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Abstract 
 
Towards more sustainable use of resources in cities, there is a rising trend in shared mobility for 
collaborative consumption. As a condition of working with cities, third party organizations 
managing shared vehicle fleets often have to provide public access to real-time data describing the 
location of vehicles. These datasets hold enormous value for monitoring and evaluating emerging 
transportation services; however, a major challenge for city planners and regulators remains 
extracting the value from streaming transportation data by leveraging analysis and visualization 
methods. E-scooters are an emerging shared mobility service that have been adopted in cities 
across the world, but, despite their popularity, cities are still searching for more effective 
monitoring methods in order to understand the benefits brought to their communities or lack 
thereof. Using real-time e-scooter data from Charlottesville, Virginia as a case study, this work 
aims to characterize operator and user behavior by using big data analytics and machine learning 
to gather important insights. Specifically, this work provides the following contributions via three 
analytical studies: (1) Study I demonstrates how e-scooter data can be harvested from streaming 
GPS traces and then aggregated and spatially joined with demographic, employment, and built 
environment data. A multiple regression analysis examining the relationships between these 
datasets revealed that e-scooter distribution was influenced by economic activity whereas e-scooter 
use was influenced by micro-transit need factors and built environment characteristics. (2) Study 
II presents data aggregation and visualization approaches for monitoring and evaluating e-scooter 
operator distribution decisions, showing that utilization is a suitable measure for planning and 
revealing that there is room for improvement for equitable fleet distribution. (3) Study III shows 
the efficacy of using Latent Dirichlet Allocation to characterize user trip behavior from an 
unstructured set of estimated e-scooter trips. Findings suggest that trip behavior differed 
significantly during periods with increased student population influxes. Charlottesville planners 
and regulators may use the results and methods presented in this work to make data-driven 
decisions for improving micro-mobility as a service for the community they serve.  
 
Keywords: big data analytics, machine learning, data visualization, spatial data fusion, multiple 
regression, Latent Dirichlet Allocation, shared mobility, micro-mobility 
 
  



 2 

Acknowledgements 
 
I extend a heartfelt thank you to each person that has supported me as, without you, this work 
would not have been possible. The list runs long – too long to list every person by name, in fact, 
but I trust you know who you are.  That said, I would like to thank: 
 

à My advisor, Devin K. Harris, for his continuous support of my work, dedicated mentorship, 
and curious enthusiasm about e-scooters.  

à My lab members – particularly, Mohamad Alipour for his mentorship in my first year and 
Tianshu Li for her friendship.  

à Amanda Poncy, Charlottesville’s Pedestrian and Bicycle Coordinator, for collaborating 
with me in this work and providing invaluable input from the city’s perspective.  

à My committee for their support and time dedicated to reviewing this work.  
à My UVA community. I am incredibly grateful for my time at the university. During my 

undergrad years, I was lucky to find an amazing group of lifelong friends that I cannot 
imagine life without. I had a wonderful undergrad advisor, Teresa Culver, who introduced 
me to research then and encouraged me to return to UVA to pursue my interests in machine 
learning. A special thank you to Brian Smith and Dottie Gardner for their kindness and 
support which helped me through tough times. And, of course, thank you to my ESE grad 
student family as their support and friendships meant the world. Thanks in particular to 
Courtney Rogers for always making sure my world continued to spin regardless of what 
challenges emerged.   

à My professors whose passion for teaching machine learning and data analytics inspire me 
to be a lifelong learner. 

à My friends near and far that have encouraged me along the way. 
à My family, especially my cousin Connie, my brother and my parents. Their love and 

support has carried me through life.  
à Last, but certainly not least, my significant other, for being my biggest supporter. Thank 

you for always encouraging me to pursue my dreams.  
 

 
  



 3 

Table of Contents 
1 Introduction ............................................................................................................................ 5 

1.1 Towards Smarter Cities and Smarter Mobility ...................................................................... 5 
1.2 Thesis Outline ............................................................................................................................. 6 

2 Literature Review .................................................................................................................... 7 
2.1 Big Data Analytics ...................................................................................................................... 7 
2.2 Machine Learning ...................................................................................................................... 7 
2.3 Micro-mobility ............................................................................................................................ 8 

3 Study I: E-Scooter Availability v. Utilization Insights ........................................................ 12 

3.1 Motivation ................................................................................................................................. 12 
3.2 Methods ..................................................................................................................................... 12 
3.3 Results ....................................................................................................................................... 23 
3.4 Discussion .................................................................................................................................. 26 

4 Study II: Characterizing Operator Behavior with Data Visualization ............................... 29 

4.1 Motivation ................................................................................................................................. 29 
4.2 Methods ..................................................................................................................................... 32 

4.2.1 Analyzing Micro-mobility Operations at Census Block Resolution .................................................... 32 
4.2.2 Evaluating Equitable Distribution and Access ..................................................................................... 33 

4.3 Results ....................................................................................................................................... 34 
4.4 Discussion .................................................................................................................................. 39 

5 Study III: Characterizing User Behavior using Latent Dirichlet Allocation ..................... 40 
5.1 Motivation ................................................................................................................................. 40 
5.2 Latent Dirichlet Allocation ...................................................................................................... 41 
5.3 Methods ..................................................................................................................................... 42 
5.4 Results ....................................................................................................................................... 45 
5.5 Discussion .................................................................................................................................. 50 

6 Conclusion ............................................................................................................................ 51 

6.1 Synthesizing Studies I, II, & III .............................................................................................. 51 
6.2 Limitations ................................................................................................................................ 53 
6.3 Future Work ............................................................................................................................. 54 

7 References ............................................................................................................................. 55 
 
  



 4 

List of Figures 
 

Figure 1. VeoRide e-scooters near UVA _________________________________________________ 11 
Figure 2. Data fusion by geolocation joined at Census block group resolution __________________ 13 
Figure 3. E-scooter Raw Data _________________________________________________________ 14 
Figure 4. Daily e-scooter trip counts from March 15th through July 15th 2020 _________________ 15 
Figure 5. E-scooter trip count temporal distribution _______________________________________ 16 
Figure 6. Geospatial distribution of micro-mobility transportation demand in Charlottesville ______ 18 
Figure 7. Effect of commute influx and outflux on population distribution in Charlottesville ______ 20 
Figure 8. The walk scores, transit scores, and bike scores of each block group __________________ 21 
Figure 9. Spatial distribution of e-scooter availability and utilization throughout Charlottesville ___ 27 
Figure 10. Total trip count per block group from March 15, 2020 through July 15, 2020 __________ 28 
Figure 11. Daily e-scooter trip counts from March 15 2020 through March 21 2021 _____________ 30 
Figure 12. Study II Periods of Interest __________________________________________________ 31 
Figure 13. Average number of e-scooters available per block ________________________________ 35 
Figure 14. E-scooter utilization per block ________________________________________________ 36 
Figure 15. E-scooter fleet distribution in equity zones ______________________________________ 37 
Figure 16. E-scooter fleet spatial distribution in equity zones ________________________________ 38 
Figure 17. Daily e-scooter trips from equity zones v. total daily trips __________________________ 39 
Figure 18. Document-Term Matrix to Trip-Point Matrix ___________________________________ 44 
Figure 19. Trip Topic Distribution _____________________________________________________ 46 
Figure 20. GPS Probabilistic Distribution per trip topic ____________________________________ 47 
Figure 21. Trip topic distribution per period ______________________________________________ 48 
Figure 22. E-scooter temporal trip distribution per period ___________________________________ 49 
 

List of Tables 
 
Table 1. OLS model variable descriptive statistics _________________________________________ 22 
Table 2. OLS model results excluding UVA blocks _________________________________________ 23 
Table 3. OLS model results including UVA blocks _________________________________________ 25 
 
  



 5 

1 Introduction 
 
1.1 Towards Smarter Cities and Smarter Mobility 

 
A United Nations report estimated that 68% of the world population will live in urban areas 

by 2050 [1].  As urban areas grow, efficient allocation and sharing of resources becomes 

increasingly important.  The term “smart city” often refers to urban areas that strive to leverage 

big data analysis as a means to improve mobility, safety, governance, and living standards for city 

residents [2]. The development of strategic policies and data analysis techniques is fundamental 

for building and managing smart cities [3], [4].  However, a major challenge for city planners and 

local governments is understanding how to extract value from large quantities of information 

gathered by scattered sources [5].  As such, leveraging appropriate data mining and machine 

learning techniques for analysis is critical [5].   

Within smart city contexts, one key area of focus for data-driven innovation and 

improvement is mobility [6], [7].  Towards maximizing the utilization of mobility resources in 

cities and more sustainable consumption, there is a rising trend in disconnecting vehicle usage 

from ownership and, instead, moving to shared mobility services [8].  Examples of shared mobility 

include carsharing, ride-hailing, station-based bikesharing, and, most recently, dockless mobility 

sharing [8].  Dockless mobility refers to shared micro-mobility vehicles such as electric bikes and 

scooters that can be parked anywhere without station restrictions [9], [10].  The popularity of e-

scooters, specifically, has been expansive with Americans taking 86 million scooter trips in 2019 

[11].  Popularity aside, e-scooter share is still an emerging transportation mode for which policies 

must be written and operations must be monitored [12], [13].  To that end, cities are searching for 

effective ways to monitor, manage, and optimize this new transportation mode to ensure it is 

actually benefitting the communities they serve [12], [14].  
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As third party organizations to cities, shared mobility operators are often required to 

provide publicly accessible data detailing where vehicles in their fleet are located in real-time [12], 

[15].  This data is high resolution and does not contain personally identifiable information [16], 

making it an ideal resource for mobility analysis.  However, the raw GPS trace data provides little 

value without further processing, visualization, and analysis.  Using data from a real-time e-scooter 

data feed in Charlottesville, Virginia as a case study, this work aims to characterize operator and 

user behavior using big data analytics and machine learning to help city planners make data-driven 

decisions for improving micro-mobility as a service for the communities they serve.  

1.2 Thesis Outline 

This work begins with an overview of relevant literature on big data analytics and machine 

learning methods for mobility focused analysis followed by a detailed review of micro-mobility 

research.  Then, Study I details an approach for extracting value from big data harvested from 

streaming real-time GPS trace data.  By fusing aggregated e-scooter data spatially with 

demographic, employment, and built environment data, multiple regression is used to explain the 

factors that drive e-scooter distribution and ridership decisions.  Study II dives deeper into 

characterizing operator behavior by aggregating and visualizing the collected data in a meaningful 

manner across four distinct periods with a focus on evaluation against equitable access policy.  

Finally, Study III characterizes e-scooter user behavior by using Latent Dirichlet Allocation to 

discover hidden trip themes from an unstructured collection of estimated trips as this sheds light 

on how e-scooters are currently being used.  City planners may use the approaches and results 

detailed in this work to evaluate emerging transportation modes, working towards improved data-

driven city management.  
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2 Literature Review 
 

2.1 Big Data Analytics 
 

New digitalization standards in the age of the Internet of Things (IoT) have led to the 

widespread usage of low-cost sensors [17] and real-time data streaming from those sensors [18]. 

The large amounts of data available from these IoT devices are examples of big data [19].  Big 

data in transportation offers an opportunity to gather detailed insight into mobility behavior if 

appropriate data collection, storage, fusion, processing and visualization approaches are utilized  

[18]–[21].  Determining the appropriate data analysis techniques is often challenging due to the 

volume, variety, and formatting variability in transportation data [21]. Additionally, current 

Intelligent Transportation Systems data monitoring and analysis functionality is widely 

acknowledged as limited, motivating a need for better approaches [22].  More specifically, the 

growing abundance of sensor GPS trace data and open data feeds necessitates analysis approaches 

for extracting value from these read-only JSON code heaps that a human analyst cannot readily 

understand [23].  Seeking to contribute to this area of research, this work aims to identify and 

showcase the efficacy of suitable data aggregation, fusion, and visualization techniques for 

extracting value from streaming real-time sensor data in order to better understand and manage 

emerging shared mobility services. Additionally, the data used throughout this work does not 

contain any individual user information, which aligns with smart city data privacy objectives [24]. 

2.2 Machine Learning  
 

Artificial Intelligence is made possible by processes such as Machine Learning (ML) where 

systems learn tasks such as classification, clustering, and pattern recognition from input data [19].  

Prior to choosing a particular ML technique it is important to consider the type of data available 

and the goal of analysis to obtain meaningful results.  In Study I, the goal was to understand the 
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effect of demographic, employment, and built environment factors on e-scooter placement and e-

scooter utilization.  As such, a suitable machine learning approach is multiple linear regression as 

it can determine the predictive power of multiple independent variables for each of the dependent 

variables and has the added benefit of outputting easily interpretable results.  To support this 

method further, another study demonstrated using multiple linear regression successfully to 

examine the relationship between demographic data and car-sharing availability [25].  In Study 

III, the goal was to discover the main routes traversed by e-scooter users in an otherwise 

unstructured collection of trips.  For knowledge discovery such as finding latent trip themes, 

unsupervised machine learning methods such as clustering are often utilized to classify data into 

discrete groups [5], [19], [26].  Due to the structure of the aggregated e-scooter trip records, a 

method called Latent Dirichlet Allocation (LDA) is fitting for reasons that are explained 

thoroughly section 5.2. Briefly, LDA is a generative mixture model that takes large collections of 

discrete data usually in the form of text documents as input and produces a distribution of topics 

that describe the entire input dataset [27].  

2.3 Micro-mobility 
 

The proliferation of e-scooters as a micro-transit option has offered residents and visitors 

in cities across the world a new way to navigate a city’s landscape. The National Association of 

City Transportation Officials reported that Americans completed 38.5 million e-scooter trips in 

2018 [28] and 86 million trips in 2019 [11], highlighting its substantial growth in adoption across 

cities in the United States. Despite the widespread popularity, little is known about the factors that 

contribute to increased e-scooter usage and it is unclear whether scooters are meeting the needs of 

those residents who could benefit the most from them. 
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Recent research into the potential of e-scooter adoption has found evidence that e-scooters 

could have a positive economic impact on communities [29]. In one study, researchers analyzed 

the comparative benefits of hypothetical e-scooter trips in Chicago over other modes of 

transportation [29]. The study found that e-scooters are a cost-effective alternative to personal 

vehicles for short trips between 0.5 and 2 miles and estimated that e-scooters could provide a 16% 

increase in the number of jobs accessible within a 30 minute commute compared to walking or 

public transit [29].  Importantly, this work also noted that e-scooter benefits can differ significantly 

between geographic areas based on access to transit lines and bus routes [29]. Further, a study 

evaluating the benefit of micro-mobility compared to ridesharing services such as Uber found that 

e-scooters could serve as a faster means of transport during typical commute windows when traffic 

congestion is heavy in urban areas such as Washington D.C. [13]. Another study showed that there 

is a net reduction in environmental impacts when short distance car trips are regularly replaced 

with a greener alternative such as e-scooters, further highlighting potential benefits [30].  

Despite the potential for e-scooters to address short distance transportation needs, it 

remains unclear if e-scooters are meeting those needs in practice. Many cities have conducted 

dockless mobility pilot programs to test micro-mobility as a new service and published reports of 

their findings [31]–[33]. Survey responses indicated that a quarter of the e-scooter trips in 

Baltimore, Maryland and approximately half of the e-scooter trips in Charlottesville, Virginia are 

commute trips [32], [33]. In contrast, studies that have analyzed actual e-scooter usage patterns 

have not found evidence to suggest e-scooters are being used for commutes [34]–[39]. Several of 

these studies observed that the time of peak e-scooter usage is outside typical morning and evening 

commute windows suggesting that commutes at most make up a small fraction of e-scooter trips 

[34]–[39]. Additionally, in at least one study, e-scooter usage was substantially higher on 
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weekends than weekdays, supporting the claim that e-scooters are primarily used for recreation, 

as opposed to a first or last-mile solution [37].  

Interestingly, studies have found that bikeshare usage patterns do reflect commuting 

behavior [39]–[43]. However, this commute activity is only significant in docked bikeshare 

whereas dockless bikeshare behavior indicated casual use [9], [10]. A study specifically comparing 

docked bikeshare to e-scooter usage found similar results, adding that bikeshare users with 

memberships were most likely to use the service for regular commuting [39]. This finding suggests 

that the reliability of finding an available vehicle is important for commuters.  

Studies conducted in Austin, Texas and Indianapolis, Indiana found that e-scooters are 

mainly used in city centers and university campuses based on where trips started and ended [35]–

[37]. However, an e-scooter trip can only take place from a specified location if an e-scooter is 

present; thus, if e-scooters are most available in city centers and on university campuses, then it 

follows that more e-scooter trips will take place at these locations. Additionally, the absence of 

information on how e-scooter companies deploy and reposition their fleets has been cited as a 

major limiting factor for understanding e-scooter usage [34]. Furthermore, one study analyzed e-

scooter utilization in terms of minutes a fleet of e-scooters were reserved per day, finding that only 

15% of e-scooters were used for more than an hour per day [37]. This suggests that most e-scooters 

are parked and unused for the majority of the day, indicating that operational strategies have room 

for improvement to better serve communities. Thus, it is necessary to investigate where e-scooters 

are available and whether they are accessible in geographic areas where residents rely more on 

public transportation or walking as a primary mode of travel as these are the most likely converters 

to e-scooter trips.   
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Charlottesville is a small city with an area of 10.24 square miles, a population of 47,266, 

and is home to the University of Virginia, a comparatively large university employing almost 

30,000 people and supporting a student body of nearly 24,000 [44], [45]. E-scooters were 

introduced in Charlottesville soon after the start of the city’s Dockless Mobility Pilot Program in 

November 2018 [33]. A report to City Council from June 2019 summarized the new service as 

overall positively received and popular with over 115,000 trips total, averaging to about 700 trips 

per day [33]. Approximately 50% of rides ended near the University of Virginia, suggesting that 

e-scooters were disproportionately popular amongst students and staff of the university [33]. 

Figure 1 below shows examples of VeoRide e-scooters parked around Charlottesville.  

 
Figure 1. VeoRide e-scooters near UVA 

A new law passed in the state of Virginia tasked local authorities with regulating micro-

mobility [46]. This means that in cities such as Charlottesville, local government officials are 

responsible for evaluating and regulating e-scooter operations, an emerging service for which new 

regulations must be written. One finding from the Pilot Program emphasized the need for active 

program management in order to ensure the e-scooter fleet is distributed equitably throughout 

Charlottesville.  As such, city operators continue to seek better ways to understand e-scooter data 

in order to make informed recommendations.   

Throughout this thesis, data analysis approaches to extract meaningful insight about shared 

micro-mobility operator and user behavior from streaming raw GPS trace data are presented and 
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discussed. These insights about system behavior can help public officials regulating e-scooters and 

operators distributing e-scooters evaluate the level of service offered to the community. 

3 Study I: E-Scooter Availability v. Utilization Insights 
 

3.1 Motivation  
 

While the potential benefit e-scooters offer to communities to address short distance 

transportation needs have been shown, evidence that those needs are being met in practice is mixed 

[34]–[39]. Thus, there is a need to investigate current e-scooter share system behavior and the 

extent to which it addresses transportation needs in cities. This work was motivated by the need to 

understand if the e-scooter trends observed in previous studies are skewed by how e-scooter fleets 

are distributed. A focus on the utilization rate of an operational e-scooter fleet allows researchers 

to analyze e-scooter usage conditioned on e-scooter availability. This work sheds light on the 

factors that drive e-scooter operator distribution strategies and illustrates how these factors align 

with e-scooter utilization in Charlottesville, Virginia using a geospatial multiple regression 

analysis.   

3.2 Methods 
 

The location and reservation status of each e-scooter in Charlottesville were collected from 

a real time data feed and stored in a database at high frequency intervals over a period of four 

months. Additional data about geospatial factors across Charlottesville, such as economic activity 

indicators, resident commute needs, and built environment descriptors were collected from other 

sources [47]–[50]. This data was fused with the e-scooter data by joining each data element to its 

bounding Census block group, as illustrated in Figure 2. The e-scooter data was further processed 

so that each Census block group had an aggregate measure of e-scooter utilization and availability. 
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Next, the relationships between e-scooter availability and the geospatial factors were investigated 

using multiple linear regression. The relationships between e-scooter utilization and the geospatial 

factors were examined similarly.  Finally, results from the linear models were compared to 

understand how different factors drive e-scooter availability versus utilization.  These methods are 

described in detail in the following paragraphs. 

 
 

Figure 2. Data fusion by geolocation joined at Census block group resolution 

 
Web scraping and data harvesting have become popular methods for building data sets and 

evaluating trends [12], [25], [51]. One example of this approach for geospatial analysis of shared 

micro-mobility in urban environments takes advantage of the General Bikeshare Feed 

Specification (GBFS), which is a standardized real-time, open data feed that is widely used for 

micro-mobility operations [12]. Many cities require operators to publish real-time fleet 

information in this format [12], [16]. This is a requirement for dockless mobility operators in the 
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city of Charlottesville [15]. This data includes the real-time GPS location of every vehicle in the 

operator’s fleet as well as indicators for whether each vehicle is reserved or disabled without 

sharing any user information. Thus, this data is an ideal resource for researchers seeking to analyze 

scooter operator and user behavior as it is easily and widely accessible and does not pose any direct 

user privacy concerns.  

For this study, VeoRide’s real-time GBFS data feed was continuously queried at a two-

minute frequency, which equates to taking timed snapshots of each e-scooter’s location and 

reservation status.  The orange outline in Figure 3 below shows an example of the raw data made 

available by any GBFS feed.  Per query, all the pulled records were stored along with an added 

timestamp outlined in blue in Figure 3.  Over a four-month period from March 15, 2020 to July 

15, 2020, the collected data was combined to build a rich set of ordered e-scooter observations. 

 
Figure 3. E-scooter Raw Data 

Although e-scooter trip characteristics were not the focus of this study, trips were pulled 

from the raw data to provide a high-level summary of e-scooter usage in Charlottesville during the 

study period. Additionally, it was important to visualize where trips started for comparison with 

e-scooter utilization. The trips were extracted by identifying consecutive records where the 

“is_reserved” indicator is set to 1, denoting an active reservation. An example is highlighted in 

green in Figure 3 above.  This is similar to the methods implemented by Zou et al. for extracting 

e-scooter trips from a Washington D.C. operator’s GBFS data feed [12]. Raw GPS data is often 
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subject to tracking errors due to the sporadic unavailability of satellites [12]. Additionally, there 

was noise in the dataset from canceled trips or trips that were not ended properly.  Thus, similarly 

to data cleaning implemented by Zou et al., trips shorter than 0.02 miles or greater than 90 minutes 

were excluded from analysis [12].   

Over the four-month data collection period from March 15, 2020 through July 15, 2020, 

10,170 trips were extracted from the raw e-scooter feed data for an average daily trip count of 87. 

The daily trip count over the period of study is illustrated in Figure 4. The large drop in ridership 

in mid-March is attributed to students leaving the University of Virginia as mandated by university 

leadership during the early stages of the COVID-19 pandemic. It should be noted that compared 

to the Charlottesville pilot study previously mentioned, the average number of trips observed was 

significantly smaller as a result of the particular period of study. The implications and impacts of 

this issue are discussed in a later section. Furthermore, there was a minor disruption in data 

collection due to a technical issue from May 21 through May 26, but the data is otherwise 

continuous. This gap explains the flattening line at the end of May marked by the dotted vertical 

lines in Figure 4.  

 

Figure 4. Daily e-scooter trip counts from March 15th through July 15th 2020 
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Figure 5 illustrates how trips were distributed across days of the week and hours of the day. 

The trip distribution heat map closely resembles the plot presented by Jiao et al. in a study focused 

on e-scooter travel behavior in Austin, Texas [36] and fits the description provided in other studies 

[37]–[39].  Similar to previously mentioned studies, the trip distribution shown in Figure 5 does 

not provide strong evidence that e-scooters are used for commute trips in Charlottesville.  

Importantly, as the largest employers in Charlottesville are the University of Virginia and the UVA 

hospital, commute times may not fit typical morning and evening windows [52].  The average trip 

displacement during this period was 0.59 miles and the average riding speed estimated from the 

trip observations was approximately 6.9 miles per hour. 

 
Figure 5. E-scooter trip count temporal distribution 

An important piece of information from the GBFS feed data that has not been extensively 

studied to the author’s knowledge is the unreserved e-scooters for each slice of e-scooter 

observations where the “is_reserved” indicator is 0.  This data describes the locations of e-scooters 

that were not in use when the live data feed was queried.  The location of available e-scooters is a 

critical factor to understanding how easily an e-scooter can be accessed and is a causal factor for 

whether a trip event can occur. This information provides insight into the e-scooter operator’s 

decision-making. To quantify e-scooter availability, the mean number of vehicles available at each 

hourly time slice within a quarter mile per block group was calculated. This metric was used 
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because it is considered within walking distance and thus is more interpretable [50], [53]. 

Essentially, this approach answers the question, “How many scooters could be found within 

walking distance of any point in each block group?”. It should be noted that e-scooter availability 

did not vary significantly from slice to slice; thus, there was little loss of information for a 

significantly improved computation resource trade off by including one slice of observations per 

hour.  Next, the fleet utilization percentage was calculated by dividing the number of vehicles in 

use per block group by the total number of vehicles in operation per time slice.  The mean of this 

value across all time slices describes the average fleet utilization rate per block group, enabling 

the analysis of the factors driving e-scooter placement versus use.   

Next, the focus shifted to identifying areas where residents are most likely to benefit from 

commuting using an e-scooter. One study demonstrated the effectiveness of visualizing transit 

need using geospatial visualization techniques to highlight areas with transit demand followed by 

transit supply using demographic data from the US Census and transit data to visualize supply 

[54]. This study adopted a similar approach where the demand distribution for short-distance 

transportation alternatives was visualized based on Census statistics describing transportation use, 

highlighting areas where micro-mobility need is the most salient.  

The need for a short-distance travel alternative in Charlottesville was characterized by 

focusing on factors driving alternative transportation needs, including individuals without personal 

vehicles and individuals that rely on public transportation or walking. High resolution estimates of 

this information is publicly available via the U.S. Census Bureau [55]. The U.S. Census Bureau 

conducts the American Community Survey (ACS) annually which provides social, economic, 

demographic, and housing characteristics estimates published at the block group level [48]. A 

block group is a nationally defined geographical unit smaller than a census tract, but larger than a 
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census block, controlling for population counts between 600 and 3000 [56]. Block group location 

and area descriptions are made available via the U.S. Census Bureau [56]. The aggregate of survey 

data from new survey samples over a 5-year period is denoted by ACS-5, which provides a more 

reliable set of estimates [48]. ACS-5 estimates from 2013 to 2017 were used for this study as it 

was the most recent data set available via the Census Python API at the time of this work. Figure 

6 illustrates the spatial distribution of e-scooter need factors in the city of Charlottesville including 

(a) the percentage of households without access to a vehicle, (b) the percentage of residents using 

public transit as a means to travel to work, and (c) the percentage of residents walking to work. 

From visual inspection, an observer can identify block groups where micro-mobility need is the 

most salient.  It was noted that indicators of micro-mobility need was not observed as concentrated 

in the downtown area of Charlottesville outlined with a bold, orange line in Figure 5. 

 
Figure 6. Geospatial distribution of micro-mobility transportation demand in Charlottesville 

Another important data element in this study was the mobility of individuals from one 

block group to another as this sheds light on whether the benefits of emerging transportation modes 

are resident-focused or visitor-focused. The U.S. Census Bureau maintains a Longitudinal 

Employer-Household Dynamics program which partners with state labor market offices to produce 

rich sets of data illustrating employee-to-employer travel [47], [57]. These high-resolution data 
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sets are free and publicly available [47], [57]. In this study, the origin-destination data within 

Albemarle County and Charlottesville city blocks were used to calculate the inflow and outflow 

of commute activity, creating an indicator for economic activity. The most recent origin-

destination pair data sets from 2017 were used for this study; however, it should be noted that a 

small subset of the origin-destination pairs are from 2015 as this was the latest data available for 

federal jobs. The LEHD data were grouped at the block group level in order to directly join it with 

the aforementioned demographic variables from ACS-5. The influx of commuters into block 

groups was calculated by taking the sum of the number of jobs for which residents living in one 

block group travel into another block group for work. Similarly, the outflux of commuters was 

calculated by taking the sum of the number of individuals traveling to jobs that differ from their 

residence block group. Larger commute influx values in this study represent a measure for 

economic activity as more services are offered in busier areas. The spatial distribution of these 

metrics are visualized in Figure 7 where (a) shows the residential population per block group, Pr, 

before commuting activity, (b) shows number of commuters traveling into a block group they do 

not live in for work denoted by Jci, (c) shows number of commuters leaving their residential block 

groups to travel into another block for work denoted by Jco, and finally (d) shows the redistributed 

population per block group, Pc, after accounting for commuting activity described in the following 

equation.  

𝑃! = 𝑃" +$𝐽!# −$𝐽!$ 

These factors offer insight into whether economic activity is more important than 

residential demographics when operators make e-scooter placement decisions. From visual 

inspection of Figure 7, it is clear that jobs are very centralized in downtown Charlottesville outlined 
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with a bold, orange line. This pattern of spatially condensed employment areas is commonly 

observed in cities in general [58], [59]. 

 
Figure 7. Effect of commute influx and outflux on population distribution in Charlottesville 

Next, variables that characterize the built environment were collected by using Census 

block group centroid GPS coordinates and reverse geocoding them to obtain addresses as input for 

a Walk Score tool that extracts a walk score, transit score, and bike score per input. These scores 

could then be spatially joined with the previously discussed data. The Walk Score tool is free and 

publicly accessible [50]. Its methods for estimating walkability, bike-ability, and transit 

friendliness have been confirmed in research studies [50], [60], [61]. These measures are 

informative because they enable the evaluation of the importance of favorable walking conditions, 
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transit conditions, and biking conditions. For example, walk scores are derived based on the 

number of amenities reachable via a 5 minute walk which equates to about a quarter mile distance 

[50]. Walk Score also provides categorical statuses based on the scores such as “Very Walkable” 

versus “Car Dependent”. By their methods, a score from 90 to 100 indicates a status of “Walker’s 

Paradise”, which suggests that daily errands can be completed on foot. Similarly, “Biker’s 

Paradise” suggests that daily errands can be completed on a bike and “Rider’s Paradise” indicates 

world class public transportation such as the transit options offered in New York City or San 

Francisco. Figure 8 illustrates the built environment descriptor scores for each block group in this 

study. From visual inspection, Charlottesville’s most walkable areas can be easily located as those 

shown in green and yellow. This visualization also suggests that transit options in Charlottesville 

are lacking, indicating that residents may be seeking an alternative if they currently rely on transit. 

 
Figure 8. The walk scores, transit scores, and bike scores of each block group 

Lastly, an additional measure used was the surface area of parking lots in a block group 

from Charlottesville’s Open Data Portal [49]. This measure is important because evidence of a 

strong relationship between e-scooter placement or utilization could indicate a focus on visitors 

traveling into a block group and parking rather than residents. Table 1 summarizes all the variables 

investigated in this study where “DV” denotes the dependent variables of interest and “IV” denotes 

the independent variables. The primary objective of the study is then to understand which of the 
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independent variables have predictive power on e-scooter availability and utilization, respectively.  

To do so, this study utilizes the Statsmodels package via Python to fit an Ordinary Least Squares 

(OLS) model to evaluate each of the dependent variables: e-scooter availability and e-scooter 

utilization [62].  

It should be noted that a Census Tract that includes the University of Virginia is categorized 

as outside of Charlottesville city according to Census boundary lines. The block groups in tract 

109 were concatenated with the block groups within Charlottesville city. As data from 

Charlottesville’s dockless mobility pilot program indicated e-scooter behavior was heavily 

influenced by students [33], this study also evaluates how influential factors change when those 

block groups are included and excluded. 

Table 1. OLS model variable descriptive statistics 

Type Description Unit Mean Std Dev Min Max 
DV E-Scooter Availability avg # e-scooters 

available 
4.37 4.88 0.24 28.09 

DV E-Scooter Utilization avg % of fleet reserved 0.01 0.01 0.00 0.06 
IV Population Density # residents/mi2 6044.82 4301.15 1158.14 21522.22 
IV Block Group Area square miles 0.28 0.16 0.08 0.85 
IV Median Age years 33.28 10.15 19.10 62.10 
IV % 0-Vehicle Households % households 0.11 0.10 0.00 0.47 
IV % Public Transit % residents 0.09 0.09 0.00 0.55 
IV % Walking % residents 0.15 0.15 0.00 0.52 
IV Commute Influx # people commuting into 

a block group 
1639.26 3338.89 20.00 19048.00 

IV Commute Outflux # of people commuting 
out of a block group 

1062.19 534.46 48.00 2050.00 

IV Walk Score of Block 
Group Centroid 

0 to 100 37.07 6.77 22.00 48.00 

IV Transit Score of Block 
Group Centroid 

0 to 100 55.88 26.61 11.00 99.00 

IV Bike Score of Block 
Group Centroid 

0 to 100 55.84 18.38 15.00 84.00 

IV Parking Lot Area square miles 0.03 0.04 0.00 0.23 
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Using the data collected and aggregated into the variables defined in Table 1, a multiple 

regression analysis was completed and the modeling results are provided in the next section. 

3.3 Results 
 

Tables 2 and 3 present the results of the multiple regression models fit to analyze the 

relationship between the variables in Table 1. The following two tables compare how results differ 

when the blocks containing the University of Virginia are excluded and included in the analysis.  

 
Table 2. OLS model results excluding UVA blocks 

Model 1 Model 2 
Response Variable: E-scooter availability (excluding 

UVA blocks) 
Response Variable: E-scooter utilization rate 

(excluding UVA blocks) 
Adjusted R2: 0.534 Adjusted R2: 0.609 

Explanatory 
Variable 

Coefficient Std 
Error 

p Explanatory 
Variable 

Coefficient Std 
Error 

p 

Population 
Density 

0.00 0.00 .15 Population 
Density 

0.00 0.00 .01** 

Block Group 
Area 

1.47 10.06 .89 Block Group 
Area 

0.01 0.02 .53 

Median Age -0.03 0.11 .79 Median Age 0.00 0.00 .67 
% 0-Vehicle 
Households 

7.51 9.29 .43 % 0-Vehicle 
Households 

-0.02 0.02 .29 

% Walking -9.15 8.38 .29 % Walking -0.02 0.02 .20 
% Public Transit -0.67 14.18 0.96 % Public Transit 0.11 0.03 .001*** 
Commute Influx 0.00 0.00 .0000 *** Commute Influx 0.00 0.00 .79 

Commute 
Outflux 

0.00 0.00 .68 Commute 
Outflux 

0.00 0.00 .75 

Walk Score of 
Block Group 

Centroid 

0.05 0.05 .36 Walk Score of 
Block Group 

Centroid 

0.00 0.00 .003** 

Transit Score of 
Block Group 

Centroid 

-0.10 0.19 .58 Transit Score of 
Block Group 

Centroid 

0.00 0.00 .33 

Bike Score of 
Block Group 

Centroid 

0.05 0.07 .54 Bike Score of 
Block Group 

Centroid 

0.00 0.00 .10 

Parking Lot Area -25.09 26.50 .35 Parking Lot Area -0.12 0.05 .025* 

 
The results of the first model in Table 2 reveal that commute influx is the only variable 

with significant explanatory power for e-scooter availability. Further, commute influx is 

significant at the .001 level, indicating that it is highly unlikely that this result was due to random 
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noise. Although the coefficient is small, it indicates that for every increase of 1000 commuters into 

a block group, the number of e-scooters available per quarter mile increases by 1. In this study, 

commute influx is used as a metric for the level of economic activity evident in a block group 

where higher values of commute influx indicate a busier area during business hours.  

The results of the second model in Table 2 reveal a completely different set of variables 

with significant explanatory power. The percentage of residents in a block group using public 

transportation as a means to travel to work proves to be most statistically significant at the .001 

level. This makes sense given the earlier observation that transportation in Charlottesville did not 

receive high transit scores, indicating poorer transit conditions exist overall. The model suggests 

that a ten percent increase in transit commuters increases the e-scooter utilization rate by 1.105 

percent. This is not a small effect given that the utilization rate range is very small, between 0 and 

6 percent.  By order of statistical significance, the next variables of importance significant at the 

.01 level are walk score and population density. Population density is descriptive of the residential 

population in a block group. Walk score indicates how favorable walking conditions are. Lastly, 

parking lot area was significant at the .05 level, but with a negative correlation. This suggests that 

a 1 square mile of parking decreases the utilization rate of e-scooters by a factor of 0.12. 
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Table 3. OLS model results including UVA blocks 

 

The third and fourth models in Table 3 are fit to evaluate if the inclusion of UVA block 

groups changes results, indicating the impact of the student population. As previously noted, the 

results presented are reflective of the study period only, in which only a small percentage of the 

typical UVA student population is present due to the COVID-19 pandemic. The decrease in the 

Adjusted R2 of model 4 compared to model 2 indicates a weaker fit when UVA blocks are 

included. It is observed that only population density and walk score remain significant factors for 

e-scooter utilization when UVA blocks are factored in. The percentage of residents using transit 

to commute no longer becomes significant while it was previously significant at the .001 level 

when UVA blocks were excluded from the model. This suggests that e-scooter utilization in 

Model 3 Model 4 
Response Variable: E-scooter availability (including 

UVA blocks)  
Response Variable: E-scooter utilization rate 

(including UVA blocks)  
Adjusted R2: 0.563 Adjusted R2: 0.344 

Explanatory 
Variable 

Coefficient Std 
Error 

p Explanatory 
Variable 

Coefficient Std 
Error 

p 

Population 
Density 

0.00 0.00 .11 Population 
Density 

0.00 0.00 .015* 

Block Group 
Area 

-2.09 6.23 .74 Block Group 
Area 

-0.01 0.02 .66 

Median Age -0.04 0.10 .70 Median Age 0.00 0.00 .75 
% 0-Vehicle 
Households 

5.72 6.52 .39 % 0-Vehicle 
Households 

-0.01 0.02 .73 

% Public Transit -11.15 7.32 .14 % Public Transit -0.02 0.02 .35 
% Walking -2.27 7.78 .77 % Walking 0.02 0.02 .30 

Commute Influx 0.00 0.00 .000*** Commute Influx 0.00 0.00 .97 
Commute 
Outflux 

0.00 0.00 .78 Commute 
Outflux 

0.00 0.00 .53 

Walk Score of 
Block Group 

Centroid 

0.06 0.05 .25 Walk Score of 
Block Group 

Centroid 

0.00 0.00 .029* 

Transit Score of 
Block Group 

Centroid 

-0.08 0.17 .62 Transit Score of 
Block Group 

Centroid 

0.00 0.00 .21 

Bike Score of 
Block Group 

Centroid 

0.02 0.06 .70 Bike Score of 
Block Group 

Centroid 

0.00 0.00 .28 

Parking Lot Area -21.71 20.09 .29 Parking Lot Area -0.04 0.05 .43 



 26 

university areas are less driven by a transit need and that the inclusion of UVA blocks significantly 

changes results overall.  The results are further discussed in the following section. 

3.4 Discussion 
 

Further examination of the results in this study reveal insights as to the underlying reasons 

behind the reported observations. Similar to previous studies, the e-scooter trip distribution in 

Charlottesville did not show evidence of regular commuting behavior. However, upon further 

investigation, geospatial visualizations reveal that available e-scooter vehicles are concentrated in 

areas that are heavily commuted into. This suggests that e-scooter fleet distribution at the time of 

this study was more likely to benefit visitors to a block than residents. As commuting requires a 

reliable, consistent way of travel, e-scooter availability is critical to e-scooter commute adoption. 

For example, as previously noted, studies evaluating docked vs dockless mobility found that 

docked mobility is used for commuting but dockless mobility is not [9], [10], [39]. Insights from 

this study indicate that increasing e-scooter availability in residential zones where micro-mobility 

need is greater could offer communities a more reliable commute alternative. Figure 9a illustrates 

how e-scooter fleets are distributed on average throughout Charlottesville while Figure 9b shows 

the proportion of those vehicles being used on average. 
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Figure 9. Spatial distribution of e-scooter availability and utilization throughout Charlottesville 

Then, Figure 10 illustrates the total number of e-scooter trips that started from each block 

from March 15, 2020 through July 15, 2020. From visual inspection of the figure, it can be seen 

that it resembles the distribution of e-scooter availability in Figure 9a more closely than the 

visualization of e-scooter utilization in Figure 9b. This suggests that e-scooter placement may be 

influenced by a systematically self-reinforcing relationship in which e-scooters are placed where 

the majority of trips start from, but the majority of trips inevitably start from where the vehicles 

are placed. 
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Figure 10. Total trip count per block group from March 15, 2020 through July 15, 2020 

In previous studies, researchers found that office and institutional land use rather than 

residential area was positively correlated with higher ridership [35]. The results of this study 

suggest that this effect can be explained by how an e-scooter trip is dependent on an e-scooter 

being available, which is shown to be lower in more residential areas in this study. However, when 

e-scooter utilization is considered, findings in this study indicate that population density is 

important. Further, it is noted that built environment factors such as favorable walking conditions 

are important factors for e-scooter utilization.  

For city regulators and e-scooter operators, results suggest that increasing e-scooter 

availability in residential areas where residents use transit as a major means of transportation may 

increase utilization when considering the Charlottesville areas excluding UVA. Generally, e-

scooter operations may benefit from specifically considering fleet utilization rate data and resident 
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transportation need factors when making fleet distribution decisions. From visual inspection of 

Figure 9, it can be noted that although e-scooters are the most available in Charlottesville’s 

downtown area, the utilization rate is very low, suggesting a potential need to rebalance the fleet. 

 This work was accepted into the Transportation Research Board 100th Annual Conference 

proceedings and contributes to the micro-mobility literature by analyzing e-scooter availability 

versus utilization.  Findings suggest that: 

1. The factors driving e-scooter fleet distribution differ from the factors driving e-scooter 

utilization. E-scooter availability is significantly influenced by commute influx, an 

indicator of economic activity. E-scooter utilization, in contrast, is significantly influenced 

by residential characteristics such as the percentage of residents using public transportation 

to travel to work. It must be noted that these findings are specific to Charlottesville during 

the COVID-19 pandemic.   

2. Findings suggest that e-scooter fleet distribution decisions may be informed by where trips 

start from, which may be a self-reinforcing relationship based on where e-scooters are 

placed 

3. E-scooter utilization may be a more suitable metric for informing e-scooter redistribution 

decisions 

4 Study II: Characterizing Operator Behavior with Data Visualization 
 

4.1 Motivation 
 

In Study I, trip summary data was used as a high level characterization of e-scooter 

ridership during the initial 4 month study period.  After continuing to harvest e-scooter data from 

the real-time GBFS feed for one year from March 15, 2020 through March 21, 2021, the trips per 
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day were extracted and visualized once more in Figure 11 to observe changes in the shared mobility 

system throughout this period.   

 

Figure 11. Daily e-scooter trip counts from March 15 2020 through March 21 2021 

From visual inspection of Figure 11, it is evident that ridership increased sharply at the end 

of October.  As this date is not marked by a significant student population influx or outflux due to 

academic calendar events, Study II aims to find evidence indicating changes in operator behavior 

to explain the spikes in ridership.  Additionally, Study II takes the temporal aspect of the collected 

data into account by examining 4 periods of interest where the temporal groupings are determined 

by the peak and non-peak ridership periods shown in Figure 12.   
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Figure 12. Study II Periods of Interest 

Figure 12 shows a macro-level view of ridership trends, informing the reader of the periods 

of interest for which further analysis is required. Per findings in Study I, increasing e-scooter 

availability in optimized locations where micro-mobility need is evident is important for 

improving the service offered to the community. As such, it is hypothesized that the increase in 

ridership in Period 2 is explained by a significant shift in how operators distributed their e-scooter 

fleet during this time.  This hypothesis is further investigated by diving from a macro-level view 

to a micro-level view, examining e-scooter availability and utilization for each of the four periods 

at Census block level resolution.   

Additionally, findings from the Charlottesville Dockless Mobility Pilot Program indicated 

that improved monitoring practices were required to ensure micro-mobility vehicles were 

equitably distributed per regulation [33].  Charlottesville Dockless Mobility Regulations state that 

operators must distribute 10% of their fleet to designated equity zones [15].  Additionally, 

operators are required to implement community outreach to promote micro-mobility services in 

low-income communities.  To this end, Study II presents methods for meaningful data aggregation 

and visualization to measure operator performance towards meeting the requirements as stated in 
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regulations.  City planners may use the methods and results presented in this work to evaluate 

micro-mobility distribution equity.     

4.2 Methods 
 
4.2.1 Analyzing Micro-mobility Operations at Census Block Resolution 
 

To collect sufficient data for trend analysis, e-scooter GPS trace records were harvested 

from a real-time GBFS data feed for one year. The data collection and trip extraction methods are 

detailed in section 3.2. The entire study period spanned from March 15, 2020 until March 21, 2021.  

In total, the database storage size required for the raw GPS trace data was only about 3.1 gigabytes 

total, which is a small cost for the information value that can be extracted from such a dataset.  

This measure is also useful for city government officials and planners to account for projecting 

data storage allocation needs. 

To increase the resolution at which e-scooter fleet utilization is examined compared to 

Study I, e-scooter availability is aggregated at the block level.  Recall that in Study I, data was 

aggregated at the Census block group level.  In comparison, the Census block is the smallest 

geographic unit used by the U.S. Census Bureau [56].  The data was split into the respective periods 

of interest as containers for further analysis.  Then, measures of e-scooter availability and e-scooter 

utilization per block were calculated for each period.  

To calculate e-scooter availability, a slice of all available e-scooters per hour per day is 

extracted from the raw data.  Then, the number of scooters available per block is summed across 

each block in Charlottesville city and Albemarle county shown in equation (1) below.  Next, the 

mean is taken across all the hours of each day and then again across all days in each period.  To 

calculate e-scooter utilization, the number of trips taken per day per block is summed and then 

mean is taken across each hour of the day.  Then, the mean is taken across all days in each period.  
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Lastly, the hourly trip average across each period is divided by e-scooter availability measures, 

summarized in equation (2) below.   

(1)	𝑠𝑐𝑜𝑜𝑡𝑒𝑟	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑝𝑒𝑟	𝑏𝑙𝑜𝑐𝑘 = 		$𝑠𝑐𝑜𝑜𝑡𝑒𝑟 ∀%&$!'	)	%&$!'*∀+$,"*	)	-./∀-./*	)	01"#$- 

(2)	𝑠𝑐𝑜𝑜𝑡𝑒𝑟	𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑝𝑒𝑟	𝑏𝑙𝑜𝑐𝑘 = 		
∑ 𝑠𝑐𝑜𝑜𝑡𝑒𝑟	𝑡𝑟𝑖𝑝 ∀%&$!'	)	%&$!'*∀+$,"*	)	-./∀-./*	)	01"#$-
∑𝑠𝑐𝑜𝑜𝑡𝑒𝑟	 ∀%&$!'	)	%&$!'*∀+$,"*	)	-./∀-./*	)	01"#$-

 

Next, e-scooter availability is visualized per block per period to investigate if e-scooter 

fleet distribution changed significantly to explain the spike in e-scooter ridership towards the end 

of October.  Further, e-scooter utilization per block per period is visualized.  Recall that Study I 

results suggested utilization is a useful measure for improving micro-mobility fleet distribution.  

Using these visuals, observed operator behavior and its effect on e-scooter ridership trends are 

analyzed.   

4.2.2 Evaluating Equitable Distribution and Access 
 

To measure fleet distribution in designated equity zones, the measures of e-scooter 

availability per block per time slice detailed in section 4.2.1 were spatially joined with the 

bounding polygons indicating equity zones.  Then, this value was divided by the max number of 

e-scooters available per time slice to calculate fleet distribution per block inside an equity zone.  

This value is then summed across blocks per day to arrive at a measure of e-scooter fleet 

distribution to equity zones per day, which is plotted for visualization.  This value is also 

aggregated across each period of interest in order to visualize how e-scooters are spatially 

distributed across blocks inside equity zones.  Lastly, the measures of e-scooter trips per block per 

time slice described in section 4.2.1 were summed across blocks to arrive at a measure of trips 

taken from equity zones per day.  These values are then plotted against total e-scooter trips for 

comparison and discussion.  
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4.3 Results 
 

By comparing the visualization of average e-scooter availability per block in Period 1 to 

Period 2 in Figure 13, it is clear that operators did make significant changes in e-scooter fleet 

distribution at the end of October.  Per findings in Study I, operators had e-scooters largely 

concentrated in downtown Charlottesville in Period 1.  It can be observed that, on average, there 

were 25 e-scooters packed into one small downtown block and about 12 in another block 

downtown. The rest of the fleet is scattered widely across blocks in Charlottesville and surrounding 

Albemarle blocks.  Then, in Period 2, e-scooter availability around the University of Virginia 

increased significantly.  E-scooters were also more contained within the VeoRide service area.  

The changes operators made in e-scooter placement explains the spike in ridership that occurred 

in Period 2.   
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Figure 13. Average number of e-scooters available per block 

Comparing e-scooter availability from Period 2 to Period 3, the distribution looks very 

similar and no significant changes are observed.  However, the drop in ridership in Period 2 does 

align with when the student population departed from Charlottesville after the UVA Fall 2020 

semester ended.  Similarly, the ridership peak in Period 3 can be explained by the same reasoning 

as the start of the spike aligns with the start of UVA’s Spring 2021 semester.  Results indicate that 

e-scooter operators adjusted e-scooter placement to target the student population as e-scooters 

were under-utilized downtown.  Ridership spikes indicate that the student population did benefit 
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from this change.  Next, e-scooter utilization changes across each period are visualized in Figure 

14.  

 

 
Figure 14. E-scooter utilization per block 

  
Study I findings suggested that utilization is an important metric for evaluating e-scooter 

placement.  Scanning Period 1 from Figure 14, utilization measures appear poor on average across 

all blocks, indicating that the service could be improved by redistribution.  In Period 2, e-scooter 

redistribution was observed and, as a result, e-scooters are better utilized in the blocks around the 

University of Virginia. This suggests that the change in fleet distribution benefited the student 

population specifically.  After the outflux of students during the winter break of 2020 to 2021, 

utilization measures dropped again in Period 3, further suggesting that fleet distribution was 

targeting the student population.  Then, when students returned for the Spring 2021 semester, 

utilization rates around the UVA blocks increased once more.   

 Figure 15 illustrates the percent of e-scooters distributed to equity zones over time while 

the horizontal line marks the 10% requirement enforced by regulations. Over the entire study 

period, the average e-scooter fleet distribution percentage in designated equity zones is 9.33%, 

which is slightly below the required 10% required.  Importantly, the daily distribution shown in 

Figure 15 reveals that this distribution fluctuates significantly over time.  Furthermore, Figure 15 
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shows that during the major shift in operations at the end of October 2020, this included a 

significant and consistent reduction in the percentage of the e-scooter fleet distributed to equity 

zones in Periods 2 through 4.  While e-scooter fleet distribution to equity zones appears to be 

increasing from June 2020 to July 2020, an inspection of the max number of e-scooters available 

in the lower plot of Figure 15 confirms that this effect is accompanied by a trending reduction in 

the number of e-scooters available.  Findings suggest that operators must balance prioritizing 

equitable distribution when making strategic shifts in distribution overall.  

 

Figure 15. E-scooter fleet distribution in equity zones 
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Figure 16 below shows the average spatial distribution of e-scooters in equity zones for each of 

the four periods of interest.  The equity zones, which are designated as Census Tracts, are outlined 

in bold purple lines in Figure 16.  

 

Figure 16. E-scooter fleet spatial distribution in equity zones 

Lastly, to understand if additional community outreach is needed to promote ridership from 

designated equity zones, the number of trips from equity zones are visualized in Figure 17.  
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Visualized alongside the total number of e-scooter trips taken per day, it is clear that the spikes in 

ridership seen in Period 2 and Period 4 are not accompanied by spikes in ridership from equity 

zones, indicating that outreach and redistribution efforts are needed.  These results are further 

discussed in the next section.   

 
Figure 17. Daily e-scooter trips from equity zones v. total daily trips 

4.4 Discussion 
 

Previous studies indicated that the lack of existing research into how e-scooter operators 

deploy and reposition their fleets is a significant limiting factor [34].  Study II contributes to this 

research area by characterizing operator behavior using data aggregation and visualization 

techniques. The results from Study II demonstrate the importance of optimizing e-scooter 

operations while maintaining equitable distribution. Additionally, the importance of effective 

visualization efforts are emphasized for operations monitoring and evaluation. A discussion with 

Amanda Poncy, Charlottesville’s Pedestrian and Bicycle Coordinator, confirmed that VeoRide 

hired a local manager at the end of October.  The local manager’s operations changes are clearly 

shown in Figure 13 and those changes resulted in an increase in e-scooter utilization in Periods 2 
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and 4 as shown in Figure 14.  However, it is also clear that the updated distribution is skewed to 

benefit the student community as the increased benefit is not evident in Period 3 when students are 

largely not in town.  By leveraging utilization as a guiding metric, results suggest it would be 

beneficial to distribute e-scooters in a manner that would better serve the local community, 

especially when students are not in town.   

Moreover, visualizations from Study II indicate that operators must increase e-scooter fleet 

distribution in designated equity zones.  By plotting average fleet distribution in equity zones daily, 

planners can track how this measure is trending against target goals written into policy.  Figure 17 

shows that operation changes in e-scooter placement at the end of October benefitted the UVA 

community, but the ridership increases were not evident from equity zones.  This suggests that the 

current service is not as accessible for people in low-income communities, indicating a need to 

improve outreach efforts.  Additionally, these results could motivate regulators to update policy to 

ensure operators improve equitable distribution and outreach as required.   

Further research is needed to understand why e-scooters are overwhelmingly used by the 

UVA population compared to the local Charlottesville community.  Perhaps outreach targeting the 

local Charlottesville community about micro-mobility and discount programs would help increase 

utilization across the entire service area.  Additionally, further research is needed to identify 

optimal areas for e-scooter redistribution in real time.   

5 Study III: Characterizing User Behavior using Latent Dirichlet 
Allocation 

 
5.1 Motivation 
 

Studies I and II focused on characterizing operator behavior in order to understand how 

operator decisions on e-scooter placement impacts the level of service offered to the community.  
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However, one major piece of the system remains under-explored – given where e-scooters are 

placed, where are users scooting to?  Study III aims to characterize user behavior by diving 

deeper into the e-scooter trip data extracted from the harvested raw GPS trace data.  By 

examining the types of routes e-scooter users traverse, researchers can better understand micro-

mobility needs in Charlottesville and the surrounding Albemarle county areas.   

When considering the added benefit of a new service, city planners often want to know 

how a new service complements existing services in the city.  With respect to transportation 

services, city planners might ask if an added service allows the community to traverse new types 

of routes to access different areas around a city.  They may want to know the top routes that 

users of a new service prefer.  Study III aims to extract the overarching types of e-scooter trips 

taken by current users using Latent Dirichlet Allocation.   

5.2 Latent Dirichlet Allocation 
 

Latent Dirichlet Allocation (LDA) is a generative mixture model  for collections of 

discrete data developed by David M. Blei, Andrew Y. Ng, and Michael I. Jordan [27].  As the 

model was created in the context of text analysis, it assumes that each document in an 

unstructured collection of documents is made up of a mixture of topics [27].  The documents are 

modeled using a hidden Dirichlet random variable and the output of the model is a probabilistic 

distribution on a latent, lower-dimensional topic space [27].  In other words, from an 

unstructured collection of documents, the model extracts relevant topics.  LDA is frequently 

referred to simply as “topic modeling” as it is a method for discovering the hidden topics present 

in a collection of documents [63].  Beyond text data, topic modeling has been used to find 

patterns in image data, social network data, and even genetic data [63]. 
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Recall that an extracted e-scooter trip is a set of discrete GPS points.  Although it is not 

readily obvious, trips can resemble sentences where a GPS coordinate pair is treated like a word.  

A trip can then be viewed as type of document containing many GPS point words.  Viewed in 

this way, when there exists a large collection of trips that are otherwise unstructured, topic 

modeling is a very fitting analysis technique.  Topic modeling can be used to extract the hidden 

route patterns characterizing a collection of trips.  This is an effective approach because GPS 

points that are popular across trips will recur across several different trips in the dataset.  To 

further support this method, another study used LDA to reveal hidden trip pattens from a 

collection of taxi trips [64] and another found departure and arrival trends from bike-sharing trips 

in Paris [65].  Study III extends upon existing work by applying LDA to estimated trips 

harvested from a real-time micro-mobility feed.  The following section details the methods for 

using LDA to extract latent e-scooter trip themes.  Then, the extracted topics are frozen and 

investigated to determine how the trip topic distribution changes when the student population is 

present in Charlottesville compared to when it is not.  This last step sheds light on which types of 

e-scooter trips are popular amongst the student population compared to the local Charlottesville 

population.  

5.3 Methods 
 

In order to perform topic modeling, the e-scooter trip data must be prepared the same way 

text data is prepared as an input to LDA.  The raw trip data has GPS coordinates at very high 

resolution out to four decimal points.  In order for success in this method, there must be GPS 

point co-occurrence across trips for meaningful topics to emerge.  Thus, points that only have 

differences out to the 4th decimal point, but generally describe the same point in a route should 

be grouped together.  This is similar to a pre-processing step in text analysis called “stemming,” 
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which groups words sharing the same root together [66].  For example, the words “work”, 

“worked”, and “working” would be grouped together because they have the same root word, 

“work”.  In order to complete a similar pre-processing step with the e-scooter data, the first step 

is to round the longitude and latitude points to three decimal points, effectively grouping similar 

points to one root word.  Every rounded point then should be considered as a spatial bin of 

0.0001 degrees which equates to 36.4 feet in latitude and 28.8 feet in longitude [67]. Then, 

longitude and latitude fields are concatenated for each trip to create “words” for topic model 

analysis.  Prior to rounding, there were 52, 879 unique longitude-latitude pairs.  Even in 

traditional text topic modeling, there is a performance cost to large vocabularies and it is typical 

to reduce the vocabulary to the top 5,000 most frequently used words.  In the aforementioned 

rounding step in this case, the vocabulary is then reduced to a manageable 3,312 unique 

longitude-latitude pairs.   

To implement topic modeling on the e-scooter trip data, a popular machine learning 

library called scikit-learn is utilized [68]. The required input for scikit-learn’s LDA function is a 

document-term matrix. Figure 18 illustrates how to fit GPS trip data into this context by creating 

a trip-point matrix.    
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Figure 18. Document-Term Matrix to Trip-Point Matrix 

Recall that each trip is treated as if it is a document.  For 42,301 extracted trips, a trip-

point matrix of size 42,301 rows by 3,312 columns (number of trips, number of unique GPS 

points) is created where the values indicate how many times a GPS point from the vocabulary 

occurs in each trip.  Next, the trip-point matrix is fed as input into the LDA model and the 

number of components is set to fifteen.  The output of the LDA model is then fifteen topics with 

a probabilistic distribution of GPS points that make up each topic.  Additionally, the probabilistic 

distribution of topics each trip is made of is extracted from the model.  

 In topic modeling for text, topics are visualized by extracting the most frequent words per 

topic [63].  The analyst can then determine the latent topics in a corpus by examining these word 

groupings per topic.  For this study, the top 50 GPS points per topic were plotted over a map of 

Charlottesville to visualize the extracted trip topics.  To plot the GPS points, the top words were 
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joined back to the rounded GPS coordinates prior to concatenation. Then, topics were manually 

labeled by visual inspection of the plot.  

 Lastly, three periods of interest from Study II are examined: Period 2 which includes the 

UVA Fall 2020 semester, Period 3 which spans the winter break between academic seasons, and 

Period 4 which includes the UVA Spring 2021 semester.  Then, plots of the temporal e-scooter 

trip distribution across days of the week and hours of the day per period are compared.  This 

allows the reader to examine how the trip topic distributions compare during and outside of 

academic seasons when the population in Charlottesville changes dramatically.  The results of 

this study are presented in the following section.  

5.4 Results 
 

Figure 19 illustrates the distribution of the 15 topics extracted from the LDA model.  While 

there is overlap across some of the topics, hidden trip themes clearly emerge when the top 50 GPS 

points of each topic are plotted.  The legend on the top right shows the trip distribution per topic.  

Over the entire study period, the trip topic distribution is surprisingly even, with only a few trip 

topics being slightly more popular than the others.   
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Figure 19. Trip Topic Distribution 

 Next, Figure 20 is a visualization of select topics where the probability distribution of all 

GPS points per topic is emphasized on a color scale.  When a point occurs in a topic more 

frequently, the fill becomes a darker pink.  The resulting visualization is a plot showing GPS points 

by their level of importance in each a topic.  Then, by visual inspection of the map, each topic was 

manually labeled.  Figures 20 and 21 also illustrate the diversity of trips traversed using e-scooters.  
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Figure 20. GPS Probabilistic Distribution per trip topic 

 Finally in Figure 21, the trip topic distributions were compared across three periods to 

examine how the types of e-scooter trips differ in and outside academic seasons.  Topics 5 and 9 

emerge as significantly more popular trip topics when students are in town.  Topic 5 includes 

points connecting Faulkner and Copeley student housing to the JPJ parking area and stadium.  

Interestingly, Topic 9 is around the same area but also includes connections to the Barracks 

shopping center and surrounding residential areas.  There is also a smaller increase in Topic 10 
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when students are in Charlottesville.  Topic 10 seems to connect Barracks and surrounding 

residential areas.    

Figure 21. Trip topic distribution per period 
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 The pie chart shown in the middle of Figure 21 provides a window for examining the local 

Charlottesville population when students have largely left town.  Topic 0, which appears to connect 

residential areas around Rugby Road and Madison Avenue to Downtown Charlottesville surfaces 

as the most popular trip topic during this period.  Lastly, Figure 22 shows how trip trends change 

between periods.  The plots reveal that when there is an influx of students into the community, e-

scooters are used mainly on the weekends, suggesting that trips lean towards recreational purposes.  

Figure 22. E-scooter temporal trip distribution per period 
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In comparison, trips are more evenly distributed across the days of the week outside of academic 

seasons.  These results are discussed further in the following section.  

5.5 Discussion 
 

Study III demonstrates the efficacy of using Latent Dirichlet Allocation to characterize user 

behavior in shared micro-mobility systems using harvested data from an open real-time feed. 

Using LDA for trip topic discovery, latent trip themes that characterize all e-scooter trips taken 

from March 15, 2020 to March 21, 2021 were extracted and visualized.  Findings suggest that e-

scooters are used to traverse the streets of Charlottesville in a diverse manner overall as the 

extracted topics extended all across town.  As expected based on findings from Study I and Study 

II, the most popular trip topics include areas where e-scooters are the most consistently available 

– downtown and around the University of Virginia.  Additionally, the UVA student population 

seems to prefer trips around John Paul Jones Arena, nearby student housing, and the Barracks 

shopping center as these topics are significantly more popular during academic seasons.  

Importantly, it must be noted that the period of study is during the COVID-19 pandemic when 

students may prefer e-scooters over other forms of transportation such as public transit for public 

health reasons.   

As the Barracks shopping center contains a Harris Teeter frequented by students, these trips 

could be related to weekly groceries access, but further research is needed to confirm this.  Then, 

focusing on Period 3, Topic 0 connecting residential areas across town to Downtown 

Charlottesville emerges as the most popular trip topic.  There were also increases in Topic 7 which 

connects a larger residential area to downtown and Topic 6 connecting northern residential areas 

to Barracks.  This suggests that the local Charlottesville population uses e-scooters as a means to 

travel short distances across town.  Further, the temporal distribution of trips during Period 3 
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indicates that the local Charlottesville population may use e-scooters for more practical purposes 

because trips occur more evenly across the days of the week. By examining topic distribution 

variance during periods of known population flux, researchers and city planners can learn about 

the main use cases given current e-scooter distribution strategies.  Findings suggest that the use 

cases did change significantly depending on UVA student population flux.  Visualizing trip topic 

distribution dynamically can be a useful method to evaluate the impact of redistribution decisions 

on the community.  

6 Conclusion 
 
6.1 Synthesizing Studies I, II, & III 

 
To summarize, this work adds to the big data transportation literature by presenting data 

processing, aggregation, visualization, and machine learning techniques to holistically 

characterize shared mobility system behavior using streaming GPS trace data from an open feed, 

focusing on an emerging micro-mobility system in Charlottesville, Virginia as a case study.  

Previous micro-mobility studies cite a lack insight into operator distribution strategies as a 

limiting factor in the small, but growing research field [34].  Although e-scooters have the 

potential to fill small distance transportation needs including short commutes and connecting 

people from their homes to inconveniently far transit options, there is limited evidence showing 

these use cases in practice [13], [29].  Many studies suggest e-scooters are used more so for 

recreation [37].  Comparatively, commuting behavior is observed in docked bikesharing, 

suggesting that vehicle availability is critical for practical, routine trips [9].  Importantly, this 

work focuses on the conditional factor of e-scooter availability, hypothesizing that e-scooter use 

is significantly impacted by how fleets are distributed.  In three studies, this work showcased 

data analytics approaches and shared insight on how e-scooter availability effects e-scooter use.   
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1. In Study I, a multiple regression analysis revealed that commute influx had the 

biggest effect on e-scooter availability as most scooters were concentrated in one 

block group in Downtown Charlottesville where many residents commute to. In 

comparison, the percent of residents using transit and walkability emerged as 

significant explanatory variables for e-scooter utilization.  This indicates that 

although e-scooter placement decisions focused on buzzing economic factors, e-

scooter ridership decision-making was based on micro-transit need and built 

environment factors. Visualizing utilization per block group, it was clear that an 

effective redistribution would improve the service for the community.  

2. In Study II, data aggregation and visualization approaches were used to characterize 

and evaluate operator behavior. By visualizing utilization at high resolution across 4 

distinct periods, a significant shift in e-scooter distribution was observed, which 

explained a significant rise in ridership. However, the utilization increase was only 

observed during periods when the city had a large influx of UVA students, indicating 

that the redistribution was only beneficial for the student population and had limited 

service improvements for the Charlottesville community as a whole. Additionally, 

visualizations revealed a need to improve equitable distribution efforts and 

community outreach.   

3. In Study III, Latent Dirichlet Allocation was used to characterize the e-scooter trip 

behavior which describes micro-mobility use in Charlottesville during the entire study 

period. As expected, the most popular e-scooter trip themes included areas where e-

scooters were the most available. The extracted trip topic distributions changed 

significantly when students left town.  Seeing that utilization rates also dropped 
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sharply when students departed, it is clear that students have different trip preferences 

and needs compared to the local Charlottesville population. Additionally, results 

show that most trips taken during the academic seasons took place on weekend 

evenings, suggesting student trips leaned towards recreation. In Period 3, outside of 

academic seasons, trips were more evenly distributed across the days of the week, 

suggesting that the local Charlottesville population uses micro-transit for different 

purposes. As such, redistribution and outreach efforts including the local community 

are recommended to improve the reach and benefits of micro-mobility service in 

Charlottesville overall. 

City planners and shared mobility service operators may leverage the methods presented 

in this work as a starting point to understand, monitor, and evaluate emerging transportation 

services that publish real time data to an open feed.  Resulting data-driven decisions about 

vehicle distribution can align access with need, improving the level of service offered to 

communities.   

6.2 Limitations 
 

While this work revealed interesting insights about e-scooter operations and use in 

Charlottesville, it should be noted that the study period starts during the early stages of the COVID-

19 pandemic, which caused a disruption to micro-mobility as a whole. The population in 

Charlottesville was unusually low due to the mass exodus of students in the second week of March 

2020 as evidenced in Figure 4. Perceptions about travel were likely impacted by public health 

concerns about contracting the COVID-19 virus.  For example, the finding in Study I showing 

increased utilization rate of e-scooters in more transit-dependent areas could be the result of 

anxiety surrounding using public transportation modes during this period. Similarly, trip topics 
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extracted from Study III could be reflective of pandemic era trips to buy food or groceries as an 

alternative to public transportation.   

Additionally, the small size of the case study area translates to a relatively small service 

area for e-scooter travels overall, limiting resulting conclusions to Charlottesville and perhaps 

other similar university towns.  Finally, this work was built on the assumption of accurate GPS 

trace data.  While obvious GPS errors were removed from the dataset in pre-processing steps, 

additional testing is needed to confirm GPS accuracy.  

6.3 Future Work 
 

This study sets the stage for future lines of research for big data analytics in shared mobility 

as the type of data analyzed is widely accessible in similar formats.  Future studies can apply the 

proposed approaches in different cities and include additional transportation modes in their 

analysis to understand how emerging transportation modes complement existing ones. Further, 

researchers can work with e-scooter operators to test the effects of rebalancing e-scooter fleets 

based on utilization measures and the inferred transportation needs of the communities they serve. 

Finally, future research can be directed towards developing dynamic tools that apply the big data 

analytics approaches described throughout this work for producing real-time, dynamic displays to 

help city planners and regulators.  
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