
"

1SFTFOUFE�UP
UIF�GBDVMUZ�PG�UIF�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF�

6OJWFSTJUZ�PG�7JSHJOJB

JO�QBSUJBM�GVMGJMMNFOU
PG�UIF�SFRVJSFNFOUT�GPS�UIF�EFHSFF

CZ

Towards Improving Adversarial Robustness of NLP Models

Thesis

Master of Science

Jin Yong Yoo

May 2021

"11307"-�4)&&5

5IJT

JT�TVCNJUUFE�JO�QBSUJBM�GVMGJMMNFOU�PG�UIF�SFRVJSFNFOUT
GPS�UIF�EFHSFF�PG

"VUIPS�

"EWJTPS�

"EWJTPS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

"DDFQUFE�GPS�UIF�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF�

$SBJH�)��#FOTPO
�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF

Thesis

Master of Science

Jin Yong Yoo

This Thesis has been read and approved by the examing committee:

Yanjun Qi

Matthew Dwyer

Yangfeng Ji

May 2021

Abstract

Adversarial training has been extensively studied as a way to improve model’s adversarial ro-

bustness in computer vision. On the other hand, little attention has been paid in NLP as to how

adversarial training affects model’s robustness. Within NLP, there exists a significant discon-

nect between recent works on adversarial training and recent works on adversarial attacks as

most recent works on adversarial training have studied it as a means of improving the model’s

generalization capability instead of as a defense against adversarial attacks.

In this thesis, we investigate how adversarial training can be used to improve the model’s adversar-

ial robustness as well as its standard accuracy, cross-domain generalization, and interpretability.

In the first half of this thesis, we perform a comprehensive benchmarking of different search

algorithms used in NLP adversarial attacks and propose a new simple and efficient search al-

gorithm that can speed up adversarial attacks for adversarial training. Then, using the findings

from the benchmark experiments, we create two new adversarial attacks optimized for adversarial

training and use them to train BERT and RoBERTa models on IMDB, Rotten Tomatoes, and Yelp

datasets. We demonstrate that adversarial training can not only improve the model’s robustness

to the adversarial attack it was originally trained with, but also defend the model against other

types of attacks. Also, we show that adversarial training can improve model’s standard accuracy,

cross-domain generalization, and interpretability.

Acknowledgments

I want to sincerely thank my advisor Yanjun Qi for her guidance and support during both my

undergraduate and master’s program. I joined her group as a undergraduate student with little

experience in machine learning, and I got to learn so much about both machine learning and

research. She encouraged me to explore my ideas and gave valuable advice when I needed them

the most.

I would also like to thank Matthew Dwyer and Yangfeng Ji for serving as the committee members

on my thesis. Additionally, many thanks to my collaborators Jack Morris, Eli Lifland, Jake

Grigsby, and Hanyu Liu, all of whom I got to work with as part of the TextAttack project.

Finally, I want to thank my parents for all the love and support they have given me.

Table of Contents

1 Introduction 5
1.1 Background and Related Work . 6

2 Adversarial Attacks in NLP 8
2.1 Adversarial Attacks in Vision . 8
2.2 Adversarial Attacks in NLP . 10

2.2.1 Challenges in NLP Adversarial Attack 10
2.2.2 Perturbing Texts . 10
2.2.3 Preserving Semantics and Fluency by Constraints 11
2.2.4 Adversarial Attack as Combinatorial Optimization 12
2.2.5 TextAttack Framework . 14

3 Searching for a Search Method 16
3.1 Background . 17

3.1.1 Search Algorithms . 17
3.1.2 Search Space . 19

3.2 Benchmark Setup . 20
3.2.1 Search Spaces . 20
3.2.2 Victim Models . 20
3.2.3 Evaluation Metrics . 21

3.3 Results . 21
3.3.1 Evaluation of Adversarial Examples . 21
3.3.2 Attack Success Rate Comparison . 26
3.3.3 Runtime Analysis . 26
3.3.4 Performance under Query Budget . 26
3.3.5 Quality of Adversarial Examples . 27

3.4 Discussions . 27

1

TABLE OF CONTENTS 2

3.4.1 Search Method for Adversarial Training 27
3.4.2 Effectiveness of PWWS Word Importance Ranking 28
3.4.3 Effectiveness of Genetic Algorithm . 28

4 Adversarial Training for NLP Models 29
4.1 Background . 30

4.1.1 Adversarial Training . 30
4.2 Method . 30

4.2.1 Training Objective . 30
4.2.2 Training Algorithm in Practice . 31
4.2.3 Fast Adversarial Attacks . 31

4.3 Experiment . 34
4.3.1 Datasets & Models . 34
4.3.2 Baselines . 34

4.4 Results . 35
4.4.1 Adversarial Robustness . 35
4.5.1 Generalization . 36
4.5.2 Interpretability . 36

4.6 Discussions . 40
4.6.1 Fast-TextFooler vs Fast-BAE attack 40

5 Conclusion 41

References 42

APPENDICES 48

A 49
A.1 Search Benchmark Figures for LSTM Models 49

List of Figures

2.1 Example of a desirable transformation of the original text that preserves the
semantics and an example of an undesirable transformation that changes the
semantics. 11

2.2 Tree representing the combinatorial nature of generating adversarial example.
Each edge represents a specific word replacement operation and each node repre-
sents the resulting perturbed text. While word replacements involving synonyms,
represented by the green color, are desirable, those involving antonyms (red) are not. 12

3.1 Number of queries vs. length of input text. Similar figure for LSTM models are
available in appendix A.1. 24

3.2 Attack success rate by query budget for each search algorithm and dataset. Similar
figure for LSTM models are available in appendix A.1. 25

A.1 Number of queries vs. length of input text. 50
A.2 Attack success rate by query budget for each search algorithm and dataset. 51

3

List of Tables

3.1 Different search algorithms proposed for NLP attacks. n is the number of words
in the input. m is the maximum number of transformation options for a given input. 17

3.2 The three search spaces in our benchmarking. 21
3.3 Comparison of search methods across three datasets. Models are BERT-base

and LSTM fine-tuned for the respective task. “A.S.%” represents attack success
rate and “Avg # Queries” represents the average number of queries made to the
model per successful attacked sample. 22

3.4 Quality evaluation of the adversarial examples produced by each search algorithm.
”Avg P.W. %” means average percentage of words perturbed, ”Avg USE Sim”
means average USE angular similarity, and ”�% Perplexity” means percent
change in perplexities. 23

4.1 Overview of the datasets. 34
4.2 Attack success rate of Fast-TextFooler attack. �% column represents the

percent change between natural training and the different training methods. . . . 36
4.3 Attack success rate of Fast-BAE attack. �% column represents the percent

change between natural training and the different training methods. 37
4.4 Attack success rate of attacks from literature, including original TextFooler

(Jin et al., 2019), BAE (Garg and Ramakrishnan, 2020), PWWS (Ren et al., 2019),
and PSO (Zang et al., 2020). �% column represents the percent change between
natural training and the different training methods. 38

4.5 Accuracy on in-domain and out-of-domain datasets. We can see that adversarial
training can helps model outperform both naturally trained models and models
trained using data augmentation methods. 39

4.6 AOPC scores of the LIME explanations for each model. Higher AOPC scores
indicates that the model is more interpretable. 39

4

Chapter 1

Introduction

In both computer vision and natural language processing (NLP), robustness of models to adversar-
ial examples has been an active area of research. New methods have been proposed for generating
adversarial examples for image classification (Goodfellow et al., 2014; Carlini and Wagner, 2016;
Madry et al., 2018), reading comprehension (Jia and Liang, 2017), machine translation (Cheng
et al., 2018), and text classification (Ebrahimi et al., 2017; Jia and Liang, 2017; Gao et al., 2018;
Alzantot et al., 2018; Jin et al., 2019; Ren et al., 2019; Zang et al., 2020; Garg and Ramakrishnan,
2020; Li et al., 2020, 2021).

At the same time, making models more resistant to these attacks has also been another area of
active research. One simple but popular method is adversarial training where the model is further
trained on adversarial examples. Adversarial training has been extensively studied as a way
to improve model’s adversarial robustness in computer vision (Goodfellow et al., 2014; Madry
et al., 2018; Zhang et al., 2019a; Kannan et al., 2018; Shafahi et al., 2019; Xie et al., 2020). In
comparison, little attention has been paid in NLP as to how adversarial training affects model’s
adversarial robustness.

In fact, within NLP, there exists a significant disconnect between recent works on adversarial
training and those on adversarial attacks. Recent works (Zhu et al., 2019; Jiang et al., 2020;
Liu et al., 2020a) explore adversarial training mainly as a means of improving the model’s
generalization capability instead of as a defense against adversarial attacks. Specifically, they do
not evaluate whether such adversarial training method can defend against adversarial attacks that
have been proposed in literature.

Additionally, in recent works that have proposed new adversarial attacks, adversarial training as
a defense has only been evaluated in limited context. In most cases, adversarial training is only

5

CHAPTER 1. INTRODUCTION 6

performed on limited number of models and datasets to mainly show that adversarial training can
make models more resistant to the attack it was originally trained with (Jin et al., 2019; Ren et al.,
2019; Li et al., 2020; Zang et al., 2020; Li et al., 2021).

In this thesis, we perform a more in-depth investigation into how adversarial training affects
model’s adversarial robustness as well as its standard accuracy, cross-domain generalization, and
interpretability.

In the first half of this work, we study the key components of NLP adversarial attack to address the
technical challenges of performing adversarial training. We specifically perform a comprehensive
benchmarking of different search algorithms used in literature to perform NLP adversarial attacks
and propose a new simple and efficient search algorithm that can speed up adversarial attacks for
adversarial training.

In the second half, we create two faster version of adversarial attacks optimized for adversarial
training and use them to train BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) models
on IMDB (Maas et al., 2011), Rotten Tomatoes (Pang and Lee, 2005), and Yelp (Zhang et al., 2015)
datasets. We demonstrate that adversarial training can not only improve the model’s robustness
to the adversarial attack it was originally trained with, but also defend the model against other
types of attacks. Also, we show that adversarial training can improve model’s standard accuracy,
cross-domain generalization, and interpretability.

1.1 Background and Related Work
Adversarial training was first proposed by Goodfellow et al. (2014) as a defense against adversarial
attacks in computer vision. Madry et al. (2018) proposed a more principled approach to adversarial
training using a minimax formulation involving the defender and the adversary. They also
demonstrated that training using projected gradient descent (PGD) attack provides strong defense
against many adversarial attacks for image classification.

Within computer vision, it is largely believed that there exists some inherent trade-off between
robustness and standard accuracy (Tsipras et al., 2019; Zhang et al., 2019a; Raghunathan et al.,
2019); that is, improving robustness against adversarial attacks leads to some loss in standard
accuracy. Tsipras et al. (2019) suggested that the trade-off exists because the features learned by a
robust model is fundamentally different from the features learned by the standard model. They
also noted an unexpected benefit of adversarial training which is that the features learned by the
robust model aligns better with human understanding.

On the other hand, such trade-off has not been observed in NLP. Instead, adversarial training

CHAPTER 1. INTRODUCTION 7

has been explored as a means to improve the model’s generalization performance. Zhu et al.
(2019); Jiang et al. (2020); Liu et al. (2020a) demonstrated that adversarial training can improve
model’s performance on the GLUE benchmark (Wang et al., 2019). Jiang et al. (2020) and Liu
et al. (2020a) also showed improvements in robustness by evaluating the models on more difficult,
“adversarial” datasets such as ANLI (Nie et al., 2020) or Adversarial SQUAD (Jia and Liang,
2017).

However, these works still do not provide a satisfactory answer to how adversarial training affects
adversarial robustness. One thing to note is that these works have all performed adversarial
perturbations in the word embedding space. Zhu et al. (2019) adds perturbations to the input
embeddings using PGD and uses the perturbed embeddings to further train the models. Jiang
et al. (2020) takes a step further by performing adversarial pretraining with smoothness-inducing
regularizer introduced by Miyato et al. (2018). Liu et al. (2020a) extends Jiang et al. (2020) by
performing curriculum learning where standard pretraining is done first before continuing with
adversarial pretraining. Therefore, adversarial training with perturbations in the actual input space
is still a relatively unexplored area of research. Furthermore, these works that perturb in the
embedding level do not investigate whether such methods of adversarial training can improve
robustness against adversarial attacks that occur in the input level.

Our work differs from these works as we aim to explore how adversarial training using per-
turbations in the input space can be used to defend against adversarial attacks from literature.
Moreover, we investigate whether adversarial training with one type of attack can make the model
more robust against many different types of attacks. Also, as far we know, no other work has
comprehensively studied how adversarial training with perturbations in the input space affects
generalization and interpretability for NLP models.

Chapter 2

Adversarial Attacks in NLP

Most of the works on adversarial attacks in NLP draw its inspiration from earlier works in
computer vision. However, while an image is a continuous input, text is discrete. This leads to a
significant difference in how adversarial examples are generated. In this chapter, we will review
how adversarial attacks are performed for NLP models and discuss the underlying combinatorial
optimization problem that is solved to generate adversarial examples. We also introduce the novel
framework proposed by TextAttack (Morris et al., 2020a) that breaks down NLP adversarial
attacks into the following four modular components: (1) goal function, (2) set of constraints, (3)
transformation, and (4) search method.

2.1 Adversarial Attacks in Vision
In this section, we give a high level overview on adversarial attacks in computer vision. For a
more detailed survey, we recommend Akhtar and Mian (2018).

Let F be our neural network represented as a function and let ✓ be the parameters of the network.
To generate an adversarial example from an image x 2 Rm and its label y 2 {1, . . . , K}, we want
to find some perturbation � 2 Rm such that F (x+ �) = yk where yk is our desired target label; in
the case of untargeted attack1, we would simply want F (x+ �) 6= y. Since we want � to be small
such that the change is imperceptible to humans, we also need enforce some limit on how big �

1Targeted attack is a type of adversarial attack where the attacker’s goal is to perturb the input such that the model
predicts a specific class label desired by the attacker, while untargeted attack is a type of adversarial attack where the
attacker’s goal is to simply cause the model to misclassify the perturbed input.

8

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 9

can be. This is usually achieved by restricting � to be within an `p ball (i.e. ||�||p  ✏ for some
small ✏ > 0). `2 or `12 ball is typically used.

Naturally, finding � that satisfies our requirements can be formulated as a constrained optimization
problem. Szegedy et al. (2014) frames it as the following minimization problem:

minimize ||�||2

subject to (1) F (x+ �) = yk

(2) x+ � 2 [0, 1]m
(2.1)

However, the above equation is difficult to solve due to constraint (1), so Szegedy et al. (2014)
instead solves the following problem:

minimize c · ||�||
2
2 + L(✓, x+ �, yk)

subject to x+ � 2 [0, 1]m
(2.2)

where L(✓, x + �, yk) is the loss for the task. L-BFGS algorithm is used to find the minimum
c > 0 for which minimum � satisfies constraint (1).

One problem with L-BFGS algorithm is that it is computationally expensive. Goodfellow et al.
(2014) presents a faster approximation algorithm called Fast Gradient Sign Method (FGSM) for
untargeted attacks that takes advantage of the linearity present in neural networks. Specifically,
they solve for the following �:

� = " ⇤ sign(rL(✓, x, y)) (2.3)

where " is a constant that we control to make � small as possible. Here, we can see that for
each pixel, FGSM first determines which direction (+/�) the pixel value should be changed to
maximize the loss and then scales it by ".

Besides FGSM, many adversarial attacks have been proposed such as Jacobian-based Saliency
Map Attack (JSMA) (Papernot et al., 2015), Carlini & Wagner attack (Carlini and Wagner, 2016),
DeepFool (Moosavi-Dezfooli et al., 2015), and projected gradient descent (PGD) (Madry et al.,
2018). What all of these works have in common is that the task of generating adversarial example
is formulated as a constrained numerical optimization problem.

2An `1 bound means that we can perturb each pixel only by ✏.

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 10

2.2 Adversarial Attacks in NLP
Naturally, we are interested in whether we can apply the previous formulation to NLP.

2.2.1 Challenges in NLP Adversarial Attack
Let us first attempt to define our problem by borrowing the previous formulation for image
classification:

Given input text x 2 X and its label y 2 {1, . . . , K}, we want to find some minimal
perturbation � such that our adversarial example x

0 = x+ � satisfies

1. F (x0) = yk where yk is our desired label

2. � is small (i.e. ||�||p < ✏).

We can easily see that there are several issues with this formulation. For example, what is our
perturbation � in the case of texts? For images, adding small values to each pixel is an intuitive
way to perturb a given image. However, for texts, there are many ways to modify the discrete
input such as replacing a character with another character or inserting new words.

Also, how do you determine if � is small enough to not change the ground truth? Unlike images,
we cannot straightforwardly use `2 (or `1) norm to compare the “similarity” of two texts. Lastly,
how do you find the optimal perturbations that will produce x

0 that satisfies our goals?

2.2.2 Perturbing Texts
To define � for text, we need to distinguish perturbations that occurs at the character level from
those that occur at the word level. Let input text x be represented as a sequence of tokens
(x1, x2, . . . , xn) where each xi can be a word or a character. We can come up with three ways to
modify x:

1. Replace: Replace xi with another x0
i.

2. Insertion: Insert a new x
0
i+1 in front of xi.

3. Deletion: Delete xi.

If xi is a character, then replacing, inserting, and deleting characters are all ways of inducing
spelling errors in the text. Past works that proposed such character-level attacks include Ebrahimi
et al. (2017), Gao et al. (2018), and Pruthi et al. (2020). Pruthi et al. (2020) showed that BERT is
sensitive to misspellings as its accuracy on sentiment classification task can decrease from 90.3%

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 11

Figure 2.1: Example of a desirable transformation of the original text that preserves the semantics
and an example of an undesirable transformation that changes the semantics.

to 48.5% when misspellings are injected to the input. Since humans are capable of understanding
misspelled texts, robustness to character-level attacks can be considered as a desirable attribute
for models that aim to meet human-level performance.

However, one problem with character-letter attacks is that the resulting text x0 is most likely to
contain nonsensical words that the model has never encountered before. Most of the recent NLP
models that have achieved state-of-the-art (SOTA) performance employ word (or subword-level)
embeddings that map words in a fixed vocabulary to a dense vector representation. Since the
model’s vocabulary is fixed, it is highly likely that the misspelled, gibberish words will simply be
mapped to the wrong token or an out-of-vocabulary (OOV) token during the encoding step. This
raises the question whether it is reasonable to expect models that are not character-based to be
robust against character-level attacks in the first place.

Recent works have proposed word-level attacks where each xi is a word. Compared to character-
level attacks, these methods can generate more fluid and sensible text as an adversarial example.
Therefore, we will only consider word-level attacks for the rest of this work. We will especially
focus on word replacement as it is the most common type of perturbation strategy found in
literature.

2.2.3 Preserving Semantics and Fluency by Constraints
When carrying out word-level attacks, we still need to watch out for changes that introduce
grammatical errors or shift the meaning of the text. This is because we want x and x

0 to be
“similar” and do not want to change the ground truth label of the text. For example, as shown
by Figure 2.1, given text “The movie was good” for a sentiment-classification task, we do not
want to replace the word good with its antonym bad since the overall sentiment of the text has
changed.

Ideally, we want our perturbation to naturally preserve the meaning and fluency of the original text.
Past works have therefore proposed various methods for replacing words with their synonyms.

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 12

 X: The movie was good.

X

X'

movie → film good → excellent

X'X'

X'

X'X'

good → bad movie → film

Figure 2.2: Tree representing the combinatorial nature of generating adversarial example. Each
edge represents a specific word replacement operation and each node represents the resulting
perturbed text. While word replacements involving synonyms, represented by the green color, are
desirable, those involving antonyms (red) are not.

Alzantot et al. (2018) and Jin et al. (2019) both use a counter-fitted GloVe word embedding
(Mrksic et al., 2016) to find synonyms while Ren et al. (2019) and Zang et al. (2020) use lexical
knowledge bases such as WordNet (Miller, 1995) and HowNet (Dong et al., 2010). Recently, Garg
and Ramakrishnan (2020), Li et al. (2020), and Li et al. (2021) have proposed using BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019) masked language models to generate replacements
that are more grammatically coherent.

However, it is possible that undesirable words are proposed as synonyms for replacements.
Therefore, many works also use various constraints alongside their replacement strategy to filter
out the bad replacements. For example, when considering replacing word xi with its substitute x0

i,
both Alzantot et al. (2018) and Jin et al. (2019) filters out x0

i if the cosine similarity between word
embedding of xi and x

0
i is below a certain minimum value. Additionally, Jin et al. (2019) uses

cosine similarity between sentence encodings of original text x and perturbed text x0 (obtained
using Universal Sentence Encoder (Cer et al., 2018)) to measure semantic similarity between x

and x
0.

2.2.4 Adversarial Attack as Combinatorial Optimization
So far, we have discussed how we can perturb a given text by replacing a word with its synonym.
However, a single word replacement might not be sufficient to flip the model’s prediction, meaning
that we have to consider a combination of multiple word replacements.

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 13

The different combinations of word replacements can be expressed as a tree shown in Figure 2.2
where each edge represents a specific word replacement. If a given text consists of n words and
each word has at max m potential replacements, then we have total of O(nm) options as the first
word replacement. If we are to repeat replacement for each word, then the complexity of the total
number of possible x

0 is O((nm)n). While we can expect the actual solution space to be smaller
due to constraints that we place to limit how much we can change the text, the solution space is
still too big to perform a brute-force search. Therefore, a heuristic search algorithm is necessary
to find the set of word replacement that will achieve our desired outcome3.

Now, let us attempt to formally define the problem of generating adversarial example x
0 given

input text x 2 X and its label y 2 {1, . . . , K} using a word replacement strategy.

Let the set of all possible single word replacements be defined as

A = {(i, x0
i,j)}

n,m
i=1,j=1 (2.4)

where each (i, x0
i,j) 2 A means replacing the i

th word of x with its j th substitute x
0
i,j .

Let T (x) denote the set of all the possible potential x0
2 X that can be generated via any set of

word replacements {a1, . . . , aN} 2 2A. If we are to construct a combinatorial tree like Figure 2.2,
T (x) corresponds to all the possible nodes that exist in our tree.

For constraints, let us represent them as Boolean functions C1, . . . , Cc where each Cj(x, x0) =
True if x and x

0 satisfies the constraint Cj .

Then, we can define the set of all potential adversarial examples x0 as the following:

S(x) = {x
0
2 T (x) |

ĉ

j=1

Cj(x, x
0)} (2.5)

Finding a particular x0
2 S(x) is therefore equivalent to finding the set of word replacements

{a1, . . . , aN} 2 2A such that it produces x0.

For targeted attacks, our goal is to find x
0
2 S(x) such that F (x0) = yk where yk is our desired

label. One way to achieve this is to instead solve the following combinatorial optimization
problem:

minx02S(x) L(✓, x0
, yk)

subject to F (x0) = yk
(2.6)

3Note that while we have so far concerned ourselves with word replacements, insertions and deletions will lead to
an even bigger solution space

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 14

Since L(✓, x0
, yk) is typically cross-entropy loss for text classification tasks, this is equivalent

to maximizing P (yk|x0; ✓), which is the model’s confidence of label yk given x
0 and network

parameter ✓.

For untargeted attacks, we want to find x
0
2 S(x) such that F (x0) 6= y where y is the original

label of x. Similar to targeted attacks, we can also try to solve the following problem:

maxx02S(x) L(✓, x0
, y)

subject to F (x0) 6= y
(2.7)

To maximize the loss, we want to minimize P (y|x0; ✓).

2.2.5 TextAttack Framework
We can see that generating adversarial examples for NLP models involves many different compo-
nents, such as a word replacement strategy, constraints to filter bad perturbations, and a search
algorithm to find the optimal set of word replacements. Now, we formally define these components
using the TextAttack framework (Morris et al., 2020a). In TextAttack, an adversarial
attack is compose of a goal function, a set of constraints, a transformation, and a search method.
Since we use TextAttack to implement adversarial attacks and adversarial training in this work,
we will describe adversarial attacks using the four-component framework from now on.

Goal Function

Goal function represents the objective function that we aim to maximize as part of our optimiza-
tion problem. For targeted attacks with yk as the target label, the goal function is P (yk|x0; ✓);
for untargeted attacks, the goal function is 1 � P (y|x0; ✓) (which is equivalent to minimizing
P (y|x0; ✓)).

Transformation

Transformation represents the method used to perturb the text. For word replacement, it is
equivalent to the method used to find synonyms for each words.

Constraints

For original text x and perturbed text x0, constraints determine if x0 preserves the ground truth and
fluency of x well enough to be considered as an adversarial example.

CHAPTER 2. ADVERSARIAL ATTACKS IN NLP 15

Search Method

Search method is the heuristic search algorithm used to solve the optimization problem. Generally,
search methods attempt to solve the problem by first perturbing the current text with the given
transformation and constraints and then evaluating the fitness of resulting x

0’s using the goal
function. Then it repeats the process until we obtain x

0 that meets our desired conditions (e.g.
F (x0) = yk or F (x0) 6= y) or until we run out of ways to perturb the text. Also, we can force
the search method to end earlier by setting a maximum limit to the number of times the search
method can query the victim model. This maximum limit is known as query budget.

Chapter 3

Searching for a Search Method

To perform adversarial training, we first need to come up with the adversarial attack that is used
to generate adversarial examples. Since we would have to generate adversarial examples on the
fly within the training loop, two key criteria one must consider when choosing the appropriate
adversarial attack is its speed and how successfully it can generate adversarial examples. While
goal function, constraints, transformation, and search method are all factors that affect the two
criteria, search method plays an especially important role as it controls the natural trade-off
between speed and capacity by determining how thoroughly we search for the solution. The
more exhaustively we search, the slower our attack would be, but higher the chances of finding a
solution to the underlying combinatorial optimization problem.

Therefore, the first step to constructing the desired adversarial attack is to choose which search
method to use. Recent works have proposed a wide variety of search algorithms to generate
adversarial examples. Alzantot et al. (2018) proposed a genetic algorithm to search for the optimal
perturbations while Jin et al. (2019) and Ren et al. (2019) proposed a greedy search algorithm that
replaces words one by one in order of descending importance. More recently, Zang et al. (2020)
proposed a particle swarm optimization (PSO) algorithm to exhaustively search the perturbation
space.

However, when it comes to comparing the different search strategies, the literature includes
a mixture of incomparable and unclear results since studies often fail to consider the other
two necessary primitives in the search process: the search space (choice of transformation and
constraints) and the search budget. Past works that propose new search algorithms often also
propose a slightly altered search space by proposing either new transformations or new constraints.
When new search algorithms are benchmarked in a new search space, they cannot be easily

16

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 17

compared with search algorithms from other attacks. For example, Jin et al. (2019) compares its
TextFooler method against Alzantot et al. (2018)’s method without accounting for the fact
that TextFooler uses the Universal Sentence Encoder (Cer et al., 2018) to filter perturbed
text while Alzantot et al. (2018) uses Google 1 billion words language model (Chelba et al.,
2013).

The lack of a consistent benchmark on search algorithms has hindered the use of adversarial
examples to understand and to improve NLP models. We do note that Ren et al. (2019) and Zang
et al. (2020) do provide comparisons where the search spaces are consistent. However, these
works consider a small number of search algorithms as baseline methods, and fail to provide a
comprehensive comparison of methods proposed in the literature.

In this section, we benchmark the various search algorithms proposed in literature and perform
fine-grained analysis of three elements relevant to search: search algorithm, search space, and
search budget. In the process, we design a new greedy search algorithm that uses gradients to
determine the order of words to replace. Our results show that this algorithm is the best search
method for adversarial training due to its speed and competitive attack success rate.

3.1 Background

3.1.1 Search Algorithms

Search Algorithm Deterministic? Hyperparameters Num. Queries
Beam Search (Ebrahimi et al., 2017) 3 b (beam width) O(b ⇤ n2

⇤m)
Greedy [Beam Search with b=1] 3 – O(n2

⇤m)
Greedy w. Word Importance Ranking (Gao
et al., 2018; Jin et al., 2019; Ren et al.,
2019)

3 – O(n ⇤m)

Genetic Algorithm (Alzantot et al., 2018) 7 p (population size),
g (number of itera-
tions)

O(g ⇤ p ⇤m)

Particle Swarm Optimization (Zang et al.,
2020)

7 p (population size),
g (number of itera-
tions)

O(g ⇤ p ⇤ n ⇤m)

Table 3.1: Different search algorithms proposed for NLP attacks. n is the number of words in the
input. m is the maximum number of transformation options for a given input.

In this section, we will briefly describe the five different types of search algorithms that we have
selected for our benchmark. Table 3.1 shows the time complexities of each algorithm with respect

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 18

to the length of input x and the maximum number of replacements available for each word.

Beam Search For given input x, all the possible perturbed texts x0 generated by substituting
each word xi are scored using the goal function. Then, the top b texts are kept (b is called the
”beam width”) while the rest are discarded. This process is repeated by further perturbing each of
the top b perturbed texts to generate the next set of candidates before aggregating them to identify
the next top b texts. We stop once we find a solution.

Greedy Search This is equivalent to beam search where b = 1. We take the best x0 among all
the possible perturbations, and repeat until we succeed or run out of possible perturbations.

Greedy with Word Importance Ranking (WIR) Words (x1, . . . , xn) of x are ranked accord-
ing to some importance function. Then, in order of descending importance, word xi is substituted
with x

0
i that maximizes the scoring function until the goal is achieved, or all words have been

perturbed. This is different from beam search or greedy search as we only consider one word to
replace at each step. We experiment with four different ways to determine word importance:

• UNK: Each word’s importance is determined by how much the heuristic score changes when
the word is substituted with an UNK token (Gao et al., 2018).

• DEL: Each word’s importance is determined by how much the heuristic score changes when
the word is deleted from the original input (Jin et al., 2019).

• PWWS: Each word’s importance is determined by multiplying the change in score when the
word is substituted with an UNK token with the maximum score gained by perturbing the
word (Ren et al., 2019).

• Gradient: Similar to how Wallace et al. (2019) visualize saliency of words for expla-
nation, each word’s importance is determined by calculating the gradient of the loss with
respect to the word1 and taking its norm. This method has not been explored by previous
works.

We test an additional scheme, which we call RAND, as an ablation study. Instead of perturbing
words in order of their importance, RAND perturbs words in a random order.

Genetic Algorithm We implement the genetic algorithm of Alzantot et al. (2018). At each
iteration, each member of the population is perturbed by randomly choosing one word and picking
the best x0 gained by perturbing it. Then, crossover occurs between members of the population,
with preference given to the more successful members. The algorithm is run for a fixed number of

1For sub-word tokenization scheme, we take average over all sub-words constituting the word.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 19

iterations unless it succeeds in the middle. Following Alzantot et al. (2018), the population size
was 60 and the algorithm was run for at maximum 20 iterations.

Particle Swarm Optimization We implement the particle swarm optimization (PSO) algorithm
of Zang et al. (2020). At each iteration, each member of the population is perturbed by first
generating all potential x0 obtained by substituting each xi and then sampling one x

0. Each
member is also crossovered with the best perturb text previously found for the member (i.e. local
optimum) and the best perturb text found among all members (i.e. global optimum). Following
Zang et al. (2020), the population size is set to 60 and the algorithm was run for a maximum of 20
iterations.

Our genetic algorithm and PSO implementations have one small difference from the original
implementations. The original implementations contain crossover operations that further perturb
the text without considering whether the resulting text meets the defined constraints. In our
implementation, we check if the text produced by these subroutines satisfies our constraints to
ensure a consistent search space.

3.1.2 Search Space
Recall that our search algorithm searches within the set of all potential adversarial examples
defined by Equation 2.5 to find the x

0 that changes the model prediction in the desired way.

We can see that the search space is defined by both our choice of transformation and constraints.
In this section, we explain the word replacement strategies and constraints used for benchmark-
ing.

Transformations

• Counter-fitted Word Embedding (Mrksic et al., 2016): For a given word xi that we want
to replace, we take its top N nearest neighbors in the counter-fitted GloVe (Pennington
et al., 2014) embedding space as its synonyms. We use counter-fitted embeddings proposed
by Mrksic et al. (2016) instead of vanilla GloVe embeddings because counter-fitting pushes
synonyms to be closer to one another in the embedding space while keeping antonyms
farther apart. Use of this transformation was proposed originally in Alzantot et al. (2018).

• WordNet (Miller, 1995): WordNet is a lexical knowledge base that maps the relationships
between English words, including synonyms. For given word xi, we replace it with
synonyms found in WordNet.

• HowNet (Dong et al., 2010): Similar to WordNet, HowNet is a knowledge base of sememes

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 20

in both Chinese and English.

Constraints

• Word Embedding Similarity: When we use counter-fitted word embeddings to find
synonyms, the cosine similarity between word embeddings of the original word xi and its
replacement x0

i must be above a certain minimum value.

• Part-of-speech (POS) Consistency: To preserve fluency, we require that the two words
being swapped have the same part-of-speech. This is determined by a part-of-speech tagger
provided by Flair (Akbik et al., 2018), an open-source NLP library.

• BERTScore (Zhang* et al., 2020): We require that the F1 BERTScore between original
text x and perturbed text x0 meet some minimum threshold value.

• Universal Sentence Encoder Similarity (Cer et al., 2018): We require that the angular
similarity between the sentence embeddings of x and x

0 meet some minimum threshold.

For word embedding similarity, BERTScore, and USE similarity, we need to set the minimum
threshold value. We set all three values to be 0.9 based on the observation reported by Morris
et al. (2020b) that high threshold values encourages strong semantic similarity. We do not apply
word embedding similarity constraint for HowNet and WordNet transformations because it is
not guaranteed that we can map the substitute words generated from the two sources to a word
embedding space. We can also assume that the substitute words are semantically similar to the
original words since they originate from a curated knowledge base.

Lastly, for all attacks carried out, we do not allow perturbing a word that has already been
perturbed and we do not perturbed pre-defined stop words.

3.2 Benchmark Setup

3.2.1 Search Spaces
Table 3.2 shows three search spaces we use to benchmark the search algorithms.

3.2.2 Victim Models
We attack BERT-base (Devlin et al., 2018) and LSTM (Hochreiter and Schmidhuber, 1997)
models trained on three different datasets:

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 21

Transformation Constraints
1 Counter-fitted GloVe

Word Embedding
Word embedding similarity,
BERTScore, POS consistency

2 HowNet BERTScore, POS consistency
3 WordNet USE similarity, POS consis-

tency

Table 3.2: The three search spaces in our benchmarking.

• Yelp polarity reviews (Zhang et al., 2015) (sentiment classification)

• Movie Reviews (MR) (Pang and Lee, 2005) (sentiment classification)

• Stanford Natural Language Inference (SNLI) (Bowman et al., 2015) (textual entailment).

For Yelp and SNLI dataset, we attack 1000 samples from the test set, and for MR dataset, we
attack 500 samples. Language of all three datasets is English.

3.2.3 Evaluation Metrics
We use attack success rate (# of successful attacks

of total attacks) to measure how successful each search algorithm is
at attacking the victim model.

To measure the runtime of each algorithm, we use the average number of queries to the victim
model as a proxy.

To measure the quality of adversarial examples generated by each algorithm, we use three
metrics:

1. Average percentage of words perturbed

2. Universal Sentence Encoder (Cer et al., 2018) similarity between x and x
0

3. Percent change in perplexities of x and x
0 (using GPT-2 (Radford et al., 2019))

3.3 Results

3.3.1 Evaluation of Adversarial Examples
Table 3.4 shows the average percentage of words perturbed, average Universal Sentence Encoder
similarity score, and average percent change in perplexity for all experiments.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 22

Model Dataset Search Method GLOVE Word Embedding HowNet WordNet
A.S. % Avg # Queries A.S. % Avg # Queries A.S. % Avg # Queries

BERT

Yelp

Greedy (b=1) 39.5 810 93.2 3668 63.2 1480
Beam Search (b=4) 42.0 2857 95.0 10,766 65.9 5033
Beam Search (b=8) 42.7 5546 95.6 19,810 67.3 9674

WIR (UNK) 33.2 187 92.3 344 55.3 232
WIR (DEL) 33.7 189 91.9 364 54.3 238

WIR (PWWS) 35.3 259 95.1 1300 58.2 395
WIR (Gradient) 33.2 55 77.6 189 53.7 94

WIR (RAND) 29.9 61 72.3 279 53.9 118
Genetic Algorithm 37.6 5098 89.3 11,015 62.1 8257

PSO 47.2 20,279 96.6 62,346 74.9 28,971

MR

Greedy (b=1) 20.6 35 78.6 214 59.4 69
Beam Search (b=4) 21.4 95 80.6 392 64.6 170
Beam Search (b=8) 21.8 175 81.2 632 65.8 303

WIR (UNK) 17.8 28 53.6 58 55.6 40
WIR (DEL) 17.0 29 53.6 59 54.0 40

WIR (PWWS) 21.0 41 73.6 205 58.2 71
WIR (Gradient) 19.8 14 56.6 46 53.4 24

WIR (RAND) 17.6 12 48.8 49 53.4 24
Genetic Algorithm 21.8 516 80.0 1670 65.6 1063

PSO 21.8 2413 82.4 2039 65.4 2078

SNLI

Greedy (b=1) 19.8 7 87.3 77 49.6 19
Beam Search (b=4) 20.1 12 89.2 97 52.0 33
Beam Search (b=8) 20.1 18 89.4 125 52.6 49

WIR (UNK) 19.3 22 85.1 47 47.3 30
WIR (DEL) 18.5 22 84.8 47 46.7 30

WIR (PWWS) 19.8 26 86.9 116 49.1 42
WIR (Gradient) 18.8 5 68.4 25 46.9 10

WIR (RAND) 18.3 5 82.6 30 46.2 11
Genetic Algorithm 20.0 78 89.0 477 52.2 250

PSO 20.1 1248 89.1 398 51.9 975

LSTM

Yelp

Greedy (b=1) 53.0 682 98.2 2611 80.0 982
Beam Search (b=4) 53.2 2313 98.5 7347 81.7 3277
Beam Search (b=8) 53.5 4516 98.6 13,643 82.3 6240

WIR (UNK) 49.3 133 95.2 222 75.8 204
WIR (DEL) 49.1 181 95.2 230 75.3 205

WIR (PWWS) 51.2 247 97.3 1212 77.8 361
WIR (Gradient) 49.3 56 90.0 215 75.3 97

WIR (RAND) 47.4 57 88.3 217 74.6 98
Genetic Algorithm 51.3 5212 98.3 7408 78.5 7245

PSO 54.9 17,647 98.8 34,659 84.4 17,145

MR

Greedy (b=1) 38.4 29 87.6 187 74.2 59
Beam Search (b=4) 38.6 71 88.6 290 75.6 131
Beam Search (b=8) 38.6 127 88.8 427 76.0 222

WIR (UNK) 35.8 27 81.0 51 72.0 36
WIR (DEL) 36.2 27 80.2 50 72.2 35

WIR (PWWS) 37.6 40 86.2 203 73.4 68
WIR (Gradient) 35.4 10 76.6 36 72.8 18

WIR (RAND) 34.4 11 68.0 40 71.8 22
Genetic Algorithm 39.0 375 88.6 949 76.0 730

PSO 39.0 1592 89.0 795 76.6 1179

Table 3.3: Comparison of search methods across three datasets. Models are BERT-base and
LSTM fine-tuned for the respective task. “A.S.%” represents attack success rate and “Avg #
Queries” represents the average number of queries made to the model per successful attacked
sample.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 23

Model Dataset Search Method GLOVE Word Embedding HowNet WordNet
Avg P.W. % Avg USE Sim �% Perplexity Avg P.W. % Avg USE Sim �% Perplexity Avg P.W. % Avg USE Sim �% Perplexity

BERT

Yelp

Greedy (b=1) 3.41 0.948 21.5 2.52 0.945 22.8 4.76 0.943 49.9
Beam Search (b=4) 3.26 0.949 20.7 2.45 0.946 22.0 4.49 0.944 46.7
Beam Search (b=8) 3.20 0.950 20.1 2.42 0.947 21.4 4.46 0.945 46.4

WIR (UNK) 6.48 0.930 43.5 4.73 0.922 42.3 9.02 0.924 92.1
WIR (DEL) 6.85 0.928 47.2 5.10 0.919 46.4 9.38 0.923 98.8

WIR (PWWS) 4.36 0.942 27.3 3.11 0.94 28.1 6.10 0.937 66.1
WIR (Gradient) 6.16 0.933 37.8 5.58 0.913 44.5 9.10 0.925 86.4

WIR (RAND) 8.18 0.920 59.1 7.46 0.898 74.6 11.16 0.914 124.8
Genetic Algorithm 5.06 0.936 33.9 4.21 0.928 42.7 6.70 0.932 77.3

PSO 6.61 0.929 47.3 6.08 0.913 62.3 9.67 0.922 111.0

MR

Greedy (b=1) 7.25 0.900 31.8 6.14 0.887 36.5 10.26 0.864 102.8
Beam Search (b=4) 7.22 0.901 31.4 6.10 0.887 36.1 10.10 0.866 97.9
Beam Search (b=8) 7.22 0.901 31.4 6.10 0.887 36.1 10.05 0.866 101.6

WIR (UNK) 9.42 0.884 42.3 7.77 0.866 48.0 14.14 0.845 141.2
WIR (DEL) 9.62 0.882 46.4 7.69 0.865 46.1 14.60 0.840 146.4

WIR (PWWS) 7.36 0.898 33.8 6.22 0.884 37.6 10.80 0.865 111.1
WIR (Gradient) 8.61 0.892 38.1 8.25 0.862 40.8 14.58 0.844 123.2

WIR (RAND) 10.1 0.881 51.4 9.93 0.846 69.5 17.28 0.827 149.4
Genetic Algorithm 8.18 0.895 35.8 6.41 0.885 37.8 12.30 0.854 124.5

PSO 8.71 0.894 39.0 6.46 0.884 38.7 16.08 0.839 187.8

SNLI

Greedy (b=1) 5.59 0.915 37.8 5.02 0.889 31.7 6.53 0.903 55.9
Beam Search (b=4) 5.59 0.916 37.8 5.02 0.889 31.6 6.50 0.903 55.7
Beam Search (b=8) 5.59 0.916 37.8 5.02 0.889 31.6 6.50 0.903 55.9

WIR (UNK) 6.56 0.911 42.8 5.65 0.887 33.4 8.03 0.899 65.5
WIR (DEL) 6.77 0.91 44.0 5.81 0.887 34.2 8.22 0.898 67.6

WIR (PWWS) 5.63 0.915 37.8 5.05 0.89 30.5 6.59 0.906 54.5
WIR (Gradient) 6.57 0.911 41.6 5.9 0.881 37.7 8.06 0.899 65.1

WIR (RAND) 7.06 0.909 47.7 6.19 0.884 42.9 8.65 0.895 74.6
Genetic Algorithm 5.71 0.915 38.5 5.14 0.888 32.7 6.73 0.902 58.3

PSO 5.76 0.915 38.6 5.14 0.888 32.5 6.94 0.902 58.5

LSTM

Yelp

Greedy (b=1) 4.04 0.943 28.9 2.47 0.948 23.9 4.58 0.946 52.1
Beam Search (b=4) 4.01 0.942 28.9 2.47 0.949 23.7 4.53 0.946 51.9
Beam Search (b=8) 4.01 0.943 28.7 2.44 0.949 23.0 4.51 0.946 51.3

WIR (UNK) 5.83 0.933 42.4 3.51 0.935 34.4 7.22 0.935 75.6
WIR (DEL) 5.86 0.932 41.1 3.61 0.936 33.3 7.22 0.935 75.4

WIR (PWWS) 4.57 0.940 32.6 2.58 0.947 23.9 5.14 0.944 57.0
WIR (Gradient) 7.05 0.926 52.2 5.25 0.916 50.7 8.42 0.929 87.9

WIR (RAND) 7.28 0.925 53.6 6.33 0.906 69.5 9.40 0.925 102.4
Genetic Algorithm 5.94 0.933 42.8 3.73 0.930 41.9 6.37 0.936 80.9

PSO 6.70 0.929 47.3 5.03 0.924 58.7 7.98 0.93 95.2

MR

Greedy (b=1) 7.19 0.899 33.5 5.96 0.884 37.2 10.21 0.871 100.6
Beam Search (b=4) 7.19 0.899 33.7 5.96 0.884 37.6 10.03 0.871 98.7
Beam Search (b=8) 7.19 0.899 34.0 5.96 0.884 37.6 10.00 0.871 97.4

WIR (UNK) 8.99 0.889 41.7 7.22 0.874 42.9 12.99 0.856 104.5
WIR (DEL) 9.17 0.889 44.5 7.21 0.874 42.2 13.03 0.856 107.5

WIR (PWWS) 7.45 0.898 33.7 6.01 0.884 37.1 10.50 0.871 87.9
WIR (Gradient) 8.73 0.892 41.4 7.33 0.870 40.8 13.12 0.859 104.1

WIR (RAND) 10.60 0.880 54.0 9.31 0.853 57.7 16.05 0.842 148.2
Genetic Algorithm 8.02 0.896 36.4 6.36 0.881 39.5 11.98 0.860 120.2

PSO 8.41 0.893 40.2 6.32 0.882 40.8 13.90 0.854 130.0

Table 3.4: Quality evaluation of the adversarial examples produced by each search algorithm.
”Avg P.W. %” means average percentage of words perturbed, ”Avg USE Sim” means average
USE angular similarity, and ”�% Perplexity” means percent change in perplexities.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 24

Figure 3.1: Number of queries vs. length of input text. Similar figure for LSTM models are
available in appendix A.1.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 25

Figure 3.2: Attack success rate by query budget for each search algorithm and dataset. Similar
figure for LSTM models are available in appendix A.1.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 26

3.3.2 Attack Success Rate Comparison
Table 3.3 shows the attack success rate and the average number of queries of each search algorithm
when it is allowed to query the victim model an unlimited number of times. Word importance
ranking methods make far fewer queries than beam or population-based search while retaining
over 60% of their attack success rate in each case. Beam search (b=8) and PSO are the two
most successful search algorithms in every model-dataset combination. However, PSO is more
query-intensive. On average, PSO requires 6.3 times2 more queries than beam search (b=8), but
its attack success rate is only on average 1.2% higher than that of beam search (b=8).

3.3.3 Runtime Analysis
Using number of queries to the victim model as proxy for total runtime, Figure 3.1 illustrates
how the number of words in the input affects runtime for each algorithm. We can empirically
confirm that beam and greedy search algorithms scale quadratically with input length, while
word importance ranking scales linearly. For shorter datasets, this did not make a significant
difference. However, for the longer Yelp dataset, the linear word importance ranking strategies
are significantly more query-efficient. These observations match the expected runtimes of the
algorithms described in Table 3.1.

For shorter datasets, genetic and PSO algorithms are significantly more expensive than the
other algorithms as the size of population and number of iterations are the dominating factors.
Furthermore, PSO is observed to be more expensive than genetic algorithm.

3.3.4 Performance under Query Budget
In a realistic attack scenario, the attacker must conserve the number of queries made to the model.
To see which search method was most query-efficient, we calculated the search methods’ attack
success rates under a range of query budgets. Figure 3.2 shows the attack success rate of each
search algorithm as the maximum number of queries permitted to perturb a single sample varies
from 0 to 20,000 for Yelp dataset and 0 to 3000 for MR and SNLI.

For both Yelp and MR datasets, the linear (word importance ranking) methods show relatively
high success rates within just a few queries, but are eventually surpassed by the slower, quadratic
methods (greedy and beam search). The genetic algorithm and PSO lag behind. For SNLI, we see
exceptions as the initial queries that linear methods make to determine word importance ranking
does not pay off as other algorithms appear more efficient with their queries. This shows that

2This is with one outlier (BERT-SNLI with GLOVE word embedding) ignored. If it is included, the number
jumps to 10.8.

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 27

the most effective search method depends on both on the attacker’s query budget and the victim
model. An attacker with a small query budget may prefer a linear method, but an attacker with a
larger query budget may aim to choose a quadratic method to make more queries in exchange for
a higher success rate.

Lastly, we can see that both Gradient and RAND ranking methods are initially more successful
than UNK and DEL methods, which is due to the overhead involved in calculating word importance
ranking for UNK and DEL – for both methods, each attack needs to make O(n) queries to the
victim model to determine the importance of each word. Still, UNK and DEL outperform RAND

at all but the smallest query budgets, indicating that the order in which words are replaced do
matter.

3.3.5 Quality of Adversarial Examples
We selected adversarial examples whose original text x was successfully attacked by all search
algorithms for quality evaluation. Full results of quality evaluation are shown in Table 3.4.
We can see that beam search algorithms consistently perturb the lowest percentage of words.
Furthermore, we see that a fewer number of words perturbed generally corresponds with higher
average USE similarity between x and xadv and a smaller increase in perplexity. This indicates
that the beam search algorithms generate higher-quality adversarial examples than other search
algorithms.

3.4 Discussions

3.4.1 Search Method for Adversarial Training
Across all nine scenarios, we can see that choice of search algorithm can have a modest impact on
the attack success rate. Query-hungry algorithms such as beam search, genetic algorithm, and PSO
perform better than fast WIR methods. Out of the WIR methods, PWWS performs significantly
better than UNK and DEL methods but requires far more queries; in every case, we see a clear
trade-off of performance versus speed.

With this in mind, one might wonder about what the best way is to choose a suitable search
method for adversarial training. The main factor to consider is the length of the input text. If the
input texts are short (e.g. sentence or two), beam search is certainly the appropriate choice: it can
achieve a high success rate without sacrificing too much speed. However, in most cases, our input
can consist of several sentence (e.g. Yelp datasets). In such cases, WIR methods are the practical
choices. For instance, we can see from our results that the relative difference in attack success

CHAPTER 3. SEARCHING FOR A SEARCH METHOD 28

rate between Gradient method and PSO algorithm is at maximum 30%, which is acceptable
given that Gradient is approximately 300 times faster than PSO.

Out of five WIR methods, Gradient appears to be the best algorithm for adversarial training
since it works well with limited query budget. Other WIR method such as UNK and DEL require
linear number of additional queries to measure the importance of each word, but Gradient
simply requires one backward pass to calculate the gradient of each word.

3.4.2 Effectiveness of PWWS Word Importance Ranking
Across all tasks, the UNK and DEL methods perform about equivalently, while PWWS performs
significantly better than UNK and DEL. In fact, PWWS performs better than greedy search in two
cases. However, this gain in performance does come at a cost: PWWS makes far larger number of
queries to the victim model to determine the word importance ranking. Out of the 15 experiments,
PWWS makes more queries than greedy search in 8 of them. Yet, on average, greedy search
outperforms PWWS by 2.5%.

Our results question the utility of the PWWS search method. PWWS neither offers the performance
that is competitive when compared to greedy search nor the query efficiency that is competitive
when compared to UNK or DEL.

3.4.3 Effectiveness of Genetic Algorithm
The genetic algorithm proposed by Alzantot et al. (2018) uses more queries than the greedy-based
beam search (b=8) in 11 of the 15 scenarios, but only achieves a higher attack success rate in
1 scenario. Thus it is generally strictly worse than the simpler beam search (b=8), achieving a
lower success rate at a higher cost.

Chapter 4

Adversarial Training for NLP Models

In this chapter, we take a closer look at how performing adversarial training with adversarial
examples affects the model’s robustness, standard accuracy, cross-domain generalization, and
interpetability. To do so, we use our findings from the previous chapter and methods proposed from
literature to build two adversarial attacks that are optimized for adversarial training. Specifically,
we build faster versions of TextFooler (Jin et al., 2019) and BAE (Garg and Ramakrishnan,
2020) attacks by replacing the search algorithm with greedy search with gradient-based word
importance ranking and replacing the Universal Sentence Encoder (Cer et al., 2018) with a
DistilBERT (Sanh et al., 2019) encoder trained on semantic textual similarity (STS) task. We
also address some technical challenges to adversarial training that arise to due to the complexity
of adversarial attacks, including our choice to perform epoch-level generation of adversarial
examples instead of minibatch-level generation.

We train BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) models on IMDB (Maas
et al., 2011), MR (Pang and Lee, 2005), and Yelp (Zhang et al., 2015) datasets. Our findings are
as following:

• Adversarial training can help improve adversarial robustness, even against attacks that were
not used to trained the model.

• Adversarial training can provide a regularization effect and improve the model’s standard
accuracy and cross-domain generalization.

• Using LIME (Ribeiro et al., 2016), we demonstrate that adversarial training can improve
the model’s interpretability.

29

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 30

4.1 Background

4.1.1 Adversarial Training
Adversarial training was first proposed by Goodfellow et al. (2014) as a defense against adversarial
attacks. The model was trained on both clean1 and adversarial examples with the following
objective loss function:

L̃(✓, x, y) = ↵L(✓, x, y) + (1� ↵)L(✓, x+ " ⇤ sign(rL(✓, x, y)), y) (4.1)

where L(✓, x, y) represents the loss function for input image x and label y given model with
parameter ✓ and x+ " ⇤ sign(rL(✓, x, y)) represents the adversarial example that is generated via
FGSM (Goodfellow et al., 2014). ↵ is used to weigh the two losses; in Goodfellow et al. (2014),
↵ is set to 0.5, weighing the two losses equally.

Madry et al. (2018) proposed another formulation where only adversarial examples are used to
further train the model:

argmin
✓

E(x,y)⇠D[max
�2S

L(✓, x+ �, y)] (4.2)

The inner maximization problem finds the adversarial example while the outer minimization
problem trains the model. Here, the perturbation � is found using projected gradient descent
(PGD) attack (Madry et al., 2018), which can be interpreted as a iterative version of FGSM that
performs multiple gradient descent operations to find �.

4.2 Method
In this section, we present the training objective for adversarial training and the algorithm for
adversarial training. We also discuss the specific adversarial attacks used to train the models.

4.2.1 Training Objective
We observed that using a mix of clean and adversarial examples leads to better performance - as
suggested by Goodfellow et al. (2014); Kurakin et al. (2016a) - instead of using only adversarial
examples (Madry et al., 2018). Therefore, we aim to minimize both the loss on the original
training dataset and the loss on the adversarial examples.

Let L(✓, x, y) represent the loss function for input text x and label y and let A(✓, x, y) be the
1Clean examples refer to the examples from the original training set.

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 31

adversarial attack that produces adversarial example xadv. Then, our training objective is as
following:

argmin
✓

E(x,y)⇠D[↵L(✓, x, y) + (1� ↵)L(✓, A(✓, x, y), y)] (4.3)

↵ here is again used to weigh the two losses. In our work, we simply set ↵ = 0.5, weighing the
two loss equally. Tuning of the optimal ↵ is left for future work.

4.2.2 Training Algorithm in Practice
In practice, it is computationally difficult to generate adversarial examples between every mini-
batch update. BERT and RoBERTa models require large amounts of GPU memory to store the
computation graph during training and an adversarial attack also typically requires other neural
networks as its sub-components (e.g. sentence encoders, masked language models). As a result, it
is impossible to run adversarial attacks and train the model in the same GPU. We instead maximize
GPU utilization by first generating adversarial examples before every epoch and then using them
to train the model.

Also, we choose to first train the model on just the original training set for a certain number of
epochs before training it on both clean and adversarial examples. This is to have the model learn
the rough decision boundaries before performing adversarial attacks. We observe that this works
better than training with adversarial examples from the start.

Lastly, instead of generating adversarial examples for every clean example in the training dataset,
we randomly sample a fixed portion of the dataset and use them to generate the adversarial
examples. This is primarily to reduce the runtime. For cases where the adversarial attack fails
to find an adversarial example, we skip them and instead sample more from the training dataset
to compensate for the skipped samples. For our experiments, we attack 20% of the training
dataset.

Algorithm 1 shows the training algorithm in detail. We run clean training for Nclean number of
epochs before performing Nadv epochs of adversarial training. Between line 6-13, we generate the
adversarial examples until we obtain � percentage of the training dataset. When multiple GPUs
are available, we use data parallelism to speed up the generation process. We also shuffle the
dataset before attacking to avoid attacking the same sample every epoch.

4.2.3 Fast Adversarial Attacks
We construct faster versions of TextFooler (Jin et al., 2019) and BAE (Garg and Ramakrish-
nan, 2020) attacks to generate adversarial examples. We call them Fast-TextFooler and

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 32

Algorithm 1 Adversarial Training
Require: Number of clean epochs Nclean, number of adversarial epochs Nadv, percentage of

dataset to attack �, attack A(✓, x, y), and training data D = {(x(i)
, y

(i))}ni=1, ↵ the smoothing
proportion of adversarial training

1: Initialize model ✓
2: for clean epoch= 1, . . . , Nclean do
3: Train ✓ on D

4: end for
5: for adversarial epoch= 1, . . . , Nadv do
6: Randomly shuffle D

7: Dadv {}

8: i 1
9: while |Dadv| < � ⇤ |D| and i  |D| do

10: x
(i)
adv A(✓, x(i)

, y
(i))

11: Dadv Dadv [{(x(i)
adv, y

(i))}
12: i i+ 1
13: end while
14: D

0
 D [Dadv

15: Train ✓ on D
0 with ↵ used to weigh the losses

16: end for

Fast-BAE , respectively. Both utilize the same goal function, constraints, and search method
but differ in transformation.

Transformation

1. Fast-Textfooler: Counter-fitted word embedding (Mrksic et al., 2016)

2. Fast-BAE: BERT masked language model (Devlin et al., 2018)

We use these two different transformations because they each prioritize different qualities when
proposing replacements. Counter-fitted word embeddings (Mrksic et al., 2016) are likely to
propose synonyms as replacements, but could produce an incoherent text as it does not take the
entire context into account. On the other hand, BERT masked language model is more likely
to propose replacement words that preserve grammatical and contextual coherency but fail to
preserve the semantics. For example, if we have text “the movie was good”, BERT masked
language model can, with high probability, replace the word “good” with its antonym “bad” since
both are suitable given the context; this can lead to false positive adversarial examples. Therefore,

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 33

by comparing the adversarial training results of the two different strategies, we can indirectly
learn more about which one generates higher quality adversarial examples.

Goal Function

In this work, we perform untargeted attack since they are generally easier than targeted attack.
We aim to maximize the following as our goal function:

1� P (y|x; ✓) (4.4)

where P (y|x; ✓) means the model’s confidence of label y given input x and parameters ✓.

Constraints

We use the following constraints for both attacks:

• Part-of-speech Consistency: To preserve fluency, we require that the two words being
swapped have the same part-of-speech. This is determined by a part-of-speech tagger
provided by Flair (Akbik et al., 2018), an open-source NLP library.

• DistilBERT Semantic Textual Similarity (STS) (Sanh et al., 2019): We require that
cosine similarity between the sentence encodings of original text x and perturbed text x0

meet minimum threshold value of 0.9. We use fine-tuned DistilBERT model provided by
Reimers and Gurevych (2019).

• Max modification rate: We allow only 10% of the words to be replaced. This limits us
from modifying the text too much and causing the semantics of the text to change.

Also, for Fast-TextFooler attack, we require that the word embeddings between original
text x and perturbed text x0 have minimum cosine similarity of 0.8.

For sentence encoding similarity, we used DistilBERT model instead of Universal Sentence
Encoder (USE) (Cer et al., 2018) because DistilBERT is small enough to fit in GPU memory
alongside the victim model and is faster than USE.

The threshold values for word embedding similarity and sentence encoding similarity were set
based on the recommendations by Morris et al. (2020b), which noted that high threshold values
encourages strong semantic similarity between the original text and the perturbed text.

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 34

Train Dev Test
IMDB 20k 5k 25k
MR 8.5k 1k 1k
Yelp 30k 10k 38k

Table 4.1: Overview of the datasets.

Search Method

Based on our results from the previous benchmarking study, we can see that greedy search with
gradient-based word importance ranking offers the fastest performance without sacrificing the
attack success rate too much. We therefore use gradient-based word importance ranking as the
search algorithm for our attacks. During training, we limit the search method to making only
200 queries to the victim model for faster generation of adversarial examples. For evaluation, we
increase the query budget to 2000 queries for a more extensive search.

4.3 Experiment

4.3.1 Datasets & Models
We chose IMDB (Maas et al., 2011), Movie Reviews (MR) (Pang and Lee, 2005), and Yelp
(Zhang et al., 2015) datasets for our experiment. For Yelp, instead of using the entire training set,
we sampled 30k examples for training and 10k for validation. While the three share the same
sentiment classification task, Yelp consists of business reviews while IMDB and MR consists of
movie reviews.

We trained BERT-base (Devlin et al., 2018) and RoBERTa-base (Liu et al., 2019) models
using the implementation provided by Wolf et al. (2020). All texts were tokenized up to the first
512 tokens and we trained the model for one clean epoch and three adversarial epochs. Adam
optimizer with weight decay of 0.01 (Loshchilov and Hutter, 2017) and learning rate of 5e�5
were used for training. Also, we used a linear scheduler with 500 warm-up steps for IMDB and
Yelp and 100 warm-up steps for MR. We performed three runs with random seeds for each model.
Average of the three runs are reported as the result.

4.3.2 Baselines
Adversarial training can be viewed as a data augmentation method where hard examples are added
to the training set. Therefore, besides just having models that are trained on clean adversarial

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 35

examples (i.e. “natural training”) as our baseline, we also compare our results to models trained
using more conventional data augmentation methods. We use SSMBA (Ng et al., 2020) and back-
translation2 (Xie et al., 2019) methods as our baselines as both have reported strong performance
on text classification tasks. We use these methods to generate approximately the same number of
new training examples as adversarial training.

4.4 Results

4.4.1 Adversarial Robustness
To evaluate the model’s adversarial robustness, we attack 1000 randomly sampled clean examples
from the test set and measure the attack success rate.

attack success rate =
of successful attacks

of total attacks

Tables 4.2 and 4.3 show the attack success rates of Fast-TextFooler attack and Fast-BAE
attack against the trained models. Note that the overall attack success rates appear fairly low
because we applied strict constraints to improve the quality of the adversarial examples (as
recommend by Morris et al. (2020b)). Still, we can see that for both attacks, adversarial training
using the same attack can decrease the attack success rate by up to 70%. What is more surprising
is that training the model using a different attack also led to a decrease in the attack success
rate. From Table 4.2, we can see that adversarial training using the Fast-BAE attack lowers
the attack success rate of Fast-TextFooler attack, while Table 4.3 shows that training with
Fast-TextFooler lowers the attack success rate of Fast-BAE attack.

Another surprising observation is that training with data augmentations methods like SSMBA
and backtranslation can lead to large improvements in robustness against both adversarial attacks.
However, in case of smaller datasets such as MR, data augmentation can also hurt robustness.

When we compare the attack success rates between BERT and RoBERTa models, we also see
an interesting pattern. BERT models tend to be more vulnerable to Fast-TextFooler attack
while RoBERTa model tends to be more vulnerable to Fast-BAE attack.

Lastly, we use attacks proposed from literature to evaluate the models’ adversarial robustness.
Table 4.4 shows the attack success rate of TextFooler (Jin et al., 2019), BAE (Garg and
Ramakrishnan, 2020), PWWS (Ren et al., 2019), and PSO (Zang et al., 2020) 3. Across three

2For backtranslation, we use English-to-German model and German-to-English model trained by Ng et al. (2019).
3These attacks were implemented using the TextAttack library (Morris et al., 2020a).

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 36

Model Method IMDB MR Yelp
Attack

Success % �%
Attack

Success % �%
Attack

Success % �%

BERT

Natural 42.9 - 20.9 - 25.4 -
Fast-TextFooler 12.7 -70.4% 13.2 -36.8% 11.5 -54.7%

Fast-BAE 34.5 -19.6% 18.9 -9.6% 21.0 -17.3%
SSMBA 29.5 -31.2% 21.1 1.0% 23.3 -8.3%

Backtranslation 33.1 -22.8% 19.2 -8.1% 24.0 -5.5%

RoBERTa

Natural 34.3 - 18.6 - 19.9 -
Fast-TextFooler 12.4 -63.7% 12.1 -34.9% 7.6 -61.8%

Fast-BAE 19.5 -43.0% 17.1 -8.1% 13.0 -34.7%
SSMBA 24.0 -29.9% 21.8 17.2% 19.3 -3.0%

Backtranslation 28.9 -15.6% 18.3 -1.6% 16.1 -19.1%

Table 4.2: Attack success rate of Fast-TextFooler attack. �% column represents the percent
change between natural training and the different training methods.

datasets and two models, we can see that both Fast-TextFooler and Fast-BAE lower the
attack success rate against all four attacks in all but four cases. The results for PWWS and PSO
are especially surprising since both use different transformations - WordNet (Miller, 1995) and
HowNet (Dong et al., 2010) - when carrying out the attacks.

4.5.1 Generalization
To evaluate how adversarial training affects the model’s generalization ability, we evaluate its
accuracy on the original test set (i.e. standard accuracy) and on an out-of-domain dataset (e.g. Yelp
dataset for model trained on IMDB dataset). In Table 4.5, we can see that in all cases, adversarial
training using Fast-TextFooler attack beats both natural training and data augmentation
methods in standard accuracy. Fast-TextFooler also improves cross-domain accuracy in at
least half the cases. On the other hand, adversarial training with Fast-BAE attack tends to hurt
both standard accuracy and cross-domain accuracy. This confirms the observations reported by Li
et al. (2021) and suggests that using a masked language model to generate adversarial examples
can lead to a trade-off between robustness and generalization. We do not see similar trade-off
with Fast-TextFooler .

4.5.2 Interpretability
We use LIME (Ribeiro et al., 2016) to generate local explanations for our models. For each
example, LIME approximates the local decision boundary by fitting a linear model over the

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 37

Model Method IMDB MR Yelp
Attack

Success % �%
Attack

Success % �%
Attack

Success % �%

BERT

Natural 76.6 - 37.7 - 47.1 -
Fast-TextFooler 61.7 -19.5% 33.2 -11.9% 42.5 -9.8%

Fast-BAE 48.3 -37.0% 24.7 -34.5% 27.9 -40.8%
SSMBA 59.6 -22.2% 36.2 -4.0% 44.8 -4.9%

Backtranslation 68.8 -10.2% 36.3 -3.7% 46.8 -0.6%

RoBERTa

Natural 81.5 - 40.9 - 53.2 -
Fast-TextFooler 69.8 -14.4% 38.4 -6.1% 45.2 -15.0%

Fast-BAE 37.0 -54.6% 28.5 -30.3% 25.8 -51.5%
SSMBA 57.0 -30.1% 43.1 5.4% 47.8 -10.2%

Backtranslation 74.3 -8.8% 41.1 0.2% 43.8 -17.7%

Table 4.3: Attack success rate of Fast-BAE attack. �% column represents the percent change
between natural training and the different training methods.

samples obtained by perturbing the example. To measure the faithfulness of the local explanations
obtained using LIME, we measure the area over perturbation curve (AOPC) (Samek et al., 2017;
Nguyen, 2018; Chen and Ji, 2020) which is defined as:

AOPC =
1

K + 1

KX

k=1

1

N

NX

i=1

f(x(i)
(0))� f(x(i)

(k)) (4.5)

where x
(i)
(0) represents example x

(i) with none of the words removed and x
(i)
(k) represents example

x
(i) with the top-k most important words removed. f(x) here represents the model’s confidence

of the target label y(i). Intuitively, AOPC measures how, on average, the model’s confidence
of the target label changes when we delete the top-k most important words determined by our
explanation method.

For each dataset, we randomly pick 1000 examples from the test set for evaluation, similar to
how we evaluate robustness. When running LIME to obtain our explanations, we generate 1000
perturbed samples for each instance. We set K = 10 for the AOPC metric.

Table 4.6 shows that across all datasets, BERT model trained using Fast-TextFooler attack
achieves higher AOPC than natural training. For RoBERTa models, the results are bit more varied.
Fast-TextFooler attack achieves higher AOPC score for IMDB and Yelp datasets, but lower
score for MR; for MR, adversarial training with Fast-BAE achieves the highest AOPC score.
Overall, we see that RoBERTA models are less interpretable than BERT models.

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 38

Adversarial Attack Model Training Method IMDB MR Yelp
Attack

Success % �%
Attack

Success % �%
Attack

Success % �%

TextFooler

BERT
Natural 85.0 - 91.6 - 55.9 -

Fast-TextFooler 66.0 -22.4% 90.6 -1.1% 57.9 3.6%
Fast-BAE 88.2 3.8% 89.0 -2.8% 67.7 21.1%

RoBERTa
Natural 95.2 - 94.4 - 74.5 -

Fast-TextFooler 82.4 -13.4% 91.0 -3.6% 68.7 -7.8%
Fast-BAE 72.9 -23.4% 88.6 -6.1% 71.7 -3.8%

BAE

BERT
Natural 60.5 - 52.6 - 37.8 -

Fast-TextFooler 46.7 -22.8% 51.5 -2.1% 34.4 -9.0%
Fast-BAE 52.4 -13.4% 43.8 -16.7% 31.3 -17.2%

RoBERTa
Natural 65.5 - 56.4 - 44.4 -

Fast-TextFooler 56.8 -13.3% 54.7 -3.0% 38.0 -14.4%
Fast-BAE 42.3 -35.4% 48.3 -14.4% 28.7 -35.4%

PWWS

BERT
Natural 87.5 - 82.1 - 67.9 -

Fast-TextFooler 70.9 -19.0% 80.4 -2.1% 65.4 -3.7%
Fast-BAE 87.1 -0.5% 81.3 -1.0% 72.2 6.3%

RoBERTa
Natural 96.6 - 83.8 - 77.9 -

Fast-TextFooler 84.4 -12.6% 81.9 -2.3% 73.1 -6.2%
Fast-BAE 73.5 -23.9% 79.8 -4.8% 70.7 -9.2%

PSO

BERT
Natural 43.8 - 81.6 - 40.3 -

Fast-TextFooler 16.5 -62.3% 73.2 -10.3% 26.4 -34.5%
Fast-BAE 29.9 -31.7% 75.4 -7.6% 34.4 -14.6%

RoBERTa
Natural 34.8 - 88.0 - 35.7 -

Fast-TextFooler 12.9 -62.9% 81.6 -7.3% 21.6 -39.5%
Fast-BAE 13.1 -62.4% 77.5 -11.9% 20.3 -43.1%

Table 4.4: Attack success rate of attacks from literature, including original TextFooler (Jin
et al., 2019), BAE (Garg and Ramakrishnan, 2020), PWWS (Ren et al., 2019), and PSO (Zang
et al., 2020). �% column represents the percent change between natural training and the different
training methods.

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 39

Model Method IMDB MR Yelp
Standard
Accuracy

Yelp
Accuracy

Standard
Accuracy

Yelp
Accuracy

Standard
Accuracy

IMDB
Accuracy

BERT

Natural 93.97 92.13 85.40 90.60 96.34 88.31
Fast-TextFooler 94.49 92.50 85.71 88.45 96.68 89.24

Fast-BAE 93.05 90.67 83.80 85.32 95.85 85.01
SSMBA 93.94 91.59 85.33 89.49 96.28 88.54

Backtranslation 93.97 91.73 85.63 89.46 96.46 88.77

RoBERTa

Natural 95.26 94.09 87.52 93.42 97.26 91.94
Fast-TextFooler 96.57 94.41 88.03 93.45 97.45 91.86

Fast-BAE 94.71 94.48 86.49 92.93 96.84 90.44
SSMBA 95.25 94.11 86.46 93.03 97.16 91.90

Backtranslation 95.31 93.84 87.78 93.77 97.25 91.76

Table 4.5: Accuracy on in-domain and out-of-domain datasets. We can see that adversarial
training can helps model outperform both naturally trained models and models trained using data
augmentation methods.

Model Training
Method IMDB MR Yelp

BERT

Natural 7.78 33.43 12.78
Fast-TextFooler 10.74 34.25 13.18

Fast-BAE 9.12 32.17 11.14
SSMBA 7.21 32.19 10.94

Backtranslation 6.02 32.21 11.10

RoBERTa

Natural 0.35 0.39 -1.09
Fast-TextFooler 0.42 0.01 -1.01

Fast-BAE 0.09 0.45 -1.13
SSMBA 0.26 -0.12 -0.43

Backtranslation -0.04 0.05 -1.06

Table 4.6: AOPC scores of the LIME explanations for each model. Higher AOPC scores indicates
that the model is more interpretable.

CHAPTER 4. ADVERSARIAL TRAINING FOR NLP MODELS 40

4.6 Discussions

4.6.1 Fast-TextFooler vs Fast-BAE attack
We can see that model trained using Fast-TextFooler attack outperforms the model trained
using Fast-BAE attack in standard accuracy and cross-domain accuracy in all but one case. This
suggests that using counter-fitted embeddings can generate higher quality adversarial examples
than masked language models. Since masked language models are only trained to predict words
that are statistically most likely to appear, it is likely that it will propose words that do change the
semantics of the text entirely. In fact, we observed that once a bad word replacement is proposed,
it is often difficult to filter them out using constraints. An interesting direction for future work is
to study whether masked language models can be used to generate only synonyms for fewer false
positive adversarial examples.

Chapter 5

Conclusion

In this work, we have presented empirical evidence that adversarial training using carefully
designed perturbations to the input space can improve model’s adversarial robustness, standard
accuracy, cross-domain generalization, and interpretability. We also have demonstrated that the
improvement in adversarial robustness from adversarial training is transferable against other
attacks from literature. To build adversarial attack that is feasible for adversarial training, we also
have presented a comprehensive benchmarking of the many search algorithms used for adversarial
attacks in NLP. These new findings demonstrate that adversarial training can be used to defend
the model against many different attacks without worrying about potential trade-offs.

An interesting area of future work is to perform more in-depth investigation of the hyper-
parameters for adversarial training - mainly �, which controls how many adversarial examples
we generate per epoch, and ↵, which controls the strength of adversarial loss. Another area of
future work is to compare our adversarial training method with ones that perform embedding-level
perturbations.

41

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for
sequence labeling. In COLING 2018, 27th International Conference on Computational Lin-
guistics, pages 1638–1649.

Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep learning in computer
vision: A survey. CoRR, abs/1801.00553.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and
Kai-Wei Chang. 2018. Generating natural language adversarial examples. arXiv preprint
arXiv:1804.07998.

Petr Bělohlávek, Ondřej Plátek, Zdeněk Žabokrtský, and Milan Straka. 2018. Using adversarial
examples in natural language processing. In Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. 2015. A
large annotated corpus for learning natural language inference. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics.

Nicholas Carlini and David A. Wagner. 2016. Towards evaluating the robustness of neural
networks. CoRR, abs/1608.04644.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope,
and Ray Kurzweil. 2018. Universal sentence encoder. CoRR, abs/1803.11175.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
2013. One billion word benchmark for measuring progress in statistical language modeling.
CoRR, abs/1312.3005.

42

http://arxiv.org/abs/1801.00553
http://arxiv.org/abs/1801.00553
https://www.aclweb.org/anthology/L18-1584
https://www.aclweb.org/anthology/L18-1584
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1312.3005

REFERENCES 43

Hanjie Chen and Yangfeng Ji. 2020. Learning variational word masks to improve the inter-
pretability of neural text classifiers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 4236–4251, Online. Association for
Computational Linguistics.

Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen, and Cho-Jui Hsieh. 2018. Seq2sick:
Evaluating the robustness of sequence-to-sequence models with adversarial examples. CoRR,
abs/1803.01128.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Zhendong Dong, Qiang Dong, and Changling Hao. 2010. Hownet and its computation of
meaning. In Proceedings of the 23rd International Conference on Computational Linguistics:
Demonstrations, COLING ’10, page 53–56, USA. Association for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. In ACL.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-box generation of
adversarial text sequences to evade deep learning classifiers. 2018 IEEE Security and Privacy
Workshops (SPW), pages 50–56.

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae: Bert-based adversarial examples for text
classification.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput.,
9(8):1735–1780.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. Adversarial example
generation with syntactically controlled paraphrase networks.

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension
systems.

https://doi.org/10.18653/v1/2020.emnlp-main.347
https://doi.org/10.18653/v1/2020.emnlp-main.347
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1803.01128
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2004.01970
http://arxiv.org/abs/2004.01970
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1804.06059
http://arxiv.org/abs/1804.06059
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328

REFERENCES 44

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
2020. SMART: Robust and efficient fine-tuning for pre-trained natural language models
through principled regularized optimization. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 2177–2190, Online. Association for
Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2019. Is bert really robust? natural
language attack on text classification and entailment. ArXiv, abs/1907.11932.

Harini Kannan, Alexey Kurakin, and Ian J. Goodfellow. 2018. Adversarial logit pairing. CoRR,
abs/1803.06373.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2016a. Adversarial examples in the
physical world. CoRR, abs/1607.02533.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2016b. Adversarial machine learning at
scale. CoRR, abs/1611.01236.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alex Dimakis, Inderjit S. Dhillon, and Michael J Witbrock.
2019. Discrete adversarial attacks and submodular optimization with applications to text
classification. In Proceedings of Machine Learning and Systems 2019, pages 146–165.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun, and Bill Dolan.
2021. Contextualized perturbation for textual adversarial attack.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. Bert-attack:
Adversarial attack against bert using bert.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng
Gao. 2020a. Adversarial training for large neural language models.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng
Gao. 2020b. Adversarial training for large neural language models.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101.

https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1803.06373
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/2009.07502
http://arxiv.org/abs/2004.09984
http://arxiv.org/abs/2004.09984
http://arxiv.org/abs/2004.08994
http://arxiv.org/abs/2004.08994
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101

REFERENCES 45

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA. Association for Computational Linguistics.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
2018. Towards deep learning models resistant to adversarial attacks. In International Conference
on Learning Representations.

George A. Miller. 1995. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41.

Takeru Miyato, Shin ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual adversarial
training: A regularization method for supervised and semi-supervised learning.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2015. Deepfool: a
simple and accurate method to fool deep neural networks. CoRR, abs/1511.04599.

John Morris, Eli Lifland, Jin Yong Yoo, and Yanjun Qi. 2020a. TextAttack: A framework for
adversarial attacks in natural language processing. ArXiv, abs/2005.05909.

John X. Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and Yanjun Qi. 2020b. Reevaluating
adversarial examples in natural language.

Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gasic, Lina Maria Rojas-Barahona,
Pei hao Su, David Vandyke, Tsung-Hsien Wen, and Steve J. Young. 2016. Counter-fitting word
vectors to linguistic constraints. In HLT-NAACL.

Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi. 2020. SSMBA: Self-supervised manifold
based data augmentation for improving out-of-domain robustness. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1268–1283, Online. Association for Computational Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey Edunov. 2019.
Facebook fair’s wmt19 news translation task submission. In Proc. of WMT.

Dong Nguyen. 2018. Comparing automatic and human evaluation of local explanations for
text classification. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1069–1078, New Orleans, Louisiana. Association for Computational
Linguistics.

http://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/219717.219748
http://arxiv.org/abs/1704.03976
http://arxiv.org/abs/1704.03976
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/2004.14174
http://arxiv.org/abs/2004.14174
https://doi.org/10.18653/v1/2020.emnlp-main.97
https://doi.org/10.18653/v1/2020.emnlp-main.97
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097

REFERENCES 46

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020.
Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), pages 115–124, Ann Arbor, Michigan.
Association for Computational Linguistics.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and
Ananthram Swami. 2015. The limitations of deep learning in adversarial settings. CoRR,
abs/1511.07528.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational
Linguistics.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C. Lipton. 2020.
Learning to deceive with attention-based explanations. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pages 4782–4793, Online. Association
for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask learners.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi, and Percy Liang. 2019.
Adversarial training can hurt generalization. CoRR, abs/1906.06032.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating natural language
adversarial examples through probability weighted word saliency. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1085–1097, Florence,
Italy. Association for Computational Linguistics.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. ”why should I trust you?”:
Explaining the predictions of any classifier. CoRR, abs/1602.04938.

https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
http://arxiv.org/abs/1511.07528
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.acl-main.432
http://arxiv.org/abs/1906.06032
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938

REFERENCES 47

W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Müller. 2017. Evaluating the
visualization of what a deep neural network has learned. IEEE Transactions on Neural
Networks and Learning Systems, 28(11):2660–2673.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108.

Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. 2018. Are
adversarial examples inevitable? CoRR, abs/1809.02104.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer,
Larry S. Davis, Gavin Taylor, and Tom Goldstein. 2019. Adversarial training for free! CoRR,
abs/1904.12843.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. 2014. Intriguing properties of neural networks. In International
Conference on Learning Representations.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
2019. Robustness may be at odds with accuracy.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner, and Sameer Singh.
2019. AllenNLP Interpret: A framework for explaining predictions of NLP models. In
Empirical Methods in Natural Language Processing.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A multi-task benchmark and analysis platform for natural language understanding.
In the Proceedings of ICLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for
Computational Linguistics.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V. Le. 2020. Smooth adversarial
training.

https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1809.02104
http://arxiv.org/abs/1809.02104
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1805.12152
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2006.14536
http://arxiv.org/abs/2006.14536

REFERENCES 48

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. 2019. Unsupervised
data augmentation. CoRR, abs/1904.12848.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun.
2020. Word-level textual adversarial attacking as combinatorial optimization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6066–6080,
Online. Association for Computational Linguistics.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I.
Jordan. 2019a. Theoretically principled trade-off between robustness and accuracy. CoRR,
abs/1901.08573.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li. 2019b. Generating fluent adversarial exam-
ples for natural languages. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5564–5569, Florence, Italy. Association for Computational
Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. 2020.
Bertscore: Evaluating text generation with bert. In International Conference on Learning
Representations.

Wei Emma Zhang, Quan Z. Sheng, and Ahoud Abdulrahmn F. Alhazmi. 2019c. Generating
textual adversarial examples for deep learning models: A survey. CoRR, abs/1901.06796.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text
classification. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 649–657. Curran Associates,
Inc.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. 2019. Freelb:
Enhanced adversarial training for language understanding. CoRR, abs/1909.11764.

http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848
https://www.aclweb.org/anthology/2020.acl-main.540
http://arxiv.org/abs/1901.08573
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
https://openreview.net/forum?id=SkeHuCVFDr
http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1909.11764
http://arxiv.org/abs/1909.11764

Appendix A

A.1 Search Benchmark Figures for LSTM Models
Figures A.1 shows how the number of words in the input affects runtime for each algorithm
against LSTM models. Figure A.2 shows the attack success rate of each search algorithm as the
maximum number of queries permitted to perturb a single sample varies from 0 to 20,000 for Yelp
dataset and 0 to 3000 for MR and SNLI.

49

APPENDIX A. 50

Figure A.1: Number of queries vs. length of input text.

APPENDIX A. 51

Figure A.2: Attack success rate by query budget for each search algorithm and dataset.

	Introduction
	Background and Related Work

	Adversarial Attacks in NLP
	Adversarial Attacks in Vision
	Adversarial Attacks in NLP
	Challenges in NLP Adversarial Attack
	Perturbing Texts
	Preserving Semantics and Fluency by Constraints
	Adversarial Attack as Combinatorial Optimization
	TextAttack Framework

	Searching for a Search Method
	Background
	Search Algorithms
	Search Space

	Benchmark Setup
	Search Spaces
	Victim Models
	Evaluation Metrics

	Results
	Evaluation of Adversarial Examples
	Attack Success Rate Comparison
	Runtime Analysis
	Performance under Query Budget
	Quality of Adversarial Examples

	Discussions
	Search Method for Adversarial Training
	Effectiveness of PWWS Word Importance Ranking
	Effectiveness of Genetic Algorithm

	Adversarial Training for NLP Models
	Background
	Adversarial Training

	Method
	Training Objective
	Training Algorithm in Practice
	Fast Adversarial Attacks

	Experiment
	Datasets & Models
	Baselines

	Results
	Adversarial Robustness
	Generalization
	Interpretability

	Discussions
	Fast-TextFooler vs Fast-BAE attack

	Conclusion
	References
	APPENDICES
	
	Search Benchmark Figures for LSTM Models

