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Abstract 

 

The presence of intra-individual genomic diversity in neurons and other brain 

cells, known as brain somatic mosaicism, has gone largely unnoticed and unappreciated 

historically. But growing evidence accumulated in recent years shows that neurons are 

highly genomically heterogeneous as a consequence of mutations ranging in scale from 

single nucleotide variants to whole chromosome copy number variations (CNVs). 

Mosaicism can disrupt particular cell signaling pathways to cause disease but is also 

common in healthy individuals, wherein its role is currently unknown. Given the long 

lifespan of neurons and their critical role in neural circuits and networks, it is probable 

that mosaic mutations affect neurodevelopment and brain function in ways that are not 

yet understood. Instrumental in identifying these genomic variations have been single cell 

technology and next generation sequencing, which allow for high resolution, high 

throughput measurement of individual genomes. 

To quantify the extent of mosaicism in healthy brains and explore its biological 

implications, we developed a robust analysis pipeline for CNV detection and analyzed 

single cell whole genome sequencing (scWGS) data from over 1200 human brain cells 

from 15 individuals. Notably, our results showed a significant anticorrelation between the 

percent of an individual’s neurons containing CNVs and age. We also sequenced over 

800 mouse neurons from 10 mice to examine mosaic CNVs in relationship to aging and 

perturbations of various genes of interest. In brief, our work demonstrates the value of 

large datasets in constructing a rigorous CNV detection pipeline, documents the 

prevalence and characteristics of mosaic CNVs in the brain, and contributes insights to 

our understanding of the causes and consequences of somatic mosaicism in the brain. 
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1.1 Mosaicism: Background and basics 

Multicellular organisms are multi-genomic organisms. Each nucleated cell 

contains its own copy of the individual’s DNA and protects it from damage using 

multiple mechanisms of DNA repair. Yet, inevitably, insults from internal and external 

sources mutate the genomes of single cells. The resulting coexistence of multiple distinct 

genotypes within a monozygotic individual is known as mosaicism. 

The mutations that make up mosaicism can be genome alterations as minor as a 

single nucleotide substitution, as major as the loss or gain of multiple chromosomes, or 

any of a host of additional mutation classes such as small insertions and deletions, 

megabase-scale copy number variations (CNVs), inversions, and translocations. These 

variants can arise from a number of causes, such as nondisjunction during cell division, 

faulty excision and replacement of mismatched bases, misrepair of double-strand breaks, 

ionizing radiation, reactive oxygen species, or chemical exposure (Campbell et al., 2015; 

Carvalho and Lupski, 2016; McConnell et al., 2017). Variation can also arise due to 

retrotransposon activity by LINE-1 (Evrony et al., 2012). Some cell types undergo a 

controlled recombination process to produce cell-to-cell diversity, such as the V(D)J 

recombination employed by lymphocytes to generate the immune system’s diverse array 

of antibodies and receptors. This class of genomic modification is also considered a form 

of mosaicism, though our research generally does not involve cell types that carry out 

these types of rearrangements. 

Just as mutations can take a range of forms, these mutations can have a range of 

outcomes for the organism as a whole, from favorable to benign to pathological, 

depending on a number of contextual factors; these include the class of mutation, the 
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timing of the mutation in development, the size of the mutated region, the particular 

genomic location that is mutated (including any affected genes), the number of cells 

carrying the mutation, and the tissue affected by the mutation. Mosaicism cannot be 

categorized as an inherently beneficial or harmful phenomenon because its consequences 

vary from case to case. 

Mosaicism can be divided into two subtypes: Germline mosaicism encompasses 

any mutation that occurs in an individual’s gametes. Historically, diversity in sperm and 

egg cells has been recognized as providing the basis for natural selection and genome 

evolution (Zhang and Vijg, 2018). The rate of germline mosaicism can be estimated by 

sequencing the genomes of parents and children and detecting de novo variants in the 

child; recent studies estimate this rate to be 1.0-1.2 x 10-8 per nucleotide per generation in 

humans (Conrad et al., 2011; Kong et al., 2012). 

Meanwhile, somatic mosaicism, consisting of mutations in non-reproductive cells, 

has no direct evolutionary role, and has been little studied in comparison to germline 

mosaicism. For much of the history of biological research, it was generally assumed that 

the genome of every healthy non-gamete in a multicellular organism was essentially 

identical. At the same time, researchers were aware of various examples of apparent 

somatic mutations in disease, in particular skin abnormalities and cancer, and speculated 

that even healthy cells could contain somatic mutations (Frank, 2014; Hall, 1988). Until 

recent years, however, researchers lacked the technology and techniques to analyze single 

genomes deeply enough to confirm the presence of somatic mosaicism in healthy cells. 
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1.2 A brief history of genomics methods 

Dating back to the 19th century, cytogeneticists characterized condensed 

chromosomes using microscopes, but the methods they employed often led to inaccurate 

reports; remarkably, it was not until 1956 that the correct number of human chromosomes 

was published as 46, thanks to an improved protocol for preparing and viewing 

metaphase spreads (Ferguson-Smith, 2015; Tjio and Levan, 1956). A few years later, in 

1959, the correct count of human chromosomes enabled the discovery of trisomy 21 in 

Down syndrome, the first evidence of a constitutional aneuploidy in humans (Lejeune et 

al., 1959). The following year, it was found that lymphocyte cultures derived from 

peripheral blood samples could produce high resolution chromosomes, leading to 

widespread adoption of the practice in clinical laboratories (Ferguson-Smith, 2015; 

Moorhead et al., 1960). Further progress was made by the development of quinacrine and 

Giemsa staining, which could be utilized to distinguish specific chromosomes from each 

other based on patterns of banding (Caspersson et al., 1970; Speicher and Carter, 2005). 

These methods were crucial to the discovery of the reciprocal translocation between 

chromosomes 9 and 22 seen commonly in chronic myelogenous leukemia, known as the 

Philadelphia chromosome (Rowley, 1973). 

Another major leap came with the arrival of fluorescence in situ hybridization in 

1980, which utilized the binding specificity of a complementary RNA-DNA hybrid along 

with a coupled fluorochrome to illuminate a specific genomic locus (Bauman et al., 

1980). A key advantage of this technique was the ability to detect specific loci in cells at 

any stage of the cell cycle, including post-mitotic cells, such as neurons. Subsequently, 

multi-fluor FISH (M-FISH) and spectral karyotyping (SKY) were introduced to enable 
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each human chromosome to be labeled by unique combinations of fluorescent probes 

simultaneously, allowing for greater efficiency in karyotyping metaphase spreads 

(Schrock et al., 1996; Speicher et al., 1996). Meanwhile, comparative genomic 

hybridization (CGH), improved upon by microarray-based versions (array CGH), was 

among the first methods capable of detecting sub-chromosomal copy number variations 

with high precision (Kallioniemi et al., 1992; Pinkel et al., 1998; Solinas-Toldo et al., 

1997). Finally, in 2011, the first single cell whole genome sequencing (scWGS) study 

was published, demonstrating that individual nuclear genomes isolated from cancerous 

tumors could be amplified, sequenced using next generation sequencing (NGS), and 

analyzed for CNVs (Navin et al., 2011). This breakthrough resulted in a wave of 

publications using single cell techniques to explore individual genomes in oocytes, the 

skin, and the brain, among other tissues (Cai et al., 2014; Hou et al., 2013; Knouse et al., 

2014; McConnell et al., 2013). To this day, scWGS remains the most comprehensive 

method for studying mosaicism, and new technologies are constantly being developed to 

improve and streamline the process of single cell genome analysis. 

 

1.3 Mosaicism in the brain 

Based on the evidence reported to date, it seems likely that somatic mosaicism 

exists at some level in every tissue in the body (Zhang and Vijg, 2018). Nonetheless, the 

brain is one of the most important repositories of mosaic variation for two chief reasons: 

first, neurons are among the longest-lived cells in the body, commonly arising during 

neurogenesis and surviving until death. This considerable lifespan means that abnormal 

neurons are not systematically replaced as they would be in other tissues; rather, the 
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effects of neuronal mutations are present throughout the life of the individual. Secondly, 

neurons function through complex neural networks, and the presence of even a small 

percentage of abnormal neurons can cause large-scale effects in brain function 

(McConnell et al., 2017). 

 

1.3.1 Brain somatic mosaicism in disease 

Similar to how visible skin abnormalities sparked interest in somatic mosaicism 

generally, reports of brain abnormalities have driven exploration of brain somatic 

mosaicism. Hemimegalencephaly (HME), a neurodevelopmental disorder resulting in the 

overgrowth of one hemisphere of the brain, is a classic example. An exome sequencing 

study of HME patients showed somatic mutations in the PIK3CA, AKT3, and MTOR 

genes in 6 of 20 individuals (30%) (Lee et al., 2012). Within the affected hemispheres of 

HME patients, the somatic mutations were found in between 8 and 40% of sequenced 

alleles. Further cases of disease-causing brain somatic mosaicism have been documented 

in focal cortical dysplasia, tuberous sclerosis, and a variety of other brain diseases 

(Jansen et al., 2015; Lim et al., 2015; McConnell et al., 2017; van Slegtenhorst et al., 

1997). Collectively, these findings support the potential of somatic mosaicism to cause 

structural brain malformations. 

The role of mosaicism in neuropsychiatric disease is also being explored, and has 

yielded some intriguing results. De novo mutations are a known contributor to risk of 

autism spectrum disorder, and de novo somatic mutations are enriched in autistic 

probands (Freed and Pevsner, 2016). In schizophrenia, increased levels of chromosome 1 

loss and gain were reported in the brains of affected individuals compared to controls 
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(Yurov et al., 2008). Studies have also reported increased LINE-1 retrotransposition in 

neurons of individuals with schizophrenia and Rett syndrome (Bundo et al., 2014; Muotri 

et al., 2010). These studies have been motivated not only by the interest in finding 

causative genetic factors for each disease but also the observation that monozygotic twins 

show significant discordance in all psychiatric disorders (Insel, 2014). Somatic 

mutations, therefore, would serve as a plausible explanation for why a psychiatric disease 

arises in one twin but not the other, or, more generally, why it arises in some individuals 

with no known genetic risk loci, and not others. 

 

1.3.2 Brain somatic mosaicism in healthy individuals 

While disease relevance is an important motivation for studying brain somatic 

mosaicism, the discovery of mosaicism in normal (neurotypical) brains sparked 

tremendous curiosity about the role of somatic mutation in the brain and paved the way 

for many more studies seeking to characterize and quantify the genomic diversity of the 

brain. Rehen et al. (2001) used SKY to detect aneuploidy in neuroblasts of the developing 

mouse brain and found that ~33% of cells carried more or less than 46 chromosomes. A 

few years later, similar evidence of aneuploidy was found in the human brain using FISH 

(Pack et al., 2005; Rehen et al., 2005). These results were surprising given what is known 

about constitutive (whole-organism) aneuploidy, namely that the vast majority of whole-

chromosome gains and losses are lethal. Monosomies are always lethal except in 

Turner’s syndrome (X0), and trisomies of chromosomes 13, 18, and 21 are the only 

constitutive autosomal aneuploidies seen in humans surviving until birth. A few 
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additional aneuploidies can be tolerated in mosaic contexts, but in most cases, aneuploidy 

is incompatible with human life (D'Gama and Walsh, 2018). 

Reports in the years that followed established the presence of other somatic 

mutations in the brain, including evidence that LINE-1 retrotransposition is active in 

neural progenitors and neurons (Evrony et al., 2012; Evrony et al., 2016; Muotri et al., 

2005; Upton et al., 2015); single nucleotide variants (SNVs) are abundant in single 

neurons and neural progenitors (Bae et al., 2018; Lodato et al., 2018; Lodato et al., 2015); 

and megabase-scale CNVs are common in neurons (McConnell 2013, Cai 2014, Knouse 

2016). 

These reports were not always in agreement with prior results; for instance, the 

estimate of LINE-1 insertion rate in hippocampal neurons given by Upton et al. (2015) 

was subsequently re-evaluated and lowered by Evrony et al. (2016). Meanwhile, the high 

rates of aneuploidy observed in early SKY and FISH experiments (Pack et al., 2005; 

Rehen et al., 2001; Rehen et al., 2005) were not confirmed by scWGS studies (Cai et al., 

2014; Knouse et al., 2014; McConnell et al., 2013; van den Bos et al., 2016), perhaps due 

to sub-chromosomal CNVs that were misinterpreted as aneuploidies in SKY and FISH 

assays. Even estimates of the percentages of neurons containing CNVs between 

comparable scWGS studies has varied from below 10% to over 40% (Knouse et al., 

2016; McConnell et al., 2013). Nonetheless, the past two decades of research has made it 

clear that the brain harbors many flavors of genomic diversity in addition to the 

remarkable morphological and functional diversity of its neurons. But a key question 

remains unanswered: What is the role of mosaicism in the normal brain? 
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1.3.3 The role of mosaicism 

Germline mosaicism, consisting of mutations that can be passed on to offspring, is 

understood to be a mechanism for generating genomic diversity in the population, 

providing the “substrate” that natural selection acts upon to drive evolution (Zhang and 

Vijg, 2018). Meanwhile, somatic mosaicism is not passed on to future generations and, in 

many cases, such as those discussed above, has deleterious effects. Given the costs of 

genome maintenance and risks of disorder, why have somatic mosaicism at all? 

This remains a major unresolved question in the field of somatic mosaicism. The 

answer could be as simple (and bleak) as humans are not evolved to live forever, and 

somatic mutations accumulate in order to cause aging and, eventually, death (Vijg, 2014). 

Conversely, there are clues that point to somatic mutations serving a more complicated 

role, particularly in the brain. 

DNA double strand breaks (DSBs), which can lead to CNVs, occur frequently in 

neural progenitor cells during neurogenesis (Wei et al., 2016). In mice, it has been shown 

that this process requires the presence of DNA repair proteins DNA Ligase IV (Lig4) and 

Xrcc4, otherwise resulting in embryonic lethality (Alt and Schwer, 2018; Barnes et al., 

1998; Frank et al., 2000; Gao et al., 1998). These findings indicate that DNA repair in 

response to damage is an essential part of normal brain development and suggest that 

CNV formation may be a normal outcome of DSB repair. If so, it is plausible that mosaic 

CNVs could contain clues about their functional role that can be deduced from their 

location in the genome, affected genes, size, type (duplication or deletion), and other 

characteristics. To start the investigation, a robust CNV detection pipeline is required. 
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1.4 Designing a pipeline for single cell CNV detection 

Understanding why mosaic CNVs exist in neurotypical individuals begins with 

designing a robust pipeline for accurate detection of CNVs. Single cell CNV pipelines do 

not adhere to a single, standard formula; rather, they allow room for customization and 

experimentation. These decisions include choice of whole genome amplification (WGA) 

method, bin size, CNV detection algorithm, and quality control metrics. 

 

1.4.1 Choosing the right whole genome amplification (WGA) method 

WGA is perhaps the most critical step in any scWGS pipeline. Because each cell 

is potentially (if not literally) genomically unique, there are no biological replicates that 

can serve to validate the measurements made in the original cell, which is destroyed in 

the process. For this reason, accurate WGA is crucial. 

Current WGA methods fall into three main groups (Gawad et al., 2016). The first 

and oldest category encompasses purely polymerase chain reaction-based (PCR-based) 

amplification methods, including degenerate oligonucleotide primed PCR (DOP-PCR). 

These methods rely on degenerate or random priming and PCR amplification to amplify 

genomic material. The second group consists of isothermal methods, most commonly 

multiple displacement amplification (MDA), which involves random priming and 

extension by the Phi29 polymerase without the necessity of temperature cycling. Finally, 

hybrid methods feature steps of isothermal linear amplification and exponential 

amplification by PCR; these methods include commercial products such as SMARTer 

PicoPLEX (Takara; formerly “PicoPLEX” by Rubicon Genomics) and GenomePlex 
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(Sigma-Aldrich) as well as protocols like multiple annealing loop-based amplification 

cycles (MALBAC) (Zong et al., 2012). 

In practice, isothermal and hybrid methods are used most often, but for different 

types of experiments. MDA generates long, branched amplicons thanks to Phi29’s high 

processivity and strand displacement activity, and these factors, along with its low error 

rate, make it ideal for identifying SNVs. However, MDA tends to over-amplify the 

regions that are primed first, making hybrid methods more desirable for use in CNV 

detection, where evenness of amplification is a chief concern (Gawad 2016).  

 

1.4.2 Choice of bin size 

Many single cell CNV papers have used normalized read counts in genomic bins 

(sometimes referred to as “windows”) as a strategy to detect large CNVs in low coverage 

scWGS data (Baslan et al., 2012; Cai et al., 2014; Knouse et al., 2016; McConnell et al., 

2013; Navin et al., 2011). For detection of megabase-scale CNVs, resolution of ~500kb is 

adequate; furthermore, binning reads permits the sequencing of fewer reads per cell, 

which in turn enables more cells to be sequenced in a single run. 

Genomic bins are usually designed to account for the nonuniform distribution of 

mappable bases in the genome; if they are not, the read count variability due to highly 

mappable and highly unmappable regions can lead to false positive duplications and 

deletions, respectively. Bin coordinates are typically determined in one of two ways: first, 

by defining an arbitrary number of uniquely mappable bases to be grouped into one bin, 

e.g. 500,000, and using a mappability track to determine the additional length necessary 

for bins to contain that number of bases. This method was used by McConnell et al. 
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(2013) and resulted in a mean bin length of 687kb, demonstrating the compensation 

required for repetitive or otherwise unmappable sequences in the genome. An alternative 

approach to defining bin boundaries is to set an arbitrary number of unique simulated 

mappable reads that will comprise a bin; Cai et al. (2014) used read counts of 6,000, 

20,000, and 50,000, and the resulting bins were 458kb, 137kb, and 54kb in median 

length, respectively. Both methods are effective in minimizing the influence of 

nonuniform mappability.  

The specific bin size one should select will depend on several factors, such as the 

uniformity of WGA and the tendency of the CNV detection algorithm to detect false 

positives under different bin sizes. Baslan et al. (2012) suggest a median read count of 35 

per bin, but this number may not be appropriate in all pipelines. 

 

1.4.3 Evaluating CNV detection algorithms 

Many algorithms exist for copy number segmentation, but all are designed to 

perform the same task: to identify non-overlapping, contiguous regions of chromosomes 

that have the same copy number state. Two of the most commonly used algorithms in the 

single cell CNV field have been R packages DNAcopy and HMMcopy (Cai et al., 2014; 

Knouse et al., 2016; Knouse et al., 2014; McConnell et al., 2013). DNAcopy uses circular 

binary segmentation (CBS) to detect changepoints in copy number data (Olshen et al., 

2004), while HMMcopy employs a hidden Markov model (HMM) to either extend 

segments or call changepoints. The sensitivity of both algorithms to detecting CNVs can 

be tuned via parameters alpha (DNAcopy) and E (HMMcopy). 
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A good way to test CNV detection algorithms is by analyzing data with known 

variants and confirming that true positives are found. Analysis of trisomic cells or other 

stable cell lines carrying known variants represent the most straightforward forms of 

algorithm validation (Cai et al., 2014; McConnell et al., 2013). Meanwhile, Rohrback et 

al. (2018a) used V(D)J recombination in immune cells as a way to validate and train their 

CNV caller, FUnC, on somatic CNVs. Conversely, it is also worthwhile to test whether a 

CNV detection algorithm is prone to calling false positive CNVs. This can be done by 

simulating copy number data with varying levels of autocorrelated noise, a known cause 

of false positives (Muggeo and Adelfio, 2011). 

 

1.4.4 Defining quality metrics 

scWGS papers reporting mosaic CNVs in the brain have used a variety of 

approaches to sort good cells from bad. McConnell et al. (2013) employed three 

requirements on their dataset: a cell needed at least 500,000 unique reads; a median 

absolute deviation (MAD) of bin copy number values no higher than 0.35; and a 

“confidence score” no lower than 0.85, indicating broad adherence of genome segments 

to integer copy number states. Cai et al. (2014) employed one quality filter, a maximum 

median absolute pairwise difference (MAPD) of 0.45; MAPD was calculated for each 

cell by finding the median of the log2 copy number ratios of neighboring bins. Knouse et 

al. (2014) used a maximum variability score (VS) of 0.34; this score was determined by 

calculating the standard deviation (SD) of log2-based copy number values using sliding 

windows of 30 bins within chromosomes, averaging the SDs by chromosome, and then 

averaging the three highest autosomal average SDs. While different metrics were 
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calculated by each research group, all three approaches focused on bin-to-bin variability 

as a measure of cell quality. This is a sensible approach given the risk of nonuniform 

WGA driving the detection of false positive CNVs. 

 

1.5 Summary 

Building a CNV detection pipeline requires careful consideration of many factors, 

but doing so is necessary in order to generate a list of accurate, precise CNV calls 

through which the role of mosaicism can be explored. The McConnell Lab and its 

collaborators designed their first iteration of a CNV pipeline several years ago, resulting 

in the first scWGS paper reporting the detection of mosaic CNVs in post-mortem human 

neurons (McConnell et al., 2013). In Chapter 2, I discuss the improved pipeline we 

developed to analyze over 1200 neural cells from 15 human individuals, produce a CNV 

atlas, and examine possible roles of mosaic CNVs in the brain. In Chapter 3, I describe 

our approach to detecting mosaic neuronal CNVs in 10 mice of various backgrounds and 

genotypes. Finally, in Chapter 4, I discuss the conclusions of the work detailed in this 

dissertation and future experiments that can build upon the research presented here. 
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2.1 Summary 

A subset of human neocortical neurons harbors complex karyotypes wherein 

megabase-scale copy-number variants (CNVs) alter allelic diversity. Divergent levels of 

neurons with complex karyotypes (CNV neurons) are reported in different individuals, 

yet genome-wide and familial studies implicitly assume a single brain genome when 

assessing the genetic risk architecture of neurological disease. We assembled a brain 

CNV atlas using a robust computational approach applied to a new dataset (>800 neurons 

from 5 neurotypical individuals) and to published data from 10 additional neurotypical 

individuals. The atlas reveals that the frequency of neocortical neurons with complex 

karyotypes varies widely among individuals, but this variability is not readily accounted 

for by tissue quality or CNV detection approach. Rather, the age of the individual is anti-

correlated with CNV neuron frequency. Fewer CNV neurons are observed in aged 

individuals than in young individuals. 

2.2 Graphical Abstract 
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2.3. Introduction 

Neocortical neurons are among the most diverse and longest-lived mammalian 

cells. The mammalian cerebral cortex is often put forward as a pinnacle of evolutionary 

complexity, and human-specific brain phenotypes are attributed to neocortical expansion 

during evolution (Geschwind and Rakic, 2013; Lui et al., 2011). Aberrant development 

and maturation of neocortical circuits are likewise associated with neuropsychiatric and 

neurodegenerative diseases (Del Pino et al., 2018; Morrison and Baxter, 2012; Sudhof, 

2017). Various approaches count ∼15–20 billion neurons and as many as 35 billion glia 

in the human cerebral cortex (Pakkenberg et al., 2003; von Bartheld et al., 2016). Single-

cell transcriptomic approaches are beginning to comprehensively catalog human neuronal 

diversity (Lake et al., 2016; Nowakowski et al., 2017) and identify new subtypes of 

human neurons (Boldog et al., 2018). After decades of debate, it is now clear that human 

neocortical neurons are not normally regenerated during the human lifespan (Bhardwaj et 

al., 2006; Rakic, 2006). With some exceptions (Spitzer, 2017), neuronal cell types are 

also generally thought to be stable throughout life, but neuronal genomes are surprisingly 

labile. 

Every human neocortical neuron may contain private somatic variants. Single 

nucleotide variants (SNVs) are especially common, with hundreds per neuron reported 

(Bae et al., 2018; Lodato et al., 2015) and with frequencies of >3,000 SNVs per neuron 

observed in aged individuals (Lodato et al., 2018). Endogenous mobile elements such as 

long interspersed nuclear element 1 (LINE1) retrotransposons are also active during brain 

development (Coufal et al., 2009; Muotri et al., 2005). Reported frequencies of de novo 

mobile element events range from <1 to >7 per neuron (Baillie et al., 2011; Evrony et al., 
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2012; Upton et al., 2015). Mobile element activity has also been linked to the generation 

of copy-number variants (CNVs) (Erwin et al., 2016; Gilbert et al., 2002). Whole and 

subchromosomal CNVs bring about complex karyotypes through the duplication or 

deletion of several megabases (Mb) of genomic sequence in a subpopulation of 

neocortical neurons (Cai et al., 2014; Knouse et al., 2016; McConnell et al., 2013; 

Piotrowski et al., 2008). Gene density in the human genome averages >10 genes per Mb; 

thus, by contrast to other somatic variants, Mb-scale CNVs almost always affect multiple 

genes. A reanalysis of published data (Cai et al., 2014; Knouse et al., 2014; McConnell et 

al., 2013; van den Bos et al., 2016) herein found an average of 63 genes affected per 

neuronal CNV. 

During the past decade, large CNVs have been recognized as major contributors 

to human genetic diversity (Conrad et al., 2010; Lupski, 2015; Redon et al., 2006). At the 

population level, SNVs are collectively more numerous than CNVs, but CNVs affect an 

order of magnitude more genome sequence (∼10%), and some CNVs show evidence of 

positive selection during human evolution (Perry et al., 2007; Sudmant et al., 2015; 

Zarrei et al., 2015). In individuals, de novo CNVs represent rare variants with a strong 

contribution to the genetic risk of schizophrenia, autism, and other neurological disorders 

(Fromer et al., 2014; Iossifov et al., 2014; Marshall et al., 2017; Morrow, 2010; Sebat et 

al., 2007). Whereas the consequences of germline CNVs have been inferred from 

population-level studies, neuronal CNV studies to date have been underpowered to 

determine whether the genes affected by neuronal CNVs contribute to brain development, 

function, and disease. 
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We assembled a brain CNV atlas to evaluate how neuronal CNVs alter the genetic 

architecture of the neurotypical human cerebral cortex. A new dataset of 827 human 

cerebral cortical nuclei from 5 neurotypical individuals was combined with smaller 

published datasets (Cai et al., 2014; Knouse et al., 2014; McConnell et al., 2013; van den 

Bos et al., 2016) from 10 other neurotypical individuals. We developed an unbiased CNV 

detection approach based on population-level statistics and established a human neuronal 

CNV atlas with 507 CNVs. Initial analysis of the atlas identified substantial inter-

individual variability in the frequency of neurons with complex karyotypes (CNV 

neurons), but also found support for the hypothesis (Weissman and Gage, 2016) that 

some long genomic loci shape the genetic architecture of neurotypical human brains. 

 

2.4 Results 

2.4.1 Generation of Single-cell Neuronal and Non-neuronal Genomic Data 

Single neuronal and non-neuronal nuclei were isolated using fluorescence-

activated nuclei sorting (FANS) of the prefrontal cortex from 5 non-diseased 

(neurotypical) male individuals aged 0.36, 26, 49, 86, and 95 years (Figure 2.1A; Table 

1). Whole genome amplification (WGA) was performed using PicoPLEX (Rubicon 

Genomics), an approach that is similar to multiple annealing and loop-based 

amplification (MALBAC) (Zong et al., 2012), which produces Illumina-compatible 

libraries with 48 unique barcodes. Before library pooling and sequencing on Illumina 

platforms, we found that ∼60% of WGA reactions produced a measurable product. 

Single-end or paired-end sequencing (50, 75, or 100 bp) of 48 pooled libraries on 

Illumina HiSeq Rapid platforms or of smaller pools (<17 libraries) on MiSeq platforms 
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routinely produced >1 million reads per library after duplicate removal. Neither paired-

end nor longer read sequencing altered the data quality. Reads were aligned to hg19 and 

read depth was calculated across 4,505 genomic bins, each containing ∼500 kb of 

uniquely mappable sequence (mean bin size = 687 ± 1,072 kb). This approach (Figure 

2.1B) generated >134.2 Gb of genomic sequence from 827 male single-cell genome 

libraries (162.3 ± 115.1 Mb/cell). 
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Figure 2.1: Optimization of Single-cell CNV Detection 
(A and B) Representative NeuN+/− FANS (A) and summary of analysis pipeline (B). (C) CNV profile of 

test Neuron 1. Read depth-derived CN values of genomic bins are colored alternately (green, blue) by 

chromosome. Red line indicates DNAcopy segmentation. (D) BIC scores for Neuron 1 across DNAcopy 

parameter space. Red diamond indicates lowest BIC score. (E) Histogram of BIC scores for new dataset. 

Gaussian distributions (black and red) were used to establish BIC cutoff (−2.21). (F) Segmentation output 

displays integer-like CN states (red, green, and blue) from which stringent (<1.14; >2.80; long dashes) and 

lenient (<1.34; >2.60; short dashes) CN state thresholds were established. 
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Table 2.1: Summary of Brain CNV Atlas 
Age Sex Cell 

type 

Data 

source 

WGA BIC 

pass/total 

cells (%) 

Cells 

with 

CNV(s) 

(%), 

lenient 

Cells 

with 

CNV(s) 

(%), 

stringent 

Total 

CNVs 

(lenient) 

Total 

CNVs 

(stringent) 

0.36 Male Neuron 
This 

chapter 
PicoPLEX 

46/138 

(33.3) 

14 

(30.4) 
7 (15.2) 41 12 

20 Female Neuron 
McConnell 

et al., 2013 
GenomePlex 

50/50 

(100) 

20 

(40.0) 

12 

(24.0) 
76 52 

24 Female Neuron 
McConnell 

et al., 2013 
GenomePlex 

18/19 

(94.7) 
7 (38.9) 3 (16.7) 20 9 

26* Male Neuron 
This 

chapter 
PicoPLEX 

108/184 

(58.7) 

25 

(23.1) 

15 

(13.9) 
76 33 

26* Male 
Non-

neuron 

This 

chapter 
PicoPLEX 

43/63 

(68.3) 
2 (4.7) 0 (0) 2 0 

26* Male Neuron 
McConnell 

et al., 2013 
GenomePlex 

41/41 

(100) 
9 (22.0) 6 (14.6) 18 13 

42 Female Neuron 
Cai et al., 

2014 
GenomePlex 

19/26 

(73.1) 
7 (36.8) 4 (21.1) 57 27 

48 Female Neuron 
Knouse et 

al., 2014 
GenomePlex 

21/22 

(95.5) 
0 (0) 0 (0) 0 0 

49 Male Neuron 
This 

chapter 
PicoPLEX 

99/101 

(98.0) 

11 

(11.1) 
8 (8.1) 113 75 

49 Male 
Non-

neuron 

This 

chapter 
PicoPLEX 

26/28 

(92.9) 
2 (7.7) 2 (7.7) 4 2 

52 Male Neuron 
Knouse et 

al., 2014 
GenomePlex 

22/22 

(100) 
4 (18.2) 1 (4.5) 4 1 

68 Male Neuron 
Knouse et 

al., 2014 
GenomePlex 

23/25 

(92.0) 
3 (13.0) 2 (8.7) 4 2 

69 Male Neuron 

van den 

Bos et al., 

2016 

Strand-seq 
78/81 

(96.3) 
3 (3.8) 2 (2.6) 3 2 

70 Male Neuron 
Knouse et 

al., 2014 
GenomePlex 

20/20 

(100) 
4 (20.0) 4 (20.0) 9 4 

74 Male Neuron 

van den 

Bos et al., 

2016 

Strand-seq 
70/80 

(87.5) 
6 (8.6) 1 (1.4) 6 1 

81 Female Neuron 

van den 

Bos et al., 

2016 

Strand-seq 
43/72 

(59.7) 
4 (9.3) 2 (4.7) 15 6 

86 Male Neuron 
This 

chapter 
PicoPLEX 

101/118 

(85.6) 
4 (4.0) 3 (3.0) 20 15 

86 Male 
Non-

neuron 

This 

chapter 
PicoPLEX 

46/55 

(83.6) 
4 (8.7) 2 (4.3) 9 3 

95 Male Neuron 
This 

chapter 
PicoPLEX 

120/140 

(85.7) 
8 (6.7) 5 (4.2) 45 28 

*Same individual 

 

2.4.2 Optimization of Read Depth-based Single-cell Genomic Segmentation 

Neuronal CNV detection is inherently challenging because one cannot know the 

state of the genome before WGA, and neuronal CNVs are rarely clonal. For this reason, 

CNV calling approaches have been used conservatively, with bias toward avoiding type I 
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errors at the risk of type II errors. We used a test dataset of 6 representative PicoPLEX 

WGA libraries (5 neurons and 1 trisomy 21 fibroblast) with varied subjective quality 

(Figures 2.1C and 2.S1A–2.S1E) to optimize our approach. 

Parameter space in DNAcopy (Olshen et al., 2004) is defined by 3 user-tunable 

parameters: significance threshold (alpha), minimum number of genomic bins required to 

call a copy number state change (min.width), and the number of SDs between the levels 

of copy-number states to maintain the copy-number state change (undo.SD). We assessed 

DNAcopy parameters using Bayesian information criterion (BIC) (Schwarz, 1978), a log-

likelihood estimate of the performance of the segmentation algorithm, for dozens of 

parameter combinations. The lowest, or near-lowest, BIC scores for each test cell library 

were observed at alpha = 0.001, min.width = 5, and undo.SD = 0 (Figures 2.1D and 

2.S1G); these parameters identified monosomy X in all 6 male cells, and trisomy 21 in 

only the fibroblast. We also observed that minimum BIC scores were lower in WGA 

libraries with less overall bin-to-bin variation in read-depth (Figures 2.1C, 2.S1A–2.S1E, 

and 2.S1G), suggesting that low BIC scores represent an additional quality control filter. 

We further assessed segmentation parameters with 2 in silico models (Figure 

2.S1F) built from the read-depth statistics (DNAcopy segments, Gaussian noise, and 

autocorrelated noise [ϕ]) of each test cell. NULL model simulations contained no CNVs 

but did contain strong autocorrelated noise, a known source of DNAcopy false-positives 

(Muggeo and Adelfio, 2011). Alternative (ALT) model simulations harbored synthetic 

CNVs (i.e., DNAcopy calls) with residual autocorrelated noise. Segmentation outputs 

matched the ALT model, but not the NULL model, simulations well (Figures 2.S1H and 
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2.S1I). Concordance with ALT model cells (i.e., highest sensitivity and specificity) was 

also associated with the lowest BIC scores (Figure 2.S1J). 

Analysis of 827 PicoPLEX datasets identified additional population-based filters. 

First, we identified 101 genomic bins that routinely deviated from median read depth and 

confound segmentation (Figure 2.S1K); these were excluded before the subsequent 

analysis. Second, we computed the 95th percentile of the low BIC score Gaussian 

distribution (−2.21) to establish an objective filter for the highest quality single-cell 

datasets (Figure 2.1E). Third, identified segments displayed 2 modes near integer-like 

copy number (CN) states of 2 (euploid, mean = 1.97) and 1 (deletion, mean = 1.12) and a 

heavy tail near the CN state of 3 (duplication, mean = 2.92) (Figure 2.1F). Lenient and 

stringent CN state thresholds were established, respectively, at a 2-tailed p value ≤ 0.05 

(<1.34 for a deletion and >2.60 for a duplication) and ≤0.01 (<1.14 for a deletion and 

>2.80 for a duplication). The BIC threshold produced a final dataset of 589/827 (71.2%) 

neural nuclei, including 474/681 (69.6%) neuronal (NeuN+) nuclei and 115/146 (78.8%) 

non-neuronal (NeuN−) nuclei (Figures 2.S1L and S1M). The stringent CN state threshold 

identified monosomy X in 52.8% of male neural nuclei, while the lenient threshold 

identified 99.5% of these true-positives (Figure 2.S2A). 

Additional NULL and ALT model simulations found that BIC cutoffs and CN 

state thresholds protect against false-positive CNVs brought about by simulated WGA-

induced noise. We tested 6 neuronal WGA libraries in the BIC <−2.21 PicoPLEX 

dataset: 2 euploid, 2 with 1 CNV, 1 with 3 CNVs, and 1 with 6 CNVs. In the NULL 

model (Figure 2.S2B), all of the simulated cells from neuron 10 were excluded by our 

BIC threshold as a consequence of strong autocorrelated noise (ϕ = 0.663; atlas mean ϕ = 
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0.1394). In the remaining 1,000 simulated cells, only 41 and 1 small (3.9 ± 0.7 Mb) 

segments, respectively, passed the lenient and stringent CN state thresholds. Thus, upper-

bound estimates of false-positive CNV neuron detection rates are ∼3% (lenient 

threshold) and <0.1% (stringent threshold). All ALT model simulations (Figure 2.S2C) 

passed the BIC threshold, and only ∼1% (14/1,200) of simulated cells contained 

DNAcopy segments that passed the lenient CN state thresholds without overlapping the 

synthetic CNV; these false-positive CNVs were also small (6.0 ± 2.7 Mb). As observed 

for monosomy X in the PicoPLEX dataset, improved detection of true-positives 

(synthetic CNVs) in ALT model cells was observed at lenient (95%) relative to stringent 

(81.8%) CN state thresholds. 

 

2.4.3 Contribution of Mosaic CNVs to Neuronal Diversity 

Large CNVs inevitably alter the CN state of a brain-expressed gene, as more of 

the genome is expressed in neurons than in other cell types (Uhlen et al., 2016). Our 

analysis (Table 1) identified 310 CNVs in 70 of 589 neural genomes (11.9%). CNVs 

ranged in size from 2.9 to 159.1 Mb (mean = 16.5 ± 20.1 Mb; Figure 2.2A). With 

stringent criteria that are prone to false-negatives, we still identify 168 CNVs (mean = 

18.0 ± 22.3 Mb) in 42 neural nuclei (7.1%) (Figure 2.S3A). CNVs were detected in each 

individual examined and, given their size and frequency (Figures 2.2B and 2.S3D), 

represent a clear contribution to the genetic architecture of the brain (Figures 2.2C and 

2.S3G). We note that much smaller percentages of phenotypically distinct cells can bring 

about focal epilepsies (Marin-Valencia et al., 2014) and are essential for normal brain 
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function (e.g., adult-born dentate granule neurons) (Anacker and Hen, 2017; Christian et 

al., 2014). 

 

 
Figure 2.2 Mosaic CNVs Contribute to Neuronal Diversity 

(A–C) Megabase-scale neuronal CNVs are observed across the human lifespan (ages 0.36–95 years) with 

varying size (A), number per cell (B), and percent genome coverage (C). (D) Divergent CNV neuron 

(NeuN+), but similar non-neuronal (NeuN−), frequencies in 3 individuals. (E–G) CNVs have an increased 

impact on genetic architecture in neuronal genomes compared to non-neuronal genomes, as measured by 

size (E), number per cell (F), and percent genome coverage (G). (H) Significant anti-correlation between 

age and CNV neuron frequency (linear fit, R2 = 0.9224, p = 0.0094). Lenient CN state thresholds 

throughout figure. 

 

The 474 neuronal nuclei we analyzed represent the largest CNV dataset of 

neurotypical human brains generated by a single laboratory using a single WGA 

approach to date. We identified 62 CNV neurons (13.1%) with a mean CNV size of 16.8 

Mb. We find that both neuronal and non-neuronal genomes harbor Mb-scale CNVs, 

which is consistent with previous reports (Cai et al., 2014; Knouse et al., 2016). The 

frequency (4%–23.1%) of complex karyotypes was more variable among neurons than 

among non-neuronal cells (4.7%–8.7%) from the same individuals (Figure 2.2D). CNV 

frequency in non-neuronal cells is similar to that reported in other somatic cells (e.g., 
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keratinocytes). Relative to non-neuronal CNVs (Figures 2.S3B, 2.S3C, 2.S3E, 2.S3F, 

2.S3H, and 2.S3I), neuronal CNVs are larger (Figure 2.2E), occur in greater numbers 

(Figure 2.2F), and affect more of the genome (1.3%–6% in neurons, 0.2%–0.8% in non-

neurons; Figure 2.2G). Similar ratios of neuronal to non-neuronal CNVs were observed at 

stringent thresholds, but mean differences in non-euploid CN states were amplified 

(Figures 2.S3K– 2.S3M). A statistically significant linear decline in CNV neuron 

abundance was observed with age at both CN state thresholds (lenient: R2 = 0.9224, p = 

0.0094, Figure 2.2H; stringent: R2 = 0.9434, p = 0.0058, Figure 2.S3O). 

 

2.4.4 Analysis and Integration of Publicly Available Data 

 Four previous studies used different WGA and CNV detection approaches on 458 

additional single neurons from 6 male and 5 female neurotypical individuals of different 

ages (Cai et al., 2014; Knouse et al., 2014; McConnell et al., 2013; van den Bos et al., 

2016). WGA was performed using GenomePlex (Cai et al., 2014; Knouse et al., 2014; 

McConnell et al., 2013), a degenerate oligonucleotide-primed (DOP)-PCR-based 

approach, or Strand-seq (van den Bos et al., 2016), a “pre-amplification free” approach. 

We harmonized these with our PicoPLEX dataset (e.g., alignment to hg19, exclusion of 

outlier bins in Figures 2.S4A and 2.S4B, BIC thresholds in Figures 2.3A, 2.3B, 2.S4G, 

and 2.S4H). GenomePlex and Strand-seq datasets displayed distinct outlier bin profiles. 

Analysis of RepeatMasker (University of California, Santa Cruz [UCSC]) genomic 

features in outlier bins found a depletion (log2 fold change <−0.25) of DNA, LINE, and 

long terminal repeat (LTR) features, and enrichment (log2 fold change >0.47) for short 

interspersed nuclear element (SINE) and simple repeat features (Wilcoxon, p < 2.2E–16) 



28 

 

compared to remaining bins. BIC thresholds removed 11/225 GenomePlex cells (4.9%) 

and 41/233 Strand-seq cells (18.0%) from further analysis. The CN state thresholds 

reported above (Figure 2.1F) were inclusive of all of the WGA libraries passing BIC 

cutoffs. To further test the effectiveness of outlier bin removal, BIC cutoffs, and CNV 

thresholds, we re-analyzed split-amplification GenomePlex libraries from Knouse et al. 

(2016). One split-sample exceeded the BIC cutoff; the other with bad bins removed 

showed perfect concordance using our analysis pipeline (Figures 2.S4C–2.S4F). 

 
Figure 2.3 Brain CNV Atlas 

(A and B) BIC scores established from population distribution of GenomePlex (A, <−2.05) and Strand-seq 

(B, <−1.93) WGA approaches. (C–E) CNV attributes including size (C), number per cell (D), and percent 

genome coverage (E) were similar regardless of WGA approach. (F) Significant atlas-wide anti-correlation 

between age and CNV neuron frequency (linear fit, R2 = 0.5521, p = 0.00097). Lenient CN state thresholds 

throughout figure. 
 

The general characteristics of CNVs were similar regardless of WGA approach or 

sex (Figure 2.3C–2.3E). The mean length of single-cell CNVs was 14.8 Mb across all of 

the datasets, which is notably larger than most CNVs observed in bulk, germline human 



29 

 

genomes (1–10 kb) (MacDonald et al., 2014). As with PicoPLEX data, CNV size was 

variable among individuals (Figures 2.S4J, 2.S4K, 2.S4M, 2.S4N, 2.S4P, and 2.S4Q), but 

average CNV size was similar across WGA approaches (Figures 2.3C–2.3E). The 

average CNV size in GenomePlex libraries was 11.7 Mb, but it ranged from 4.1 to 15.9 

Mb among individuals. The average CNV size in Strand-seq libraries was 13.2 Mb, but it 

ranged from 4.3 to 17.7 Mb among individuals. Similar but on average larger CNV sizes 

were observed at the stringent threshold (Figures 2.S4I, 2.S4L, and 2.S4O). In contrast to 

a previous report (Knouse et al., 2016), no enrichment for LINE1 sequence was apparent 

in CNVs or CNV borders compared to chance, and equal rates of telomeric CNVs 

(∼14%) were observed in young and aged neurons (see Method Details). 

Anti-correlation between CNV neuron prevalence and individual age is roughly 

an order of magnitude more significant in the complete atlas (lenient: R2 = 0.5521, p = 

0.00097, Figure 2.3F; stringent: R2 = 0.3941, p = 0.0092, Figure 2.S4R). Despite 

narrower age ranges, CNV neuron prevalence was also anti-correlated with age in the 

published datasets (lenient: R2 = 0.5315, p = 0.011, Figure 2.S4S; stringent: R2 = 0.3524, 

p = 0.054, Figure 2.S4T). Potential confounding variables such as BIC scores or post-

mortem interval showed no significant correlation with age (Figure 2.S5). 

Our observation of fewer CNV neurons in aged individuals contrasts with the 

concept of genosenium (Lodato et al., 2018), which states that the accumulation of 

somatic mutations over one’s lifetime is associated with aging-related cellular and 

molecular phenotypes. Thus, we also analyzed the number of CNVs per CNV neuron. 

Most CNV neurons (62.8%) contained only 1 or 2 CNVs, but the average number of 

CNVs per CNV neuron in the atlas was 3.9 (Figure 2.3D). Aged CNV neurons, although 
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rare, had more irregular karyotypes. For example, the 20-year-old individual had the 

highest percentage of CNV neurons (40% CNV neurons, 3.8 CNVs/CNV neuron), but 

the 49-year-old (11.1% CNV neurons) had the most CNVs/CNV neurons (10.3). Other 

individuals, such as the 24-year-old and the 86-year-old, also support this trend; 38.9% of 

neurons in the 24-year-old had CNVs with an average of 2.8 CNVs/CNV neuron, 

whereas only 4% of neurons in the 86-year-old had CNVs, but these CNV neurons 

averaged 5.0 CNVs. The individual with the highest mean CNV size (37.2 Mb) was 86 

years old (Figure 2.S4J); this was due in large part to 1 neuron containing 2 trisomies and 

1 monosomy (Figure 2.S3N). Genosenium, if true, may operate on different somatic 

mutations in distinct ways. 

 

2.4.5 Long Gene Mosaicism and Neuronal Diversity 

Brain CNVs, like all non-V(D)J CNVs, occur because DNA repair is not perfect. 

Transcription and replication lead to DNA double-strand breaks (DSBs), which in turn 

sometimes lead to CNVs. Gene length increases susceptibility to transcriptional and 

replicative genomic stress. Genes encoded by >100 kb of genomic sequence (i.e., long 

genes) tend to be neuronally expressed genes with roles in neuronal connectivity and 

synaptic plasticity (Zylka et al., 2015). Long genes also overlap with DNA fragile sites, 

and replicative stress can lead to large CNVs that encompass these loci (Wilson et al., 

2015). Likewise, transcriptional stress leads to DNA DSBs in neurons (Madabhushi et al., 

2015) and has a predominant effect on long gene transcript abundance (King et al., 2013). 

Recent studies link these observations to DNA DSBs during mouse neurodevelopment 

(Wei et al., 2016) and motivate the hypothesis that somatic mutations affecting long 
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genes mediate the functional consequences of brain somatic mosaicism (Weissman and 

Gage, 2016). 

The assembled atlas identified 522 neural CNVs (Table 1). We performed overlap 

and random permutation analyses to determine whether subsets of 93 candidate long 

genes (Figure 2.4A) were associated with CNVs more frequently than expected by 

chance. Genomic regions (i.e., bins) that accumulated CNVs (i.e., duplications and 

deletions) at an increased population-wide frequency compared to the rest of the genome 

(i.e., hotspots; Figure 2.4B) were determined using different hotspot thresholds (see 

Method Details). Enrichment was assessed by calculating 184 raw p values (8 candidate 

gene lists, 23 hotspot thresholds) from 10,000 permutations per gene list per hotspot 

threshold. After correcting for multiple hypothesis testing (Benjamini-Hochberg false 

discovery rate [FDR], 5% FDR cutoff), dataset-wide significance was observed for the 

entire candidate gene list in some cases, and, notably, with putative hotspots that include 

3 of the 4 common candidate genes: GPC6, NRXN3, and RBFOX1 (Figure 2.4C). 
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Figure 2.4: Long Gene Enrichment in Brain CNV Atlas 

(A) Venn diagram to define putative hotspots. (B) Bin-level summary (lenient CN state threshold) of 

deletion (red) and duplication (green) occurrence in brain CNV atlas. (C–E) Enrichment results for 

hotspots from all cells (C), individuals (D), and age groups (E). p values < 0.05 are red. (F–H) REViGO 

plots of enriched Gene Ontology (GO) terms for all of the data analyzed. The relative size of each category 

reflects significance; the largest groups have the lowest p values. GO enrichment determined using 

PANTHER analysis of CNV-affected genes in all neural data (F), and neurons from age groups 68–74 (G) 

and 81–95 years old (H). 

 

CNV neurons were rare in aged individuals, so we assessed whether the genetic 

architecture of CNV neurons may also change during the lifespan. We further tested each 

individual in the atlas for candidate gene enrichment using relevant thresholds for 

recurrent hotspots (see Method Details) at stringent and lenient criteria. Significant 

corrected p values were not observed in the youngest individuals, but they were observed 

in aged individuals (Figure 2.4D). When individuals were pooled based on age groups, 

significant p values were also observed only in the most aged group (Figure 2.4E). 
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CNV-affected loci may not be restricted to long genes. We assembled a 

comprehensive list of all of the genes affected in the brain CNV atlas and used 

PANTHER (Mi et al., 2013) to calculate enrichment statistics and plotting scripts from 

REViGO (Supek et al., 2011) to visualize these results. Gene Ontology categories 

associated with “sensory perception of smell” and “calcium-mediated signaling” were 

notably enriched in the atlas-wide gene set (Figure 2.4F). When assessed by age group, as 

in Figure 2.4E, these enrichments were only detected in the aged groups (Figures 2.4G 

and 2.4H). 

 

2.5 Discussion 

Brain somatic mosaicism is a largely unexplored aspect of neuronal diversity 

(Harbom et al., 2018). In the human cerebral cortex, neuronal diversity is described in 

terms of electrophysiological properties (Contreras, 2004) and gene expression profiles 

(Lake et al., 2016) that are brought about by genetic programs (Lein et al., 2017). Current 

neurodevelopmental models implicitly assume that all somatic cells operate with identical 

genomes. In turn, population-based genetic studies of neurological disease typically 

sequence bulk blood DNA as a proxy for brain DNA. Somatic mutations affecting cell 

proliferation and survival pathways can alter neuronal diversity and lead to cortical 

overgrowth phenotypes ranging from hemimegalencephaly to focal dysplasia (Jamuar et 

al., 2014; Lee et al., 2012; Mirzaa et al., 2016; Poduri et al., 2012). Elevated levels of 

somatic mutations have also been associated with Rett syndrome (Muotri et al., 2010), 

neurodegenerative disease (Bushman et al., 2015; Iourov et al., 2009; Lee et al., 2018; 

Lodato et al., 2018; McConnell et al., 2004), schizophrenia (Bundo et al., 2014), and 
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altered behavior (Bedrosian et al., 2018). The Brain Somatic Mosaicism Network is an 

ongoing multi-site effort that aims to define how brain somatic mutations affect the 

genetic architecture of psychiatric disease (McConnell et al., 2017). However, the 

consequences of somatic mutations in neurotypical human brains remain a central 

unaddressed question. We report a neurotypical human brain somatic CNV atlas to begin 

to assess how mosaic somatic mutations affect neuronal diversity. 

We assembled a brain CNV atlas from 1,285 single brain nucleus libraries, the 

accumulated work of our laboratory and 3 other laboratories. Development of a single, 

robust computational pipeline that both protected against false-positive CNV calls and 

minimized false-negative calls was essential. First, we identified and excluded a small 

group (101/4,505) of genomic bins that were consistently non-euploid (i.e., outliers) 

across our 5 analyzed individuals. Second, we applied an objective BIC cutoff to exclude 

WGA libraries that would be the most prone to aberrant segmentation calls. Third, we 

evaluated published datasets from 4 other sources that used different WGA methods. 

Population-level statistics were generally similar, but each WGA approach identified 

unique outlier bins and slightly different BIC cutoffs. Fourth, CN state distributions 

centered near CN = 1, 2, and 3 were apparent across all of the WGA approaches, so we 

used 2-tailed p values (lenient = 0.05, stringent = 0.01) from pan-method DNAcopy 

segmentation calls to define 2 sets of CN state thresholds. Fifth, we showed that these 

filters (outlier bin removal, BIC cutoffs, and CN state thresholds) effectively eliminate 

false-positive CNV calls (15/2,400; <1%). Lenient CN state thresholds are mildly (<3%) 

more prone to short (∼<6 Mb) false-positive calls, but far better at identifying true-

positives (>95%). Our central findings are unchanged when only the largest (>6 Mb) 



35 

 

CNVs are considered. The brain CNV atlas comprises 879 neuronal and 115 non-

neuronal genomic libraries; Mb-scale CNVs were identified in 129 neurons and 8 non-

neurons. 

The most salient feature of the brain CNV atlas is an anti-correlation between the 

age of an individual and the percentage of CNV neurons in the frontal cortex of that 

individual. This finding was significant in our new PicoPLEX dataset and in the 

published GenomePlex and Strand-seq datasets, and is highly significant using all of the 

available data (p = 0.00097). By contrast, the initial assessment of CNV location finds 

evidence for the enrichment of a subset of long genes and neurally associated Gene 

Ontology categories only in aged brains. Given the enrichment of these CNVs in aged, 

not young, neurons, CNVs affecting some genomic loci may be more compatible with 

neural survival than others. We found similar rates of CNV non-neurons at different ages; 

however, it will be interesting to determine whether other long-lived cells (e.g., 

cardiomyocytes) show a similar change in mosaic composition during aging. 

We provide evidence that a functional consequence of CNV neurons may be 

selective vulnerability to aging-related cell death. Age-related cognitive decline is 

associated with notable decreases in cerebral cortical thickness, myelination, and synapse 

number accompanied by ex vacuo enlargement in ventricular volume (Morrison and 

Baxter, 2012). Although neuronal cell death is generally considered to be minimal in the 

healthy mature brain, rates of ∼10% cerebral cortical neuron loss during adulthood are 

consistent with stereological counts in neurotypical individuals (Pakkenberg et al., 2003). 

The decline in CNV neuron prevalence that we observe between individuals <30 years 

old and individuals >70 years old is also strikingly consistent with selective CNV neuron 
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loss during a person’s adult lifetime. We conclude that the most parsimonious 

interpretation of these data is that many, but not all, CNV neurons are selectively 

vulnerable to aging-associated atrophy. This cross-sectional finding highlights the unmet 

need for an increased longitudinal understanding of human neuronal genome dynamics 

during an individual’s health span. Human pluripotent stem cell-based models (Brennand 

et al., 2015) represent a straightforward means to this end. 

2.6 Methods 

 

Table 2.2: Key Resources Table 

Reagent or Resource Source Identifier 

Antibodies 

mouse monoclonal anti-

human NeuN IgG Alexa-

Fluor 555 Conjugate clone 

A60 

EMD via Millipore Cat. # MAB377A5 

Biological Samples 

Human pre-frontal cortex, 

Frozen 

Lieber Institute for Brain 

Development 

Anonymized Index #1845 

Human pre-frontal cortex, 

Frozen 

Lieber Institute for Brain 

Development 

Anonymized Index #5154 

Human pre-frontal cortex, 

Frozen 

Lieber Institute for Brain 

Development 

Anonymized Index #5401 

Human pre-frontal cortex, 

Frozen 

Lieber Institute for Brain 

Development 

Anonymized Index #5570 

Human pre-frontal cortex, 

Frozen 

University of Maryland 

Brain and Tissue Bank 

Anonymized Index #1583 

Chemicals, Peptides, and Recombinant Proteins 

OptiPrep iodyxonol 

solution 

Sigma-Aldrich D1556-250ML 

Acrylamide solution 37.5:1 

(Acrylamide:Bis-

acrylamide) 

Bio-Rad Cat. # 1610158 

TEMED, 50 ml Bio-Rad Cat. # 1610801 

Ammonium Persulfate 

(APS) 

Bio-Rad Cat. # 1610700 

GelPilot DNA Loading 

Dye, 5x 

QIAgen Cat. # 239901 

10 X Tris-Boric Acid-

EDTA buffer 

ThermoFisher Cat. # B52 

10 X Tris-Acetate-EDTA 

buffer 

ThermoFisher Cat. # B49 

Magnesium Chloride 

anhydrous, ≥98% 

Sigma-Aldrich Cat. # M8266 

Potassium chloride 

BioXtra, ≥99.0% 

Sigma-Aldrich Cat. # P9333  
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Reagent or Resource Source Identifier 

Sodium chloride BioXtra, 

≥99.5% 

Sigma-Aldrich Cat. # S7653  

Sodium hydroxide Sigma-Aldrich Cat. # S8045 

Polyoxyethylenesorbitan 

monolaurate CAS Number: 

9005-64-5 

Sigma-Aldrich Cat. # P1379 

Tris(hydroxymethyl)amino

methane hydrochloride 

reagent grade, ≥99.0% 

Sigma-Aldrich Cat. # T3253 

Sucrose for molecular 

biology, ≥99.5% (GC) 

Sigma-Aldrich Cat. # S0389 

DL-Dithiothreitol 

BioUltra, for molecular 

biology, ≥99.5% (RT) 

(Sigma) 

Sigma-Aldrich Cat. # 43815 

Trypan Blue Solution of 

0.4% 

ThermoFisher Cat. # 15250061 

Bovine Serum Albumin, 

lyophilized powder, 

suitable for (for molecular 

biology) 

Sigma-Aldrich Cat. # B6917 

Hydrochloric acid ACS 

reagent, 37% 

Sigma-Aldrich Cat. # 320331 

Glacial acetic acid Sigma-Aldrich Cat. # A6283 

Ethylenediaminetetraacetic 

acid 

Sigma-Aldrich Cat. # EDS-100G 

Ultra-Pure Low Melting 

Point agarose 

ThermoFisher Cat. # 16520050 

EDTA-free Protease 

Inhibitor Cocktail; Tablets 

Roche via Sigma-Aldrich Cat. # 11873580001 

SYTO 13 green fluorescent 

nucleic acid stain 

ThermoFisher Cat. # S7575 

SYBR Gold nucleic acid 

gel stain 

ThermoFisher Cat. # S11494 

Ethidium Bromide 

Solution (10 mg/mL) 

ThermoFisher Cat. # 17898 

DAPI (4',6-Diamidino-2-

Phenylindole, 

Dihydrochloride) 

ThermoFisher Cat. # D1306 

UltraPure™ 

DNase/RNase-Free 

Distilled Water 

ThermoFisher Cat. #  10977015 

Phosphate Buffered Saline, 

PBS (10X), pH 7.4 

ThermoFisher Cat. # 70011044 

IsoFlow Sheath Fluid Beckman Coulter Cat. # 8546859 

Critical Commercial Assays 

Rubicon PicoPLEX WGA 

Kit 

via Agilent Cat. # 5190-9533 

QIAquick PCR 

purification columns Kit 

QIAgen Cat. # 28106 

MiSeq Reagent Kit v2 (50 

cycle) 

Illumina MS-102-2001 
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Reagent or Resource Source Identifier 

HiSeq PE Rapid Cluster 

Kit v2 

Illumina PE-402-4002 

Qubit™ dsDNA HS Assay 

Kit 

ThermoFisher Cat. # Q32851 

Deposited Data 

Single cell sequencing data This study (NDA Study 

ID 636) 

https://dx.doi.org/10.15154/1503237 

Software and Algorithms 

Bedtools version 2.17.0 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/inde

x.html 

biomaRt (R package) 

version 2.36.1 

Smedley et al., 2015 https://bioconductor.org/packages/release/bio

c/html/biomaRt.html 

BWA version 0.7.12 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/ 

DNAcopy (R package) 

version 1.50.1 

Seshan and Olshen, 2017 https://bioconductor.org/packages/release/bio

c/html/DNAcopy.html 

FASTX Toolkit version 

0.0.13 

http://hannonlab.cshl.edu/ http://hannonlab.cshl.edu/fastx_toolkit/downl

oad.html 

mixtools (R package) 

version 1.1.0 

Benaglia et al., 2009 https://cran.r-

project.org/web/packages/mixtools/index.ht

ml 

PANTHER Mi et al., 2013 http://www.pantherdb.org/ 

Picard Tools version 1.105 https://broadinstitute.githu

b.io/picard/ 

https://github.com/broadinstitute/picard/relea

ses 

Python version 2.6.6 https://www.python.org/ https://www.python.org/downloads/ 

R version 3.4.1 https://www.r-project.org/ https://cran.r-project.org/src/base/R-3/ 

REViGO Supek et al., 2011 http://revigo.irb.hr/ 

Samtools version 1.1 Li et al., 2009 http://www.htslib.org/download/ 

Simulation script This study https://github.com/mcconnell-

lab/scripts/blob/master/ALT_NULL_dataset_

simulation.R 

Other 

0.2 ml TempAssure PCR 

8-tube strips 

USA Scientific Cat. # 1402-2700 

Gloves large nitrile  Denville Scientific Cat. # G4163 

Dounce Tissue grinder 

Pestle A clearance   

0.0030-0.0050 in. 

Pestle B clearance   

0.0005-0.0025 in. 

Kimble via Sigma-

Aldrich 

Cat. # D8938 

SW 55 Ti Swinging-

Bucket Rotor 

Beckman-Coulter Cat. # 342196 

13 × 51 mm, 5 ml Thinwall 

polyallomer tubes 

Beckman-Coulter Cat. # 326819 

Qubit Reader 3.0 ThermoFisher Cat. # Q33216 

Polytron PT 1300 D 

Manual Disperser 

Kinematica Inc. via Fisher 

Scientific 

Cat. # 08-451-71 

100 bp DNA ladder New England Biolabs Cat. # N3231 

Corning 0.22 µm bottle top 

filter 

Sigma-Aldrich Cat. # CLS430769 

CellRaft System Kit for 

Inverted Microscopes 

Cell Microsystems P/N: CRK 



39 

 

Reagent or Resource Source Identifier 

Syringe PP/PE without 

needle 

Sigma-Aldrich Cat. # Z230723 

 

2.6.1 Human subjects 

Brain tissue was taken from five human individuals. Descriptive details of these 

individuals, such as age, sex, and number and type of cells, are available in Table 1. Four 

samples (Lieber) were collected under the IRB approved Protocol Title: Collection of 

Postmortem Human Brain, Blood and Scalp Samples for Neuropsychiatric Research’, 

registered to Thomas Hyde, MD, PhD, BA, Located on the Third Floor, 855 N. Wolfe 

Street, Baltimore, MD 21205, United States. Executed board action date: 06/19/2017. 

STUDY NUM: 1126332; ONLINE TRACKING: INVEST NUM: 165719.WO NUM: 1-

1010280-1. STUDY APPROVAL EXPIRES: 07/18/2019 and is renewed annually. 

Informed consent was obtained from all subjects. The Western Institutional Review 

Board® (1019 39th Avenue SE. Suite 120 | Puyallup, WA 98374-2115; Office: (360) 

252-2500 | Toll Free: (800) 562-4789; http://www.wirb.com/Pages/default.aspx) certifies 

the protocols for collecting and transferring clinical samples in the context of this study 

are in full compliance with good clinical practices as defined under the U.S. Food and 

Drug Administration regulations, and the International Conference on Harmonisation 

guidelines. These statements are true and correct as reflected in the records of the 

Western Institutional Review Board (WIRB), OHRP/FDA parent organization number 

IORG 0000432, IRB registration number IRB00000533. The fifth was obtained from the 

National Institute for Child Health and Human Development (NIH) Brain and Tissue 

Bank for Developmental Disorders at the University of Maryland, Baltimore, MD, 

contract HHSN2752009000011C, ref. no. N01-HD-9-011. 
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2.6.2 Single nuclei isolation 

All procedures were done on ice. Solutions were made using nuclease-free water 

and supplemented with freshly prepared 50 X proteinase inhibitor just before use. Nuclei 

isolation media, optiprep nuclei diluent, nuclei storage buffer and blocking buffer (prior 

to adding tween) were 0.22 μm filtered. 

Buffers used: 

1. Nuclei Isolation Media (NIM): 25 mM KCl, 5 mM MgCl2, 10 mM Tris-Cl (pH 8.8), 

250 mM sucrose, 1mM dithiothreitol (DTT). 

2. OptiPrep Density Gradient Medium (ODGM): 60% Iodixanol solution. 

3. OptiPrep Nuclei Diluent (OND): 150 mM KCl, 30 mM MgCl2, 60 mM Tris-Cl (pH 

8.8), 250 mM sucrose. 

4. Blocking Buffer (BB): 1x PBS, 1.0% Bovine Serum Albumin (BSA), and 0.1% Tween 

20. 

5. Nuclei Storage Buffer (NSB): 5 mM MgCl2, 50 mM Tris-Cl (pH 8.8), 166 mM 

sucrose, 1 mM dithiothreitol (DTT). 

6. 50 X EDTA-free Protease Inhibitor Cocktail in nuclease-free water. 

7. 10% Triton x-100 in nuclease-free water. 

Post-mortem cortex was stored at −80°C until fragmented while frozen on dry ice 

in a pre-chilled mortar and pestle. Fragments (∼100 mg) were completely solubilized in 1 

mL of nuclei isolation media (NIM) by gently triturating using a 1000 μL pipette tip. We 

transferred slurry to a 5 mL round bottom, polypropylene tube and homogenized using a 

Polytron PT 1300 D tissue disruptor for 2 minutes. The sample appeared opaque and 

homogeneous. We added 1 μl of 10% Triton X-100 (final conc. 0.01%) and gently mixed 



41 

 

by rotation before transferring to a dounce with large and small pestle clearance (0.0030-

0.0050 in. and 0.0005-0.0025 in., respectively). After 15 stokes with each clearance we 

microscopically verified cell disruption with 0.4% trypan blue solution. We centrifuged 

samples at 1,000 x g for 8 minutes at 4°C and re-suspended the pellet in 1 mL of 6:5:1 

NIM:ODGM:OND (25% iodixanol). We used a 1 mL syringe (without needle) to apply 

the suspension onto 1 mL of 29:31 ODGM:OND solution (29% iodixanol) in a 5 mL 

thin-wall polyallomer ultracentrifuge tube (13 × 51 mm). Samples were centrifuged at 

10,300 x g for 20 minutes at 4°C in a Beckman L8-M ultracentrifuge using a SW55 Ti 

rotor. The supernatant containing cell debris was removed, leaving ∼50 μL in the bottom 

of the tube. We confirmed the presence of nuclei by microscopy using 0.4% trypan blue 

and used immediately or stored up to 1 week in NSB at 4°C without reduction in whole 

genome amplification efficiency. 

 

2.6.3 Single nuclei genome sequencing 

We labeled nuclei derived from neurons by incubating with mouse monoclonal 

anti-human NeuN IgG clone A60 (Alexa Fluor 555 conjugate) diluted 1:250 in blocking 

buffer overnight at 4°C. We verified that NeuN+ nuclei also contained dsDNA by co-

staining with either SYTO 13 green fluorescent nucleic acid stain at 500 nM or standard 

DAPI. We isolated individual NeuN+, DNA+ nuclei by flow sorting into 8-well thin-wall 

PCR tube strips. At certain points in the execution of these procedures we also isolated 

individual nuclei from the flow-sorted NeuN+, DNA+ nuclei pool using the CellRaft 

system (Cell Microsystems) to verify integrity of the nuclei and quality of the WGA on a 

small scale. There are videos and extensive literature on the use of the CellRaft at 
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https://www.cellmicrosystems.com and Wierman et al. (2017). These quality control 

steps ensured the nuclei were intact and contained genomic material suitable for WGA. 

The PicoPLEX Whole Genome Amplification Kit was applied to single nuclei according 

to manufacturer’s instructions (Rubicon Genomics, Ann Arbor, MI). The PicoPLEX 

reaction enzymatically copies elements across the entire genome, fragments DNA 

products, and bar-codes the fragments with unique Illumina i5 and i7 index sequences. 

We confirmed reactions produced high molecular weight DNA by 1 X TBE, 1% agarose 

gel electrophoresis containing 1 μg/ml ethidium bromide. Productive reactions were 

purified using QIAquick PCR purification columns. We quantified yields using the high-

sensitivity (HS) DNA Qubit 3.0 assay and combined equimolar portions of each purified 

PicoPLEX product into pools of 48 nuclei with compatible index combinations for 

multiplex sequencing. We electrophoresed pooled libraries into 0.75 mm thick 1 X TBE, 

7.5% polyacrylamide (37.5:1 acrylamide:bisacrylamide) gels at 35 mA for 20 minutes 

and incubated with SYBR Gold DNA stain diluted 1:10,000 in 1 X TBE for 5 minutes 

before excising sections containing 450 bp to 800 bp DNA fragments on a UV 

transilluminator (long wave). We electro-eluted DNA from polyacrylamide sections into 

1 X TAE, 1% low-melt agarose gel containing 1 μg/ml ethidium bromide at 100 V for 15 

minutes and isolated chunks containing DNA on a UV transilluminator (long wave). 

DNA was purified from agarose using QG buffer according to the QIAquick PCR 

column protocol (QIAGEN). We quantified size-selected pooled library DNA by HS 

DNA Qubit 3.0 assay and diluted to 6 nM prior to sequencing on the Illumina (San 

Diego, CA) platform. We sequenced a total of 829 brain nuclei and used these for BIC 

and copy number state population statistics, including threshold determination. Two 
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single nuclei were flagged for ambiguous provenance. The CNV atlas includes 827 male 

brain nuclei that were amplified by the DNA WGA PicoPLEX kit. These single nucleus 

genome sequencing procedures were previously described in McConnell et al. (2013) and 

in greater detail in Wierman et al. (2017). 

 

2.6.4 Analysis of single cell sequencing data 

Sequence reads from Illumina were trimmed of PicoPLEX primers using the 

fastx_trimmer command (hannonlab.cshl.edu/fastx_toolkit/). Reads were then aligned to 

the human genome (version hg19) with BWA-aln V0.7.12 using default options (Li and 

Durbin, 2009) and converted to BAM format using Samtools V1.1 (Li et al., 2009). 

Duplicates were removed using MarkDuplicates (Picard tools V1.105, 

broadinstitute.github.io/picard). Using a 40-mer mappability track (UCSC, 

wgEncodeCrgMapabilityAlign40-mer.bigWig) to determine uniquely mappable bases, 

we divided the genome into 4,505 dynamically sized genomic bins, each containing 

500kb of mappable sequence. The mean bin size was 687 kb. Read counts for each bin 

were determined by Bedtools V2.17.0 coverageBed (Quinlan and Hall, 2010). To avoid 

read count bias arising from GC content, bins were grouped into 16 roughly equal size 

groups according to GC percentage and each read count within a GC group was divided 

by the median read count of the group and multiplied by two. 

Following analysis of several hundred single cell datasets, we observed that 

certain genomic bins were consistently above or below the euploid state, most likely due 

to biases arising from alignment or artifacts generated during WGA. To avoid biases in 

segmentation introduced by these outlier bins, namely false positive and false negative 
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CNVs, we used Tukey’s Outlier Method on the median log-copy number values of all 

4,505 bins in a sex and WGA-specific fashion, resulting in between 101 and 153 bins to 

be excluded from segmentation, depending on the sex of the individual and WGA used. 

In addition to the bins excluded by the outlier detection method, two Y chromosome bins 

were manually excluded from female Strand-seq dataset. Single cell datasets were 

segmented using DNAcopy (Seshan and Olshen, 2018), an R package (www.R-

project.org) that implements circular binary segmentation (CBS) to detect copy number 

“changepoints” in genomic data. DNAcopy was run on the normalized bin data using 

parameters alpha = 0.001, undo.SD = 0, and min.width = 5. 

 

2.6.5 BIC scoring and filtering 

To determine which samples were of sufficient quality to merit further analysis, 

we implemented Bayesian Information Criterion (BIC) (Schwarz, 1978) 

 

as a scoring metric where σ2 is the variance of the data points about their respective 

segment means, kp is equal to 1 + 2*(number of changepoints), and n is the number of 

bins (4,505) assuming a piecewise-constant, Gaussian error segmentation model (see 

Muggeo and Adelfio (2011) for details of segmentation modeling and parameterization). 

The equation above shows the usual BIC score divided by the number of bins, which is 

fixed across samples. BIC penalizes a segmentation that under-fits the data (i.e., allows 

high variance of data within segments) or over-fits the data (i.e., creates too many 

segments); thus, a cell with properly fitted data and relatively low bin value variance will 

receive a low BIC score. 
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To define threshold BIC scores for inclusion in further analysis, a histogram of 

BIC scores was generated for each WGA method. Using the R package mixtools 

(Benaglia et al., 2009), we fit two Gaussian distributions to the PicoPLEX and Strand-seq 

histograms, and one Gaussian distribution to the GenomePlex histogram due to its 

displaying a single mode. Using the Gaussian distribution with the lower mean (or, in the 

case of GenomePlex, the lone distribution), we set the threshold BIC score for inclusion 

to correspond to p = 0.05 on the upper tail. For PicoPLEX, cells scoring below −2.21 

were selected for further analysis (Figure 2.1E); for GenomePlex, the threshold was 

−2.05 (Figure 2.S4G); for Strand-seq, the cutoff was −1.93 (Figure 2.S4H). 

 

2.6.6 Defining CNVs 

Because DNAcopy does not assign integer copy number values to the segments it 

outputs, it was necessary to define threshold copy number values for a segment to be 

considered a CNV. We set CNV thresholds by evaluating autosomal segments of sizes 

ranging from 5, our minimum number of bins required to call a CNV, and 45 bins, a 

length smaller than the shortest autosome, resulting in a distribution of copy numbers 

excluding the high number of whole chromosomes at or near copy number two. The 

segments were plotted by copy number value in a histogram, and we fit a three-Gaussian 

mixture model using mixtools (Benaglia et al., 2009) and plotted the resulting mixed 

Gaussian model of three distributions centered at the local peaks near copy number 1, 2, 

and 3. Using the central Gaussian, centered near 2, we calculated two sets of thresholds: 

the stringent thresholds, 2.80 and 1.14, the result of a cumulative two-tailed probability of 

0.01; and the lenient thresholds, 2.60 and 1.34, determined by a two-tailed cumulative 
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probability of 0.05. Throughout our CNV analyses, we used both thresholds in order to 

give a wider range of possible results and avoid any influence of false positive or false 

negative CNVs. Additionally, CNVs were required to be at least 5 bins in length, and 

chromosomes X and Y were not examined for CNVs. 

 

2.6.7 Test data simulation 

DNAcopy is prone to calling CNV events using correlated noise as input 

(Muggeo and Adelfio, 2011), so we sought to determine the degree to which our single 

cell data contains correlated noise. We selected six single cells to simulate test data. In 

our “NULL model,” we assumed that the data for our six cells were described by 

correlated noise and Gaussian noise about the euploid copy number state, and contained 

no real CNV events. In the “alternative model,” we assumed that the six cells were 

described by real CNV events identified by DNAcopy and residual correlated and 

Gaussian noise. We simulated 200 test data cells for each of the cells under each of the 

models and found that the CNVs produced by the NULL model rarely matched those of 

the original cell in size or divergence from 2 (Figure 2.S1H), leading us to conclude that 

the ALT model was a more accurate representation of our data (Figure 2.S1I). To 

determine the best DNAcopy segmentation parameters, we used simulation data of the 

“alternative model” to explore values of alpha ranging from 0.05 to 10−5, undo.SD 

ranging from 0 to 5, and min.width ranging from 2 to 5, and calculated a BIC score for 

each. We also tested the performance of each segmentation using a receiver operating 

characteristic (ROC) curve to determine the parameters at which sensitivity was 

maximized and false positive CNVs were minimized (Figure 2.S1J). We concluded that 
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the best parameters for segmentation were alpha = 0.001, undo.SD = 0, and min.width = 

5. 

We later simulated data based on 6 additional cells to assess the effect of our BIC 

and CNV thresholds on false positives and false negatives using ALT and NULL model 

simulations as described above (Figure 2.S2B-2.S2C). 

 

2.6.8 RepeatMasker analysis of outlier bins 

To see if outlier bins showed any differences in genomic features compared to 

normal bins, we selected 100 outlier bins and 100 normal bins of similar size and 

calculated base overlap with RepeatMasker (UCSC) feature types, such as LINE, SINE, 

simple repeats, long terminal repeats, etc. Following normalization of overlapping bases 

by bin size, we performed a Wilcoxon rank-sum test for each RepeatMasker feature type 

to test whether there was a difference in the fraction of overlapping bases between the bin 

groups. 

 

2.6.9 RepeatMasker enrichment analysis of CNVs 

To check for overlap of genomic features in the CNVs that we detected, we 

selected a subsample of CNVs corresponding to the 5th, 25th, 50th, 75th, and 95th 

percentiles of CNV size and used Bedtools shuffle (Quinlan and Hall, 2010) to generate 

1000 randomized genomic locations for each CNV. We then computed the percent 

overlap of each simulated CNV with RepeatMasker (UCSC) feature types. From this, we 

computed the mean and standard deviation percent overlap of the randomized CNVs 

which we used to calculate a z-score associated with the actual overlap as a function of 
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CNV size. We also checked for border region enrichment by calculating the percent 

overlap of RepeatMasker feature types with the first and last megabase of each simulated 

CNV and deriving the associated z-score of the actual CNV border overlap as a function 

of CNV size. 

 

2.6.10 Gene set enrichment 

To explore the biological significance of large scale CNVs in the brain, we sought 

to follow up on the work of two papers that identified lists of long genes that may be 

predisposed to DNA breaks in mice (King et al., 2013; Wei et al., 2016). Building upon 

this idea, we also examined a third list containing the 50 longest human genes obtained 

using biomaRt (Smedley et al., 2015). These gene lists shared genes in common with one 

another. There were ultimately seven gene lists drawn from one, two, or three of the 

original lists, as well as an eighth gene list containing all 93 genes gathered from all three 

sources. To test for enrichment, we collected hotspot coordinates corresponding to a 

minimum number of CNV events, which varied depending on the subset of data being 

tested and the CNV threshold used. For each data subset, we set hotspot cutoffs for the 

required number of CNVs such that no cutoff should lead to greater than 20% coverage 

of the human genome. The resulting cutoffs for each subset and threshold are listed in 

Table 2.3. 

Table 2.3: Hotspots and Coldspots Used for Gene Set Enrichment 

Individual(s) Threshold CNVs Dels. Dups. 

All Lenient 0, 5-8, 6-8, 7-8, 8 0, 4-6, 5-6, 6 2-5, 3-5, 4-5, 5 

0.36-26 Lenient 3-5, 4-5, 5 2-5, 3-5, 4-5, 5 2-4, 3-4, 4 

42-52 Lenient 3-4, 4 3-4, 4 1 

68-74 Lenient 1-2, 2 1-2, 2 1-2, 2 

81-95 Lenient 2-4, 3-4, 4 2-3, 3 1-2, 2 

0.36 Lenient 1-3, 2-3, 3 1-2, 2 1-2, 2 
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Individual(s) Threshold CNVs Dels. Dups. 

20 Lenient 2-4, 3-4, 4 2 1-2, 2 

24 Lenient 1 1 1 

26 NeuN+ Lenient 2-5, 3-5, 4-5, 5 1-3, 2-3, 3 1-4, 2-4, 3-4, 4 

26 NeuN- Lenient NA NA 1 

42 Lenient 2 2 1 

48 Lenient NA NA NA 

49 NeuN+ Lenient 2-3, 3 3 1 

49 NeuN- Lenient 1 1 1 

52 Lenient 1-2, 2 1-2, 2 1 

68 Lenient 1 1 1 

69 Lenient 1 1 1 

70 Lenient  1  

74 Lenient 1-2, 2 1-2, 2 1 

81 Lenient 1 1 1 

86 NeuN+ Lenient 2 1 1 

86 NeuN- Lenient 1 1 1 

95 Lenient 1-3, 2-3, 3 1-2, 2 1 

All Stringent 0, 4-6, 5-6, 6 3-5, 4-5, 5 2-4, 3-4, 4 

0.36-26 Stringent 2-5, 3-5, 4-5, 5 2 1-3, 2-3, 3 

42-52 Stringent NA 2-3, 3 NA 

68-74 Stringent 1-2, 2 1 1-2, 2 

81-95 Stringent 2-4, 3-4, 4 2-3, 3 1 

0.36 Stringent 1-3, 2-3, 3 1 1-2, 2 

20 Stringent 2-4, 3-4, 4 1-2, 2 1-2, 2 

24 Stringent NA 1 NA 

26 NeuN+ Stringent 1-3, 2-3, 3 1-2, 2 1-2, 2 

26 NeuN- Stringent NA NA NA 

42 Stringent NA 1 NA 

48 Stringent NA NA NA 

49 NeuN+ Stringent NA 2 NA 

49 NeuN- Stringent NA 1 NA 

52 Stringent NA 1 NA 

68 Stringent 1 1 1 

69 Stringent 1 1 1 

70 Stringent NA 1 NA 

74 Stringent NA NA 1 

81 Stringent 1 1 1 

86 NeuN+ Stringent NA 1 1 

86 NeuN- Stringent NA 1 NA 

95 Stringent 1-3, 2-3, 3 1-2, 2 1 

 

For each set of hotspots (Table 2.3), we randomly shuffled the hotspot loci within 

the genome 10,000 times to generate a null model of CNV coverage. We then determined 
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the number of genes of interest found in the actual hotspots and the range of genes of 

interest found in the null model to generate enrichment p values, which were then FDR-

corrected using the Benjamini-Hochberg method. Owing to the considerable inter-

dependence among hotspot sets being tested, these p values were FDR-corrected within 

stratified sub-groups; for example, p values for hotspots derived from individuals were 

corrected separately from p values for hotspots derived from age groups. Likewise, p 

values for hotspots defined as regions of 3-5 CNVs were corrected separately from 

regions defined as regions of 2-5, 4-5, or 5 CNVs. 

 

2.6.11 Gene Ontology (GO) term analysis 

We compiled a list of genes with genomic coordinates overlapping each CNV and 

separated these lists by individual and, where applicable, cell type. These lists of CNV-

affected genes were submitted to PANTHER (Mi et al., 2013) (pantherdb.org) to 

determine if any GO terms were enriched. The resulting GO terms and corresponding p 

values were then submitted to REViGO (Supek et al., 2011) (revigo.irb.hr) to aid 

visualization via downloadable plotting scripts. 

 

2.6.12 Quantification and Statistical Analysis 

Most statistical analyses were performed using R (version 3.4.1, www.R-

project.org), utilizing base and downloaded packages. BIC score cutoffs and CNV 

thresholds were defined as explained in Method Details. Statistical tests and outlier 

detection are explained in figure legends and in Results text. Stratification of p value 
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correction in gene set enrichment is described above in Method Details. Statistical 

significance was defined as p < 0.05. 

 

2.6.13 Data and Software Availability 

Single cell sequencing data for PicoPLEX neurons and non-neurons is available 

through the NIH Data Archive (Study 636, https://dx.doi.org/10.15154/1503237). The R 

script used for simulating data using ALT and NULL models is available at 

https://github.com/mcconnell-lab/scripts/blob/master/ALT_NULL_dataset_simulation.R. 
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2.9 Supplemental Figures 

 
Figure 2.S1 (related to Figure 2.1). Optimization of sample filtration and segmentation 

(A-E) CNV profile of test data Fibroblast (A), Neuron 2,-5 (B – E). Genome is arranged horizontally by 

chromosome. Read depth-derived CN values of genomic bins and are colored by chromosome, alternating 

between green and light blue. Red line represents segmentation output from DNAcopy. (F) Flowchart 

summarizing simulation of data based on authentic single cell data using the null and alternative models. 

(G) Comparison of BIC scores for segmentation of Fibroblast 1 and Neurons 2, 3, 4, and 5 using different 

settings of alpha, undo.SD, and min.width. A red diamond is used to highlight the lowest BIC score for 

each cell. (H) Comparison of CNVs detected in real data (black dots) to CNVs detected in simulated data 
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(yellow contours) under the null and (I) alternative models across six test cells.  For the purposes of these 

tests, thresholds of CN < 1.825 for deletion and CN > 2.175 for duplication were used. Contours are based 

on a two-dimensional kernel density estimation of the simulated CNVs.  (J) ROC curves demonstrating the 

sensitivity and false positive rates of CNV detection under different DNAcopy settings. Points are colored 

according to difference from minimum BIC score for each cell, as in panel G; similarly, red diamonds are 

used to highlight the best BIC scores for each cell. 10 CNV thresholds were used, ranging from < 1.825 for 

deletion and > 2.175 for duplication to < 1.99 for deletion and > 2.01 for duplication. For that reason, BIC 

scores from the same segmentation may appear up to 10 times in each plot depending on changes in 

sensitivity or false positive rate resulting from changes in the CNV thresholds used. (K) Median bin values 

for autosomal bins in PicoPLEX data. Orange dashed lines represent bin exclusion thresholds of > 2.57 and 

< 1.56, as determined by Tukey’s outlier test. (L) BIC scores for PicoPLEX neurons and (M) non-neurons. 

Dashed line indicates BIC cutoff of < -2.21. 
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Figure 2.S2 (related to Figure 2.1). Lenient and stringent thresholds protect against false positive 

CNVs. 

(A) Percent of cells with monosomy X called plotted against the threshold required for calling at a state of 

1. In cases where chrX contained multiple segments, overall copy number was derived from an average of 

segment copy number values weighted by number of bins in each segment, then compared to each 

threshold. (B) Comparison of CNVs detected in real data (black dots) to CNVs detected in simulated data 

(yellow contours) under the null and (C) alternative models across six test cells.  For the purposes of these 

tests, thresholds of CN < 1.825 for deletion and CN > 2.175 for duplication were used.  Contours are based 

on a two-dimensional kernel density estimation of the simulated CNVs.  Long dashed lines indicate 

stringent CNV cutoffs of < 1.14 and > 2.80, while short dashed lines indicate lenient CNV cutoffs of < 1.34 

and > 2.60. Neuron 6 (BIC = -2.686, φ = 0.108) and Neuron 7 (BIC = -2.807, φ = 0.083) contained 0 CNV 

calls; Neuron 8 (BIC = -2.969, φ = 0.085) and Neuron 9 (BIC = -2.386, φ = 0.166) contained 1 CNV each; 

Neuron 10 (BIC = -2.558, φ = 0.663) contained 3 CNVs; Neuron 11 (BIC = -2.766, φ = 0.344) contained 6 

CNVs. 
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Figure 2.S3 (related to Figure 2.2). Contribution of mosaic CNVs to brain cell diversity across 

individuals and CNV thresholds 

(A) Histogram showing CNV sizes among the neurons from five individuals aged 0.36 to 95. Stringent 

thresholds were used. (B) Histogram showing CNV sizes among the non-neurons from three individuals 

aged 49 to 86. CNVs were detected using lenient thresholds and (C) stringent thresholds. (D) Histogram 

showing number of CNVs in CNV neurons from five individuals. Neurons with 0 CNVs were excluded 
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from this plot. Stringent thresholds. (E) Histogram showing number of CNVs in CNV non-neurons from 

three individuals. Non-neurons with 0 CNVs were excluded from this plot. CNVs were detected using 

lenient thresholds and (F) stringent thresholds. (G) Histogram showing percent genome coverage by CNVs 

in CNV neurons from five individuals. Neurons with 0 CNVs were excluded from this plot. Stringent 

thresholds. (H) Histogram showing percent genome coverage by CNVs in CNV non-neurons from three 

individuals. Non-neurons with 0 CNVs were excluded from this plot. CNVs were detected using lenient 

thresholds and (I) stringent thresholds. (J) Comparison of percent cells containing CNVs between NeuN+ 

and NeuN- cells from three individuals. Stringent thresholds. (K) Comparison of CNV size between 

NeuN+ and NeuN- cells. Stringent thresholds. (L) Comparison of number of CNVs between NeuN+ and 

NeuN- cells.  Cells with 0 CNVs were excluded from this plot.  Stringent thresholds. (M) Comparison of 

percent genome coverage by CNVs between NeuN+ and NeuN- cells.  Cells with 0 CNVs were excluded 

from this plot.  Stringent thresholds. (N) CNV profile of neuron from 86 year old male displaying trisomy 

7, trisomy 9, and monosomy 10. The cell also appears to show a Y chromosome loss. Red lines represent 

the CN states at each bin across the genome; CNV calls are represented at the precise CN determined by 

DNAcopy while euploid regions are depicted at exactly CN 2. (O) Percent of neurons containing CNVs 

plotted against the age of the individual from which they were collected (linear fit, R2 = 0.9434, p = 

0.0058). Stringent thresholds. 
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Figure 2.S4 (related to Figure 2.3). Publicly available data shows similarities to PicoPLEX data 

under both CNV thresholds 

(A) Median bin values for autosomal bins in GenomePlex data. Orange dashed lines represent bin 

exclusion thresholds of > 2.23 and < 1.80, as determined by Tukey’s outlier method. (B) Median bin values 

for autosomal bins in Strand-seq data. Orange dashed lines represent bin exclusion thresholds of > 2.32 and 
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< 1.73, as determined by Tukey’s outlier method. (C) CNV profile of Reaction 1 of split-amplification cell 

from Knouse 2016 and (D) CNV profile of Reaction 2.  GenomePlex outlier bins are included in both 

datasets. (E) CNV profile of Reaction 1 of split-amplification cell from Knouse 2016 and (F) CNV profile 

of Reaction 2.  GenomePlex outlier bins were removed from both datasets. (G) Histogram of BIC scores 

for GenomePlex datasets. Gaussian distribution fit to data is depicted in black. Dashed line indicates BIC 

cutoff of < -2.05. (H) Histogram of BIC scores for Strand-seq datasets. Gaussian distributions fit to data are 

depicted in black and red. Dashed line indicates BIC cutoff of < -1.93. (I) Histogram showing CNV sizes 

among neurons across each WGA method and data source. Stringent thresholds were used. (J) Histogram 

showing CNV sizes in each individual from previously published data. CNVs were detected using lenient 

thresholds and (K) stringent thresholds. (L) Histogram showing number of CNVs in CNV neurons across 

each WGA method and data source. Neurons with 0 CNVs were excluded from this plot. Stringent 

thresholds. (M) Histogram showing number of CNVs in CNV neurons in each individual from previously 

published data. Neurons with 0 CNVs were excluded from this plot. CNVs were detected using lenient 

thresholds and (N) stringent thresholds. (O) Histogram showing percent genome coverage by CNVs in 

CNV neurons across each WGA method and data source. Neurons with 0 CNVs were excluded from this 

plot. Stringent thresholds. (P) Histogram showing percent genome coverage by CNVs in CNV neurons in 

each individual from previously published data. Neurons with 0 CNVs were excluded from this plot. CNVs 

were detected using lenient thresholds and (Q) stringent thresholds. (R) Percent of neurons containing 

CNVs plotted against the age of the individual from which they were collected (linear fit, R2 = 0.3941, p = 

0.0092). Stringent thresholds. (S) Percent of neurons containing CNVs plotted against the age of the 

individual using previously published data under lenient CNV thresholds (linear fit, R2 = 0.5315, p = 0.011) 

and (T) stringent thresholds (linear fit, R2 = 0.3524, p = 0.054). 

  



60 

 

 
 

Figure 2.S5 (related to Figure 2.3). Post-mortem interval (PMI) does not impact sample quality or 

confound age-related trends. 

(A) Scatter plot of PMI and age information for 11 individuals studied in this chapter. (B) Violin plots of 

BIC score and PMI for 11 individuals studied in this chapter. The 26 year old individual studied in both 

McConnell 2013 and this chapter has a PMI of 18 h and violins are shown for each group of cells analyzed. 

(C) Percent of neurons containing CNVs plotted against the PMI of the individual from which they were 

collected using lenient CNV thresholds and (D) stringent thresholds. The data points represent 11 of the 

individuals studied in this chapter, including the 26 year old for whom there are separate data points for the 

McConnell 2013 and Chronister 2018 datasets. The relationship was statistically insignificant in both cases. 
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Chapter 3 

Exploring somatic mosaicism in the mouse brain 

 

The Top1-/- and Top1+/+ mouse analyses discussed in this chapter are part of a submitted 

manuscript currently under review at Nature Communications (Fragola et al., 2019). 

Figure 3.1 D-E were taken from a figure in that manuscript. 
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3.1 Abstract 

Efforts to study brain somatic mosaicism in healthy human beings are hindered by 

the difficulty of obtaining disease-free brain tissue and the considerable genomic 

diversity of human individuals. Fortunately, brain somatic mosaicism is a conserved 

phenomenon in mice, which allow for easier experimentation. To probe the factors 

influencing CNVs in the mouse brain, we sequenced over 800 single neuronal nuclei 

from 10 mice, aged between 1 week and nearly 3 years of age. Several of these mice 

were bred to carry mutant genotypes hypothesized to influence CNV prevalence, 

including Top1 knockout, Trp53 knockout, and human tau (htau) transgene. We analyzed 

these single cell genomes through our custom CNV detection pipeline and found rates of 

CNV-containing neurons in the range of ~30-70%. We also created “bulk” data through 

the pooling of sequencing data from individual mice, which allowed us to identify clonal 

CNVs using structural variant callers. 

 

3.2 Introduction 

Mice have long been used as a model system to investigate research questions that 

cannot be as easily explored in human subjects. In recent years, this approach has been 

employed to study brain somatic mosaicism. Whereas human brain samples are scarce 

compared to other tissues and, as such, provide investigators with little flexibility to 

control for critical characteristics such as ancestry, environmental effects, disease state, 

and age, mouse brains are abundant and can be collected from individuals of identical 

genetic makeup, from the same controlled laboratory environment, with any of a variety 

of disease states, and at any desired time points in the development or aging process. 
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With regard to modeling brain somatic mosaicism, perhaps the most important aspect of 

mice has been that mouse neurons indeed show similar kinds of mosaicism to humans, 

thus making them a highly relevant model system. 

Over the past two decades, various studies have identified the presence of somatic 

mosaicism in the mouse brain. Rehen et al. (2001) were the first to report evidence of 

widespread somatic mosaicism in the mouse nervous system, reporting that 33% of 

neuroblasts examined using spectral karyotyping (SKY) were aneuploid. They also 

performed DNA-fluorescence in situ hybridization (DNA-FISH) on the X and Y 

chromosomes in male cortical cells and reported aneusomy rates of 1.15% in the adult 

brain and 6.74% in the embryonic brain. Only two published studies to date have used 

single cell whole genome sequencing (scWGS) to explore mosaicism in the mouse brain: 

Knouse et al. (2014) identified evidence of aneuploidy in 1% of adult neurons and in 0% 

of embryonic neural progenitor cells (NPC). Meanwhile, Rohrback et al. (2018a) reported 

that CNVs as small as 250kb were detected in over 93% of embryonic neural progenitor 

cells and adult neurons, but detected whole-chromosome losses or gains in <1% of cells. 

Given the contradictory estimates of aneuploidy depending on the method employed, it 

has been proposed that the high rates of aneuploidy detected by SKY and FISH 

techniques may be accounted for by subchromosomal gains and losses, including 

chromothriptic events, which may be misidentified as aneuploidies by SKY and FISH 

(Knouse et al., 2014; Rohrback et al., 2018a; Rohrback et al., 2018b). In any case, the 

extent to which whole- and sub-chromosomal CNVs affect the mouse brain remains an 

open question and warrants further study. 
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We analyzed neurons from a variety of different mice to learn how brain somatic 

mosaicism manifests in mice of diverse genotypes. In our first experiment, we examined 

the effects of the presence or absence of topoisomerase 1 on large-scale CNV prevalence 

by studying 2 mice, 1 Top1-/- and 1 Top1+/+. Top1 assists the expression of long genes by 

relieving torsional stress caused by DNA supercoiling, an important role in the brain, 

which utilizes a disproportionately high number of long genes compared to other tissues 

(King et al., 2013; Mabb et al., 2016; Zylka et al., 2015). Previous studies have shown 

that Top1 inhibition leads to downregulation of long neural genes and impairment of 

synaptic function in neuronal cultures (King et al., 2013; Mabb et al., 2014; Mabb et al., 

2016). Given its role in mitigating transcriptional stress, a known cause of somatic 

mutations in neurons (Lodato et al., 2015), we hypothesized that the absence of Top1 

would cause an increase in CNVs. To test this hypothesis, we analyzed 47 Top1-/- and 48 

Top1+/+ single neuronal nuclei for CNVs and found that loss of Top1 resulted in an 

increase in both the number of neurons containing CNVs (“CNV neurons”) and the size 

of CNVs. 

We also analyzed a group of 8 mice of various genotypes selected to examine the 

impact of p53 absence and a human tau transgene (htau) on CNV occurrence. p53 (gene 

name TP53 in humans, Trp53 in mice) is a well-characterized tumor suppressor which is 

frequently mutated in cancer (Muller and Vousden, 2013). Given the functions of p53 in 

DNA damage response, which can entail the activation of DNA repair machinery or the 

initiation of apoptosis (Williams and Schumacher, 2016), we were interested to learn if 

deletion of one or both Trp53 alleles would result in a higher or lower proportion of 

neurons containing CNVs compared to wild-type. We also wanted to study the impact of 
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htau on a mouse with its endogenous tau gene knocked out. htau causes mice to develop 

symptoms similar to those seen in various human tauopathies, including neurofibrillary 

tangles (NFTs) and neuronal death (Andorfer et al., 2005; Andorfer et al., 2003). Further, 

htau has been reported to induce abnormal cell cycle reentry and re-replication prior to 

cell death in mouse neurons (Andorfer et al., 2005). We were interested to see if htau 

mouse neurons carried CNVs that were in any way selected for by neurodegenerative 

disease; in addition, we were curious as to whether any neurons we analyzed would show 

evidence of cell cycle reentry in the form of duplication CNVs or hyperploidy. As a 

control, we also sequenced cells from a mouse without htau or the endogenous mouse tau 

gene. Our dataset thus included 2 Trp53-/- mice, 1 Trp53+/- mouse, 1 htau+ mtau-/- mouse, 

1 htau- mtau-/- mouse, and a total of 3 wild-type mice. Among these individuals, 2 wild-

type mice and the htau+ mouse were well over 2 years of age, enabling us to also 

examine CNV incidence in aged mice, though low sample sizes and lack of control mice 

in each genotype prevented direct analysis of aging effects. By carrying out a similar 

CNV analysis to the pipeline outlined in Chapter 2, we detected percentages of CNV 

neurons in the range of 30-70% across the 8 individuals. 

Noticing that CNVs were more frequent than expected, we also employed a novel 

approach of pooling single cell data to create effective bulk data for each of the 8 mice in 

our second dataset. The creation of bulk data allowed us to run variant calling tools 

LUMPY, Delly, and SVXplorer to detect clonal CNVs in each individual. We detected 

highly variable numbers of CNVs across individuals and assessed the level of 

concordance of deletions called by these tools. We then attempted to verify the presence 

of deletions using in-depth analysis of individual mapped reads. 
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3.3 Methods 

3.3.1 Analysis of Top1 cKO and WT mice 

 Top1 cKO and WT mice were generated as previously described (Mabb et al., 

2016). Cortices were isolated from P7 brains of one Top1+/+ mouse and one Top1-/- 

mouse and stored at -80oC. Following mechanical dissociation of brain tissue and 

purification of nuclei, as described in Wierman et al. (2017), FACS was used to isolate 

NeuN+ nuclei as described in Chapter 2. Whole genome amplification was carried out 

using a customized MALBAC protocol (Burbulis et al., 2018), and libraries were 

barcoded and prepared for sequencing by NextFLEX (Bioo Scientific). Whole genome, 

single-end 100bp sequencing was carried out on the Illumina HiSeq Rapid platform. The 

resulting sequencing data from 95 cells (48 Top1+/+, 47 Top1-/-) was trimmed of 

MALBAC adapters using FASTX Toolkit (version 0.0.13) prior to being analyzed using 

a CNV detection pipeline similar to the one detailed in Chapter 2, with exceptions as 

noted here. Reads were counted in 5,126 non-overlapping bins by Bedtools (version 

2.17.0). Bins were designed to contain 500kb of mappable sequence each (average bin 

size = 518 kb) using the 40mer mappability track for mm9 

(wgEncodeCrgMapabilityAlign40mer.bigWig, available from UCSC). Binned reads were 

normalized to copy number estimates following the GC-correction method detailed in 

Chapter 2. Using Tukey’s Outlier Method on the median values for each of the 5,126 

genomic bins, we identified 182 outlier bins that consistently showed higher or lower 

than normal copy number estimates and excluded them from segmentation by DNAcopy 

(version 1.50.1).  A BIC cutoff was set to exclude poor quality cells, excluding all cells 

scoring higher than -1.5. Copy number values of segments between 5 and 54 bins in size 



67 

 

were plotted as a histogram, and three Gaussian distributions were fit to the data using the 

R package mixtools (version 1.1.0) to identify peaks corresponding to 1-copy, 2-copy, 

and 3-copy regions of DNA. Using a two-tailed p-value of 0.001 on the distribution 

centered near 2, a deletion threshold of < 1.22 and a duplication threshold of > 2.82 were 

calculated. 

 

3.3.2 Analysis of 8 mice 

3.3.2.1 Traditional single cell CNV analysis 

 Our 8 mice (Table 3.1) were obtained from several sources. p53KOmouse1 and 

p53KOmouse2 were obtained from the Jackson Laboratory (strain B6.129S2). 

p53hetmouse and WTmouse1 were obtained from the laboratory of Noelle Dwyer 

(University of Virginia) and were bred to an approximate background of 70% C57BL/6 

and 30% FVB. htau, htauKO, WTmouse2 and WTmouse3 were obtained from the 

laboratory of George Bloom (University of Virginia); htau and htauKO mice were bred 

as previously described (Dawson et al., 2001; Duff et al., 2000).  Cortices were gathered 

and frozen in the same fashion as the Top1 cKO and WT mice. FACS and MALBAC 

WGA were carried out as described in 3.3.1. Sequencing libraries were barcoded and 

prepared for Illumina sequencing by iGenomX. Paired-end 75bp sequencing was 

performed on the Illumina NextSeq platform to generate single cell data. 721 neurons 

contained sufficient read counts to be analyzed in our pipeline. We followed a similar 

single cell CNV detection pipeline to the one described for the Top1 data, with 

exceptions detailed here. We identified 166 outlier bins using Tukey’s Outlier Method 

and excluded them from DNAcopy segmentation. BIC scores were calculated and plotted 
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as a histogram, to which we fit two Gaussian distributions. The cutoff was set at the 95th 

percentile score (-1.268), excluding all cells with a higher score. Lenient and stringent 

CNV cutoffs calculated in Chapter 2 with human data were utilized to detect CNVs. 

 

3.3.2.2 Identifying clonal mutations using pooled single cell data 

 We then pooled the single cell data from each individual to generate 8 sets of 

“bulk” data. The pooling was accomplished by simple concatenation of all trimmed 

FASTQ files. The 8 bulk FASTQs were then run through the beginning steps of the CNV 

pipeline to generate BAM files. BAM files from each individual were analyzed by 

Lumpy (and genotyped by SVTyper), Delly, and SVXplorer according to the default 

protocols. 

 We created merged BAM files for each individual by using the Samtools (version 

1.1) “merge” command on our single cell BAMs in order to preserve the read groups of 

each cell. The presence of these read group tags enabled us to identify which reads 

belonged to which cells when viewing in the Integrative Genomics Viewer (IGV, Broad 

Institute). 

 Clipped reads were isolated from regions 1-2bp upstream and downstream of 

putative deletions using Samtools. We submitted their sequences to Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) for clustering and viewed the resulting 

alignments in MView. 
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3.4 Results 

3.4.1 Exploring effects of Top1 knockout on CNV incidence 

We analyzed sequencing data from 47 Top1 cKO neurons and 48 Top1 WT 

neurons using the same pipeline as in Chapter 2, with adjustments made for the mouse 

data. 183 outlier bins were identified using Tukey’s Outlier Method on median bin values 

from the 95 cKO and WT neurons (Figure 3.1A). Following outlier bin removal, each 

cell was segmented using DNAcopy and scored using BIC. The average BIC scores were 

-2.14 (cKO) and -1.72 (WT). Median BIC scores were -2.28 (cKO) and -1.81 (WT). A 

cutoff was set at -1.5 for both groups, which resulted in 43/47 (91.5%) cKO neurons and 

39/48 (81.3%) WT neurons being retained for downstream analysis (Figure 3.1B). 

We plotted a histogram of DNAcopy segments from BIC-passing cells between 5 

and 54 bins in size, which consisted of the shortest 20% of segments. Using the R 

package mixtools, we fit three Gaussian distributions which were centered near integer 

copy number states of 1 (1.24), 2 (2.02), and 3 (2.81) (Figure 3.1C). Using the 

distribution centered near 2, we calculated a two-tailed p-value of 0.01 to arrive at a 

deletion threshold of 1.22 and a duplication threshold of 2.82. 

Using these CNV thresholds, we detected at least one deletion or duplication in 18 

of 82 BIC-passing cells (22.0%). In total, 56 CNVs were identified (3.1 CNVs/neuron). 

41 of the CNVs were detected in 14 Top1 cKO neurons (2.9 CNVs/neuron) and 15 were 

found in 4 Top1 WT neurons (3.8 CNVs/neuron), representing CNV neuron 

subpopulations of 14/43 (32.6%) in cKO cells and 4/39 (10.3%) in WT cells (Figure 

3.1D-E). The mean size of CNVs in cKO neurons (15.6 Mb) was more than double that 



70 

 

of WT neurons (7.1 Mb), and this difference was determined to be statistically significant 

(p = 0.01508, two-sided student’s t-test) (Figure 3.1F). 

As previously observed in other datasets (Chronister et al., 2019; McConnell et 

al., 2013; Rohrback et al., 2018a), deletions were more common than duplications (80.4% 

to 19.6%). A similar ratio was found in cKO (78.0% to 22.0%) and WT (86.7% to 

13.3%) neurons alike. 
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Figure 3.1: Knockout of Top1 in neurons results in a higher proportion of CNV neurons and longer 

CNVs than wild-type neurons. (A) Plot showing median bin values for each bin across mouse genome. 

Orange dashed lines indicate upper and lower cutoffs of 2.53 and 1.59. (B) Histogram of BIC scores for 

Top1 cKO and WT neurons. The dashed line indicates the maximum passing score of -1.50. (C) Histogram 

of segments between 5 and 54 bins in size. The red distribution is centered near the copy number 1 state, 

green is centered near 2, and blue is centered near 3. The dashed lines indicate the deletion threshold (1.22) 

and duplication threshold (2.82) used for Top1 cKO and WT neurons. (D) Summary table of CNV statistics 

for cKO and WT neurons. (E) Representative CNV profiles of 3 WT and 3 cKO neurons. CNVs are shown 

as red line segments. (F) Histogram showing the significant increase in CNV length in cKO cells. 

 

3.4.2 Exploring somatic copy number variations across age, genotype, and 

background 

We obtained brain samples from 8 mice with a variety of ages, genotypes, and 

genetic backgrounds (Table 3.1). Following isolation of nuclei, WGA, and library 

preparation, a total of 721 neurons were sequenced and analyzed for CNVs. Each single 

cell dataset was analyzed through the pipeline used for human data in Chapter 2 but 

modified for mouse sequencing data. 166 bins were identified as outliers using Tukey’s 

Outlier Method and excluded from segmentation (Figure 3.2A). Following outlier bin 

removal and segmentation, BIC scores were calculated for each cell. These scores were 

plotted as a histogram, to which two Gaussian distributions were fitted, one centered on 

the bulk of the data and the other covering the long tail of poor quality cells. Using an 

upper-tailed p-value of 0.05 for the main Gaussian distribution, a quality threshold was 

set at -1.268 (Figure 3.2B). Cells scoring higher were excluded from downstream 

analysis, leaving 585/721 (81.1%) cells which were analyzed for CNVs. The BIC results 

for each individual are reported in Table 3.1. 
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Table 3.1 BIC statistics across individuals 
Individual Age (weeks) Background Cells passing BIC (%) Mean BIC 

htau 152 C57BL/6 82/98 (83.7%) -1.800 

htauKO 7 C57BL/6 19/23 (82.6%) -1.378 

p53hetmouse 8 FVB & C57BL/6 56/101 (55.4%) -1.543 

p53KOmouse1 8.5 B6.129S2 41/48 (85.4%) -1.692 

p53KOmouse2 12 B6.129S2 91/106 (85.8%) -1.561 

WTmouse1 11 FVB & C57BL/6 126/141 (89.4%) -1.688 

WTmouse2 123 C57BL/6 107/132 (81.1%) -1.855 

WTmouse3 123 C57BL/6 63/72 (87.5%) -1.510 

 

 
Figure 3.2: Outlier bins and a BIC cutoff were identified using data from all 8 mice. (A) Plot of 

median normalized bin values in autosomal bins. Orange dashed lines indicate upper and lower cutoffs of 

2.79 and 1.41. (B) Histogram of BIC scores from 721 mouse cells. Gaussian distributions (black and red) 

were used to determine the cutoff of -1.268 (dashed line). 
 

Lenient and stringent thresholds calculated in the human single cell analysis (see 

Chapter 2) were employed to identify deletion and duplication CNVs in our mouse cells 

(Table 3.2). Under lenient thresholds, the proportion of neurons containing at least one 

CNV varied from 30.4 to 69.4% by individual (dataset mean = 59.7%). Under stringent 
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thresholds, the proportion dropped to 13.0-56.9% (dataset mean 37.8%). The CNV 

neuron percentages did not show an age-related decline as our human analysis did; 

however, this lack of an aging effect may be attributable to confounding effects of 

mutations and transgenes. 

Table 3.2 CNV results across individuals 
Individual % Cells with 

CNVs, 

lenient 

Number of 

CNVs, 

lenient 

Mean CNV 

size, lenient 

(Mb) 

% Cells with 

CNVs, 

stringent 

Number of 

CNVs, 

stringent 

Mean CNV 

size, stringent 

(Mb) 

htau 35.7 106 13.1 20.4 57 16.1 

htauKO 30.4 23 17.0 13.0 9 12.8 

p53hetmouse 34.7 74 9.5 22.8 41 6.5 

p53KOmouse1 50.0 53 35.5 22.9 21 9.5 

p53KOmouse2 67.9 182 7.6 53.8 99 5.9 

WTmouse1 48.2 129 8.5 24.1 52 6.6 

WTmouse2 43.9 120 6.9 24.2 50 4.4 

WTmouse3 69.4 137 7.7 56.9 92 4.8 

 

 
Figure 3.3: Individual mice show unique CNV hotspots. (A-D) Plots showing the cumulative CNVs 

detected in (A) p53KOmouse1, (B) p53KOmouse2, (C) WTmouse2, and (D) htau. Duplications are shown 
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in green and deletions in red. (E-H) Representative CNV profiles of single neurons containing examples of 

clonal duplications in (E) chromosome 12, (F) chromosome 5, (G) chromosome 9, and (H) chromosome 

17. DNA copy output is shown in red while the black dashed lines indicate 1 and 2 median absolute 

deviations above and below copy number 2. 
 

With regard to the specific genotypes of the individuals, the statistics of CNV 

neuron prevalence generally did not indicate any obvious biological causes; for example, 

although the two p53 KO mice were found to have 50-67.9% CNV neurons under lenient 

thresholds, the three wild-type mice were found to have very similar proportions of CNV 

neurons (43.9-69.4%). The htau mouse showed a modest 5-7% increase in CNV neurons 

compared to its control, htauKO, but the sample size for htauKO was also the lowest of 

the 8 mice with only 19 cells passing BIC. 

Several individuals showed evidence of possible clonal duplications, which was a 

surprising finding due to the fact that reports of clonal CNVs have been scarce (Cai et al., 

2014). In p53KOmouse1, trisomy of chromosome 12 was detected under lenient 

thresholds in 9 of 41 BIC-passing cells (22.0%; Figure 3.3A, E). Meanwhile, 42 of 91 

p53KOmouse2 neurons (46.2%) showed a duplication located at chromosome 

5:116,255,119-117,755,119 (Figure 3.3B, F). In WTmouse2, 23 of 107 cells (21.5%) 

contained a duplication at chromosome 9:17,555,807-19,555,807 (Figure 3.3C, G). 

Finally, 10 of 82 htau neurons (12.2%) showed a duplication in a region spanning 

chromosome 17:20,706,388-22,710,481 (Figure 3.3D, H). 

 

3.4.3 Deeper investigation suggests results likely include false positive CNVs 

During this extensive analysis, we noticed several indications that our analysis 

could be identifying artifactual CNVs due to subpar data quality. For instance, the 

dataset-wide percentages of neurons containing CNVs of 59.7% (lenient thresholds) and 
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37.8% (stringent thresholds) greatly surpassed our expectations based on published 

reports of mosaicism in the mouse brain. The most extensive published CNV analysis of 

mouse brain scWGS data, Rohrback et al. (2018a), found that 93% of NPCs and neurons 

contained at least one CNV, but only 12% of these were larger than 3.5 Mb. Given these 

statistics, we would expect that we would observe CNVs 3.5 Mb in size or larger in 

11.2% of neurons (93% x 12%). When we excluded CNVs under 3.5 Mb, we still 

detected CNVs in 42.6% of cells using lenient thresholds and 21.0% of cells using 

stringent thresholds. 

Another statistic that contrasted with published reports was the percentage of 

duplication CNVs; we observed 58.3% under lenient thresholds and 61.3% under 

stringent thresholds, both of which were considerably higher than the 28.5% observed in 

our human dataset under lenient thresholds and the 19.6% found in the Top1 WT and 

cKO neuron dataset. Rohrback et al. (2018a) reported that duplications constituted ~20% 

of their detected CNVs. 

We derived the BIC cutoff of -1.268 in the same fashion as our human BIC 

cutoffs, but it was possible to see by visual inspection of CNV profiles that the mouse 

neurons passing the BIC filter were not of the same quality as the human cells, for which 

cutoffs of -2.21, -2.05, and -1.93 had been employed, depending on WGA method used. 

We also noted that the BIC scores in the BIC-passing cells of the 8 mouse dataset (mean 

= -1.785) were worse than the Top1 cKO and WT neuron average among BIC-passers (-

2.06). 

The mean phi across the 8 mouse dataset was 0.2262, which was 62% higher than 

the human dataset average in Chapter 2 (0.1394). Given the tendency of DNAcopy to 
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detect false positive CNVs in data containing high levels of autocorrelated noise 

(Muggeo and Adelfio, 2011), there was reason to suspect that the amount of CNV 

neurons we detected may be inflated by false positive CNVs driven by autocorrelated 

noise. To test this, we simulated 200 cells of six representative mouse neurons under the 

null model (see Chapter 2), which produced false positive CNVs in 49% of cells, where 

human simulations had only produced 3%. Similarly, alt simulations (see Chapter 2) 

produced false positive CNVs in 14.5% of cells, whereas human simulations only 

contained ~1%. 

Taken together, these findings casted doubt on the authenticity of the CNVs 

detected by our pipeline. For that reason, we opted to use a different approach to utilize 

the data we had generated. 

 

3.4.4 Performing bulk sequencing analysis from pooled single cell data 

To avoid the problem of false positive CNVs in our single cell data, we sought an 

alternative analysis to utilize the large dataset we had generated. Given the availability of 

many open source structural variant (SV) callers, which run on bulk data, we decided to 

combine our scWGS data to reach sufficient coverage for SV detection. We concatenated 

the FASTQ files from each of the 8 individuals and aligned the pooled reads to the mm9 

genome to generate a BAM file. Following this step, we ran our 8 pooled samples 

through 3 structural variant callers: LUMPY (and its genotyper, SVTyper), Delly, and 

SVXplorer (Chiang et al., 2015; Kathuria and Ratan, 2018; Layer et al., 2014; Rausch et 

al., 2012). With an eye towards the goal of validating deletion calls via PCR (Figure 3.4), 

we chose to focus on the deletion variants detected in our data. The number of deletions 
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called by each tool for each individual, as well as the number of consensus deletions, are 

listed in Table 3.3. 

 
Figure 3.4: Schematic of PCR amplification of a deletion-spanning fragment to validate a putative 

deletion. The PCR primers (orange arrows) are located on either side of a deletion such that, in an 

unaltered genome (Reference genome), the fragment will not be amplified by PCR. If the putative deletion 

is, in fact, deleted (Actual genome), the primers will be located close enough to enable efficient 

amplification by PCR. 
 

One benefit of using bulk data was the dramatic improvement in resolution, 

reflected in the median deletion size of around 8 kb. While bulk data prevented us from 

identifying CNVs in small subpopulations of cells, the massive increase in sequencing 

coverage enabled us to see copy number variations on a much smaller scale. 

The number of mapped reads an individual had was a clear contributing factor in 

the number of deletions detected; in the case of htauKO, which had less than 20 million 

reads, there were a mere 57 deletions detected across the three callers, the fewest of any 

individual. Likewise, the individual with the most reads, WTmouse1, received by far the 

most deletion calls, with 5,040. However, there were some exceptions to this trend, such 

as WTmouse2, which, despite having only ~5 million fewer reads than WTmouse1, had a 

total of just 914 deletions called. We were unable to determine whether a biological or 

technical cause underlay this disparity. 
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Table 3.3 Results from three structural variant callers 
Mouse Cells 

analyzed 

Total 

mapped 

reads 

LUMPY-

SVTyper 

deletions 

DELLY 

deletions 

SVXplorer 

deletions 

Consensus 

deletions 

htauKO 23 19,999,066 12 33 12 2 

htau 98 176,641,994 176 387 218 68 

p53hetmouse 101 110,418,410 466 722 753 322 

p53KOmouse1 48 79,325,342 90 144 96 42 

p53KOmouse2 106 158,738,676 187 446 156 47 

WTmouse1 141 237,703,156 1341 1905 1794 998 

WTmouse2 132 232,989,965 194 519 201 64 

WTmouse3 72 146,070,639 84 148 97 25 

 

We manually examined dozens of consensus deletions to determine if any would 

be good candidates for validation via targeted PCR amplification. One such example was 

found on chromosome 8 of p53KOmouse2. Through visualization of the merged 

p53KOmouse2 BAM in the Integrative Genomics Viewer (IGV, Broad Institute), we 

were able to see the presence of paired-end reads spanning the putative ~2kb deletion in 

some cells but not others (Figure 3.5A). 

We also analyzed individual read sequences mapping on one side of a putative 

deletion, particularly any clipped reads (full-length sequencing reads which are shortened 

for purposes of stronger alignment to a locus in mm9). Using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/), we found that the clipped reads mapping on 

either side of a putative deletion at chromosome 6:115,972,422-115,974,818 in 

WTmouse1 aligned to one another (Figure 3.5B). This self-alignment indicated that while 
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these reads map to the reference genome in two groups located 2 kb apart from each 

other, the sequences are, in fact, “split reads;” that is, owing to the presence of a deletion, 

one portion of their sequence comes from the upstream side of a deletion junction and the 

other portion is from downstream of the deletion, and the location they map depends on 

whichever portion scores as a stronger match to the reference. While manual inspection 

was too labor intensive to carry out for all deletions found by our SV callers, it was 

helpful to partially validate the presence of a few selected deletions. 
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Figure 3.5: Inspection of putative deletions reveals strong candidate deletions. (A) IGV image showing 

reads mapped within and around a consensus deletion located on chromosome 8 in p53KOmouse2. Two 

sets of read pairs (indicated by green arrows) span the putative deletion (blue box and dashed lines). (B) 

Clipped read sequences that aligned on one side of the deletion junction at chromosome 6:115,972,422-

115,974,818 in WTmouse1 show alignment to one another in Clustal Omega (exported to MView). This 

alignment indicates that the DNA template for these reads contained the deletion. 
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3.5 Discussion 

Despite difficulties in the 8 mouse study that diminished our ability to draw 

conclusions from the results, our single cell analysis of 10 mice was successful in several 

aspects.  Our study of Top1 cKO and WT neurons showed an increase in CNV incidence 

in cKO cells compared to wild-type. This result makes sense from a biological 

standpoint, given the known deleterious effects of Top1 KO on neuronal health and 

function (Mabb et al., 2014). Our analysis also showed a significant increase in the size 

of KO CNVs over wild-type neurons. These results suggest that the absence of Top1 in 

neurons leads to an increase in the frequency of DNA damage instances and/or a 

worsening of the long-term damage to the genome resulting from DNA damage, 

manifested as large-scale DNA losses and gains. The mechanism of this increase in CNV 

neurons and CNV size remains an important question for improving our understanding of 

the role of Top1 in the brain. 

Meanwhile, our efforts to apply our CNV detection pipeline to a panel of 8 mice 

of various ages and genotypes was hindered by subpar data quality. It is possible that 

more realistic estimates of CNV neuron prevalence in these mice could be reached by 

increasing the stringency of outlier bin analysis, BIC cutoff calculation, and/or CNV 

threshold determination. However, while the data quality issues cast doubt on findings 

such as the dataset-wide CNV neuron rate of ~60% and the duplication to deletion ratio 

of 3:2, they do not entirely account for the unique clonal CNVs we identified in four of 

the mice (Figure 3.3). Poor data quality alone does not explain why specific individuals 

so frequently carried duplication CNVs that were unique to them. It is possible that 

different individual mice have particular bins that amplify better than in other mice, and 
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these bins could account for some of the smaller clonal CNVs. To prevent this kind of 

false positive, one could employ an individual-specific outlier bin analysis; however, 

doing so would run the risk of obscuring real clonal CNVs. In any case, findings such as 

the 9 p53KOmouse1 neurons trisomic for chromosome 12 are difficult to dismiss as a 

product of technical error and are much more likely to be attributable to genomic 

instability caused by the homozygous deletion of Trp53. Further study of these mice will 

help clarify whether the other clonal duplications are legitimate. 

In an attempt to salvage the single cell data, we found success in detecting clonal 

CNVs in “bulk” data derived from combining individual cells’ sequence data, though we 

did not experimentally validate any of the CNVs. Due the disparate read counts that 

largely drove the number of deletions found by LUMPY-SVTyper, Delly, and 

SVXplorer, we were unable to interpret the number of deletions found by the 3 SV callers 

as a function of genotype or age; that being said, a solution we did not attempt would be 

to downsample reads from the most sequenced individuals in order to make individuals 

more comparable. 

Another consequence of the reduced confidence in our CNV calls in the 8 mouse 

dataset was that we did not carry out gene set enrichment analysis or gene ontology (GO) 

analysis on the genes affected by CNVs. One option for future work would be to devise a 

methodology for selecting only the highest quality CNVs from the most reliable cells. 

This filter would limit the scope of our analysis but would enable the use of an approach 

similar to the one employed in Chapter 2, testing mouse CNV hotspots against a random 

model to determine if long genes are enriched in mouse CNVs. The results would be of 

particular interest because the gene lists identified by Wei et al. (2016) and King et al. 
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(2013) were identified in mouse cells. PANTHER analysis of affected genes in this set of 

high confidence CNVs would also be useful to see if any similar or different GO terms 

are enriched in mouse CNVs as compared to human. The benefit of our diverse mouse 

dataset is that the results of these analyses could be further broken down by individual to 

examine the potential impacts of genotype and age. 

Similarly, gene set enrichment analysis could be carried out on CNVs detected in 

Top1 cKO and WT neurons. Identifying an enrichment of King genes in Top1 cKO 

neurons but not WT neurons would serve to validate the findings of King et al. (2013), 

who found their list of long neural genes by using topotecan to inhibit Top1. The CNVs 

detected in Top1 cKO and WT neurons could be also be analyzed in comparison to 

highly expressed genes in order to determine whether CNVs are indeed driven by 

expression. Furthermore, the CNV-affected genes from each genotype could be analyzed 

using PANTHER to identify any significant GO terms associated with Top1 absence. 

Future work should also include selection of candidate deletions for validation by 

PCR. In particular, deletions that are present in only a subpopulation of neurons from a 

brain would be an outstanding proof of the concept that we began to explore here, namely 

that clonal mosaic mutations can be identified from pooled scWGS data. If mosaic CNVs 

can be successfully identified from pooled scWGS libraries, scWGS will become an even 

more useful technique beyond its chief purpose of studying individual genomes. 
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Chapter 4 

Conclusions and Future Directions 
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Mosaicism has been observed using a variety of methods over the past several 

decades, but only in modern times, with the arrival of single cell analysis and next 

generation sequencing, has it come into clear focus. The work presented in this 

dissertation documents our efforts to uncover and understand the genomic diversity 

present in the human and mouse brains. 

Our human brain CNV pipeline, presented in Chapter 2, identified CNVs in a 

dataset of over 1200 neural cells from 15 neurotypical individuals (Table 2.1). Over 800 

of these cells were newly sequenced, representing the largest published dataset of 

neurons sequenced for CNV analysis. We leveraged the size of our dataset to inform 

identification of outlier bins, suitable BIC score cutoffs, and CNV thresholds, and tested 

the results against ALT and NULL simulation models to determine false positive rates 

(Figures 2.1, 2.S1, and 2.S2). Using this novel approach to single cell quality control, we 

discovered the surprising result that CNV neurons decline with age in 5 individuals, a 

trend strengthened by the incorporation of publicly available data from 10 additional 

individuals (Figures 2.2 and 2.3). Finally, we found evidence of CNV enrichment in long 

neural genes and neurally associated gene ontology terms, particularly in neurons from 

aged individuals (Figure 2.4). 

We also carried out CNV analysis for over 800 mouse neurons from 10 

individuals, as described in Chapter 3. CNVs were detected in neurons gathered from a 

genotypically diverse group of mice (Table 3.1). Analysis of Top1-/- mice showed an 

increased percentage of CNV neurons and an increase in CNV size compared to Top1+/+, 

supporting the role of Top1 in maintaining genome integrity in neurons (Figure 3.1). The 

conclusions drawn from the analysis of our 8 mouse dataset were limited due to data 
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quality concerns, but the mice showed evidence of potential CNV hotspots not 

attributable to outlier bins (Figure 3.3). We attempted a novel approach of combining 

single cell datasets into “bulk” data and successfully identified thousands of CNVs using 

open source structural variant callers (Table 3.3); however, we did not experimentally 

validate any of the CNVs. 

Between both species, we analyzed over 2,000 neurons across 25 individuals. Our 

work confirms that CNVs contribute to brain somatic mosaicism in great measure, 

though the role of mosaicism remains an open question. Future exploration of this field 

would benefit from further work focused on improving analysis and exploring biological 

questions with well-designed experiments. 

 

4.1 Analytical improvements 

The CNVs we detect in single cell data are only as precise as the read bins we use 

to detect them. Read binning is necessary in cases where read coverage is too sparse 

and/or uneven for direct detection of CNVs from sequencing read evidence. The read 

binning approach used to analyze our single cell data is by design, as it enables a larger 

sample size to be sequenced without losing the ability to detect megabase-scale CNVs. 

Yet read binning leads to inaccuracy at the edges of CNV calls; under our current 

pipeline, CNV start and end points are simply taken from the boundary of the bin in 

which they reside. In our human analysis, this means CNV coordinates may be inaccurate 

by hundreds of kilobases, given the average bin size of 687 kb. However, there are a 

variety of strategies that could be implemented to try to determine the boundaries of 

CNVs more accurately. 
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One such idea is to design smaller bins than our existing scripts use (Figure 4.1). 

Binning reads over regions smaller than 500kb of mappable sequence is certainly not a 

new concept (Cai et al., 2014; Navin et al., 2011; Rohrback et al., 2018a), but could be 

implemented to great effect in re-analysis of our human and mouse data. Smaller bins 

carry the risk of more variable copy number estimates, potentially causing false positive 

and false negative calls to be made. However, this risk is a hypothesis that can be tested, 

and the ALT simulation strategy detailed in Chapter 2 is well-suited for doing so. The 

experiment would be carried out as follows: Repeat the same method of counting mapped 

reads using Bedtools in bins designed to contain 400kb, 300kb, 200kb, and 100kb of 

mappable sequence; normalize read counts to copy number values, accounting for GC 

content; segment using DNAcopy and identify CNVs; and, finally, create simulated 

datasets based on the characteristics of the bin value data at each bin size to monitor 

changes in false positive and false negative rates. If FPRs and FNRs become 

prohibitively high at a particular bin size, select the smallest bin size that does not result 

in high numbers of FP or FN CNVs. 

 

 
Figure 4.1: Bin sizes determine precision of CNV detection. This schematic demonstrates the hypothesis 

that as bin sizes decrease from 500kb to 100kb, the bins included in the CNV call by the segmentation 

algorithm (light blue) will be more closely aligned to the true coordinates of the CNV (navy blue). 
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One benefit of this technique is that it can be tailored to individual cells 

depending on their quality, as measured by FPR and FNR. For example, if Cell A is 

analyzed with 500kb and 100kb bins and shows the same CNVs each time, and if ALT 

simulations show that Cell A is not prone to FPs or FNs at 100kb bin resolution, the 

100kb bins can be used for CNV detection in Cell A. Meanwhile, if simulations show 

that Cell B’s data becomes unreliably noisy at 300kb resolution, the 400kb bins can be 

used for analyzing Cell B. 

As the edges of CNVs become more sharply defined, even if only in a subset of 

cells, the lists of genes affected by CNVs become more accurate. In Chapter 2, we 

reported mild enrichment for long neural genes and some neurally relevant GO terms in 

CNVs. But with more precise CNV boundaries, it is possible that more significant 

enrichments will emerge that will provide greater insight into the role and function of 

mosaicism in the brain. 

Another approach which has not been tried in our data is the use of uniquely 

mappable reads as a basis for bin coordinates. This approach, which has been used in 

prior CNV studies (Baslan et al., 2012; Cai et al., 2014; Navin et al., 2011), would 

involve setting a number of uniquely mappable reads that will constitute a bin and then 

determining sequential, non-overlapping regions of the genome that contain the specified 

number of unique read mappings. This method is a sound strategy for defining equally 

mappable regions of the genome wherein reads can be counted, and as such, could assist 

in further resolving CNV coordinates determined via the mappable sequence method. It is 

also plausible that this approach could lead to less inherent bin-to-bin variation compared 
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to mappable sequence-derived bins and potentially obviate the need for outlier bin 

analysis and removal. 

A final analytical approach worthy of exploration is alternative forms of 

segmentation algorithms to DNAcopy. DNAcopy is widely used in the single cell CNV 

field (Knouse et al., 2016; McConnell et al., 2013) but has been critiqued for yielding 

inaccurate results in data with high autocorrelated noise (Muggeo and Adelfio, 2011). 

While we have ascertained that the impact of autocorrelated noise on our results is likely 

very low, it would nonetheless be useful to obtain CNV calls from other commonly used 

segmentation algorithms, such as HMMcopy and FUnC (Knouse et al., 2016; Knouse et 

al., 2014; Rohrback et al., 2018a). The use of multiple single cell segmentation 

algorithms would allow us to evaluate the merits of different computational approaches 

and generate a consensus set of CNVs, similar to our strategy incorporating LUMPY, 

DELLY, and SVXplorer in Chapter 3. 

 

4.2 Experimental exploration of the biological implications of mosaicism 

Given the myriad unresolved biological questions surrounding brain somatic 

mosaicism, there are a variety of future experiments that would build upon our work thus 

far. 

Using the mouse brain as a model for studying mosaicism is an excellent 

approach for the reasons discussed in Chapter 3. However, there could be some 

improvements to the mouse experiments we carried out. The most pressing, but also most 

fixable, concern was the questionable quality of data in the 8 mouse study; this problem 

could be avoided in the future by a switch to PicoPLEX amplification, which was used in 
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the human data, or optimizing the MALBAC protocol. Nevertheless, we attempted to 

make use of the data by combining it into “bulk” data and detecting CNVs using SV 

callers. A key follow-up experiment that would confirm the presence of these CNVs is 

PCR validation. In the case of a deletion, PCR validation is carried out using primers 

oriented towards each other that amplify a region starting upstream and ending 

downstream of the deleted region. In duplications, PCR validation can be slightly more 

difficult depending on the duplication type; however, if the region is duplicated in tandem 

(i.e., the new DNA is directly adjacent to the original sequence), primers are designed in 

opposite orientation at either end of the duplicated region and a fragment spanning the 

end of one copy and the beginning of the next is amplified. These experiments would 

give legitimacy to our method of detecting CNVs in pooled single cell sequencing data. 

The experimental design of the 8 mouse study could also be reconfigured to focus 

on a more specific question. The mice selected for the analysis were from multiple gene 

knockout statuses, ages, and genetic backgrounds (Table 3.1). Thus, the surveying of 

CNV prevalence across a diverse group of mice, some of which lacked biological 

replicates, was perhaps too broadly focused to produce conclusive results about the 

effects of any particular gene knockout, age, or genetic background.  The issue was 

compounded by the varying number of cells sequenced from each mouse, resulting in 

sample sizes that hindered direct comparison of CNV results among the 8 mice. A 

simpler, age-matched comparison of just p53KO and p53WT individuals, or just htau and 

htauKO individuals, including multiple mice and equal numbers of cells sequenced for 

each condition, might allow for more definitive conclusions to be drawn from the results. 
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Our research would also benefit from an improved enrichment analysis using a 

broader group of relevant gene sets. Using a similar random model to the one 

implemented in Chapter 2, and perhaps adding improvements such as adjustments for 

heterochromatic and euchromatic regions as well as accounting for gene length 

variability, we could explore additional gene lists for their overlap with CNV hotspots. 

One group worthy of exploration is haploinsufficient genes, which are defined as those 

genes for which a single intact copy is incapable of maintaining the gene’s normal 

function in the organism (Huang et al., 2010). These genes are of particular interest in the 

context of deletion CNVs, wherein entire blocks of genes are reduced to single copies, 

but the cell nonetheless survives and, presumably, maintains some level of functionality. 

In such cases, we can test whether known sets of haploinsufficient genes (Petrovski et al., 

2013), annotated by sources such as the Online Mendelian Inheritance in Man (OMIM) 

database, are observed to be deleted less often in neurons as a result of the genes’ 

importance. Alternatively, it may be the case that neurons are resilient to the loss of these 

typically critical genes, perhaps as a result of having their own separate 

haploinsufficiency gene set. Moreover, each of these possible outcomes could vary by the 

genotype of the individual; for instance, it is conceivable that individuals with p53 KO 

may demonstrate greater tolerance for loss of haploinsufficient genes than wild-type 

individuals, owing to the absence of apoptotic signaling by p53. 

These gene set analyses could be further expanded to investigate questions 

relating CNV-affected genes to the ages of the individuals. It may be the case that 

genomic diversity in neurons is a dynamic phenomenon during development and aging, 

with distinct manifestations in young and old neurons. For example, it would be 
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worthwhile to examine whether aged neurons are more likely to contain deletions of 

neurodevelopmental genes (including any that are haploinsufficient) than young neurons. 

If so, this finding would suggest that aged neurons experience and tolerate the 

accumulation of deletions in locations that would result in cell death or organismal 

lethality if present in young neurons. Conversely, if deletions tend to affect the same 

regions in both young and old individuals, it would imply a general robustness of single 

neurons to cope with DNA damage, even in important genes at important stages of 

development, challenging the very notion of haploinsufficiency in neurodevelopment at 

the single cell level. In the course of performing these analyses, it would be beneficial to 

compare and contrast the findings in humans and mice in order to elucidate similarities 

and differences between the species, in regards to both overall trends of 

haploinsufficiency in neurodevelopment as well as specific conserved genes of interest. 

Neurodevelopmental disease represents another branch of brain somatic 

mosaicism deserving further exploration. To build upon the findings linking de novo 

mutations to diseases such as autism spectrum disorder and schizophrenia (Freed and 

Pevsner, 2016; Yurov et al., 2008), an analysis of neurons from the brains of affected 

individuals would allow us to search for known disease-causing CNVs and assess their 

prevalence. While these de novo events are often detected from bulk sequencing of 

peripheral blood samples, disease-causing mutations also occur in mosaic fashion and can 

be detected via single cell sequencing. In cases where blood sequencing is unable to 

identify mutations causing neurodevelopmental disease, single cell sequencing of the 

affected tissue may be better-suited to provide answers. 
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One aspect of brain somatic mosaicism that we have not explored is the 

prevalence of CNV neurons in regions beyond the frontal cortex. Like most single neuron 

CNV studies to date, our work has focused on frontal cortical neurons, but these cells 

might not be representative of the prevalence of CNV neurons in other important regions 

of the brain. We could obtain additional samples from our post-mortem brains and 

determine whether CNV neuron rates differ among brain regions. Moreover, this 

approach would allow us to identify any clonal CNVs detected across multiple regions, 

which would help elucidate the timing of somatic mutations in neurodevelopment. 

Exploring different brain regions would also be of interest from a 

neurodegenerative disease perspective. Our aging trend (Figure 2.3) demonstrates the 

apparent die-off of CNV neurons during normal aging, resulting in a higher proportion of 

euploid neurons. The entorhinal cortex is known to exhibit degeneration beginning in 

early stage Alzheimer’s disease (AD) (Van Hoesen et al., 1991), but few studies to date 

have examined this particular tissue for evidence of any forms of mosaicism (Arendt et 

al., 2015; Sala Frigerio et al., 2015). A study comparing CNVs detected in the frontal and 

entorhinal cortices between age-matched healthy individuals and AD patients could 

reveal a relationship between CNVs, or some subset of CNVs, and AD. Are CNV 

neurons the first to die in the entorhinal cortex of AD patients, as they appear to be in the 

frontal cortex of non-diseased individuals? If so, are some CNV neurons more likely to 

survive than others? Exploring these questions would establish the prevalence of CNV 

neurons across brain regions in AD and non-AD individuals as well as inform future 

hypotheses about the interaction of mosaicism and brain disease. 
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4.3 Summary 

Thomas R. Insel, the Director of the National Institute of Mental Health from 

2002 to 2015, once mused that brain somatic mosaicism was the “dark matter of 

psychiatric genetics” (Insel, 2014). Fortunately, unlike dark matter, we have the 

technological means to make direct observations about brain somatic mosaicism. The 

experiments detailed in this dissertation and those proposed in this chapter are aimed 

towards accumulating observations about mosaicism in the brain such that, in time, we 

will understand its causes and consequences. 
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Appendix A 

Genomic Coordinates of CNVs Detected in Chapter 2  
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Table A.1: CNVs detected under lenient thresholds in human brain scWGS data 

analyzed in Chapter 2 
Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

0.36 Neuron UVA_neuron_124 del 1 6 125622700 143454539 

0.36 Neuron UVA_neuron_124 del 1 6 151290699 159861731 

0.36 Neuron UVA_neuron_124 del 1 11 55912100 62524869 

0.36 Neuron UVA_neuron_124 del 1 12 78512659 97060333 

0.36 Neuron UVA_neuron_124 del 1 15 30151267 42421648 

0.36 Neuron UVA_neuron_124 del 1 16 30720835 58149348 

0.36 Neuron UVA_neuron_138 dup 3 1 13787191 52515582 

0.36 Neuron UVA_neuron_138 dup 3 1 156424280 167003471 

0.36 Neuron UVA_neuron_138 del 1 5 2620428 21076454 

0.36 Neuron UVA_neuron_138 dup 3 6 20567405 25955160 

0.36 Neuron UVA_neuron_138 dup 3 9 91039916 141213431 

0.36 Neuron UVA_neuron_138 del 1 10 60270052 71230921 

0.36 Neuron UVA_neuron_138 dup 3 10 127503786 135534747 

0.36 Neuron UVA_neuron_138 del 1 11 26047735 37299097 

0.36 Neuron UVA_neuron_138 dup 3 13 96410970 110306856 

0.36 Neuron UVA_neuron_138 dup 3 16 33939045 60655383 

0.36 Neuron UVA_neuron_138 del 1 18 24597918 43571620 

0.36 Neuron UVA_neuron_139 del 1 1 162849228 172498733 

0.36 Neuron UVA_neuron_139 del 1 2 171681989 203532394 

0.36 Neuron UVA_neuron_139 del 1 2 220317777 233581946 

0.36 Neuron UVA_neuron_139 dup 3 5 134261522 137814368 

0.36 Neuron UVA_neuron_139 del 1 13 78700363 82857520 

0.36 Neuron UVA_neuron_150 dup 3 7 84453688 93543079 

0.36 Neuron UVA_neuron_150 dup 3 8 64008552 67021221 

0.36 Neuron UVA_neuron_161 dup 3 1 163417199 166368036 

0.36 Neuron UVA_neuron_177 del 1 2 219052240 232928932 

0.36 Neuron UVA_neuron_177 del 1 6 76026361 86110507 

0.36 Neuron UVA_neuron_177 dup 3 7 83293756 86219163 

0.36 Neuron UVA_neuron_177 dup 3 11 20663030 25429692 

0.36 Neuron UVA_neuron_200 dup 3 16 4776984 10318764 

0.36 Neuron UVA_neuron_202 dup 3 10 76874399 83096856 

0.36 Neuron UVA_neuron_211 dup 3 1 186531620 245047728 

0.36 Neuron UVA_neuron_211 dup 3 2 56157960 64100151 

0.36 Neuron UVA_neuron_212 dup 3 8 92131456 96970694 

0.36 Neuron UVA_neuron_213 dup 3 3 25296049 47155485 

0.36 Neuron UVA_neuron_213 dup 3 6 137478177 144028598 

0.36 Neuron UVA_neuron_214 dup 3 9 116087618 122906838 

0.36 Neuron UVA_neuron_214 dup 3 22 34341949 40645768 

0.36 Neuron UVA_neuron_226 dup 3 6 90697068 104915253 

0.36 Neuron UVA_neuron_226 dup 3 13 42467337 45384290 
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Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

0.36 Neuron UVA_neuron_228 del 1 14 40336394 50128849 

20 Neuron SRR1006161 dup 3 2 79201843 85053312 

20 Neuron SRR1006161 del 1 5 33413701 39255824 

20 Neuron SRR1006164 del 1 3 52001019 56678590 

20 Neuron SRR1006164 del 1 3 72096579 81325034 

20 Neuron SRR1006164 del 1 10 18626666 26068464 

20 Neuron SRR1006182 dup 3 2 114470301 117440682 

20 Neuron SRR1006182 dup 3 20 45065873 48857276 

20 Neuron SRR1006183 del 1 2 0 37597556 

20 Neuron SRR1006183 del 1 2 54339151 234240781 

20 Neuron SRR1006183 del 1 4 16126824 21983997 

20 Neuron SRR1006183 del 1 7 76860004 84453687 

20 Neuron SRR1006183 del 1 8 12771698 20358881 

20 Neuron SRR1006183 del 1 8 56808295 94495143 

20 Neuron SRR1006183 del 1 8 136030810 146364022 

20 Neuron SRR1006183 del 1 9 19390496 33256284 

20 Neuron SRR1006183 del 1 9 92230894 103279747 

20 Neuron SRR1006183 del 1 9 107511035 112314022 

20 Neuron SRR1006183 del 1 13 30526230 44217199 

20 Neuron SRR1006183 del 0 13 44217200 50380053 

20 Neuron SRR1006183 del 1 13 50380054 99402742 

20 Neuron SRR1006183 del 1 14 24151499 35249857 

20 Neuron SRR1006183 del 0 14 35249858 61869005 

20 Neuron SRR1006183 del 0 14 79690457 95097802 

20 Neuron SRR1006183 del 1 20 32848484 36251126 

20 Neuron SRR1006191 del 1 12 27691237 32230557 

20 Neuron SRR1006193 dup 3 3 53195998 57302460 

20 Neuron SRR1006193 dup 3 3 170606996 194021919 

20 Neuron SRR1006211 dup 3 1 192946632 200746732 

20 Neuron SRR1006211 dup 3 1 206863148 211687065 

20 Neuron SRR1006211 dup 3 1 226358227 229496990 

20 Neuron SRR1006211 dup 3 2 166862141 169817535 

20 Neuron SRR1006211 dup 3 7 130715094 134795986 

20 Neuron SRR1006211 dup 3 11 125603664 130318113 

20 Neuron SRR1006211 dup 3 15 23757739 29546675 

20 Neuron SRR1006211 dup 3 15 48444762 52150669 

20 Neuron SRR1006229 dup 3 3 97673841 104431111 

20 Neuron SRR1006229 dup 3 7 48809135 53621695 

20 Neuron SRR1006363 del 1 1 201321553 204560509 

20 Neuron SRR1006363 del 1 2 210869348 233581946 

20 Neuron SRR1006363 del 1 4 109800045 140454702 
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Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

20 Neuron SRR1006363 del 1 4 148044344 185573695 

20 Neuron SRR1006363 del 1 8 29818780 38353038 

20 Neuron SRR1006363 del 1 13 84578903 91639787 

20 Neuron SRR1006380 dup 3 2 56157960 86326604 

20 Neuron SRR1006380 dup 3 2 184210526 187222439 

20 Neuron SRR1006380 dup 3 5 63641913 68455175 

20 Neuron SRR1006380 dup 3 5 107391861 112244909 

20 Neuron SRR1006380 dup 3 8 47308005 54276092 

20 Neuron SRR1006380 dup 3 8 57457789 62800234 

20 Neuron SRR1006380 dup 3 8 78558090 82781055 

20 Neuron SRR1006394 dup 3 15 86512096 89424074 

20 Neuron SRR1006396 dup 3 12 113174179 116091173 

20 Neuron SRR1006399 dup 3 3 13262437 16306586 

20 Neuron SRR1006403 dup 3 18 0 6758006 

20 Neuron SRR1006404 dup 3 7 155552938 159138663 

20 Neuron SRR1006409 del 1 6 64411760 68034963 

20 Neuron SRR1006409 del 1 9 102080528 105096382 

20 Neuron SRR1006411 dup 3 2 113543645 118701713 

20 Neuron SRR1006412 dup 3 1 210416295 224373408 

20 Neuron SRR1006412 dup 3 4 8901947 15526654 

20 Neuron SRR1006412 dup 3 4 21983998 70843066 

20 Neuron SRR1006412 dup 3 4 89600533 96193924 

20 Neuron SRR1006412 dup 3 4 107990746 125787612 

20 Neuron SRR1006412 dup 3 4 141626199 151620553 

20 Neuron SRR1006412 dup 3 4 166012100 177420690 

20 Neuron SRR1006412 dup 3 8 109678767 120710738 

20 Neuron SRR1006412 dup 3 9 35501954 71370308 

20 Neuron SRR1006412 dup 3 14 59409245 65558275 

20 Neuron SRR1006412 dup 3 14 80253742 88978761 

20 Neuron SRR1006415 del 1 1 17334882 26166885 

20 Neuron SRR1006415 del 1 2 112792600 122785261 

20 Neuron SRR1006415 del 1 3 135469191 139367866 

20 Neuron SRR1006415 dup 3 5 167797876 171938590 

20 Neuron SRR1006415 del 1 8 29818780 42765932 

20 Neuron SRR1006415 del 1 17 0 6324645 

20 Neuron SRR1006416 dup 3 17 30458696 33384294 

24 Neuron SRR1006018 del 1 3 68597333 72096578 

24 Neuron SRR1006018 del 1 7 128673484 131910587 

24 Neuron SRR1006018 del 1 11 75904906 79008352 

24 Neuron SRR1006018 del 1 13 102403082 107439681 

24 Neuron SRR1006019 del 1 1 224373409 228266772 
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24 Neuron SRR1006019 del 1 9 106891097 109948494 

24 Neuron SRR1006019 del 1 12 16268912 19227374 

24 Neuron SRR1006019 del 1 12 110402896 113771179 

24 Neuron SRR1006019 del 1 17 62937467 69819402 

24 Neuron SRR1006019 del 1 18 25735093 30994269 

24 Neuron SRR1006019 del 1 20 20741862 23764315 

24 Neuron SRR1006021 del 1 17 0 5725558 

24 Neuron SRR1006024 del 1 10 16952438 22968237 

24 Neuron SRR1006026 del 1 4 10234780 14347120 

24 Neuron SRR1006026 del 1 9 97625074 101516985 

24 Neuron SRR1006026 dup 3 18 41263826 45898880 

24 Neuron SRR1006036 del 1 2 224992645 228498133 

24 Neuron SRR1006036 del 1 4 170923452 173893331 

24 Neuron SRR1006036 del 1 10 0 4704894 

24 Neuron SRR1006036 del 1 12 6066151 10033192 

26 Non-

neuron 

UVA_nonneuron_079 dup 3 12 125847967 133851895 

26 Non-

neuron 

UVA_nonneuron_090 dup 3 11 40924064 46208223 

26 Neuron SRR1006042 del 1 10 86032194 89483221 

26 Neuron SRR1006043 del 1 1 15573437 25427883 

26 Neuron SRR1006043 del 1 21 40764653 48129895 

26 Neuron SRR1006055 del 1 5 14714111 18488898 

26 Neuron SRR1006055 del 1 5 167797876 172550230 

26 Neuron SRR1006055 del 1 10 86032194 93667392 

26 Neuron SRR1006055 del 1 20 0 3130305 

26 Neuron SRR1006081 del 1 13 32330089 35221749 

26 Neuron SRR1006088 dup 3 16 85061182 90354753 

26 Neuron SRR1006099 del 1 2 47782132 55492676 

26 Neuron SRR1006099 del 1 2 61457641 70046549 

26 Neuron SRR1006099 del 1 2 204230789 207159955 

26 Neuron SRR1006099 del 1 10 78634443 81764654 

26 Neuron SRR1006099 del 1 13 32893809 36999872 

26 Neuron SRR1006101 del 1 6 147026482 149991518 

26 Neuron SRR1006101 del 1 20 39681629 42618074 

26 Neuron SRR1006137 del 1 12 78512659 93236899 

26 Neuron SRR1006143 del 1 1 240347054 244387281 

26 Neuron UVA_neuron_251 dup 3 5 0 141048954 

26 Neuron UVA_neuron_255 dup 3 6 37402144 44514766 

26 Neuron UVA_neuron_255 dup 3 6 147026482 151290698 

26 Neuron UVA_neuron_255 dup 3 12 125221928 133851895 

26 Neuron UVA_neuron_260 dup 3 4 77277690 104265509 
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26 Neuron UVA_neuron_260 dup 3 4 170923452 173893331 

26 Neuron UVA_neuron_260 dup 3 6 0 24165067 

26 Neuron UVA_neuron_260 dup 3 10 108109809 114006282 

26 Neuron UVA_neuron_260 dup 3 13 57146240 60642041 

26 Neuron UVA_neuron_260 dup 3 16 19944950 46833323 

26 Neuron UVA_neuron_260 dup 3 17 31112224 34082077 

26 Neuron UVA_neuron_270 dup 3 8 32850243 37657413 

26 Neuron UVA_neuron_274 dup 3 2 75036542 79201842 

26 Neuron UVA_neuron_276 dup 3 19 28416236 33117740 

26 Neuron UVA_neuron_282 dup 3 11 63983040 73405105 

26 Neuron UVA_neuron_282 dup 3 11 112056503 135006516 

26 Neuron UVA_neuron_283 dup 3 11 112056503 121970557 

26 Neuron UVA_neuron_289 dup 4 1 14407453 21563445 

26 Neuron UVA_neuron_289 dup 3 1 28995833 36027949 

26 Neuron UVA_neuron_289 dup 3 7 14766268 24279826 

26 Neuron UVA_neuron_289 dup 3 11 66542079 70033066 

26 Neuron UVA_neuron_289 dup 3 11 113779841 120234173 

26 Neuron UVA_neuron_289 dup 3 13 99992280 102951309 

26 Neuron UVA_neuron_289 dup 3 18 21649083 24597917 

26 Neuron UVA_neuron_290 dup 3 6 11502203 16826185 

26 Neuron UVA_neuron_299 dup 3 2 110317438 120427479 

26 Neuron UVA_neuron_299 dup 3 3 140492003 172377702 

26 Neuron UVA_neuron_299 dup 3 6 149991519 158006608 

26 Neuron UVA_neuron_299 dup 3 7 13601725 17061332 

26 Neuron UVA_neuron_305 del 1 13 92199121 95759123 

26 Neuron UVA_neuron_320 del 1 1 75753124 79414169 

26 Neuron UVA_neuron_320 dup 3 3 116335167 119237862 

26 Neuron UVA_neuron_320 del 1 5 4856870 62425621 

26 Neuron UVA_neuron_320 del 1 5 102798905 110434237 

26 Neuron UVA_neuron_320 del 1 8 99422239 103755081 

26 Neuron UVA_neuron_320 del 1 8 113174309 122528361 

26 Neuron UVA_neuron_324 dup 3 7 36089030 43210146 

26 Neuron UVA_neuron_324 dup 3 7 101739495 112052331 

26 Neuron UVA_neuron_332 del 1 1 168802725 200746732 

26 Neuron UVA_neuron_332 del 1 1 222913998 228266772 

26 Neuron UVA_neuron_332 del 1 5 35584463 46321785 

26 Neuron UVA_neuron_332 del 1 5 148177528 168391175 

26 Neuron UVA_neuron_332 del 1 12 104332379 111126214 

26 Neuron UVA_neuron_334 dup 3 11 113779841 120234173 

26 Neuron UVA_neuron_339 dup 3 1 41088519 67427161 

26 Neuron UVA_neuron_339 dup 3 1 92910060 109071838 
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26 Neuron UVA_neuron_339 dup 3 3 63866113 96506298 

26 Neuron UVA_neuron_339 dup 3 4 6011375 10234779 

26 Neuron UVA_neuron_339 dup 3 6 3072097 29455580 

26 Neuron UVA_neuron_341 dup 3 11 96145811 100504487 

26 Neuron UVA_neuron_346 dup 3 15 0 39850794 

26 Neuron UVA_neuron_346 dup 3 15 46094911 52150669 

26 Neuron UVA_neuron_359 del 1 6 79835303 90697067 

26 Neuron UVA_neuron_359 del 1 6 110505516 117202244 

26 Neuron UVA_neuron_379 del 1 5 42954016 55143420 

26 Neuron UVA_neuron_379 del 1 5 148741542 151740334 

26 Neuron UVA_neuron_391 dup 3 9 22454535 25441940 

26 Neuron UVA_neuron_403 del 1 18 54218500 57198996 

26 Neuron UVA_neuron_411 del 1 3 124789364 133726592 

26 Neuron UVA_neuron_411 del 1 4 0 8901946 

26 Neuron UVA_neuron_411 del 1 4 20265895 53126901 

26 Neuron UVA_neuron_411 del 1 4 57587710 103549342 

26 Neuron UVA_neuron_411 del 1 4 106745991 120960022 

26 Neuron UVA_neuron_411 del 1 4 144045630 151620553 

26 Neuron UVA_neuron_411 del 1 4 155241292 191154276 

26 Neuron UVA_neuron_411 del 1 6 13230225 24165067 

26 Neuron UVA_neuron_411 del 1 7 106680490 129336084 

26 Neuron UVA_neuron_411 del 1 10 86032194 91213881 

26 Neuron UVA_neuron_411 del 1 21 30644951 41939010 

26 Neuron UVA_neuron_421 del 1 1 49933878 53202683 

26 Neuron UVA_neuron_421 del 1 1 236828852 240958964 

26 Neuron UVA_neuron_421 del 1 2 175956929 179477039 

26 Neuron UVA_neuron_421 del 1 2 228498134 232230040 

26 Neuron UVA_neuron_421 del 1 6 6680836 28141567 

26 Neuron UVA_neuron_421 del 1 6 121458003 124461076 

26 Neuron UVA_neuron_421 del 1 6 160476597 167006545 

42 Neuron SRR1708616 del 1 4 6011375 16126823 

42 Neuron SRR1708616 del 1 4 76639006 84643973 

42 Neuron SRR1708616 del 1 4 95607321 99213573 

42 Neuron SRR1708616 del 1 4 109192152 120237850 

42 Neuron SRR1708616 del 1 15 72659223 77329142 

42 Neuron SRR1708620 del 1 2 82672633 85702751 

42 Neuron SRR1708620 del 1 3 9550350 13262436 

42 Neuron SRR1708620 del 1 4 156394126 160563379 

42 Neuron SRR1708621 dup 3 2 238939047 243199373 

42 Neuron SRR1708621 del 1 3 24745615 27751638 

42 Neuron SRR1708621 del 1 6 124461077 127402842 
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42 Neuron SRR1708622 del 1 15 47305386 52784858 

42 Neuron SRR1708631 del 1 6 21793482 28763731 

42 Neuron SRR1708631 del 1 6 154359324 159861731 

42 Neuron SRR1708633 del 1 1 46057641 55654886 

42 Neuron SRR1708633 del 0 1 55654887 60255842 

42 Neuron SRR1708633 del 1 1 60255843 89069042 

42 Neuron SRR1708633 del 1 1 113311583 156424279 

42 Neuron SRR1708633 del 0 1 156424280 167003471 

42 Neuron SRR1708633 del 1 1 183553816 191781617 

42 Neuron SRR1708633 del 1 1 205122961 228266772 

42 Neuron SRR1708633 del 1 1 238007532 242151660 

42 Neuron SRR1708633 del 1 2 20650180 27895222 

42 Neuron SRR1708633 del 1 2 150863336 162288618 

42 Neuron SRR1708633 dup 3 4 21983998 26138396 

42 Neuron SRR1708633 del 1 4 38401590 42279611 

42 Neuron SRR1708633 del 1 5 72831185 121909397 

42 Neuron SRR1708633 del 1 7 7089517 40356336 

42 Neuron SRR1708633 del 1 7 106680490 128673483 

42 Neuron SRR1708633 del 1 7 149087096 159138663 

42 Neuron SRR1708633 del 1 9 27854572 79213739 

42 Neuron SRR1708633 del 1 11 14020783 17610261 

42 Neuron SRR1708633 del 1 11 36132876 43338768 

42 Neuron SRR1708633 del 1 11 111426297 135006516 

42 Neuron SRR1708633 del 1 13 0 115169878 

42 Neuron SRR1708633 del 0 14 0 39659648 

42 Neuron SRR1708633 del 1 14 39659649 45198271 

42 Neuron SRR1708633 del 0 14 45198272 55099765 

42 Neuron SRR1708633 del 1 14 55099766 58796222 

42 Neuron SRR1708633 del 0 14 58796223 68685230 

42 Neuron SRR1708633 del 1 14 68685231 71727396 

42 Neuron SRR1708633 del 0 14 71727397 82041045 

42 Neuron SRR1708633 del 1 14 82041046 103188689 

42 Neuron SRR1708633 del 0 14 103188690 107349540 

42 Neuron SRR1708633 del 0 15 23757739 39850794 

42 Neuron SRR1708633 del 1 15 39850795 47305385 

42 Neuron SRR1708633 del 0 15 47305386 55863189 

42 Neuron SRR1708633 del 1 15 55863190 72659222 

42 Neuron SRR1708633 del 0 15 72659223 102531392 

42 Neuron SRR1708633 del 1 16 2774872 7268606 

42 Neuron SRR1708633 del 0 16 12958031 75785091 

42 Neuron SRR1708633 del 0 16 80914072 90354753 
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42 Neuron SRR1708633 del 1 17 35657382 49213544 

42 Neuron SRR1708633 del 1 19 18101063 40213068 

42 Neuron SRR1708633 del 0 21 15737919 48129895 

42 Neuron SRR1708633 del 0 22 0 23892724 

42 Neuron SRR1708635 del 1 9 104493886 107511034 

49 Non-

neuron 

UVA_nonneuron_002 del 1 14 73534859 78597161 

49 Non-

neuron 

UVA_nonneuron_015 dup 3 2 75036542 79201842 

49 Non-

neuron 

UVA_nonneuron_015 del 1 7 6098775 15320919 

49 Non-

neuron 

UVA_nonneuron_015 del 1 7 45180623 54831586 

49 Neuron UVA_neuron_018 del 1 5 33413701 44343860 

49 Neuron UVA_neuron_018 del 1 5 64855087 76532539 

49 Neuron UVA_neuron_018 del 1 5 79664376 107391860 

49 Neuron UVA_neuron_018 del 1 5 110434238 130481983 

49 Neuron UVA_neuron_022 dup 3 16 5531492 11027809 

49 Neuron UVA_neuron_023 del 1 2 187222440 190803979 

49 Neuron UVA_neuron_027 del 1 6 44514767 47465986 

49 Neuron UVA_neuron_027 del 1 11 63326410 67209449 

49 Neuron UVA_neuron_031 del 1 1 145035037 167586869 

49 Neuron UVA_neuron_031 del 1 1 193539023 233052991 

49 Neuron UVA_neuron_031 del 1 1 242902919 249250621 

49 Neuron UVA_neuron_031 del 1 10 52397003 74184936 

49 Neuron UVA_neuron_031 del 1 10 86032194 93667392 

49 Neuron UVA_neuron_035 del 1 1 109071839 116456523 

49 Neuron UVA_neuron_035 del 1 6 0 42642124 

49 Neuron UVA_neuron_035 del 1 6 72836840 111141025 

49 Neuron UVA_neuron_035 del 1 6 125622700 171115067 

49 Neuron UVA_neuron_035 del 1 7 6098775 75361496 

49 Neuron UVA_neuron_035 del 1 7 88032352 99331103 

49 Neuron UVA_neuron_035 del 1 7 124340583 127335585 

49 Neuron UVA_neuron_035 del 1 8 0 37657413 

49 Neuron UVA_neuron_035 del 0 8 37657414 53068846 

49 Neuron UVA_neuron_035 del 1 8 53068847 69476869 

49 Neuron UVA_neuron_035 del 0 8 69476870 90950790 

49 Neuron UVA_neuron_035 del 1 8 90950791 109678766 

49 Neuron UVA_neuron_035 del 0 8 109678767 124319612 

49 Neuron UVA_neuron_035 del 1 8 124319613 146364022 

49 Neuron UVA_neuron_035 del 0 9 0 34194622 

49 Neuron UVA_neuron_035 del 1 9 81064076 95539901 

49 Neuron UVA_neuron_035 del 1 9 98794162 108127109 
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49 Neuron UVA_neuron_035 del 0 9 108127110 114148695 

49 Neuron UVA_neuron_035 del 1 9 114148696 119539668 

49 Neuron UVA_neuron_035 del 0 9 119539669 128404855 

49 Neuron UVA_neuron_035 del 1 9 128404856 136083447 

49 Neuron UVA_neuron_035 del 1 10 17566785 27413532 

49 Neuron UVA_neuron_035 del 1 10 114006283 135534747 

49 Neuron UVA_neuron_035 del 1 11 0 63983039 

49 Neuron UVA_neuron_035 del 1 11 69398811 108422355 

49 Neuron UVA_neuron_035 del 1 11 116619094 135006516 

49 Neuron UVA_neuron_035 del 1 12 79632098 93236899 

49 Neuron UVA_neuron_035 del 0 13 0 25710053 

49 Neuron UVA_neuron_035 del 1 13 25710054 34065686 

49 Neuron UVA_neuron_035 del 0 13 34065687 46039591 

49 Neuron UVA_neuron_035 del 1 13 46039592 49757523 

49 Neuron UVA_neuron_035 del 0 13 49757524 79841898 

49 Neuron UVA_neuron_035 del 1 13 79841899 115169878 

49 Neuron UVA_neuron_035 del 0 14 0 30871657 

49 Neuron UVA_neuron_035 del 1 14 30871658 39659648 

49 Neuron UVA_neuron_035 del 0 14 39659649 55099765 

49 Neuron UVA_neuron_035 del 1 14 55099766 58796222 

49 Neuron UVA_neuron_035 del 0 14 58796223 68685230 

49 Neuron UVA_neuron_035 del 1 14 68685231 107349540 

49 Neuron UVA_neuron_035 del 0 15 0 33214513 

49 Neuron UVA_neuron_035 del 1 15 33214514 44563098 

49 Neuron UVA_neuron_035 del 0 15 44563099 66186243 

49 Neuron UVA_neuron_035 del 1 15 66186244 79300783 

49 Neuron UVA_neuron_035 del 0 15 79300784 102531392 

49 Neuron UVA_neuron_035 del 1 17 8294318 27390811 

49 Neuron UVA_neuron_035 del 0 19 19495532 33856129 

49 Neuron UVA_neuron_035 del 1 19 33856130 59128983 

49 Neuron UVA_neuron_035 del 1 20 24987091 32848483 

49 Neuron UVA_neuron_035 del 0 21 15737919 43155186 

49 Neuron UVA_neuron_035 del 1 21 43155187 48129895 

49 Neuron UVA_neuron_052 del 1 2 80355685 85702751 

49 Neuron UVA_neuron_052 del 1 2 120427480 133330191 

49 Neuron UVA_neuron_052 del 1 2 136314476 145525085 

49 Neuron UVA_neuron_052 del 1 10 31961281 48580042 

49 Neuron UVA_neuron_052 del 1 18 13621501 22263013 

49 Neuron UVA_neuron_052 del 1 18 69934661 78077248 

49 Neuron UVA_neuron_059 del 1 1 32239335 37834006 

49 Neuron UVA_neuron_059 del 1 2 24059871 43042109 
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49 Neuron UVA_neuron_059 del 1 2 101601235 107606695 

49 Neuron UVA_neuron_059 del 1 2 159891567 170436761 

49 Neuron UVA_neuron_059 del 1 4 130089480 142844627 

49 Neuron UVA_neuron_059 del 1 14 87218045 94514383 

49 Neuron UVA_neuron_061 del 1 2 97380358 107606695 

49 Neuron UVA_neuron_061 del 1 2 122785262 159271170 

49 Neuron UVA_neuron_061 del 1 2 188432074 200950169 

49 Neuron UVA_neuron_061 del 1 2 207159956 219724241 

49 Neuron UVA_neuron_061 del 1 2 232928933 236071756 

49 Neuron UVA_neuron_061 del 1 12 85615589 88600828 

49 Neuron UVA_neuron_082 del 1 3 42908150 45923636 

49 Neuron UVA_neuron_082 del 1 3 107361480 142424833 

49 Neuron UVA_neuron_082 del 1 5 94651057 102230903 

49 Neuron UVA_neuron_082 del 1 5 119507447 122511514 

49 Neuron UVA_neuron_082 del 1 6 0 11502202 

49 Neuron UVA_neuron_082 del 1 6 49238865 64411759 

49 Neuron UVA_neuron_082 del 1 6 116594010 138659323 

49 Neuron UVA_neuron_082 del 1 6 145843887 151950282 

49 Neuron UVA_neuron_099 del 1 4 94379967 106745990 

49 Neuron UVA_neuron_099 del 1 5 28505588 55143420 

49 Neuron UVA_neuron_099 del 1 5 68455176 88102197 

49 Neuron UVA_neuron_099 del 1 5 94651057 119507446 

49 Neuron UVA_neuron_099 del 1 5 130481984 144594516 

49 Neuron UVA_neuron_099 del 1 7 16471244 22319107 

49 Neuron UVA_neuron_099 del 1 7 32538381 43812011 

49 Neuron UVA_neuron_099 del 1 7 75361497 100174991 

49 Neuron UVA_neuron_099 del 1 7 123129112 127335585 

49 Neuron UVA_neuron_099 del 1 8 0 53637582 

49 Neuron UVA_neuron_099 del 1 8 85764299 104984539 

49 Neuron UVA_neuron_099 del 1 8 127938903 140076363 

49 Neuron UVA_neuron_099 del 1 10 0 100673442 

49 Neuron UVA_neuron_099 del 1 10 103869749 135534747 

49 Neuron UVA_neuron_099 del 1 14 40336394 45830753 

49 Neuron UVA_neuron_099 del 1 14 61244093 75544359 

49 Neuron UVA_neuron_099 del 1 15 38095761 45451863 

49 Neuron UVA_neuron_099 del 1 15 48993249 60151637 

49 Neuron UVA_neuron_099 del 1 15 66787090 74551715 

49 Neuron UVA_neuron_099 del 0 18 0 3835264 

49 Neuron UVA_neuron_099 del 1 18 3835265 59556928 

49 Neuron UVA_neuron_099 del 0 18 59556929 78077248 

49 Neuron UVA_neuron_099 del 1 20 0 25638025 
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49 Neuron UVA_neuron_099 del 1 20 47558424 58364310 

52 Neuron SRR1548998 del 1 8 0 4410697 

52 Neuron SRR1549003 dup 3 10 77480813 80329798 

52 Neuron SRR1549005 del 1 3 0 4233531 

52 Neuron SRR1549010 del 1 8 0 4961867 

68 Neuron SRR1549033 dup 3 1 156424280 160119602 

68 Neuron SRR1549038 dup 3 5 0 4283072 

68 Neuron SRR1549040 dup 3 5 146406506 157255568 

68 Neuron SRR1549040 del 1 13 92828702 95759123 

69 Neuron ERR1391234 dup 3 1 55037497 60821075 

69 Neuron ERR1391319 del 1 18 73891587 78077248 

69 Neuron ERR1391336 dup 3 17 68669368 71609825 

70 Neuron SRR1548977 del 1 22 0 51304566 

70 Neuron SRR1548980 del 0 1 245671145 249250621 

70 Neuron SRR1548980 del 1 4 76639006 79730141 

70 Neuron SRR1548980 del 1 10 11832186 16952437 

70 Neuron SRR1548982 del 1 6 0 4275439 

70 Neuron SRR1548983 del 1 3 87150266 90176747 

70 Neuron SRR1548983 del 1 4 99840114 104265509 

70 Neuron SRR1548983 del 1 11 102999982 106489970 

70 Neuron SRR1548983 del 1 13 66003034 74587812 

74 Neuron ERR1391282 del 1 16 0 12344471 

74 Neuron ERR1391284 dup 3 17 70389170 73499935 

74 Neuron ERR1391291 del 1 3 44715393 49993328 

74 Neuron ERR1391293 del 1 16 0 10318764 

74 Neuron ERR1391357 dup 3 1 57393964 61970029 

74 Neuron ERR1391380 dup 3 22 47080595 51304566 

81 Neuron ERR1391176 dup 3 9 118393554 121768891 

81 Neuron ERR1391176 dup 3 17 53411024 56376647 

81 Neuron ERR1391183 dup 3 16 48745856 55674867 

81 Neuron ERR1391220 del 1 2 224992645 234240781 

81 Neuron ERR1391220 del 1 3 58633446 64412452 

81 Neuron ERR1391220 del 1 3 71522747 83068200 

81 Neuron ERR1391220 del 1 3 131283290 183233764 

81 Neuron ERR1391220 del 1 3 187050157 192262855 

81 Neuron ERR1391220 del 1 4 17284317 37194969 

81 Neuron ERR1391220 del 1 6 12660844 24798645 

81 Neuron ERR1391220 del 1 6 47465987 135683261 

81 Neuron ERR1391220 del 1 6 154359324 158006608 

81 Neuron ERR1391220 del 1 10 18626666 52397002 

81 Neuron ERR1391220 del 1 12 28302778 34370916 
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81 Neuron ERR1391229 dup 3 1 55037497 60255842 

86 Non-

neuron 

UVA_nonneuron_103 dup 3 2 75633395 79201842 

86 Non-

neuron 

UVA_nonneuron_108 del 1 3 0 8971642 

86 Non-

neuron 

UVA_nonneuron_108 del 1 3 15695348 37372096 

86 Non-

neuron 

UVA_nonneuron_108 del 1 3 69210684 97673840 

86 Non-

neuron 

UVA_nonneuron_108 del 1 3 162224600 178911918 

86 Non-

neuron 

UVA_nonneuron_108 del 1 9 6276769 11594685 

86 Non-

neuron 

UVA_nonneuron_108 del 1 9 16360992 24841287 

86 Non-

neuron 

UVA_nonneuron_117 del 1 6 141078599 147593774 

86 Non-

neuron 

UVA_nonneuron_145 del 1 19 0 4431118 

86 Neuron UVA_neuron_450 del 1 6 7880049 10896382 

86 Neuron UVA_neuron_485 dup 3 7 0 159138663 

86 Neuron UVA_neuron_485 dup 3 9 0 141213431 

86 Neuron UVA_neuron_485 del 1 10 0 135534747 

86 Neuron UVA_neuron_505 dup 3 2 75036542 78027311 

86 Neuron UVA_neuron_533 del 1 1 167586870 176885373 

86 Neuron UVA_neuron_533 del 1 1 183553816 200746732 

86 Neuron UVA_neuron_533 del 1 1 236828852 244387281 

86 Neuron UVA_neuron_533 del 1 2 61457641 88809038 

86 Neuron UVA_neuron_533 del 1 2 147197476 161693615 

86 Neuron UVA_neuron_533 del 1 2 183583489 190803979 

86 Neuron UVA_neuron_533 del 1 5 58749287 77144122 

86 Neuron UVA_neuron_533 del 1 5 82729349 134261521 

86 Neuron UVA_neuron_533 del 1 8 48124278 58665873 

86 Neuron UVA_neuron_533 del 1 8 119501301 124319612 

86 Neuron UVA_neuron_533 del 1 13 52941095 77518723 

86 Neuron UVA_neuron_533 del 1 13 99992280 110875528 

86 Neuron UVA_neuron_533 del 1 15 34392199 62406148 

86 Neuron UVA_neuron_533 del 1 15 84203290 100751400 

86 Neuron UVA_neuron_533 del 1 18 21049924 74475930 

95 Neuron UVA_neuron_584 dup 3 8 22668482 26845698 

95 Neuron UVA_neuron_586 dup 3 1 54415206 109071838 

95 Neuron UVA_neuron_586 dup 3 1 205736766 226358226 

95 Neuron UVA_neuron_586 dup 3 3 0 5450845 

95 Neuron UVA_neuron_586 dup 3 3 58633446 66824981 

95 Neuron UVA_neuron_586 dup 3 3 70968285 79005714 
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Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

95 Neuron UVA_neuron_586 dup 3 3 114067040 118003951 

95 Neuron UVA_neuron_586 dup 3 3 145905641 169326061 

95 Neuron UVA_neuron_586 dup 3 3 174097863 198022430 

95 Neuron UVA_neuron_586 dup 3 5 149920972 154153043 

95 Neuron UVA_neuron_586 dup 3 14 33417964 45830753 

95 Neuron UVA_neuron_586 dup 3 14 50806069 58796222 

95 Neuron UVA_neuron_586 dup 3 14 77944607 90194806 

95 Neuron UVA_neuron_586 dup 3 14 94514384 101310646 

95 Neuron UVA_neuron_586 dup 3 21 15737919 19392504 

95 Neuron UVA_neuron_586 dup 3 21 34866097 38458544 

95 Neuron UVA_neuron_593 dup 3 11 130899822 135006516 

95 Neuron UVA_neuron_617 del 1 13 61238839 69996157 

95 Neuron UVA_neuron_617 del 1 19 20336620 30237337 

95 Neuron UVA_neuron_617 del 1 21 34252154 37853829 

95 Neuron UVA_neuron_630 del 1 1 36688308 41704920 

95 Neuron UVA_neuron_630 del 1 1 52515583 109720251 

95 Neuron UVA_neuron_630 del 1 1 197191179 202697510 

95 Neuron UVA_neuron_630 del 1 3 16306587 31786628 

95 Neuron UVA_neuron_630 del 1 3 71522747 84223958 

95 Neuron UVA_neuron_630 del 1 3 130066701 180154507 

95 Neuron UVA_neuron_630 del 1 3 190485047 198022430 

95 Neuron UVA_neuron_630 del 1 7 16471244 22961576 

95 Neuron UVA_neuron_630 del 1 7 81002469 85598303 

95 Neuron UVA_neuron_630 del 1 9 32615299 37996021 

95 Neuron UVA_neuron_630 del 1 13 38771764 62432544 

95 Neuron UVA_neuron_630 del 1 15 92004944 98897575 

95 Neuron UVA_neuron_630 del 1 21 18062271 44311358 

95 Neuron UVA_neuron_636 del 1 3 163439789 172377702 

95 Neuron UVA_neuron_636 del 1 4 21983998 25519245 

95 Neuron UVA_neuron_636 del 1 7 86782458 95312683 

95 Neuron UVA_neuron_636 del 1 10 57220098 66757276 

95 Neuron UVA_neuron_636 del 1 10 106385076 114580194 

95 Neuron UVA_neuron_636 del 1 11 25429693 28436562 

95 Neuron UVA_neuron_647 del 1 4 4184323 10813482 

95 Neuron UVA_neuron_647 del 1 4 36015173 42882320 

95 Neuron UVA_neuron_647 del 1 4 184962175 191154276 

95 Neuron UVA_neuron_647 del 1 18 0 12366979 

95 Neuron UVA_neuron_647 del 1 18 45344626 78077248 

95 Neuron UVA_neuron_648 del 1 1 212928493 218133161 

 

  



110 

 

Table A.2: CNVs detected under stringent thresholds in human brain scWGS data 

analyzed in Chapter 2 
Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

0.36 Neuron UVA_neuron_124 del 1 6 125622700 143454539 

0.36 Neuron UVA_neuron_138 dup 3 1 13787191 52515582 

0.36 Neuron UVA_neuron_138 dup 3 1 156424280 167003471 

0.36 Neuron UVA_neuron_138 dup 3 6 20567405 25955160 

0.36 Neuron UVA_neuron_138 dup 3 9 91039916 114148695 

0.36 Neuron UVA_neuron_139 del 1 1 162849228 172498733 

0.36 Neuron UVA_neuron_139 del 1 13 78700363 82857520 

0.36 Neuron UVA_neuron_161 dup 3 1 163417199 166368036 

0.36 Neuron UVA_neuron_177 del 1 6 76026361 86110507 

0.36 Neuron UVA_neuron_177 dup 3 11 20663030 25429692 

0.36 Neuron UVA_neuron_211 dup 3 1 186531620 245047728 

0.36 Neuron UVA_neuron_212 dup 3 8 92131456 96970694 

20 Neuron SRR1006161 dup 3 2 79201843 85053312 

20 Neuron SRR1006164 del 1 3 52001019 56678590 

20 Neuron SRR1006164 del 1 3 72096579 81325034 

20 Neuron SRR1006164 del 1 10 18626666 26068464 

20 Neuron SRR1006182 dup 3 2 114470301 117440682 

20 Neuron SRR1006182 dup 3 20 45065873 48857276 

20 Neuron SRR1006183 del 1 2 0 37597556 

20 Neuron SRR1006183 del 1 2 54339151 69415571 

20 Neuron SRR1006183 del 1 2 73134358 234240781 

20 Neuron SRR1006183 del 1 4 16126824 21983997 

20 Neuron SRR1006183 del 1 7 76860004 84453687 

20 Neuron SRR1006183 del 1 8 12771698 20358881 

20 Neuron SRR1006183 del 1 8 56808295 94495143 

20 Neuron SRR1006183 del 1 9 19390496 33256284 

20 Neuron SRR1006183 del 1 9 92230894 103279747 

20 Neuron SRR1006183 del 1 9 107511035 112314022 

20 Neuron SRR1006183 del 1 13 30526230 44217199 

20 Neuron SRR1006183 del 0 13 44217200 50380053 

20 Neuron SRR1006183 del 1 13 50380054 99402742 

20 Neuron SRR1006183 del 1 14 24151499 35249857 

20 Neuron SRR1006183 del 0 14 35249858 61869005 

20 Neuron SRR1006183 del 0 14 79690457 95097802 

20 Neuron SRR1006193 dup 3 3 53195998 57302460 

20 Neuron SRR1006193 dup 3 3 170606996 194021919 

20 Neuron SRR1006211 dup 3 1 206863148 211687065 

20 Neuron SRR1006211 dup 3 1 226358227 229496990 

20 Neuron SRR1006211 dup 3 7 130715094 134795986 

20 Neuron SRR1006211 dup 3 11 125603664 130318113 
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Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

20 Neuron SRR1006211 dup 3 15 23757739 29546675 

20 Neuron SRR1006229 dup 3 7 48809135 53621695 

20 Neuron SRR1006363 del 1 1 201321553 204560509 

20 Neuron SRR1006363 del 1 4 148044344 185573695 

20 Neuron SRR1006363 del 1 8 29818780 38353038 

20 Neuron SRR1006363 del 1 13 84578903 91639787 

20 Neuron SRR1006380 dup 3 2 56157960 86326604 

20 Neuron SRR1006380 dup 3 2 184210526 187222439 

20 Neuron SRR1006380 dup 3 8 47308005 54276092 

20 Neuron SRR1006380 dup 3 8 57457789 62800234 

20 Neuron SRR1006411 dup 3 2 113543645 118701713 

20 Neuron SRR1006412 dup 3 1 210416295 224373408 

20 Neuron SRR1006412 dup 3 4 8901947 15526654 

20 Neuron SRR1006412 dup 3 4 21983998 70843066 

20 Neuron SRR1006412 dup 3 4 89600533 96193924 

20 Neuron SRR1006412 dup 3 4 107990746 125787612 

20 Neuron SRR1006412 dup 3 4 141626199 151620553 

20 Neuron SRR1006412 dup 3 4 166012100 177420690 

20 Neuron SRR1006412 dup 3 8 109678767 120710738 

20 Neuron SRR1006412 dup 3 9 35501954 71370308 

20 Neuron SRR1006412 dup 3 14 59409245 65558275 

20 Neuron SRR1006412 dup 3 14 80253742 88978761 

20 Neuron SRR1006415 del 1 1 17334882 26166885 

20 Neuron SRR1006415 del 1 2 112792600 122785261 

24 Neuron SRR1006018 del 1 3 68597333 72096578 

24 Neuron SRR1006018 del 1 7 128673484 131910587 

24 Neuron SRR1006018 del 1 11 75904906 79008352 

24 Neuron SRR1006018 del 1 13 102403082 107439681 

24 Neuron SRR1006019 del 1 9 106891097 109948494 

24 Neuron SRR1006019 del 1 12 110402896 113771179 

24 Neuron SRR1006019 del 1 18 25735093 30994269 

24 Neuron SRR1006019 del 1 20 20741862 23764315 

24 Neuron SRR1006026 del 1 9 97625074 101516985 

26 Neuron SRR1006042 del 1 10 86032194 89483221 

26 Neuron SRR1006043 del 1 1 15573437 25427883 

26 Neuron SRR1006055 del 1 5 14714111 18488898 

26 Neuron SRR1006055 del 1 5 167797876 172550230 

26 Neuron SRR1006055 del 1 10 86032194 93667392 

26 Neuron SRR1006055 del 1 20 0 3130305 

26 Neuron SRR1006099 del 1 2 47782132 55492676 

26 Neuron SRR1006099 del 1 2 61457641 70046549 
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Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

26 Neuron SRR1006099 del 1 2 204230789 207159955 

26 Neuron SRR1006099 del 1 10 78634443 81764654 

26 Neuron SRR1006099 del 1 13 32893809 36999872 

26 Neuron SRR1006101 del 1 20 39681629 42618074 

26 Neuron SRR1006143 del 1 1 240347054 244387281 

26 Neuron UVA_neuron_255 dup 3 6 37402144 44514766 

26 Neuron UVA_neuron_255 dup 3 6 147026482 151290698 

26 Neuron UVA_neuron_255 dup 3 12 125221928 133851895 

26 Neuron UVA_neuron_260 dup 3 17 31112224 34082077 

26 Neuron UVA_neuron_274 dup 3 2 75036542 79201842 

26 Neuron UVA_neuron_276 dup 3 19 28416236 33117740 

26 Neuron UVA_neuron_289 dup 4 1 14407453 21563445 

26 Neuron UVA_neuron_289 dup 3 1 28995833 36027949 

26 Neuron UVA_neuron_289 dup 3 7 14766268 24279826 

26 Neuron UVA_neuron_289 dup 3 11 113779841 120234173 

26 Neuron UVA_neuron_289 dup 3 13 99992280 102951309 

26 Neuron UVA_neuron_289 dup 3 18 21649083 24597917 

26 Neuron UVA_neuron_290 dup 3 6 11502203 16826185 

26 Neuron UVA_neuron_299 dup 3 2 110317438 120427479 

26 Neuron UVA_neuron_299 dup 3 3 140492003 172377702 

26 Neuron UVA_neuron_299 dup 3 7 13601725 17061332 

26 Neuron UVA_neuron_320 dup 3 3 116335167 119237862 

26 Neuron UVA_neuron_320 del 1 5 4856870 62425621 

26 Neuron UVA_neuron_320 del 1 5 102798905 110434237 

26 Neuron UVA_neuron_320 del 1 8 113174309 122528361 

26 Neuron UVA_neuron_332 del 1 5 35584463 46321785 

26 Neuron UVA_neuron_332 del 1 5 148177528 168391175 

26 Neuron UVA_neuron_332 del 1 12 104332379 111126214 

26 Neuron UVA_neuron_339 dup 3 6 3072097 29455580 

26 Neuron UVA_neuron_359 del 1 6 79835303 90697067 

26 Neuron UVA_neuron_359 del 1 6 110505516 117202244 

26 Neuron UVA_neuron_379 del 1 5 148741542 151740334 

26 Neuron UVA_neuron_403 del 1 18 54218500 57198996 

26 Neuron UVA_neuron_411 del 1 4 155241292 191154276 

26 Neuron UVA_neuron_421 del 1 1 236828852 240958964 

26 Neuron UVA_neuron_421 del 1 2 175956929 179477039 

26 Neuron UVA_neuron_421 del 1 6 6680836 28141567 

26 Neuron UVA_neuron_421 del 1 6 160476597 167006545 

42 Neuron SRR1708616 del 1 4 76639006 84643973 

42 Neuron SRR1708621 del 1 3 24745615 27751638 

42 Neuron SRR1708621 del 1 6 124461077 127402842 
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Age 

(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

42 Neuron SRR1708633 del 0 1 55654887 60255842 

42 Neuron SRR1708633 del 0 1 156424280 167003471 

42 Neuron SRR1708633 del 1 1 205122961 228266772 

42 Neuron SRR1708633 del 1 1 238007532 242151660 

42 Neuron SRR1708633 del 1 4 38401590 42279611 

42 Neuron SRR1708633 del 1 11 36132876 43338768 

42 Neuron SRR1708633 del 1 13 89333186 115169878 

42 Neuron SRR1708633 del 0 14 0 39659648 

42 Neuron SRR1708633 del 0 14 45198272 55099765 

42 Neuron SRR1708633 del 1 14 55099766 58796222 

42 Neuron SRR1708633 del 0 14 58796223 68685230 

42 Neuron SRR1708633 del 1 14 68685231 71727396 

42 Neuron SRR1708633 del 0 14 71727397 82041045 

42 Neuron SRR1708633 del 0 14 103188690 107349540 

42 Neuron SRR1708633 del 0 15 23757739 39850794 

42 Neuron SRR1708633 del 0 15 47305386 55863189 

42 Neuron SRR1708633 del 1 15 55863190 72659222 

42 Neuron SRR1708633 del 0 15 72659223 102531392 

42 Neuron SRR1708633 del 1 16 2774872 7268606 

42 Neuron SRR1708633 del 0 16 12958031 75785091 

42 Neuron SRR1708633 del 0 16 80914072 90354753 

42 Neuron SRR1708633 del 0 21 15737919 48129895 

42 Neuron SRR1708633 del 0 22 0 23892724 

42 Neuron SRR1708635 del 1 9 104493886 107511034 

49 Non-

neuron 

UVA_nonneuron_002 del 1 14 73534859 78597161 

49 Non-

neuron 

UVA_nonneuron_015 del 1 7 6098775 15320919 

49 Neuron UVA_neuron_018 del 1 5 33413701 44343860 

49 Neuron UVA_neuron_018 del 1 5 64855087 76532539 

49 Neuron UVA_neuron_018 del 1 5 79664376 107391860 

49 Neuron UVA_neuron_018 del 1 5 110434238 130481983 

49 Neuron UVA_neuron_031 del 1 1 145035037 167586869 

49 Neuron UVA_neuron_031 del 1 1 193539023 233052991 

49 Neuron UVA_neuron_031 del 1 1 242902919 249250621 

49 Neuron UVA_neuron_031 del 1 10 52397003 74184936 

49 Neuron UVA_neuron_031 del 1 10 86032194 93667392 

49 Neuron UVA_neuron_035 del 1 6 125622700 171115067 

49 Neuron UVA_neuron_035 del 1 7 88032352 99331103 

49 Neuron UVA_neuron_035 del 1 8 0 37657413 

49 Neuron UVA_neuron_035 del 0 8 37657414 53068846 

49 Neuron UVA_neuron_035 del 1 8 53068847 69476869 
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(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

49 Neuron UVA_neuron_035 del 0 8 69476870 90950790 

49 Neuron UVA_neuron_035 del 1 8 90950791 109678766 

49 Neuron UVA_neuron_035 del 0 8 109678767 124319612 

49 Neuron UVA_neuron_035 del 0 9 0 34194622 

49 Neuron UVA_neuron_035 del 1 9 81064076 95539901 

49 Neuron UVA_neuron_035 del 1 9 98794162 108127109 

49 Neuron UVA_neuron_035 del 0 9 108127110 114148695 

49 Neuron UVA_neuron_035 del 0 9 119539669 128404855 

49 Neuron UVA_neuron_035 del 0 13 0 25710053 

49 Neuron UVA_neuron_035 del 1 13 25710054 34065686 

49 Neuron UVA_neuron_035 del 0 13 34065687 46039591 

49 Neuron UVA_neuron_035 del 1 13 46039592 49757523 

49 Neuron UVA_neuron_035 del 0 13 49757524 79841898 

49 Neuron UVA_neuron_035 del 1 13 79841899 115169878 

49 Neuron UVA_neuron_035 del 0 14 0 30871657 

49 Neuron UVA_neuron_035 del 1 14 30871658 39659648 

49 Neuron UVA_neuron_035 del 0 14 39659649 55099765 

49 Neuron UVA_neuron_035 del 1 14 55099766 58796222 

49 Neuron UVA_neuron_035 del 0 14 58796223 68685230 

49 Neuron UVA_neuron_035 del 0 15 0 33214513 

49 Neuron UVA_neuron_035 del 1 15 33214514 44563098 

49 Neuron UVA_neuron_035 del 0 15 44563099 66186243 

49 Neuron UVA_neuron_035 del 1 15 66186244 79300783 

49 Neuron UVA_neuron_035 del 0 15 79300784 102531392 

49 Neuron UVA_neuron_035 del 0 19 19495532 33856129 

49 Neuron UVA_neuron_035 del 1 20 24987091 32848483 

49 Neuron UVA_neuron_035 del 0 21 15737919 43155186 

49 Neuron UVA_neuron_052 del 1 2 80355685 85702751 

49 Neuron UVA_neuron_052 del 1 2 120427480 133330191 

49 Neuron UVA_neuron_052 del 1 10 31961281 48580042 

49 Neuron UVA_neuron_052 del 1 18 13621501 22263013 

49 Neuron UVA_neuron_052 del 1 18 69934661 78077248 

49 Neuron UVA_neuron_059 del 1 2 24059871 43042109 

49 Neuron UVA_neuron_059 del 1 2 101601235 107606695 

49 Neuron UVA_neuron_059 del 1 14 87218045 94514383 

49 Neuron UVA_neuron_061 del 1 2 97380358 107606695 

49 Neuron UVA_neuron_061 del 1 2 122785262 159271170 

49 Neuron UVA_neuron_061 del 1 2 188432074 200950169 

49 Neuron UVA_neuron_061 del 1 2 207159956 219724241 

49 Neuron UVA_neuron_061 del 1 2 232928933 236071756 

49 Neuron UVA_neuron_061 del 1 12 85615589 88600828 
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(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

49 Neuron UVA_neuron_082 del 1 3 42908150 45923636 

49 Neuron UVA_neuron_082 del 1 6 0 11502202 

49 Neuron UVA_neuron_082 del 1 6 49238865 64411759 

49 Neuron UVA_neuron_082 del 1 6 116594010 138659323 

49 Neuron UVA_neuron_099 del 1 4 94379967 106745990 

49 Neuron UVA_neuron_099 del 1 5 28505588 55143420 

49 Neuron UVA_neuron_099 del 1 5 68455176 88102197 

49 Neuron UVA_neuron_099 del 1 7 75361497 100174991 

49 Neuron UVA_neuron_099 del 1 7 123129112 127335585 

49 Neuron UVA_neuron_099 del 1 8 0 53637582 

49 Neuron UVA_neuron_099 del 1 8 85764299 104984539 

49 Neuron UVA_neuron_099 del 1 10 0 100673442 

49 Neuron UVA_neuron_099 del 1 10 103869749 135534747 

49 Neuron UVA_neuron_099 del 1 14 61244093 75544359 

49 Neuron UVA_neuron_099 del 1 15 48993249 60151637 

49 Neuron UVA_neuron_099 del 0 18 0 3835264 

49 Neuron UVA_neuron_099 del 1 18 3835265 59556928 

49 Neuron UVA_neuron_099 del 0 18 59556929 78077248 

49 Neuron UVA_neuron_099 del 1 20 0 25638025 

49 Neuron UVA_neuron_099 del 1 20 47558424 58364310 

52 Neuron SRR1548998 del 1 8 0 4410697 

68 Neuron SRR1549033 dup 3 1 156424280 160119602 

68 Neuron SRR1549040 del 1 13 92828702 95759123 

69 Neuron ERR1391319 del 1 18 73891587 78077248 

69 Neuron ERR1391336 dup 3 17 68669368 71609825 

70 Neuron SRR1548977 del 1 22 0 51304566 

70 Neuron SRR1548980 del 0 1 245671145 249250621 

70 Neuron SRR1548982 del 1 6 0 4275439 

70 Neuron SRR1548983 del 1 13 66003034 74587812 

74 Neuron ERR1391284 dup 3 17 70389170 73499935 

81 Neuron ERR1391176 dup 3 17 53411024 56376647 

81 Neuron ERR1391220 del 1 2 224992645 234240781 

81 Neuron ERR1391220 del 1 3 58633446 64412452 

81 Neuron ERR1391220 del 1 3 131283290 183233764 

81 Neuron ERR1391220 del 1 4 17284317 37194969 

81 Neuron ERR1391220 del 1 6 12660844 24798645 

86 Non-

neuron 

UVA_nonneuron_108 del 1 3 0 8971642 

86 Non-

neuron 

UVA_nonneuron_108 del 1 3 69210684 97673840 

86 Non-

neuron 

UVA_nonneuron_145 del 1 19 0 4431118 

86 Neuron UVA_neuron_450 del 1 6 7880049 10896382 
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(yrs) 

Cell type Cell Type CN 

state 

Chrom Start base End base 

86 Neuron UVA_neuron_485 dup 3 7 0 159138663 

86 Neuron UVA_neuron_485 dup 3 9 0 141213431 

86 Neuron UVA_neuron_485 del 1 10 0 135534747 

86 Neuron UVA_neuron_533 del 1 1 183553816 200746732 

86 Neuron UVA_neuron_533 del 1 1 236828852 244387281 

86 Neuron UVA_neuron_533 del 1 2 61457641 88809038 

86 Neuron UVA_neuron_533 del 1 2 183583489 190803979 

86 Neuron UVA_neuron_533 del 1 8 48124278 58665873 

86 Neuron UVA_neuron_533 del 1 8 119501301 124319612 

86 Neuron UVA_neuron_533 del 1 13 52941095 77518723 

86 Neuron UVA_neuron_533 del 1 13 99992280 110875528 

86 Neuron UVA_neuron_533 del 1 15 44563099 62406148 

86 Neuron UVA_neuron_533 del 1 15 84203290 100751400 

86 Neuron UVA_neuron_533 del 1 18 21049924 74475930 

95 Neuron UVA_neuron_586 dup 3 1 205736766 226358226 

95 Neuron UVA_neuron_586 dup 3 3 0 5450845 

95 Neuron UVA_neuron_586 dup 3 3 114067040 118003951 

95 Neuron UVA_neuron_586 dup 3 3 145905641 169326061 

95 Neuron UVA_neuron_586 dup 3 3 174097863 198022430 

95 Neuron UVA_neuron_586 dup 3 5 149920972 154153043 

95 Neuron UVA_neuron_586 dup 3 14 50806069 58796222 

95 Neuron UVA_neuron_586 dup 3 14 77944607 90194806 

95 Neuron UVA_neuron_586 dup 3 14 94514384 101310646 

95 Neuron UVA_neuron_586 dup 3 21 34866097 38458544 

95 Neuron UVA_neuron_617 del 1 13 61238839 69996157 

95 Neuron UVA_neuron_617 del 1 21 34252154 37853829 

95 Neuron UVA_neuron_630 del 1 1 52515583 109720251 

95 Neuron UVA_neuron_630 del 1 1 197191179 202697510 

95 Neuron UVA_neuron_630 del 1 3 71522747 84223958 

95 Neuron UVA_neuron_630 del 1 3 130066701 180154507 

95 Neuron UVA_neuron_630 del 1 3 190485047 198022430 

95 Neuron UVA_neuron_630 del 1 7 16471244 22961576 

95 Neuron UVA_neuron_630 del 1 9 32615299 37996021 

95 Neuron UVA_neuron_630 del 1 15 92004944 98897575 

95 Neuron UVA_neuron_630 del 1 21 18062271 44311358 

95 Neuron UVA_neuron_636 del 1 3 163439789 172377702 

95 Neuron UVA_neuron_636 del 1 7 86782458 95312683 

95 Neuron UVA_neuron_636 del 1 11 25429693 28436562 

95 Neuron UVA_neuron_647 del 1 4 4184323 10813482 

95 Neuron UVA_neuron_647 del 1 4 36015173 42882320 

95 Neuron UVA_neuron_647 del 1 4 184962175 191154276 
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95 Neuron UVA_neuron_647 del 1 18 45344626 78077248 
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File Locations of Sequencing Data from Cells Sequenced in Chapters 2 and 3  
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Table B.1: Locations of human and mouse brain scWGS data generated for analysis 

in Chapters 2 and 3. FASTQs are organized in directories by sequencing run, WGA 

method, species, individual, and cell type. All directories are located on Rivanna in 

/nv/vol97/mcconnell_lab/cnvpipe/wgs_data/.  

 
Directory Dataset 

cphg-Pool58_PicoPLEX_human_0.36yro-NeuNpos Human 

cphg-Pool58_PicoPLEX_human_26yro-NeuNneg Human 

cphg-Pool58_PicoPLEX_human_26yro-NeuNpos Human 

cphg-Pool58_PicoPLEX_human_95yro-NeuNpos Human 

lieber-Pool77_PicoPLEX_human_26yro-NeuNneg Human 

lieber-Pool77_PicoPLEX_human_26yro-NeuNpos Human 

lieber-Pool77_PicoPLEX_human_86yro-NeuNneg Human 

lieber-Pool77_PicoPLEX_human_86yro-NeuNpos Human 

lieber-Pool77_PicoPLEX_human_95yro-NeuNpos Human 

lieber-Pool78_PicoPLEX_human_26yro-NeuNneg Human 

lieber-Pool78_PicoPLEX_human_26yro-NeuNpos Human 

lieber-Pool78_PicoPLEX_human_86yro-NeuNneg Human 

lieber-Pool78_PicoPLEX_human_86yro-NeuNpos Human 

lieber-Pool78_PicoPLEX_human_95yro-NeuNpos Human 

lieber-Pool79_PicoPLEX_human_26yro-NeuNneg Human 

lieber-Pool79_PicoPLEX_human_26yro-NeuNpos Human 

lieber-Pool79_PicoPLEX_human_86yro-NeuNneg Human 

lieber-Pool79_PicoPLEX_human_86yro-NeuNpos Human 

lieber-Pool79_PicoPLEX_human_95yro-NeuNpos Human 

lieber-Pool80_PicoPLEX_human_26yro-NeuNneg Human 

lieber-Pool80_PicoPLEX_human_26yro-NeuNpos Human 

lieber-Pool80_PicoPLEX_human_86yro-NeuNneg Human 

lieber-Pool80_PicoPLEX_human_86yro-NeuNpos Human 

lieber-Pool80_PicoPLEX_human_95yro-NeuNpos Human 

lieber-Pool81_PicoPLEX_human_26yro-NeuNneg Human 

lieber-Pool81_PicoPLEX_human_26yro-NeuNpos Human 

lieber-Pool81_PicoPLEX_human_86yro-NeuNneg Human 

lieber-Pool81_PicoPLEX_human_86yro-NeuNpos Human 

lieber-Pool81_PicoPLEX_human_95yro-NeuNpos Human 

lieber-Pool82_PicoPLEX_human_26yro-NeuNneg Human 

lieber-Pool82_PicoPLEX_human_26yro-NeuNpos Human 

lieber-Pool82_PicoPLEX_human_86yro-NeuNneg Human 

lieber-Pool82_PicoPLEX_human_86yro-NeuNpos Human 

lieber-Pool82_PicoPLEX_human_95yro-NeuNpos Human 

novogene-Pool58_PicoPLEX_human_0.36yro-NeuNpos Human 

novogene-Pool58_PicoPLEX_human_26yro-NeuNneg Human 

novogene-Pool58_PicoPLEX_human_26yro-NeuNpos Human 

novogene-Pool58_PicoPLEX_human_95yro-NeuNpos Human 



120 

 

Directory Dataset 

novogene-Pool71_PicoPLEX_human_0.36yro-NeuNpos Human 

novogene-Pool71_PicoPLEX_human_26yro-NeuNpos Human 

novogene-Pool72_PicoPLEX_human_0.36yro-NeuNpos Human 

novogene-Pool72_PicoPLEX_human_26yro-NeuNneg Human 

novogene-Pool72_PicoPLEX_human_26yro-NeuNpos Human 

novogene-Pool72_PicoPLEX_human_49yro-NeuNneg Human 

nygc-Pool60_PicoPLEX_human_0.36yro-NeuNpos Human 

nygc-Pool60_PicoPLEX_human_26yro-NeuNneg Human 

nygc-Pool60_PicoPLEX_human_26yro-NeuNpos Human 

nygc-Pool60_PicoPLEX_human_95yro-NeuNpos Human 

nygc-Pool61_PicoPLEX_human_0.36yro-NeuNpos Human 

nygc-Pool61_PicoPLEX_human_26yro-NeuNneg Human 

nygc-Pool61_PicoPLEX_human_26yro-NeuNpos Human 

nygc-Pool61_PicoPLEX_human_95yro-NeuNpos Human 

salk-Pool62_PicoPLEX_human_49yro-NeuNneg Human 

salk-Pool62_PicoPLEX_human_49yro-NeuNpos Human 

salk-Pool63_PicoPLEX_human_26yro-NeuNneg Human 

salk-Pool63_PicoPLEX_human_26yro-NeuNpos Human 

salk-Pool63_PicoPLEX_human_49yro-NeuNneg Human 

salk-Pool63_PicoPLEX_human_49yro-NeuNpos Human 

salk-Pool64_PicoPLEX_human_26yro-NeuNneg Human 

salk-Pool64_PicoPLEX_human_26yro-NeuNpos Human 

salk-Pool64_PicoPLEX_human_49yro-NeuNneg Human 

salk-Pool64_PicoPLEX_human_49yro-NeuNpos Human 

salk-Pool64_PicoPLEX_human_95yro-NeuNpos Human 

uva036-Pool00_PicoPLEX_human_0.36yro-NeuNpos Human 

uva042-Pool1_PicoPLEX_human_0.36yro-NeuNpos Human 

uva044-Pool3_PicoPLEX_human_0.36yro-NeuNpos Human 

uva045-Pool4_PicoPLEX_human_0.36yro-NeuNpos Human 

uva054-Pool8_PicoPLEX_human_0.36yro-NeuNpos Human 

uva055-Pool9_PicoPLEX_human_0.36yro-NeuNpos Human 

uva057-Pool10_PicoPLEX_human_0.36yro-NeuNpos Human 

uva058-Pool11_PicoPLEX_human_0.36yro-NeuNpos Human 

uva074-Pool12_PicoPLEX_human_0.36yro-NeuNpos Human 

uva075-Pool13_PicoPLEX_human_0.36yro-NeuNpos Human 

uva076-Pool14_PicoPLEX_human_0.36yro-NeuNpos Human 

uva077-Pool15_PicoPLEX_human_0.36yro-NeuNpos Human 

uva095-Pool32_PicoPLEX_human_0.36yro-NeuNpos Human 

uva098-Pool34_PicoPLEX_human_26yro-NeuNpos Human 

uva099-Pool35_PicoPLEX_human_26yro-NeuNpos Human 

uva100-Pool36_PicoPLEX_human_26yro-NeuNpos Human 

uva101-Pool37_PicoPLEX_human_26yro-NeuNpos Human 
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Directory Dataset 

uva102-Pool38_PicoPLEX_human_26yro-NeuNpos Human 

uva109-Pool39_PicoPLEX_human_26yro-NeuNpos Human 

uva110-Pool40_PicoPLEX_human_26yro-NeuNpos Human 

uva111-Pool41_PicoPLEX_human_26yro-NeuNpos Human 

uva112-Pool42_PicoPLEX_human_26yro-NeuNpos Human 

uva113-Pool43_PicoPLEX_human_0.36yro-NeuNpos Human 

uva113-Pool43_PicoPLEX_human_26yro-NeuNpos Human 

uva114-Pool44_PicoPLEX_human_26yro-NeuNpos Human 

uva121-Pool27_PicoPLEX_human_0.36yro-NeuNpos Human 

uva123-Pool29_PicoPLEX_human_0.36yro-NeuNpos Human 

uva128-Pool48_PicoPLEX_human_95yro-NeuNpos Human 

uva129-Pool47_PicoPLEX_human_95yro-NeuNpos Human 

uva130-Pool46_PicoPLEX_human_95yro-NeuNpos Human 

uva136-Pool49_PicoPLEX_human_26yro-NeuNpos Human 

uva136-Pool49_PicoPLEX_human_95yro-NeuNpos Human 

uva137-Pool50_PicoPLEX_human_95yro-NeuNpos Human 

uva138-Pool51_PicoPLEX_human_95yro-NeuNpos Human 

uva150-Pool67_PicoPLEX_human_0.36yro-NeuNpos Human 

uva150-Pool67_PicoPLEX_human_26yro-NeuNpos Human 

uva151-Pool68_PicoPLEX_human_26yro-NeuNneg Human 

uva151-Pool68_PicoPLEX_human_26yro-NeuNpos Human 

uva152-Pool69_PicoPLEX_human_26yro-NeuNneg Human 

uva152-Pool69_PicoPLEX_human_26yro-NeuNpos Human 

uva153-Pool70_PicoPLEX_human_26yro-NeuNpos Human 

uva155-Pool73_PicoPLEX_human_26yro-NeuNpos Human 

uva156-Pool74_PicoPLEX_human_26yro-NeuNneg Human 

uva156-Pool74_PicoPLEX_human_26yro-NeuNpos Human 

uva156-Pool74_PicoPLEX_human_49yro-NeuNneg Human 

unc-Pool89_MALBAC-LAMP_mouse_Top1KOmouse Mouse 

unc-Pool89_MALBAC-LAMP_mouse_Top1WTmouse Mouse 

uva387-Pool93_MALBAC-LAMP_mouse_p53KOmouse1 Mouse 

uva387-Pool93_MALBAC-LAMP_mouse_WTmouse1 Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_htau Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_htauKO Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_p53hetmouse Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_p53KOmouse2 Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_WTmouse1 Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_WTmouse2 Mouse 

uvaUnknownRun-July2018Pool-Riptide768_MALBAC-LAMP_mouse_WTmouse3 Mouse 
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