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Abstract

Discovery, fine mapping, and functional characterization of genetic suscep-
tibility loci in type 1 diabetes
Catherine C. Robertson, PhD in Biochemistry and Molecular Genetics, University of
Virginia, 2021

Type 1 diabetes (T1D) is an autoimmune disease in which the immune system de-
stroys the insulin-producing β cells of the pancreas, leading to elevated blood glucose.
Twin and family studies suggest that about half of T1D risk is inherited. In Chapter
1, I describe the genetic etiology of T1D.

Historically, Northern European populations had the highest incidence of T1D, but
rates are increasing in other groups. Genetic studies of T1D in African-ancestry
populations have been limited in scope and size. In Chapter 2, analyzing genotypes
from 3,949 African Americans, we find genetic associations with T1D risk are broadly
concordant between African- and European-ancestry groups but also demonstrate the
value of population-specific genetic risk prediction.

Genetic studies conducted over the past 45 years have identified about 60 loci associ-
ated with T1D risk, but causal variants are unknown in most regions. In Chapter 3,
we analyze genotypes from 16,159 T1D cases, 25,386 controls and 6,143 trio families,
to identify additional T1D-associated regions and, in 52 regions, define “credible sets”
of variants most likely to be causal for T1D.

The vast majority of T1D credible variants are in non-coding regions of the genome,
which obscures the causal genes and mechanisms underlying their association. In
Chapter 4, we identify causal cell types, variants, and genes for T1D using chromatin
accessibility profiling. We demonstrate strong enrichment of T1D credible variants in
open chromatin from lymphocytes, and find five regions where T1D credible variants
influence chromatin accessibility in CD4+ T cells.

These analyses expand our understanding of the genetic basis of T1D. In Chapter 5, I
discuss how continued work to understand genetic risk for T1D in diverse ancestry and
later-onset populations will pave the way for effective precision medicine in T1D. High
throughput approaches to test variant function in diverse cell contexts will accelerate
the effort to definitively link causal genes to T1D etiology, providing novel therapeutic
targets and guiding application of therapies.
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Chapter 1

Introduction

Sections of this chapter are adapted from:

Robertson CC and Rich SS. Genetics of type 1 diabetes. Current Opin-

ion in Genetics & Development. 2018 Jun 1;50:7-16.

1.1 Background on type 1 diabetes

1.1.1 Physiology and natural progression

Insulin is a peptide hormone that regulates glucose transport into muscle and adipose

cells. Insulin is produced by β cells in the islets of the pancreas (Figure 1.1). In type 1

diabetes (T1D), previously referred to as “insulin-dependent diabetes,” “autoimmune

diabetes,” and “juvenile diabetes,” the immune system attacks and destroys the pan-

creatic β cells, causing permanent loss of insulin production (Figure 1.2). Without

insulin, blood glucose levels become dangerously high, leading to serious and poten-

tially fatal complications. Since the 1920’s, exogenous insulin injections have been

used to control blood glucose levels in T1D patients. Improved insulin therapy and

delivery systems have substantially lessened the daily burden and long-term risks of

living with T1D. However, worldwide, T1D continues to be associated with dimin-



2

ished quality of life and shortened life expectancy, particularly in communities with

restricted healthcare resources.

Figure 1.1: The pancreas is located in the abdomen behind the stomach. Islets within
the pancreas contain β cells, which produce insulin. Image and caption obtained
from the National Institute of Diabetes and Digestive and Kidney Diseases, National
Institutes of Health. https://www.niddk.nih.gov/news/media-library/8034

https://www.niddk.nih.gov/news/media-library/8034
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Figure 1.2: Islet architecture is altered during β-cell destruction. Individual islets
from a single organ donor recently diagnosed with type 1 diabetes were immunostained
for insulin (brown) or glucagon (red). Islets in the initial phase of peri-insulitis tend to
have a normal architecture with both α and β cells present (A). Islets in which most of
the β cells have been destroyed (B) are usually smaller and adopt a more condensed
appearance. Occasionally, insulin-deficient islets adopt a more diffuse appearance
(C), with loss of their typical cellular organization. Image and caption adapted from
Morgan et al. 2014.

Based on available evidence, T1D is thought to develop through multiple stages

(Insel et al. 2015). First, an unknown environmental trigger initiates a breakdown

in immune tolerance to islet antigens in genetically susceptible individuals. Once

initiated, autoimmunity against islet antigens causes progressive loss of β-cell func-

tion and mass during a pre-symptomatic phase lasting from months to years. Over

time, injury to β cells begins to impair insulin production resulting in dysglycemia.

Eventually, poor glucose control leads to overt symptoms and clinical diagnosis of

diabetes. Continued injury to β cells causes complete lifelong dependence on exoge-

nous insulin and potential complications to other organ systems. Pre-symptomatic

islet autoimmunity can be detected by the presence of antibodies against specific

islet antigens, including insulin autoantibodies (IAA), glutamic acid decarboxylase

autoantibody (GADA), insulinoma-associated protein 2 autoantibody (IA-2A), and

zinc transporter 8 autoantibody (ZnT8A). The presence of multiple islet autoanti-
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bodies in an individual indicates a high risk of progression to T1D (Ziegler et al.

2013).

1.1.2 Prevalence and trends

Worldwide, about 1 in every 300 individuals are living with T1D. Although T1D can

occur at any age (Thomas et al. 2018), it is easier to accurately diagnose in pedi-

atric patients due to the lower prevalence of other forms of diabetes in this group.

Thus, research on T1D has primarily focused on individuals developing symptoms in

childhood or early adulthood. The incidence of T1D in children varies substantially

across geographic regions (Figure 1.3). In Nordic countries (Finland, Sweden, and

Norway), Saudia Arabia, and Kuwait, incidence rates exceed 30 in 100,000 children

per year (Patterson et al. 2019). Meanwhile, some countries in Asia, South America,

and Africa have estimated incidence rates of fewer than 2 in 100,000 per year (Patter-

son et al. 2019), suggesting more than a 15-fold difference in incidence rates between

high- and low-incidence populations.

Incidence of T1D has increased worldwide in recent decades, primarily driven by

steady increases in historically low-prevalence populations. In Europe between 1989

and 2003, Finland and Norway had the highest prevalence of T1D, yet the increases

in annual incidence were lowest (2.7% in Finland and 1.3% in Norway) (Patterson

et al. 2009). In contrast, Poland has a low T1D prevalence yet the incidence increased

by 9.3% annually over the same period (Patterson et al. 2009). Meanwhile, in the

United States from 2002 to 2012, the annual incidence of T1D increased overall, but

differed by ancestry, with historically low-prevalence groups having higher annual rate

of increase (4.7% in Hispanic and 2.2% in non-Hispanic black) compared to that in

historically high-prevalence white youths (1.2% annual increase) (Mayer-Davis et al.

2017). These data point to a growing role for environmental exposures in the disease

process, as well as, increased clinical recognition of T1D in historically low-prevalence
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populations.

Figure 1.3: Map of age-sex standardised incidence rates (per 100,000) from publica-
tions of type 1 diabetes in children aged under 15 years. Image and caption from
Patterson et al. 2019

1.1.3 Environmental triggers

Environmental factors may contribute to the initiation of islet autoimmunity or pro-

gression from islet autoimmunity to overt T1D in genetically susceptible individuals

(Rewers and Ludvigsson 2016). Viral infection, particularly by enteroviruses, have

the most support for a causal role in T1D development. Both epidemiological and

animal studies implicate Coxsackie B enteroviruses in T1D (Richardson et al. 2009;

Morgan and Richardson 2014; Stone et al. 2018). Prospective studies also show that

respiratory infections early in life increase risk of islet autoimmunity among geneti-

cally high-risk children (Lönnrot et al. 2017).

One hypothesis proposes that physiological factors leading to increased insulin

production can promote islet autoimmunity and progression to T1D through a “β-cell

stress” mechanism (Roep et al. 2021). In particular, increased demands on β cells may
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lead to post-translational modification of islet proteins involved in insulin secretion,

creating immunogenic neoantigens that promote islet autoimmunity (McGinty et al.

2014; Delong et al. 2016). Potential β-cell stressors could include factors as diverse

as rapid growth during puberty, viral infection, and psychological stress.

Many additional candidate triggers have been proposed, including vaccines, mi-

crobiome changes, increased sanitation in developed countries, and various dietary

factors in early childhood (e.g., breastfeeding, cow’s milk, and vitamin D), but, thus

far, none are supported by convincing epidemiological evidence (Rewers and Lud-

vigsson 2016). Given existing findings, there is unlikely to be a single environmental

trigger underlying T1D onset. Instead, several different exposures likely contribute

to disease burden in the population, and, even in a single genetically susceptible

individual, T1D may be triggered by combinatorial effects of these factors.

1.1.4 Treatment and prevention

Insulin was first isolated from dog pancreas secretions in 1921 (Banting et al. 1922).

Within two years of this discovery, exogenous insulin injections were widely used to

treat T1D in the United States and Europe (Bliss 1993). In the following decades,

the pharmacodynamics of insulin therapies gradually improved (Bliss 1993), however,

the immunogenicity of animal-derived insulin remained a challenge. In the 1970’s,

recombinant technology enabled synthesis of human insulin (Goeddel et al. 1979),

which became the first genetically engineered therapy approved for clinical use in the

United States (Keen et al. 1980).

More recently, advances in insulin delivery and glucose monitoring technologies,

including “closed-loop systems” (Russell et al. 2014), have further improved quality

of life for people living with T1D. Yet, even these tools cannot fully recapitulate the

precise glucose control provided by functional β cells. For example, a recent trial

demonstrated that, on average, children treated with a closed-loop insulin delivery
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system still had glucose levels outside the target range more than 30% of the time

(Breton et al. 2020). Due to the daily burden of glucose monitoring and long-term

complications associated with poorly-controlled blood glucose, there is still a major

role for novel approaches to treating this disease, particularly by replenishing func-

tional β cells and preventing β-cell destruction by the immune system.

A number of immune-modulating therapies for T1D prevention or treatment have

been explored in clinical trials with varying success (Skyler 2018). Recently, a 14-day

course of teplizumab, an anti-CD3 monoclonal antibody that targets activated CD8+

T cells, delayed T1D in high genetic-risk individuals by a median of two years (Herold

et al. 2019). This success shows that appropriately timed immune-modulating therapy

can alter the autoimmune process preceding T1D onset. Nonetheless, no treatment

has been show to prevent T1D development, which motivates additional work to

identify immune targets underlying the disease process in T1D patients.

1.2 Background on genetics

1.2.1 The genetic basis of human traits

The human genome contains about 3.4 billion nucleotides packaged into 24 chromo-

somes (1 through 22, X, and Y). This genome took shape in Africa about 200,000

years ago (McEvoy et al. 2011). Since then, humans have multiplied and migrated.

The current genetic diversity of human beings across the globe has been shaped by

a complex history involving many waves of migration and diverse evolutionary pres-

sures. While the nucleotide sequence between any two humans is about 99.5% the

same (1000 Genomes Project Consortium 2015), there are millions of locations in the

genome where the nucleotide sequence might differ. These sites are called “genetic

variants” or “polymorphisms,” and the possible sequences at a given genetic variant

are called “alleles.”
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Human genetics is the study of how genetic variants help to shape human traits.

For some traits, the relationship to genetic variation is straightforward. These Men-

delian traits, caused by genetic variation in one or a handful of genes, tend to follow

simple inheritance patterns, often according the rules originally proposed by Gregor

Mendel (Mendel 1865). For other “complex traits,” including many common diseases,

many genetic variants work together, often in concert with environmental factors, to

shape disease susceptibility. The heritability of a trait is the proportion of phenotypic

variance that can be explained by genotypic variance in a population. In other words,

heritability is a measure of the relative contribution of genetic versus non-genetic fac-

tors to a trait. Heritability can range from 0 (no genetic influence) to 1 (completely

determined by genetics). The heritability of a trait influences how well we can hope

to predict the trait through genetics studies.

1.2.2 Measuring genetic variation in human populations

Genotyping is the practice of determining the alleles that a given individual carries

at a particular genetic locus. For human autosomal chromosomes, a genotype will

consist of a pair of alleles, one from each parental haplotype. Genotyping technol-

ogy has evolved substantially in recent decades. Early approaches to systematically

map human disease loci used restriction fragment length polymorphisms (RFLPs)

to measure highly polymorphic markers across the genome (Botstein et al. 1980).

RFLP experiments involve digesting DNA with restriction endonucleases and identi-

fying alleles with gel electrophoresis. These linkage studies, which traced segregation

of genetic markers and disease status in family pedigrees, were effective for identify-

ing genetic causes of diseases that follow simple inheritance patterns (i.e., Mendelian

genetic disorders). However, linkage analysis is not well-suited for identifying risk

factors for genetically complex diseases due to the limited numbers of individuals and

genetic markers that can be studied.
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The Human Genome Project was an international effort to sequence all the eu-

chromatic regions of the human genome, which was completed in 2004 (McPherson et

al. 2001; Collins et al. 2004). The availability of a nearly complete map of the human

genome, coupled with advances in DNA sequencing technologies (“next generation”

or “high throughput” sequencing), made it possible to sequence the genomes of hun-

dreds of individuals from diverse ancestral backgrounds. The International HapMap

Project (The International HapMap Consortium 2003) and the 1000 Genomes Project

(1000 Genomes Project Consortium 2015) provided a catalog of the most common

genetic variants in human populations. With this catalog, genome-wide genotyping

arrays were developed, providing an inexpensive way to systematically measure ge-

netic variation across the genome (Figure 1.4, LaFramboise 2009). Genotyping arrays

are particularly suited for measuring single nucleotide polymorphisms (SNP), genetic

variants where the alleles differ by only a single nucleotide. Commercially available

genotyping arrays typically genotype between 200 thousand and 2.5 million SNPs in

a single experiment (Verlouw et al. 2021). Additional genetic variation can be stud-

ied by leveraging linkage disequilibrium to impute untyped variants using haplotype

reference panels (see Section 3.1.2).
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Figure 1.4: Overview of Illumina SNP array technology. At the top is the fragment
of DNA harboring an A/C SNP to be interrogated by the probes shown. Attached
to each Illumina bead is a 50-mer sequence complementary to the sequence adja-
cent to the SNP site. The single-base extension (T or G) that is complementary to
the allele carried by the DNA (A or C, respectively) then binds and results in the
appropriately-colored signal (red or green, respectively). Figure and caption adapted
from LaFramboise 2009.

High throughput genotyping has enabled large-scale studies of disease cohorts,

called genome-wide association studies (GWAS), and more recently population biobanks,

to identify genetic factors underlying the full spectrum of human traits, including

those with complex genetic architecture. Through many collaborative efforts to geno-

type tens of thousands of individuals, we now have robust maps linking over 55,000

unique genetic regions to almost 5,000 human traits (Figure 1.5), providing new in-
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sights into disease etiology and avenues for therapeutic intervention (Loos 2020).

Figure 1.5: Published genome-wide significant (p ≤ 5×10−8) associations with genetic
variation on chromosome 1 over a ten-year period. Each vertical bar represents human
chromosome 1. Each circle indicates association between a genomic region and a
human trait or disease. Images obtained through the NHGRI-EBI GWAS Catalog.



12

1.2.3 The scale and distribution of human genetic variation

A typical human genome contains between 3.5 and 4.5 million non-reference alleles de-

tectable by short-read whole genome sequencing, most of which are relatively common

in human populations (1000 Genomes Project Consortium 2015). For example, more

than 95% of variants within a typical human occur with an allele frequency greater

than 0.5% globally (1000 Genomes Project Consortium 2015). Together, the global

human populations represented in 1000 Genomes Phase 3 data (1000 Genomes Project

Consortium 2015) contain about 8 million variants with allele frequency greater than

5%.

Rare variation is even more abundant. Somewhat paradoxically, while most of the

genetic variation within a single individual is common, most of the variants observed

in a population are rare (1000 Genomes Project Consortium 2015). Many more mil-

lions of rare variants have been identified through large sequencing projects. A recent

sequencing study of 53,831 individuals genotyped using short-read whole genome se-

quencing identified about 400 million variants with allele frequencies less than 1%

(Taliun et al. 2021). And while the number of known variants that are common in

human populations will remain relatively stable, the total number of rare variants

will likely continue to grow as the genomes of more individuals are sequenced.

1.2.4 Maps to mechanisms

The ultimate goal of human disease genetics is to improve understanding and treat-

ment of human disease. While genetic maps are a valuable first step, the effect of

genetic variants on disease risk must be interpreted in the context of molecular biol-

ogy, cellular processes, and human physiology.
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Genes as units of information

Originally proposed in 1958, the “central dogma of molecular biology” continues to

provide a valuable framework for understanding the flow of information in biological

systems (Crick 1970). Most importantly, DNA provides instructions in the form of

genes, genes are transcribed into RNA, and RNA can be translated into proteins.

The human genome contains about 20,000 protein-coding genes (Collins et al. 2004).

Understanding the role of their protein products in diverse biological processes and

diseases has been a major focus of molecular biology and human genetics research

for decades. Thousands of genes have been interrogated experimentally and causally

linked to human disease (Amberger et al. 2015, OMIM.org). Furthermore, compara-

tive analysis of protein sequences and delineation of functional protein domains have

allowed us to infer broad function for many human proteins through their evolution-

ary context (Lee, Redfern, and Orengo 2007). Nonetheless, the precise functions of

most human genes in normal physiology remain unexplored.

Dynamic regulation of gene expression creates complex organisms

While protein-coding genes are essential units of biological information, they only

make up about 1% of the human genome. The remaining 99% of the genome is

thought to play a role in regulating expression of these genes across tissues, environ-

ments, and timepoints in human development. Deciphering the regulatory mecha-

nisms of the non-coding genome remains a major challenge. Many assays using high

throughput sequencing have been developed to measure molecular features involved

in gene regulation, including transcription (Wang, Gerstein, and Snyder 2009), DNA-

binding proteins (Park 2009), chromatin accessibility (Boyle et al. 2008; Schones et

al. 2008; Buenrostro et al. 2013), and chromatin looping (Lieberman-Aiden et al.

2009). Together, these tools are starting to provide insights into mechanisms of gene

regulation in complex organisms.

OMIM.org


14

Genetic variation shapes complex traits through gene regulatory effects

Large-scale studies of complex human diseases have demonstrated that the majority

of disease-associated variants are in non-coding regions of the genome (Maurano et al.

2012), making it difficult to infer causal genes. Thus, the value of large-scale genetic

studies for understanding disease mechanism and providing pathways for therapeutic

intervention will depend on our ability to decode the non-coding human genome. This

realization has motivated collaborative efforts to systematically map genetic regula-

tory elements and variants, including the Encyclopedia of DNA Elements (ENCODE)

(Moore et al. 2020), NIH Roadmap Epigenomics Mapping Consortium (Kundaje et

al. 2015), Genotype-Tissue Expression (GTEx) project (GTEx Consortium 2020),

and the International Common Disease Alliance (ICDA) (www.icda.bio). Through

collective efforts like these, the field is beginning to delineate universal and cell-type

specific regulatory elements and to explore how genetic variation may disrupt their

activity. In some cases, molecular maps have led to testable hypotheses for causal

variants and genes underlying complex disease associations (Musunuru et al. 2010;

Small et al. 2011; Davis et al. 2019; Nasrallah et al. 2020). However, to date, only a

small fraction of disease associations have known molecular mechanisms. Emerging

technologies, for example high throughput genome editing and single cell sequencing

(Fulco et al. 2016; Schraivogel et al. 2020; Pan et al. 2020; Morris et al. 2021), may

help to accelerate the identification of causal variants and genes.

1.3 Genetic basis of T1D

Twin studies suggest a substantial genetic component to T1D risk. The reported

percentage of monozygotic twins concordant for T1D diagnosis cross-sectionally has

varied substantially, from 23% (Kaprio et al. 1992) to 54% (AH et al. 1981). How-

ever, a more recent study demonstrated that, in 65% of monozygotic twins initially

www.icda.bio
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discordant for T1D, the unaffected individual will develop T1D by the age of 60 (Re-

dondo et al. 2008). One study comparing monozygotic and dizygotic concordance

rates in the Finnish national health system estimated that additive genetic effects

account for 66% of T1D risk (Kaprio et al. 1992). This section describes our current

understanding of the genetic factors contributing to T1D etiology.

1.3.1 Timeline of genetic discovery

Early studies identified associations of human leukocyte antigen (HLA) alleles (Singal

and Blajchman 1973, Nerup et al. 1974) and variation in the insulin region (Bell,

Horita, and Karam 1984) with “insulin-dependent diabetes” but not “non-insulin-

dependent diabetes,” which supported the emerging concept that these two conditions

have distinct etiologies. As increasing evidence implicated autoimmunity as a defining

feature of insulin-dependent diabetes (now called T1D) (Baekkeskov et al. 1982),

diabetes diagnoses became more precise. Features such as presence of autoantibodies,

age at onset, insulin resistance, and BMI were used to distinguish T1D from type 2

diabetes (T2D). With better-defined diagnostic criteria and an understanding that

T1D is immune-mediated, three additional candidate genes with immune function

were identified: CTLA4 (Nisticò et al. 1996), PTPN22 (Ladner et al. 2005), and

IL2RA (Vella et al. 2005).

High throughput genotyping and increased sample sizes through aggregation of

individual studies into consortia (e.g., the Type 1 Diabetes Genetics Consortium,

T1DGC (Rich et al. 2006)) facilitated the identification of over 50 loci contributing

to T1D risk (Smyth et al. 2006; Wellcome Trust Case Control Consortium 2007;

Cooper et al. 2008; Barrett et al. 2009). In the 2009 T1DGC GWAS meta-analysis

(Barrett et al. 2009), 41 distinct loci were associated with T1D risk. While these

associations included known T1D loci, 27 were novel. Importantly, the majority of

novel associations replicated in independent cohorts at genome-wide (18 out of 27)



16

or nominal (4 out of 27) significance levels.

In 2015, fine mapping of susceptibility loci with increased sample sizes refined our

understanding of likely causal variants in T1D-associated regions (Onengut-Gumuscu

et al. 2015). Allelic heterogeneity within a given locus was identified by conditioning

on the most associated variant, discovering additional variants significantly associ-

ated with T1D risk near IFIH1, IL2RA, INS, DEXI, PTPN2 and TYK2. Using

imputation, four additional loci were identified in 2017 (Cooper et al. 2017).

1973 20152009
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correlated with 

insulin-dependent 
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(Singal & Blajchman)

GWAS identifies 40 
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Figure 1.6: Timeline of genetic discovery in type 1 diabetes.

Together, these studies (Figure 1.6) provide a picture of the genetic architecture of

T1D, where variation in HLA and insulin regions determine a large portion of disease

susceptibility and the remainder of genetic risk is driven by small contributions from

many loci (Figure 1.7). While many genetic risk factors underlying T1D susceptibil-

ity have been identified in European pediatric populations, the relative contribution

of genes and exposures to T1D risk may vary across demographic groups and over
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time. Expanding studies of T1D to a more representative patient population, includ-

ing individuals with non-European ancestry and later disease onset, may reveal new

disease genes and mechanisms.
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Figure 1.7: Visual representation of the genetic architecture of type 1 diabetes (T1D).
The total area of the square represents the genetic basis of T1D, and the area of within
each section is the proportion of heritability explained by each known T1D locus.

1.3.2 Disease genes and pathways

Across T1D-associated genetic loci, several genes are strongly suggested to play a role

in disease etiology.
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HLA genes

Variation in the major histocompatibility complex (MHC) accounts for the largest

portion of genetic risk for T1D. However, due to the genetic complexity of the region,

fully characterizing causal variants and mechanisms is challenging. The strongest T1D

associations are with variants in the HLA class I (HLA-A, -B, and -C ) and HLA class

II (HLA-DRB1, -DQA1, -DQB1, -DPA1, and -DPB1 ) genes, which encode the MHC

class I and II molecules. The presentation of peptide antigens by MHC molecules

for recognition by T cells is an essential step in T-cell mediated adaptive immunity.

HLA genes are among the most polymorphic genes in the human genome, with genetic

variants concentrated in exons encoding the MHC molecule peptide binding groove.

For further discussion of the biological importance and genetic structure of the MHC,

see Chapter 2.

The association between HLA alleles and T1D risk was first recognized nearly

50 years ago (Singal and Blajchman 1973, Nerup et al. 1974). Subsequent work

mapped the lead association to amino acid position 57 in HLA-DQB1 (Todd, Bell,

and McDevitt 1987), which affects the P9 peptide binding pocket of MHC class

II HLA-DQ molecules. A mouse model that spontaneously develops autoimmune

diabetes, the non-obese diabetes (NOD) mouse, also carries a distinct amino acid

residue at position 57 of the HLA-DQB1 murine homolog compared to other mouse

strains (Todd, Bell, and McDevitt 1987).

Patterns of T1D-associated HLA class II alleles support the hypothesis that they

confer risk or protection through structural changes in MHC molecules that alter

peptide binding and presentation (Cucca et al. 2001). More recently, a bioinformatic

approach relating HLA genetic variation with amino acid change and resulting protein

structure showed that the majority of HLA-mediated association with T1D can be

statistically explained by three amino acid changes that affect the binding pockets of

MHC class II molecules: position 57 in HLA-DQA1 lining the HLA-DQ P9 pocket,
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and positions 13 and 71 in HLA-DRB1 lining the HLA-DR P4 pocket (Hu et al. 2015).

This confirmed the previous implication of the HLA-DQ P9 pocket and provided the

first convincing evidence that the HLA-DR P4 pocket has a significant role in T1D,

although it has been implicated in rheumatoid arthritis. In rheumatoid arthritis,

the risk-conferring residues in the HLA-DR P4 pocket may be involved in binding of

citrullinated peptides (Scally et al. 2013). A similar process may be involved with islet

autoantigens, as suggested by recent work showing citrullination of β-cell proteins in

response to inflammatory stress (McGinty et al. 2014; Babon et al. 2016; Buitinga

et al. 2018).

Altered autoantigen presentation could influence risk of autoimmunity through

multiple mechanisms. For example, a specific HLA class II allele, known to confer

dominant protection from Goodpasture disease, binds a different register of the type

α3135−145 self-peptide, leading to increased abundance of regulatory T cells specific

for this epitope and preserved immune tolerance to the endogenous type IV collagen

protein (Ooi et al. 2017). Risk of islet autoimmunity may be shaped by a similar

mechanism, where a small set of peptide-MHC complexes are only possible in the

context of specific HLA-DQ P9 and HLA-DR P4 pockets. These peptide-MHC com-

plexes may predispose or protect individuals from T1D through their effects on the

relative abundance of regulatory versus conventional T cells specific to their epitopes.

In addition to hypotheses involving structural effects of amino acid changes in MHC

molecules on peptide binding, recent work has indicated potential regulatory effects

for T1D-associated HLA class II alleles (Gutierrez-Arcelus et al. 2020; Fasolino et al.

2021), which may add to or modify the effect of coding sequence changes.

While MHC class II molecules likely play a causal role in T1D etiology, and per-

haps explain a substantial portion of disease burden in pediatric disease, population

studies suggest additional complexity underlying the MHC association with T1D.

Early studies demonstrated genetic heterogeneity in the region (Rich, Weitkamp, and
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Barbosa 1984), and more recent work with larger sample sizes confirm significant non-

additive and interaction effects for HLA class II alleles (Hu et al. 2015). A sequencing

approach to determine all HLA-DRB alleles suggested that HLA-DRB3 alleles can

modify the effects of HLA-DRB1 alleles on T1D risk and are themselves associated

with development of specific islet autoantibodies (Zhao et al. 2016). There is also

evidence for additional MHC risk driven by variation beyond HLA-DQB1 and HLA-

DRB1 alleles. Using additive models in pediatric-onset Northern European ancestry

populations, genetic variation in HLA genes account for approximately 30% of T1D

risk (Speed et al. 2012; Hu et al. 2015), of which only 80-90% was explained by HLA

class II variation (Hu et al. 2015). This is consistent with work that has mapped T1D

association to the MHC class I genes, HLA-A and HLA-B (Nejentsev et al. 2007), and

non-HLA genes in the MHC region (Hippich et al. 2019). These studies underline the

likelihood that MHC association with T1D risk is complex and mediated by multiple

independent and interacting variants.

Insulin

The insulin gene (INS ) represents the second most strongly associated locus with T1D

risk. A highly variable polymorphism in the region was first identified using restriction

fragment polymorphism analysis (Bell, Karam, and Rutter 1981). This polymorphic

locus was subsequently shown to be a variable number tandem repeat (VNTR) (Bell,

Selby, and Rutter 1982) at which individuals typically carry between 26 and 209

repeats of the sequence “ACAGGGGTGTGGGG.” Individuals homozygous for the

shorter class I VNTR alleles (26-63 repeats) are at increased risk of T1D, while

individuals with one or two longer class III alleles (140-209 repeats) are substantially

protected from T1D (relative risk ≈ 0.3) (Bell, Horita, and Karam 1984; Bennett

et al. 1995).

The INS VNTR is located in the INS promoter. Protective class III VNTR alleles
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correlated with higher insulin expression in the human thymus (Pugliese et al. 1997).

Thus, one explanation for the dominant protective effect of class III VNTR alleles

on T1D is that they promote negative selection of autoreactive T cells specific for

insulin-derived peptides.

Insulin is an established T1D autoantigen, with many patients showing insulin

autoantibodies (IAA) preceding disease onset. Consequently, a number of diverse

mechanisms have been explored linking insulin mRNA expression, protein expres-

sion, and post-translational modification to T1D etiology. Notably, in humans, an

alternative open reading frame within human INS mRNA has been shown to encode

a highly immunogenic peptide that is targeted by CD8+ T cells capable of killing β

cells, and represents a pathway to islet autoimmunity and T1D (Kracht et al. 2017).

Negative regulators of T-cell activity

Several candidate causal T1D genes have been shown to affect T-cell signaling and

activation pathways, including PTPN22, CTLA4, and UBASH3A. Genetic variation

in each of these genes have been robustly associated with multiple autoimmune dis-

eases, including T1D, suggesting potentially broad roles in shaping predisposition to

T-cell mediated autoimmunity.

PTPN22 encodes the down-regulating protein LYP, which inhibits T-cell receptor

(TCR) signal transduction by dephosphorylating tyrosine residues on two essential

early signaling proteins, Lck and CD3. The minor allele of the common nonsynony-

mous coding SNP, rs2476601 (R620W), in PTPN22 is strongly associated with T1D

as well as other autoimmune diseases (Bottini et al. 2004). Functional studies of

R620W indicate the presence of the W allele reduces response of both the T- and B-

cell antigen receptors (Rieck et al. 2007). A second variant in PTPN22 (rs56048322)

was identified in those subjects with T1D who did not carry the R620W risk al-

lele (Onengut-Gumuscu, Buckner, and Concannon 2006). Additionally, targeted se-
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quencing in families with multiple T1D-affected individuals identified a cluster of rare

deleterious variants associated with T1D risk, including novel frameshift mutations

(rs869038523 and rs371865329) and a splicing variant rs56048322 (Ge et al. 2016).

Functional studies of the splicing variant showed the novel isoform of LYP produced

by the risk allele of rs56048322 resulted in reduced CD4+ T-cell response to antigen

stimulation. While the risk alleles at both SNPs, rs2476601 and rs56048322, exert

similar effects on T-cell activation, rs56048322 has no known affect in B-cell receptor

signaling, suggesting multiple actions of variation in PTPN22 on T1D risk (Ge et al.

2016).

CTLA-4 is a cell surface receptor protein that plays a role in T-cell development

and is a negative regulator of T-cell activation. CTLA-4 expression in both regula-

tory and effector T cells is essential for suppression of autoreactive T cell-mediated

cytotoxicity (Wing et al. 2008; Ise et al. 2010). Genetic variants in the CTLA4 gene

have been associated with T1D as well as other autoimmune diseases, but the causal

variants are not definitively known. One of the variants most associated with T1D,

rs3087243, is strongly correlated with the length of an (AT)n dinucleotide repeat

within the CTLA4 3’ UTR (de Jong et al. 2016). Repeat length of this structural

variant was shown to be inversely correlated with CTLA4 mRNA expression in T-

cell lines. A randomized control trial has demonstrated an effect of CTLA-4-targeted

treatments to transiently reduce β-cell death in patients recently diagnosed with T1D

(Orban et al. 2011).

UBASH3A encodes ubiquitin-associated and SH3 domain-containing A (UBASH3A,

also referred to as STS2), which is expressed primarily in T cells and is a negative reg-

ulator of TCR signaling (San Luis et al. 2011). Two T1D risk variants (rs11202303

and rs80054410) are correlated with higher UBASH3A and lower IL2 mRNA ex-

pression in human primary CD4+ T cells upon TCR stimulation (Ge et al. 2017).

UBASH3A has three functional domains (a ubiquitin-associated domain, SH3, and
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a histidine phosphatase domain). While UBASH3A’s role in down-regulating T cell

signaling was originally attributed to phosphatase activity, it was recently shown to

attenuate the NF-κB signaling pathway upon TCR stimulation via the UBA and SH3

domains (by a ubiquitin-dependent mechanism) (Ge et al. 2017). A follow-up study

proposed a novel mechanism underlying UBASH3A-mediated regulation of T-cell ac-

tivity where UBASH3A levels affect total abundance of TCR-CD3 complexes on the

cell surface (Ge et al. 2019).

Interferon signaling genes

Two candidate causal genes for T1D have roles in interferon signaling and viral re-

sponse. IFIH1 encodes interferon induced with helicase C domain 1 (IFIH1), an

innate immune receptor important for sensing viral infection. Both common and rare

deleterious variants in IFIH1 have been associated with T1D (Nejentsev et al. 2009).

A recent study using human PBMCs and cell lines shows the common missense vari-

ant, rs1990760 (A946T), increases expression of type I interferons (Gorman et al.

2017). Additionally, knock-in mice for the risk variant had increased basal expression

of type I interferons, improved survival from a lethal viral challenge, and increased

susceptibility to streptozotocin-induced T1D (Gorman et al. 2017).

Tyrosine kinase 2 (TYK2) is a member of the JAK kinase family with roles in

cytokine and type I interferon signaling via STAT phosphorylation. Multiple nonsyn-

onymous variants in TYK2 have a protective effect on T1D (Onengut-Gumuscu et al.

2015), potentially via down-regulation of interferon pathways (Marroqui et al. 2015).

Inhibition of TYK2 in human pancreatic β cells attenuated double-stranded RNA-

induced apoptosis by reducing type I interferon signaling and MHC class I protein

expression (Marroqui et al. 2015).
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Mechanisms implicated by noncoding regions

As with other complex traits, the majority of T1D-associated variants lie in non-

coding regions with putative roles in regulating gene expression (see Section 1.2.4). In

recent fine-mapping of T1D-associated loci (Onengut-Gumuscu et al. 2015), credible

variants were enriched in regions containing enhancers active in thymus, CD4+ and

CD8+ T cells, CD19+ B cells and CD34+ stem cells (Onengut-Gumuscu et al. 2015).

These findings suggest that a sizable portion of T1D-associated variants likely exert

their effects on disease susceptibility within one or more of these cell types. However,

it does not rule out the possibility that some loci may act in other cell types, including

within the pancreatic islets.

1.3.3 Genetic susceptibility across disease stages

Genetic risk factors are thought to contribute to different stages of T1D develop-

ment (Figure 1.8) (Table 1.1). Genetic variants associated with initial autoantibody

positivity may differ from those associated with eventual T1D diagnosis. Several

studies have been designed to characterize the progression of children at risk of T1D

to islet autoimmunity and clinical disease, including the Finnish Pediatrics Regis-

ter (FPDR) (Ilonen et al. 2017), The Environmental Determinants of Diabetes in the

Young (TEDDY) (Krischer et al. 2019), and the Diabetes Autoimmunity Study in the

Young (DAISY) (Steck et al. 2011). Evidence emerging from these and other studies

are consistent with diverse genetic and environmental factors driving initiation of islet

autoimmunity and progression to T1D.
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Figure 1.8: Stages in development of type 1 diabetes. A model proposes that disease is
caused by immune-mediated destruction of insulin-secreting β cells in the pancreas,
with genetic factors implicated at each stage. Image adapted from Atkinson and
Eisenbarth 2001.

Early stages and emergence of islet autoimmunity

Pre-symptomatic islet autoimmunity can be detected by the presence of antibod-

ies against specific islet antigens. Typically, insulin autoantibodies (IAA) or glutamic

acid decarboxylase autoantibodies (GADA) appear first, and additional autoantibod-

ies are acquired over time through antigen spreading (Krischer et al. 2015). By the

time of T1D diagnosis, most patients have two or more islet autoantibodies (Ilonen

et al. 2017).

However, T1D autoantibody positivity is dynamic, and the number and combina-

tion of autoantibodies in a patient may change over time. Autoantibodies can also be

lost between seroconversion and progression to diabetes. Among subjects with IAA
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as a primary autoantibody (i.e., the first autoantibody observed), IAA was no longer

present at diagnosis 25% of the time (Ilonen et al. 2017).

The primary autoantibody detected at seroconversion may be indicative of the

self-antigen that initiated autoimmunity. Genetic variation in HLA class II genes

have been associated with which primary autoantibody is observed at seroconversion

(Krischer et al. 2015; Ilonen et al. 2016) (Table 1.1). Additionally, patterns of au-

toantibodies at the time of diagnosis are correlated with primary autoantibodies at

seroconversion (Ilonen et al. 2017). The ability to infer primary autoantigens based

on combinations of autoantibodies observed at T1D diagnosis could be useful for

inferring T1D subgroups in both research and clinical settings.
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Table 1.1: Genetic associations with varying stages and features of T1D development. DIPP, Diabetes
Prediction and Prevention; FPDR, Finnish Pediatric Diabetes Register.

Publication Study Stage or phenotype Regions and genes implicated

Törn et al. 2015 TEDDY Islet autoimmunity 1p13.2 (PTPN22 ), 11p15.5 (INS ),

12q13.2 (IKZF4 ), and 12q24.12 (SH2B3 )

Brorsson et al. 2015 T1DGC Presence of GADA 3q28 (LPP)

Brorsson et al. 2015 T1DGC Presence of IA-2A 1q23 (FCRL3 ) and 11q13 (RELA)

Brorsson et al. 2015 T1DGC Presence of gastric

parietal cell antibodies

2q24.2 (IFIH1 )

Krischer et al. 2015 TEDDY IAA as primary

antibody

HLA DR4-DQ8

Krischer et al. 2015 TEDDY GADA as primary

antibody

HLA DR3-DQ2

Ilonen et al. 2016 DIPP and

FPDR

Primary autoantibody HLA DR-DQ haplotypes

Ilonen et al. 2017 DIPP and

FPDR

Primary autoantibody 11p15.5 (INS ), 12q13.2 (IKZF4 )

Steck et al. 2017a TrialNet Time to development of

multiple autoantibodies

2q33.2 (CTLA4 )

Steck et al. 2017a TrialNet Progression to T1D from

time of seroconversion

HLA DR, 9q24.2 (GLIS3 ), and 12q24.12

(SH2B3 )

Ilonen et al. 2016 DIPP Progression to T1D from

time of second antibody

no associatons with HLA DR

Krischer et al. 2017 TEDDY Progression to T1D from

time of second antibody

6q23.3 (TNFAIP3 ) and 11p15.5 (INS )

Törn et al. 2016 TEDDY T1D among DR4/4

subjects

HLA C3

Onengut-Gumuscu

et al. 2020

DAISY Time from first antibody

to T1D onset

20p12.1 (TASP1 ), 1q21.3

(MRPS21-PRPF3 ), 2p25.2 (NRIR), and

3q22.1 (COL6A6 )
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Even before islet autoantibodies are observed, anergic autoreactive T and B cells

specific for islet autoantigens can be found in patients (Smith et al. 2015). Thus, it

is possible that mechanisms governing initial autoreactive repertoires (i.e., escape of

central tolerance) are separate from those that ultimately break peripheral immune

tolerance. Further examination of genetic and environmental factors underlying emer-

gence of anergic islet antigen-specific T and B cells in healthy individuals may provide

insights into the earliest stages of disease.

Secondary antigens and progression to T1D

Rate of progression from islet autoimmunity to T1D is correlated with the number

of islet autoantibodies. Individuals who progress to multiple autoantibody positivity

are more likely to be diagnosed with diabetes within 10 years of seroconversion (Steck

et al. 2016; Bingley, Boulware, and Krischer 2016). High serum levels of IAA are also

associated with increased risk of progression to T1D (Steck et al. 2016). These data

suggest that increased efficiency of epitope spreading and increased autoreactive cell

activity is correlated with faster progression of disease.

Factors contributing to epitope spreading and progression to T1D may be distinct

from those initiating autoimmunity. While specific HLA DR-DQ genotypes and hap-

lotypes have been established as risk factors for the development of islet autoimmunity

and are predictive of primary autoantibodies, studies examining the role of HLA and

non-HLA genotypes in progression to clinical disease have produced heterogeneous

and sometimes conflicting results (Table 1.1). The lack of replication of genetic associ-

ations with rate of progression to T1D may reflect differences in the subject selection,

environmental exposure and small sample size. Well-powered follow-up studies will

be needed to clarify the role of HLA and other T1D-associated risk variants with

progression from islet autoimmunity to T1D.
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1.3.4 Early versus late-onset disease

T1D etiology may differ for early onset versus later onset disease. In histological

analysis of pancreas tissue from individuals with recent-onset T1D, diagnosis at a

younger age correlated with fewer insulin-containing islets and a higher proportion

of CD20+ B cells infiltrating inflamed islets (Arif et al. 2014; Leete et al. 2016).

Although based on limited samples due to the difficulty of obtaining pancreas tissue

from recent-onset individuals, these results suggests that children with early onset

T1D (e.g., < 7 years) may have a more aggressive form of disease. Genetic studies of

T1D also indicate that disease mechanisms may differ by age of onset. T1D-associated

HLA risk alleles are also associated with earlier onset of disease (Valdes et al. 2012),

and the effect of HLA alleles appears to be more potent in childhood than later in life

(Inshaw et al. 2020). Outside the HLA, genetic variation also has a stronger effect on

risk of early onset T1D (< 7 years) than older onset T1D (Inshaw et al. 2017; Inshaw

et al. 2020). In subjects with a milder phenotype (i.e., single islet autoantibody

and less severe dysglycemia at onset of T1D), variants in a T2D-associated locus

(TCF7L2 ) were associated with T1D (Redondo et al. 2017). Relatively few genetic

studies have focused on identifying genetic risk factors for late-onset T1D. Modest

associations with late-onset (> 14 yrs) T1D were observed with KIR haplotypes

(Traherne et al. 2016). Expanding studies of later onset T1D may reveal new disease

genes and mechanisms.

1.4 Applications of T1D genetics

Early efforts to predict T1D risk relied solely on high-risk HLA genotypes, which

account for about 40% of the genetic risk (Barker et al. 2008). Inclusion of recently

refined non-HLA risk variants and more powerful predictive modeling approaches

have improved risk prediction (Sharp et al. 2019). As the sensitivity and specificity
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of T1D risk prediction increases, practical and novel applications of genetic risk scores

are emerging.

1.4.1 Population screening

While the positive predictive value of T1D genetic risk scores is likely to remain low

due to low disease prevalence, their high sensitivity and specificity will make them

useful for population screening. The Fr1da study pioneered population screening for

T1D in Bavaria, Germany (Raab et al. 2016). In this initiative, children between the

ages of 2 and 5 years are screened for islet autoantibodies by their primary care pedia-

tricians to detect early islet autoimmunity. A potentially more cost-effective strategy

would involve an initial T1D genetic risk assessment to narrow the population for

follow-up autoantibody testing, although there would be subjects at low-to-moderate

genetic risk who may still develop autoantibodies. Effective population screening and

disease monitoring tools will facilitate enrollment of high-risk individuals in clinical

trials of immune modulation during pre-symptomatic disease (Rich 2017).

1.4.2 Diagnosis in low prevalence groups

An important consideration when diagnosing T1D is distinguishing it from other

forms of diabetes (Figure 1.9), which is more difficult in groups where T1D is lower

prevalence or T2D is higher prevalence, including adults, overweight, and non-European

groups. Recently, models of T1D genetic susceptibility have been used to assist dif-

ferential diagnosis of T1D, T2D, and monogenic diabetes (Oram et al. 2016; Patel

et al. 2016).

A recent analysis of UK Biobank participants demonstrated that genetic risk

scores can be used to characterize disease prevalence in large cross-sectional pop-

ulations (Thomas et al. 2018). A previously-defined T1D genetic risk score based

on 29 common variants was applied to 379,511 unrelated individuals of European
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descent. All subjects were ranked according to their T1D genetic risk score, and

risk groups were defined by T1D risk scores above the median (high-risk) or below

the median (low-risk). Since the T1D risk score was not associated with T2D risk,

the expectation is that the frequency of T2D would be the same in the T1D risk

groups. The number of individuals with T1D was genetically defined as the excess of

individuals with diabetes among the high-risk group compared to the low-risk group.

Using this approach, the age of onset of T1D was evenly distributed across the first

six decades of life. Additionally, among the genetically defined T1D cases, there were

no differences in clinical characteristics or risk of diabetic ketoacidosis between age

groups (before or after 30 years) (Thomas et al. 2018).
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Figure 1.9: Flowchart showing tests to distinguish between different types
of diabetes in adults. Obtained from https://www.diabetes.co.uk/

which-type-of-diabetes.html

1.5 Motivation for this thesis

Our understanding of the genetic basis of T1D has only recently moved beyond the

HLA genes and a few strong immune-based candidates. With increased sample size

and genomic technologies, the catalogue of T1D genetic associations has grown to

over 50 loci.

Genetic risk prediction will play an important role in facilitating early intervention

in T1D by identifying high risk individuals. Furthermore, knowledge of genetic risk

https://www.diabetes.co.uk/which-type-of-diabetes.html
https://www.diabetes.co.uk/which-type-of-diabetes.html
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of T1D has the potential to aid in the identification of the non-genetic risk factors

for T1D. For example, the stratification of subjects into high genetic risk and low

genetic risk could be used in a longitudinal cohort study, under the assumption that

those subjects who develop islet autoimmunity and progress to T1D despite having

a low genetic risk score would have been exposed to an unusually high burden of

environmental risk factors.

However, numerous gaps in knowledge remain. The genetic information gathered

to date is dominated by pediatric onset in European-ancestry populations. Genetic

evaluation of non-European populations by whole genome sequencing will likely iden-

tify novel risk genes and novel variants in known genes. Additionally, genomic interro-

gation at all stages of the etiologic process in T1D should identify novel genetic factors

that can be used for prediction of those at risk of developing islet autoantibodies as

well as those who will have fast or slow progression to disease.

Successful application of genetics to T1D will depend on effective prevention of

β-cell death using biologics and immunosuppressants. Precisely defining the molec-

ular characteristics of genetic variation associated with disease risk, initiation, or

progression is a promising approach to guide targeted therapies.

This thesis uses genetics to expand our understanding of why some people develop

T1D, while most do not. In Chapter 2, we use the first large-scale study of T1D genet-

ics in African-ancestry individuals to explore African-specific HLA alleles associated

with T1D. In Chapter 3, we identify novel T1D risk regions and use optimized sta-

tistical methods to delineate potential causal variants underlying these associations.

In Chapter 4, we use functional genomic data to generate hypotheses about causal

mechanisms driving T1D associations. Together, these analyses help to clarify the

variants, genes, and mechanisms that form the genetic basis of T1D susceptibility. In

Chapter 5, I will discuss how these findings will guide future research and application

of T1D genetics.
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Chapter 2

HLA association with type 1

diabetes in an African American

cohort

Sections of this chapter are adapted from:

Onengut-Gumuscu S, Chen WM, Robertson CC, Bonnie JK, Farber E,

Zhu Z, Oksenberg JR, Brant SR, Bridges SL, Edberg JC, Kimberly RP,

Gregersen PK, Rewers MJ, Steck AK, Black MH, Dabelea D, Pihoker C,

Atkinson MA, Wagenknecht LE, Divers J, Bell RA, SEARCH for Diabetes

in Youth, Type 1 Diabetes Genetics Consortium, Erlich HA, Concannon

P, and Rich SS. Type 1 diabetes risk in African-ancestry participants and

utility of an ancestry-specific genetic risk score. Diabetes Care. 2019 Mar

1;42(3):406-15.
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2.1 Background

2.1.1 The adaptive immune system

The immune system is a collection of cells and organs that protect organisms from

disease caused by infection, cancer, or physical injury. In vertebrates, the immune

system is broadly divided into two domains: innate and adaptive. Innate immune

cells recognize non-specific patterns (e.g., molecules shared by many pathogens) and

respond immediately (e.g., by engulfing the pathogen upon detection). Meanwhile,

adaptive immune cells respond to highly specific antigens. On the first encounter with

a pathogen, the adaptive immune response is substantially delayed compared to the

innate response. However, adaptive immune cells can remember this first encounter,

such that upon subsequent infection they are able to eliminate the pathogen very

rapidly. This memory mechanism allows an organism to acquire “immunity” to many

common pathogens over its lifetime.

The specific adaptive immune cells that facilitate immunological memory are

called B lymphocytes and T lymphocytes (also referred to as B cells and T cells). B

and T lymphocytes are activated through cell surface receptors that recognize highly

specific antigens, the B-cell receptor (BCR) and T-cell receptor (TCR), respectively.

Both the BCR and TCR are encoded by genes in germline DNA. However, during lym-

phocyte development, a process called V(D)J recombination (Figure 2.1) scrambles

the DNA sequence in regions of these genes such that each developing cell contains a

unique receptor. As a result, a single human contains B and T cells expressing tens

of millions of unique BCR and TCR sequences. The extraordinary diversity of BCR

and TCR sequences ensures that every human contains adaptive immune cells capa-

ble of recognizing, responding to, and remembering the unique molecular signature

of nearly any pathogen.
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Figure 2.1: Schematic of V(D)J recombination in the immunoglobulin heavy chain
locus, which encodes the B-cell receptor (BCR). Figure and caption adapted from
Little et al. 2015.

2.1.2 The major histocompatibility complex

While BCRs on B cells can recognize diverse antigens directly in the extracellular

environment, TCRs on T cells can only recognize proteins that have been partially

degraded and presented on the surface of other host cells. The major histocompat-

ibility complex (MHC) is a region of vertebrate genomes encoding the cell surface

proteins, called MHC molecules, which are responsible for presenting antigen pep-

tides for recognition by TCRs. In humans, the genes encoding MHC molecules are

referred to as human leukocyte antigen (HLA) genes and are clustered together in

the MHC region on the short arm of chromosome 6 (Figure 2.2).
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Figure 2.2: Genetic structure of human genes encoding MHC class I and II molecules.
Figure adapted from Murphy, Travers, and Walport 2012.

There are two primary classes of MHC molecules. MHC class I molecules are

expressed by all nucleated cells and present peptides to CD8+ T cells. MHC class II

molecules are expressed exclusively by professional antigen presenting cells (APCs)

and present peptides to CD4+ T cells. Classically, MHC class I molecules present pep-

tides derived from cytosolic antigens, while MHC class II molecules present peptides

from internalized extracellular proteins (Figure 2.3).
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Figure 2.3: Classical routes of antigen presentation by MHC class I and II molecules.
Class I antigen presentation (left): Proteasomes generate peptides from all proteins
present within the cell. Peptide fragments are transported to the endoplasmic retic-
ulum and loaded onto the MHC class I molecule. MHC class I-loaded complexes are
transported to the cell surface. Class II antigen presentation (right): extracellular
antigens are taken up by APCs. Phagosomes fuse with lysosomes, and proteolytic
enzymes cleave the proteins into small peptides. MHC class II molecules from the
endoplasmic reticulum are delivered to the phagolysosomes and loaded with peptide.
Peptide-loaded MHC class II complexes are transported to the cell surface. Figure
and caption adapted from Neerincx et al. 2013.

2.1.3 MHC diversity

The two MHC molecules have distinct structural features, but both are heterodimers

encoded by unique α- and β-chains and both contain a peptide-binding groove (Figure

2.4). The amino acid sequence lining the peptide-binding groove influences which

antigen peptides are capable of binding the MHC molecule for presentation on the cell

surface. Thus, the repertoire of peptides available for recognition by T lymphocytes
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depends on the combinations of α- and β-chain sequences available to form MHC

class I and II molecules.

Figure 2.4: The general structure of MHC class I and II molecules (top) and the
human genes that encode them (bottom). Highly polymorphic HLA genes are high-
lighted in yellow.

Two features of the MHC locus ensure that there is substantial diversity in MHC

molecule peptide-binding groove sequences both within individuals and across the

human population.

MHC molecules are encoded by multiple genes

With the exception of the β-chain for MHC class I molecules, which is encoded by

the B2M gene on chromosome 15, each of the MHC molecule chains are encoded by

multiple genes in the MHC locus. In humans, these genes are referred to as HLA

genes. There are three HLA genes that encode the α-chain of MHC class I molecules

(HLA-A, HLA-B, and HLA-C ), and there are three pairs of genes that encode three

MHC class II molecules (DR, DQ, and DP), with α-chains encoded by HLA-DRA,

HLA-DQA1, and HLA-DPA1, and β-chains encoded by HLA-DRB1, HLA-DQB1,
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HLA-DPB1, respectively (Figure 2.4). Some individuals carry one additional gene

for the DR β-chain (one of HLA-DRB3, HLA-DRB4, or HLA-DRB5 ).

HLA genes are polymorphic

The MHC region is among the most polymorphic regions in the genome. All but

one of the HLA genes (HLA-DRA) are highly polymorphic (see genes highlighted

in yellow in Figure 2.4), with hundreds of highly divergent protein-coding sequences

of each of these genes reported in the human population (Robinson et al. 2020).

Variation is concentrated in regions that encode the binding groove of MHC molecules

(Figure 2.5). Consequently, for each MHC molecule, an individual typically inherits

a different version of the peptide binding groove from each parent, which means that

most humans express six unique MHC class I molecules (corresponding to maternal

and paternal versions of each of the three α-chain genes), and up to twelve MHC class

II molecules (Table 2.1).
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Figure 2.5: Location of genetic variation within the MHC class I molecules is indicated
with red on a cartoon (left) and ribbon diagram (right) of the protein complex.
Polymorphism is restricted to the α1 and α2 domains of MHC class I molecules.
Furthermore, allelic variability within these domains is clustered in positions that
line the peptide-binding groove. Figure and caption adapted from Murphy, Travers,
and Walport 2012.

2.1.4 HLA typing and nomenclature

In humans, the MHC, also referred to as the HLA region, is a 4 million-basepair

(Mb) region on the short arm of chromosome 6 (Figure 2.2). Over the past sev-

eral decades, techniques for HLA genotyping in human subjects have evolved from

antibody-based approaches (serologically-defined HLA types) to diverse molecular

approaches, including restriction fragment length polymorphism (RFLP) analysis,

sequence-specific oligonucleotide (SSO) hybridization, sequence-specific amplification

(SSP PCR), and sequence-based typing (SBT) (Erlich 2012). Currently, the most

accurate and comprehensive approach to HLA typing is sequence-based typing us-

ing either Sanger (Voorter, Palusci, and Tilanus 2014) or short-read high-throughput

sequencing (Schöfl et al. 2017). However, sequence-based typing still has some chal-

lenges, for example, it can result in allelic ambiguity where the combination of reads
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Table 2.1: The set of MHC class II molecules expressed within a single individ-
ual. P=paternally inherited allele; M=maternally inherited allele. Since DRA is
monomorphic in human populations, we do not distinguish between paternal and
maternal alleles. *Only some individuals carry a second gene encoding the DR β-
chain.

α-chain allele β-chain allele

DRA DRB1 (P)
DRA DRB1 (M)
DRA DRB3/4/5 (P)*
DRA DRB3/4/5 (M)*

DQA1 (M) DQB1 (M)
DQA1 (M) DQB1 (P)
DQA1 (P) DQB1 (M)
DQA1 (P) DQB1 (P)
DPA1 (M) DPB1 (M)
DPA1 (M) DPB1 (P)
DPA1 (P) DPB1 (M)
DPA1 (P) DPB1 (P)

observed could be derived from multiple pairs of parental haplotypes. Long-read se-

quencing can in theory address some of the limitations of existing sequence-based

methods and may one day become the preferred approach (Mayor et al. 2015). Sys-

tems for cataloguing HLA types reflect the history of HLA typing technologies and

the assumed hierarchy of genetic variation in the region, where serologically distinct

subtypes and unique amino acid sequences are considered more likely to be consequen-

tial to human physiology than synonymous coding or non-coding sequence variants

(Bakker and Raychaudhuri 2012).

Classical HLA types for a given HLA gene (HLA-A, -B, -C, -DRB1, -DQA1,

-DQB1, -DPA1, or -DPB1 ) can be described at a range of resolutions: 1-field cor-

responds to distinct serotypes, 2-field corresponds to distinct amino acid sequences,

3-field corresponds to distinct DNA sequences in exons, and 4-field corresponds to the

full DNA sequence including introns (Figure 2.6). Importantly, classical HLA types

correspond to a hierarchy of gene-level haplotypes, where at the highest resolution
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(4-field) each possible DNA haplotype for the entire gene corresponds to a unique

allele identifier. This is in contrast to the way genetic variation is typically cata-

logued elsewhere in the genome, where each genetic variant is identified separately

by its genomic location and nucleotide sequence relative to a reference. Due to ex-

tensive linkage disequilibrium in the MHC, the classical HLA alleles, which represent

gene-level haplotypes, can be further combined into extended haplotypes spanning

multiple genes, particularly for the tightly linked class II DR-DQ genes (Figure 2.7).

1-field Serotype specificity 

2-field Amino acid sequence

3-field Coding DNA sequence

4-field Full DNA sequence

YFFTSVSRPGRGEP

Antibodies bind
exposed residues

Segment of HLA-DRB1 gene

Segment of DR $-chain

MHC class II molecule

exon exon exon

$"

$#

HLA-DRB1*03:02:01:02
Field 1: 
Serotype 
specificity

Field 2: 
Amino acid 
sequence

Field 3:
Synonymous 
substitution

Gene

Field 4:
Non-coding 
variation

Figure 2.6: HLA nomenclature system. Top: Diagram showing the resolution pro-
vided by 1-, 2-, 3-, or 4-field HLA typing. Bottom: An example 4-field resolution
HLA type.
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Figure 2.7: Linkage disequilibrium (LD) structure of the HLA genes. Pairwise nor-
malized entropy (ε) measuring the difference of the haplotype frequency distribution
for linkage disequilibrium and linkage equilibrium among five population groups. It
takes values between 0 (no LD) to 1 (perfect LD). Figure and caption adapted from
Luo et al. 2020.

2.1.5 Motivation

Despite substantial effort to design efficient HLA typing methods, obtaining high res-

olution (2-field) HLA typing for all eight HLA class I and class II genes remains labo-

rious, sometimes involving a multi-step process combining different types of assays to

resolve allelic ambiguity (Mychaleckyj et al. 2010). This is typically cost-prohibitive

for large-scale genetic studies. Imputing high resolution HLA types based on SNP

genotypes from the MHC region, which can be obtained at much lower costs using

standard GWAS genotyping arrays, provides an opportunity to study HLA associ-

ations with common disease in large cohorts. HLA imputation methods have been

developed with this aim (Karnes et al. 2017) and will be discussed in greater detail

below.

While HLA associations with T1D have been well-described in European popula-



45

tions (Figure 2.8, also see Section 1.3.2), studies focusing on other ancestral groups

have been restricted to HLA class II alleles and based on limited sample sizes (Noble

et al. 2013; Howson et al. 2013). Here, we use available high resolution HLA typing

from T1DGC participants (Mychaleckyj et al. 2010) of diverse ancestries to build an

HLA imputation panel and impute HLA types in a larger African American T1D

case-control cohort. We then analyze imputed HLA type associations with T1D to

define African-ancestry HLA types contributing to T1D susceptibility.

ln(OR)

HLA DR-DQ Haplotype

Protective 

Risk

Figure 2.8: HLA DR-DQ haplotype associations with type 1 diabetes (T1D) in Eu-
ropean ancestry families from the Type 1 Diabetes Genetics Consortium (T1DGC).
Haplotypes can both increase risk and provide protection from developing T1D. Fig-
ure generated with data reported in Erlich et al. 2008.

2.2 Methods

2.2.1 Study samples and genotype generation

We obtained DNA samples and data from 666 T1D case subjects and 596 control

subjects of African ancestry ascertained by the T1DGC (Rich et al. 2006), 255 case
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subjects from the SEARCH for Diabetes in Youth study (SEARCH) (SEARCH Study

Group 2004), 41 case subjects from the Genetics of Kidneys in Diabetes (GoKinD)

study (Mueller et al. 2006), and 59 case subjects and 42 control subjects from the

Barbara Davis Center (BDC) (Rewers et al. 1996). Samples were obtained from an

additional 368 African-ancestry control subjects from the Consortium for the Longi-

tudinal Evaluation of African Americans with Early Rheumatoid Arthritis (CLEAR)

(Danila et al. 2017), 801 control subjects from the New York Control Population

(NYCP) from the Feinstein Institute for Medical Research (Mitchell et al. 2004),

659 control subjects from the University of Alabama at Birmingham (UAB) (Li et

al. 2013), and 462 control subjects from the University of California, San Francisco

(UCSF) (Isobe et al. 2015). DNA from study participants was obtained after re-

ceiving approval from relevant institutional research ethics committees and informed

consent.

Genotyping was performed using the ImmunoChip (Illumina), according to the

manufacturer’s protocols. The ImmunoChip is a custom genotyping array of about

196,000 SNPs in 186 regions associated with autoimmune diseases, including T1D.

The ImmunoChip is described in greater detail in Section 3.1.1. The MHC region on

the ImmunoChip consisted of about 6,000 SNPs based on an earlier focused analysis

of HLA imputation in the T1DGC (Brown et al. 2009).

The T1DGC, SEARCH, GoKinD, NYCP, BDC, and UCSF samples were geno-

typed at the Center for Public Health Genomics, University of Virginia, Charlottesville,

VA. The CLEAR and UAB control samples were genotyped at the Feinstein Institute

for Medical Research, Manhasset, NY. All genotyping files were assembled at the

University of Virginia to cluster genotypes using the Illumina Gentrain2 algorithm.

All SNP genome positions used human reference genome GRCh37.

Sample quality control measures included call rate, heterozygosity, and concor-

dance between reported and genotype-inferred sex. SNP quality control measures
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included restricting analysis to genotyping call rates ≥ 95%, Hardy-Weinberg equi-

librium in controls (p > 10−10), and removal of monomorphic SNPs. To avoid cryptic

relatedness that can confound association analyses, the relationship inference method

implemented in KING (Manichaikul et al. 2010, www.chen.kingrelatedness.com)

estimated kinship coefficients between every pair of study subjects based on Im-

munoChip genotypes. In pairs of subjects found to be related, one subject was ran-

domly removed to avoid bias.

All participants included in our study self-reported as being of African ances-

try. Reference samples from the International HapMap Project (The International

HapMap Consortium 2003) representing African, Asian, and European populations

were used to validate self-reported ancestry via the principal component (PC) projec-

tion method implemented in KING (Manichaikul et al. 2010). Prior to PC analysis,

autosomal SNPs were pruned for linkage disequilibrium (r2 < 0.2) to reduce allelic

correlations between adjacent SNPs. PC analysis was performed on HapMap control

samples, followed by projection of our study population onto the HapMap control PC

space. Study participants that self-identified as being of African ancestry and aligned

with African-ancestry HapMap samples in the control space were analyzed. To con-

trol for study differences and ensure we matched case-control samples appropriately,

after the initial quality control steps with HapMap samples, we removed MHC region

SNPs (chr6:25,294-34,665 kb). PC analysis was performed on 2,928 control (unaf-

fected) individuals, followed by projection of 1,021 individuals with T1D (affected)

onto the control PC space. The first two PCs (PC1 and PC2) explained the majority

of variance in the African-ancestry genotyping data and were included as covariates

in logistic regression models.

www.chen.kingrelatedness.com
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2.2.2 Building a multi-ethnic HLA imputation panel

A subset of participants recruited through the T1DGC were HLA-typed with a PCR-

based sequence-specific oligonucleotide probe system (Erlich et al. 2008; Mychaleckyj

et al. 2010), providing classical 2-field HLA alleles for the eight MHC class I and II

genes (HLA-A, -B, -C, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1 ). Many of these

subjects were subsequently genotyped with the ImmunoChip, as described above.

We constructed a multi-ancestry T1DGC HLA imputation reference panel based on

5,196 unrelated individuals for whom both ImmunoChip genotypes and HLA types

were available, including 4,323 European-, 251 African-, 608 Asian-, and 14 “other”-

ancestry individuals.

To generate the reference panel we used the software program SNP2HLA (Jia et al.

2013), which generates an imputation reference panel in the following way: First, HLA

types are converted to binary markers indicating the presence or absence of each HLA

allele. Next, SNP2HLA further determines the amino acid sequences corresponding

to the observed HLA alleles using the EMBL-EMI Immunogenetics HLA Database

(Robinson et al. 2020) and generates a set of binary markers to represent polymorphic

amino acids. For multi-allelic sites, binary markers are generated for each allele. For

example, if there are three possible amino acids at a position, the position would be

encoded by three separate binary markers, each encoding the presence or absence of

one of the possible amino acids. Finally, the genotypes across all binary markers are

phased using the imputation software Beagle version 3.0.4 (Browning and Browning

2009), providing phased haplotypes for SNPs, HLA alleles, and amino acids in the

HLA region (Figure 2.9).
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Figure 2.9: Overview of the SNP2HLA imputation procedure.The reference panel
(top) contains SNPs in the MHC, classical HLA alleles at the class I and class II
loci, and amino acid sequences corresponding to the 2-field HLA types at each locus.
For a data set with genotyped SNPs across the MHC (bottom), we use the reference
panel to impute classical alleles and their corresponding amino acid polymorphisms.
Figure and caption adapted from Jia et al. 2013.

2.2.3 HLA imputation and validation

Using our multi-ethnic T1DGC HLA imputation reference panel, we imputed HLA

genotypes in the remaining African-ancestry subjects. Imputation was also performed

using the software SNP2HLA (Jia et al. 2013, http://software.broadinstitute.

org/mpg/snp2hla). Imputation accuracy was empirically assessed using a valida-

tion data set of 50 randomly selected African-ancestry participants with both Im-

munoChip genotypes and HLA types available. These 50 subjects were not included

in the T1DGC HLA imputation reference panel because they were related to other

individuals in the reference panel (the imputation reference panel intentionally in-

cluded only unrelated individuals - see section 2.2.2). For the purpose of evaluating

http://software.broadinstitute.org/mpg/snp2hla
http://software.broadinstitute.org/mpg/snp2hla
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the accuracy of imputation in this validation set of 50 individuals, any relatives of

these participants were removed from the reference panel, and HLA alleles were re-

imputed using the remaining reference haplotypes from 5,104 individuals (including

159 African-ancestry individuals). Imputed HLA types at each of the eight classical

HLA loci in these 50 subjects were compared with their known HLA types. Imputa-

tion accuracy (ρ) for a given locus (e.g., HLA-DRB1 ) was calculated as the sum of

dosages assigned to the correct alleles divided by the total number of chromosomes

as previously described in Jia et al. 2013 (Equation 2.1).

ρ =
N∑
i=1

di(Ai1) + di(Ai2)

2N
(2.1)

where Ai1 and Ai2 are the true HLA types at a given locus in individual i, and

di(Ai1) and di(Ai2) are the imputed dosages assigned to Ai1 and Ai2 in individual i,

respectively. In a completely accurate imputation, di(Ai1) = 1 and di(Ai2) = 1 for

every individual i.

Two additional indicators of imputed genotype quality were evaluated. First, we

tested for Hardy-Weinberg equilibrium within controls in each gene, including only

alleles with MAF > 0.01. Second, we evaluated whether the sum of dosages assigned

to a given locus for each individual was close to two and excluded subjects where the

sum of most likely genotypes across a locus did not equal two.

2.2.4 Modeling of HLA associations with T1D

The most likely imputed classical HLA genotypes were used in association analyses

(instead of dosages or genotype posterior probabilities). We defined rare HLA alleles

as those that occur fewer than 30 times in the combined sample of case and control

subjects. Statistical analyses of HLA alleles were performed on 2-field imputation

calls. When multiple, rare 2-field alleles (allele count < 30) were observed within the
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same 1-field allelic stratum, the set of rare alleles were combined and analyzed as a

single 1-field allele.

Evaluating relative contribution of variation in eight HLA genes

To assess the contribution of total variation at a given locus (e.g., HLA-A) to T1D

risk, a multi-allelic model was fit in which all alleles for a given locus were included

as independent variables. For example, for a locus with p common alleles, association

between that locus and disease risk was evaluated using the model defined in Equation

2.2).

logit(Yi) = µ+ α1PC1i + α2PC2i + α3Sexi + β1A1i + β2A2i + · · ·+ βp−1Ap−1,i (2.2)

where Yi is the T1D status of individual i and Aji is the allele count for the jth

allele at the locus in individual i. The pth allele has been arbitrarily selected as the

reference allele.

Rare alleles were not included in the model and subjects carrying one or more rare

alleles (1- or 2-field) at a given locus were excluded ( 10% of subjects contained at

least one rare allele). A likelihood ratio test comparing this model to one containing

only principles components and sex was used to determine statistical significance of

association between the locus and disease. To test for independently associated loci,

we iteratively conditioned on the most significant locus (i.e., included all alleles at

that locus in the model) until no loci remained significant. Statistical significance for

a locus was based on a threshold of p < 0.00625 (Bonferroni correction for α = 0.05

given eight tests).
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Association with individual HLA alleles

Analysis of association between T1D and individual alleles at each of the eight classical

HLA genes was conducted treating each allele as a biallelic variant. The odds ratio

(OR) for an allele were calculated in a logistic regression model adjusting for sex and

two PCs, defined by Equation 2.3.

logit(Yi) = µ+ α1PC1i + α2PC2i + α3Sexi + βjAji (2.3)

where Aji is the allele count for the allele being tested (jth allele at the locus) in

individual i and βj is the additive effect of the allele. Thus, the odds ratio for the

effect of the jth allele on T1D risk is given by OR = exp(βj). Statistical significance

was determined using a likelihood ratio test, comparing the HLA allele inclusive model

with a reference model containing only sex and two PCs. Statistical significance for

an allele was based on a Bonferroni threshold correcting for the number of HLA alleles

tested with a family-wise error rate of α = 0.05.

Association with individual HLA class II haplotypes

HLA class II haplotypes (DRB1 -DQA1 -DQB1 ) were inferred using phased genotypes

provided by SNP2HLA (Jia et al. 2013). Each haplotype was coded as a biallelic

variant, and association analyses were conducted on common haplotypes only. Odds

ratios for haplotypes were calculated in a logistic regression model equivalent to that

used for HLA allelic associations (Equation 2.3), except where Aji is the number

of copies of the jth class II haplotype being tested. Statistical significance was de-

termined using a likelihood ratio test, comparing the HLA inclusive model with a

reference model containing only sex and two PCs. Statistical significance for a hap-

lotype was based on a Bonferroni threshold correcting for the number of class II

haplotypes tested with a family-wise error rate of α = 0.05.
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Association with individual amino acid residues

Analysis of amino acid residues in HLA class I and II genes were performed using

a similar approach to that used for individual HLA alleles and class II haplotypes.

Specifically, each polymorphic amino acid residue was coded as a biallelic variant

(presence or absence of that residue), and association analyses were conducted one

residue at a time. Odds ratios for amino acid residues were calculated in a logistic

regression model (Equation 2.3, where Aji is the number of copies of the jth amino

acid residue being tested). Statistical significance was determined using a likelihood

ratio test, comparing the amino acid inclusive model with a reference model containing

only sex and two PCs. Statistical significance for an amino acid residue was based on

a Bonferroni threshold correcting for the number of residues tested with a family-wise

error rate of α = 0.05.

2.2.5 Conditional analyses

Multiple independent associations with HLA alleles, class II haplotypes, or amino

acid residues were identified using forward stepwise regression, iteratively conditioned

on the most significant association in each category until no remaining marker met

the significance threshold. Specifically, conditional analysis followed the following

procedure:

Round 1: Suppose there are p variants in the region. For each variant j ∈ {1 . . . p},

we fit a model: logit(Yi) = µ+α1PC1i+α2PC2i+α3Sexi+βjAji. We denote the

most associated variant from round 1 as A(1). If the association with A(1) meets

the multiple testing corrected significance threshold for round 1, we continue to

round 2.

Round 2: For each of the remaining p− 1 variants, we fit a new model: logit(Yi) =

µ+α1PC1i+α2PC2i+α3Sexi+β(1)A(1)i+βjAji. We denote the most associated
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variant from round 2 as A(2). If the association with A(2) meets the multiple

testing corrected significance threshold for round 2, we continue to round 3.

...

Round k: For each of the remaining p − (k − 1) variants, we fit a new model:

logit(Yi) = µ+ α1PC1i + α2PC2i + α3Sexi + β(1)A(1)i + · · ·+ β(k)A(k)i + βjAji

We repeat this procedure until the association with the top variant, A(k) for round k,

does not meet the multiple testing corrected significance threshold, which we define as

the Bonferroni-corrected p-value threshold corresponding to a family-wise error rate

α = 0.05, correcting for the total number of markers tested at each round.

In addition to performing conditional analysis separately on sets of HLA alleles,

class II haplotypes, and amino acid residues, we performed conditional analysis jointly

on SNP genotypes in the MHC region, amino acid residues, and HLA alleles.

2.2.6 Design and validation of T1D genetic risk score

An African-ancestry T1D genetic risk score (GRS) was developed using ImmunoChip

SNPs significantly associated with T1D (p < 5.0× 10−8), including five that capture

the genetic contribution of the HLA region, one from 11p15.5 (INS locus), and one

from 17q12 (IKZF3 -ORMDL3 -GSDMB locus). The regression coefficients at each

of the seven SNPs were used as individual SNP weights. A GRS for each individual

was computed as the weighted sum of allele counts. The list of SNPs and weights

(log(OR)) used to compute an African-ancestry GRS for T1D are provided in Table

2.2. This GRS prediction procedure was implemented in the software package KING

(Manichaikul et al. 2010).

The area under the curve (AUC) from receiver operating characteristic (ROC)

analysis was computed for the African-ancestry GRS by comparing the observed T1D

status (case-control) with that predicted from the GRS. For internal validation, we
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preformed 1,000 rounds of cross-validation: for each round, the data were randomly

divided into two subsets, 80% representing a training set and the remaining 20% as

the test set. For external validation, we next tested the performance of the African-

ancestry GRS on an independent set of African-ancestry samples provided by Mark

Atkinson, PhD, University of Florida. To assess the value of an African-ancestry GRS,

we compared the performance of the African-ancestry GRS with a European-ancestry

GRS when predicting T1D in the African-ancestry subjects. The European-ancestry

GRS was based on our previous report (Onengut-Gumuscu et al. 2015) that forms the

basis of a recently implemented T1D GRS (Oram et al. 2016). The DeLong test was

used to compare the AUC difference between the two GRS models (DeLong, DeLong,

and Clarke-Pearson 1988).

Performance of the GRS on prediction of T1D risk in the African-ancestry pop-

ulation was also compared with two polygenic risk score (PRS) models in a cross-

validation procedure: a PRS model that was generated using the actual genotype

data, and a PRS model that was generated using the GWAS scan summary statis-

tics. Similar to the evaluation of the GRS, the cross-validation data sets included a

training subset consisting of 80% of the samples and a test subset consisting of the

remaining 20% of samples. We used the software package GCTA (Yang et al. 2011,

https://cnsgenomics.com/software/gcta) to build the PRS model in the training

set. For the summary-statistics-based PRS, we first ran a logistic regression adjust-

ing for sex and two PCs of ancestry (four PCs were also investigated for sensitivity

analysis), and regression coefficients at filtered SNPs (applying p-value cutoffs of 1.0,

0.5, 0.05, 5 × 10−4, 5 × 10−6, and 5 × 10−8 and linkage disequilibrium r2 cutoffs of

0.2, 0.4, 0.6, and 0.8) were used to weight the genotype at the corresponding SNP.

For both PRS models, a PRS was generated for each of the samples in the test set

using the PRS model.

https://cnsgenomics.com/software/gcta


56

Table 2.2: T1D-associated SNPs included in the African-ancestry genetic risk score
(GRS) with weights; the effect allele is the risk-increasing allele on the positive strand.

SNP Chr Position (bp) Effect Allele Odds Ratio (OR) Weight
rs34303755 6 32450613 C 2.88 1.058
rs34850435 6 32583299 T 2.29 0.829
rs9271594 6 32591213 G 5.89 1.773
rs2187668 6 32605884 T 3.86 1.350
rs9273363 6 32626272 A 5.29 1.666
rs689 11 2182224 T 1.48 0.393
rs2290400 17 38066240 C 1.34 0.291

2.2.7 Statistical analyses

ImmunoChip SNP quality control analyses were performed using PLINK (Chang et

al. 2015). Genotype-based ancestry and relationship inference were performed using

KING (Manichaikul et al. 2010). The T1DGC HLA imputation reference panel was

built and additional HLA types were imputed using the software SNP2HLA (Jia et al.

2013). Empirical imputation accuracy was calculated using custom Perl scripts. All

statistical analyses for association in the MHC region were performed using R 3.3.1

(R Core Team 2017). Analysis code for generating HLA imputation and association

results are provided at https://github.com/ccrobertson/aa-immunochip.

2.3 Results

After data cleaning and quality control, genotypes for 114,874 ImmunoChip SNPs in

3,949 African-ancestry participants, consisting of 1,021 participants with T1D and

2,928 control subjects, were available for analysis. This is the largest study to date

of genetics of T1D in African-ancestry populations.

https://github.com/ccrobertson/aa-immunochip
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Table 2.3: HLA imputation accuracy at 1- and 2-field resolution.

HLA locus 1-field accuracy 2-field accuracy
A 0.964 0.916
B 0.944 0.855
C 0.998 0.946
DPA1 0.996 0.959
DPB1 0.934 0.933
DQA1 0.991 0.990
DQB1 0.996 0.973
DRB1 0.945 0.882

2.3.1 Imputation quality

Classical HLA types (1- and 2-field) and amino acid residues were imputed in all 3,949

African-ancestry participants using 5,299 ImmunoChip SNP genotypes in the MHC

region and the multi-ethnic T1DGC HLA imputation reference panel as described

in Section 2.2.2. Imputation yielded uniformly high imputation accuracy for 1-field

classical HLA alleles ranging from ρ = 0.934 for HLA-DPB1 to ρ > 0.990 for HLA-

DQA1, HLA-DQB1, HLA-DPA1, and HLA-C ) (Table 2.3). Imputation accuracy of

2-field alleles varied by locus (Table 2.3). The lowest 2-field accuracy was seen at

HLA-B (ρ = 0.855) and HLA-DRB1 (ρ = 0.882). Accuracy of 2-field imputation was

greater than 0.91 at remaining loci, with the highest accuracy observed at HLA-DQA1

(ρ = 0.990). None of the eight HLA loci deviated significantly from Hardy-Weinberg

equilibrium expectations in controls. The sum of dosages across all alleles at a given

locus was between 1.98 and 2.06 (expectation is 2.00) in 95% of imputations (Table

2.4). Out of 3,949 subjects, 183 were excluded from analysis because the total allele

count of most likely allele calls at each locus was not equal to two. Approximately

10% of subjects contained rare alleles (1- or 2-field). Rare alleles were more common

in T1D cases than controls (χ2-test p = 0.005, OR = 1.37).
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Table 2.4: Quartiles for the sum of dosages across alleles by locus.

HLA locus q0.025 q0.5 q0.975
A 2 2 2.39
B 1.89 2 2.17
C 2 2 2.18
DQA1 2 2 2
DQB1 2 2 2
DRB1 1.91 2 2.06
DPA1 2 2 2.01
DPB1 1.94 2 2.06
Combined 1.98 2 2.06

2.3.2 Allele and haplotype associations

The most significantly associated gene was HLA-DQB1 (p = 7.6 × 10−273). In a

forward selection-based conditional analysis, five of the eight genes associated inde-

pendently with T1D. Across all 2-field HLA alleles, T1D was most significantly asso-

ciated with the MHC class II allele, HLA-DQA1 *03:01 (OR = 5.76, p = 7.6×10−141).

In general, the largest effect sizes and most significant associations were seen with

DR-DQ alleles (HLA-DRB1, HLA-DQA1, and HLA-DQB1 ), which is consistent with

previous studies of HLA associations with T1D in European cohort (Section Section

??). Alleles across these three genes are highly correlated due to strong linkage dis-

equilibrium in the region (Figure 2.7). Therefore, we evaluated association between

T1D status and DR-DQ haplotypes, defined by phased alleles at HLA-DRB1, HLA-

DQA1, and HLA-DQB1. The most significant HLA class II haplotype association

with T1D was with 03:01-05:01-02:01 (OR = 3.9, P = 2.6 × 10−78). While this and

other known European haplotype associations were present, several previously iden-

tified African-specific associations (Noble et al. 2013) were also confirmed (starred

in Figure 2.10), including the protective African-specific DR3 haplotype 03:02-04:01-

04:02 (OR = 0.13, P = 4.4 × 10−26). Univariate associations between T1D and

all imputed HLA classical alleles with allele count > 30 are provided in Onengut-
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Gumuscu et al. 2019 (https://doi.org/10.2337/dc18-1727, Supplementary Table

1).

In the MHC class I region, T1D was most significantly associated with HLA-

A*24:02 (OR = 2.17, P = 9.8× 10−9), HLA-B*15:10 (OR = 2.21, P = 7.8× 10−10),

and HLA-C *03:04 (OR = 1.87, P = 1.2×10−10). The low-frequency African-specific

allele HLA-B*57:03 was protective against risk of T1D (OR = 0.44, P = 1.3× 10−5).

In conditional analyses across all 2-field HLA class I and II alleles, eleven alleles

independently associated with T1D (Table 2.5). Conditional analyses of HLA class II

haplotypes identified fifteen independently associated DR-DQ haplotypes, including

the African-derived risk haplotypes 09:01-03:01-02:01 (OR = 5.75, P = 2.5 × 10−34)

and 07:01-03:01-02:01 (OR = 4.69, P = 6.4× 10−15).

https://doi.org/10.2337/dc18-1727
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two PRSs in the African-ancestry pop-
ulation using the exact training and
testing data sets in a cross-validation
procedure. The average AUC for the
GRS in 100 cross-validations is 0.867,
the average AUC for the genotype-
based PRS is 0.808, and the average
AUC for the summary-statistics-based
PRS ranges from 0.797 to 0.837 (AUC
is maximized at P value cutoff 5 3 1028

and r2 = 0.2). The maximum PRS AUC of
0.837 is not particularly sensitive to our
logistic regression model; e.g., when we
adjusted four PCs instead of two PCs, the
maximum AUC changed to 0.838. The
ROC curves of GRS, genotype-based PRS,
minimal PRS, and maximal PRS in one
cross-validation data set are shown in
Supplementary Fig. 2.

CONCLUSIONS

Identification of individuals at increased
genetic risk for type 1 diabetes can
enhance diagnostic and management
practices by targeting at-risk children
that could benefit from screening for
presence of islet autoantibodies that
are highly predictive of disease onset.
This strategy has been implemented in
the Fr1da study (34) and the prospec-
tive TEDDY (The Environmental Determi-
nants of Diabetes in the Young) cohort
(9). A critical component of understand-
ing who is at high genetic risk for type 1
diabetes is the application of a GRS with
high sensitivity and specificity (the pre-
dictive values will always be low, given
the low population prevalence of type 1
diabetes). The majority of individuals

who develop type 1 diabetes that
have been characterized, to date, are
children of European ancestry, but it is
now apparent that individuals of other
ancestries (2) as well as adults (35) are
developing or being better ascertained
as having type 1 diabetes at an increa-
sing rate. A critical question is whether a
type 1 diabetes GRS developed in Eu-
ropean-ancestry populations, with age
at onset ,16 years, performs well in
other populations.

Despite extensive genetic research
in type 1 diabetes, data frompopulations
of non-European ancestry and adult-
onset disease remain limited. In this
report, we have assembled and geno-
typed the largest collection of African-
ancestry type 1 diabetes cases studied

Table 2—Association of MHC class II haplotypes with type 1 diabetes in unrelated African-ancestry individuals contrasted
with Caucasian families from the T1DGC

DRB1 DQA1 DQB1 Count Control AF Case AF
Unadjusted

OR OR P

Erlich et al. 2008 (29)

Control EU Case EU OR

01:01 01:01 05:01 218 0.026 0.032 1.24 1.15 0.37 0.09 0.066 0.71

01:02 01:01 05:01 288 0.040 0.026 0.65 0.66 6.7 3 1023 0.01 0.007 0.66

03:01 05:01 02:01 984 0.075 0.268 4.5 3.91 2.6 3 10278 0.125 0.341 3.64

03:02 04:01 04:02 378 0.062 0.008 0.13 0.14 4.4 3 10226** d d d

04:01 03:01 03:01 83 0.010 0.012 1.16 0.84 0.50 0.039 0.014 0.35

04:01 03:01 03:02 215 0.012 0.072 6.4 5.36 2.4 3 10229 0.045 0.281 8.39

04:04 03:01 03:02 122 0.010 0.031 3.1 2.60 1.1 3 1026 0.032 0.05 1.59

04:05 03:01 03:02 231 0.013 0.076 6.07 6.75 1.8 3 10240 0.002 0.025 11.37

07:01 02:01 02:02 584 0.081 0.056 0.68 0.66 1.5 3 1024 d d d

07:01 03:01 02:01 155 0.012 0.043 3.86 4.41 7.4 3 10218** d d d

08:04 04:01 03:01 229 0.037 0.008 0.22 0.25 7 3 10211** d d d

08:04 05:01 03:01 61 0.010 0.002 0.2 0.23 5.9 3 1024 d d d

09:01 03:01 02:01 326 0.024 0.092 4.17 4.87 3.4 3 10239** 0 0.002 d

10:01 01:01 05:01 144 0.023 0.006 0.28 0.29 1.0 3 1026 0.007 0.003 0.49

11:01 01:02 05:02 67 0.010 0.005 0.5 0.54 0.06 d d d

11:01 01:02 06:02 228 0.038 0.003 0.09 0.096 5.7 3 10219 d d d

11:01 05:01 03:01 295 0.047 0.010 0.2 0.18 7.5 3 10219 0.065 0.012 0.18

11:02 05:01 03:01 292 0.044 0.017 0.38 0.42 2.3 3 1027 0.004 0.002 0.37

12:01 01:01 05:01 221 0.033 0.015 0.44 0.49 1.4 3 1024 d d d

13:01 01:03 06:03 241 0.037 0.014 0.37 0.35 7.2 3 1029 0.059 0.008 0.13

13:02 01:02 05:01 178 0.026 0.014 0.52 0.57 5.6 3 1023 d d d

13:02 01:02 06:04 140 0.016 0.024 1.5 1.43 0.06 0.026 0.022 0.87

13:02 01:02 06:09 224 0.031 0.023 0.75 0.79 0.17 0.003 0 0

13:03 02:01 02:01 63 0.010 0.003 0.3 0.35 4.3 3 1023** d d d

13:03 05:01 03:01 94 0.014 0.005 0.37 0.36 4.8 3 1024 0.01 0.001 0.08

15:01 01:02 06:02 167 0.028 0.002 0.07 0.055 9.9 3 10220 0.12 0.004 0.03

15:03 01:02 06:02 699 0.115 0.015 0.11 0.13 7.1 3 10247** d d d

16:02 01:02 05:02 82 0.011 0.009 0.8 0.93 0.80 0.001 0.001 0.74

Only haplotypes with total allele count .60, and allele frequency (AF) in case or control groups at least 1% or higher, are presented. OR estimates
and P values generated by logistic regression, adjusting for two PCs and sex. Control AF, African-ancestry HLA haplotype frequency in subjects
without type 1 diabetes. Case AF, African-ancestry HLA haplotype frequency in subjects with type 1 diabetes. Control EU, control HLA
haplotype frequency from affected family-based control (AFBAC) method based upon haplotypes not transmitted to an affected child in families.
Case EU, case HLA haplotype frequency from the AFBAC method based upon transmitted haplotype from a parent to a child with type 1 diabetes
in families. **African ancestry–specific association with type 1 diabetes.
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Figure 2.10: Association of MHC class II haplotypes with T1D in unrelated African-
ancestry individuals contrasted with white families from the T1DGC

2.3.3 Amino acid associations

One of the proposed mechanisms for association between HLA polymorphism and

T1D risk is altered peptide presentation to the adaptive immune system via variable

amino acid sequences in the peptide binding groove of MHC class I and II molecules.

Thus, analyzing the HLA region at amino acid resolution, instead of gene-level haplo-

types (i.e., classical HLA alleles) or region-level haplotypes (e.g., class II haplotypes),

may improve power for fine-mapping and facilitate mechanistic interpretation (Hu
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Table 2.5: Eleven classical HLA alleles independently associated with T1D in African
Americans. Odds ratios (OR) and p-values shown were generated by multivariable
logistic regression of T1D risk, including 2 principal components, sex, and all eleven
alleles as independent variables.

HLA allele OR p-value
DQA1 *03:01 4.83 1.3× 10−59

DRB1 *03:01 3.91 7.5× 10−44

DQB1 *06:02 0.17 1.5× 10−23

DQB1 *03:01 0.39 2.8× 10−15

DRB1 *03:02 0.22 2.4× 10−08

A*24:02 2.57 2.9× 10−08

DRB1 *13:01 0.42 7.9× 10−06

DRB1 *04:05 2.08 4.5× 10−05

DQB1 *05:03 0.17 4.3× 10−04

DRB1 *10:01 0.32 8.8× 10−04

A*29:02 1.89 2.4× 10−04

Table 2.6: Fifteen HLA class II DR-DQ haplotypes independently associated with
T1D in African Americans. Odds ratios (OR) and p-values shown were generated by
multivariable logistic regression of T1D risk, including 2 principal components, sex,
and all fifteen haplotypes as independent variables.

DRB1 DQA1 DQB1 OR p-value
03:01 05:01 02:01 3.74 4.7× 10−49

09:01 03:01 02:01 5.75 2.5× 10−34

04:05 03:01 03:02 7.66 9.6× 10−32

04:01 03:01 03:02 6.66 4.1× 10−26

07:01 03:01 02:01 4.69 6.4× 10−15

04:04 03:01 03:02 3.73 4.5× 10−09

15:03 01:02 06:02 0.21 5.6× 10−15

03:02 04:01 04:02 0.2 6.5× 10−10

15:01 01:02 06:02 0.08 1.5× 10−06

11:01 01:02 06:02 0.14 6.0× 10−07

11:01 05:01 03:01 0.25 3.1× 10−08

08:04 04:01 03:01 0.35 1.0× 10−04

10:01 01:01 05:01 0.34 8.3× 10−04

13:01 01:03 06:03 0.48 9.9× 10−04

14:01 01:01 05:03 0.17 4.8× 10−03
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Table 2.7: Eight amino acid residues in HLA class I and II proteins independently
associated with T1D in African Americans. AF= allele frequency.

HLA locus Peptide position Residue Case AF Control AF OR P
DQB1 57 A 0.69 0.25 5.67 1.4× 10−157

DQA1 47-52-54 K-H-L 0.07 0.10 0.18 3.0× 10−45

DRB1 11 SP 0.50 0.72 0.51 7.1× 10−20

DQB1 87 F 0.04 0.22 0.36 9.3× 10−13

DQB1 26 L 0.79 0.55 2.50 1.2× 10−11

A 62 QR 0.54 0.64 0.67 1.0× 10−08

B 158 A 0.96 0.98 0.35 3.1× 10−07

DQB1 30 H 0.16 0.26 1.48 2.0× 10−04

et al. 2015). Using SNP2HLA, we inferred amino acid sequences for each subject

based on their classical HLA alleles and analyzed association between T1D and each

polymorphic amino acid in the HLA class I and II genes. The amino acid associa-

tion patterns across all HLA genes were largely consistent between African ancestry

and Norther European ancestry subjects (Figures 2.11 and 2.12). The most signifi-

cantly associated amino acid in our African American cohort was residue 57 of the

DQ β-chain encoded by HLA-DQB1 (OR = 5.7, p = 2.4 × 10−157), the same as

was observed in subjects of Northern European ancestry (Hu et al. 2015). Condi-

tional analysis revealed seven additional independent T1D associations with amino

acid residues (Table 2.7, Figure 2.13), all of which have been previously identified in

Northern European ancestry subjects with consistent directions of effects (Hu et al.

2015).
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Figure 2.11: Correlation between amino acid effect on T1D risk in African- and North-
ern European-ancestry subjects. Northern European ancestry association statistics
obtained form Hu et al. 2015.
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Figure 2.12: Patterns of T1D association with amino acid residues in DR-DQ proteins
within African and Northern European ancestry cohorts. Northern European ancestry
association statistics obtained form Hu et al. 2015.
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Figure 2.13: Multiple amino acid residues in class II HLA genes were independently
associated with T1D in African Americans. (Top) In unconditioned association anal-
ysis, alanine at position 57 in HLA-DQB1 is the most strongly associated residue
(OR = 5.7, p = 1.4 × 10−157); (Middle) After conditioning on HLA-DQB1 57A, the
HLA-DQA1 3-residue haplotype 47K-52H-54L (OR = 0.18, p = 3.0× 10−45) was the
most significant residue; (Bottom) After conditioning on HLA-DQB1 57A and HLA-
DQA1 47K-52H-54L, a proline at position 11 in HLA-DRB1 is the most associated
residue (OR = 0.51; p = 7.1× 10−20). The most significant position in each round of
conditional analysis is highlighted red.

2.3.4 Improved risk prediction with African-specific HLA SNPs

In analyses led by Wei-Min Chen and Suna Onengut-Gumuscu, we assessed the per-

formance of a previously described European-ancestry T1D genetic risk score (GRS)

(Oram et al. 2016) in the African-ancestry population. The European-ancestry GRS

model consisted of 30 SNPs derived from the T1DGC (Onengut-Gumuscu et al. 2015;
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Noble et al. 2010) that were most associated with T1D in European populations and

were polymorphic in African-ancestry populations (5 in the HLA region and 25 oth-

ers). The European-ancestry GRS applied to African-ancestry samples had an AUC

of 0.798, reflecting the overlap in regions of the genome associated with T1D risk.

The African-ancestry T1D GRS included only seven SNPs (5 in HLA region, 1 for

INS, and 1 in the IKZF3 -ORMDL3 -GSDMB region) yet had an AUC of 0.871 (Fig-

ure 2.14), providing a significant improvement in prediction of T1D relative to the

European-ancestry GRS ((p < 2.2× 10−16 for comparison of AUCs). Internal valida-

tion of the African-ancestry GRS yielded similar performance in the African-ancestry

samples (average AUC = 0.870 across 1,000 rounds of cross-validation).

To externally validate the GRS, we applied it to an independent African-ancestry

cohort consisting of 61 T1D case subjects and 54 control subjects. The AUC for T1D

risk prediction was 0.779. We further showed discrimination of subjects with T1D

(n = 63) from subjects with T2D (n = 30) with AUC = 0.787. Finally, we compared

the performance of our proposed African-ancestry T1D GRS and two PRSs generated

in the African-ancestry population using cross-validation. The average AUC for the

GRS in 100 cross-validations was 0.867, the average AUC for the genotype-based PRS

was 0.808, and the average AUC for the summary-statistics-based PRS ranges from

0.797 to 0.837 (AUC is maximized at p-value cutoff 5× 10−8 and r2 = 0.2).
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to date, conducted association analy-
ses at autoimmune disease loci using
the ImmunoChip, developed an African-
ancestry type 1 diabetes GRS, and
compared its prediction with an
European-ancestry type 1 diabetes
GRS. The African-ancestry population
provided concordant findings for some
loci (e.g., HLA), revealed alternative risk
alleles at other loci (e.g., RNLS) (Fig. 1C),
and reduced the number of candidate
causal variants for functional studies
at other, disease-associated but genet-
ically complex regions (12q13.2 and
17q12). At loci implicated in type 1 di-
abetes risk in European-ancestry popu-
lations, there was consistency in effect
size and direction of effect of associated
SNPs in African-ancestry populations,
even when the smaller sample size
in African-ancestry population did not
achieve statistical significance (Table 1).
Our large collection of African-ancestry
case and control subjects supports the
impact of HLA class II–associated risk
alleles and haplotypes on type 1 diabe-
tes risk that parallels those observed in
European-ancestry populations (29). In
addition to HLA class II genes, we iden-
tified new significant associations for
HLA-A, HLA-B, and HLA-C alleles with
type 1 diabetes in African-ancestry pop-
ulations (Table 2). We note that, as is
the case with SNP imputation, common
HLA alleles will be imputed at a greater
accuracy and caution is necessary in

interpreting results from less common
HLA alleles and haplotypes.

GRS, an emerging approach to inte-
grating the complex genetic architecture
of human disease risk, are typically cre-
ated through the summation of genome-
wide significant SNP genotypes and their
effect sizes into a single number that
differentiates case from control status.
Performance of a GRS depends upon the
proportion of the SNPs included in the
score to the total genetic risk, as well as
any population-specific content. Type 1
diabetes, with;50% of risk attributed to
genetic factors, is unique among complex
human genetic diseases in that the ma-
jority of genetic risk is now known (6) in
European-ancestry populations, suggest-
ing that a type 1 diabetes GRS can be used
in clinical practice to improve classifica-
tion and treatment in those with over-
lapping features of type 1 diabetes and
monogenic or type 2 diabetes, as has
been demonstrated for a European-
ancestry GRS (7,8). However, in the current
study we found that such a European-
ancestry type 1 diabetes GRS performs
significantly less well than an African-
ancestry type 1 diabetes GRS when ap-
plied to African-ancestry populations. A
recent report on the performance of an
African-ancestry GRS in type 2 diabetes,
composed of 22 SNPs related to b-cell
dysfunction and insulin resistance, pro-
vides an increased (although not signif-
icant) risk prediction for disease (36),

perhaps due to the relatively small
amount of genetic variation in type 2
diabetes risk captured by the SNPs
chosen. In the context of type 1 diabetes,
the identification of individuals at high
genetic risk can be used to offer targeted
population screening for the presence
of islet autoantibodies (9). While no cur-
rent intervention is available to slow or
stop progression of islet autoimmunity to
clinical type 1 diabetes, this information
can improve surveillance, management,
and education of individuals and families
and provide protection from diabetic ke-
toacidosis (37).

In conclusion, genetic analyses of type
1 diabetes in African-ancestry partici-
pants highlights the consistency of re-
gional genomic associations with disease
risk across populations, and yet the
population-specific nature of SNP as-
sociations within these chromosomal
regions influences the performance of
genetic risk models. These results suggest
that population-specific GRS can provide
significantly improved prediction and op-
portunities for targeted interventions in
individuals at risk for type 1 diabetes.
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Figure 2—Type 1 diabetes risk prediction in African-ancestry subjects using a GRS. The red curve
is for the prediction using an African-ancestry GRS (AA GRS), and the black curve is for the
prediction using a European-ancestry GRS (EUR GRS) (7).
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Figure 2.14: T1D risk prediction in African-ancestry subjects using a GRS. The red
curve is for the prediction using an African-ancestry GRS (AA GRS), and the black
curve is for the prediction using a European-ancestry GRS (EUR GRS).

2.4 Discussion

Identification of individuals at increased risk for T1D can enhance diagnostic and

management practices. For example, at-risk children can be screened for presence of

islet autoantibodies, which are highly predictive of disease onset. While no current

intervention is available to stop progression of islet autoimmunity to clinical T1D,

this information can improve surveillance, management, and education of individuals

and families and provide protection from diabetic ketoacidosis (Steck et al. 2017b).

This strategy has been implemented in the Fr1da study (Raab et al. 2016) and the

prospective TEDDY (The Environmental Determinants of Diabetes in the Young)

cohort (Bonifacio et al. 2018). Quantifying T1D risk can also help to accurately diag-

nose those with overlapping features of T1D, monogenic, or T2D (Oram et al. 2016).

In addition to improving clinical management, effective T1D risk stratification will be

critical for developing therapies to delay or prevent T1D. Identification of high-risk
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individuals will enable prospective studies on early disease mechanisms and facili-

tate enrollment of patients into clinical trials while they are still in pre-symptomatic

stages of disease. For example, while previous trials in individuals with recent onset

T1D were unsuccessful, short-term treatment with an anti-CD3 monoclonal antibody

delayed T1D onset by a median of 2 years among individuals with pre-symptomatic

islet autoimmunity (Herold et al. 2019).

Genetic risk scores (GRS) are an emerging approach to integrating results from

genetic association studies to predict human disease risk. GRS are typically created

through the summation of genome-wide significant SNP genotypes, weighted by their

effect sizes, into a single number that differentiates case from control status. Perfor-

mance of a GRS depends on the proportion of causal variants captured by the score

and the proportion of total disease risk that can be explained by genetic variation

(i.e., the heritability of the disease). About 50% of T1D risk has been attributed to

genetic factors. T1D is unique among complex human diseases in that the majority

of genetic risk in European populations can already be explained by genome-wide

significant variants. A GRS can predict T1D risk with high sensitivity and specificity

in European-ancestry individuals (ROC AUC = 0.921 in Sharp et al. 2019). For

this reason, one can already envision using a T1D GRS in study design and clinical

practice.

Although the highest incidence of T1D has historically been in European-ancestry

populations, in the U.S., incidence rates are increasing rapidly in individuals with

African and Hispanic ancestry (Mayer-Davis et al. 2017). Thus, if the emerging

paradigm for clinical management, clinical trial design, and prospective research stud-

ies is to rely on accurate characterization of genetic risk for T1D, we urgently need

to develop genetic screening tools that will be effective across all ancestral popu-

lations. To achieve this, we must thoroughly define the genetic contributions to

disease risk in historically understudied populations, including African and Hispanic
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ancestry groups. Despite extensive genetic research in T1D, data from populations

of non-European ancestry remain limited. In this report, we have assembled and

genotyped the largest collection of African-ancestry T1D cases to date. Using this

unique resource, we explore the genetic basis of T1D risk in African Americans, with

a particular focus on defining African-specific HLA alleles contributing to T1D risk.

Our analyses support the strong impact of HLA class II alleles and haplotypes on

T1D risk in African-ancestry groups, as previously reported (Noble et al. 2013; How-

son et al. 2013). In addition, we identified new significant associations in HLA class

I genes (HLA-A, HLA-B, and HLA-C ) with T1D in African-ancestry populations.

The majority of HLA associations with T1D in African-ancestry subjects are con-

cordant with those observed in European-ancestry populations (Erlich et al. 2008).

Nonetheless, we found that an African-ancestry T1D GRS performs significantly bet-

ter than a previously reported European-ancestry T1D GRS in our African-ancestry

cohort. Together, these findings support a model where genetic mechanisms of disease

are largely consistent across populations but population-specific genetic architecture,

influenced by allele frequency and linkage disequilibrium patterns, may affect the

performance of genetic risk models. Thus, population-specific or multi-ancestral T1D

GRS models can provide significantly improved prediction and opportunities for tar-

geted interventions in T1D.
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Chapter 3

Discovery and fine mapping of type

1 diabetes loci using the

ImmunoChip

This chapter is adapted from:

Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, Chen WM, Flores

Santa Cruz D, Yang H, Cutler AJ, Crouch DJM, Farber E, Bridges SL

Jr., Edberg JC, Kimberly RP, Buckner JH, Deloukas P, Divers J, Dabelea

D, Lawrence JM, Marcovina S, Shah AS, Greenbaum CJ, Atkinson MA,
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3.1 Background

3.1.1 The ImmunoChip

The ImmunoChip is an Illumina Infinium custom genotyping array designed to fa-

cilitate discovery and fine mapping by providing dense genotyping of genetic regions

previously implicated in immune-mediated diseases (with either suggestive or statisti-

cally significant evidence) (Cortes et al. 2011; Jostins 2013). The array was designed

by a consortium of investigators to cover regions of interest for rheumatoid arthri-

tis, ankylosing spondylitis, systemic lupus erythematosus, T1D, autoimmune thyroid

disease, celiac disease, multiple sclerosis, ulcerative colitis, Crohn’s disease, and pso-

riasis (Jostins 2013). The consortium identified 290 disease-associated regions from a

collection of previous publications and pre-publication analyses, which were distilled

into 188 non-overlapping “ImmunoChip regions” (Figure 3.1, Supplementary Table

2) for the analyses presented in this chapter. Within these immune-related regions,

all known SNPs (as of the 1000 Genomes Project data release in February 2010)

were included on the array. In addition, for each of eleven non-immunological dis-

eases studied in the Wellcome Trust Case-Control Consortium 2 (WTCCC2 Studies),

about 3,000 SNPs were included at previously identified candidate genes. Finally,

the array included dense genotyping of SNPs in the MHC region on chromosome 6,

including about 6,000 SNPs based on an earlier analysis (Brown et al. 2009), and the

region encoding KIR alleles on chromosome 19. In total, the array included 196,524

variants.
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Figure 3.1: Visual representation of the 188 “ImmunoChip regions.”

3.1.2 Genotype imputation

DNA genotyping arrays are a cost-effective way to genotype hundreds of thousands

of genetic variants simultaneously. However, DNA arrays still only capture a small

fraction of the genetic diversity in human populations. Even the largest DNA arrays,

which can contain up to a few million genetic variants, capture less than 20% of

common genetic variation.

Linkage disequilibrium occurs when alleles at distinct loci co-segregate during

meiotic recombination, and therefore are associated in a population (Slatkin 2008).
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Due to linkage disequilibrium, genotypes at variants located physically near to one

another (< 50kb) are correlated (Figure 3.2). This feature of human genomes can be

used to infer genotypes at genetic variants that were not included on a genotyping

array using a reference panel of phased haplotypes (Figure 3.3). Imputation of genetic

variants using large reference panels, including the 1000 Genomes Phase 3 (1000

Genomes Project Consortium 2015) and TOPMed (Taliun et al. 2021) haplotype

panels, can improve power for genetic discovery and fine mapping.

Extended Data Figure 10 | Decay of linkage disequilibrium as a function of
physical distance. Linkage disequilibrium was calculated around 10,000
randomly selected polymorphic sites in each population, having first thinned

each population down to the same sample size (61 individuals). The plotted line
represents a 5 kb moving average.

ARTICLE RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved

Figure 3.2: Decay of linkage disequilibrium as a function of physical distance. Linkage
disequilibrium was calculated around 10,000 randomly selected polymorphic sites in
each population, having first thinned each population down to the same sample size
(61 individuals). The plotted line represents a 5 kb moving average. Figure and
caption from 1000 Genomes Project Consortium 2015.
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Linkage disequlibrium
The statistical association 
within gametes in a population 
of the alleles at two loci. 
Although linkage disequilibrium 
can be due to linkage, it can 
also arise at unlinked loci — for 
example, because of selection 
or non-random mating.

simulating coalescent trees3,4 and for modelling linkage 
disequilibrium (LD) and estimating recombination rates5. 
The method is based on an HMM of each individual’s 
vector of genotypes, Gi, conditional on H, and a set of 
parameters. This model can be written as

z
P(Gi|H, ,   ) = (1)P(Gi|Z, ), P(Z|H, )�� �� �

in which Z = {Z1,…, ZL} with Zj = {Z j1, Zj2} and Zjk = {1,…, N}.  
The Zj can be thought of as the pair of haplotypes from 
the reference panel at SNP j that are being copied to 

form the genotype vector. The term P(Z\H,R) models 
how the pair of copied haplotypes changes along the 
sequence and is defined by a Markov chain in which 
switching between states depends on an estimate of the 
fine-scale recombination map (R) across the genome. 
The term P(Gi\Z,Q) allows each observed genotype 
vector to differ through mutation from the genotypes 
determined by the pair of copied haplotypes and is con-
trolled with the mutation parameter Q. Estimates of the  
fine-scale recombination map (R) are provided on  
the IMPUTE v1 webpage and Q is fixed internally by the 

Box 1 | How genotype imputation works

In samples of unrelated individuals, the haplotypes of the individuals over 
short stretches of sequence will be related to each other by being identical 
by descent (IBD). The local pattern of IBD can be described by an 
(unobserved) genealogical tree, which will differ at different loci throughout 
the genome owing to recombination. Imputation methods attempt to 
identify sharing between the underlying haplotypes of the study individuals 
and the haplotypes in the reference set and use this sharing to impute the 
missing alleles in study individuals. For this reason, there are strong 
connections between the models and methods used to infer haplotype 
phase and those used to perform genotype imputation22,37, as well as strong 
connections to tagging SNP-based approaches19,21,38 and methods used in 
linkage studies39,40.

The figure above illustrates imputation for a sample of unrelated 
individuals. The raw data consist of a set of genotyped SNPs that has a large 
number of SNPs without any genotype data (part a). Testing for association 
at just these SNPs may not lead to a significant association (part b). 

Imputation attempts to predict these missing genotypes. Algorithms differ 
in their details but all essentially involve phasing each individual in the study 
at the typed SNPs. The figure highlights three phased individuals (part c). 
These haplotypes are compared to the dense haplotypes in the reference 
panel (part d). Strand alignment between data sets must be done before this 
comparison takes place (Supplementary information S1 (box)). The phased 
study haplotypes have been coloured according to which reference 
haplotypes they match. This highlights the idea implicit in most phasing and 
imputation models that the haplotypes of a given individual are modelled as 
a mosaic of haplotypes of other individuals. Missing genotypes in the study 
sample are then imputed using those matching haplotypes in the reference 
set (part e). In real examples, the genotypes are imputed with uncertainty 
and a probability distribution over all three possible genotypes is produced. 
It is necessary to take account of this uncertainty in any downstream analysis 
of the imputed data. Testing these imputed SNPs can lead to more significant 
associations (part f) and a more detailed view of associated regions.
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Figure 3.3: Diagram demonstrating genotype imputation using a reference panel.
Figure adapted from Marchini and Howie 2010.

A number of statistical methods for genotype imputation using haplotype refer-

ence panels have been developed and improved over time. Current versions of the most

popular tools include IMPUTE 5 (Rubinacci, Delaneau, and Marchini 2020, https:

//mathgen.stats.ox.ac.uk/impute/impute.html), Beagle 5.1 (Browning, Zhou,

and Browning 2018, https://faculty.washington.edu/browning/beagle/b5_1.

html), and Minimac4 (Das et al. 2016, https://genome.sph.umich.edu/wiki/Minimac4).

These approaches use Hidden Markov Models to model haplotypes from genotyped

individuals as a mosaic of reference haplotypes (Marchini and Howie 2010; Li and

Stephens 2003). To increase the computational efficiency and facilitate imputation

with extremely large haplotype reference panels, current approaches to imputation

“pre-phase” the genotyped samples (Howie et al. 2012). More recently, due to the

substantial computational burden and bioinformatic skills required to implement

large-scale imputation, as well as privacy concerns associated with broad distribu-

tion of haplotype reference panels (e.g., the TOPMed reference panel includes hap-

lotypes from nearly 100,000 individuals), the human genetics community has devel-

oped imputation servers (https://imputation.biodatacatalyst.nhlbi.nih.gov,

https://www.sanger.ac.uk/tool/sanger-imputation-service), which allow re-

searchers to impute genotyped samples for free and without advanced computing

https://mathgen.stats.ox.ac.uk/impute/impute.html
https://mathgen.stats.ox.ac.uk/impute/impute.html
https://faculty.washington.edu/browning/beagle/b5_1.html
https://faculty.washington.edu/browning/beagle/b5_1.html
https://genome.sph.umich.edu/wiki/Minimac4
https://imputation.biodatacatalyst.nhlbi.nih.gov
https://www.sanger.ac.uk/tool/sanger-imputation-service
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resources.

For each genotyped sample, the imputation method returns a posterior probability

for each possible genotype at every polymorphic position in the reference panel. These

posterior probabilities can then be used in association analyses, with tools designed

to accommodate these inputs (Marchini and Howie 2010), or converted to imputa-

tion “dosages” (Equation 3.1), which can then be treated like a typical independent

variable in linear models.

Dij = 0× Pr(Gij = A/A) + 1× Pr(Gij = A/B) + 2× Pr(Gij = B/B) (3.1)

where Dij is the dosage for allele B at variant i in individual j and Pr(Gij = A/A),

Pr(Gij = A/B), and Pr(Gij = B/B) are the imputation posterior probabilities that

individual j carries 0, 1, or 2 copies of the B allele at variant i, respectively.

In addition to returning imputed genotype probabilities, imputation methods also

return metrics of genotype imputation quality for each variant. Minimac4, which

was used for analyses in this chapter, returns an estimated “imputation R-squared”

statistic, which is calculated as (https://genome.sph.umich.edu/wiki/Minimac_

Diagnostics):

r̂2 =
V ar(Di∗)

p̂(1− p̂)
(3.2)

where V ar(Di∗) is the variance of the vector of dosages at variant i across all individ-

uals, and p is the allele frequency of variant i. Only imputed variants with sufficient

imputation quality, as defined by some filtering threshold (e.g., imputation R-squared

> 0.3), are included in downstream analyses.

https://genome.sph.umich.edu/wiki/Minimac_Diagnostics
https://genome.sph.umich.edu/wiki/Minimac_Diagnostics
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3.1.3 Statistical methods for fine mapping

Statistical fine mapping of genetic association loci is one approach to differentiate

potentially causal variants underlying an association from benign variants showing

association merely due to linkage disequilibrium with causal variants. This challenge

can be framed, statistically, as a variable selection problem (Figure 3.4), with several

important features. First, the input is high dimensional, with typically hundreds to

thousands of genetic variants to consider in a region. Second, it is assumed that only

one or a handful of variants in a region are causally associated with disease, thus

the solution is typically sparse. Third, due to linkage disequilibrium, independent

variables will be highly correlated, often including variants in perfect correlation (r2 =

1) with one another. In many statistical models, this will cause model instability.

Finally, we are interested in inference, not prediction. In a prediction setting, one can

randomly select between tightly or perfectly correlated independent variables without

affecting predictive performance. In fine mapping, it is important for the solution to

reflect the fact that any one of a group of tightly correlated variables have a similar

likelihood of being causally related to the disease.
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Figure 3.4: Framing fine mapping as a variable selection problem: (a) Hypothetical
region of the human genome containing 100 common genetic variants, labeled rs1
through rs100; rs15 and rs89 are causal variants contributing to disease risk; however,
due to extensive linkage disequilibrium in the region, many of the other variants in
the region are also associated with the disease. (b) Matrix representation of the
statistical fine mapping problem for the region in (a); determining the most likely
causal genetic variants is a problem of assigning a probability of causality to each
independent variable in the matrix.

Many statistical methods have been developed to address this problem in human

genetics. The simplest, and most widely-used, method for determining the number of

independent causal variants in a region is forward stepwise regression (“conditional

analysis”). From independent variants identified by this method (“index variants”),

credible sets can be constructed (Maller et al. 2012) by calculating the posterior

probability (PP) for variant j as:
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PPj =
BFj∑
k(BFk)

(3.3)

where BFj is the Bayes factor for variant j and
∑

k(BFk) is the sum of Bayes factors

for all variants in the region. Specifically, BFj can be thought of as

BFj =
Pr(data|H1)

Pr(data|H0)
(3.4)

where H1, the alternative hypothesis, is represented by an association model contain-

ing variant j, and H0, the null hypothesis, is represented by an association model

without variant j. In regions with multiple independent index variants, credible sets

can be constructed for each index variant by conditioning on all other index variants

during model fitting for both H0 and H1. Then, the 95% credible set for an index vari-

ant is the smallest set of variants for which the total posterior probability is at least

0.95. While this approach is conceptually straightforward and easy to implement, it

can fail to identify causal variants in regions with complex genetic architecture. In

the example shown in Figure 3.4, with multiple causal variants, this forward stepwise

selection approach may prioritize variants correlated with both of the causal variants,

but not the causal variants themselves. Additional modeling approaches have been

developed to account for such complex situations (Table 3.1), most using Bayesian

approaches to assign posterior probabilities to all variants in an associated region.
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Table 3.1: Statistical methods for genetic fine mapping.

Method Citation Algorithm Model input

CAVIAR Hormozdiari

et al. 2014

Exhaustively explores

models with up to 6

causal variants

Genetic association

summary statistics and a

reference linkage

disequilibrium matrix

FINEMAP Benner et al.

2016

Approximate exhaustive

approach, targetting the

best combinations of

variants

Genetic association

summary statistics and a

reference linkage

disequilibrium matrix

GUESSFM Wallace et al.

2015

Evolutionary stochastic

search as implemented in

GUESS (Bottolo and

Richardson 2010)

Full data set including

individual-level

genotypes

SuSiE Wang et al. 2020 Iterative Bayesian

stepwise selection

Either the full data set

or summary statistics

In this chapter, a method called GUESSFM (Wallace et al. 2015) is used, which

implements the following procedure (Figure 3.5):

The (n ×m) genetic matrix X at a locus, where n is the number of in-

dividuals and m is the number of variants, is pruned to remove variants

in high linkage disequilibrium(r2 ≥ 0.99), generating a pruned (n × p)

matrix, Z, with p “tag” variants. Now the model space contains 2p pos-

sible models. A stochastic search, implemented by GUESS (Bottolo and

Richardson 2010), is carried out across these 2p models, averaging over

the other parameters (e.g., variant effect size), to obtain a selection of

models with high marginal posterior probabilities. This set of models is
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then expanded to include models where the tag variant is replaced by

each of the variants in high linkage disequilibriumwith it (which had been

removed during pruning prior to the stochastic search). For each model,

an Approximate Bayes Factor (ABF) is calculated by treating the binary

outcome (T1D status) as linear and using the linear regression Bayesian

Information Criterion (BIC). The ABF for each model can be interpreted

as the support for the model relative to a null model with no genetic

variants. To obtain the posterior probability for each model, the ABF is

multiplied by the prior, which we took in all cases to be a binomial prior

with 3/m expected variants included in the model, divided by the nor-

malizing factor, the sum of all tested model posterior probabilities. The

marginal probability for each SNP is taken as the sum of the posterior

probabilities for all models in which it is present.

The success of any fine mapping method will depend on the linkage disequilibrium

structure of the region to which it is applied, and in particular, how many variants are

in very tight linkage disequilibrium with the true causal variants. For example, if a

causal variant is in perfect linkage disequilibrium with multiple nearby variants (those

variants are always inherited together), then no statistical fine mapping method will

be able to prioritize one variant over another based on genotyping data alone. In-

corporating multiple ancestry groups into genetic studies, which often have differing

patterns of linkage disequilibrium (Figure 3.6), can in theory improve fine-mapping

resolution (Wojcik et al. 2019a). However, the appropriateness of this approach de-

pends on the local genetic architecture within each population. For example, defining

a credible set by integrating summary statistics from two populations assumes the

same variant(s) are causal in both populations. Thus, it is important to have suffi-

cient sample sizes and statistical power to effectively evaluate this assumption in each

ancestry group.
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Figure 3.5: GUESSFM procedure. Figure adapted from Wallace et al. 2015.

African AmericanNorthern European

T1D
SNPs

Chromosome 17q12

Figure 3.6: A region on chromosome 17 where T1D-associated variants have dra-
matically different linkage disequilibrium patterns between African- and European-
ancestry 1000 Genomes populations. Figure generated at https://ldlink.nci.nih.
gov.

https://ldlink.nci.nih.gov
https://ldlink.nci.nih.gov
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3.1.4 Motivation

Approximately 60 genomic regions have been associated with T1D risk in individuals

of European ancestry (Todd et al. 2007; Wellcome Trust Case Control Consortium

2007; Cooper et al. 2008; Hakonarson et al. 2008; Grant et al. 2009; Barrett et

al. 2009; Bradfield et al. 2011; Huang et al. 2012; Onengut-Gumuscu et al. 2015;

Zhu et al. 2019). However, less is known in non-European ancestry groups, despite

recent increases in T1D diagnoses in these understudied populations (Section 1.1.2).

Additionally, due to linkage disequilibrium, causal variants are unknown at most T1D-

associated loci. Here, we double the sample size from the previous largest T1D study

(Onengut-Gumuscu et al. 2015), genotype ancestrally diverse T1D cases, controls,

and affected families, and impute additional variants. Using this expanded data set,

we perform discovery and fine-mapping analyses.

3.2 Methods

3.2.1 Genotyping and quality control

The DNA samples were genotyped on the Illumina ImmunoChip at the University

of Virginia’s Genome Sciences Laboratory in the Center for Public Health Genomics

(n = 52, 219), Sanger Institute (n = 4, 347), University of Cambridge (n = 2, 941)

and Feinstein Institute (n = 1, 811). Raw genotyping files were assembled at UVA.

Genotype clusters were generated using the Illumina GeneTrain2 algorithm. Stringent

SNP- and sample-level quality-control filtering and data cleaning were performed to

ensure high-quality genotypes and accurate pedigrees (Figure 3.7). In addition, the

following variant filtering steps were performed:

1. Re-annotated ImmunoChip variant positions by aligning probe sequences to

GRCh37 and the removing any variants with < 100% match or multiple matches
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at different positions in the genome;

2. Removed variants with call rates < 98%;

3. Removed variants with any discordance between duplicate or monozygotic twin

samples, as confirmed by genotype-inferred relationships;

4. Removed variants with Mendelian inconsistencies in > 1% of the informative

trios or parent-offspring pairs, based on genotype-inferred relationships.

For sample filtering, X-chromosome heterozygosity and Y-chromosome missing-

ness were used to identify and exclude participants with apparent sex-chromosome

anomalies or resolve inconsistencies with the reported sex. Pedigree-defined and

genotype-inferred sample relationships were compared using KING version 2.1.3 (Manichaikul

et al. 2010, www.chen.kingrelatedness.com). Samples were excluded when incon-

sistencies could not be resolved, including relationships between families, within and

across cohorts. For each pair of related families observed, one family was randomly

excluded from the association analysis. After resolving sex and relationship issues,

samples with a genotype call rate < 98% were removed. Variants with genotype

frequencies deviating from Hardy-Weinberg equilibrium (p < 5 × 10−5) in unrelated

European-ancestry controls were excluded before imputation.

www.chen.kingrelatedness.com
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Variant quality filter (call rate > 98%)
Also drop poor Y SNPs (from sex check)

Variant QC

Relaxed sample quality filter (call rate > 80%)

Sample QC

Stringent sample quality filter (call rate > 98%)

Preliminary sex QC
Use X chromosome heterozygosity and Y SNP missingness to:
- Flag possible sex anomalies (X0, XXY, mosaics)
- Flag inconsistences as possible sample swaps or mislabeled sex

Mendelian inconsistencies
- remove SNPs with inconsistencies in known PO pairs and trios 
- define “known PO pairs and trios” as those where pedigree 

relationships match relationships inferred by IBD analysis

Duplicate sample concordance
- drop SNPs with any discordance between known duplicate 

samples
- define duplicate samples as identical sample IDs and are inferred 

to be MZ/Dup through IBD analysis

Sample Relatedness Analysis
Use IBD analysis (KING) and preliminary sex QC to:
- identify duplicates (for removal from downstream analysis and to use in SNP QC)
- identify sample swaps resulting in pedigree and sex inconsistencies and fix them 

in the pedigree
- identify samples for removal due to inexplicable pedigree or sex inconsistency, 

unexpected relatedness between families

Remove monomorphic variants

Final sex QC
Correct remaining sex inconsistencies

FINAL SAMPLE SETFINAL VARIANT SET

Figure 3.7: Sample and variant quality control pipeline prior to imputation.

3.2.2 Stratification of major ancestry groups and family trios

Principal components were generated in 1000 Genomes phase 3 individuals using 8,297

autosomal ImmunoChip variants selected by excluding regions of long-range linkage

disequilibrium(Price et al. 2008), pruning for short-range linkage disequilibrium(r2 <

0.2 in 50-kb windows) and filtering for MAF > 0.05. The participant genotypes

were projected onto the 1000 Genomes principal-component space using PLINK v1.9

(Chang et al. 2015, www.cog-genomics.org/plink). The first ten principal compo-

nents were used in k-means clustering to define clusters of ancestrally similar partici-

pants, which were labeled according to their closest 1000 Genomes super-population.

Two distinct clusters mapped to the European super-population, one of which al-

most exclusively consisted of participants recruited through Finnish sites. Although

visualization with only the first two principal components showed overlap between

Finns and other European groups, Finnish individuals consistently clustered away

from the remaining European individuals when clustering used additional principal

components, likely due to the unique population history of Finland (Jakkula et al.

www.cog-genomics.org/plink
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2008). These results suggested sufficient substructure to warrant additional strat-

ification into Finnish and non-Finnish Europeans. Thus, for association analysis,

participants in this study were stratified into five ancestrally-similar groups: African

admixed (“AFR”), East Asian (“EAS”), Finnish (“FIN”), other European (“EUR”),

and other Admixed (“AMR”) (Figure 3.8).

For case-control analyses to be performed within each ancestry cluster, affected

trios were excluded and a set of unrelated individuals was selected from the remaining

subjects using the “unrelated” command in KING version 2.1.3 (Manichaikul et al.

2010). Cluster-specific principal components were calculated by performing principal-

component analysis on unrelated controls and projecting the remaining subjects onto

the resulting axes. The remaining population stratification within each ancestry

cluster was assessed visually (Figure 3.9).
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Figure 3.8: Population structure in the analysis cohort. Two plots are shown for
each stratification group, one with the 1000 Genomes Project data on top (left), the
other with the study participants on top (right). Study participants, black; 1000
Genomes participants, colored by super-population. AFR=African, AMR=Admixed
American, EAS=East Asian, EUR=European, SAS=South Asian.
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Figure 3.9: Principal component analysis for cases (red) and controls (turquoise) for
each ancestry group. Cases are plotted on top (left) or bottom (middle). Scree plots
(right) suggest that linear models for genetic association include up to five principal
components as covariates.

Despite controlling for population stratification by analyzing major ancestry groups

separately and adjusting for within-ancestry principal components in each ancestry-

specific case-control analysis, the genomic inflation factors (λGC) from the complete

meta-analysis (described in Section 3.2.5) was 1.40. Since the ImmunoChip inten-

tionally covers regions of the genome previously associated with immune-mediated

disease, λGC for association with T1D across ImmunoChip variants is a priori an-

ticipated to be greater than one. However, it is important to differentiate inflation
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due to enrichment of true biological association from inflation due to experimental

artifact, such as population stratification. Due to the non-uniform distribution of

ImmunoChip variants across the genome, LD Score regression (Bulik-Sullivan et al.

2015), an approach that leverages genome-wide linkage disequilibrium patterns to de-

termine sources of inflated test statistics in GWAS, cannot be applied to this data set.

Thus, to rule out population stratification, we compared λGC from the famliy-based

linkage disequilibrium test (TDT) (Spielman, McGinnis, and Ewens 1993), which is

robust to population stratification, to λGC from case-control analysis of comparable

statistical power. Specifically, for each ancestry group, we generated five randomly

sampled case-control data sets, each containing one case and one control for each

trio, which results in equivalent statistical power (McGinnis, Shifman, and Darvasi

2002). For example, in our EUR cohort, there were 4,766 trios. Thus, we subsam-

pled, out of 13,458 EUR unrelated cases and 20,143 EUR unrelated controls, five

data sets each containing 4,766 cases and 4,766 controls. After excluding the major

histocompatibility complex (MHC), insulin (INS ) and protein tyrosine phosphatase,

non-receptor type 22 (PTPN22 ) regions, the λGC for the EUR family-based analysis

was 1.44, while the average λGC from five randomly sampled case-control data sets

of equivalent power was 1.50 (Figure 3.10). Similar results are seen when only con-

sidering directly genotyped variants (Supplementary Table 6). Together, these data

suggest that the inflation in the association analysis cannot be explained by popu-

lation stratification in our study cohort. Thus, we believe the observed inflation in

both case-control and family-based analyses is most likely due to enrichment for true

association signal in ImmunoChip regions.
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Figure 3.10: Quantile-quantile plots showing the expected chi-square association
statistics against the observed chi-square association statistics from the Phase II Eu-
ropean family-based analysis results compared to five randomly sampled European
case-control cohorts with equivalent statistical power to the family-based analysis.

3.2.3 Imputation to TOPMed and 1000 Genomes reference

panels

Genotypes were imputed across the entirety of all autosomal chromosomes, with the

NHLBI Trans-Omics for Precision Medicine (TOPMed) Freeze 5 (Taliun et al. 2021)

and 1000 Genomes phase 3 reference panels using the Michigan Imputation Server,

which applied Eagle version 2.4 (Loh et al. 2016) for phasing and Minimac4 for

imputation (Das et al. 2016). For each reference panel, ImmunoChip variants were

aligned to the appropriate strands and reference alleles using available tools (https:

//www.well.ox.ac.uk/~wrayner/tools/).

https://www.well.ox.ac.uk/~wrayner/tools/
https://www.well.ox.ac.uk/~wrayner/tools/
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Benchmarking imputation accuracy and coverage

In a subset of T1DGC samples, including 1,411 AFR, 641 AMR, and 95 EUR sub-

jects, whole genome sequencing (WGS) data generated by the McDonnell Genome

Institute at Washington University in St. Louis as part of the Centers for Common

Disease Genomics (CCDG) (https://ccdg.rutgers.edu) supported by the NHGRI

Genome Sequencing Program (GSP) (http://gsp-hg.org). Samples were sequenced

on the Illumina HiSeq X, and sequence alignment and variant calling was performed as

outlined in the standardized CCDG pipeline (Regier et al. 2018) (https://github.

com/CCDG/Pipeline-Standardization/blob/master/PipelineStandard.md).

As a measure of imputation accuracy, for each single nucleotide variants (SNV)

we calculated the Pearson correlation coefficient and R-squared between genotypes

obtained through imputation versus WGS. To measure imputation coverage of Im-

munoChip regions, we calculated the proportion of SNVs with MAF > 0.005 detected

through WGS that were included in the imputed variant set after quality filtering at

a range of imputation R-squared thresholds. Relative coverage of imputation based

on TOPMed and 1000 Genomes reference panels was assessed in the AFR and AMR

groups, for which we had adequate number of samples with available WGS. To quan-

tify the coverage of ImmunoChip regions after imputation, we calculated the propor-

tion of SNVs detected in WGS that were imputed with high confidence.

Imputed variant filtering

Since imputation quality (R-squared) is dependent on allele frequency and linkage

disequilibrium patterns in the target population, imputed variants were filtered for

ancestry-specific imputation quality (imputation R-squared > 0.8; SNPTEST info

score > 0.8 in cases, controls or overall, (Marchini and Howie 2010)) and allele fre-

quency (MAF > 0.005), and, for family-based association analyses, Mendelian incon-

sistency rates (< 0.01 in informative trios and parent-offspring pairs). In addition,

https://ccdg.rutgers.edu
http://gsp-hg.org
https://github.com/CCDG/Pipeline-Standardization/blob/master/PipelineStandard.md
https://github.com/CCDG/Pipeline-Standardization/blob/master/PipelineStandard.md
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variants with a difference in SNPTEST info score > 0.05 between cases and controls

were removed since this could artificially generate an association that is reflecting

imputation differences rather than genuine differences in allele frequencies between

cases and controls. Finally, only imputed variants lying within the 188 “ImmunoChip

regions” (Supplementary Table 2) or in other densely genotyped regions outside of the

ImmunoChip regions defined in Section 3.2.4 (Supplementary Table 3) were analyzed

for association with T1D, since genotyping outside these regions on the ImmunoChip

is sparse and therefore imputed variant calls less certain. However, all variants that

were directly genotyped and passed QC on the ImmunoChip were included in the

association analysis.

3.2.4 Defining targeted regions for discovery and fine-mapping

analysis

The ImmunoChip densely covered genetic variation in the immune-associated ge-

nomic regions. Discovery analyses included all genotyped variants as well as im-

puted variants from any 500-kb region that contained more than 50 genotyped vari-

ants (Supplementary Table 3). To define boundaries for fine-mapping regions, we

mapped previously defined ImmunoChip regions (provided by the R package humar-

ray) from GRCh36 to GRCh38 coordinates (Supplementary Table 2): for each region,

we mapped all variants originally included in the region to GRCh38 to define bound-

aries as the lowest and highest observed GRCh38 positions among these variants (±50

kb on either side). Fine-mapping analyses were then restricted to densely genotyped

regions overlapping these ImmunoChip regions.
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3.2.5 Association analysis

Phase I: Case-control analyses

All genotyped variants and high-confidence imputed variants were analyzed for associ-

ation with T1D (Supplementary Tables 2 and 3). Association analyses were performed

separately in the five ancestry groups. Assuming an additive mode of inheritance, we

used logistic regression for unrelated case-control analyses, adjusting for five ancestry-

specific principal components and using genotype posterior probabilities to account

for uncertainty in the imputed genotypes using the SNPTEST version 2.5.4 soft-

ware (Marchini and Howie 2010). Due to the small sample size (38 cases and 106

controls), the EAS individuals were excluded. We combined results using an inverse-

variance weighted fixed-effects meta-analysis (METAL software version released on

25 March 2011)(Willer, Li, and Abecasis 2010). Forward stepwise logistic regression

was performed to identify loci with more than one independent association with T1D.

All conditionally independent associations (p < 5 × 10−8) were reported. The case-

control analyses were performed under recessive and dominant models of inheritance.

To evaluate the relative fit of the three models, we compared the Akaike Information

Criterion (AIC) in the EUR ancestry group and identified the model providing the

lowest AIC (best fit). Only genotyped variants were examined for their association

with T1D on the X chromosome. The Y chromosome was not examined.

Phase II: Trio families and combined analyses

Trio families (two parents and an affected offspring) were analyzed within an ancestry

group using the TDT (Spielman, McGinnis, and Ewens 1993). As TDT test statistics

are susceptible to substantial bias when applied to imputed genotypes (Taub et al.

2012), a stringent variant filter was applied to the imputed genotypes, removing all

variants with Mendelian inconsistencies in > 1% of trios with heterozygous offspring
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or parent-offspring pairs with homozygous offspring. From the transmission disequi-

librium test summary statistics, we derived effect sizes and standard-error estimates

(Kazeem and Farrall 2005) and meta-analyzed with the Phase I results.

3.2.6 Statistical fine mapping

Two complementary approaches were used to define credible variant sets within each

T1D-associated ImmunoChip region. Fine mapping included high-confidence variants

within 750 kb of the lead variant (1.5-Mb region in total), usually consisting of im-

puted variants across the entire ImmunoChip region and genotyped variants adjacent

to the ImmunoChip region.

Fine mapping using EUR case-control data only

Because forward stepwise model selection can fail to identify complex genetic archi-

tectures (Asimit et al. 2019), we also applied a Bayesian method (GUESSFM) in

the EUR case-control data to identify the most likely combinations of variants ex-

plaining T1D risk (Wallace et al. 2015; Bottolo and Richardson 2010). An overview

of the GUESSFM fine-mapping procedure is provided in Section 3.1.3 and shown in

Figure 3.5. Groups of variants prioritized by GUESSFM are called “credible sets”

and variants within these groups are called “credible variants.” Variants that failed

the quality-control metrics (or were not genotyped or imputed in our data for other

reasons) but were in linkage disequilibrium (r2 > 0.9 in 1000 Genomes Phase 3)

with a prioritized variant were included in the comprehensive list of credible variants

(Supplementary Table 11).

Trans-ancestry fine mapping

In regions where association signals were marginally associated (p < 5 × 10−4) in

multiple ancestry groups and evidence from EUR fine mapping with GUESSFM sug-
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gested a single causal variant (marginal posterior probability for one causal variant

in the region > 0.5), we applied the multi-ancestry fine-mapping method PAINTOR

(Kichaev and Pasaniuc 2015) to refine the association. PAINTOR uses association

z-scores and population-level linkage disequilibriumto identify the combination of al-

leles that best explain the phenotype, multiplying the posterior probability of the

causal vector across ancestry groups, assuming the same variant(s) are causal in

each ancestry group. Given that the loci examined were those with evidence of one

causal variant in the region, we restricted the maximum model size to two variants

in the region and enumerated the posterior of every model, rather than performing

a Markov-chain-Monte-Carlo search. The association z-scores used for each ancestry

group were from a meta-analysis of case-controls and family trios in that ancestry

cluster. For analysis with PAINTOR, linkage disequilibrium reference panels were

generated with imputed genotype data from unrelated cases and controls, separately

for each ancestry group, using LDstore version 1.1 (Benner et al. 2017).

3.2.7 Haplotype analyses

Haplotype analyses were performed in cases and controls of EUR ancestry by taking

“best-guess” genotype values for the variants included in the analysis and obtain-

ing haplotype phase-distribution estimates for each individual using an expectation-

maximization algorithm (Excoffier and Slatkin 1995). The haplotype of each individ-

ual was sampled ten times and a logistic regression was fitted estimating the effect size

of the haplotype relative to the most common haplotype in the population, with T1D

status as the outcome and adjusting for five principal components. The estimates

and standard errors for each haplotype relative to the most common were averaged

over the ten logistic regression models to obtain the overall haplotype effect sizes on

T1D risk.
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3.2.8 Annotating T1D-associated protein-altering variants

The functional impacts of T1D credible variants (Supplementary Table 11) were

annotated using ANNOVAR (version released on 16 April 2018, Wang, Li, and

Hakonarson 2010, https://annovar.openbioinformatics.org) and the Ensembl

(ensembl.org) and refGene (www.ncbi.nlm.nih.gov/refseq) annotation databases.

3.2.9 Statistical analyses

Unless otherwise noted, all statistical analyses and data visualization were performed

using R version 3.6 (R Core Team 2017). All statistical tests based on symmetrically

distributed test statistics were two-sided. No repeated measures data were analyzed

in this study. All genotyped samples analyzed in the association tests represent

distinct individuals. The R packages ggplot2 (Wickham 2016, https://ggplot2.

tidyverse.org/), and cowplot (Wilke 2020, https://cran.r-project.org/web/

packages/cowplot/index.html) were used for data visualization. Code used to

generate the results presented in this chapter is available at https://github.com/

ccrobertson/t1d-immunochip-2020.

3.3 Results

3.3.1 Genotyping and imputation of immune-related regions

After quality filtering, 61,427 participants (Figure 3.7, Supplementary Table 1) and

140,333 genotyped ImmunoChip variants were included in analyses, providing dense

coverage in 188 autosomal regions (“ImmunoChip regions”) (Cortes et al. 2011) and

sparse genotyping in other regions (Supplementary Tables 2 and 3). Each participant

was assigned to one of five ancestry groups using principal component analysis (Figure

3.8): European (EUR, n = 47, 319), African admixed (AFR, n = 4, 290), Finnish

https://annovar.openbioinformatics.org
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://cran.r-project.org/web/packages/cowplot/index.html
https://cran.r-project.org/web/packages/cowplot/index.html
https://github.com/ccrobertson/t1d-immunochip-2020
https://github.com/ccrobertson/t1d-immunochip-2020
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(FIN, n = 6, 991), East Asian (EAS, n = 588) and other Admixed (AMR, n =

2, 239). Association analyses included 16,159 T1D cases, 25,386 controls and 6,143 trio

families (i.e., an affected child and both parents) (Figure 3.9), Supplementary Tables

4 and 5). Genotypes at additional variants were imputed using the Trans-Omics

for Precision Medicine (TOPMed) (Taliun et al. 2021) multi-ethnic reference panel

to improve discovery and fine-mapping resolution. After imputation, the number of

variants in ImmunoChip regions with imputation R-squared > 0.8 and minor allele

frequency (MAF) > 0.005 in each ancestry group was 166,274 (EUR), 322,084 (AFR),

163,612 (FIN), 137,730 (EAS), and 188,550 (AMR).

Accuracy and coverage of imputation was assessed using WGS in 1,411 AFR, 641

AMR, and 95 EUR subjects. After filtering for imputation R-squared > 0.8, more

than 99% of imputed SNVs within ImmunoChip regions were concordant with WGS

with true R-squared > 0.5 (Figure 3.11). Among 1,411 AFR and 641 AMR subjects,

92.3% and 87.6% of variants in ImmunoChip regions detected in WGS with MAF

> 0.005 were imputed with imputation R-squared > 0.8, respectively (Figure 3.12).

Only variants within ImmunoChip regions or regions with relatively high variant

density, defined as more than 50 variants genotyped in a 500kb region (Supplementary

Tables 2 and 3), were included in the analysis, since the imputation of variants outside

these regions would be based on a small number of genotyped variants only.
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Figure 3.11: Genotype accuracy for variants in ImmunoChip regions based on a subset
of 2,147 participants with available whole genome sequence (WGS) data. “Imputa-
tion R-squared” is estimated imputation quality returned by the imputation software
Minimac4. “True R-squared” is the Pearson correlation between genotypes obtained
through imputation to the TOPMed reference panel versus WGS. Among variants
with imputation R-squared > 0.8 (right of solid vertical line), more than 90% have
true R-squared > 0.5 in all three ancestry groups.
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Figure 3.12: Imputation coverage of ImmunoChip regions across a spectrum of im-
putation quality filtering thresholds and minor allele frequencies. Y-axis shows the
proportion of variants detected by whole genome sequence (WGS) data that were
imputed using the TOPMed (red) or 1000 Genomes Project Phase 3 (blue) refer-
ence panel. “Imputation R-squared” is estimated imputation quality returned by the
imputation software Minimac4. MAF, minor allele frequency.

3.3.2 Thirty-six new genome-wide significant regions

Initially, we analyzed unrelated cases and controls (n = 41, 545), assuming an additive

inheritance model. With minimal evidence of artificial inflation of association statis-

tics due to population structure (Figure 3.10, and Supplementary Table 6), we identi-

fied 64 T1D-associated regions outside the major histocompatibility complex (MHC),

including 24 regions associated with T1D at genome-wide significance (p < 5× 10−8)

for the first time. Following conditional analysis, 78 independent associations were

identified (p < 5 × 10−8; Supplementary Table 7). On the X chromosome, the most

T1D-associated variant was rs4326559 (A>C, C allele OR = 1.09, p = 4.5× 10−7).

We extended the discovery analysis to incorporate T1D trio families (n = 6, 143
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trios, some trio families were multiplex and analyzed as multiple trios). Meta-analysis

of case-control and trio results identified 78 chromosome regions associated with

T1D (p < 5 × 10−8), including 42/43 chromosome regions previously identified in

an ImmunoChip-based study (Onengut-Gumuscu et al. 2015) (rs4849135 (G>T) was

p = 2.93 × 10−7). When comparing these 78 regions to previous T1D studies (Todd

et al. 2007; Barrett et al. 2009; Onengut-Gumuscu et al. 2015; Wellcome Trust Case

Control Consortium 2007; Cooper et al. 2008; Hakonarson et al. 2008; Grant et

al. 2009; Bradfield et al. 2011; Huang et al. 2012; Zhu et al. 2019), 36 novel re-

gions associated with T1D at genome-wide significance for the first time (Table 1).

In the remaining 42 regions, the lead variant was within 250 kb of the lead vari-

ant in a previous T1D study. The 1q21.3 region, which contains the gene encod-

ing the interleukin-6 receptor (IL-6R), was among the regions associated with T1D

at genome-wide significance for the first time. The lead variant in this region was

rs2229238 (T>C) (p = 3.02×10−9), not the nonsynonymous variant rs2228145 (A>C)

(NP 000556.1:p.Asp358Ala) (p = 2.20× 10−4), which was previously suggested to be

causal for T1D in targeted analysis (Ferreira et al. 2013) and remains a candidate

causal variant for rheumatoid arthritis (Okada et al. 2014).
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predicted 21 (40%) to contain more than one causal variant (Fig. 
1a), compared with nine regions using stepwise conditional regres-
sion. The lead variant in the discovery analysis was not prioritized 
by fine mapping (posterior probability < 0.5) in four regions: 2q33.2 
(CTLA4), 4q27 (IL2), 14q32.2 (MEG3) and 21q22.3 (UBASH3A). 
In these regions, the lead variant is likely to tag two or more 
T1D-associated haplotypes that can be identified using GUESSFM 

but not stepwise logistic regression, a phenomenon that has been 
observed previously29,30. For example, although stepwise regres-
sion analysis in the UBASH3A locus provided support for a single 
causal variant (Supplementary Table 7), GUESSFM fine mapping 
and haplotype analyses indicated that the lead variant in this region, 
rs11203203 (NC_000021.9:g.42416077G>A), is unlikely to be 
causal. GUESSFM fine mapping supported a three-variant model 

Table 1 | Newly identified regions of association with T1D with genome-wide significance (P!<!5!×!10−8)

Chromosome Position (bp)a Lead variant 
rsID

A1 A2 Putative candidate 
geneb

AFEUR 
(A2)

ORmeta
c Pmeta Traits with shared 

associationd

1 63643100 rs2269241 T C PGM1 0.196 1.111 4.67!×!10−12

1 92358141 rs34090353 G C RPAP2 0.361 1.078 1.10!×!10−8

1 119895261 rs2641348 A G NOTCH2 0.107 1.113 1.61!×!10−8 Crohn’s disease, T2D
1 154465420 rs2229238 T C IL6R 0.813 0.896 1.38!×!10−12

1 172746562 rs78037977 A G FASLG 0.124 0.884 2.41!×!10−9 Asthma, vitiligo, allergic 
sensitization

1 192570207 rs2816313 G A RGS1 0.719 1.090 4.57!×!10−9

1 212796238 rs11120029 G T TATDN3 0.147 1.102 1.82!×!10−8

2 12512805 rs10169963 C T AC096559.1 0.580 1.074 2.78!×!10−8

2 100147438 rs12712067 G T AFF3 0.358 0.925 4.12!×!10−9

2 191105394 rs7582694 C G STAT4 0.773 0.916 2.83!×!10−9 SLE, hypothyroidism, 
celiac disease, RA

2 241468331 rs10933559 A G FARP2 0.208 1.109 2.39!×!10−11

4 973543 rs113881148 C A TMEM175 0.626 1.082 5.72!×!10−9 Body-fat percentage
4 38602849 rs337637 G A KLF3 0.364 0.919 2.57!×!10−10 White blood-cell count
5 40521603 rs1876142 G T PTGER4 0.658 0.905 2.18!×!10−14

5 56146422 rs10213692 T C ANKRD55/IL6ST 0.241 0.912 2.85!×!10−9 RA, Crohn’s disease, MS
6 424915 rs9405661 C A IRF4 0.514 1.080 2.26!×!10−9

6 137682468 rs12665429 T C TNFAIP3 0.370 0.907 1.36!×!10−13

6 159049210 rs212408 G T TAGAP 0.638 1.112 1.42!×!10−15 MS, Crohn’s disease, 
eczema

7 20557306 rs17143056 A G ABCB5 0.183 0.909 2.44!×!10−8

7 28102567 rs10245867 G T JAZF1 0.331 0.928 3.15!×!10−8 Eczema, hay fever, MS, 
SLE, monocyte percentage

8 11877675 rs2250903 G T CTSB 0.283 0.905 1.35!×!10−10

9 99823263 rs1405209 T C NR4A3 0.375 1.075 3.45!×!10−8

10 33137219 rs722988 T C NRP1 0.367 1.108 3.21!×!10−15

11 35267496 rs11033048 C T SLC1A2 0.366 1.091 1.53!×!10−10 Vitiligo
11 60961822 rs79538630 G T CD5/CD6 0.035 1.213 1.14!×!10−9

11 61828092 rs968567 C T FADS2 0.177 0.903 8.42!×!10−9 RA, neutrophil percentage
11 64367826 rs645078 A C CCDC88B 0.385 0.925 3.34!×!10−9

11 128734337 rs605093 G T FLI1 0.470 1.077 4.25!×!10−9

12 8942630 rs1805731 T C M6PR 0.389 1.073 4.16!×!10−8 Eosinophil count
12 53077434 rs7313065 C A ITGB7 0.162 1.101 3.28!×!10−9

13 42343795 rs74537115 C T AKAP11 0.141 1.109 5.41!×!10−9

14 68286876 rs911263 C T RAD51B 0.710 1.083 1.69!×!10−8 PBC, SLE, RA
16 20331769 rs4238595 T C UMOD 0.687 0.912 2.43!×!10−11

17 45996523 rs1052553 A G MAPT 0.232 0.879 1.65!×!10−15 Parkinson’s disease
17 47956725 rs2597169 A G PRR15L 0.348 1.081 3.35!×!10−9

21 44204668 rs56178904 C T ICOSLG 0.187 0.898 6.48!×!10−11

Of these 36 regions, 13 had a lead variant that was in strong linkage disequilibrium (r2!>!0.95 in the 1000 Genomes Project European population) with variants that are associated with at least one related 
trait. aGenome build 38. bClosest gene or gene with mechanistic support from the literature. cAdditive OR for the addition of an A2 allele. dRelated traits (https://genetics.opentargets.org) where the lead 
variant is in strong LD (r2!>!0.95 in the 1000 Genomes Project European population) with T1D lead variant. RA, rheumatoid arthritis; T2D, type 2 diabetes; SLE, systemic lupus erythematosus; MS, multiple 
sclerosis; IBD, inflammatory bowel disease; PBC, primary biliary cholangitis.
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Figure 3.13: Newly identified regions of association with T1D with genome-wide
significance (p < 5× 10−8)
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3.3.3 Additional regions identified using alternative inheri-

tance models and metric of statistical significance

Applying the Benjamini-Yekutieli false discovery rate (FDR) < 0.01 (Benjamini and

Yekutieli 2001) to assess statistical significance, 143 regions were associated with T1D

(Supplementary Table 8). Their lead variants overlapped substantially with lead

variants for 14 immune-mediated diseases from published studies, but the direction

of effects frequently differed between traits (Figure 3.14). Associated variants with

FDR < 0.01 but not meeting genome-wide significance (p < 5 × 10−8) had smaller

absolute effect sizes but similar MAFs to those satisfying genome-wide significance

(median (IQR) OR = 1.07(1.06, 1.09) vs. 1.11(1.09, 1.13); median (IQR) MAF =

0.301(0.152, 0.397) vs. 0.306(0.184, 0.374)). These results indicate that remaining

regions associated with T1D may have increasingly smaller effect sizes (Figure 3.15),

requiring genome-wide coverage and larger sample sizes for detection.

One exception underscores the need for inclusion of understudied populations to

enhance biological insight, even with limited sample sizes. On chromosome 1p22.1

near the Metal Response Element Binding Transcription Factor 2 (MTF2 ) gene,

rs190514104 (G>A)) had a large effect on T1D risk (OR (95% CI) = 2.9(1.9− 4.5);

p = 6.6 × 10−7) in the AFR ancestry group. The minor allele (A) at rs190514104

(G>A) was common in the AFR ancestry group (> 1%) but rare in the others

(< 0.1%). Considering the limited sample size, potential heterogeneity of the AFR

cohort, and possible over-estimation of effect sizes due to “the winner’s curse,” this

association requires replication in an independent cohort. Nonetheless, this finding

suggests the potential value of considering alternative metrics for defining statistical

significance in genetic studies (Crouch et al. 2021).

Use of recessive and dominant models of inheritance identified 35 regions (25

dominant, 10 recessive) with a better fit than the additive model (lower AIC in

Europeans) at FDR < 0.01, including nine regions that did not reach FDR < 0.01
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under the additive model (Supplementary Table 9). Thus, a total of 152 regions were

associated with T1D at FDR < 0.01, 143 under an additive model and nine under

recessive or dominant models.
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Figure 3.14: Evidence supporting shared effects between T1D and 14 immune-related
diseases. 14 immune-related diseases are on the x-axis; T1D lead variants, and their
corresponding candidate genes, are indicated on the y-axis. A square indicates that
the corresponding disease has a genome-wide significant association in the region,
with a lead variant in moderate to high linkage disequilibrium (r2 > 0.5) with the
lead T1D variant from this study. The r2 between lead variants is provided within
the square. Red squares indicate concordant direction of effect. Blue squares indicate
discordant direction of effect. Grey squares indicate that summary statistics for T1D
association with the immune-related disease lead variant was not available from this
study.
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Figure 3.15: Top panel: Absolute odds ratios for the lead variant in each T1D-
associated region based on FDR < 0.01. Variants are coloured by minor allele fre-
quency (MAF) in the European ancestry collection (lighter blue corresponding to
higher MAF). Those to the left of the dashed line attained genome-wide significance
(p < 5 × 10−8). Bottom panel: Variance explained from logistic regression model
using EUR case-control data only, from left to right, cumulatively adding variants to
the logistic regression model; calculating the McFaddon’s r2 as a proxy for variance
explained.

3.3.4 Fine mapping reveals over a third of T1D loci contain

more than one independent association

To define the local architecture of T1D regions, we applied a Bayesian stochastic

search method (GUESSFM, Wallace et al. 2015) to the European ancestry case-

control data. Of 52 ImmunoChip regions (Supplementary Table 2) associated with

T1D, GUESSFM predicted 21 (40%) to contain more than one causal variant (Fig-
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ure 3.16a), compared to nine regions using stepwise conditional regression. In four

regions, the lead variant in the discovery analysis was not prioritized by fine map-

ping (posterior probability < 0.5): 2q33.2 (CTLA4 ), 4q27 (IL2 ), 14q32.2 (MEG3 )

and 21q22.3 (UBASH3A). In these regions, the lead variant likely tags two or more

T1D-associated haplotypes that can be identified using GUESSFM but not stepwise

logistic regression, a phenomenon observed previously (Wallace et al. 2015; Asimit et

al. 2019). For example, although stepwise regression analysis in the UBASH3A locus

supported a single causal variant (Supplementary Table 7), GUESSFM fine mapping

and haplotype analyses indicated that the lead variant in this region, rs11203203

(G>A), is unlikely to be causal. GUESSFM fine mapping supported a three-variant

model (rs9984852 (T>C), rs13048049 (G>A), and rs7276555 (T>C)) (Figure 3.16b),

which had a better fit than the single variant model (AIC 45073 vs. 45138, Figure

3.16c). Haplotype analysis demonstrated that when rs11203203 (G>A) is present

without the GUESSFM-prioritized variants, there is no effect of rs11203203 (G>A)

on T1D risk (Figure 3.16d). Resampling experiments consistently supported two or

more causal variants in the region, with at least one of the three GUESSFM-prioritized

variants more likely to be causal than rs11203203 (G>A) (Supplementary Table 10).

Given the complexity of association in the UBASH3A region, and likely at many loci,

statistical methods designed to use univariable summary statistics alone are not suf-

ficient to explore the genetic architecture of T1D. We provide the comprehensive list

of T1D credible variants and haplotype analyses for all 52 fine-mapped regions (Sup-

plementary Table 11, https://github.com/ccrobertson/t1d-immunochip-2020).

https://github.com/ccrobertson/t1d-immunochip-2020
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(rs9984852 (NC_000021.9:g.42408836T>C), rs13048049 (NC_
000021.9:g.42418534G>A) and rs7276555 (NC_000021.9:g.424
19803T>C); Fig. 1b), which had a better fit than the single vari-
ant model (AIC 45,073 versus 45,138; Fig. 1c). Haplotype analysis 
(Methods) demonstrated that when rs11203203:G>A is present 
without the GUESSFM-prioritized variants, there is no effect of 
rs11203203:G>A on T1D risk (Fig. 1d). Resampling experiments 
consistently supported two or more causal variants in the region, 
with at least one of the three GUESSFM-prioritized variants more 
likely to be causal than rs11203203:G>A (Supplementary Table 
10). Given the complexity of association in the UBASH3A region, 
and probably at many loci, statistical methods designed to use uni-
variable summary statistics alone are not sufficient to explore the 
genetic architecture of T1D. We have provided the comprehen-
sive list of T1D credible variants and haplotype analyses for all 52 
fine-mapped regions (Supplementary Table 11, https://github.com/
ccrobertson/t1d-immunochip-2020).

Differences in linkage disequilibrium (LD) between ancestry 
groups can be advantageous in prioritizing causal variants31. We 
performed multi-ancestry fine mapping using PAINTOR32 for the 
30 regions where analyses suggested a single causal variant. For 
eight regions, an associated variant (P < 5 × 10−4) was identified in 
more than one ancestry group: five with associations in EUR and 
FIN, and three with associations in EUR and AFR. In three regions, 
the number of variants prioritized was markedly reduced by includ-
ing multiple ancestry groups (Supplementary Table 12): 4p15.2 
(RBPJ; Fig. 2), 6q22.32 (CENPW; Extended Data Fig. 1) and 18q22.2 
(CD226; Extended Data Fig. 2). In the chromosome 4p15.2 (RBPJ) 
region, the credible set from EUR ancestry contained 24 variants. In 
contrast, using PAINTOR with EUR and AFR summary statistics, 
only five variants were prioritized with a posterior probability > 0.1 
(Fig. 2a). Among these prioritized variants, rs34185821 (NC_000
004.12:g.26083858A>G) and rs35944082 (NC_000004.12:g.2609
3692A>G), both located in the noncoding transcript LINC02357, 
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Fig. 1 | Fine mapping of T1D regions using a Bayesian stochastic search algorithm. a, Number of variants in GUESSFM-prioritized groups with group 
posterior probability!>!0.5. The candidate gene names and lead variants for each group are shown on the y axis. b, Manhattan plot of the UBASH3A region 
from the EUR case-control analysis highlighting the lead variant from the univariable analysis rs11203203:G>A (gray) and the three variants prioritized 
using GUESSFM—rs9984852:T>C (blue), rs13048049:G>A (red) and rs7276555:T>C (green). c, Comparison of model AIC in the UBASH3A region for 
models fit using EUR cases and controls only, comparing combinations of alleles prioritized either in univariable (gray) or GUESSFM analyses (red, green 
and blue). d, Analysis of haplotypes associated with T1D in the UBASH3A region. The most common haplotype (H1: T-G-G-T for rs7276555-rs130480
49-rs11203203-rs9984852) is presented on the far left; alternative haplotypes (H2–H6) are shown with white squares highlighting the differentiating 
alleles (C, A, A or C, respectively). The frequency and effect estimates for association with T1D relative to the baseline haplotype (H1) are shown above 
the grid (the point and error bars represent the log-transformed OR and 95% confidence interval of the log-transformed OR, respectively); for example, 
the log-transformed OR for T1D risk for haplotype H3 (T-G-A-T) relative to the baseline haplotype (H1) is close to zero and the 95% confidence interval 
crosses zero. Haplotype analyses were performed based on n!=!33,601 unrelated EUR individuals (13,458 T1D cases and 20,143 controls).
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Figure 3.16: Fine mapping of T1D regions using a Bayesian stochastic search algo-
rithm. a, Number of variants in GUESSFM-prioritized groups with group posterior
probability > 0.5. The candidate gene names and lead variants for each group are
shown on the y-axis. b, Manhattan plot of the UBASH3A region from the EUR case-
control analysis highlighting the lead variant from the univariable analysis rs11203203
(G>A) (gray) and the three variants prioritized using GUESSFM - rs9984852 (T>C)
(blue), rs13048049 (G>A) (red) and rs7276555 (T>C) (green). c, Comparison of
model AIC in the UBASH3A region for models fit using EUR cases and controls
only, comparing combinations of alleles prioritized either in univariable (gray) or
GUESSFM analyses (red, green and blue). d, Analysis of haplotypes associated with
T1D in the UBASH3A region. The most common haplotype (H1: T-G-G-T for
rs7276555-rs13048049-rs11203203-rs9984852) is presented on the far left; alternative
haplotypes (H2-H6) are shown with white squares highlighting the differentiating al-
leles (C, A, A or C, respectively). The frequency and effect estimates for association
with T1D relative to the baseline haplotype (H1) are shown above the grid (the point
and error bars represent the log-transformed OR and 95% confidence interval of the
log-transformed OR, respectively); for example, the log-transformed OR for T1D risk
for haplotype H3 (T-G-A-T) relative to the baseline haplotype (H1) is close to zero
and the 95% confidence interval crosses zero. Haplotype analyses were performed
based on n = 33, 601 unrelated EUR individuals (13,458 T1D cases and 20,143 con-
trols).

3.3.5 Multi-ethnic fine mapping further refines credible sets

in 4p15.2, 6q22.32 and 18q22.2

Differences in linkage disequilibrium between ancestry groups can be advantageous

in prioritizing causal variants (Wojcik et al. 2019a). In the 30 regions where anal-

ysis suggested a single causal variant, we performed multi-ethnic fine-mapping us-

ing PAINTOR (Kichaev and Pasaniuc 2015). Eight regions identified an associated

variant (p < 5 × 10−4) in more than one ancestry group: five with associations in

EUR and FIN, and three with associations in EUR and AFR. In three regions, the

number of variants prioritized was markedly reduced by including multiple ancestry

groups: 4p15.2 (RBPJ ), 6q22.32 (CENPW ) and 18q22.2 (CD226 ) (Figures 3.17a,

3.18, and 3.19, and Supplementary Table 12). In the chromosome 4p15.2 (RBPJ )

region, the credible set from EUR ancestry contained 24 variants. In contrast, using
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PAINTOR with EUR and AFR summary statistics, only five variants were prioritized

with a posterior probability > 0.1 (Figure 3.17a). Among these prioritized variants,

rs34185821 (A>G) and rs35944082 (A>G), both located in the non-coding transcript

LINC02357, have the potential to disrupt multiple transcription factor binding mo-

tifs (Boyle et al. 2012). rs35944082 (A>G) also overlaps open chromatin in multiple

adaptive immune cell types (Figure 3.17b) and resides in a FANTOM enhancer site

(Lizio et al. 2015). Further, rs34185821 (A>G) is one of three prioritized variants

flanking an activation-dependent Assay for Transposase-Accessible Chromatin using

sequencing (ATAC-seq) peak in lymphocytes and a stable response element in human

islets35, with potential to perturb an extended TATA box motif (Ward and Kellis

2016).



109

ARTICLES NATURE GENETICS

have the potential to disrupt multiple transcription-factor binding 
motifs33. The rs35944082:A>G variant also overlaps open chroma-
tin in multiple adaptive immune-cell types (Fig. 2b) and resides in 
a FANTOM enhancer site34. Furthermore, rs34185821:A>G is one 
of three prioritized variants flanking an activation-dependent assay 
for transposase-accessible chromatin using sequencing (ATAC-seq) 
peak in lymphocytes and a stable response element in human islets35, 
with potential to perturb an extended TATA-box motif36.

T1D-associated protein-altering variants. Only 34/2,732 
(1.2%) credible variants (group posterior probability > 0.5) 
were protein-altering (nonsynonymous, frameshift, stop-gain 
or splice-altering) with 12 providing support for a role in T1D 
(Methods and Supplementary Table 13). We identified several pre-
viously unreported protein-altering variants as highly prioritized 
in the T1D credible sets (posterior probability > 0.1): a protective 
missense variant in UBASH3A (rs13048049:G>A, NP_061834.1:p.
Arg324Gln; OR = 0.84 and EUR allele frequency (AFEUR) = 0.051), 
two low-frequency splice donor variants in IFIH1 (rs35732034, 
NC_000002.12:g.162268086C>T; OR = 0.63 and AFEUR = 0.0089; 
and rs35337543, NC_000002.12:g.162279995C>G; OR = 0.61 
and AFEUR = 0.0099) and a missense variant in CTLA4 (rs231775, 

NC_000002.12:g.203867991A>G, NP_001032720.1:p.Thr17Ala; 
OR = 1.20 and AFEUR = 0.36).

T1D credible variants are overrepresented in the accessible chro-
matin of T and B cells. ATAC-seq offers a high-resolution map of 
accessible chromatin with potential regulatory function37. Using 
publicly available38–40 and newly generated ATAC-seq data from 
healthy donors, we assessed the enrichment (Methods) of 2,431 
T1D credible variants (group posterior probability > 0.8) in acces-
sible chromatin across diverse immune and non-immune-cell types 
(including 25 primary immune-cell types, pancreatic islets and, as 
control cell types unlikely to be central to T1D etiology, fetal and 
adult cardiac fibroblasts). T1D credible variants were enriched 
in the open chromatin of multiple primary immune-cell types—
according to two complementary enrichment analysis approaches 
(Methods and Supplementary Fig. 9)—with strong enrichment 
observed in stimulated CD4+ effector T cells (Supplementary Fig. 
9b). There was no enrichment in pancreatic islets (P = 0.14), the pri-
mary target of autoimmunity in T1D—even after exposure to pro-
inflammatory cytokines (P = 0.05)—or cardiac fibroblasts (P > 0.60; 
Supplementary Fig. 9). We also examined enrichment for T1D 
credible variants in condition-specific accessible chromatin and 
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Fig. 2 | Fine mapping of the chromosome 4p15.2 region. a, Association z-score statistics for the EUR (top) and AFR (middle) ancestry groups; posterior 
probabilities (bottom) from multi-ancestry fine mapping of the EUR and AFR groups using PAINTOR. The z-scores are colored according to the LD value to 
the lead PAINTOR-prioritized variant. b, Overlay of T1D credible variants with open chromatin ATAC-seq peaks in immune cells, with the variants prioritized 
by PAINTOR (posterior probability!>!0.1) indicated with blue dashed lines. The normalized ATAC-seq read count is shown for stimulated and unstimulated 
CD4+ T cells, CD8+ T cells and B cells.
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Figure 3.17: Fine mapping of the chromosome 4p15.2 region. a, Association z-score
statistics for the EUR (top) and AFR (middle) ancestry groups; posterior probabil-
ities (bottom) from multi-ancestry fine mapping of the EUR and AFR groups using
PAINTOR. The z-scores are colored according to the linkage disequilibrium value
to the lead PAINTOR-prioritized variant. b, Overlay of T1D credible variants with
open chromatin ATAC-seq peaks in immune cells, with the variants prioritized by
PAINTOR (posterior probability > 0.1) indicated with blue dashed lines. The nor-
malized ATAC-seq read count is shown for stimulated and unstimulated CD4+ T
cells, CD8+ T cells and B cells.
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Figure 3.18: Fine mapping of the chromosome 6q22.32 region. European (EUR, top
panel) and African (AFR, middle panel) ancestry group association z-score statistics
and posterior probabilities (bottom panel) from multi-ethnic fine mapping of EUR
and AFR using PAINTOR. z-scores are colored by linkage disequilibrium (LD) to the
lead PAINTOR-prioritized variant.
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Figure 3.19: Fine mapping of the chromosome 18q22.2 region. European (EUR, top
panel) and African (AFR, middle panel) ancestry group association z-score statistics
and posterior probabilities (bottom panel) from multi-ethnic fine mapping of EUR
and AFR using PAINTOR. z-scores are colored by linkage disequilibrium (LD) to the
lead PAINTOR-prioritized variant.
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3.3.6 T1D-associated protein-altering variants

Only 34 of 2,732 (1.2%) credible variants (group posterior probability > 0.5) were

protein-altering (nonsynonymous, frameshift, stop-gain, or splice-altering) with 12

having support for a role in T1D (Supplementary Table 13). We identified several

previously unreported protein-altering variants as highly prioritized in T1D credi-

ble sets (posterior probability > 0.1): a protective missense variant in UBASH3A,

rs13048049 (G>A) (p.Arg324Gln; OR = 0.84; AFEUR = 0.051); two low-frequency

splice donor variants in IFIH1, rs35732034 (C>T); (OR = 0.63; AFEUR = 0.0089)

and rs35337543 (C>G) (OR = 0.61; AFEUR = 0.0099); and a missense variant in

CTLA4, rs231775 (A>G) (p.Thr17Ala; OR = 1.20; AFEUR = 0.36).

3.4 Discussion

In the largest genetic analysis of T1D to date, we identified 36 novel regions at

genome-wide significance and implicated a total of 152 regions outside the MHC in

T1D susceptibility at FDR < 0.01. We refined the set of putative causal variants and

number of independent associations in many T1D regions through increased sample

size, dense genotyping and imputation, inclusion of diverse ancestry groups, and

optimized analytical approaches to fine mapping.

Existing models of the genetic basis of complex traits suggest that disease-associated

genetic variation tends to follow a predictable pattern, where common variants have

small effects on disease risk, while variants with more potent effects are less common

due to selective pressures (Figure 3.20).
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family studies, and can be expected to vary across environments.
Narrow-sense heritability estimates in humans can be inflated if
family resemblance is influenced by non-additive genetic effects
(dominance and epistasis, or gene–gene interaction), shared familial
environments, and by correlations or interactions among genotypes
and environment36,37. However, heritabilities estimated from pedi-
gree studies in animals agree well with heritability estimated from
response to artificial selection, suggesting that estimates from family
studies are not necessarily inflated.

Teasing apart the contributions to heritability of environmental
factors shared among relatives will soon be possible because the
availability of genome-wide markers now provides empirical esti-
mates of identity-by-descent (IBD) allele sharing between pairs of rela-
tives. For example, full sibs share on average half their genetic com-
plement, but this proportion can vary—in one large study it ranged
from 0.37 to 0.62 (ref. 38). By relating phenotypic differences to the
observed IBD sharing fraction among sib pairs, marker data were used
to generate a heritability estimate of 0.8 for height38. This is remarkably
consistent with estimates using traditional methods but free of their
assumptions, suggesting that for height at least, heritability is not over-
estimated. Applying such estimation to distantly related or ‘unrelated’
individuals is now feasible using dense genomic scans39; given the num-
berof peoplewithdensegenotypingdata,heritability estimates couldbe
generated for a wide variety of traits free of potential confounding by
unmeasured shared environment.

Improving estimates of all contributors to heritability will facilitate
determination of the proportion of genetic variance that has been
explained. Despite imprecision in current estimates, it may still be
possible to know that ‘all the heritability’ has been explained by pre-
dicting phenotypes in a new set of individuals from trait-associated
markers, and correlating the predicted phenotypes with the actual
values. If the markers truly explain all the additive genetic variance,
the squared correlation between predicted and actual phenotype will
be equal to the heritability40. Population-based heritability estimates
thus provide a valuable metric for completeness of available genetic
risk information, but individualized disease prevention and treatment
will ultimately require identifying the variants accounting for risk in a
given individual rather than on a population basis.

Rare variants and unexplained heritability
Much of the speculation about missing heritability from GWAS has
focused on the possible contribution of variants of low minor allele
frequency (MAF), defined here as roughly 0.5%,MAF, 5%, or of
rare variants (MAF, 0.5%). Such variants are not sufficiently fre-
quent to be captured by current GWA genotyping arrays14,41, nor do
they carry sufficiently large effect sizes to be detected by classical
linkage analysis in family studies (Fig. 1). Once MAF falls below
0.5%, detection of associations becomes unlikely unless effect sizes
are very large, as in monogenic conditions. For modest effect sizes,
association testingmay require composite tests of overall ‘mutational
load’, comparing frequencies of mutations of potentially similar
functional effect in cases and controls.

Low frequency variants could have substantial effect sizes (increas-
ing disease risk two- to threefold) without demonstrating clear
Mendelian segregation, and could contribute substantially to missing
heritability42. For example, 20 variants with risk allele frequency of 1%
and allelic odds ratio (or probability of an event occurring divided by
the probability of it not occurring, compared in people with versus
without the risk allele) of three would account for most familial
aggregation of type 2 diabetes. There are relatively few examples of
such variants contributing to complex traits, possibly owing to insuf-
ficiently large sample sizes or insufficiently comprehensive arrays.

The primary technology for the detection of rare SNPs is sequen-
cing, which may target regions of interest, or may examine the whole
genome. ‘Next-generation’ sequencing technologies, which process
millions of sequence reads in parallel, provide monumental increases
in speed and volume of generated data free of the cloning biases and

arduous sample preparation characteristic of capillary sequencing43.
Detection of associations with low frequency and rare variants will be
facilitated by the comprehensive catalogue of variants with
MAF$ 1% being generated by the 1,000 Genomes Project (http://
www.1000genomes.org/page.php), which will also identify many
variants at lower allele frequencies. The pilot effort of that program
has already identifiedmore than 11million new SNPs in initially low-
depth coverage of 172 individuals44.

Current mechanisms for using sequencing to identify rare variants
underlying or co-located with GWA-defined associations include
sequencing in genomic regions defined by strong and repeatedly repli-
cated associations with common variants, and sequencing a larger frac-
tion of the genome in people with extreme phenotypes. In the absence
of GWA-defined signals, sequencing candidate genes in subjects at the
extremes of a quantitative trait (such as lipid levels or the age at onset),
can identify other associated variants, both common and rare45,46. An
important finding from these studies is thatmuch of the information is
providedbypeople at the extremesof trait distributions,who seemtobe
more likely to carry loss-of-function alleles47.

Sample sizes used for the initial identification of DNA sequence
variants have generally been modest, and sample size requirements
increase essentially linearly with 1/MAF. Much larger samples are
needed for the identification of associations with variants than those
needed for the detection of the variants themselves. They also scale
roughly linearly with 1/MAF given a fixed odds ratio and fixed degree
of linkage disequilibrium with genotyped markers. Sample size for
association detection also scales approximately quadratically with
1/j(OR2 1)j, and thus increases sharply as the odds ratio (OR)
declines. Sample size is even more strongly affected by small odds
ratios than by small MAF, so low frequency and rare variants will
need to have higher odds ratios to be detected.

Complicating matters further, numerous rare variants may be
detected in a gene or region but they may have disparate effects on
phenotype. Common variants have typically been analysed individu-
ally23,48, but with one or two carriers of each rare variant, pooling
them using specific criteria becomes attractive47,49,50. Pooling variants
of similar class increases the effectiveMAFof the class and reduces the
number of tests performed, but raises several other questions (Box 1).

Determining which of the multitude of variants carried by an
individual are responsible for a given phenotype represents a massive
task, especially if the causal alleles are relatively anonymous in terms
of known functional consequences. Because only a small proportion
will have obvious functional consequences for the resultant protein,
lesser evidence of association may suffice to implicate variants of this
sort. The best approaches for combining functional credibility and
statistical support in the evaluation of such variants remain to be
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Figure 1 | Feasibility of identifying genetic variants by risk allele frequency
and strength of genetic effect (odds ratio). Most emphasis and interest lies
in identifying associations with characteristics shownwithin diagonal dotted
lines. Adapted from ref. 42.
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Figure 3.20: Feasibility of identifying genetic variants by risk allele frequency (x-axis)
and strength of genetic effect (y-axis, odds ratio). Figure and caption from Manolio
et al. 2009.

With some notable exceptions, including genetic variation in the HLA and insulin

regions, genetic associations with T1D are largely consistent with this model (Figure

3.21). In novel regions (red points in Figure 3.21), lead variants were typically com-

mon alleles with modest effects on disease risk. Since the vast majority of common

variants in one ancestry group are also present at some frequency in all continental

ancestry groups (1000 Genomes Project Consortium 2015), it is unlikely that there

remain unidentified common variants with large effect on T1D risk. However, there

may still be many low-frequency or rare variants with large effects on T1D risk, par-

ticularly in non-European ancestry populations. This possibility was underscored by

the association results from our analysis of only 1,045 African-ancestry T1D cases

(Figure 3.22), where a novel risk variant, rs190514104 (G>A) near MTF2, had an

unusually large effect on T1D risk (OR= 2.9). The effect size in this locus is likely

overestimated due to winner’s curse, especially since the sample size remains small.

We also acknowledge the possibility that association is confounded by admixture due

to the heterogeneity of AFR subjects. Nonetheless, this finding highlights the po-
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tential value of focusing future T1D genetic studies in previously underrepresented

populations.
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Figure 3.21: European-ancestry allele frequency and effect size distribution for vari-
ants associated with type 1 diabetes (T1D). Each point represents a lead variant
from one of the 152 T1D-associated regions from our meta-analysis. Variants are
positioned according to their absolute effect size (y-axis = log(OR)) and minor allele
frequency (x-axis) in the EUR case-control analysis. red, associated with T1D at
genome-wide significance (p < 5x10−8) for the first time; light-red, associated with
T1D at FDR< 0.01 but not p < 5x10−8; black, previously associated with T1D at
genome-wide significance.
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Figure 3.22: African-ancestry allele frequency and effect size distribution for variants
associated with type 1 diabetes (T1D). Each point represents a lead variant from one
of the 152 T1D-associated regions from our meta-analysis. Variants are positioned
according to their absolute effect size (y-axis = log(OR)) and minor allele frequency
(x-axis) in the AFR case-control analysis. red, associated with T1D at genome-
wide significance (p < 5x10−8) for the first time; light-red, associated with T1D at
FDR< 0.01 but not p < 5x10−8; black, previously associated with T1D at genome-
wide significance.

Considering genetic variants on the ImmunoChip are restricted to regions that

cover less than 5% of the genome, it is impressive that 152 regions in this analysis show

evidence of association with T1D risk. This reflects the extensive pleiotropy between

immune-mediated diseases, and in particular, the shared genetic basis of T1D and
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other seropositive autoimmune diseases. Interestingly, in some regions with evidence

for shared causal variants between T1D and other immune-mediated diseases, alleles

protective against T1D may increase risk of another disease (or the other way around,

Figure 3.14). This occurred most frequently with Crohn’s disease. Out of nineteen re-

gions where evidence supported a common causal variant in T1D and Crohn’s disease,

nine (47%) had discordant direction of effect (lead variants near PTPN22, NOTCH2,

FCMR, PTGER3, TAGAP, SKAP2, IL2RA, IL27, ASCC2 /LIF ). In contrast, for

rheumatoid arthritis, all ten regions sharing a likely causal variant with T1D had

concordant directions of effect (lead variants near PTPN22, STAT4, CTLA4, RBPJ,

ANKRD55, TNFAIP3, TRAF1, FADS2, SH3B3, CD226 ). Functional enrichment

analyses have shown substantial enrichment of Crohn’s disease-associated variants

in myeloid-specific accessible chromatin regions, while variants associated with T1D,

and other seropositive autoimmune diseases, primarily show enrichment in lymphoid-

specific accessible regions (Chiou et al. 2021). Thus, pleiotropic variants with discor-

dant effects on T1D and Crohn’s disease may influence the balance or interactions

between myeloid- and lymphoid-mediated immune responses.

Fine-mapping revealed that over a third of T1D-associated regions have multiple

causal variants, including several regions harboring established immune regulators

(e.g., IL10, IFIH1, CTLA4, CCR5, IL2, IL2RA, TYK2, and UBASH3A). This trend

of allelic heterogeneity located near immune regulatory factors raises the possibility

that a substantial portion of T1D risk may be mediated by the constellation of variants

and haplotypes shaping expression of these genes, which converge on a common set

of immune regulatory pathways.

One limitation of this study is that genotyping was restricted to ImmunoChip

content, which provides dense coverage in 188 immune-relevant genomic regions, as

defined by previous largely EUR ancestry-based GWAS of immune-related traits.

This design restricts the scope of discovery and fine mapping, and generalizability
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of subsequent functional enrichment analyses. Although this analysis is the largest

and most comprehensive study of T1D genetics, extension of future genetic studies to

genome-wide analyses (Crouch et al. 2021; Chiou et al. 2021) and continuing efforts

to expand cohorts from diverse populations will further define the genetic landscape

of T1D.
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Chapter 4

Functional prioritization of type 1

diabetes-associated variants with

chromatin accessibility profiles

This chapter is adapted from:

Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, Chen WM, Flores

Santa Cruz D, Yang H, Cutler AJ, Crouch DJM, Farber E, Bridges SL

Jr., Edberg JC, Kimberly RP, Buckner JH, Deloukas P, Divers J, Dabelea

D, Lawrence JM, Marcovina S, Shah AS, Greenbaum CJ, Atkinson MA,

Gregersen PK, Oksenberg JR, Pociot F, Rewers MJ, Steck AK, Dunger

DB; Type 1 Diabetes Genetics Consortium; Wicker LS, Concannon P,

Todd JA, and Rich SS. Fine-mapping, trans-ancestral and genomic anal-

yses identify causal variants, cells, genes and drug targets for type 1 dia-

betes. Nature Genetics. 2021 Jun 14:1-0.

Supplementary tables referenced in this chapter can be obtained at: https://

doi.org/10.1038/s41588-021-00880-5.

https://doi.org/10.1038/s41588-021-00880-5
https://doi.org/10.1038/s41588-021-00880-5
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4.1 Background

4.1.1 Genome regulation and chromatin accessibility

Only about 1% of the human genome encodes proteins. Much of the remaining non-

coding sequence is involved in regulating expression of genes in different contexts (e.g.,

developmental timepoints, cell types, or in response to stimuli). Understanding the

precise mechanisms by which non-coding sequences regulate gene expression remains

a major challenge. Several genome-wide approaches can be used to measure molecular

features that correlate with regulatory function (Section 1.2.4). Integration of these

diverse approaches has provided catalogues of regulatory regions (e.g., enhancers,

promoters, silencers, and insulators) across human tissues and cell types (Kundaje

et al. 2015; Moore et al. 2020).

In general, DNA regulatory elements regulate gene expression by recruiting tran-

scription factors that bind specific DNA sequences, which tends to cause increased

chromatin accessibility at those sites. Additionally, these sequence-specific binding

events can lead to recruitment of additional proteins that remodel the surrounding

chromatin leaving it more accessible for subsequent binding events (Allis and Jenuwein

2016). Therefore, one approach to assess the regulatory function of a genomic region

is to determine the degree to which chromatin at that location is physically accessible.

Chromatin accessibility is determined by nucleosome occupancy and the dynamics of

other chromatin-associated proteins, such as transcription factors and proteins that

direct chromatin organization (Klemm, Shipony, and Greenleaf 2019). Measures of

chromatin accessibility can be interpreted primarily as evidence for displacement of

nucleosomes by transcription factors (Figure 4.1, Thurman et al. 2012).
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advances in population- scale and single- cell measure-
ments of chromatin accessibility, describe the principal 
biophysical determinants of accessibility and discuss 
the role of TFs in regulating accessibility at the nucleo-
some length scale. We conclude by briefly discussing the 
functional consequences of chromatin accessibility and 
potential directions for future research.

Measuring chromatin accessibility
Chromatin accessibility is almost universally measured 
by quantifying the susceptibility of chromatin to either 
enzymatic methylation or cleavage of its constituent 
DNA (FIG. 2). In principle, measurements of chromatin 
accessibility are dependent on the molecule for which 
access is being interrogated; however, remarkable con-
servation of accessibility has been reported across a 
diverse range of molecular probes29. In 1973, Hewish 
and colleagues used DNA endonucleases to fragment 
chromatin, showing that nucleosomes confer periodic 
hypersensitivity across the genome36. This periodicity 
was probed with Southern blot hybridization, show-
ing a canonical 100–200 bp phasing pattern among 
DNase hypersensitivity sites (DHSs) that is conserved 
across genomic loci. This and subsequent work37,38 
provided the earliest direct evidence for stereotypical 
nucleosome phasing. Similar techniques were used to 
link chromatin remodelling with contemporaneous 
transcriptional activation of the heat shock locus in 
Drosophila melanogaster39. Following the introduction 
of PCR in 1985 (REF.40), a variety of quantitative methods 
(described below) have been developed to measure site- 
specific chromatin accessibility using endonucleases and 
ligation- mediated PCR41,42.

DNase- seq. Genome- scale measurements of open 
chromatin were first reported in 2006 in a pair of stud-
ies that hybridized DNase I- cleaved fragments isolated 
from native chromatin onto tiled microarrays spanning 
1% of the human genome43,44. Similar workflows were 
then adapted to quantify the relative abundance of 

DNase- sensitive chromatin across the genome using 
short- read sequencing (DNase I hypersensitive site 
sequencing (DNase- seq))45,46 (FIG. 2a). Boyle et al.45 used 
a type II restriction enzyme to isolate and subsequently 
barcode each DNase cut site (single cut), whereas 
Hesselberth et al.46 applied strict size selection to enrich 
for sequenceable fragments arising from paired cleav-
age events within DHSs (double cut) (FIG. 2a). Although 
there is broad agreement between these sequencing 
approaches, the Boyle protocol may identify more 
accessible locations, whereas the Hesselberth protocol 
provides a simplified workflow and captures fewer frag-
ments that originate within broadly inaccessible chro-
matin (a higher signal- to-noise ratio). Collectively, these 
genome- scale chromatin accessibility measurements 
show that a minority of DHSs is found within promot-
ers and transcription start site (TSS)-proximal regions, 
with over 80% of accessible regions resident within  
distal enhancers13,43,45–47.

ATAC-seq. Assay for transposase- accessible chroma-
tin using sequencing (ATAC- seq) uses a hyperactive 
Tn5 transposase to insert Illumina sequencing adap-
tors into accessible chromatin regions (FIG. 2b). Similar 
to double- cut DNase- seq protocols13,25,47, ATAC- seq 
selectively amplifies proximal double- cleavage events 
in accessible chromatin. ATAC- seq measurements of 
accessibility are highly correlated with both double- cut 
(r > 0.8) and single- cut (r > 0.75) DNase- seq assays29,33, 
although higher- resolution analyses — such as for 
TF footprinting48,49 — can reveal differences in sequence 
bias. Owing to the high efficiency of Tn5-mediated 
adaptor ligation, highly complex ATAC- seq librar-
ies have been generated with as few as 500 cells 29,33. 
Variations of the ATAC- seq method have recently been 
described, including a report by Sos et al.50 demonstrat-
ing library construction using in vitro transcription 
from single transpositional events. ATAC- seq has been 
widely adopted in part because it robustly identifies 
accessible chromatin, is straightforward and rapidly 
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Fig. 1 | A continuum of accessibility states broadly reflects the distribution of chromatin dynamics across the 
genome. In contrast to closed chromatin, permissive chromatin is sufficiently dynamic for transcription factors to initiate 
sequence- specific accessibility remodelling and establish an open chromatin conformation (illustrated here for an active 
gene locus). Pol II, RNA polymerase II; TF, transcription factor.

Nucleosome occupancy
The fraction of time that a 
particular sequence of DNA is 
bound by the core histone 
octamer.

Epigenetic canalization
A set of persistent epigenetic 
features (alternatively, the 
process of establishing this 
feature set) that molecularly 
defines a cell type and 
comprises a continuum of 
cellular states including cell 
cycle phases and activation 
states.

TF footprinting
High- resolution analysis of 
chromatin accessibility data to 
identify a local accessibility 
signature in the neighbourhood 
of putative binding sites for a 
particular transcription factor 
(TF). This signature reflects the 
size and binding mechanism, 
as well as other biophysical 
properties, of a TF.
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Figure 4.1: A continuum of accessibility states broadly reflects the distribution of
chromatin dynamics across the genome. In contrast to closed chromatin, permissive
chromatin is sufficiently dynamic for transcription factors to initiate sequence-specific
accessibility remodelling and establish an open chromatin conformation (illustrated
here for an active gene locus). Pol II, RNA polymerase II; TF, transcription factor.
Figure and caption obtained from Klemm, Shipony, and Greenleaf 2019.

There are several well-established methods that are commonly used to profile chro-

matin accessibility genome-wide (Boyle et al. 2008; Schones et al. 2008; Buenrostro et

al. 2013). Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq)

uses a hyperactive Tn5 transposase to cleave and ligate high throughput sequencing

adapters to exposed chromatin (Figure 4.2). ATAC-seq is a popular approach for

studying chromatin accessibility in patient samples because it requires relatively few

cells per experiment compared to other approaches.
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Fig. 2 | Principal methods for measuring chromatin accessibility. a | DNase I hypersensitive site sequencing (DNase-seq) 
uses the endonuclease DNase to cleave DNA within accessible chromatin. Endonuclease cleavage is greatly attenuated at 
protein- bound loci (the red crosses denote cleavage blockade). Accessible library fragments are generated by barcoding 
each cleavage site independently after restriction digest (single cut) or as proximal cleavage pairs (double cut). b | Assay for 
transposase- accessible chromatin using sequencing (ATAC- seq) uses a hyperactive transposase (Tn5) to simultaneously 
cleave and ligate adaptors to accessible DNA. c | Micrococcal nuclease sequencing (MNase- seq) uses the endonuclease/
exonuclease MNase to both cleave and eliminate accessible DNA. The sensitivity to MNase digestion can be used to 
quantify chromatin accessibility in the MNase accessibility sequencing (MACC- seq) method. d | Nucleosome occupancy 
and methylome sequencing (NOMe- seq) uses a GpC methyltransferase to methylate accessible DNA. DNA sequencing 
following bisulfite conversion of nonmethylated cytosine to uracil nucleotides provides a single- molecule measure 
of accessibility. TF, transcription factor.
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Figure 4.2: Assay for transposase-accessible chromatin using sequencing (ATAC-seq)
uses a hyperactive transposase (Tn5) to simultaneously cleave and ligate adaptors to
accessible DNA. Figure and caption adapted from Klemm, Shipony, and Greenleaf
2019.

4.1.2 Molecular quantitative trait loci

Mapping molecular quantitative trait loci (QTL) is an approach to identify genetic

variants with regulatory function (Figure 4.3). To generate QTL maps, molecular

traits (e.g., gene expression, DNA methylation, metabolite, or protein levels) and

genetic variation (e.g., genotypes from a DNA microarray) are measured across many

individuals (typically hundreds). Using these data, relationships between genetic

variation and molecular traits can be systematically explored. QTL mapping can

be performed for any molecular trait that can be robustly quantified in hundreds of

individuals, including gene expression (“eQTLs”), RNA splicing (“sQTLs”), DNA
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methylation (“mQTLs”), chromatin acetylation (“acQTLs”) and chromatin acces-

sibility (“caQTLs”). Genetic variants can influence nearby (cis-QTLs) or distant

(trans-QTLs) molecular traits.

Large-scale efforts to map molecular effects of genetic variation have demonstrated

that molecular QTLs are abundant. For example, the Genotype-Tissue Expression

(GTEx) project, a large collaborative effort to map eQTLs across diverse human

tissues, found a cis-eQTL in at least one tissue for 94.7% of protein-coding genes

(GTEx Consortium 2020). Another study, which generated data on RNA expression,

DNA methylation, H3K4me1 and H3K27ac in diverse immune cell types, found that,

within a purified cell type, genetic variation accounts for the majority of gene expres-

sion variance across individuals (Chen et al. 2016). Analyses from GTEx suggest that

QTLs tend to act either within a narrow tissue context or broadly across all tissues

(GTEx Consortium 2020).

Figure 4.3: An example of a chromatin accessibility quantitative trait locus (caQTL),
where the A allele at rs72928038 is associated with decreased chromatin accessibility
in the genomic interval chr6:90266766-90267747. The x-axis indicates genotypes at
the SNP rs72928038. The y-axis indicates the accessibility of chromatin.
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4.1.3 Interpreting genetic association results using functional

genomics

Unlike genetic variants causing rare Mendelian diseases, which tend to disrupt protein-

coding sequences, the majority of genetic variants associated with common complex

diseases are in non-coding regions of the genome, which obscures the causal genes and

mechanisms underlying their association (Maurano et al. 2012). Functional genomics

tools can help to interpret results from genetic association studies in several ways

(Cano-Gamez and Trynka 2020).

First, maps of regulatory elements can be used to identify disease-relevant cell

types. Efforts such as the ENCODE (Moore et al. 2020) and Roadmap Epigenomics

(Kundaje et al. 2015) projects have provided epigenetic maps for most major cell

lineages in the human body. These data sets can be used to obtain an unbiased

estimation of the relative contribution of major cell types and organ systems to a

given disease. Specifically, for each cell type, the genome can be annotated according

to regulatory features and segmented into discrete intervals of differing states (e.g.,

open/closed chromatin, or inferred chromatin states (Ernst and Kellis 2017)). Then,

one can determine whether disease-associated genetic variants are preferentially over-

lapping a particular regulatory feature compared to random distribution across the

genome. These and other analyses have shown that variants identified in genetic

association studies are preferentially located in accessible chromatin (Maurano et al.

2012). Furthermore, genetic variants associated with a particular disease are enriched

in regulatory regions from cell types important to the underlying disease process. For

example, genetic variants associated with autoimmune diseases are enriched in im-

mune cell enhancers (Farh et al. 2015; Onengut-Gumuscu et al. 2015). In some

instances, these analyses have implicated less obvious cell types in disease etiology.

Functional enrichment analysis of BMI-associated genetic variants have implicated

cell types from the central nervous system (Loos 2018).
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Second, molecular QTLs can be used to prioritize disease-associated variants with

the potential to affect gene regulation. When a disease-associated variant influences

a proximal molecular trait (i.e., when a disease variant is also a QTL), hypotheses

focused on regulatory mechanisms underlying the association with disease can be ex-

amined in more detail. However, there are important statistical considerations when

integrating genetic association results with molecular QTLs. In particular, due to

the frequency of genetic variants influencing molecular traits and extensive linkage

disequilibrium in human populations, most genetic variants are associated with ex-

pression of at least one nearby trait in some tissue, but in most cases this is due to

linkage disequilibrium, not causal biology (Liu et al. 2019). To avoid false inference of

causal molecular traits (e.g., genes or regulatory elements) mediating variant-disease

association, statistical “co-localization” methods can be used to formally estimated

the probability that a variant is causally related to both disease and a molecular trait

(Figure 4.4).
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Figure 4.4: An example region showing association patterns under different hypothe-
ses. In this example, there are 8 variants in the region and two traits of interest,
a biomarker (blue) and expression of an arbitrary gene (red). For each trait, the
hypothesis is represented by a binary vector. The value of 1 means that the variant
is causally involved in disease, 0 means that it is not. Under H1 and H2, only one
dataset shows an association. Under H3, the causal SNP is different for the biomarker
dataset compared to the expression dataset. Under H4, there is a single causal vari-
ant underlying both the biomarker association and the eQTL. Figure adapted from
Giambartolomei et al. 2014.

4.1.4 Motivation

Genetic screening and autoantibody surveillance can detect islet autoimmunity before

overt progression to T1D (Sharp et al. 2019; Krischer et al. 2019; Onengut-Gumuscu

et al. 2019), providing an opportunity for prevention. Multiple immune therapies have
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been explored in clinical trials (Skyler 2018). Recently, a 14-day course of teplizumab,

an anti-CD3 monoclonal antibody, delayed T1D in high genetic-risk individuals by a

median of two years (Herold et al. 2019). This success shows that appropriately timed

immune-modulating therapy can alter the autoimmune process preceding disease on-

set. Defining the genetic variants contributing to T1D risk and how they disrupt

immune pathways may lead to more precise therapeutic targets, better characteriza-

tion of their role in disease initiation and progression, and improved opportunities for

safe and effective intervention and, ultimately, prevention of T1D (King, Davis, and

Degner 2019; Nelson et al. 2015).

About half of T1D risk is genetic, with the other half driven by non-genetic factors

that remain poorly defined. While many genetic risk loci have now been identified

from GWAS and refined with fine mapping, the specific causal variants and their

mechanisms of action for most T1D loci remain unknown. We showed previously that

T1D credible variants are most strongly enriched in lymphocyte and thymic enhancers

(Onengut-Gumuscu et al. 2015). Yet, resolving causal variants, mapping them to

genes, and determining causal mechanisms remains a challenge. The first step in to

address this challenge is to generate specific hypotheses about molecular effects of T1D

variants. Here, we use chromatin accessibility quantitative trait loci (caQTLs) from

CD4+ T cells to prioritize credible variants for interrogation of molecular mechanisms

underlying T1D association. We present a compelling hypothesis of genetic regulatory

mechanism in the T1D locus encoding the transcription factor, BACH2. Finally, by

integrating implicated cis-mechanisms (i.e., eQTL genes for T1D credible variants)

with immune protein-protein interaction networks, we identify existing therapeutic

drugs targeting T1D candidate genes and networks.
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4.2 Methods

4.2.1 Generating representative cell-type- and condition-specific

chromatin-accessibility profiles

Publicly available ATAC-seq data were obtained for diverse immune-cell types (Calderon

et al. 2019), pancreatic islets (Varshney et al. 2017; Ramos-rodŕıguez et al. 2019) and

cardiac fibroblasts (Jonsson et al. 2016).

We generated ATAC-seq data on CD4+ T cells (n = 6 donors) and CD19+ B cells

(n = 4 donors) cells under different culture and stimulation conditions. The CD4+

T cells were enriched and stimulated as previously described (Burren et al. 2017).

Briefly, CD4+ T cells were isolated from whole blood using RosetteSep (STEMCELL

technologies, Canada) according to the manufacturer’s instructions. Cells were left

untreated or stimulated with Dynabeads human T activator CD3/CD28 beads (In-

vitrogen, UK) at a ratio of 1 bead : 3 cells for 4 h at 37 ◦C and 5% CO2.

The CD19+ B cells were positively selected from peripheral blood mononuclear

cells using anti-CD19 beads (Miltenyi Biotec, GmbH) and cultured for 24 h in X-

VIVO 15 (Lonza) supplemented with 1% human Ab serum (Sigma) and penicillin-

streptomycin (Thermo Fisher), and plated in 96-well CELLSTAR U-bottomed plates

(Greiner Bio-One) at a concentration of 2.5 × 105 cells/well. The cells were left

untreated or stimulated with 10 µg/ml goat anti-human IgM/IgG/IgA antibody (109-

006-064, Jackson Immunoresearch), 0.15 µg/ml rhCD40L (ALX-522-110-C010, ENZO

Lifesciences), and 20 ng/ml rhIL-21 and rhIL-4 (200-21 and 200-04, respectively,

Peprotech) for 24 h.

ATAC-seq data were generated from 50,000 cells from each cell type and culture

condition following the Omni-ATAC protocol (Corces et al. 2017). The ATAC-seq

datasets were mapped to GRCh38.p12 (Harrow et al. 2012) using minimap2 (version

2.17, Li 2018), except for GSE123404 (pancreatic-islets dataset), where bowtie2 (ver-
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sion 2.3.5, Langmead and Salzberg 2012) was used. After mapping, the technical repli-

cates (where available) were merged and PCR-duplicated reads were detected using

Picard tools (version 2.20.2, http://broadinstitute.github.io/picard). The per-

centage of detected duplicated reads was very low (mean value < 1%) in all datasets.

Next, bigWig files were generated using bamCoverage from the deeptools package

(version 3.3.0, Ramı́rez et al. 2016), using reads-per-genome-coverage normalization

and ignoring allosomes and the mitochondrial chromosome. Peaks were called using

macs2 (version 2.1.2, Gaspar 2018) with the parameters “–nomodel –shift 37 –extsize

73 –keep-dup all.”

The immune-cell ATAC-seq dataset (GSE118189, Calderon et al. 2019) was used

to create a consensus list of peaks. For each cell type, the donor contributing the

fewest number of reads to that cell type was selected and the number of reads was

divided by two. The reads were then randomly pooled by that number for each

sample, creating a representative alignment file for that cell type. This procedure was

performed twice to obtain two pseudo-replicates. Peaks were called using macs2 with

the same parameters. The irreducible discovery rate (IDR) was calculated between

the two pseudo-replicates (Li et al. 2011), any peak with an IDR ≤ 0.05 were included

in the consensus list of peaks. This list was then used as a feature reference and the

reads were counted per feature using featureCounts from the package subread (version

1.6.4, Liao, Smyth, and Shi 2014). A similar approach was used for the other datasets

in the analysis. The IDR was used to obtain a reliable list of peaks. In these datasets,

no feature reference was derived from the IDR and counting was performed directly

from the list obtained from GSE118189. Workflows were implemented using conda

and snakemake, and are available at https://github.com/dfloresDIL/MEGA .

http://broadinstitute.github.io/picard
https://github.com/dfloresDIL/MEGA
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4.2.2 ATAC-seq enrichment analyses

To examine the enrichment of T1D credible variants (group marginal posterior prob-

ability > 0.8 from GUESSFM) in open chromatin, two complementary approaches

were used for each cell type. First, we developed a “SNP-matching” approach, in

which variants were randomly sampled across the genome and matched on linkage

disequilibrium (LD) structure and gene density to generate a null distribution of SNPs

overlapping accessible chromatin. Specifically, the number of T1D credible variants

falling within open chromatin was compared with variants in regions of the genome

with similar LD structure and gene density as follows:

1. Using EUR individuals from 1000 Genomes Project data, all variants with r2 >

0.8 to each other were identified.

2. The T1D credible variants with group marginal posterior probability > 0.8 were

binned with regards to their LD block size: 1-9, 10-19, 20-49, 50-74,75-99,100-

149 or 150-249.

3. The 1000 Genomes Project data variants were binned with regards to LD block

size, taking an LD block as the variants with r2 > 0.8 with an index variant.

4. For each T1D credible group, an LD block from the 1000 Genomes Project data

of the same bin size and with the same (or similar for large haplotypes) number

of genes overlapping the credible group was randomly selected; therefore, a

similar number of variants to the T1D credible group with an approximately

equivalent LD structure and gene density was selected.

5. Repeated step four 100 times, yielding 100 randomly sampled genome segments

with an approximately equivalent size and LD structure to the T1D credible

variants.
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6. For cell type X, the number of T1D credible SNPs overlapping ATAC-seq peaks

was counted. This was compared with the number overlapping ATAC-seq peaks

from the first randomly sampled set of variants. The z-score (Fisher’s exact test)

was calculated for the comparison of ATAC-seq peak overlap with T1D credible

variants versus randomly sampled variants with equivalent size, gene density

and LD structure.

7. Repeated step six 100 times, one for each randomly sampled set of haplotypes

across the genome, thereby obtaining 100 z-scores.

8. The mean z-score from the 100 tests was compared with a normal distribution

to obtain an enrichment p-value for cell type X. Steps six and eight were

performed for each cell type and condition.

Second, we applied a published method called GoShifter (Trynka et al. 2015),

which tests for enrichment of trait-associated SNPs in any arbitrary set of genomic

intervals (typically representing functional genomic annotations). Unlike the SNP-

matching approach described above, which generates a null distribution by sampling

sets of SNPs with similar features, GoShifter generates a null distribution within

each locus by randomly shifting the genomic annotation sites (Figure 4.5). In our

application, the genomic annotation was open chromatin peaks.
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null, and delta-overlap will be close to 0. Conversely, larger delta-

overlap values correspond to stronger enrichment. In practice,

delta-overlap is independent of the number of SNPs in LD and

the TSS or TES proximities of associated SNP sets (Figure S1).

Prioritizing Informative Loci by Using the Overlap
Score
In order to identify individual loci where the overlap between a

SNP and an annotationwas particularly informative, we calculated

an ‘‘overlap score’’ for each locus. The overlap score is the probabil-

ity that each locus overlaps an annotation by chance. It is

computed only for the loci that overlap the annotation in the

observed data. Loci with low scores drive significant enrichment

observations and are higher-priority candidates for further func-

tional investigations. We defined the overlap score as ls=n, where

ls is the number of shifting iterations for which at least one SNP

within an individual locus overlaps the annotation, and n is the

total number of iterations.

Genomic Annotations
Our study utilized DHS data, histone-modification data, and gene-

annotation data compiled from publicly available resources.

DHSs

We used the DHS data from 80 experiments from ENCODE13

and 137 experiments from the NIH Roadmap Epigenomics

Project14 (Table S2).We downloaded chromatin immunoprecipita-

tion sequencing reads mapped to hg19 (UCSC Genome Browser)

and merged reads from replicate samples. Using a corresponding

input DNA library as the control if available, we ran MACS

v.2.022 with default settings (false-discovery rate [FDR] ¼ 0.01;

Figure 1. Schematic of the GoShifter Method
(A) To assess the statistical significance of an overlap between trait-associated SNPs and an annotation X, we start by using 1000
Genomes Project data to identify variants in LD (r2 > 0.8) with each index SNP.
(B) We quantify the observed overlap: the proportion of loci where at least one linked SNP overlaps annotation X (shaded boxes). We
estimate the significance of the observed overlap by comparing to a null distribution generated by random shifting of X sites (black
arrows) within each locus. After each shift, we calculate the proportion of loci overlapping the annotation. To ensure that the same num-
ber of shifted annotations remains within locus boundaries, we circularize each region.
(C) To determine the significance of an overlap with annotation X independent of a possibly colocalizing annotation Y, we partition
each locus into two types of fragments: those regions mapped by Y sites (light blue blocks) and those that lack them (denoted as Y; white
blocks). We join the respective Yand Y fragments into two independent continuous segments. To generate the null distribution, we shift
annotation X separately within each of the two segments. For each iteration, we count the proportion of loci where any of the linked
SNPs overlaps annotation X in either Y or Y segments to determine the significance of the observed overlap.
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(1) Generate i sets of randomly shifted 
annotations at each locus

(2) Count SNP overlap for each 
set of shifted annotations at 
each locus and then sum 
across the n loci

(3) Calculate statistical 
significance by 
comparing overlap with 
unshifted annotations to 
the distribution of
overlap with the i shifted 
annotations

Figure 4.5: GoShifter approach to determining significance of overlap between credible
SNPs and a genomic annotation. (1) We generate a null distribution by randomly
shifting (blackarrows) X sites within each region i times. To ensure the same number
of annotations in a region with each random shift, we circularize the region. (2) For
each random shift, we count how many SNPs overlap the shifted annotations in each
region, and then sum the number of SNPs overlapping shifted annotations across
all regions, providing i values to generate a null distribution. (3) We estimate the
significance of the observed overlap by comparing the sum of overlap with unshifted
annotations to the null distribution. Figure adapted from Trynka et al. 2015.

Credible set enrichment in condition-specific accessible chromatin

For each of 24 cell types, examining only peaks in the consensus list of peaks from

ATAC-seq dataset GSE118189 (25 immune cell types), we defined peaks with signif-

icantly increased accessibility (FDR < 0.01) after stimulation (“stimulation-specific

peaks”) and peaks with significantly decreased accessibility after stimulation (“unstimulated-

specific peaks”) using the R package DESeq2 (Love, Huber, and Anders 2014). We

tested for enrichment of credible variants in condition-specific peaks using the SNP-

matching approach described above.



132

4.2.3 Generating caQTL maps using T1DGC frozen samples

We profiled chromatin accessibility in 115 individuals (57 controls and 58 T1D cases;

67 AFR and 48 EUR) from the Type 1 Diabetes Genetics Consortium (T1DGC).

CD4+ T cells were purified from viably frozen peripheral blood mononuclear cells

using magnetic cell separation according to the manufacturer’s protocol, using either

negative (n = 42; STEMCELL Technologies EasySep human CD4+ T-cell isolation

kit) or positive (n = 73; MACS Miltenyi Biotec) selection. The selection approach

was incorporated in the data processing and analysis. After CD4+ T-cell purification,

the “Omni-ATAC-seq” protocol (Corces et al. 2017) was followed for nuclei isolation,

transposase incubation and library preparation. The libraries were sequenced using

75-bp paired-end reads on an Illumina NextSeq.

Data were processed using the PEPATAC pipeline (http://pepatac.databio.

org, Smith et al. 2020). Briefly, the reads were trimmed using Skewer (version0.2.2,

Jiang et al. 2014) and, after removing reads mapping to mitochondrial and human

repeat regions, were mapped to GRCh38 using bowtie2 (Langmead and Salzberg

2012). The PCR duplicates were removed, enzyme cut sites were inferred based on

read alignment and peaks were called using macs2 (Gaspar 2018). Libraries with

transcription-start-site enrichment scores below 6 or fewer than 10 × 106 aligned

reads were excluded from the analyses. A set of consensus peaks was determined by

merging peaks across all samples using BEDOPS (version 2.4.35, Neph et al. 2012).

A matrix of peak counts was calculated by counting the number of cut sites within

each consensus peak in each sample using the R package bigWig (https://github.

com/andrelmartins/bigWig). Peaks with low counts were excluded (required ≥ 10

reads in ≥ 50% of samples). We confirmed matching sample identity between ATAC-

seq libraries and genotyped individuals using the “Match BAM to VCF” (MBV)

command in the software tool set QTLtools (Fort et al. 2017).

Further peak quality filtering and normalization were performed using the R pack-

http://pepatac.databio.org
http://pepatac.databio.org
https://github.com/andrelmartins/bigWig
https://github.com/andrelmartins/bigWig
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age edgeR (Robinson, Mccarthy, and Smyth 2010). These steps included:

1. filtering for peaks with ≥ 10 counts per million across samples within each

batch,

2. peak-count normalization using the trimmed mean of M-values (TMM) method

(Robinson and Oshlack 2010),

3. mean-variance modeling-based transformation using the “voom” function to

enable linear modeling of peak counts assuming a normal distribution, and

4. removing outlier peaks by clustering samples based on the counts for each peak

(one at a time using k-means with k = 2) and excluding any peak that resulted

in one sample clustering separately from all of the other samples.

Association between imputed genotype dosage and chromatin accessibility (caQTL

analysis) was tested using a linear model, adjusting for the first two genotype principal

components, age at sample collection, transcription-start-site enrichment score and

CD4+ T-cell purification approach using the R package MatrixEQTL (Shabalin 2012).

The caQTL discovery analyses were performed separately by ancestry group (EUR

and AFR) and combined in an inverse-variance-weighted fixed effect meta-analysis (R

package meta, Balduzzi, Rücker, and Schwarzer 2019). All variant-peak combinations

were tested where the accessibility peak was within 1 Mb of a T1D credible variant.

4.2.4 Co-localization analysis

We evaluated co-localization of T1D and caQTL for all peaks where at least one T1D

credible variant (as defined by GUESSFM) was associated with peak accessibility

(meta-analysis p < 5× 10−5) using the R package coloc (Giambartolomei et al. 2014)

and visualized co-localized signals using the R package locuscomparer (Liu et al.

2019). Conditional summary statistics were used in regions predicted to have more
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than one causal variant underlying the T1D association or regions with multiple,

conditionally independent variants associated with accessibility of the same peak.

When running coloc for T1D-caQTL co-localization, we used a prior probability of

co-localization of 5 × 10−6 and provided association β and standard errors as input

data. When running coloc for T1D-eQTL co-localization, we used the same priors

and supplied association z-scores. We considered GWAS and QTL signals to be

significantly co-localized when the posterior probability of co-localization was greater

than 0.8 (PP.H4.abf > 0.8).

4.2.5 Allele-specific accessibility analysis

For significant caQTLs that co-localized with T1D-associated variants, we tested

for allele-specific accessibility of the caQTL peak. First, we identified individuals

heterozygous for T1D credible variants overlapping the caQTL peak. For each het-

erozygous individual, we then counted the number of reads overlapping the variant

position containing the reference or alternative allele. We only performed this anal-

ysis if the T1D credible variant overlapping the caQTL peak was directly genotyped

on the Immunochip, as uncertainty in the heterozygous status of an individual could

lead to biased results. For peaks with at least five participants who had at least five

reads overlapping the peak, we formally tested whether the proportion of reads con-

taining an alternative allele deviated significantly from the expected null hypothesis

proportion of 0.5. We calculated the p-values for deviation from “allelic balance”

(proportion = 0.5 for each read) by fitting a generalized linear mixed model where

the dependent variable is the number of reads and follows a Poisson distribution, and

the independent variables include a fixed effect for the allele and a random effect for

the participant.
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4.2.6 Supershift EMSA

Jurkat cells (E6-1) were purchased from the American Type Culture Collection and

cultured in RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine serum,

1% penicillin-streptomycin and 1% sodium pyruvate at 37 ◦C and 5% CO2.

Labeled (5’ IRDye 700) and unlabeled 31-bp, single-stranded oligonucleotides con-

taining rs72928038 were obtained from Integrated DNA Technologies (reference al-

lele strand, 5’-AGGGACGGATTTCCTGTAAGCTGATCTTGAA-3’; and alterna-

tive allele strand, 5’-AGGGACGGATTTCCTATAAGCTGATCTTGAA -3’) along

with complementary oligonucleotides. Double-stranded oligonucleotides were gener-

ated by annealing equal amounts of labeled or unlabeled complementary oligonu-

cleotides at 95 ◦C for 5 min, followed by gradual cooling with a ramp rate of -1.2 ◦C

min−1 for 1 h (Bio-Rad C1000 Touch Thermal Cycler).

Nuclear extract from Jurkat cells was obtained by following the manufacturer’s

protocol for the NE-PER nuclear and cytoplasmic extraction reagents kit (Thermo

Scientific) and the extracted nuclear protein was dialyzed with Slide-A-Lyzer MINI

dialysis units, 10,000 MWCO (Thermo Scientific) against 1 l buffer (10 mM Tris, pH

7.5, 50 mM KCl, 200 mM NaCl, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl

fluoride and 10% glycerol) for 16 h at 4 ◦C with slow stirring.

The binding reaction for the EMSA was carried out using 2 µl 10x binding buffer

(100 mM Tris, 500 mM KCl and 10 mM dithiothreitol; pH 7.5), 2 µl of 25 mM

dithiothreitol (2.5% Tween 20), 1 µl poly(dI-dC) (1 µg µl−1 in 10 mM Tris and 1 mM

EDTA; pH 7.5), 1 µl of 1% NP-40, 100 mM MgCl2, 20 fmol IRDye double-stranded

oligonucleotide probe and 16 µg Jurkat nuclear extract in a final volume of 20 µl.

For the supershift lanes, tested transcription-factor-binding antibodies (ETS1 rabbit

mAb and Stat1 rabbit mAb) were diluted 1:50 with ddH2O. Negative-control rabbit

IgG was diluted to the same concentration as the tested antibody. Diluted antibody

(1 µl) was added to the binding reaction mixture while maintaining a total volume
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of 20 µl. The binding reaction was incubated for 20 min at room temperature, after

which 2 µl 10x Orange loading dye was added to the reaction. Electrophoresis was

performed with binding reaction mixture on a pre-run 6% DNA retardation gel for 70

min at 70 V. To capture the image, the gel was placed directly on the Odyssey-CLx

(Licor) scan bed. The gel was scanned with a thickness of 0.5 mm in the 700-nm

channel. The EMSA binding condition for rs72928038 was repeated three times to

ensure reproducibility of the experiment.

4.2.7 Priority index

To prioritize drug targets implicated by T1D genetic associations, we ran the priority-

index algorithm, as implemented in the R package Pi (Fang et al. 2019). Data used

to identify eQTL co-localization (eGenes) included

� unstimulated monocytes (n = 414), lipopolysaccharide-stimulated monocytes

after 2 h (n = 261), lipopolysaccharide-stimulated monocytes after 24 h (n =

322), interferon-γ-stimulated monocytes after 24 h (n = 367) from Fairfax et al.

2014;

� unstimulated B cells (n = 286) from Fairfax et al. 2012;

� unstimulated natural killer cells (n = 245) (unpublished);

� unstimulated neutrophils (n = 114) from Andiappan et al. 2015;

� unstimulated CD4+ T cells (n = 293) and unstimulated CD8+ T cells (n = 283)

from Kasela et al. 2017;

� whole blood97 (n = 5, 311) from Westra et al. 2013

� whole-blood meta-eQTL-analysis (n = 31, 684) from Võsa et al. 2018.
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Hi-C data from monocytes, fetal thymus, naive CD4+ T cells, total CD4+ T cells,

activated total CD4+ T cells, non-activated total CD4+ T cells, naive CD8+ T cells,

total CD8+ T cells, naive B cells and total B cells (Javierre et al. 2016) were used to

identify genes interacting with index variants (cGenes). The data used to define func-

tional genes (fGenes, pGenes and dGenes) were those used in the initial publication

(Fang et al. 2019). Protein-protein interaction networks were determined according

to the STRING database (Szklarczyk et al. 2017), requiring a confidence score ≥ 700.

4.2.8 Analytical tools and code

Unless otherwise noted, all statistical analyses and data visualization were performed

using R version 3.6 (R Core Team 2017). All statistical tests based on symmetrically

distributed test statistics were two-sided. No repeated measures data were analyzed

in this study. All genotyped and ATAC-seq samples analyzed in the association tests

represent distinct individuals. The R packages ggplot2 (Wickham 2016), cowplot

(Wilke 2020), ggbio (Yin, Cook, and Lawrence 2012), GenomicRanges (Lawrence et

al. 2013), gridExtra (Auguie 2017), RColorBrewer (Neuwirth 2014), and rtracklayer

(Lawrence, Gentleman, and Carey 2009) were used for data visualization. Code used

to generate the results presented in this chapter is available at https://github.com/

ccrobertson/t1d-immunochip-2020.

4.3 Results

4.3.1 T1D credible variants are over-represented in accessi-

ble chromatin in T and B cells

ATAC-seq offers a high-resolution map of accessible chromatin with potential regula-

tory function (Buenrostro et al. 2015). Using publicly available (Calderon et al. 2019;

https://github.com/ccrobertson/t1d-immunochip-2020
https://github.com/ccrobertson/t1d-immunochip-2020
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Ramos-rodŕıguez et al. 2019; Varshney et al. 2017; Jonsson et al. 2016) and newly

generated ATAC-seq data from healthy donors, we assessed enrichment of 2,431 T1D

credible variants (group posterior probability > 0.8) in accessible chromatin across

diverse immune and non-immune cell types (including 25 primary immune cell types,

pancreatic islets, and, as control cell types unlikely to be central to T1D etiology, fetal

and adult cardiac fibroblasts). T1D credible variants were enriched in open chromatin

in multiple primary immune cell types based on two complementary enrichment anal-

ysis approaches (Figure refmegasupfig9), with strong enrichment observed in stimu-

lated CD4+ effector T cells (Figure 4.6b). There was no enrichment in pancreatic

islets (p = 0.14), the primary target of autoimmunity in T1D, even after exposure

to proinflammatory cytokines (p = 0.05) or in cardiac fibroblasts (p > 0.60) (Figure

4.6).

Since many ATAC-seq peaks are present in both stimulated and unstimulated

conditions, the enrichment scores are similar across conditions and may be under-

powered to distinguish enrichment that is specific to a stimulated or unstimulated

state. Therefore, for cell types with data available from unstimulated and stimulated

conditions, we defined a subset of peaks that were significantly differentially accessi-

ble between the conditions (condition-specific peaks). Specifically, for each of 24 cell

types, we defined peaks with significantly increased accessibility (FDR < 0.01) af-

ter stimulation (“stimulation-specific peaks”) and peaks with significantly decreased

accessibility after stimulation (“unstimulated-specific peaks”). Of 138,596 regions in

the consensus peak set, Th17 cells had the highest proportion of stimulation-specific

peaks (15.3%), while effector-memory CD8+ T cells had the highest proportion of

unstimulated-specific peaks (9.8%) (Supplementary Table 14). T1D credible vari-

ants were enriched in these condition-specific peaks in numerous cell types, with the

largest enrichment in stimulation-specific peaks from effector CD4+ T cells stimu-

lated for 24 hours with anti-CD3/CD28 and human IL-2 (Figure 4.7). These results
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indicate that T1D credible variants may contribute to islet autoimmunity, in part, by

altering responses to T cell receptor signaling, co-stimulation, or cytokine signaling.
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Figure 4.6: Enrichment of T1D credible variants in ATAC-seq peaks in each cell
type (red bars, stimulated; green bars, unstimulated), red dashed line represents
the Bonferroni significance threshold at the 5% level (n = 2, 431 credible variants).
(a) Enrichment analysis based on SNP-matching; (b) Enrichment analysis based on
GoShifter; (c) Comparison of enrichments based on SNP-matching and GoShifter.
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Figure 4.7: Enrichment of T1D credible variants in differentially open ATAC-seq
peaks between stimulation conditions, defined from a consensus list of peaks. Red
bars show differentially open peaks in stimulated cells; green bars show differentially
open peaks in unstimulated cells. Red dashed line is the Bonferroni significance
threshold at the 5% level (n = 2, 431 credible variants).

4.3.2 Co-localization of T1D association with QTLs in im-

mune cells

Chromatin accessibility profiles were generated across 115 participants (nEUR = 48,

nAFR = 67) in primary CD4+ T cells, the cell type in which accessible chromatin is

most strongly enriched for T1D credible variants (Figures 4.6 and 4.7). We examined
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additive effects of genotype on local chromatin accessibility (cis window < 1 Mb),

identifying 11 “peaks” of chromatin accessibility significantly (p < 5×10−5) associated

with T1D credible variants. Colocalization analysis of T1D association and caQTLs

(R package coloc, Giambartolomei et al. 2014) identified five regions supporting a

common causal variant underlying association with T1D and chromatin accessibility

(PP.H4.abf > 0.8; Table 2). In all five regions, at least one T1D credible variant

overlapped the caQTL-associated peak. Six of these “within-peak” credible variants

were directly genotyped on the Immunochip, allowing us to examine allele-specific

accessibility in heterozygous participants. At all six variants, the proportion of ATAC-

seq reads from heterozygotes containing the alternative allele was consistent with the

direction of the caQTL effect (Supplementary Table 15). When integrated with whole

blood cis-eQTLs (Võsa et al. 2018), colocalization identified T1D candidate genes in

four of five T1D-caQTL regions (PP.H4.abf > 0.8; Figure 4.8).
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observed the largest enrichment in stimulation-specific peaks from 
effector CD4+ T cells (Supplementary Note, Supplementary Table 
14 and Supplementary Fig. 10).

Co-localization of T1D association with QTLs in immune cells. 
Chromatin-accessibility profiles were generated across 115 par-
ticipants (nEUR = 48 and nAFR = 67) in primary CD4+ T cells, the 
cell type in which accessible chromatin is most strongly enriched 
for T1D credible variants (Supplementary Figs. 9 and 10). We 
examined the additive effects of genotype on local chromatin 
accessibility (cis window < 1 Mb), thereby identifying 11 ‘peaks’ 
of chromatin accessibility that were significantly (P < 5 × 10−5) 
associated with T1D credible variants. Co-localization analysis 
of T1D association and caQTLs (R package coloc41; Methods) 
identified five regions supporting a common causal variant 
underlying association with T1D and chromatin accessibility (PP.
H4.abf > 0.8; Table 2). At least one T1D credible variant over-
lapped the caQTL-associated peak in all five regions. Six of these 
‘within-peak’ credible variants were directly genotyped on the 
ImmunoChip, allowing us to examine allele-specific accessibil-
ity in heterozygous participants (Methods). For all six variants, 
the proportion of ATAC-seq reads from heterozygotes contain-
ing the alternative allele was consistent with the direction of the 
caQTL effect (Supplementary Table 15). When integrated with 
whole-blood cis-expression quantitative trait loci (eQTLs)41,42, 
co-localization identified T1D candidate genes in four of five 
T1D-caQTL regions (PP.H4.abf > 0.8; Table 2).

Functional annotation of T1D-associated variants in the BACH2 
region. Fine mapping of the BACH2 locus refined the T1D associa-
tion to two intronic variants, rs72928038 (NC_000006.12:g.902670
49G>A) and rs6908626 (NC_000006.12:g.90296024G > T; Fig. 3a). 
The EUR minor alleles of rs72928038:G>A and rs6908626:G>T 
are associated with increased T1D risk (OR = 1.18, P < 1 × 10−20, 
MAFEUR = 0.18). Chromatin-state annotations across cell types from 
the BLUEPRINT Consortium and National Institutes of Health 
(NIH) Roadmap Epigenomics Project annotate rs72928038:G>A as 
overlapping a T cell–specific active enhancer and rs6908626:G>T as 
lying in the ubiquitous BACH2 promoter (Fig. 3b). Promoter-capture 
Hi-C data from diverse immune-cell types43 indicate that the 

enhancer region containing rs72928038:G>A contacts the BACH2 
promoter in T cells (Fig. 3c). Although weak interactions were 
observed in multiple T-cell subtypes, only naive CD4+ T cells had a 
significant interaction score.

In the caQTL analysis, rs72928038:G>A was associated with 
decreased accessibility of the enhancer it overlaps (chr6:90266766–
90267715; Fig. 3d, left), whereas rs6908626:G>T did not affect 
accessibility at the BACH2 promoter (chr6:90294665–90297341; 
Fig. 3d, right). Similarly, among 14 subjects heterozygous for 
rs72928038:G>A, only 4% (5/121) of ATAC-seq reads overlap-
ping that site contained the T1D risk allele (A; Fig. 3e, left and 
Supplementary Table 15), suggesting it leads to restricted accessibil-
ity. In contrast, chromatin accessibility at rs6908626:G>T did not 
exhibit allelic bias in heterozygotes (Fig. 3e, right). These data help 
to prioritize rs72928038:G>A, rather than rs6908626:G>T, as func-
tionally relevant in CD4+ T cells.

In eQTL studies, rs72928038:G>A is associated with decreased 
expression of BACH2 in whole blood42 and purified immune-cell 
types44. In the DICE consortium44, rs72928038:G>A is associated 
with decreased expression of BACH2 in multiple cell types, with 
the strongest effects observed in naive CD4+ and CD8+ T cells. This 
result is consistent with the observation that the enhancer region 
overlapping rs72928038:G>A is accessible specifically in unstimu-
lated bulk CD4+, unstimulated bulk CD8+ and naive CD4+ T effec-
tor cells (Fig. 3f). Both the enhancer caQTL and BACH2 eQTL 
co-localize with T1D association (Fig. 3g and Table 2).

The BACH2 rs72928038:G>A variant overlaps binding sites 
for STAT1 and the ETS family of transcription factors, based on 
canonical transcription-factor binding motifs33. We performed 
supershift electrophoretic mobility shift assay (EMSA) experiments 
of the DNA sequence flanking rs72928038:G>A that demonstrated 
allele-specific ETS1 binding but no STAT1 binding (Supplementary 
Fig. 11). This result builds on experiments demonstrating 
allele-specific nuclear protein binding of rs72928038:G>A in Jurkat 
cells45. These data prioritize rs72928038:G>A as a probable func-
tional variant in T cells and provide preliminary support for a candi-
date regulatory mechanism underlying the 6q15 region association 
with T1D. Specifically, we hypothesize that the rs72928038:G>A 
minor allele (A) disrupts ETS1 binding, which leads to decreased 
enhancer activity and BACH2 expression in naive CD4+ T cells.

Table 2 | T1D associations co-localizing with caQTLs in CD4+ T cells

T1D lead varianta βT1D
b Peak T1D credible variants 

in peak
caQTL lead varianta βcaQTL

b PcaQTL PP Whole-blood 
cis-eQTLsc

rs71624119 
(chr5:56144903:G:A)

−0.099 chr5:56147972–
56149111

rs7731626 rs7731626 
(chr5:56148856:G>A)

−0.5 2.4!×!10−9 0.97 ANKRD55 
(z!=!−58; 
PP!=!0.98) 
IL6ST (z!=!−10; 
PP!=!0.98)

rs72928038 
(chr6:90267049:G:A)

0.172 chr6:90266766–
90267747

rs72928038 rs72928038 
(chr6:90267049:G>A)

−1.0 3.9!×!10−16 1.00 BACH2 (z!=!−21; 
PP!=!1)

rs2027299 
(chr6:126364681:G:C)

0.147 chr6:126339725–
126340580

rs9388486 rs1361262 
(chr6:126380821:T>C)

−0.4 2.0!×!10−16 0.87 CENPW (z!=!−9.8; 
PP!=!0.82)

rs61555617d 
(chr12:56047884:TA:T)

0.257 chr12:56041256–
56042638

rs705704 rs705705 rs705704 
(chr12:56041628:G>A)

−0.2 1.1!×!10−15 0.97 GDF11 (z!=!−7.5e; 
PP!=!0.97)

rs4900384 
(chr14:98032614:A:G)

0.118 chr14:98018322–
98019163

rs11628807 rs4383076 
rs11628876 rs11160429

rs11628807 
(chr14:98018774:T>G)

0.7 1.8!×!10−21 0.95 –

Five regions show co-localization between T1D and a caQTL with a co-localization posterior probability!>!0.8. In all of these regions, at least one T1D credible variant overlaps the caQTL peak itself. In four 
regions, the T1D association also co-localizes with an eQTL for expression of one or more genes in whole blood. aThe T1D lead variant is the most-associated variant in the credible set, as defined by fine 
mapping (Supplementary Table 11); the caQTL lead variant is the most-associated variant with chromatin accessibility at the peak of interest. Variants are provided as rsid (chromosome:hg38_position:ref
erence:alternative). bβT1D refers to the effect size for the alternative allele of the T1D lead variant and βcaQTL refers to the effect size for the alternative allele of the caQTL lead variant. cWhole-blood cis-eQTL 
statistics from eQTLGen for the T1D lead variant and co-localization with the T1D association. drs61555617 is referred to as rs796916887 in the Supplementary tables. eThe cis-eQTL statistics for rs61555617 
are missing in eQTLGen; the reported GDF11 cis-eQTL z-score is for the highly correlated variant rs705704. PP, posterior probability of co-localization between the QTL (eQTL or caQTL) and the T1D 
association (referred to in coloc documentation as ‘PP.H4.abf’).
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Figure 4.8: T1D associations co-localizing with caQTLs in CD4+ T cells. Five re-
gions show co-localization between T1D and a caQTL with a co-localization posterior
probability > 0.8. In all of these regions, at least one T1D credible variant overlaps
the caQTL peak itself. In four regions, the T1D association also co-localizes with an
eQTL for expression of one or more genes in whole blood. a, The T1D lead variant
is the most-associated variant in the credible set, as defined by fine mapping (Sup-
plementary Table 11); the caQTL lead variant is the most-associated variant with
chromatin accessibility at the peak of interest. b, βT1D refers to the effect size for
the alternative allele of the T1D lead variant and βcaQTL refers to the effect size for
the alternative allele of the caQTL lead variant. c, Whole-blood cis-eQTL statistics
from eQTLGen for the T1D lead variant and co-localization with the T1D associ-
ation. d, rs61555617 is referred to as rs796916887 in the Supplementary tables. e,
The cis-eQTL statistics for rs61555617 are missing in eQTLGen; the reported GDF11
cis-eQTL z-score is for the highly correlated variant rs705704. PP, posterior proba-
bility of co-localization between the QTL (eQTL or caQTL) and the T1D association
(referred to in coloc documentation as “PP.H4.abf”).

4.3.3 Functional annotation of T1D-associated variants in

the BACH2 region

Fine mapping of the BACH2 locus refined the T1D association to two intronic

variants, rs72928038:G>A and rs6908626:G>T (Figure 4.9a). The EUR minor al-

leles of rs72928038:G>A and rs6908626:G>T are associated with increased T1D

risk (OR = 1.18; p < 1 × 10−20, MAFEUR = 0.18). Chromatin-state annotations
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across cell types from the BLUEPRINT Consortium and NIH Roadmap Epigenomics

Project annotate rs72928038:G>A as overlapping a T cell-specific active enhancer and

rs6908626:G>T as lying in the ubiquitous BACH2 promoter (Figure 4.9b). Promoter-

capture Hi-C data from diverse immune cell types (Javierre et al. 2016) indicates that

the enhancer region containing rs72928038:G>A contacts the BACH2 promoter in

T cells (Figure 4.9c). Although weak interactions were observed in multiple T cell

subtypes, only naive CD4+ T cells had a significant interaction score.

In caQTL analysis, rs72928038:G>A is associated with decreased accessibility of

the enhancer it overlaps (chr6:90266766-90267715) (Figure 4.9d, left), while rs6908626:G>T

does not affect accessibility at the BACH2 promoter (chr6:90294665-90297341) (Fig-

ure 4.9d, right). Similarly, among 14 subjects heterozygous for rs72928038:G>A,

only 4% (5/121) of ATAC-seq reads overlapping that site contain the T1D risk allele

(A) (Figure 4.9e, left, and Supplementary Table 15), suggesting it leads to restricted

accessibility. In contrast, chromatin accessibility at rs6908626:G>T does not ex-

hibit allelic bias in heterozygotes (Figure 4.9e, right). These data help to prioritize

rs72928038:G>A, rather than rs6908626:G>T, as functionally relevant in CD4+ T

cells.

In eQTL studies, rs72928038:G>A is associated with decreased expression of

BACH2 in whole blood (Võsa et al. 2018) and purified immune cell types (Schmiedel

et al. 2018). In the DICE consortium (Schmiedel et al. 2018), rs72928038:G>A is asso-

ciated with decreased expression of BACH2 in multiple cell types, with the strongest

effects in naive CD4+ and CD8+ T cells. This result is consistent with the observa-

tion that the enhancer region overlapping rs72928038:G>A is accessible specifically

in unstimulated bulk CD4+, unstimulated bulk CD8+, and naive CD4+ T effector

cells (Figure 4.9f). Both the enhancer caQTL and BACH2 eQTL colocalize with

T1D association (Figure 4.9g and Table 4.8).

The BACH2 rs72928038:G>A variant overlaps binding sites for STAT1 and the
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ETS family of transcription factors, based on canonical transcription factor bind-

ing motifs (Boyle et al. 2012). We performed super-shift electrophoretic mobility

shift assay (EMSA) experiments of the DNA sequence flanking rs72928038:G>A

that demonstrated allele-specific ETS1 binding, but no STAT1 binding (Figure 4.10).

This result builds on experiments demonstrating allele-specific nuclear protein bind-

ing of rs72928038:G>A in Jurkat cells (Westra et al. 2018) . These data prioritize

rs72928038:G>A as a likely functional variant in T cells and provide preliminary

support for a candidate regulatory mechanism underlying the 6q15 region associa-

tion with T1D. Specifically, we hypothesize that the rs72928038:G>A minor allele

(A) disrupts ETS1 binding, which leads to decreased enhancer activity and BACH2

expression in naive CD4+ T cells.



145ARTICLES NATURE GENETICS

BACH2

90.262 Mb 90.272 Mb 90.282 Mb 90.291 Mb

Naive B cell

Memory B cell

Germinal B cell

Plasma cell

CD8+ T cell

CD4+ T cell

Memory T cell

Natural killer cell

Dendritic cell

Monocyte

Macrophage

Eosinophil

Neutrophil

90.262 Mb 90.272 Mb 90.282 Mb 90.291 Mb

Position on chromosome 6 (kb)
90.272 Mb90.262 Mb 90.282 Mb 90.291 Mb

rs6908626

rs6908626

Read count

S
am

pl
e

G A

20 15 10 5 0 5 10 15 20 15 10 5 10 15
Read count

S
am

pl
e

G T rs72928038

0

5

10

15

5 0
0 5 10 15

GWAS log10(P ) GWAS log10(P )

ca
Q

T
L 

lo
g 1

0(
P

)

0.8
0.6
0.4
0.2

r 2

rs72928038

0

25

50

75

100

0 5 10 15

B
A

C
H

2 
eQ

T
L 

lo
g 1

0(
P

)

0.8
0.6
0.4
0.2

rs72928038

rs72928038

CD8+ (stimulated)

CD8+ (unstimulated)

CD4+ (stimulated)

CD4+ (unstimulated)

Naive CD4+ T effector (stimulated)

Naive CD4+ T effector (unstimulated)

10 kb

90264.8 90266.0 90267.3 90268.5

1 kb

a f

b

c

d

e g

rs72928038

r 2

Position on chromosome (kb)

1

2

3

4

5

GG GA AA

P
ea

k 
ac

ce
ss

ib
ili

ty

rs72928038

6.50

6.75

7.00

7.25

GG GT TT

P
ea

k 
ac

ce
ss

ib
ili

ty

rs6908626

Fig. 3 | Functional annotation of T1D-associated variants in the BACH2 region. a–c, Position of T1D credible variants (rs72928038:G>A and 
rs6908626:G>T) relative to the introns and exons of BACH2 (a), chromHMM tracks across diverse immune-cell types from the BLUEPRINT consortium 
(b; red, active promoter; orange, distal active promoter; dark green, transcription; light green, genic enhancer; yellow, enhancer; white, quiescent; light gray, 
Polycomb repressed; dark gray, repressed; and blue, heterochromatin) and interactions with the BACH2 promoter in published PCHi-C data from naive 
CD4+ T cells43 (c; the gray squares indicate boundaries of target (left) and bait (right)). The chromatin coordinates and the scale are identical and aligned. 
d, Accessibility of regions overlapping rs72928038:G>A (left) and rs6908626:G>T (right) according to genotype. Peak accessibility is quantified as the 
normalized transposase cut frequency (Methods); center line, median; box limits, upper and lower quartiles; whiskers, 1.5× the interquartile range (n!=!115 
individuals). e, Allele-specific accessibility of chromatin within heterozygous individuals at rs72928038:G>A (left; n!=!14 heterozygous individuals) and 
rs6908626:G>T (right; n!=!15 heterozygous individuals). f, Chromatin-accessibility profiles in the region overlapping rs72928038:G>A across resting and 
activated CD4+ and CD8+ T cells (published data38). The height of the tracks represents the transposase cut frequency; all tracks are plotted using the 
same vertical scale. g, LocusCompare plots showing co-localization between T1D association, the caQTL for chr6:90266766–90267715 (left) and the eQTL 
for BACH2 (right).
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Figure 4.9: Functional annotation of T1D-associated variants in the BACH2 region.
a - c, Position of T1D credible variants (rs72928038:G>A and rs6908626:G>T) rel-
ative to (a) the introns and exons of BACH2 ; (b) chromHMM tracks across diverse
immune-cell types from the BLUEPRINT consortium (red, active promoter; orange,
distal active promoter; dark green, transcription; light green, genic enhancer; yel-
low, enhancer; white, quiescent; light gray, Polycomb repressed; dark gray, repressed;
and blue, heterochromatin); and (c) interactions with the BACH2 promoter in pub-
lished promoter-capture Hi-C data from naive CD4+ T cells (the gray squares indicate
boundaries of target (left) and bait (right)). The chromatin coordinates and the scale
are identical and aligned. d, Accessibility of regions overlapping rs72928038:G>A
(left) and rs6908626:G>T (right) according to genotype. Peak accessibility is quan-
tified as the normalized transposase cut frequency; center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x the interquartile range (n = 115 individ-
uals). e, Allele-specific accessibility of chromatin within heterozygous individuals at
rs72928038:G>A (left; n = 14 heterozygous individuals) and rs6908626:G>T (right;
n = 15 heterozygous individuals). f, Chromatin-accessibility profiles in the region
overlapping rs72928038:G>A across resting and activated CD4+ and CD8+ T cells
(published data). The height of the tracks represents the transposase cut frequency;
all tracks are plotted using the same vertical scale. g, LocusCompare plots show-
ing co-localization between T1D association, the caQTL for chr6:90266766-90267715
(left) and the eQTL for BACH2 (right).



147

Replicate 1
Ref rs72928038 (G)
Alt rs72928038 (A)
ETS-1 Rabbit mAb

Jurkat Nuclear Extract
Rabbit IgG

+ + + ++
+ + +

+ +

+ +
+ + + + + +

Lane 1 2 543 76 8 109

+ +

Stat1 Rabbit mAb

+ +

+ +

DNA+protein
supershift with 

anti-ETS1

Free Unbound   
Oligonucleotides

Figure 4.10: rs72928038 with ETS-1 antibody supershift Electrophoretic Mobility
Shift Assay (EMSA). Lane 1-4 and 9 contains the reference allele (G) of rs72928038
labeled probe. Lane 5-8 and 10 contains the alternative allele (A) of rs72928038
labeled probe. Rabbit IgG was added to lane 3 and 7 as negative controls for the
supershift assay. Lane 9 and 10 are negative controls. The ETS-1 supershift EMSA
demonstrates an allele-specific supershift with rs72928038 G allele, while a shift is
not observed with the A allele probe. Specifically, in lane 4, we see the appearance
of a band that is not present in lanes to 1 and 3, which suggests ETS1 binding of
the labeled probe containing the rs72928038 G allele. Meanwhile, we do not see any
differences in band patterns between lanes 8 and lanes 5 and 7, which suggests that
there is no ETS1 binding of the labeled probe containing the rs72928038 A allele.
Likewise, we do not see any new bands in lane 2 relative to lanes 1 and 3, or lane 6
relative to lanes 5 and 7, which suggests that STAT1 does not bind the labeled probe
for either rs72928038 allele. Experiments showing allele-specific ETS1 binding were
repeated 4 times. Experiments showing lack of STAT1 binding were repeated three
times.

4.3.4 T1D drug target identification

To identify potential T1D therapeutic targets with human genetic support, we used

the Priority Index (Pi) algorithm (Fang et al. 2019), which integrates genetic associa-

tion results with genome annotations, regulatory maps, and protein-protein networks.

Using improved T1D association statistics and additional eQTL resources from whole

blood (Võsa et al. 2018), we identified 50 highly-ranked gene targets (Supplementary
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Table 16). These targets include 26 “seed genes” (implicated by T1D-associated loci

through proximity, eQTL effects, or chromatin looping) and 24 non-seed genes (not

in T1D regions but highly connected to T1D seed genes in immune protein networks).

Although we excluded variants in the MHC region from algorithm input, the networks

implicated by non-MHC seed genes led to prioritization of HLA-DRB1, an established

T1D risk factor. Among the top 50 gene targets, 13 were not previously implicated

by Pi analyses (STAT4, RGS1, CXCR6, IL23A, PTPN22, NFKB1, MAPK3, EPOR,

DGKQ, GALT, IL12RB1, IL12RB2, IL6R), and 12 have been targeted in clinical tri-

als for autoimmune diseases (IL2RA, IL6ST, IL6R, TYK2, IFNAR2, JAK2, IL12B,

IL23A, IL2RG, JAK3, JAK1 and IL2RB). T1D susceptibility alleles may alter ex-

pression of gene targets in either direction, and gene regulatory effects may be seen

across multiple major immune cell populations or be restricted to a single cell type

(Figure 4.11). For example, T1D risk alleles are associated with increased expression

of MAPK3 and DGKQ but decreased expression of TYK2 across multiple major

immune cell populations. In contrast, risk alleles decrease expression of RGS1 across

most immune cell types but increase expression specifically in CD8+ T cells. The

directionality and cell type-specificity of gene regulatory effects associated with T1D

risk alleles may inform therapeutic target considerations.
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Figure 4.11: Direction of eQTL effects among Priority Index target genes across
immune cell populations. For each of 16 target genes where eQTLs colocalize with
T1D association, the direction of effect and strength of co-localization is shown for
each of 12 cell contexts. Red and blue squares indicate the T1D risk allele is associated
with increased or decreased gene expression, respectively. Intensity of the color reflects
the posterior probability (PPABF ) for co-localization between the eQTL and T1D
association, such that darker rectangles imply stronger evidence of a shared causal
variant.

4.4 Discussion

We assessed the intersection of T1D-associated variants with regions of putative

regulatory function with public and newly generated ATAC-seq data from diverse
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cell types and states, demonstrating that T1D credible variants were enriched in

stimulation-responsive open chromatin peaks in CD4+ T cells. We assessed co-

localization of T1D associations with CD4+ T cell caQTLs to generate mechanistic

hypotheses centered on this highly relevant cell type. Finally, we identified potential

T1D drug targets for use in prevention trials. Experimental follow-up studies are

required to test these hypotheses and further dissect the mechanisms altering T1D

risk in each region.

Despite the enrichment of credible variants in CD4+ T-cell open chromatin, only

five of 52 fine-mapped T1D associations could be explained by a co-localized caQTL.

This result is consistent with work exploring the functional effects of variants associ-

ated with immune traits (Chun et al. 2017). One explanation is limited power in QTL

discovery due to small sample sizes or imprecise cell types (Chun et al. 2017; Hukku

et al. 2020). The analysis of more refined cell types using single-cell approaches,

for both enrichment analyses and QTL discovery, may lead to additional discov-

eries (Chiou et al. 2021; Paola Benaglio, Jacklyn Newsome, Jee Yun Han, Joshua

Chiou, Anthony Aylward, Sierra Corban, Mei-Lin Okino, Jaspreet Kaur, David U

Gorkin 2020). Nevertheless, although this approach may lack sensitivity, the five

regions showing co-localization between caQTL and T1D associations prioritize vari-

ants with regulatory effects that represent realistic targets for experimental follow-up.

In particular, within-peak credible variants with consistent caQTL effects and allele-

specific accessibility, although not definitively causal, provide high-priority candidate

variants for functional follow-up. As four of the five T1D associations that co-localize

with caQTLs also co-localize with whole-blood eQTLs, these regions offer hypotheses

for how causal variants influence disease risk through their effects on regulatory ele-

ment activity and gene expression in T1D-relevent cell types. Credible variants were

restricted to Immunochip content, which may explain the absence of T1D-variant

enrichment in the open chromatin of non-immune-cell types (for example, pancreatic
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islets) (Aylward et al. 2018; Dooley et al. 2016).

In the 5q11.2 region, fine mapping and caQTL co-localization point to the within-

peak variant rs7731626 (G>A) as a potential causal variant for T1D. This result

complements a recent regulatory QTL fine-mapping study that highlighted the same

variant as likely to be functional in T cells (Kundu et al. 2020). In addition, the T1D

association co-localizes with eQTLs for both ANKRD55 and IL6ST, mirroring results

in multiple sclerosis, Crohn’s disease and rheumatoid arthritis (Chun et al. 2017). The

region overlapping rs7731626 (G>A) loops to the IL6ST promoter in CD4+ T cells,

according to promoter-capture Hi-C data (Javierre et al. 2016). Although we did not

find evidence that rs7731626 (G>A) loops to the canonical transcription start site

for ANKRD55, nascent RNA-sequencing data suggest it overlaps the 5’ end of the

transcriptionally active region of ANKRD55 in human T cells (Danko et al. 2018),

consistent with a potential regulatory role.

We highlight the BACH2 region on chromosome 6q15 as an example of unbi-

ased QTL co-localization that leads to hypotheses for functional mechanisms driv-

ing variant-T1D association. We hypothesize that rs72928038 (G>A), the T1D-

associated allele, abolishes ETS1 binding at an enhancer that promotes BACH2 ex-

pression in naive CD4+ T cells. BACH2 encodes the transcription factor from the

BTB-basic leucine zipper family, BACH2, which has established roles in B- and T-cell

biology, including maintenance of the naive T-cell state (Tsukumo et al. 2013; Roy-

choudhuri et al. 2016). BACH2 haploinsufficiency has been shown to cause congenital

autoimmunity and immunodeficiency (Afzali et al. 2017), demonstrating that a func-

tioning human immune system depends on BACH2 expression in a dose-dependent

manner. In addition to cis-effects on BACH2 expression, rs72928038 (G>A) is asso-

ciated with altered expression of 39 distal genes in whole blood (Võsa et al. 2018),

including seven genes in autoimmune disease-associated regions. These observations

raise the hypothesis that the minor A allele at rs72928038 (G>A) increases T1D risk
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by reducing BACH2 expression in a precise cellular context (for example, the naive

T-cell state). This effect may lead to shifts in BACH2-regulated transcriptional pro-

grams, thereby altering T cell lineage differentiation in response to antigen exposure.

Previous studies demonstrated shared genetic risk across autoimmune diseases

(Onengut-Gumuscu et al. 2015; Cotsapas et al. 2011) and suggest the potential for

repurposing drugs to treat or prevent T1D. Our priority-index analysis identified 12

targets that have been the focus of clinical trials for the treatment of autoimmune

diseases. One example is IL23A, which has been successfully targeted in the treatment

of inflammatory bowel disease (Faegan et al. 2018) and psoriasis (Fotiadou et al.

2018). The IL-23 inhibitors are being explored for use in T1D (ClinicalTrials.gov

identifiers NCT02204397 and NCT03941132). Our results provide genetic support

for these trials. Similarly, JAK1, JAK2 and JAK3 were implicated in T1D etiology

in our analysis. JAK inhibitors are safe and effective in the treatment of rheumatoid

arthritis (Wollenhaupt et al. 2019) and ulcerative colitis (Sandborn et al. 2017).

Finally, this study presents the first well-powered convincing genetic evidence link-

ing interleukin-6 (IL-6), a cytokine with known roles in multiple autoimmune diseases,

to T1D etiology. The IL-6R complex consists of two essential subunits: the alpha

subunit (encoded by IL6R) and the signal-transducing subunit (encoded by IL6ST ).

Both the IL6ST and IL6R regions were identified here as T1D-associated at genome-

wide significance (Figure 3.13), and both IL6ST and IL6R were prioritized by the

Pi analysis. IL6ST is implicated by QTL co-localization and the lead T1D variant

near IL6R (rs2229238 (T>C)) is an eQTL for IL6R expression in whole blood (for-

mal co-localization was not assessed as the IL6R region is not densely covered by the

Immunochip). Based on the current evidence, we cannot say that IL6ST and IL6R

are T1D causal genes. The associations in each region may be unrelated and due to

different causal genes - for example, the association near IL6ST also co-localizes with

an eQTL for ANKRD55. However, we note that the humanized IL-6R antagonist
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monoclonal antibody tocilizumab is an approved treatment for rheumatoid arthritis

and systemic juvenile idiopathic arthritis, both of which share substantial genetic

effects with T1D (3.14, Onengut-Gumuscu et al. 2015), and a trial of this drug in re-

cently diagnosed T1D cases is underway (ClinicalTrials.gov identifier NCT02293837).

Surprisingly, we showed that the lead T1D variant near IL6R (rs2229238 (T>C))

tags a causal variant distinct from the nonsynonymous variant in IL6R, rs2228145

(A>C) (p.Asp358Ala), that is thought to drive the association in rheumatoid arthri-

tis (Okada et al. 2014), suggesting potentially different mechanisms altering disease

risk in this region. The recent success of anti-CD3 therapy, after 40 years of study

through experimental models and clinical trials targeting different patient subgroups

and time points relative to disease diagnosis (Gaglia and Kissler 2019), highlights

both the challenges and hopes for translating target identification to efficacious clin-

ical outcomes in T1D.
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Chapter 5

Future directions

In this thesis, I have explored the genetic basis of T1D through multiple collab-

orative projects, with my contributions highlighted in each Chapter. In Chapter

2, I evaluated HLA association with T1D in an African American cohort, identify-

ing shared and unique susceptibility alleles between African- and European-ancestry

populations. In Chapter 3, we discovered 36 new regions associated with T1D at

genome-wide significance and defined a total of 152 regions associated with T1D us-

ing a false discovery rate (FDR) approach. Through this work, we have begun to

clarify the genetic factors contributing to T1D risk beyond the canonical pediatric

onset Northern European population, which has been the focus of the vast majority

of T1D genetic studies to date. Finally, in Chapters 3 and 4, we defined likely causal

variants in 52 T1D-associated regions and reveal potential gene regulatory mecha-

nisms in five of these regions. Here, I will discuss how this work may inform future

efforts in T1D genetics and its role in precision medicine.

5.1 The future of genetic discovery in T1D

The fine-mapping ImmunoChip array had been used previously in a large-scale T1D

study in European-ancestry samples (Onengut-Gumuscu et al. 2015). We found 36
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new T1D loci due increased sample size, inclusion of genetically diverse subjects, and

imputation. In most of the novel loci, lead variants were common alleles with modest

effects on disease risk. However, fine-mapping revealed extensive allelic heterogeneity,

and at some loci with multiple causal variants, secondary associations map to low-

frequency large effect variants. For example, we identified protective low-frequency

nonsynonymous and splice variants in IFIH1 and TYK2 (MAF ranging from 0.5 to

5%, OR about 0.6).

Meanwhile, in African-ancestry subjects, we identified a low-frequency variant

with very large effect on T1D risk near the gene MTF2 (MAF = 1%, OR = 2.9).

A recent genome-wide meta-analysis of existing European T1D cohorts with two

population biobanks, from the United Kingdom (Bycroft et al. 2018) and Finland

(www.finngen.fi), identified 15 additional loci (Chiou et al. 2021). In this genome-

wide meta-analysis (Chiou et al. 2021), discovery exhibited similar trends to our

results (Figure 5.1), where all but one novel region had a modest effect size (OR

< 1.5), but fine-mapping revealed additional low-frequency variants with moderate

or large effects in known T1D regions. Common themes from our work and others’

can help frame expectations for future genetics studies of T1D.

www.finngen.fi
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Figure 5.1: European-ancestry allele frequency and effect size distribution for variants
associated with type 1 diabetes (T1D). Each point represents a lead variant from one
T1D-associated region. Variants are positioned according to their absolute effect
size (y-axis = log(OR)) and minor allele frequency (x-axis) in European case-control
analyses. red, associated with T1D for the first time in our meta-analysis; blue,
associated with T1D for the first time in Chiou et al. 2021; black, previously associated
with T1D.

In aggregate, these studies suggest that analysis of larger European cohorts will

primarily identify common variants with increasingly smaller effects on T1D risk.

This trend will likely persist even if European analysis is expanded to genome-wide

analysis, instead of fine-mapping approaches. Regardless of genotyping platform, we

are unlikely to identify additional common variants with moderate or large effects
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on T1D risk in European populations. However, our work suggests that we are only

beginning to scratch the surface of genetic contributions to T1D in African-ancestry

populations (Figure 3.22), which harbor more genetic diversity than any other human

ancestral populations (1000 Genomes Project Consortium 2015). The genetic archi-

tecture for T1D in other groups, including Hispanic- and Asian-ancestry populations,

are even less defined. Due to limited sample sizes, the effect size estimates for the non-

European groups in our study are imprecise (wide confidence intervals). Moreover,

our analyses were restricted to regions previously implicated in autoimmune disease

studies of largely European-ancestry cohorts (i.e., the ImmunoChip). Thus, there

may be many additional variants common in African-, Hispanic-, and Asian-ancestry

groups that contribute to T1D risk but have escaped identification due to their low

frequency or absence in Europeans.

Since the publication of our African-ancestry analyses (Onengut-Gumuscu et al.

2019), several published reports have highlighted the challenge of genetic risk predic-

tion portability across populations (Martin et al. 2019; Privé et al. 2021; Lam et al.

2019), and diverse approaches to address this issue have been proposed (Amariuta

et al. 2020; Wand et al. 2021). Ultimately, sufficient representation of diverse groups

in genetic studies will be required to develop generalizable genetic prediction models,

and to ensure equitable application of genetic medicine across all patients (Wojcik

et al. 2019b). Currently, large-scale efforts are underway to enrich for underrepre-

sented groups in large population-based studies (e.g., All of Us (All of Us Research

Program Investigators 2019), and Million Veteran’s Program (Gaziano et al. 2016)).

However, due to the low prevalence of T1D, population-based studies are typically

under-powered. Even the UK Biobank (Bycroft et al. 2018), which recruited about

500,000 subjects from the United Kingdom, contains fewer than 1,500 T1D cases

(Chiou et al. 2021; Thomas et al. 2018). Thus, accurate prediction of T1D across

the full spectrum of patient groups will require additional targeted efforts to generate
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cohorts of non-European T1D cases.

Larger studies will also identify rare variants with large effects on T1D. In particu-

lar, our work suggests substantial allelic heterogeneity at known T1D loci, frequently

with multiple rare variants modifying a common disease-proximal gene. However, as

our haplotype and fine-mapping analyses demonstrate, deciphering the causal vari-

ants in these regions is far from straightforward. This challenge is illustrated by the

chromosome region 2q24.2, which contains the established T1D gene IFIH1. Both

our analysis and and those of others (e.g., Chiou et al. 2021) identified allelic hetero-

geneity in the IFIH1 region, and both studies conclude that there are likely multiple

rare or low-frequency protein-altering variants in IFIH1 that each provide substantial

protection from T1D. However, the specific variants prioritized in our studies differed.

In particular, a nonsynonymous variant in IFIH1 that we had excluded from our anal-

ysis due to its low frequency (rs75671397, p.Asn160Asp, MAF = 0.002, OR = 0.35)

was prioritized by another group (Chiou et al. 2021). Due to the complexity of asso-

ciation in this region, and the imperfect nature of imputation, particularly of lower

frequency variants, it remains unclear which variants are causal. In regions like this,

with complex genetic architecture, direct observation (i.e., sequencing) of inherited

haplotypes may provide increased confidence in causal variant prioritization.

Together, these conclusions suggest that the largest gains in biological insight for

T1D will most likely come from analysis of groups previously underrepresented in

T1D research and using sequencing-based platforms that can accurately measure low

frequency and rare variation. Emphasis on these two goals may be synergistic in

some contexts. For example, linkage disequilibrium decays more quickly in individu-

als of African ancestry (Figure 3.2), which both makes it more difficult to accurately

infer rare and low-frequency variants using reference haplotypes (i.e., imputation is

harder) and makes it easier to resolve causal variants underlying an association (i.e.,

fine-mapping is easier). Thus, whole genome sequencing analysis of large numbers of
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T1D cases with African ancestry will facilitate both rare variant discovery and im-

prove fine-mapping resolution. Combined with the fact that rare and low-frequency

variants often have more potent effects on the causal gene through which they in-

fluence disease, this approach may provide an especially efficient path from genetic

mapping to biological insight.

5.2 Mapping T1D associations to causal variants

and genes

To prioritize potential regulatory mechanisms underlying non-coding T1D-associated

variants, we integrated T1D credible sets with chromatin accessibility profiles and

chromatin accessibility QTLs from CD4+ T cells. While this approach provided

hypotheses for molecular function of T1D variants in five regions, the majority of

T1D-associated regions remain unexplained.

More generally, while functional genomics has been useful for interpreting results

from genetic association studies (Cano-Gamez and Trynka 2020), only a small fraction

of autoimmune disease-associated loci are explained by co-localization with molecular

QTLs (Chun et al. 2017). Furthermore, experimental follow-up to confirm the proxi-

mal regulatory effect of a candidate causal variant (e.g., luciferase assays to evaluate

allele-specific enhancer activity) are time-consuming and low throughput. Consid-

ering a typical credible set at a GWAS locus contains up to dozens of potentially

causal variants, approaches to functionally test many non-coding genetic variants

for regulatory effects simultaneously will be essential for increasing the efficiency of

GWAS follow-up. In particular, massively parallel reporter assays (Melnikov et al.

2012; Arnold et al. 2013) and high throughput genome editing followed by single cell

sequencing (Fulco et al. 2016; Schraivogel et al. 2020; Pan et al. 2020) will likely play

a role (Morris et al. 2021). Integration of results from these perturbation experiments
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with existing molecular QTL data sets may provide a powerful and efficient pipeline

for systematically nominating causal genes and variants at GWAS loci.

5.3 Mechanisms for HLA association with T1D

This work supports common mechanisms underlying HLA-associated T1D risk across

ancestral populations. While most of T1D risk in the HLA region is likely mediated

by coding sequence changes in HLA class I and II molecules, additional mechanisms

may be at play. Recent work suggests that other genes or non-coding regulatory

variation could be underlying association with T1D. Variation in the BTNL2 gene,

located near the HLA class II genes, contributes to T1D risk even after controlling

for HLA DR-DQ genotype (Hippich et al. 2019). Using high-depth RNA-sequencing,

classical HLA alleles were found to be dynamically regulated, showing varying levels

of allele-specific expression in stimulated T cells over time (Gutierrez-Arcelus et al.

2020). Meanwhile, single cell analysis of T1D pancreas tissue identified elevated MHC

class II expression on exocrine ductal cells (Fasolino et al. 2021).

Our analyses were based on high-density SNP genotypes from the ImmunoChip

(about 5,000 SNPs in the 6 Mb MHC region), as well as, imputed 2-field HLA alleles

and HLA gene amino acid sequences. Higher resolution sequence-based HLA typ-

ing or improved imputation, using an expanded HLA imputation panel (Luo et al.

2020) or novel HLA imputation methods (Naito et al. 2021), may provide additional

insights about the basis of T1D risk in the region. However, due to the complex

linkage disequilibrium structure, causal variants and mechanisms are likely to remain

unclear even if it becomes possible to obtain entire nucleotide-resolution HLA haplo-

types from large numbers of T1D cases. Thus, creative approaches integrating diverse

data sets (e.g., RNA and protein level expression of HLA alleles, peptide-MHC com-

plexes, and TCR repertoires) from carefully selected patient-derived samples (e.g.,
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antigen presenting cells from the draining pancreatic lymph nodes), may be required

to elucidate the full spectrum of mechanisms underlying association between MHC

genotypes and T1D risk in human populations.

5.4 Precision medicine for T1D

As approaches to T1D risk stratification improve, we will have the opportunity to

prevent immune-mediated destruction of β cells in a large proportion of individuals

who would otherwise go on to develop T1D. T1D risk prediction has already been

improved by accounting for interaction effects and correlation structure of genetic

variants in the MHC region (Sharp et al. 2019; Zhao et al. 2017) and combining

genetic risk scores with other non-genetic factors associated with T1D (Ferrat et al.

2020). Genome-wide use of variation to predict genetic risk (i.e., Polygenic Risk Score

(PRS) and its transferability across ancestry groups is an active area of research.

Additional work to integrate available data to improve T1D prediction will increase

the value of genetic risk models in clinical settings (Chung et al. 2020).

Etiologically, T1D is a complex disease, influenced by many genetic and environ-

mental risk factors. However, the end result of this complex process is relatively

straightforward: individuals with T1D can no longer regulate their blood glucose be-

cause they lack functional β cells. The simplicity of the problem is confirmed by the

effectiveness of pancreas and islet transplantation. After pancreas transplantation,

many patients remain insulin-independent for multiple years (Gruessner and Gruess-

ner 2013). Allogeneic islet transplants, where islets are isolated from organ donors

and infused into the recipient, have also been effective in restoring normal glucose

control (Shapiro, Pokrywczynska, and Ricordi 2017). Unfortunately, in both cases,

recipients must take steroids and immunosuppressants to prevent transplant rejec-

tion. Due to the risks associated with chronic immunosuppression (Rama and Grinyo
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2010), patients are only eligible for pancreas or islet transplantation if they are already

receiving another organ transplant (e.g., a kidney transplant due to diabetes-induced

end stage renal disease) or if they have a dangerous condition known as “hypoglycemia

unawareness” (Gruessner and Gruessner 2013; Shapiro, Pokrywczynska, and Ricordi

2017).

Currently, researchers are working on approaches to differentiate patient-derived

stem cells into functional islets (Pagliuca et al. 2014; Yoshihara et al. 2020), which

could then be used for autologous islet cell transplantation. If successful, this ap-

proach could restore glucose homeostasis and insulin independence without introduc-

ing foreign genetic material into the recipient, eliminating the need for chronic im-

munosuppression. However, the same autoimmune process that precedes T1D onset

may recur and eventually destroy the transplanted β cells. Thus, a better under-

standing of the autoimmune mechanisms driving initiation of islet autoimmunity and

progression to T1D are still important for effective treatment of individuals with T1D.

Numerous therapeutic interventions are able to prevent autoimmune diabetes in

spontaneous animals models but have no effect on T1D progression in humans (Bow-

man, Leiter, and Atkinson 1994). This observation suggests a complexity or het-

erogeneity in T1D etiology in humans that is not recapitulated in existing animal

models. Defining the human genetic factors contributing to T1D risk may provide

opportunities to infer disease sub-types (Dahl and Zaitlen 2020) and tailor therapeutic

interventions to the patients who will benefit from them.

Already, studies have begun to identify correlations between T1D-associated HLA

types and molecularly- or clinically-distinct T1D subgroups (krischer20156; Inshaw

et al. 2020). The full spectrum of genetic variation contributing to T1D may eventu-

ally be leveraged in a similar way. This opportunity has been framed in the context

of coronary artery disease (Khera and Kathiresan 2017), motivated by the belief that,

in most patients, complex disease is driven by a “quantitative blend of causal fac-



163

tors.” Under this model, we may think of genetically complex diseases as a blend

of ingredients, where each ingredient is a molecular pathway involved in the clinical

phenotype. Since the genetic factors driving disease are dispersed widely across the

genome, it can be difficult to delineate the common set of pathways they disrupt.

Moreover, since most causal variants are in non-coding regions, assigning individual

variants to genes and pathways remains a challenge. However, as molecular tools are

developed to efficiently and systematically map disease-associated variants to causal

genes, we may eventually use genome-wide profiles to estimate, not just the risk of

disease onset, but also the relative contribution of relevant pathways to the disease

process in individual patients.

With these goals in mind, one can envision a future where abrupt, unexpected

T1D onset becomes rare due to population screening incorporating both genetic and

non-genetic susceptibility factors, close monitoring of high-risk individuals, and tar-

geted intervention upon early evidence of autoimmune activity. Meanwhile, in the

rare individual who develops T1D despite a low-risk profile, autologous islet cell trans-

plantation can replenish lost β cells and targeted immune intervention can prevent

disease recurrence.

In conclusion, the future of T1D research may be focused on genetic discovery

in populations previously underrepresented in T1D research, efficient mapping of ge-

netic risk variants to causal genes and cell types, delineating major disease pathways

and mechanisms disrupted by T1D-associated variants, and quantifying the relative

contribution of such pathways to the disease process for individual patients. Im-

plementation of this work will guide population screening, patient stratification and

sub-typing, therapeutic target identification, and participant recruitment to immune

intervention trials for T1D prevention.
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