y|x)dv(x)

=

∫
G

∫
Y

[i(x, y;W ∗)− sφ(x, y)]dΘ(y − y∗)dv(x)

+

∫
X\G

∫
Y

[i(x, y;W ∗)− sφ(x, y)]dΘ(y − y+)dv(x)

(b)
<

∫
G

log λ0(x)dv(x) +

∫
X\G

log λ0(x)dv(x)

(c)
= I(W ∗)− sΦ(W ∗). (5.55)

The inequality (b) is due to the definition of G and (5.13). For (c), the argument is similar

to (5.52) in the direct proof. Equation (5.55) contradicts (5.9). Hence, (5.12) must be true.

Now assume that (5.12) is true and (5.13) is false. Condition (5.12) implies that

∫
log λ0(x)dv(x) ≤ I(W ∗)− sD. (5.56)
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However, repeating (5.52) implies that

∫
log λ0(x)dv(x) ≥ I(W ∗)− sD. (5.57)

As a consequence, both sides must be equal. However (a) in (5.52) cannot be satisfied with

equality because this requires (5.13) to be true, which contradicts our premise. Both (5.12)

and (5.13) must be true.

5.4.4 Proof of Corollary 5.4

Proof. It suffices to show that

∫
dW ∗(y|x)

dw(y;W ∗)
dv(x) = 1, µw-a.e., (5.58)

where µw-a.e. means almost everywhere with respect to µw. Then, integrate (5.13) with

respect to dw to get (5.14).

By R-N theory, for any set A ∈ B(R), i.e., the Borel set of R,

µW ∗(·|x)(A) =

∫
A

dW ∗(y|x)

dw(y;W ∗)
µw(·;W ∗)(dy). (5.59)

Integrate both sides with respect to v and use Tonelli’s theorem to switch the order of

integration of the RHS,

µw(·;W ∗)(A) =

∫
A

∫
X

dW ∗(y|x)

dw(y;W ∗)
dv(x)µw(·;W ∗)(dy). (5.60)

On the RHS, integral is with respect to the same measure as the left-hand side (LHS). Hence,

by the R-N theory, the integrand must be equal to 1, µw-a.e., which is the desired result.
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5.5 Conclusion

In this chapter, it was proven that the solution to R-D problems exist when WD is compact.

Furthermore, the well-known optimality conditions for R-D problems were extended to include

output RV’s that are neither discrete nor continuous. Then it was shown that it is possible

to have a discrete reconstruction alphabet for the R-D problem. This was first demonstrated

on a modification of the classic R-D problem where the DMS is Gaussian distributed and

the distortion is the mean square. An additional amplitude constraint for the reconstruction

alphabet was imposed. This produced a discrete reconstruction alphabet.

Then a R-D problem based on the GIG neuron channel was also proposed. A GIG

distributed DMS with a certain distortion function was used. It was shown that for certain

parameters, the reconstruction alphabet is discrete. This was a result similar to the GIG

neuron channel in Chapter 3, where the optimal input distribution is discrete for some

parameter sets. This shows the interconnection of C-C and R-D problems.



Chapter 6

Conclusion

A model for energy efficient cortical neurons was proposed in this dissertation. The GIG

neuron model was developed for cortical neurons in the sensory cortex. Let η be one of such

neuron type. The model describes the PSP of η with the GIGHT stochastic diffusion. Such a

diffusion has the advantage of taking into account the upswing exhibited by PSP as it nears

the threshold. Another advantage of the GIGHT diffusion is it has a closed form equation for

the FHT distribution of the diffusion. Thus, a neuron “channel” can be characterized. This

channel is a multiplicative noise channel where the noise is distributed as a GIG distribution.

The GIG neuron model has three parameters: α, β, and γ. Assume that the threshold

and infinitesimal variance are fixed. The α parameter controls the attraction of the GIGHT

diffusion to the threshold. The lower the value of α, the more attraction there is to the

threshold. The β parameter is determined from the threshold and the infinitesimal variance.

The γ parameter controls a constant drift component of the GIGHT diffusion.

Two estimation techniques were developed for estimating the parameters of the GIG

neuron model from a realization of the GIGHT diffusion or an intracellular recording of

the neuron: the pMLE and the pLFSE. Simulations show that the pLFSE gives a more

unbiased estimate for the α and γ parameters. Also, when the constant drift of the GIGHT

is dominant, the pMLE performs as well as the pLFSE. Otherise, the pLFSE performs better

107
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than the pMLE because the pLFSE is less biased. Finally, a technique for estimating the

input intensity from the intracellular recording was also developed. The estimator may be

biased, but it appears to be consistent.

The next step is to evaluate the energy efficiency of the GIG neuron model. Given a

fixed energy budget, how much information can η deliver to its target? Thus, two things are

needed: an energy model and a measure of information.

The energy model was determined from assumptions about η’s energy costs, such as

a fixed cost of propagating an AP, linear metabolic cost, and logarithmic biological clock

cost. As for information, Shannon’s MI was used as a measure of information. Since η is

energy efficient, it is assumed that it maximizes MI given an average energy constraint. In

information theoretic terms, the constrained capacity of the GIG neuron channel is what is

sought after.

It turns out that for some parameter sets, the input distribution that achieves the

constrained capacity is a discrete distribution with a finite number of mass points. This

surprising result has implications on how the optimal network should be designed. Since the

network has influence over the input intensity, this implies that in order for η to perform

most efficiently, the network must exist in discrete states.

Next, optimization of the parameters of the GIG neuron model was addressed. The

input distribution is assumed to be known. For a fixed energy budget, the parameter set

that yields the highest MI is sought after. However, it turns out that this would produce

infinite MI. Hence, a variance constraint was added. The variance constraint prevents the

GIG neuron channel from approaching the noiseless case, i.e., approaching a perfect decoding

of the output IPI’s to the input rate.

The result was demonstrated numerically for a special case of the GIG neuron model. For

a fixed variance constraint, the MI is a concave function of energy. For fixed energy, the MI

has an inverse relationship with the variance constraint.

With this result, it is possible to envision a double matching problem for η: the matching
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of the channel to the source and the matching of the source to the channel. This could be

iteratively determined. Assume a fixed energy budget. First, the source is chosen to maximize

the MI. Then, with the source fixed, the channel parameters can be selected to maximize

MI. The process can be repeated. It is not yet known that such a process will converge to a

maximum MI, but it is an idea worth exploring.

Finally, the discrete result from the GIG neuron channel was extended to a parallel R-D

problem. First, the existence of the solution to R-D problems for certain distortions are

proven. Then, the optimal conditions for R(D) and the achieving test channel was proven.

Let the source be distributed as a GIG distribution. Then for a certain distortion function,

it was proven that the resulting reconstruction alphabet can be discrete. This was then

demonstrated by a numerical solution.

6.1 Future Research

Once the individual neurons are better understood, the natural next step of the research is

to understand how the neurons work together in the network. Different parts of the nervous

system have different purposes, but a possible purpose of the sensory cortex is to reduce the

statistical dependence of each input line to the NN [90–92]. The purpose of this is to reduce

complexity in the input signal and make information processing easier for the higher regions

of the brain. With energy efficient neurons, how does energy play into the process of reducing

information complexity? That is one possible path of future research.

Another question to be addressed is how should the neurons be connected within one

region. Many algorithms exist for updating synaptic weights in ANN’s [93]. However, what

can be learned from how NN’s actually create their synaptic connections and weights. Other

than the sheer number of number of neurons in ANN’s versus NN’s, the neurons in NN’s

have relatively fewer connections per neurons than ANN’s. One possibility is that for NN’s,

a connection between neurons needs energy to maintain. Thus, as an energy saving strategy,
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unimportant connections are dropped. In current implementation of ANN’s, energy is not

needed to maintain connections, but the synaptic weights require memory. What is the

memory-performance tradeoff of having fewer connections? Furthermore, if a computer based

on neural elements are built, such a connection may require energy to maintain. Thus, energy

can be saved in such a case.

Another high level approach is to understand how interactions between different regions

can promote energy efficiency. Consider a classification problem with two sensors, e.g. sight

and sound. Suppose the object to be identified is the type of bird. By using sound and

vision, the type of bird can be identified. However, if the bird’s view is blocked, the visual

signal is not as valuable as the sound signal. Hence, less attention can be paid to the visual

cortex. To save energy, a lower energy budget can be assigned to this region since it yields

low information. The higher up region of the brain can assign a lower energy budget to

the visual cortex and increase the energy budget of the auditory cortex. Thus, based on

the information the higher regions receive, they send a feedback signal to the lower level.

This type of feedback can be further studied in order to understand how the network can be

designed to be energy efficient.

The challenge of energy efficient neural computation is daunting. Hopefully, this disserta-

tion will begin to answer some important questions about energy efficient neural computation

and raise important questions and considerations.



Appendix A

Properties of the Modified Bessel

Function of the Second Kind

A.1 Integral Representation

The function Kω(ζ) for complex ω and ζ can be represented by the following integral [73]:

Kω(ζ) =
1

2

(
1

2

)ω ∫ ∞
0

exp(−u− ζ2/4u)
du

uω+1
, |∠ζ| < π

4
, (A.1)

where ∠ζ is the phase of ζ.

A.2 Hankel Expansion

For complex ω and ζ, Kω(ζ) has the following Hankel’s expansion for ζ →∞ [73]:

Kω(ζ) ∼
√

π

2ζ
e−ζ

∞∑
k=0

ξk(ω)

ζk
, |∠ζ| < 3π

2
(A.2)
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where ξ0(ω) = 1 and

ξk(ω) =
1

k!8k

i∏
`=1

(4ω2 − (2`− 1)2), k ∈ {1, 2, . . .}. (A.3)

The notation ∼ refers to asymptotic equality. Therefore for ω = −1/2 and ω = −3/2 and

equivalently for ω = 1/2 and ω = 3/2,

K−1/2(ζ) = K1/2(ζ) =

√
π

2ζ
e−ζ (A.4)

and

K−3/2(ζ) = K3/2(ζ) =

√
π

2ζ
e−ζ
(

1 +
1

ζ

)
. (A.5)

However, equality holds for all complex ζ in this case [73].

A.3 Asymptotic Forms

There are two asymptotes of interest. The first asymptote is for ω ∈ C, as ζ → 0,

Kω(ζ) ∼



Γ(ω)
2

(
2
ζ

)ω
Re{ω} > 0,

− log
(
ζ
2

)
− ξ ω = 0,

Γ(−ω)
2

(
2
ζ

)−ω
Re{ω} < 0,

(A.6)

where Γ is the gamma function, Re{ω} is the real part of ω and ξ is the Euler-Mascheroni

constant [73].

The second asymptote is for a complex ω, as ζ →∞ [73],

Kω(ζ) ∼ K1/2(ζ) =

√
π

2ζ
e−ζ . (A.7)
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A.4 Recurrence Relations

The following recurrence relations can be stated [73],

K(0,1)
ω (ζ) = −1

2
(Kω−1(ζ) +Kω+1(ζ)), (A.8)

where K
(0,1)
ω (ζ) = ∂

∂ζ
Kω(ζ)



Appendix B

Moments of the Generalized Inverse

Gaussian Distribution

Let U ∼ GIG(α,β,γ), i.e., U is distributed as a GIG distribution. Let E denote the expectation

operator. Recall that

M(α, β, γ) =


2
(
β
γ

)α/2
Kα(2

√
βγ) β > 0, γ > 0

γ−αΓ(α) α > 0, β = 0, γ > 0

βαΓ(−α) α < 0, β > 0, γ = 0.

(B.1)

The nth moment of U is given by

E[Un] = M(α, β, γ)−1

∫ ∞
0

uα+n−1 exp(−β/u− γu)du

=
M(α + n, β, γ)

M(α, β, γ)
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To simplify, let kn = E[Un]. Evaluating for each case yields

kn =



(
β
γ

)n/2Kα+n(2
√
βγ)

Kα(2
√
βγ)

, β > 0, γ > 0

Γ(α+n)
Γ(α)γn

, α > 0, β = 0, γ > 0,

Γ(−α−n)βn

Γ(−α)
, α < 0, β > 0, γ = 0.

(B.2)

The log-moment is given by

E[logU ] =

∫ ∞
0

M(α, β, γ)−1 log(u)uα−1 exp(−β/u− γu)

= M(α, β, γ)−1 ∂

∂α

∫ ∞
0

uα−1 exp(−β/u− γu)

=
∂
∂α
M(α, β, γ)

M(α, β, γ)
(B.3)

=
∂

∂α
logM(α, β, γ)

Let kg = E[logU ]. Evaluating for each case yields

kg =



α
2

log β
γ

+
∂
∂α
Kα(2

√
βγ)

Kα(2
√
βγ)

, β > 0, γ > 0

ψ(α)− log γ, α > 0, β = 0, γ > 0,

log β − ψ(−α), α < 0, β > 0, γ = 0,

(B.4)

where ψ is the digamma function.

The variance of the GIG distribution is given by

Var(U) = E[U2]− E[U ]2

= k2 − k2
1. (B.5)
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For α > 0 and β = 0, it can be written as

Var(U) =
α

γ2
. (B.6)

For α < 0 and γ = 0,

Var(U) =
β2

(α− 1)2(α− 2)
, α < −2. (B.7)

For the other cases,

Var(U) =
β

γ

[
Kα+2(2

√
βγ)

Kα(2
√
βγ)

−
(
Kα+1(2

√
βγ)

Kα(2
√
βγ)

)2]
(B.8)
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