
Reverse Engineering: Its Critical Role in Computer-Based Forensic 
Investigations

CS4991 Capstone Report, 2024

Michael Kirk
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
mlk4zyg@virginia.edu

ABSTRACT
During my internship at a defense contracting 
firm, we recovered a file from a corrupted 
system that had no metadata signifying what 
it was or how it worked. I utilized a suite of 
forensic tools to reverse engineer the file. I 
analyzed the binary of the file in a virtual, 
secured environment and identified it as an 
executable file. I then used Ghidra to reverse 
engineer the program and determine how I 
could interact with it. After reverse 
engineering multiple subroutines without 
much success, I analyzed the structure of the 
program subdirectory. Ultimately, I 
determined that the file was a corrupt Docker 
container and I rebuilt it to be functional for 
further analysis. Reverse engineering was 
critical to the forensic investigation 
conducted. Future work should include 
constructing a program that automates the 
process of rebuilding a Docker container.

1. INTRODUCTION
It is May of 2017 and suddenly, across 150 
countries, hundreds of thousands of computer 
systems are left nonfunctional. Some of these 
systems belong to major companies like 
FedEx and Nissan, while others are critical 
government infrastructure, like the UK’s 
National Health Service systems. If it were 
not for reverse engineering, this disaster may 
have continued until it affected most 
computer systems in the world.

Reverse engineering (RE), an area of digital 
forensics, is the process by which a 
cybersecurity professional analyzes a system 
or software to document and understand its 
functionality and inner-workings without 
accessing its source-code. RE is an important 
field in cybersecurity because it helps identify 
security flaws in vulnerable systems, can 
determine a way to combat malware, and can 
aid in the forensic investigation of systems. 
RE is used to analyze potentially malicious 
software without any prior information on 
what it is or how it works. 

The project I worked on this summer is 
known as the Antioch Project. It is a digital 
forensics challenge focused on RE that is 
meant to reflect real-world scenarios. I was 
given a potentially malicious file called 
“antioch” and with no other information, was 
told I needed to determine the purpose of the 
file and document any information I 
uncovered.

2. RELATED WORKS
There are large bodies of work currently 
published on RE and its role in combatting 
cyber threats in the past. These stories and 
publishing give good insight into the 
importance of RE and how it fits into cyber-
security.

One of the most infamous examples was an 
attack called WannaCry. WannaCry was a 



international cybersecurity crisis in May of 
2017, in which 200,000 computer systems 
across 150 countries were hit by the 
WannaCry ransomware virus. Marcus 
Hutchins, a cybersecurity researcher, was 
able to RE the program and find a “kill 
switch” that halted the attack (Cloudflare, 
n.d.)

In 2020 the SolarWinds hack was uncovered 
and was found to be one of the most 
sophisticated and widespread cyberattacks 
ever conducted. Code was injected into 
software updates of a program used by large 
government agencies and companies. It was 
through reverse engineering this code that the 
hack and its true extent and purpose were 
understood (Temple-Raston, 2021).

3. METHODS AND PROCEDURES
A file was given as a download, titled 
“antioch.” The goal was to discover a “flag” 
somewhere in the challenge, which in a real-
world scenario would likely represent some 
critical information. There was no file 
extension and no other information given 
with the file. It was placed in a hex-editing 
program to view the raw data. The data was 
not obfuscated, so the file was quickly 
determined to be a “tarball,” a standard type 
of archive utilized on Linux-based systems. 
The tarball was then extracted into its own 
directory.

The extracted contents of the tarball included 
31 folders with alphanumeric names, 
seemingly hash values, and three 
miscellaneous files. Upon inspection, 30 of 
the folders had identical layouts, each 
containing two files with key-value pairs 
(“json” and “VERSION”). One of the 
miscellaneous files in the root directory 
contained a key-value pair titled “antioch,” 
with the value of one of the folder names. 
This also happened to be one folder not 
identical to the other 30. It contained a file 

called “antioch,” which after inspection in a 
hex-editor, was determined to be an 
executable file.

A secure virtual environment was created for 
the execution of the antioch file. Text is 
printed to the terminal referencing 
“AntiochOS” and version-data, seeming to 
resemble some form of operating system (OS) 
that is interacted with through terminal. 
“Type help for help” is also printed; however, 
typing “help” results in the string output 
“Available commands: help – print this help.” 
and no further output. Typical Linux 
commands, such as “ls,” “cd,” etc., seem to 
have no effect on the program.

To determine the functions of AntiochOS, the 
executable file is put into Ghidra, a 
disassembler, which allows viewing of the 
program’s assembly code. The program is 
also placed into a debugger, which enables 
“live” analysis of the program while it is 
running. After determining the lines that 
process the user-input using the live 
debugger, the disassembler was used to 
statically analyze the code of the program. 
The user-input was compared to a sequence 
of memory addresses, which were determined 
to be the string-representations of acceptable 
user-inputs to the program. The commands 
“consult” and “approach” were found.

Executing “consult” results in a string of 15 
repetitions of the character “V” for multiple 
lines. “approach” prompted the user with a 
sequence of questions that referenced a scene 
from the movie “Monte Python and the Holy 
Grail.” After inspecting the program, it was 
found that the answer to the first question 
always had a corresponding correct 
combination with the third question. For 
example, “{John, (anything), Blue}” and 
{Alice, (anything), Green}” may be answer 
combinations, but “{John, (anything), 
Green}” would not be. Using a scene from 



the movie, the first answer combination was 
determined, and an integer was printed. 
Several other inputs were found for the first 
question after examining the folders that were 
extracted from the initial tarball. Each of the 
30 other folders had a key-value in their json 
file with a name that could be used for the 
first input, each a name of a character from 
the movie. The problem that arose was trying 
to determine the corresponding answer to the 
third question. At this point, the purpose of 
the integer output was still unknown.

Multiple approaches were used to try to 
determine the corresponding answer pairs. It 
was found in the assembly that the integer 
would be printed from a mathematical 
function only after the first and third answers 
were hashed using an MD5 function, and 
compared to the folder name where the 
answer was found. Finally, an elegant 
solution was found when the program was 
patched to override the code that processed 
user-input. Instead of checking the condition 
of whether the hash was the expected value, 
with the developed patch the program would 
skip the comparison and continue to the code 
that printed the integer value. Using this 
approach, a series of integers 1-30 were 
determined for each of the 30 names input to 
the program.

After consideration, it was determined that 
the remainder of the functionality of the 
program would likely be discovered from the 
“consult” function and its true purpose, as 
well as what the 30 folders were meant to do. 
Upon extensive inspection of the folders and 
substantial research, it was finally determined 
that the tarball was a Docker container. 
Docker is a technology that allows for the 
containerization of applications: essentially 
packaging an application with all its 
dependencies to give it minimal footprint and 
make deployments of the application 
consistent and efficient. Each of the folders 

were “layers” to the Docker container, which 
stored information about updates to the base 
program. Layers are placed onto a container 
in a specific order, which was the purpose of 
the integer numbers.

4. RESULTS
A sample operational Docker container was 
analyzed to determine the proper structure of 
a container and how layers are applied. After 
modifying the manifest file in the root 
directory and inputting information on the 
layers and in what order to apply them, the 
container was successfully loaded into the 
Docker software and run. Upon execution of 
the “consult” function, ascii-art of the 
program’s “flag” was now printed, signifying 
completion of the challenge. At this point, the 
container was fully rebuilt and functioned as 
intended.
 
5. CONCLUSION
The Antioch project was a challenging RE 
project that allowed me to explore numerous 
methodologies in digital forensics. I had 
previously never used a disassembler and had 
only used a debugger when writing my own 
code to fix issues. My knowledge with hex 
editors was more substantial, since I had 
completed an RE project on archive files the 
year before; however, I still found the 
Antioch project expanded my knowledge 
further. 

The project was very challenging, and there 
were times where I spent entire 8-hour days 
staring at the same few lines of assembly 
without making progress. I feel it was through 
this process, though, that I learned one of the 
lessons my mentors emphasized the most in 
RE: patience, practice, and perseverance. 
There is always an answer to how the code 
works: computer programs are deterministic 
in that way. It is a matter of having enough 
patience and perseverance to attain the skills 
to find the answer.



6. FUTURE WORK
Docker as a service is growing in popularity. 
With this increase in popularity, debugging, 
manipulating, and reverse engineering 
Docker containers are skills that are 
increasing in usefulness. Highlighted by this 
project was the need for a tool that effectively 
recognizes and rebuilds Docker containers. 
While it was a tedious process to do 
manually, there is a high feasibility that, with 
the correct set of files, a program could be 
created that automatically analyzes and 
reconstructs containers that have been 
corrupted.

7. ACKNOWLEDGMENTS
I would like to thank my mentors in my 
internship, who have spent the last six years 
guiding me in my professional career. They 
have guided me personally and professionally 
and have worked hard to support me in all 
aspects of my life, including on the Antioch 
project. I would also like to thank Dr. 
Rosanne Vrugtman, my technical writing 
instructor, who was immensely helpful in the 
writing of this technical paper.

REFERENCES
Cloudflare. (n.d.). What was the WannaCry 

ransomware attack? | cloudflare. 
https://www.cloudflare.com/learning/se
curity/ransomware/wannacry-
ransomware/ 

Temple-Raston, D. (2021, April 16). A 
“worst nightmare” cyberattack: The 
untold story of the solarwinds hack. 
NPR. 
https://www.npr.org/2021/04/16/98543
9655/a-worst-nightmare-cyberattack-
the-untold-story-of-the-solarwinds-hack 


