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Abstract
Tidal effects play a significant role in the orbital evolution of compact white dwarf binaries and these effects change
significantly with eccentric orbits. I calculate the tidal responses and orbital evolution in close eccentric white dwarf
binaries inspiraling due to gravitational wave emission. We find that in a constant time lag model that white dwarf
spin rates approach a pseudosynchronous spin rate, that tidal heating rates have a clear shape depending on the
eccentricity and spin rates of the white dwarfs, and that the frequency evolution index increases significantly near
merger due to tidal effects. In a g-mode tidal model, I calculate the tidal response in specific models of Helium and

Carbon-Oxygen white dwarfs. I show clear resonances in the white dwarf spin rate and tidal heating levels.

I. INTRODUCTION

In this work I will consider tidal interactions in de-
tached white dwarf binaries inspiraling due to angular
momentum and energy loss from emission of gravitational
waves. I will consider two tidal models in this work: that
of a constant time lag using equations from Hut 1980 [1]
and one consisting of a sum over stellar g-modes as can
be found in [2].

This work is relevant in the context of broadening our
understanding of eccentric binary white dwarfs to ac-
complish two main goals: binary system identification
with LISA data and probing our understanding of white
dwarfs. We expect LISA to observe millions of stellar bi-
nary systems with many thousand being resolvable [3]. In
dense stellar systems like those in the centers of galaxies,
we expect to see many binary systems with histories of
interactions with other stars which could lead to a high
population of eccentric binaries [4]. It is important to
have waveforms for these eccentric binary systems ready
to aid in data analysis when LISA launches to help dis-
tinguish as many sources as possible. Specific eccentric
models are needed to match to observation with eccen-
tricities greater than e ≈ 0.2 [4]. Work is currently being
done to develop waveforms for eccentric WD binaries [5]
and this work aims to help build the understanding of
these systems to aid in producing these waveforms. Ec-
centric binary waveforms can be used to gather informa-
tion on the interiors of compact objects [6]. For white
dwarf research, this can help us determine interior com-
position and structure.

This work is organized as follows. Section 2 will mo-
tivate the rest of this paper through a review of the ob-
servational significance of this work. Section 3 will be
a consideration of a tidal model involving constant time
lag. Section 4 will include the work on a tidal model of
stellar g-modes.

II. OBSERVATIONS AND LISA

This work is motivated by the planned 2037 launch of
LISA. This launch will allow us to observe gravitational
wave sources at lower frequencies and gravitational wave
strain than those currently observable by current ground
based detectors. This section will be a review of the
LISA engineering as well as a brief section on white dwarf
binaries.

FIG. 1. This image (credit LISA Consortium) shows the or-
bital overview of the LISA constellation – three spacecraft
forming a roughly equilateral triangle with sides of about 2.5
million km.

The general design of LISA is shown in Fig. 1 and Fig.
2 [3]. Fig. 1 shows the overall orbital model and Fig.
2 shows a conceptual mockup of each spacecraft. The
spacecraft are arranged to measure the change in distance
between test masses in each science arm of the constel-
lation, a total of 6 test masses. This is done through a
combination of local interferometers to accurately deter-
mine the position of each test mass within the spacecraft
and lasers beamed between the spacecraft. Due to the
large separation, it is not possible to reflect the lasers
between the spacecraft. The telescopes in each arm col-
lect the signal from the opposing lasers, this signal is
then sent to the optical bench through an optical fiber
cable and a fresh signal is sent out. The received and
transmitted light pass through the same aperture. This
signal is phase-locked to the initial signal with a fixed
offset frequency. To limit back-scattering of the trans-
mitted light from interfering with the received signal an
off axis design with 6 curved reflectors requiring a sur-
face figure accuracy of about 30 nm. Each optical bench
consists of a “science” interferometer which beams sig-
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FIG. 2. This image (credit LISA Consortium) shows a con-
ceptual mockup of the scientific equipment of one of the space-
craft in the constellation. It features two identical arms which
each include a roughly 30 cm diameter telescope, an optical
bench, and a Gravitational Reference Sensor (GRS). All three
spacecraft are identical. [3]

nals between spacecraft, a local interferometer to mea-
sure the position of the test mass, and a reference inter-
ferometer which uses fractions of the two local beams to
make beat signals to measure the changes in light travel
time between the spacecraft. These optical benches are
made out of low-expansion glass-ceramic material to limit
path length differences due to temperature variations in
the spacecraft. Optical benches with the required align-
ment precision and stability in orbit were demonstrated
in LISA Pathfinder [3] [7]. The optical benches use Dif-
ferential Wavefront Sensing (DWS), as was demonstrated
with LIGO [8], to measure the angles between the inter-
fering wavefronts. This allows for pitch and yaw measure-
ments of the spacecraft relative to their test masses and
between the spacecraft. This data is sent to the Drag-
Free Attitude Control System (DFACS) which uses cold
gas tanks (discussed at the end of this section) to correct
for undesired movement of the spacecraft. An Electro-
Optic Modulator imprints occasional weak modulations
on the transmitted light which allows for transmission of
clock noise, time synchronization, and measurement of
the absolute distance between spacecraft. This allows an
actuator to vary the time dependent point-ahead angle
which is required due to the point ahead angle of about
eight seconds [3]. The observational data is beamed to
the ground each day by one of the spacecraft. This has
been calculated to take less than 7.2 hours each day and
the daily contact time with a single ground station can
last about 8 hours, allowing for a full data transfer each
day with a single ground station. Each spacecraft can
maintain an alignment to meet the 7.2 hours per day
goal for roughly 3 days. The plan is to rotate through
the constellation with each spacecraft transmitting for 3
days at a time and a general repointing of antenna on all
spacecraft every nine days.

FIG. 3. This image (credit LISA Consortium) shows a de-
tailed diagram of the GRS.

Next we look at the interior design of the GRS. An
illustration of the current design is shown in Fig. 3 [3].
The GRS is in a vacuum housing to prevent gas inter-
actions with the test mass. The test mass itself is a
roughly 46 mm, 2 kg gold plated gold and platinum cube
surrounded by a gold plated electrode housing. These
materials are chosen due to low magnetic susceptibility,
electrostatic homogeneity, inert surface, and high den-
sity. The electrode housing is carefully constructed to
allow for 6 degree of freedom rotational and translational
capacitive sensing and force/torque application to coun-
teract spurious forces on the test mass. The goal is for
the test mass to only be affected by the force of gravity
and thus perfectly follow geodesics. Other planned mea-
sures to reduce spurious forces include: a 3-4 mm gap
between the test mass and electrode housing to reduce
gas effects and electrostatic effects, all AC voltage sens-
ing coupled to DC and low frequency electrostatic fields,
high thermal conductivity to reduce temperature varia-
tions, nearly symmetric geometry around the test mass,
and UV LEDs to stimulate photoelectron emission from
the test mass or electron housing to balance excess charge
from cosmic rays. There are also numerous detection and
diagnostic systems in the system to aid in maintaining a
low noise level in the test mass movement [3]. A test
of the noise level of movement of a single test mass was
tested in LISA Pathfinder and is shown compared to the
goal level for LISA science goals in Fig. 4 showing that
the goal noise level has been demonstrated [9]. LISA
pathfinder was launched and was designed specifically to
test this test mass noise. A mockup of the core science
module for LISA Pathfinder is shown in Fig. 5. The
design consisted of two test masses in two gravitational
reference sensors connected by an optical bench designed
to precisely measure the distance between the two test
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FIG. 4. Noise level for test mass movement from LISA
Pathfinder (credit LISA Consortium).

FIG. 5. Conceptual design for the core of LISA Pathfinder
designed to measure the distance between two freely floating
test masses (credit LISA Consortium).

masses. This gave the data use in Fig. 4 for a single test
mass by dividing the LISA Pathfinder noise level by 2
[9].

Next, the spacecraft is designed to shield the test mass
from external forces. This is accomplished in two main
ways: a large solar panel to keep the rest of the spacecraft
in shade to limit temperature fluctuations and to power
the electronics and a large cold gas reserve to counteract
solar wind effects. A conceptual design of the space-
craft is shown in Fig. 6 [3]. The gold gas propulsion
system is planned to counteract radiation pressure and
other anomalous forces to follow the test masses in their
free fall in each interferometric arm. As the test masses
are in free fall the spacecraft will be allowed to drift apart
from each other. We expect to see relative velocities up
to ± 5 m/s and absolute distance changes up to 10,000
km. These distance changes however are quiet at the
mHz frequencies that LISA will be observing at and thus
won’t affect science operations [3].

FIG. 6. Conceptual design for each spacecraft showing the
cold gas storage and solar panel. The cold gas storage tanks
are planned to hold roughly 90 kg of cold gas to allow for
a 10-year mission. The solar panel is a 2.9 flat panel and
is designed to keep the rest of the spacecraft in shade at all
times (credit LISA Consortium).

FIG. 7. Mission constraints on a sky-averaged gravitational
wave strain sensitivity from an analysis of each observational
component and expected strain for different observational
sources (credit LISA Consortium).

A detailed look at the expected sensitivity for LISA
is shown in Fig. 7 [3]. This figure shows a clear and
high frequency dependence on observability of different
phenomena. The galactic background strain level is from
the very high amount of galactic binaries expected to be
observed. There are so many galactic binaries that it is
expected that they will be unresolvable at frequencies less
than a few mHz and will thus form a ’confusion signal’
that will interfere with observations at these frequencies.
This has been an important area of research in recent
years with LISA mock data challenges being performed
to prepare for LISA from a data analysis standpoint and
to develop expected signal waveforms. Another impor-
tant note is the modulation and increase in the obser-
vatory strain sensitivity above roughly 30 mHz. This
occurs when the gravitational wave wavelengths become
shorter than the arms of the constellation causing partial
cancellation of the signal [3].
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III. CONSTANT TIME LAG

Here we consider the effects from a tidal model with
a constant Time lag as is explored in Hut (1981). This
model leads to orbital evolution equations:
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Here the 12 means the effect on star 1 from star 2. m1

and m2 are the stellar masses with m = m1 +m2. The
radius of gyration rg is defined as I = M(rgR)2 where
I is the moment of inertia and q1 = m1/m2 is the mass
ratio. τ1 is the tidal time lag of star 1, k is the tidal
love number, e is the eccentricity, Ωi are the spin rates of
each star, n = (Gm)1/2(a)−3/2 is the orbital frequency,
and the fi expressions are given as:
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It is easy to get the equations for a21 and e21. We then
use the effects from the emission of gravitational waves
[10]:
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We can then find the total complete orbital evolution
equations for a and e as ȧ(t) = ȧ12 + ȧ21 + ȧgw and
ė(t) = ė12 + ė21 + ėgw.
With these equations in hand I was able to run or-

bital simulations in python using the built-in integrator
solve ivp. The simulations were set to evolve based off
of time steps, starting at a set initial orbital frequency,
eccentricity, and WD spin rates and allowed to evolve
until Roche Lobe overflow of either star. To determine
the point of Roche Lobe overflow the formula for Roche
Lobe radius from Eggleton (1983) was used:

rL =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(11)

Three cases of interest were chosen to explore: the ratio
of the WD spin rates and the orbital frequency, the tidal
heating rate, and the GR frequency evolution power-law
index. As is discussed in [10], we can write the frequency

evolution as ḟ = αfβ . Then we can plot the index ff̈/ḟ2

= β to find the power law relation. For circular orbits
and with no tidal effects we expect an exact value of
β = 11/3. To calculate the tidal heating rate we use
the equation from Hut (1981) [1]. This gives the heating
luminosity of star 1 as:
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First we begin with the results for the WD spin rates.
These can be seen plotted in Fig. 8 and Fig. 9. These
plots are parametrized by an initial tidal quality factor
defined as τ1 = P (0)/(2πQ0) where P(0) is the initial
orbital period. The simulations are run for initial tidal
quality factors of 108, 109, and1010. This is motivated
by observational evidence of the WD binary J0651 [11].
When making the plots shown in this section P(0) was
set to 10 hours. An important point to consider when
looking at the white dwarf spin rates in this model is
when Ω̇ = 0. As can be seen in Eqn. 3, Ω̇ scales with
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FIG. 8. Ratio of WD spin rates to orbital frequency n for
a variety of different tidal quality factors. Both WDs in this
simulation are carbon-oxygen white dwarfs with a mass of
0.6M⊙, thus we have only plotted the spin of the first WD as
the spins are the same. The initial eccentricity is set to 0.4.
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FIG. 9. Ratio of WD spin rates to orbital frequency n for
a variety of different tidal quality factors. Both WDs in this
simulation are Helium white dwarfs with a mass of 0.2M⊙,
thus we have only plotted the spin of the first WD as the
spins are the same. The initial eccentricity is set to 0.4.

Ω – thus we can look for a pseudo-synchronous spin rate
such that Ω = Ωps ⇒ Ω̇ = 0. This gives:

Ωps = n
f2(e

2)

(1− e2)3/2f5(e2)
(18)

This pseudo-synchronous spin rate is plotted on Fig. 8
and Fig. 9 to compare to the WD spin rates. From these
two plots one can see that the WD spin rates approach
the pseudo synchronous rotation rate. As the eccentricity
dies out due to the emission of gravitational waves we
see that Ωps dies out to nΩ, as we expect. Stars with a
smaller tidal quality factor grant larger time lags which
increases Ω̇ which allows the stars to synchronize faster.
The large dependence on stellar radius in Ω̇ allows the
lighter helium white dwarfs to synchronize more quickly
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FIG. 10. Tidal heating rates for two white dwarfs for a variety
of different tidal quality factors. The first white dwarf has a
mass of 0.2 solar masses vl: use M⊙ for solar mass and
the second a mass of 1.0 solar masses. The initial eccentricity
is set to 0.8. The initial WD spin rates are set to 10−4.

than their heavier carbon-oxygen counterparts given the
inverse relation between white dwarf mass and radius.
This expected behavior is clearly seen when comparing
the two plots.

Next we take a look at the tidal heating rate of each
white dwarf. An example tidal heating plot is shown in
Fig. 10. There are a few important details that can be
seen in this plot. First we look back at the tidal heating
equations For a small ratio Ω/n we get that x is very small
which grants A − 2Bx + Cx2 ≈ A. As the WD rapidly
spins up we then get A−2Bx+Cx2 ≈ A−2Bx so we get
a rapid decrease in the heating rate. This is seen more
easily in the 0.2 solar mass WD as it is able to spin up
faster and thus has a sharper drop in heating during this
initial period. This effect is inversely related to the ini-
tial tidal quality factor and thus we see sharper drops for
smaller initial quality factors. We then see a slow ramp
up and then a decrease in heating power around 1 mHz.
This is also easily explained by the tidal heating equa-
tions earlier in this section. The main effect here is that
the tidal heating rate is related to the semi major axis by
a factor a−6 so as the semi-major axis decreases we see
an increase in the heating rate. Then for a WD spinning
near the pseudosynchronous frequency, as the eccentric-
ity shrinks, the term A − 2Bx + Cx2 approaches zero.
This causes a drop in the tidal heating rate - this can be
seen for the 0.2 solar mass WD but not the 1.0 solar mass
WD as the former is near pseudosynchronous spin when
the eccentricity falls below about 0.2 while the heavier
WD is not. The WD spin rate never fully reaches pseu-
dosynchronous spin rate, the spins lag behind by a small
margin that depends on the tidal time lag. A greater
time lag leads to a higher value for Ω̇ which allows for
a spin closer to pseudosynchronous. We see this in Fig.
10 where the lines that have a higher initial tidal quality
factor and thus a lower time lag have greater tidal heat-
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FIG. 11. Frequency evolution index in a system of two 0.2
solar mass white dwarfs under a range of initial conditions.
The effects in this plot are dominated by the effects from the
emission of gravitational waves and thus we see largely what
we expect for a pure GR case.

ing as the spin rate as not as close to pseudosynchonous
and thus the term A−2Bx+Cx2 is larger. This effect is
greater than the linear dependence of the heating on the
time lag. This is what causes the higher initial quality
factor lines to surpass those with lower quality factors at
later times.

Once the eccentricity sinks to a low enough level where
A,B,C ≈ 1 and the WD spin has sufficiently neared the
pseudosynchronous spin rate then the factor A− 2Bx+
Cx2 becomes constant and the only change in the heating
rate is from the change in semi-major axis. This leads
to the linear line on the plot for the 0.2 solar mass WD
models at later times.

Next, we look at the frequency evolution index. An
example plot is shown in Fig. 11.

IV. TIDAL RESONANCES

We now consider a different tidal model consisting of
a sum over stellar g-modes. Our orbital evolution equa-
tions comes from Weinberg et al. (2013) [12]. We get:

ȧ = −4a
mj

mi

∑
a,l,m,k

(
Ri

a

)2l+1

(WlmIalmX lm
k )2

×
|ωa|kΩγa

(|ωa| − kΩ)2 + γ2
a

(19)
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where Ylm are the spherical harmonics. Wlm are nonzero
only if l-m iz even. In this work we only consider the
quadrupolar modes so the only nonvanishing values of
Wlm are W20 = −

√
π/5 and W2±2 =

√
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the linear overlap integrals and are given by:
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k are used as an expansion

of the time-dependence of the Keplerian orbit and are
defined as:( a
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Where D is the orbital separation. It is important to
note that the Hansen coefficients are only a function of
eccentricity and thus must only be computed once in a
simulation for a circular orbit. ωa are the mode angular
frequencies and γa are the mode damping rates for the
individual g-modes. The sum over a,l,m, and k can be
broken down using these components. We are limiting
our scope to quadrupolar modes so we fix l=2 and sum
over m=-2,0,2 as Wlm is vanishing otherwise. Our sum
over k is limited by the Hansen coefficients. The Hansen
coefficients are only significant for a small number of k
near zero. The limiting case of k can be characterized
as kcrit = (1− e)−1.5. For the work here k was summed
from the integers nearest −18 ∗ kcrit and 22 ∗ kcrit. A
plot showing the Hansen coefficients for this range of k
for eccentricities of 0.0,0.3,0.6,and 0.9 are shown in Fig.
12 The sum over a is the sum over the g-modes. The
g-modes drop out at higher values of a. For this work
the first 500 modes were included. The mode values: ωa,
γa, and Ialm were reconstructed from fits in Table 3 of
Burkart et al (2021). Next we note that the modes in
[12] are given by:
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e−ikΩt (26)

which gives the rate at which mode energy damps to heat
as:
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(
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FIG. 12. Hansen coefficient values for eccentricities of 0.0,
0.3, 0.6 and 0.9 in the order: top left, top right, bottom left,
bottom right. These values are for k in the range −18(1 −
e)−1.5 to 22(1 − e)−1.5 which is what was used in this work.
Note that only k > 0 with a nonzero Hansen coefficent in the
circular case is k = 2.
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2
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With

U (k)
a =

mj

mi

∑
lm

WlmIalmX lm
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(
R

a
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(29)

This grants the tidal heating rate which I will discuss a
little later.

When running simulations for this tidal model a few
issues became apparent. Most of these issues come from
the term:

1

(|ωa| − kΩ)2 + γ2
a

(30)

that appears in the orbital evolution equations. The im-
portant note here is that the mode damping rates are
many orders of magnitude smaller than the mode fre-
quency and orbital frequency. Thus we get an equilib-
rium tide that is many orders of magnitude smaller than
the resonant tide when ωa ≈ kΩ and this factor becomes
roughly 1/γ2

a. In the orbital evolution equations, the
tidal term is several orders of magnitude smaller than the
gravitational wave term when at equilibrium and then
several orders of magnitude larger when at resonance.
The built in python integrator solve ivp struggles with
this type of equation. The integrator takes larger and
larger steps as the equations behaves as expected. The
gravitational wave term follows a clear form and the in-
tegrator takes large steps as it is able to predict what
the gravitational wave term will look like at higher fre-
quencies. As the integrator takes big time steps it begins
to completely miss tidal resonances – the main object of
study. Then, if forced to take small time steps and with
a low accuracy threshold the runge-kutta integrators in

solve ivp fail to integrate the resonance and the program
quits. Switching the integrator to an LSODA method
was able to fix the problem of the code not finishing but
there was still the question of how to manipulate the two
remaining levers – the error tolerances and setting a max-
imum step size – to ensure that each resonance is properly
accounted for. Here we run into the issue of integration
time. Each time step takes on the order of a second as
the Hansen coefficients must be computed every time and
the sum over a,l,m,k has over 50,000 terms. One can try
to set the maximum step size to be thinner than a res-
onance by solving for the orbital frequencies where the
tidal and gravitational wave terms in the expression for
ȧ for a fixed mode and finding the difference in frequency
between these two steps and then using Kepler’s third law
to convert to a step in a and then using the gravitational
wave term to convert to a timestep. Doing this properly
grants a small timestep – on the order of 103−−104 which
would take years to run. Similarly, trying to get the de-
sired effect by lowering the error tolerances provides no
meaningful effect when the error tolerance setting allows
the simulation to finish in less than a week. We need to
then find a combination of these two effects that gives
the desired plot. The goal here is to find a plot that
looks correct and has all of the resonances that we want
and that doesn’t change when we significantly improve
the accuracy of the simulation beyond that point. First,
we need to consider what “looks” correct. One impor-
tant diagnostic tool is that noted in Fig. 12. The only
k > 0 where the Hansen coefficient is nonzero is k = 2
from the term |ωa| − kΩ in Eqn. 26 we see that to have
a resonance we need a positive k and so we see that the
only term that can have a resonance in a circular orbit
is the term with k=0 so |ωa| = 2Ω. This means we can
look at the mode frequencies and predict exactly where
we will see resonances. As the height of the resonance
is almost entirely determined by the mode damping fre-
quencies which are similar for modes with frequencies
that are close to each other we expect each resonance to
be a similar size (in the circular case), thus we just need
to make circular orbital simulations and pay attention
to the behavior of the resonances. Fig. 13 shows the
difference between an incorrect plot and a correct one.
It was found that setting the absolute and relative error
tolerances to 10−8 and the maximum step size to 1010

gave the desired plots. Now, with this in hand we can
analyze plots and compare them to those in Section III.
We begin by looking at the spin rate of the white dwarfs.
The circular case can be seen in Fig. 13. An eccentric
case is shown in Fig. 14. This shows an example of two
WDs spinning up from zero initial spin with an initial
eccentricity of 0.4. At higher eccentricities we have more
values of k with significant Hansen coefficients and so we
expect more resonances. As the eccentricity dies out, so
do these higher Hansen coefficients and we expect less
resonances. We see this exact behavior in Fig. 14. We
see lots of smaller steps in between the main resonances
we can see in both figures and then as the eccentricity
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FIG. 13. White Dwarf spin rate vs. orbital spin rate in the
circular case. These plots show the difference between a code
that correctly accounts for resonances vs one that doesn’t.

FIG. 14. WD spin rates for two identical 0.2 solar mass WD
models.

dies out over the frequency space we see less and less of
these smaller steps in WD spin rate.

Next, we look at the WD heating rate given in Eqn.
28. An example heating plot for 2 0.2 solar mass WDs
in a circular orbit is shown in Fig. 15. Here we can see
the resonances that we expect to see from the resonance
term in the heating equations. As this is a circular orbit,
it is easy to check that the resonances are exactly where
we expect them to be. We can see an equilibrium heating
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FIG. 15. WD heating for a circular orbit with a system of
two identical 0.2 solar mass Helium WDs.
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FIG. 16. WD heating for a circular orbit. Star 1 is a 0.2 solar
mass helium WD and star 2 is a 0.6 solar mass carbon-oxygen
WD.

term of about 10−6 solar luminosities for each WD and
resonant heating terms of 106−108 solar luminosities. We
can also see some small spikes in between the resonances.
It is believed that these are unphysical and are the re-
sult of some failing of the integrator. There is nothing
in the equations that would predict small increases like
this for a circular orbit. Next we want to look at what
the heating rates look like for a system of two different
WD models. Here we look at a binary of one 0.6 solar
mass carbon-oxygen WD and one 0.2 solar mass Helium
WD. This is shown in Fig. 16 There are a few important
things to note in this plot. First we see that the equi-
libirum heating rate for the carbon-oxygen WD is much
higher and exceeds a solar luminosity at higher frequen-
cies. This plot also correctly hits all of the resonances
that we expect in a circular orbit for a carbon-oxygen
WD. The concern that can be seen in Fig. 15 reappears
here – there are anomalous spikes in heating that appear
to be unphysical and have no width. Due to the thinner
width on the carbon-oxygen resonances it can be hard
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to tell that two of the spikes at lower frequencies are of
this nature. One right aboe the first anomalous spike in
WD 1 and one immediately to the right of the first WD
1 resonance after 0.002 Hz. We should also note that the
resonances are much thinner for the carbon oxygen WD
than for the helium WD. This is due to the much higher
equilibrium heating term so that the resonant term of any
single mode must be much closer to resonance to domi-
nate. The resonances for the carbon-oxygen WD are also
smaller as the damping rate for the carbon-oxygen WD is
larger. At the modes seen here the mode damping rates
for the carbon-oxygen WD are roughly 2 orders of mag-
nitude larger than the ones for the helium WD model.
Finally we note that a couple of the resonances for the
helium WD are smaller than expected. This is probably
due to an integration error as the integrator struggles
with two different WD models. These simulations will
be retested again with stricter error tolerances to test
this hypothesis.

When looking at the heating plots Fig. 15 and 16,
one notices the significant heights of the heating peaks.
We want to compare these to the Eddington Limit. The
Eddington Luminosity is given by:

Ledd =
4πGMmpc

σT
≈ 3.2 ∗ 104

(
M

M◦

)
L◦ (31)

We can see in these plots that the heating at resonance
exceeds this Eddington Limit, sometimes by many orders
of magnitude. These WD models all are made out of
atoms with twice the number of nucleons than electrons
and so we would need twice the Eddington Luminos-
ity to drive an outflow but this won’t make a difference
when the tidal heating incites a Luminosity several orders
of magnitude above the Eddington Limit. These sharp
peaks above the Eddington Luminosity are a breakdown
of our linear model near resonance. As the frequency
nears the resonant frequency the evolution equations be-
come highly nonlinear and our linear approximation is
no longer appropriate. Here I will show a quick demon-
stration of this effect. We consider a circular orbit of 2
Helium WD models. Then the resonant frequency for a
mode is given by ωa = 2Ω. We look at the mode away
from resonance:

|qa| ≈ U (2)
a

ωa

ωa − 2Ω
(32)

Here

U (2)
a ≈ 3Ia

(
R

a

)3

(33)

We consider that the resonance here is given by ωa =
2Ω and define the frequency difference from resonance
as ∆ = ωa − 2Ω. We then constrain our linear order
approximation to be when |q| ≤ 1. Then we enter the
nonlinear regime when |q| = 1 or when

∆ ≈ 3ωaIa

(
R

a

)3

(34)

For mode 10 in the He5 model we have: ωa = 0.024,
Ia = 9.8 ∗ 10−5, and at resonance (R/a)3 = 0.014. This
grants ∆ = 9.9 ∗ 10−8 Radians/s. For this mode the
damping rate is given by γa = 4.8 ∗ 10−15. We see a
significant resonance spike when ∆ ≈ γa and we see a
breakdown of our linear order approximation at a ∆ 7
orders of magnitude greater than this. Thus we cannot
fully trust our results this close to resonance. This ex-
plains these anomalous heating spikes in Fig. 15 and
Fig. 16. In further work these nonlinear effects must be
accounted for. A discussion of this is available in [2].

V. CONCLUSION

This work presents a number of results for these two
different tidal models. It makes predictions for what we
will see for the WD spin rate and tidal heating for each
model. For the case of constant time lag we also make
predictions for the frequency evolution index of the orbit.
This is one way we will be able to directly observe the or-
bital behavior through gravitational waves directly. We
also see that we expect significant tidal heating luminos-
ity close to merger for both models and super-Eddington
luminosities near resonances in the second model. We
see that in the first model the WD spin rates approach
a pseudo-synchronous spin rate depending on the eccen-
tricity that falls to the orbital frequency for circular or-
bits. For the second model we see resonance steps in
frequency as the WD spin rates attempt to keep up with
the orbital frequency evolution. We do not expect to see
the WD spin rates reach the orbital frequency as we did
not include “resonance locking” as seen in [2]. In this
work so far the mode quantities: ωa, Ialm, and γa were
taken to be constants of each mode. This approxima-
tion falls apart for higher WD spins and there we would
need to account for the rotating reference frame effects
on these quantities. Further work on this project will in-
clude these effects and provide a more accurate model of
tidal effects in regimes with highly spinning white dwarfs.
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