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Abstract

Associative learning is a fundamental building block of information acquisition. Organisms

learn from environmental cues to detect signals that predict reward or punishment, and

update beliefs on how to respond accordingly. Demands on the human brain are uniquely

complex, requiring advanced abilities to recognize, manipulate and respond to socially

relevant information. This includes the ability to construct representations of environmental

contingencies predicting safety and threat. Individual differences contribute to the ability to

flexibly learn and update responses appropriately. Here we investigate a potential biological

feature for capturing individual differences in associative learning, epigenetic modification

(i.e., DNA methylation) of the oxytocin receptor (OXTR). Leveraging the sensitivity of

slow-wave event-related potentials, we provide new evidence that OXTR methylation

(OXTRm) is theoretically relevant for understanding electrophysiological brain function as it

pertains to human associative learning. This work demonstrates modulation of associative

learning rates as a function of OXTRm indexed by the late positive potential (LPP). The

results suggest that oxytocin may play a primitive role in signaling survival behaviors (i.e.,

approaching appetitive resources, avoiding aversive environments). By integrating theoretical

perspectives from psychology, neuroscience, and epigenetics, this work enriches

understanding of how the brain reflects oxytocin’s allostatic functionality, by investigating its

manifestation of fear acquisition embedded in electrophysiological conditioned responses.

Keywords: DNA methylation, oxytocin receptor, associative learning, cognitive

neuroscience, late positive potential, individual differences
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DNA methylation of the oxytocin receptor gene maps increases in conditioned learning rates

at the late positive potential

Associative learning is a fundamental building block of information acquisition

(Mitchell, De Houwer, & Lovibond, 2009). Organisms learn from environmental cues to

detect signals that predict reward or punishment, and update beliefs on how to respond

accordingly (Gershman, 2015). One powerful paradigm for studying associative learning is

classical conditioning. Through repeated pairing of a neutral cue with a threatening

stimulus, organisms learn to respond to the neutral cue as a function of its predictive utility

toward threat. These learned responses can manifest through physiology and behavior.

Sources of threat range along a continuum from physical (e.g., electric shock) to biological

(e.g., blood), and within biological sources, from less social (e.g., blood) to more social (e.g.,

anger) (Lonsdorf et al., 2017). Social demands on the human brain are uniquely complex,

requiring advanced abilities to recognize, manipulate and respond to socially relevant

information. This includes the ability to construct representations of environmental

contingencies predicting safety and threat.

The current work investigates a potential biological feature for capturing individual

differences in associative learning, epigenetic modification (i.e., DNA methylation) of the

oxytocin receptor (OXTR). DNA methylation is a form of epigenetic silencing that

downregulates gene transcription. Diminished transcription of OXTR can lead to inefficient

binding of oxytocin, which can result in downstream mitigation of endogenous oxytocin

(Gregory et al., 2009). Oxytocin is a neuropeptide critical for various biological processes

including milk letdown, sexual function, and child birth, as well as psychological processes

including social behavior, stress regulation, and affective processing (Carter, 2014; Neumann

& Landgraf, 2012; Rotzinger, Lovejoy, & Tan, 2010). Measuring OXTR methylation

(OXTRm) has advantages over polymorphic variants, as it has known functional control on

the genetic expression of OXTR (Kusui et al., 2001).
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In addition to its effect on genetic expression, OXTRm relates to functional

organization of the human brain on a variety of sensory and cognitive tasks, including

selective attention, biological motion, and affective processing (Jack, Connelly, & Morris,

2012; Krol, Puglia, Morris, Connelly, & Grossmann, 2019; Puglia, Connelly, & Morris, 2018;

Puglia, Lillard, Morris, & Connelly, 2015). OXTRm may impact representation of social

information within specialized cortical structures (e.g., fusiform gyrus, superior temporal

sulcus, temporoparietal junction) as well as amygdala activity and functional networks

distributed across the brain (Jack et al., 2012; Krol et al., 2019; Puglia et al., 2018, 2015).

This suggests that the endogenous oxytocin system contributes to how the human brain

supports social information. However, it has recently been proposed that oxytocin has a

more general effect on basic biological systems that ultimately support complex cognitive

constructs that are anticipatory, aversive, and appetitive in nature (Quintana et al., 2019).

This theoretical perspective is supported with evidence that oxytocin pathway gene

expression patterns (including OXTR) encode information in activation coordinates

embedded in anticipatory, aversive, and appetitive functional atlases from thousands of fMRI

experiments (Quintana et al., 2019; Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011).

These three cognitive states encompass large swaths of social cognition, which may help

explain the characterization of oxytocin as a “social hormone”. This characterization is not

without criticism, due to failed replications and contradictory results (Lane et al., 2015).

Rather, it may be the case that oxytocin plays a fundamental role in mechanisms of

associative learning to facilitate allostasis, the process by which the body physiologically

responds to stressors in order to regain homeostasis (Quintana & Guastella, 2019).

Indeed, researchers have investigated oxytocin’s role in conditioning experiments in

both animal models and human subjects (Hu et al., 2015; Wang, Lin, Chen, Tzeng, & Liu,

2018; Zoicas, Slattery, & Neumann, 2014). Two main findings emerge from this literature,

which lead to competing theoretical positions (Guzmán et al., 2014; Hurlemann et al., 2010;

Toth, Neumann, & Slattery, 2012). Experimental administration of oxytocin has been linked
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to facilitating associative learning (Eckstein et al., 2015b). Facilitated learning leads to

greater acquisition of conditioned fear responses and greater resistance to extinguishing

conditioned fear responses. Other studies find that oxytocin acts as an anxiolytic mechanism

to regulate fear (Cavalli et al., 2017; Petrovic, Kalisch, Singer, & Dolan, 2008). The

anxiolytic mechanism leads to dampening of conditioned fear responses and expediated

extinction of conditioned fear responses (Eckstein et al., 2015a). One potential reason for

contradictions in the literature are the different methodological frameworks, which include

experimentally manipulating oxytocin via intranasal administration versus genetic

modification, among others. In the case of intranasal administration, this method fails to

take into account interaction with the endogenous oxytocin system of the organism under

study. OXTRm acts as a proxy for the function of the endogenous oxytocin system, which

likely interacts with binding efficiency of exogenous administration. Failure to measure

OXTRm is one potential cause for the ambiguity in the literature.

Conditioning experiments typically measure a physiological response as an index for

learning (Mitchell et al., 2009). These measurements range from the skin conductance

response, startle response, eye-blinks, as well as event-related potentials (ERP), among

others (Lonsdorf et al., 2017; Skrandies & Jedynak, 2000). Many conditioning effects are

coupled with propositional knowledge about the contingencies between stimuli (Mitchell et

al., 2009). For this reason, it is imperative that the physiological response is sensitive to the

propositional evaluation of the stimulus environment (Clark & Squire, 1998). Due to its

slow-wave sustenance, tuning within affective processing, relationship with encoded memories,

and amenability to conditioning procedures, the late positive potential (LPP) is a good

candidate for studying biological individual differences in associative learning paradigms

(Cuthbert, Schupp, Bradley, Birbaumer, & Lang, 2000; Pizzagalli, Greischar, & Davidson,

2003; Rugg, Schloerscheidt, Doyle, Cox, & Patching, 1996; Schupp et al., 2000). The LPP is

an ERP that increases in magnitude as a function of the affective intensity of pictures,

remembered versus forgotten items, and fear-conditioned stimuli (Bacigalupo & Luck, 2018;
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Curran & Cleary, 2003; Miskovic & Keil, 2012). The LPP is maximal at centroparietal (CP)

electrodes on the scalp, measurable as early as 400 ms post-stimulus, stable in shape around

700 ms, and typically sustains through stimulus termination (Cuthbert et al., 2000).

Researchers have proposed that the LPP broadly indexes allocation of attentional resources,

elaborative encoding, and orientation of perceptual systems (Friedman & Johnson Jr., 2000).

The robust elicitation of the LPP in response to affective pictures affords designing

powerful experiments with relatively low levels of between-subjects variance. However, the

power of the LPP paradigm is at statistical odds with reliably detecting individual

differences in electrophysiological brain function (Yarkoni & Braver, 2010). Modeling the

change of LPP amplitude across the course of an experiment may generate more

between-subjects variance and sensitivity to individual differences. This work proposes an

associative learning paradigm that models LPP change across the course of an experiment to

model the role of OXTRm on individual differences in conditioned learning rates.

Current Study

The primary elements of a human associative learning experiment involve training the

research participant to link or bind two events together, the conditioned stimulus (CS) and

the unconditioned stimulus (US), while measuring responses toward each event, the

conditioned response (CR) and the unconditioned response (UR) respectively. The US is

typically a biologically relevant stimulus that innately generates a strong UR, and is either

appetitive or aversive. Repeated pairing of the US with an innately neutral stimulus, the CS,

causes the CS to begin eliciting a response more similar to the US post conditioning

procedures (Lonsdorf et al., 2017). Theoretical frameworks positing oxytocin as an allostatic

hormone that signals anticipatory, appetitive, and aversive states suggest that OXTRm may

impact brain function as it pertains to human associative learning (Quintana & Guastella,

2019). By integrating theoretical perspectives from psychology, neuroscience, and epigenetics,
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we aim to gain a richer appreciation of how the brain represents individual differences in

associative learning processes.

Hypothesis 1. We aim to demonstrate that our experimental paradigm replicates

previous research, in that increasing the affective valence of pictures will result in graded

increases in amplitude of the LPP (Cuthbert et al., 2000). We predict that scene CSs will

have the smallest LPP, face CSs will have the second smallest LPP, face USs will have the

third smallest LPP, and scene USs will have the largest LPP. For this test, we will average

over the CS prediction and the CS predictor.

Hypothesis 2. Leveraging the sensitivity of the LPP to conditioning procedures, we

hypothesize modulation of associative learning rates as a function of OXTRm. Higher levels

of OXTRm at CpG site -934 within the MT2 promoter region of OXTR relate to greater

amygdala activity in response to anger and fear, and source localization/ simultaneous

fMRI-EEG recordings provide evidence that the LPP and amygdala activation are

functionally coupled (Y. Liu, Huang, McGinnis-Deweese, Keil, & Ding, 2012; MacNamara,

Rabinak, Kennedy, & Phan, 2018; Puglia et al., 2015). We are scaffolding our hypotheses

about how OXTRm may impact learning rates on research that measures natural variability

within the oxytocin system rather than experimental manipulation through intranasal

administration. Thus we predict that increased OXTRm will correlate with increased

learning rates, represented as steeper transference of LPP magnitude from the US to the CS.

We will model the learning rates of each individual as a function of their methylation state at

CpG site -934. Statistically, this will be specified in the model as a block x -934 methylation

two-way interaction, which assumes that the growth curve of the LPP from the beginning to

the end of the experiment can be approximated as a linear function across trial blocks. We

expect the slope of this linear approximation to increase as OXTRm increases.

As a follow up, we will test whether the social dimension of the stimulus modulates

individual differences in learning rates. This will be specified in the model as a stimulus type
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x block x -934 methylation three-way interaction. Evidence for a three-way interaction would

suggest that the social dimension of a stimulus impacts the effect of OXTRm on learning

rates. Theoretical positions that posit oxytocin as a “social hormone” predict that the social

dimension would modulate individual differences in learning rates, while the competing

hypothesis of oxytocin as a generalized “allostatic hormone” would predict modulation of

learning rates for all affectively threatening stimuli.

Exploration of habituation and sensitization. In associative learning

experiments, interpretation of conditioning effects across blocks can be confounded by

habituation or sensitization to the US. To probe for effects of habituation or sensitization, we

will generate exploratory plots for both behavioral arousal judgments and the LPP as a

function of each stimulus class and their respective block effects. Increased LPP and

behavioral arousal across the experiment would suggest sensitization while decreased LPP

and behavioral arousal across the experiment would suggest habituation. We make no

specific hypotheses about the directionality of these potential confounds, but will use the

results from this exploratory analysis to help guide interpretation of the results from

hypotheses 1 and 2.

Method

Participants

71 participants were recruited to complete study procedures from a university

participant pool in the United States. Participants that generated no usable EEG data or

who failed to yield a successfully methylated sample were excluded, resulting in 63

participants for statistical analysis.
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Experimental Design

The experiment was a 2 x 2 (Stimulus Class: Face CS vs. Scene CS; CS Prediction:

Face US vs. Scene US) within-participants design, consisting of 256 trials for measurement of

ERP signal. Figure 1 shows a schematic of two example trials. Each experimental condition

consisted of 64 two-second trials divided into 8 two-minute blocks of 32 trials, allowing

participants to rest and blink their eyes between blocks. Between each block, participants

provided valence and arousal judgments for four of the USs viewed throughout the

experiment, resulting in a valence and arousal judgment for each US. These judgments were

measured on a scale from 1 (less negative/ less aroused) to 9 (more negative/ more aroused).

Each trial included CS presentation [1 s] followed by US presentation [1 s]. The stimuli were

presented as a trace procedure, with the US immediately following the CS (Clark, Manns, &

Squire, 2001). The CS and US were bounded by a thin brown border to clearly delineate the

grouping of the CS and US on each trial. The inter-trial interval [ITI] was pseudo-randomly

jittered between 800 and 1200 ms. Within each stimulus condition, the CS was the same

image throughout the experiment to facilitate reliable prediction of the US class. Each

stimulus condition followed a 100% contingency; this design decision was motivated by the

low signal-to-noise ratio for any given single ERP trial (Woodman, 2010). Stimuli were

presented electronically using the E-Prime 3.0 software (Psychology Software Tools,

Pittsburgh, PA).

Stimulus Materials

We selected neutral and negative pictures as the CS and US respectively. Scene stimuli

were selected from the IAPS database (Mikels et al., 2005) and face stimuli were selected

from the NimStim database (Tottenham et al., 2009). Stimuli from the IAPS and NimStim

databases were matched to act as US categories, with 16 of the IAPS stimuli matched with a

face CS and a scene CS, and 16 of the NimStim stimuli matched with a different face CS and



LEARNING RATES AT THE LATE POSITIVE POTENTIAL 10

a different scene CS. The four CSs were selected to be similar in affective and perceptual

properties, but clearly distinctive to signal a different US stimulus class prediction.

EEG Collection Procedures

EEG was recorded from 32 Ag/AgCl active BioSemi electrodes affixed to an elastic cap

(BioSemi, Wilmington, NC) using the 10-20 electrode placement system. The horizontal

electrooculogram (EOG) was recorded from an electrode placed at the outer canthus of the

right eye. The vertical EOG was recorded from an electrode placed on the supraorbital ridge

of the right eye. The participant’s head circumference was measured to determine the correct

cap size. Electrode offsets were maintained within 20 µV. EEG was amplified with an

ActiveTwo AD-box (BioSemi, Wilmington, NC) and recorded using ActiView605-Hires

software with a sampling rate of 2048 Hz and online band-pass filtered between 0.1-100 Hz.

Participants were seated approximately 100 cm from a computer monitor and instructed to

remain still and keep their eyes on the screen. Participants were given the opportunity to

pause and rest their eyes between each block of trials. Data were analyzed offline using

EEGLab v14.1.193, ERPLab v7.0.093, and custom pre-processing MATLAB scripts

(Delorme & Makeig, 2004; Lopez-Calderon & Luck, 2014).

EEG Pre-processing

Raw EEG data was pre-processed in three scripts, with analyst intervention between

each scripted procedure to assess data quality and success of each pre-processing step for

each participant. The first procedure read in the data and added channel location

coordinates. After the first procedure, clearly problematic channels were excluded from the

data to support clean ICA computation. The second procedure referenced the data to

mastoid electrodes, applied a band-pass filter (infinite impulse response (IIR) butterworth
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model; 0.1-30 Hz with 12 db/oct and 40 db/dec], and ran independent-components analysis

(ICA; runica algorithm w/ default parameters) to identify eye-blink artifacts in the data.

After the second procedure, ICA components were inspected manually to identify clear

eye-blink artifacts; if a clear eye-blink component was identified, that component was

subtracted from the data. The third procedure corrected for stimulus display latency (45 ms)

measured via oscilloscope, generated an event list of stimulus onsets, binned the data from

-200 ms to 1000 ms relative to stimulus onset, and algorithmically detected artifacts for

removal from the data [Moving window peak-to-peak threshold algorithm; threshold: 100 µv;

window size: 1000 ms; step size: 50 ms]. The latter portion of the LPP (700-1000 ms) was

extracted from each bin for data analysis.

OXTR Methylation Analysis

Participants provided 5 mL passive drool in a Falcon 50 mL Conical Centrifuge Tube

(Fisher Scientific, Hampton, NH) for assessment of saliva methylation. Saliva cells were

pelleted in 20 mL 1x phosphate-buffered saline (Life Technologies, Carlsbad, CA) by

centrifuging at 1800 rcf for 5 minutes. Pellets were then transferred into a microcentrifuge

tube and frozen at -20◦C prior to DNA extraction. We isolated DNA from saliva cells using

reagents supplied in the QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA) following

Qiagen’s Supplemental Protocol for Isolation of Genomic DNA from Saliva. Two hundred

nanograms of DNA was subject to bisulfite treatment (Kit MECOV50, Invitrogen, Carlsbad,

CA), which converts non-methylated cytosines to uracil for downstream detection of

methylated cytosines by sequencing. We amplified a 116-base pair region of OXTR

containing CpG Site -934 (hg38, chr3: 8 769 121) via polymerase chain reaction (PCR) using

12 nanograms of bisulfite-converted DNA, 0.2 ÂµM primers TSL101F

(5’-TTGAGTTTTGGATTTAGATAATTAAGGATT-3’) and TSL101R

(5’-biotin-AATAAAATACCTCCCACTCCTTATTCCTAA-3’), and reagents supplied in the
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Pyromark PCR kit (Qiagen, Valencia, CA). Underlined nucleotides in primer set indicate the

insertion of an A or C nucleotide at a variable position (C/T) due to a CpG site within the

primer. Samples were amplified on three identical PCR machines (S1000 Thermal Cycler,

Biorad, Hercules, CA) with the following cycling conditions [Step 1: (95◦C C/15 min)/1

cycle, Step 2: (94◦C C/30 s, 56◦C C/30 s, 72◦C C/30 s)/50 cycles, Step 3: (72◦C C/10

min)/1 cycle, Step 4: 4◦C C hold]. Pyrosequencing was performed using primer TSL101S (5’-

AGAAGTTATTTTATAATTTTT-3’) on a Pyromark Q24 using PyroMark Gold Q24

Reagents (Qiagen, Valencia, CA). We included methylation controls at 0, 25, 50, 75, and

100% methylated.

Data Analysis

In order to model the dynamic response of the CS as a function of conditioned

acquisition, single-trial resolution was preserved rather than extracting a grand-average ERP

from the experimental conditions. This allowed modeling random and fixed effects for each

block of trials. We fit Bayesian hierarchical regression models with uniform priors to facilitate

convergence of maximal random-effects structure, which helps maintain conservative

inference for mixed-effects models (Barr, Levy, Scheepers, & Tily, 2013). This class of models

does not compute parametric p-values, so no p-values are reported here. As a reference for

inferential heuristics, Bayes factors greater than 3 suggest moderate evidence against the

specified null hypothesis, greater than 10 suggest strong evidence, and greater than 100

suggest decisive evidence (Kass & Raftery, 1995). All analysis scripts for data manipulation,

statistical modeling, and visualization are supported and contained within the markdown file

that generated this document, to promote computational transparency and reproducibility.

To support the computational reproducibility of this document, we cite the following

software package dependencies with their respective versions: R (Version 3.5.1; R Core Team,

2018) and the R-packages bayestestR (Version 0.2.5; Makowski, Ben-Shachar, & Lüdecke,
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2019), brms (Version 2.9.0; Bürkner, 2017, 2018), cowplot (Version 0.9.4; Wilke, 2019), dplyr

(Version 0.8.0.1; Wickham, François, Henry, & Müller, 2019), eegUtils (Version 0.3.0.9000;

Craddock, 2019), extrafont (Version 0.17; Winston Chang, 2014), forcats (Version 0.3.0;

Wickham, 2018a), ggplot2 (Version 3.2.1; Wickham, 2016), magick (Version 2.0; Ooms,

2018), papaja (Version 0.1.0.9842; Aust & Barth, 2018), purrr (Version 0.2.5; Henry &

Wickham, 2018), Rcpp (Eddelbuettel & Balamuta, 2017; Version 1.0.0; Eddelbuettel &

François, 2011), readr (Version 1.1.1; Wickham, Hester, & Francois, 2017), stringr (Version

1.3.1; Wickham, 2018b), tibble (Version 2.0.1; Müller & Wickham, 2019), tidyr (Version 0.8.1;

Wickham & Henry, 2018), and tidyverse (Version 1.2.1; Wickham, 2017).

Results

Replicating modulation of LPP via affective stimulus presentation

We demonstrated that our paradigm replicates previous research, that the amplitude of

the LPP tends to increase as the affective characteristics of the stimulus increase. Figure 2

shows grand average ERPs across all channels, averaged over the CS prediction and the CS

predictor respectively, including the electrodes of interest - CP1, CP2, CP5, CP6, and Cz.

Figure 3 shows the scalp topography of the LPP across the time window of interest

(700-1000 ms). Figure 4 shows the ERPs averaged across all channels of interest, as well as

the correlation matrix between the grand average LPP across all channels of interest. The

high degree of shared variance across the time window and channels of interest suggests that

averaging the channels is a reasonable strategy for limiting superfluous multiple comparisons

(Luck & Gaspelin, 2017).

Table 1 shows the model comparison across all specified competing models. Table 2

shows the parameter estimates for the best model. Random effects in the models included

random slopes for stimulus class (Face vs. Scene) x stimulus role (CS vs. US) and block
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nested within subject intercepts, as well as random intercepts for each stimulus item.

Figure 5 plots the results of the model with the largest posterior probability. Violin plots

represent the kernel density estimate for the subject-level LPP within each factor.

Histograms show 40,000 samples from the posterior distribution of parameter estimates, with

dashed lines indicating the bounds of the 95% credible interval. We predicted that scene CSs

would have the smallest LPP, face CSs would have the second smallest LPP, face USs would

have the third smallest LPP, and scene USs would have the largest LPP. The results follow

these predictions.

Evidence for different learning rates as a function of OXTRm at CpG site -934.

Results suggest evidence for individual differences in learning rates indexed by the LPP

as a function of OXTRm at CpG site -934. As is standard practice in classical conditioning

experiments, the learning rate was defined as the change of the physiological response

throughout the experiment. A positive learning rate indicates transference from the US to

the CS, while a negative learning rate indicates no transference from the US to the CS. The

degree of change between the LPP to the CS at the beginning of the experiment relative to

the end of the experiment was larger for individuals with higher OXTRm values.

Table 3 shows the model comparison across all specified competing models. Table 4

shows the parameter estimates for the model with the largest posterior probability. Testing

these plausible models placed the model with the largest posterior probability into a more

nuanced inferential context. Random effects in the models included random slopes for

stimulus class (Face CS vs. Scene CS) X CS prediction (Face US vs. Scene US) and block

nested within subject intercepts. No stimulus item intercept was specified, because stimulus

class for this analysis was equivalent to the stimulus item. The social dimension of the CS

did not seem to impact the block x -934 methylation interaction, nor did the social

dimension of the US. This can be seen in Table 3, which shows the model containing the
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stimulus type x block x -934 methylation three-way interaction was less probable than the

model with the block x -934 methylation two-way interaction.

Figure 6 shows the main parameter of interest (block x -934 methylation interaction)

for our hypothesis that OXTRm modulates learning rates. Each panel represents quantiles

from the site -934 methylation distribution. The block x -934 methylation interaction

suggests that learning rates increase as methylation values increase. Note that the average

learning rate is positive. Ribbons around the linear estimates indicate local bounds of the

95% credible interval. Histogram shows 40,000 samples from the posterior distribution of the

block x -934 methylation parameter estimate, with dashed lines indicating the bounds of the

95% credible interval. Several models were specified to test the reasonable theoretical space

of primary factors interacting above and beyond a simple block x -934 methylation

interaction.

We predicted that increased OXTRm would correlate with increased learning rates,

represented as steeper transference of LPP magnitude from the US to the CS. Statistically,

this was specified in the model as a block x -934 methylation two-way interaction, which

assumes that the growth curve of the LPP from the beginning to the end of the experiment

approximates a linear function across trial blocks. We predicted the slope of this linear

approximation to increase as OXTRm increases. The results follow these predictions.

Exploring habituation and sensitization across the experiment

Our final analysis probes whether arousal indexed by behavioral judgments was

sustained, increased, or decreased throughout the experiment. Figure 7 shows that arousal

judgments toward the US tended to increase across the experiment, particularly for the scene

USs. This suggests that participants did not experience propositional habituation toward the

US as a function of trial blocks, and may have experienced sensitization. This is because
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participants rated the USs more arousing at the end of the experiment relative to the

beginning.

In order to explore this result further, we plotted the magnitude of the LPP toward the

CSs and USs as a function of trial block throughout the experiment (see Figure 8). Both CS

classes show a positive linear trend across trial blocks, while both US classes show a negative

linear trend across all trial blocks. Note that the degree of change is almost directly

proportional for the CSs relative to the USs. Since the CS LPP time window overlaps and is

confounded within the US baseline, which is subtracted from the US LPP estimate on each

trial, this plot suggests that the CR is increasing across trial blocks, but the UR is likely to

be relatively stable. Thus, there is little evidence for habituation, allowing us to interpret the

results as reported above.

Discussion

Our results suggest a new framework for considering biological differences in learning

rates with electrophysiological brain potentials. In addition to replicating previous work on

the LPP as a sensitive index for affective processing of stimulus content in images, we show

that malleability of the LPP to threatening stimulus environments can be approximated as a

linear function of OXTRm. Higher levels of OXTRm mapped onto steeper conditioned

learning rates within our experimental paradigm. There was little evidence to suggest that

the social dimension of the stimuli moderated this primary finding. This result is consistent

with prior human imaging epigenetics research, and adds to the contemporary discussion of

oxytocin as an allostatic hormone rather than a social hormone.

This work also highlights the continuing development of understanding individual

differences in ERPs within affective neuroscience (Amodio, Bartholow, & Ito, 2013). For

many years, ERP and EEG research was optimized to detect reliable signal across all
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subjects, an approach akin to psychophysical models of repeatable laws across all humans

(Kutas & Federmeier, 2011; Picton, 1992). Since many of the low hanging fruit of ERP and

EEG experimentation have already been discovered, it is crucial to begin understanding

when these repeatable laws break, and which factors contribute toward their inadequate

account of the variance in the data. While this report focuses on biological differences within

neurotypical individuals, this research could be extended toward development of satisfactory

theories that integrate psychopathological mechanisms and their downstream consequences

in disordered populations.

Limitations and suggestions for future research

While capturing natural variability within a biological system is non-invasive and often

useful for describing said system, the gold standard for causal inference involves rigorous

experimentation. While this report includes an associative learning experiment, we cannot

make any causal claims stating OXTRm governs the acquisition of fear in humans.

Introducing experimentation may or may not impact the system the same as reported here.

If care is taken to consider the endogenous system as a critical factor for interpretation of

exogenous mechanisms, experimental administration of oxytocin within the context of

OXTRm may provide a more adequate inferential modeling strategy to answer the question

of how oxytocin causally impacts associative learning. Another potential caveat of these

results is the assay of peripheral indices of endogenous oxytocin rather than measuring

oxytocin directly in the brain. While research suggests that peripheral indices positively

correlate with direct measurements from brain tissue, the distance between the two

introduces an irreducible level of noise into the analysis (Krol et al., 2019).

Even just considering OXTR epigenetics, ERPs, and conditioning processes separately,

there are a myriad of orthogonal causal forces that impact these observations. For example,

as clearly seen in Figure 2, there are many ERPs and characteristics of the EEG signal that
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are sensitive to affective processing, conditioning, and visual input. These include

stimulus-preceding negativity (SPN), early posterior negativity (EPN), and steady-state

visual evoked fields (ssVEF), to name a few (Chien et al., 2017; Morís, Luque, &

Rodríguez-Fornells, 2013; Yoon, Shim, Kim, & Lee, 2016). Which site along OXTR should

be measured, which ERP should be analyzed, and which conditioning procedure should be

employed - all of these decisions are guided by extant literature but are necessarily

constrained. This report disregards the rich multivariate landscape through which each

system exists. Thus, it is necessarily true that the models reported in this paper are

under-specified. One way to address mis-specification for future extensions of this work is

application of non-linear machine learning techniques to excavate the complex structure of

the system (Cecotti, Eckstein, & Giesbrecht, 2014). With the added power of prediction,

however, comes with discounted interpretability. While the reported models need more

information infused in them to make powerful predictions, we think that the simplification of

the system reported here is useful for extracting insight.

While cognitive neuroscience is a powerful tool for studying the human mind,

measurements from EEG recordings do not directly map onto cognitive processes or behavior

(Poldrack, 2006). Instead, the scale of analysis is deeply embedded within the source of

biological factors that cause the cognitive process far upstream. Ironically, this deep

embedding obfuscates the mechanistic processes of mental operations. While the current

research can make empirical claims about connections between epigenetic, neuronal, and

elementary information processing, a more formal model accounting for the temporal

complexities and acquisition of information are crucial for understanding how the learning is

sourced from the reported biological factors (Gluck & Thompson, 1987). Indeed,

mathematical models of associative learning, such as the Rescorla-Wagner model, explicitly

specify assumptions of the system and allow for generative and transparent predictions

(Siegel & Allan, 1996). Finding a way to link formal models of the behavior to formal models

of the brain is crucial for bridging the interplay between large ensembles of neuronal firing
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and behavioral output. This, of course, is not an easy task to accomplish, and requires years

of research for emergence of powerful theories.

Conclusions

Despite the limitation of this work, we believe that our findings on individual

differences in learning rates adds an important contribution to the theoretical discussions

surrounding the role of oxytocin on human psychology. This work corroborates with prior

imaging epigenetic studies and adds novel evidence toward markers of epigenetic

modification encoded in electrophysiological brain potentials. This research is part of an

ongoing conversation that casts healthy skepticism on the specificity of oxytocin’s effects on

highly social and cultural constructs. Rather, oxytocin may play a primitive role in signaling

survival behaviors (i.e., approaching appetitive resources, avoiding aversive environments).

This work enriches understanding of how the brain reflects oxytocin’s allostatic functionality,

by investigating its manifestation of fear acquisition embedded in electrophysiological

conditioned responses.
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Table 1

Model comparison: Replicating affective stimulus effect on the

LPP

Fixed Effects Model Structure Bayes Factor Against Null

Intercept Only 0.00

Stimulus Class 0.00

Stimulus Class x Stimulus Role 107.16

Note. Bayes factors compared against the null model. The null

model included stimulus role (CS vs. US) as a fixed effect,

random slopes for stimulus class (Face vs. Scene) x stimulus

role (CS vs. US) and block nested within subject intercepts, as

well as random intercepts for each stimulus item. As an

inferential heuristic, Bayes factors greater than 10 are

considered strong evidence for the alternative hypothesis.
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Table 2

Bayesian parameter estimates for best model testing affective stimulus effect

on the LPP

Parameter Estimate Estimated Error Lower Bound Upper Bound

Intercept 1.96 0.37 1.25 2.68

Scene CS -2.66 0.56 -3.75 -1.53

Face CS -1.15 0.56 -2.26 -0.06

Face US 1.41 0.38 0.64 2.14

Note. Each parameter besides the intercept test for evidence of affective

modulation on the LPP. Factor contrasts are orthogonal sums, and should

be interpreted as deviations from the grand mean. Lower bound and upper

bound indicate the range for Bayesian 95% Credible Intervals.
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Table 3

Model comparison: Evidence for modulation of learning rates as a function of methylation at

-934

Fixed Effects Model Structure Bayes Factor Against Null

Intercept Only 0.00

Stimulus Class x CS Prediction + Block 2.01

Stimulus Class x CS Prediction x Block 4.90

Stimulus Class x CS Prediction + -934 Methylation 0.86

Stimulus Class x CS Prediction x -934 Methylation 0.28

Stimulus Class x CS Prediction + Block + -934 Methylation 1.44

Stimulus Class x CS Prediction + Block x -934 Methylation 19.85

Stimulus Class x CS Prediction x -934 Methylation + Block 0.58

Stimulus Class x CS Prediction x Block + -934 Methylation 4.54

Stimulus Class x CS Prediction x Block x -934 Methylation 12.15

Note. Bayes factors compared against the null model. The null model included stimulus class

(Face vs. Scene) x CS prediction (Face US vs. Scene US) as fixed effects, random slopes for

stimulus class (Face vs. Scene) x CS prediction (Face US vs. Scene US) and block nested

within subject intercepts. As an inferential heuristic, Bayes factors greater than 10 are

considered strong evidence for the alternative hypothesis.
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Table 4

Bayesian parameter estimates for best model testing individual differences in learning rates

Parameter Estimate Estimated Error Lower Bound Upper Bound

Intercept -0.26 0.26 -0.77 0.26

Face CS predicts Face US 0.99 0.20 0.60 1.37

Face CS predicts Scene US 0.90 0.23 0.44 1.35

Scene CS predicts Scene US -0.84 0.20 -1.23 -0.45

Block 0.26 0.14 -0.02 0.53

-934 Methylation 0.29 0.28 -0.26 0.85

Block x -934 Methylation 0.38 0.15 0.08 0.67

Note. The block x -934 methylation parameter tests for individual differences in learning

rates. Factor contrasts are orthogonal sums, and should be interpreted as deviations from the

grand mean. All continuous features are normalized around 0. Lower bound and upper

bound indicate the range for Bayesian 95% Credible Intervals.
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Figure 1 . Schematic of the experimental design. Each trial included CS and US presentation

as a 100% stimulus contingency. There were 8 blocks of 32 trials each. A distinct CS was

presented for each combination of Stimulus Class and CS prediction, resulting in 4 CSs total.

Each US Stimulus Class included 16 different items within its respective category, resulting

in 8 presentations of each item.
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Figure 2 . Grand average ERPs across all channels for each stimulus class and stimulus role

combination. A priori electrodes of interest include CP1, CP2, CP5, CP6, and Cz.
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Figure 3 . Topographical scalps maps averaged across the time window of interest (700-1000

ms). White points indicate scalp location for channels of interest.
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Figure 4 . The LPP averaged over channels of interest. Dashed lines indicate the analyzed

time window. The accompanying Pearson’s correlation matrix shows high degree of shared

variance across channels of interest, indicating that averaging them is appropriate for testing

the LPP component.
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Figure 5 . Plotted results from the model in Table 2. Violin plots represent the kernel density

estimate for the subject-level LPP within each factor. Histograms show 40,000 samples from

the posterior distribution of parameter estimates, with dashed lines indicating the bounds of

the 95% credible interval. The vertical blue line indicates the x-axis location of a hypothetical

null observation.
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Figure 6 . Plotted results from the main parameter of interest in Table 4. Each panel represents

quantiles from the site -934 methylation distribution. The block x -934 Methylation interaction

suggests that learning rates increase as methylation values increase. Note that the average

learning rate is positive. Ribbons around the linear estimates indicate local bounds of the

95% credible interval. Histogram shows 40,000 samples from the posterior distribution of the

block x -934 methylation parameter estimate, with dashed lines indicating the bounds of the

95% credible interval. The vertical blue line indicates the x-axis location of a hypothetical

null observation.
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Figure 7 . Arousal judgments toward the US are not decreasing throughout the experi-

ment. This suggests that participants are not habituating to the US, and may be reporting

sensitization, particularly for the scene USs.



LEARNING RATES AT THE LATE POSITIVE POTENTIAL 42

Face US Scene US

Scene CS Face CS

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0.0

0.5

1.0

3

4

5

6

−2.0

−1.5

−1.0

−0.5

2.5

3.0

3.5

4.0

Sequence of Trial Blocks

LP
P

 A
m

pl
itu

de
 (

uV
)

Figure 8 . Exploratory plot showing grand average LPP trends across trial blocks. Both

CS classes show a positive linear trend across trial blocks, while both US classes show a

negative linear trend across all trial blocks. Note that the degree of change is almost directly

proportional for the CSs relative to the USs. Since the CS LPP time window overlaps and is

confounded within the US baseline, which is subtracted from the US LPP estimate on each

trial, this plot suggests that the CR is increasing across trial blocks, but the UR is likely to

be relatively stable.
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