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Abstract

Remote health monitoring deployed in homes could help streamline the efficiency of the medical

system by decreasing the costs of senior care and providing preventative care to keep people out

of hospitals. Besides for caring for a particular person, these systems will generate tremendous

amount of aggregate data that can be used to help diagnose diseases and run longitudinal studies

on epidemiology. Most systems are not yet flexible enough to handle adding additional modalities

into the system or to leverage the cloud’s horizontal scalablity for storage, analysis, and display of

this data. is dissertation presents a novel framework that sets itself apart from existing remote

health monitoring systems for its scalability and flexibility. In addition, this work advances two

key technologies for home healthcare. e first is the creation and evaluation of cheap and non-

invasive sleep monitoring systems and novel accelerometor-based systems from RFIDs and motes.

Secondly, this thesis demonstrates that the general features from speech in the home can be a useful

modality for measuring social interaction and mood and promotes a solution to existing technical

problems. Ambient monitoring of speech in the home has not been successful primarily because

distortion from a room’s acoustics negatively impacts classification results. is work presents a

novel matched-condition classifier using cuboid acoustic simulation to achieve accuracy comparable

to ideal close-to-microphone conditions. Most health monitoring systems have only been tested

in a lab and under very scripted scenarios. is system, however, has been used in three different

applications: monitoring sleep behaviors and stress for those who suffer from severe epilepsy in a

clinical study, another clinical application that studies the relationship of incontinence with sleep

agitation for those suffering from Alzheimer’s disease, and an in-home deployment monitoring
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important factors of depression. We present the commonalities among these different applications

and show how to adapt the system for these purposes.
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1 | Introduction

Health care in the United States is reaching a crisis where the increase of costs for healthcare will

not keep up with the growth of the nation’s wealth [1]. Health care spending is on the climb – in

2012 U.S. spending was $8,936.80 and is projected to climb to $13,708 per person in 2016. It is

projected also that healthcare will consume 150% of the wealth Americans are expected to gain by

2050 [2]. Although the U.S. has one of the best healthcare systems in the world, which spends

a total of $2.5 trillion in healthcare each year, it only spends $251 on public health measures that

can prevent medical conditions before they occur. Adequate measures for routine monitoring and

management of chronic conditions – before they proceed to advanced stages – will be one of the

most vital factors in keeping these costs down.

For the past few years, health-minded people have increasingly used technology to proactively

track their own health and well-being to prevent illness. e number of consumer health apps listed

on the Apple Store has increased from 2,993 in 2010 to 13,619 in 2012. Along with the software,

new sensors are available for purchase on the market. A recent report [3] predicts that 18.2 million

health sensors will ship in 2017. Already 150 million mobile sensing health and fitness Apps have

been downloaded, and by 2017 this number to climb to 1.4 billion. Cumulative revenues for these

applications and subscriptions will reach $975 million by 2017. However, currently the majority of

these apps focus on tracking fitness or diet, and far fewer are geared toward tracking and managing

health problems such as chronic disease.

Managing these chronic conditions, keeping people out of hospitals, and improving late-in-life

care are important goals for the coming years. Technologies such as improved sensors, improved

1
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data analysis algorithms, and more efficient delivery of medicine are anticipated to revolutionize

the medical practice. Remote home monitoring will help streamline the efficiency of the medical

system by decreasing the costs of senior care and providing preventative care to keep people out

of hospitals. ese systems will generate tremendous amounts of aggregate data that can be used

to help understand the progression of diseases and evaluate the effectiveness of drugs and therapy

programs.

is dissertation explores the appropriate design for deploying an integrated home healthcare

system that can be useful for various health concerns. e system provides enough rich sensing to

track multifactor syndromatic conditions such as depression and anxiety. Our system calledEmpath

is a novel system that takes a different approach than the majority of current remote health moni-

toring systems. Primarily, Empath leverages quickly deployable motes with Cloud-connectivity to

allow data to be shared with many caregivers. Secondly, Empath focuses on enhancing the ability to

collect comprehensive information regarding sleep factors and speech. Finally, and what makes this

thesis unique, is that Empath has been adapted and employed for three different clinical applica-

tions: monitoring stress for those who suffer from severe epilepsy in Section 6.1, a study examining

the relationship of incontinence with sleep agitation for those suffering from Alzheimer’s disease

in Section 6.2, and monitoring important factors of depression in Section 6.3. Whereas almost all

current remote montitoring systems are solely proof-of-concept and have not left the labs, Empath

is a valuable and proven tool currently used by clinical research teams.

Despite the differences in modalities used when monitoring epilepsy, Alzheimer’s disease, and

depression, we demonstrate that there are fundamental similarities among these different applica-

tions, and show that the system can be adapted for these purposes. It is important to note that this

thesis and the content of the Empath system itself make no claim to be able to accurately diagnose

the above conditions without assessment by clinicians, because that problem remains out of the

technical scope of this work. However, we assume that the conditions above will typically manifest

themselves in predictable symptoms (as enumerated by diagnostic books such as DSM-IV), so the

system proves to be a valuable instrument for collecting and providing previously unavailable data
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to clinicians. Providing the data that clinicians need for proper tracking and diagnosis requires tack-

ling particular challenges in engineering that can only be ascertained and solved through real-life

deployments. Along with the goals of collecting the most useful data for clinicians, we focus on

also creating a system that is able to be quickly deployed at low cost, is unintrusive to the patient,

and is flexible and extensible for future needs.

ere are several reasons why current systems are ill-equipped for the applications listed above:

1. Quickly deployable and modular: Systems need to be easily and quickly deployed so that

during installation and teardown it does not impact the lives of the residents.

2. Multiple Disease Factors: Applications such as depression monitoring require simultaneous

attention to several disease factors (social interaction, sleep quality, body weight management,

activities of daily living monitoring). Inferring these complex behavior changes requires ag-

gregating multiple data streams.

3. Scalable and Connected: System must be designed to support hundreds of homes with a

single web service, and must be fully connected so that caregivers and researchers can access

the data.

4. Speech-enabled: For monitoring conditions that are related to social interaction and mood,

information held in speech has been proven to be clinically useful. No systems we are aware of

are able to use speech features that are captured under actual room acoustics, whilemonitoring

both the amount of social interactions and the mood when speaking.

1.1 Application Examples

In Figure 1.1 we show a high-level diagram of the network architecture. Each house is instrumented

by an appropriate combination of sensors according to the application domain the caregiver or

researcher has decided. Each of the sensors uses a radio to broadcast the information to a base

station. Each base station is then responsible for using an access point (such as broadband) to
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Patient Homes Verizon 4G Amazon Cloud 
Services

Caregiver Display

Figure 1.1: Data is collected from many homes and sent to the a webservice for later analysis by
caregivers.

syncronize the information held locally to a request on the web service. e web service properly

load-balances the request and stores the information to the backend. e system then performs

inference routines on the streams, combining them if necessary to form higher level knowledge

about disease risk factors in the home. Caregivers may then make queries to the web service either

from their browsers or mobile devices.

1.2 Technical Challenges

is thesis addresses key technical issues that limit current home monitoring solutions today. Firstly

is the ability to incorporate heterogeneous devices. To date, home monitoring systems use very few

platforms for collecting data (some extant systems use the MicaZ and the Shimmer, for example).

However, there are hundreds of companies producing new sensors each year. Future systems must

be able to integrate these various sensors together in order to leverage more types of data to allow

for more successful inference of disease patterns.

Secondly, future home monitoring systems need a flexible architecture in order to effectively

evolve over time. New sensing modalities inevitably will be discovered to be important for the

monitoring of chronic diseases, and in the future will need to be integrated into the system, ideally

with limited impact to the system’s current functionality.

e scale of existing systems is generally small, focusing on a single home and a single caregiver.
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However, the reality is that hundreds, if not thousands, of homes will eventually be connected

by a single service provider. e result will be an enormous volume of data collected over long

timeframes which become a valuable resource for researchers investigating the symptomology or

progression of disease. is proliferation of data is bound to cause challenges in storage, organiza-

tion, and recall.

No home health systems currently use the sound in environments as a valuable resource. e

speech in the home contains an enormous amount of important health information and ought to

be harnessed and analyzed. Perhaps one of the reasons why speech has not been used is the great

technical challenges it poses: when sound is captured in rooms there is considerable distortion from

the acoustics such as reverberation and noise. is thesis presents a solution to the reverberation

problem by developing matched-condition classifiers tailored to the reverberant qualities of each

room, which perform speech identification and mood analysis in real time.

Next, many systems already collect data about sleep. However, all current systems require inva-

sive and uncomfortable instrumentation, such as requiring the user to wear a device on their wrists

or head, or to sleep on a large pressure pad placed on the mattress to track their movement. All of

these existing options are expensive as well. To address these concerns, we developed a small and

unobtrusive system using individual accelerometers that are placed on the bed. is system is not

felt by the user during sleep, it can be deployed quickly, and itcosts less than $50. We also created

new machine learning and signal processing algorithms for use by these accelerometer-based motes.

Finally, remote home health monitoring has not been investigated on larger scale. One area

of concern is the accomodation of large number of homes. Our system is the first to use Cloud-

based services for home monitoring, using all Web technologies such as HTTP and JSON through

RESTful interfaces for delivery of data. e data are stored in distributed Cloud-based databases

instead of a base station’s SQL database, which allows for an integrated and universally accessible

data system.
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1.3 Contributions

is thesis provides a novel home monitoring system that provides new contributions to the area

of home health monitoring. e technical contributions include capturing voice in the home and

also cheap and accurate sleep monitoring, as well as easier deployment and management of data.

We present the following contributions to this area in comparison to the state of the art:

1. An extensible, multimodal, largely passive behavioral monitoring system that is useful to

caregivers in order to monitor their patient’s behavior, and thereby track their well-being and

their response to treatment and therapies.

2. A flexible system architecture that allows easy introduction of new custom components or

commercial off-the-shelf products, and various web service abstractions and data abstractions

for storing and sharing that data.

3. Advancements in addressing reverberation in ambient home speech monitoring, including

the identification of important vocal features relating tomood, such as speaking durations and

frequencies. Creation of amatched-condition classification strategy called RESONATE that

uses room acoustic simulation to quickly generate models for a particular room. Additionally,

a practical implementation that runs on embedded devices in a network for broader coverage

in a home.

4. A passive and cheap sleep monitoring system that can collect useful features such as insomnia,

restlessness, and sleeping patterns, which can be used to infer sleep quality. Relatedly, the

evaluation of machine learning algorithms that can infer sleeping position. e sleep moni-

toring system is tested in each case for several weeks or months in three clinical studies and

three non-clinical studies.

5. Results and observations from deploying the system in real clinical studies: examining the

relationship of sleep and stress on the number of seizures that people with epilepsy experi-

ence, the relationships between nighttime agitation and incontinence events with those with
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Alzheimer’s disease, and finally case-studies with configuring the system for depression mon-

itoring.

1.4 Dissertation Organization

e rest of the dissertation is organized as follows:

• Chapter 2 introduces the state of the art research related to home remote monitoring, speech

monitoring, and sleep systems.

• Chapter 3 discusses the design for a heterogeneous and scalable system and its sensor com-

ponents.

• Chapter 4 demonstrates how speech monitoring is an important element for home monitor-

ing systems and how it can be achieved in reverberant acoustic environments.

• Chapter 5 presents highly deployable, cheap, and accurate sleep monitoring sensors and al-

gorithms.

• Chapter 6 discusses adapting the system for different applications, and the experiences of

deploying the system in real environments, primarily in clinical studies.

• Chapter 7 concludes this dissertation with the contributions and findings, discusses the lim-

itations of this work, and provides a number of possible directions for future work.



2 | State of the Art

In this chapter, we describe the “state of the art” in remote home healthcare monitoring. First, we

discuss several existing home health monitoring systems, such as those designed for assisted living

care . Second, we discuss existing algorithms that are used in these home monitoring systems to

track people and detect activities. Lastly, we introduce the latest in health trackers and sensors for

use in the home and on smart phones. We conclude with a summary of sleep monitoring systems

in Section 2.4 and speech monitoring in Section 2.5.

2.1 Home Medical Monitoring Systems

Various health-enabling technologies have emerged to lower the cost, increase quality and access

to healthcare delivery [4]. One simple yet effective strategy is to connect patients and clinicians

through real-time video streams [5]. It has been shown that telemedicine can reduce the cost of

travel and increase efficiency [6].

As people age, they experience a variety of cognitive, physical, and social changes that can chal-

lenge their health. With the rising numbers of elderly, many companies and groups have persued

ways to keep people in their homes as long as possible, preventing the cost of assisted living or nurs-

ing care. Another reason is that many elderly do not live in places where family and loved ones are

able to visit daily and check on their wellbeing. Since the early 1990s companies such as Phillips,

GE, and IBM have presented telehealth systems– such as a telephone and a TV screen. With time,

these systems were augmented with more advanced sensors and could track activities in the home.

8
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Today, there are many various healthcare systems that are summarized well in a survey paper [7].

Most research in this area has occurred in university research testbeds. Georgia Tech’s Aware-

Home [8] combined context-aware and ubiquitous sensing, computer vision-based monitoring, and

acoustic tracking of people. e University of Rochester built their Smart Medical Home which is a

five-person house outfitted with infrared sensors, biosensors, and video cameras for use by research

teams for work with research subjects. A computer-animated character called “Chester the Pill”

was available to discuss their medical health, providing advice on which medicines to take and their

symptoms. In addition, the system would also track the location of eyeglasses, coffee cups, and car

keys which is especially useful for the cognitively declining. e system also had a gait monitor

which could track the way the residents walk noting any precursors to Parkinson’s disease. ere

were also worn devices that could take blood pressure readings automatically. Also environmental

sensors detect levels of pollen or dust from air and provide steps to remedy the situation.

MIT had their own testbed called PlaceLab [9]. It consists of a one-bedroom condominium

with hundreds of sensors on the walls, fixtures, and cabinetry. However, the goals of PlaceLab was

much more broad than AwareHome, and focused on ways for people to control their environment,

save resources, remainmentally and physically active, as well as stay healthy. e homewas occupied

by volunteer subjects for various lengths of time and introduced new tools for semi-automatically

annotating the generated data. Harvard’s CodeBlue[10] was designed to provide routing, naming,

discovery, and security for various sensors including a portable 2-lead ECG, pulse oximeter, wear-

able Pluto mote with accelerometers, gyroscope, and electromyogram sensor for stroke monitoring.

University of Washington’s Assisted Cognition project focused on modelling the relationships among

GPS readings, activities, and significant places.

eGator Tech SmartHouse at the University of Florida was a laboratory-house created to assist

older adults in maximizing their independence and maintaining a higher quality of life [11]. Am-

bient Assisted Living (AAL) focus on developing high-tech infrastructures that replace missing or

fading human abilities with automated technical services (feeding robots). One system SmartAssist

is an open platform for the creation of context-aware AAL services [12]. Users can subscribe to
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and use AAL services, define peers in their social networks that will be informed about significant

variations in their vital data. is system emphasized gamification methods.

To date, there have been a few companies that have begun to sell their systems directly to people

who want to monitor either themselves or their loved ones. e cost includes a small installation

fee, and then a recurring monthly subscription. ere are many similarities in companies that pro-

vide home healthcare surveillance and for home security systems, and they often use similar sensors

and network infrastructure. e WellAware [13] system provides commodity sensors to track sleep

quality, activity levels, bathroom visits, and basic physiological information. Phillips’s Motiva on

the otherhand, takes a more active role in the patient’s health. e system works by making per-

sonalized daily interactions with their residents by way of their home television. For instance, the

system pushes educational material, actionable feedback, motivational messages, and health-related

surveys to the patients. Intel-GECare Innovations provides a similar service toMotiva and provides

interactive patient health sessions, vital sign measurements, multimedia educational library, audio

and visual notifications, and two-way video calls for patients and caregivers. BeClose [14] is another

home monitoring system designed especially for the elderly. e system consists of a number of

motion sensors as well as a bed pressure pad as well as a panic button that notifies authorities and

kin if there is something wrong. e user interface is built on the web platform and it presents a

dashboard showing caregivers their patient’s sleep patterns, movement, and weight. If the patient’s

behavior is anomalous,such as if they are not getting out of bed after a certain time or whether they

are leaving the house too little or too much‚ a concerned relative can check on them. BeClose is

has a minimal installation fee of $299 and includes a base station and three sensors, however more

sensors can be added as needed. e service then costs $49 a month for 24/7 monitoring.

HealthOS is a development and execution framework for pervasive health applications [15].

ey address the sensor and system incompatibilities with adapters, and pipelines translates various

protocols and to meet the application’s specifications. e HealthOS servers and expose REST

interfaces for data retrieval.
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2.1.1 AlarmNet

e Empath project stemmed off of the existing testbed at the University of Virginia called Alarm-

Net. AlarmNet was an assisted living and residential monitoring network for pervasive and adaptive

healthcare and based on a extensible, heterogeneous network architecture targeting ad-hoc, wide-

scale deployments. It included custom and commodity sensors, an embedded gateway, and a back-

end database for analysis. e system provided software that could learn the circadian rhythms of

the occupants to better adjust the power scheduling of the motes for extending lifetimes. It sup-

ported realtime query-based online sensor data streaming and an inference system for recognizing

anomalous behaviors. Perhaps one of the most novel aspects of AlarmNet was how context-aware

protocols are able to dynamically configure the power-management and the alert-driven privacy

controls based on the user’s activity patterns. e focus of AlarmNet differs from CodeBlue and

other existing systems in that it is designed for assisted living and residential environments where

long-term (not just acute) behavior and symptomology is monitored.

For making queries into the system, a system called SenQ was created to address the fact that

WSNs generate event-based data or continuous stream data. In-network filters could be created,

and event based alarms could ensure that the proper caregiver would be notified when a patient’s

condition changes. SenQ was integrated into the context-aware privacy, power management, and

activity analysis components. e data SenQ returns was made available to either PDA devices or

special motes called the SeeMote with LCD displays [16]. One focus that AlarmNet had was a

Circadian Activity Rhythm (CAR) program that could learn the patterns of the residents and can

anticipate which sensors should be kept active and which could be temporarily disabled in order to

conserve power. e architecture was able to accomodate heterogeneous sensors such as the MicaZ

and Shimmer into a common architecture. A back-end computer was placed on the network that

would recieve all of the data streams, filter and process them, and produce new output streams in

the database for other modules to later use.

A recent survey work describes some web-based sensor networks [17]. e SAPHE health



Chapter 2 State of the Art 12

care system for the Sensor Web [18] is able to sense different physiological attributes such as blood

pressure, temperature and send them to the web for a specialist or doctor. is system used theOpen

Geospatial Consortium (OGC) architecture. e system works by sending data to the basestation

in the patient’s home and the basestation then sends the information to the web. Another system

was developed especially to monitor Parkinson’s disease [19]. e system use sensors worn on the

hand called Mercury, the data is then sent to a basestation to a web application called MercuryLive.

Many Body Area Networks (BANs) use an architecture that the sensors aggregate the data to a

mobile device, and the data are uploaded to the Cloud. BANs are out of scope for this thesis, but

there are described in a recent survey [20].

2.2 Activity Detection

An important aspect of providing automatic detection regarding pathology is detecting if the activi-

ties in the home are becoming anomalous or following certain well-known trends of the progression

of disease (such as cognitive decline). e accurate detection of daily activities in complex home

settings using emplaced sensors is a highly researched problem. One approach is to use cameras

and computer vision algorithms to help detect everyday actions such as stirring in a bowl or cooking

[21]. Despite the high accuracy of this technique, studies have have shown that the introduction of

microphones and cameras into the home is objectionable. However, people gradually came to be

accustomed to surveillance even if they initially opposed it [22]. e Helsinki privacy experiment

studies the effects of long-term ubiquitous surveillance in homes [22]. e homes were instru-

mented with video cameras, microphones, computer, wireless network, smart phone, TV, DVD,

and customer card was logged. Anxiety, stress, concerns, were monitored in six months, and they

show how people will gradually become accustomed to surveillance even if they oppose it. Another

work [23] shows similar results.

Many existing solutions use simple sensors to detect movements as a resident moves from one

room to another (e.g., motion sensors in the doorway) or changes in state of objects and devices

(e.g., contact sensors). e analogy is often cited as the “invisible man”, where a invisible person
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will interact with objects, and the system must infer who has touched the object. Kasteren [24] used

temporal probabilistic models to recognize activities from these binary sensor readings. Approaches

from the machine learning discipline such as Näive Bayesian [25], Bayesian networks [26], Hidden

Markov Models, particle filters, and conditional random fields are typical algorithms used. Other

models are also being explored such as a Hidden Semi-Markov model that relaxes the Markovian

assumption to consider an activity’s duration to improve the accuracy of activity recognition [27].

Intel Research Seattle and the University of Washington have built a prototype that can infer

a person’s activities of daily living (ADLs) by using RFID sensor tags (both active and passive) on

everyday objects such as a toothbrush or a coffee cup [28]. Users are expected to wear an iBracelet

or iGlove, and when they touch an object that interaction is recorded. We later in Chapter 5 show

that these sensors can be used on the bed to monitor sleep quality.

One of the most challenging problems associated with all the works is that they require accurate

labeling of activities for training. is can be done either by the resident or by manual annotation

after viewing the data – of course this is difficult to obtain for a long period. It is not convenient

for users to record each activity while performing it and not practical to annotate each activity after

viewing several hours of recordings. As an alternative, Kasteren presented a technique in [24] to

use the ground truth collected in one house to train activity recognition systems in other houses.

is technique works however, the details of activities may vary significantly from person to person

and from home to home, in which case this technique may not perform well.

One way to infer who is interacting with which object is by narrowing down the possibilities

of people in the room where the object rests. DoorJamb [29] was developed to track movement

without requiring people to wear any sensor. e system works by using ultrasonic range finders

mounted above each doorway pointing downwards. By measuring their heights, the system can

infer the identity and direction of the walker.



Chapter 2 State of the Art 14

2.3 Mood and Wellness Tracking

Almost all the above systems provide general surveillance in the home, but do not focus on more

difficult to track diseases such as depression, stress, or other unhealthy mood or mental conditions.

Very little work has focused on tracking or detecting mood and psychogical health and wellbeing.

Because retroactive reports on mood taken in the therapists office several weeks after events

occur are inaccurate, new tools need to be developed to more accurately assess this information.

Mood charts have been recommended by mental health practitioners as tools for their patients to

monitoring their own mental health, however more sophisticated technology could make this more

accurate. e Optimism App can run on both desktop and mobile platforms and can help acquire

instantaneous mood, medication use, exercise, and sleep quality. Researchers at the Rhode Island

Hospital have developed a telemedicine-based depression protocol using simple telemonitor for in-

home healthcare, with pilot studies showing that it could improve geriatric depression [30]. e

subjects in the study were favorable to the technology, reporting that the frequent checks from the

monitor were reassuring and helped them to better understand their condition. Autosense [31] pro-

vides objective measurements of psychosocial exposure to stress and alcohol in natural environments.

ey have created a body area sensor network to measure heart rate and variability, respiration rate,

skin conductance, skin temperature, arterial blood pressure, and blood alcohol concentration. e

readings are sent to a smart phone and features relating the stress and alcoholism are computed at

real-time.

2.4 Sleep Monitoring Systems

To date, while there are many sleep monitoring systems there are very few low-cost, unobtrusive

(comfortable) solutions. In this section, we review the major solutions and describe their character-

istics and limitations.

Physiological signals are regarded as the most accurate means to differentiate between awake

and sleep phases such as light, REM, and deep sleep. e electroencephalogram (EEG) can mea-
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sure brain waves and is one of the best methods for determining sleep stages. Electrooculogram

(EOG) and electromyogram (EMG) are also standard technologies for sleep monitoring. e

electrocardiogram (ECG) is used to derive heart rate, which is well known to decrease at sleep

onset. Some studies show that heart rate varies over different sleep stages [32, 33]. By using

respiratory-derived features together with ECG-derived features, different sleep stages can be la-

belled automatically. All of these techniques have major limitations such as they must be performed

by trained professionals in expensive clinical environments. In addition, these techniques require

that the patients where dozens of wires on their bodies, which can cause discomfort. Finally, these

physiological signals do not support monitoring body positions during sleep which video capture is

the best technique.

To overcome the limitations of the above techniques, there are many systems for sleep monitor-

ing that are less accurate, but well designed for homes and daily use. Actigraphy [34] is a common

technique for sleep monitoring where the user wears a watch-like accelerometer on the wrist (or

ankle). e device monitors acceleration during different intervals and will label periods of low

activity as sleep. Philip’s Actiwatch is one of the most popular products for actigraphy. e Zeo is

a headband that users wear each night that can detect electrical signals similar be less accurate than

a full-EEG.

Another more direct method for sleep monitoring is to instrument a mattress pad with sensors

and passively infer body movements and sleep quality. e Bed Alarm sensor pad is a commercial

bed pressure that monitors the change in body pressure on the pad to detect movements. In [35]

the authors use pressure and temperature sensors laid out in a grid pattern to determine quality of

sleep. NAPS [36, 37] is a low-cost physiological sensor-suite that can passively acquire important

physiological and environmental characteristics. Subjects lie on a mattress pad embedded with vi-

bration sensors to obtain multidimensional data (e.g., body temperature, heart rate, respiration rate,

positional mapping and movement). e main advantage of all these solutions is that users do not

need to wear any device. But, in some cases batteries are needed and it may also be uncomfortable

to sleep on a pad and thus, they can affect sleep quality. For patients with incontinence there is also
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a problem with keeping the pads clean.

Audio and video signals can also be used to determine sleep quality. In [38] a combination of

heart rate, audio and video sensors are used to infer sleep or awake periods. A system called Lullaby

combines temperature, light, motion sensors, audio and phones, and an off-the-shelf sleep sensor

to provide a comprehensive recording of a person’s sleep [39]. Such systems raise privacy concerns

among the users. SleepCycle is a popular iPhone based application that uses the accelerometer in the

iPhone to monitor body movements and determine which sleep phase the user is in. e user just

needs to put the iPhone in a suitable place on the bed. A more accurate system is presented [40].

Also, the iPhone can accidentally fall off the bed and it needs to be connected to the charger for

the whole night.

In summary, the advantages of our WISP-based sleep monitoring system are that users do not

need to wear any device, they do not need to sleep on any mattress pads instrumented with sensors,

no batteries are needed, the system is wireless, and it avoids privacy violations of video solutions.

2.5 Speech Monitoring

Many groups are working in the area of developing automatic emotion classification systems. ere

are a number of data sets that have been collected with emotional speech, and different types of

classifiers have been compared [41, 42, 43, 44, 45]. ere has been a comparison of two learning

methods, GMMs and SVMs [46, 47] in regard to emotion detection, which produced similar

results to ours: 75% for GMMs and 76% for SVMs. Various other classifiers including neural

networks and decision trees have been evaluated [48, 49], and the performance on real data shows

that the choice of classifier does not make a large difference in performance [50, 51]. We chose to

use a SVM classifier in our approach, however other classifiers could be adapted as well.

Emotion detection can be done by targeting a particular speaker (dependent), or by applying to

any speaker (independent) - even if we do not have training data for him or her. When emotion

detection is done speaker dependently, it is more accurate than when done speaker independently:

accuracy levels are 89-93% versus 75-76% [46]. Some evaluation has been made comparing using
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overall statistics for the speech contour or by using temporal information by applying continuous

Markov models [52] with better accuracy using the temporal information. However, we decided

not to use this approach, since reverberation affects the temporal characteristics of the signal con-

siderably.

In addition to emotion detection, a large number of groups are developing speaker identification

(ID) systems that can identify a specific person by characteristics of their voice. Like emotion de-

tection, HMMs, GMMs, neural networks have been compared [53]. Speaker recognition has also

been applied to work on mobile phones such as in SpeakerSense [54]. StressSense use microphones

embedded in mobile phones, they track markers of stress from human voice [55].

Much of the work in emotion detection and speaker ID has been tested in controlled environ-

ments, but not tested in noisy and reverberant environments. Most of the work done in noisy and

reverberant environments has focused on improving automatic speech recognition [56, 57]. e

more successful strategies involve the use of multiple microphones (called beam-forming) to min-

imize the effects of noise and attenuation. Some groups have investigated using different features

than MFCC, for instance, and instead use different features that are less environmentally sensitive

such as Non-negative Matrix Factorization (NMF) [58]. One group makes a HMM classifier more

robust by introducing varying levels of noise into the training set [59]. is strategy is similar to the

solution provided in this chapter, however while it investigates automatic speech recognition using

HMM classifiers in noisy environments, we look to target speaker recognition and mood detection

using SVMs in the presence of a variety of acoustic distortions.

One problem with speech monitoring is capturing verbal interaction in large physical spaces.

One group investigates collecting similar data that we are interested in such as total speaking time,

total conversation time, number of turns, and mean energy in decibels and achieving it using mi-

crophone array [60]. ey focus on achieving high source localization, however do not address

doing classification. e other method of achieving high quality of speech processing is by worn

microphones, such as mobile phones. One application called StressSense uses microphones on

cellphones to detect stress in a person’s voice [55].
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Another problem with ambient sounds is that when sound sources are produced at the same

time, it is difficult to isolate each of those sources to process their features independently. e classic

issue of multiple people speaking at the same time is called the “cocktail party problem”. Blind

Source Separation [61] attempts to separate independent signals in a mixture by using multiple

microphones and assuming that the signals are statistically independent from one another and a

weighted mixture of two sources. However, at this time, convolutive blind source separation does

not perform well enough to be used in practice in non-controlled environments.

Crowd++ can accurately estimate the number of people talking in one place using an unsuper-

vised machine learning analysis [62].
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We have discussed the history and the state of the art of home monitoring systems in the previous

chapter. Two notable trends have emerged in recent years: firstly, computer applications are lever-

aging service-based web architectures for providing services to end-users. Secondly, new sensors

are saturating the market for health-minded consumers to purchase so that they can track their own

health and wellness.

ere have been many remote health monitoring systems available as discussed in 2.1, but they

lack several important features necessary for long term inference based montitoring. First, they lack

a consistent method for representing data. In most systems [63], the data are typically stored in

statically defined tables defined by statically defined SQL schemas. e problem with this method

is that as new device types or different stream types are developed, the system’s database and logic

needs to be overhauled. Second of all, most systems have one particular design intended for gen-

eral monitoring, and a specific assortment of sensors that the company feels necessary must be

installed or the system does not work as intended. We believe this assummption is limiting since

many applications– particulary clinical research applications– require a varied assortment of sen-

sors. ird, each system generally implements its own closed and proprietary network protocol

stack, usually by pushing mote data to a base station, then having mobile devices access the base

station for the data. is makes sharing the information with many caregivers or leveraging ex-

ternal data sources difficult. No other system to date uses the web for storing and sharing home

collected data in the same way as our Empath system. Fourth, it is important to have a system

that is quickly and easily deployable in homes without an existing internet connection. Many of

19
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our study participants live in rural areas, and do not necessarily have their own Internet service

provider, therefore no assumptions can be made about an existing internet connection. Also, when

the system is deployed, it needs to be able to be set up quickly with very little configuration time to

minimize intrusion into the participants’ lives.

3.1 Contributions

In this chapter we present the following contributions to the state-of-the art when building remote

monitoring systems versus existing systems:

1. Sensor systemtailored fordepression: Monitoringmany syndromes such as depression, stress,

and mood require many sensor types to infer the severity of the symptoms. We present a

large combination of sensing components and required analysis modules that are based on

the DSM-IV criteria for depression.

2. Generalized database: We present a stream abstraction designed for heterogeneous and mul-

tidimensional stream data that is targeted for storing polymorphic and multi-dimensional

data in a unified way in document based, SQL-based, and web service backends.

3. Hierarchical inference chain: We show how inference modules can be wired together so that

application developers can easily adapt the system to their needs. We present a novel strategy

for inference evaluation by using lazy evaluation to minimize evaluation time.

4. Fast deployment: We demonstrate that the system can be deployed typically in less than 10

minutes for basic sleep monitoring and upwards to 30 minutes for a full depression moni-

toring setup. We later show in Chapter 4 that using our training and simulation algorithms,

that a speech monitoring system can be added in less than 5 minutes per person for training.

5. Case studies deploying on the Cloud: We demonstrate how the system can be deployed on

two popular cloud-based services: the Amazon Web Services platform and the Google App

Engine, with minimal change to the basic system design.
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3.2 System Design

We begin to describe Empath’s design by describing the system at a high level. In the Empath

framework, many homes are instrumented with various wired and wireless sensors attached to

motes. ese motes generate either continuous or event-based data from weight scales, contact

reed, PIR motion detectors, sound, and user surveys. Often, relays are needed to convert the data

from one protocol or medium to another. is is often required since each device has its own partic-

ular protocol designed by their manufacturer. Also, because some sensors generate high data-rate

streams, we typically employ reducers which convert the high data rate or highly multidimensional

data to lower data rate and fewer dimensions. For instance, this can be acheived by buffering con-

tinuous data over an epoch window (for instance 1 minute), and then the statistics for the epoch

window– such as the mean, variance, min, max, count) are reported as output. When an epoch is

instantiated, it is forwarded to a basestation over the network. Once the basestation receives the

epoch, it is stored temporarily and staged for syncing to a web service. Once the data is stored on

the webservice, the data are evaluated by a tree of data processors that are wired to one another to

generate high-level reports of various disease risk factors. For instance, a SleepQuality proces-

sor would be responsible for transforming acceleration data on the bed to reports on sleeping trends

such as bed time and wake time. Some processors do not transform the data, called aggregators,

since they aggregate many streams together into multidimensional streams which are used to ren-

der composite reports. Finally, there are a series of possible actuators, which are mechanisms and

devices that influence the environment. Some examples of these are recommendation systems and

speech synthesizers. Finally, there are several varieties of displays that are responsible for rendering

the data for display for patients, caregivers, researchers, and technicians.

3.3 Home Area Network Design

e sensor network developed in the home is ad hoc, and may contain many different components

that need to be integrated and therefore the architecture must be flexible. We used a middleware
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Figure 3.1: Home area network

communication layer to simplify the networking among the components. For communication, we

defined a common protocol for sending data to other devices. In the home, one device is designated

as a basestation, and the message broker runs on this device and listens for incoming connections.

We use the MQ Telemetry Transport (MQTT) protocol [64] as implemented by Mosquitto for our

message broker. MQTT implements a publish/subscribemessage pattern to provide a one-to-many

message distribution so that we can adequately decouple the modules from one another. In each of

the packets, the payload is a series of Epochs serialized as a JSON string. MQTT uses TCP/IP to

provide basic network connectivity with small transport overhead (the fixed-length header is just

2 bytes), and protocol exchanges minimized to reduce network traffic. ere are three quality of

service (QoS) levels that can be set for message delivery:

1. “At most once”, where messages are delivered according to the best efforts of the underlying

TCP/IP network. Message loss or duplication can occur. is level could be used, for exam-

ple, with ambient sensor data where it does not matter if an individual reading is lost as the

next one will be published soon after.
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2. “At least once”, where messages are assured to arrive but duplicates may occur.

3. “Exactly once”, where message are assured to arrive exactly once. is level could be used,

for example, where duplicate or lost messages could be misleading.

3.3.1 Basic Operation

When a sensor is installed, a URL for the message broker must be specified as well as a device

name. For example, a broker can be located on a machine at tcp://10.0.0.1:1883 and the

bed sensor is on tcp:10.0.0.8 and the name is bed1. When the bed sensor collects data for

one second, the mean and standard deviation are computed for each of axis of each accelerometer,

resulting in a 12 dimensional feature vector. A new Epoch is created as shown in Listing 1 using

the current timestamp, duration, and feature vector. is epoch is serialized to a JSON string and

published to the topic: sensors/bed1. e Empath Controller subscribes to sensor data by

subscribing to the topic group sensors/+. When a message arrives, the message is stored in the

Controller’s local database for later syncing with the Cloud. is local database was implemented

using SQLite 3 1 which is a self-contained, serverless, transactional SQL database engine. SQLite

is the most widely deployed SQL database engine in the world, and is employed in the Android

Operating system as the default persistence module and was chosen since it can run on both laptops

and embedded devices such as the ARM (Android or Linux).

public final class Epoch implements Serializable {

private String ID;
private Date timestamp;
private long duration;
private List<Object> values;

}

Listing 1: Basic storage unit for streams

1http://www.sqlite.org

tcp://10.0.0.1:1883
tcp:10.0.0.8
sensors/bed1
sensors/+
http://www.sqlite.org
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public class Stream implements Serializable {

private String ID;
private Map<String, Object> metadata;

}

Listing 2: Data abstraction for a stream

3.4 Sensing Devices

Our application types such as depression, Alzheimer’s monitoring, and epilepsy require many dif-

ferent sensor types and therefore the system must accomodate each easily without requiring consid-

erable changes to the configuration. Each sensor program must be built as an independent module

implemented in the programmer’s choice of language (i.e. J or Python) and be launched from

the command line. e modules have been built to be cross-platform and have been tested on both

embedded platforms such as the Raspberry pi and more powerful computers such as laptops. Be-

sidesmodules that we create, there are others created by third parties such as the Fitbit andWithings

scale that have their own mechanism to send data to their own server in the cloud. Currently, we

have incorporated just two of these types of sensors, a Withings weight scale and the Fitbit, which

publish the data to the Withings and the Fitbit web servers respectively. Because many commodity

components release an API for their data, it can be easily incorporated into Empath’s system along

with the sensor data collected internally.

public final class BedSensor extends AbstractDataCollector {

public BedSensor(String brokerURL, String clientName, String serialPortName);
public void init() throws DeviceInitException { ... }
public void start() throws DeviceInitException { ... }
public void stop() { ... }
public Boolean isCollectingData () { ... }
public void shutdown() { ... }

}

Listing 3: Implementation of a BedSensor module from the AbstractDataCollector
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Table 3.1: Stream Metadata Examples

Key Description
Creator UUID of the user who created the stream
DeploymentID UUID of the deployment the data came from
TargetID UUID of a user the stream might relate to
PreferredRenderer Bar plot, time series, table, etc
Device Specification of the device make and model

When a developer creates a new sensor device for the Empath system, he must extend the

abstract class AbstractDataCollector which implements basic functionality such as main-

taining a connection to the message broker and handling the serialization and publishing messages

to the broker. In addition, one must implement virtual functions such as initialization, starting,

stopping, and shutting down the device. An example of the implementation of the module is

shown in Listing 3 which is shortened for brevity, although the original only contains 300 lines of

code. e Controller module implements a “heartbeat” ping to ensure proper data collection, so

isCollectingData is useful to see if a device is collecting data or not. Each sensor module

therefore subscribes to its own control topic: sensors/<deviceID/control so that other

sensors or controllers can send messages to it to stop data collection, change sampling rates, or

check basic operating statistics.

3.4.1 Sleep Monitoring Module

At least two accelerometers are attached to a Wixel mote. A program to sample the ADC pins was

written in C and compiled for the Atmel microcontroller and loaded onto the firmware. When

deployed, the accelerometers are taped on top of the mattress but under the bed sheet or mattress

pad. One accelerometer is placed on each of the left and right sides of the bed. At the basic level,

the accelerometer will capture events such as when a person gets in and out of the bed, as well

as any movements due to restless sleep. e data can be sent wirelessly using a 2.4Ghz radio to

another Wixel configured to be a radio receiver for the basestation. A detailed explanation of sleep

monitoring hardware and analysis is presented in the Chapter 5.

sensors/<deviceID/control
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Figure 3.2: e X10 Home Security devices are used for collecting motion or activity events.

3.4.2 Activity Monitoring

Our activity monitoring subsystem uses wireless home-security motes placed on objects in the home

and on the walls to track the movement through the home. Various options are available for wireless

mote switches such as ZWave, MicaZ, and TelosB, but we chose the X10 line of devices because of

their long lifetime. e motion detectors and contact reed switches use the X10 protocol such that

when the switch is triggered, a pulse train of 5 duplicate packets are sent in a 1 second interval. No

MAC-layer is implemented and there are no retries or guaranteed delivery. e delivered message is

then captured by an X10 radio receiver (W800RF32A), and sent through the USB port to the base

station. We reverse engineered the serial protocol from the signal received by the W800RF32A

device to parse the packet for the HouseID (A-P) and the UnitID (1-9), which are the mote’s ID.

Unfortunately, the contact switch has a factory-assigned ID that cannot be reassigned. Ensuring

that the devices deployed are all unique is very important. However, the motion switch does allow

the user to change the HouseID and UnitID by using buttons on the device.

We placed motion detectors on doors, small rooms, and different places along the wall. e

primary purpose of placing motion detectors is to to track movement through the home. e

motion detectors will fires whenever a person is close enough to the field of view of the sensor.

It was necessary in many situations to tape off the periphery of the sensor to achieve a narrower

sensing range. Contact reeds switches are attached to objects that move or have parts that separate

such as a refrigerator door, cabinet door, and a stove switch. ey fire only when two contact points

of the reed are separated, which in turn shorts the current. Using the raw data from X10 devices,
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information can be infered about user’s activities of daily living such as the time a user interacted

with an object. e X10 relay produces a new Epoch consisting of the timestamp in milliseconds,

the duration of the event, the signal strength of the message to a stream for the device and adds

this epoch to a stream dedicated for that object. is signal strength is important for maintaining

system health, and to make recommendations on better placement of the sensors.

3.4.3 Speech Module

Monitoring a person’s speech in the home can be very useful for extracting components that cor-

related to different types of mood and for monitoring the level of social interaction the person

engages in. All of this information relates to determining whether the person may be depressed

or not. We created a novel speech monitoring system that uses USB microphones attached to em-

bedded platforms such as the Beaglebone, Beagleboard, or RaspberryPi to collect speech samples

and process it for the identity of the speaker. It also compares the signal to a corpus of emotional

speech from various third-party speakers and selects the emotion must related to the component

features. e microphones can be placed in unobtrusive areas of the room such as ontop of the

mantel or the corner of the room. Other options include as a centerpiece on a dinner table where

conversations occur in the home. It is important to note that no actual conversation content needs

to be transmitted or stored– the user’s privacy can be respected while at the same time extracting

useful but generalized features from it. is component is explained in great detail in Chapter 4.

3.4.4 Subjective Mood Scoring

Subjective evaluation through questionnaires are vital for monitoring psychological disorders. Sen-

sors cannot fully replace this important element in psychological assessment. However, it has been

shown that questionnaires inaccurately report data when responses are gathered retroactively. Due

to a hindsight bias, people typically underestimate their mood. Experiential sampling is a technique

where questions can be gathered immediately when the event occurs. In line with this, we created

a mobile app that runs on a touchscreen or an Android tablet. We show the screen in Figure 3.3.
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is app serves as a “sensor” for gathering subjective assessments from the patient at any time. e

first questionnaire we implemented for the device is the PHQ-9 (Patient Health Questionnaire)

which asks the patient some specific questions related to occurrance and severity of depression. e

user can complete this evaluation at any time, however it is frequently set by the caregiver or study

coordinator to administered on a two week schedule. e device displays the prompt, “Over the

past 2 weeks, how often have you been bothered by any of the following problems?” to which the

user responds to 9 questions related to their mood and depression. e complete questionnaire is

shown in Appendix B. Many different basic questionnaires can be added to the application, and

these are not limited only to depression, and could include questions dealing with diet. In fact,

when a new survey needs to run on the app, it receives as a JSON message from the webserver com-

posed of a vector of strings for each of the responses. e types of responses are in themselves a list

of strings. When a patient completes a questionnaire, a new Epoch is instantiated, the timestamp

set to the current date, the duration being set to the time taken to complete the questionnaire, and

the responses being a vector of polymorphic responses. In the case of the PHQ-9, the responses

would be values between 0-4 producing a 9-dimensional vector, but other questionnaires would

accept Strings for responses.

e stream used for questionnaire responses are typically wired to a PHQEvaluator module

that processes and scores these 9-dimensional Epochs into a stream containing just a single value.

e PHQ-9 and many other questionnaires will typically take the sum of each of the items to form

a composite score. is score as shown in Table 3.2 is useful for recommending treatment options

and assessing the possible level of severity.

3.4.5 Weight monitoring

We use the $100 WiFi weight scale shown in Figure 3.4 to track the user’s weight. A WiFi connec-

tion must be established on the scale. When a user stands on the scale, and his weight measured,

the value sent wirelessly to the home’s router and to the Withing’s web server 2. Later, when care-

2http://www.withings.com

http://www.withings.com
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Figure 3.3: e subjective mood can be input into the system using a touchscreen device shown,
the system has been ported to an Android App for various tablets or phones.

.

Table 3.2: PHQ-9 Scoring

PHQ-9 Score Minimal Symptoms Treatment Recommendation
5-9 Minimal Symptoms Support, educate to call if worse, re-

turn in one month
10-14 Minor Depression, Dysthymia, Ma-

jor Depression (mild)
Support, watchful waiting, antide-
pressant or psychotherapy

15-19 Major Depression, moderately severe Antidepressant or psychotherapy
>20 Major Depression (severe) Antidepressant and psychotherapy

givers need access to the information, the Empath data layer pulls the data from their web service

exposed as a SOAP webservice. e bodyweight stream is typically wired to a BodyWeightE-

valuator which gathers the past two weeks of historical weight data and detects any significant

weight gain or loss. As per the DSM-IV criterion[65], if the patient’s body weight changed at least

5% in the past two weeks, it could be a sign of depression. If no new measurements have been

taken for a week, an alert appears on the patient’s touchscreen device. e following scoring system

implemented by WeightEvaluator is used for the weight factor:
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Figure 3.4: e Withings weight scale takes body weight and transmits the information to their
web server for keeping track of weight over time.

Table 3.3: Weight Factor Evaluation

0 pts within 5% gained or lost
1 pt over 5% gained or lost
2 pts over 10% gained or lost
3 pts over 15% gained or lost

3.4.6 Integrating other Mesh Wireless Networks

Many other sensors in the home require being wireless and battery powered such as chair sensors

or tablemat sensors. For this purpose, we implemented a Zigbee-based mesh network 3 using

the Xbee motes from Digi International. Each mote in the Zigbee network needs a common

Personal Area Network (PAN) number set during configuration. Each mote has a preconfigured

and unchangeable 64-bit value as its ID. One device must be configured as a Coordinator in order

to establish a routing tree for the Zigbee network, and the other devices are set as Routers and End-

devices depending upon whether duty cycling is required. A relay was created for the Coordinator

mote and the basestation so that when a packet is received it converts the source ID into a stream

ID for the particular device that was used.

3http://www.zigbee.org

http://www.zigbee.org
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Figure 3.5: XBee Pro Series 2 Radio andmote capable of 1mile transmission range 215mA trans-
mit current only 2.5uA when in sleep mode.
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Figure 3.6: Zigbee communication from motes to basestation

3.4.7 Syncing to the Cloud

To make the information available to caregivers and technicians, internet connectivity is necessary.

One important aspect to connectivity is that it improves our ability to ensure that the data collection

is running correctly, and enables us to intervene using remote desktop or remote shell if there is a

problem. In preparation for our clinical studies, we spent several months testing the reliability of

the connection by monitoring the number of lost packets at different time periods. We created a

script that pings our web server to detect the number of lost packets over a time period. Because

of the intermittent disconnections, we decided to employ a synchronization based communication
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Figure 3.7: UML290VW a 4G CDMA modem used for Verizon internet connection.

protocol. Instead of directly sending the Epoch directly to the server when they are generated, the

Epochs reside locally on the basestation’s SQLite database until a connection can be established for

synchronization. Many mobile and web apps employ a similiar strategy for their communications

with the cloud. Staged Epochs are sent to the web service using a HTTP POST request, and the

HTTP response must be a success (200) for the basestation to tag those epochs as synced so that

they are not sent again.

3.5 Cloud Layer

Empath’s server is implemented by a J web application, thus when the code is compiled it is a

deployable WAR file that can be installed into any J web server container (Tomcat, Jetty, JBoss,

etc). We used the Spring3 4 framework for handling the Model View Controller (MVC) pattern

for handling requests from the clients and handling serialization of JSON messages. e Spring

Security extension was used to implement Empath’s authentication and access control using the

bCrypt cipher for hashing the passwords on the database. Each user is given a set of roles such

as Patient, Clinician, Technician, Administrator, Coordinator, Researcher which is enough to

4http://www.springframework.org

http://www.springframework.org


3.6 Streams on the Cloud 33

handle course-grain requests to resources. For a more robust access-control mechanism, these roles

can be predicated, so that a user can be a Clinician for X , and X is a Patient of study Y and

Researcher is a member of Study Y . Before any resources are served, a user must sign in, and a

session ID is created and stored as a cookie in the HTTP client, and the communication provided

through an HTTPS tunnel.

e primary interface to the web is the Request Dispatcher. e role of this request dispatcher

is to translate the request pointing to a URL to the appropriate Controller to handle processing

the task. e current implemented Controllers are StreamController, handling all access

to data in a stream, the UserController for handling any information about a User, and

ProcessorController for Processor objects.

We implemented the system on two Cloud platforms: the Amazon Web Services and the

Google App Engine. For the Amazon Web Service, we launched a two “small” virtualized EC2

instances with 2 GB of memory. One EC2 instance ran a Jetty9 instance for our application, and

another ran only the MongoDB database. e instance with the database mounted a RAID10

array with 8 GB of Elastic Block Storage formatted with the XFS filesystem. For the Google App

Engine, we used their native components, such as the Jetty web server and theGoogleData Store for

the database. Changing the deployments only required changing the Spring’s XML configuration

file describing what DAO implementation was to be used for the local stream data. More about

the databases are described in Section 3.6.1.

3.6 Streams on the Cloud

ere are few abstractions for stream-like objects on the Web. We presented an abstraction that

meets the special needs of sensor streams called a StreamFeed [66]. is new abstraction is similar

to a regular web resource such as HTML or an image that it can be referenced by an URI. As such,

they can be both the source and the target of hyperlinks. All data in the Empath system are exposed

simply by a URL, where the UUID is a globally unique 128-bit string:

http://www.empathproject.com/stream/<UUID>

http://www.empathproject.com/stream/<UUID>
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Figure 3.8: Empath deployed on Google AppEngine’s Cloud infrastructure.

Likewise, all Epochs inside of a stream also can be retrieved using a URL:

http://www.empathproject.com/stream/<UUID>/epoch/<ID>

Each of these URLs point to a StreamFeed that can be fused, processed and filtered to create

new StreamFeed. e result can be repeated to eventually produce a inference tree as described in

Section 3.7. For example, data from multiple sensors in the home can be combined to form better

estimates of the occupant’s behaviors. Because the returned stream is often quite large, a series

of time range parameters are encouraged, also a particular attribute can be filtered. Consider the

following HTTP GET request to:

sensor/<UUID>/epochs/filter/?min=100&day=Tuesday

is query restricts the query response to only contain the values in the data stream that have a

value attribute greater than 100 and a day attribute equal to “Tuesday.”

is URL-based resource interface conforms to RESTful (Representational State Transfer)

principles listed in Fielding’s thesis [67]. Unlike RPC-based web services with XML-RPC and

SOAP, where custom methods are defined in some WSDL document, a RESTful application pro-

motes a standard interface of using a set of four commands: POST, GET, PUT, and DELETE to

handle each of the needs of a resource such as CREATE, READ, UPDATE, and DELETE. e

http://www.empathproject.com/stream/<UUID>/epoch/<ID>
sensor/<UUID>/epochs/filter/?min=100&day=Tuesday
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advantage of using a RESTful interface is that there is an inherent standardization placed on the

operations that can be applied to the resources, without needing to explicitly define descriptions of

the methods. e URL contains all the information that is needed to return to a particular state of

a web service.

e following table lists the types of HTTP requests that the resources support:

Table 3.4: RESTful HTTP Requests

HTTP Command Description
POST to create a resource on the server
GET To retrieve a resource
PUT To change the state of a resource or to update it
DELETE To remove or delete a resource

When a user is logged in and wishes to the view the listing of all the streams he has access to, an

HTTP GET request is directed to streams/ and a JSON message of a list of Stream object is

returned. When a new stream needs to be created, a POST is directed to streams/ with a JSON

message describing the name and metadata for the stream. When a new Epoch needs to be added

to an existing stream, a POST is placed on the streams/<UUID>/epochs where the UUID

is the stream ID. Other webservers can subscribe to the streams by polling for new data using a

GET command to streams/<UUID>/epochs. Lastly, when a stream needs to be deleted, a

DELETE command is sent to streams/<UUID>.

3.6.1 Stream Storage

ere are three basic types of streams in Empath. First, there are persistent streams that are stored

in a database of some type. Second, and very common, are memory streams that do not have

persistence and are populated upon request. is is useful for streams are only needed to produce

some report to a caregiver. is allows the Evaluator objects to store the results temporarily like

a scratchpad, so that clients can quickly query for the information without requiring the entire

inference chain to be recomputed. ird, there are web streams which are data sources that are not

stored locally in the Empath system, but rather through another webserver on the Internet.

streams/
streams/
streams/<UUID>/epochs
streams/<UUID>/epochs
streams/<UUID>
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e default persistent data dao is targetted for MongoDB 5 which is one of the most popular

document-based databases. In addition, we implemented the Google Datastore which is another

document-based database for storing non-relational data using the powerful and clustered Google

servers. For web services, we implemented a basic Fitbit 6: an API for gathering the activity level

and step counts from a Fitbit tracker. For temporary or cached data streams, we implemented our

own hashtable-based storage, or for the Google App Engine, we used the Google Memcache service

which is a high performance scalable distributed in-memory data cache. When a developer creates

a new source for streams, they must implement StreamListingDaoInterface that stores

the stream descriptions and metadata for the streams and StreamDataDaoInterface which

holds the actual Epochs. e following are the interface definitions:

public interface StreamDataDaoInterface {

public void addEpoch(String streamName, GeneralEpoch e)
throws StreamNotFoundException, StreamTypeNotSupportedException;

public List<GeneralEpoch> getEpochs(String streamName, Date beginDate, Date endDate)
throws StreamNotFoundException, StreamTypeNotSupportedException;

public List<GeneralEpoch> getAllEpochs(String streamName)
throws StreamNotFoundException, StreamTypeNotSupportedException;

public void clearStreamData(String streamName)
throws StreamNotFoundException, StreamTypeNotSupportedException;

public void createStreamData(String streamName)
throws StreamNotFoundException, StreamTypeNotSupportedException;

}

Listing 4: Stream Data Access Interface

5http://www.mongodb.org
6http://dev.fitbit.com/

http://www.mongodb.org
http://dev.fitbit.com/
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public interface StreamListingDaoInterface {

public String createStreamByType(String type)
throws StreamTypeNotSupportedException;

public String createStreamByID(String id, String type)
throws StreamTypeNotSupportedException;

public void deleteStream(String streamID) throws StreamNotFoundException;

public Stream findStreamByID(String id) throws StreamNotFoundException;

public List<Stream> findAllStreams();

public Object getMetadata(String streamName, String key)
throws StreamNotFoundException;

public void setMetadata(String streamName, String key, Object value)
throws StreamNotFoundException;

}

Listing 5: Stream Data Access Interface

Empath grew from the ANET system, and as such we used the MySQL 7 database back-

end. Although this did not cause many problems initially due to the small number of streams we

collected then, development was stifled by working with unique table schemas. In order to mini-

mize the amount of refactoring when new stream types need to be added to the system, we designed

a StreamService abstraction that allows the users to store the information in a unified way, pre-

venting them from adding new schemas or table types to the database and allowing streams to be

handled in a unified way.

We moved away from using relational databases because our application domain did not need

their consistency requirements that they provide, and we could relax those restrictions to get higher

performance and scalability. Most relational databases (such as MySQL) enforce ACID guran-

tees for atomicity, consistency, isolation, and durability. However, our data being generated rarely

changes once being committed, also even if it is changed, the data does not need to be consistent

across the database replicas, just eventually consistent. Document-based databases achieve much

higher performance in the write once, read many times use case. e following table from [68]

compares relational databases with document-based databases:
7http://www.mysql.org

http://www.mysql.org
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Table 3.5: Comparison of Database types

Relational Database Document-based

Data size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many times Write once, read many times

Structure Static schema Dynamic schema

Integrity High Low

Scaling Nonlinear Linear

3.7 Data Inference Design

When a deployment is setup, many stream Processors are created and their operating parame-

ters are set. Afterward, streams are “wired” to the input and output ports for these Processors.

Consider a simple example with scoring questionnaires. A PHQ9Evaluator Processor is created

and the input port ’PHQ-9 Responses’ is wired to a persistent stream A holding the item responses,

and to the output port ’PHQ-9 Score’, a memory stream B is wired to the port. When the PHQ-9

stream is queried for the first time, the stream holds no Epochs and is marked ‘dirty’. Because of

this, the StreamService invokes the PHQ-9 Evalator’s evaluate function which will query A for

the all epochs in that time range. Because A is persistent and not marked dirty, all the values are

available and evaluation does not need to be taken to another level. Next, for each of the epochs, a

score is produced and the result added to stream B. is evaluation method uses a lazy evaluation

strategy for fetching stream information because the rate of querying for higher level data is much

less frequent than the production of lower level data. When a lower level stream gets appended to,

the streams above it are marked ‘dirty’ for reevaluation. ere are some requirements to this struc-

ture, most importantly, there cannot be any cycles in the inference chain or evaluation will never

halt. More examples of a complex tree is described in the case study for depression in Section 6.3.
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3.8 Caregiver Displays

We developed a user interface especially for caregivers and clinicians such as therapists, nurses or

doctors. e caregiver’s screen is shown in Figure 3.9 and is implemented as a dynamic webpage us-

ing AJAX (asynchronous JavaScript) for communicating with the webserver through the RESTful

interfaces described in 3.6. We chose to implement most of the rendering on the client side versus

the server side because it is often advantageous to download the data once, but be able to display

it in different manner through the client’s UI. e JavaScript client enables the data to be cached,

and the user can adjust their graph types or time region as appropriate.

When the system is configured for depression monitoring, sfter the caregiver signs in, the dash-

board displays a list of attending patients each with a risk factor of 1 − 5 rating for depression.

When a patient is selected, a summary of the current behavioral factors: sleeping quality, social

isolation, PHQ-9 score, weight, movement levels, and speech factors are presented as a column

plot. Each factor is represented on a scale (colored from green to red) representing the risk for

a particular factor. When the caregiver selects a particular factor, another plot appears displaying

the detailed information in an appropriate time-series plot, bar chart, or table. Each stream has an

optional metadata tag called preferredRenderer in which the data can be at first displayed

as time series, bar plot, table, or more specific types can be added as plugins such as sleep quality

and questionnaire results.

To give an example of the operation, when the PHQ-9 is selected, the patient’s historical tests

and the responses for each of the items can be individually viewed and evaluated. For sleep, detailed

statistics can be shown, such as bed time, number of interruptions, and sleep duration. To put each

patient’s history in context and to see if a patient is improving, annotations can be added to the

display indicating when a patient started new therapy or medication. It is important to understand

that this system does not perform diagnosis, but rather it exposes all the factors and data in a

cohesive way in order to improve diagnosis.
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Figure 3.9: e clinician display shows an overviewof the various factors related to themonitoring,
and allows for drilling down to lower-level information

3.9 Conclusions

In this chapter, we presented the system design of Empath. Each of the core sensing modules were

shown with examples of typical operations for processing the data. We presented unique way of

representing that data on the web, stored in distributed document-based databases. Finally, we have

shown how it is deployed on the Amazon Web Services and Google App Engine Cloud platforms.
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We have shown in the previous chapter how various modules can be created and linked together

to combine various modalities to report more information to the caregiver. In this chapter, we

present a novel system for the collection of speech features taken ambiently from rooms to offer

valuable information to complement the other “traditional” home sensing modalities one sees in

smart homes.

4.1 Introduction

Numerous studies show that mental illness or disturbances manifest themselves in speech [69, 70,

71, 72]. In fact, during a mental status examination, a clinician makes a psychological assessment

by observing and describing his patient’s speech. e report usually includes some comments on its

features such as loudness, rhythm, prosody, intonation, pitch, phonation, articulation, quantity, rate,

spontaneity, and latency. Some features may indicate a neurological problem: for example, stroke or

dementia can slow speech or produce aphonia or dysarthria. People with autism spectrum disorders

or Asperger’s syndrome show abnormalities in their speech. People with mania or anxiety may have

rapid, loud, and pressured speech, while people with depression show prolonged speech latency and

speak in a slow, quiet, and hesitant manner and also use only small changes in intonation.

In addition to the speech’s features, other information such as how often the patient has conver-

sations with others, and how often the patient actually speaks during these interactions provides a

picture of the level of engagement for the speaker. Because conversations involve multiple people, a

system must be able to identify who is speaking at any given time in order for a personalized report

41
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of speech features to be generated for each user. Although speech information is generally seen as

sensitive private information, we employ a strategy in this work where the content of the speech is

not needed, only the high-level features.

ere are many technical challenges in designing a system that capture these features accurately

and without distortion in real environments. First, there may be significant ambient noise in the

home, including that from music, television, appliances and air systems. Second, as with any prop-

agating signal, increasing the distance between the emission source and the microphone attenuates

the signal, resulting in a low signal to noise ratio. ird, and the focus of this chapter, is that when

sound travels through rooms, it becomes distorted by an effect called reverberation. e amount

of reverberation is related to the amount of time the original sound spends bouncing off of surfaces

before being captured by the microphone. e amount of distortion depends largely on the acoustic

characteristics of the room, which are related to the presence of acoustically insulating or reflective

materials such hardwood, carpet, furniture, and drapes. e final challenge is that the system is

dynamic: users will change their position as they move about the house.

ere is a large existing body of work for creating classifiers and completing necessary feature

extraction for obtaining the identity of the speaker [54] and the speaker’s mood [73], however they

all make very limiting assumptions such as that the microphone and speaker are in fairly anechoic

(non-reverberant) and non-noisy conditions. Previous studies show how mood detection is very

challenging when audio is captured in realistic environments and standard classifiers (SVM and

GMMs) are employed [73, 74]. We also show later in our evaluation, Section 4.4, many examples

of how reverberation degrades the performance of SVM classifiers for both speaker identification

and mood classification from 80-90% accuracy in non-reverberant conditions to only 20-50% with

reverberant conditions.

Speech processing in open, realistic environments is an active and open research problem, but

the majority of work to date has concentrated on automatic speech recognition – the task of produc-

ing text from speech content. One notable example is how to achieve accurate automatic speech

recognition to allow hands-free mobile device interaction while driving a car. A recent survey paper
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describes the state of the art for controlling reverberation for automatic speech recognition (ASR)

[74]. Whereas ASR uses only MFCC features and HMMs for classifiers, mood and speaker recog-

nition approaches use hundreds of features, taken over several frames of audio, with different types

of classifiers such as the SVM and GMM.

e main contributions presented in this chapter are the following:

• We present a design for a practical platform for monitoring speech: such as speaker identi-

fication and mood, for use in home and office environments that can be deployed, trained,

and configured quickly.

• We present and thoroughly evaluate a novel system called RESONATE, which combines a

matched condition training approach with a unique reverberation impulse response simulator.

is system allows a single training corpus to be adapted for various environments, minimiz-

ing necessary training and configuration time. We demonstrate that RESONATE performs

close to the ideal baseline for accuracy, both in controlled experiments (six different rooms in

houses and offices) and in uncontrolled long term deployments in both a home and an office.

• We demonstrate and evaluate how additional knowledge about the environment further im-

proves accuracy, including data about room dimensions and position of the speaker in the

room.

• We benchmark various stages of the classification task on different platforms, and offer an

analysis of its performance. We show best performance when capture, feature extraction,

and classification occurs on-node, while training and simulation is done off-node on a base

station or cloud service.

4.2 Reverberant Environments

Addressing environmental reverberation can be tackled in two main ways, [74]: e first strategy

is to modify the front-end which tries to reverse or mitigate the effects of reverberation in the the
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Microphone
Capture Preprocessing Segmentation Feature 

Extraction Classification

Training Audio 
Clip Preprocessing Segmentation Feature 

ExtractionSimulation Model

Real-time Classification:

Training Classifier Models:

Room Geometry

Speaker Position

Kinect Current Position (optional)

Reverb Estimator

Figure 4.1: e classification processing pipeline extends the traditional approach by adding a
simulation modeling step that introduces additional knowledge such as the room geometry.

preprocessing and feature extraction stages. Either the audio is preprocessed to explicitly reverse

the reverberation, or only features that are robust to reverberation are selected. In this case, the

classification model is left untouched. e second strategy takes the opposite approach by changing

the classification model in some way to adapt it to handle reverberation.

4.2.1 Our Approach: RIR Simulator

Our approach called RESONATE, for Reverberant Environment Simulation, does not change the

frontend nor the classifier, instead it works by transforming the training set to match the testing

conditions. e advantage of this approach is that it can work alongside existing approaches for

improving the frontend or backend of a classification system, but augmenting the pipeline to first

match the testing condition correctly. Our classification system consists of a pipeline of components

shown in Figure 4.1. One basic way to obtain matched training samples would be to record the

subjects speaking in a number of different environments and locations. However, in this chapter

we show that recording each speaker in the requisite number of locations and orientations can be

a tedious process which involves over 30-60 minutes for each room in the house, thus makes this

approach quite impractical. Of course, this time scales linearly with the number of possible speakers.

Ideally, one small set of well conditioned recordings should be captured for a person and it can work

in all environments.
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With RESONATE, we use acoustic physical models to characterize reverberation for a particu-

lar room if the dimensions and some basic parameters are known. e result of this physical model

is a room impulse response (RIR) which is essentially an FIR filter. Once this RIR is obtained, each

clean recording can then be convolved with this filter to obtain a simulated reverberated sample for

training. e difficulty now becomes obtaining these impulse responses. In [74], this process can

be done by empirically by emitting a very short duration signal into the environment and captur-

ing the signal after it has propogated through the environment for several milliseconds to infer the

impulse response. is is a complex and long process that requires expensive audio equipment to

do properly because synchronization is important.

Our solution is to use acoustic physical models to synthetically generate RIRs using a unique

impulse response simulator that produces acceptable accuracy despite using rooms that are not quite

perfectly cuboid or homogeneous in their wall reflectivity. We generate the RIRs by extending

Habet’s implementation [75] of the Image Method [76]. e necessary parameters for this model

are the sound velocity (usually 340m/s, but varies by temperature and humidity), the position of

the microphone and the speaker, the room dimensions, and an estimate of the reverberation time

RT 60. e technique models the wave function as shown in Equation 4.1, where X and X ′ is the

position of the source and receiver respectively and R represents the 6 wall geometry.

p(t, X, X ′) =
8∑

p=i

∞∑
P =−∞

δt − (|Rp + Rτ |/c

4π|Rp + Rτ |
(4.1)

Obtaining RT 60 “blindly” by analyzing only the received signal is an active research problem.

Reverberation is characterized by two components: the early reflections, which depend on the rel-

ative positions of the speaker and the microphone and which can be handled by the model, and

RT 60 which is independent of these parameters, but depends on the nature of the materials of

the room surfaces, which are not specified to the model. Since RT 60 only depends on the room’s

properties, it can be inferred from a sample that has been reverberated by a real room with material

properties similar to the room being simulated. We used Löllmann’s [77] algorithm of blind re-

verberation time estimation. e approach uses a simple statistical model for the sound decay and
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RT 60 is estimated by a maximum-likelihood (ML) estimator. We tested this algorithm by creating

reverberated samples by convolving the RIRs from the Aachen Impulse Response (AIR) database

[78] with 60 speech recordings. We then compare our blindly determined RT 60 value with the true

RT 60 value (from the annotation in the AIR database) , and found it to be within 60 ms of the true

RIR in most cases.

For handling the case where the speaker is positioned in various parts of the room, we used

our model to synthesize several RIRs one for each of the various locations the speaker can occupy.

is was practically achieved by subdividing the room into a grid pattern on the X-Y plane with

a 1 meter offset (the height was set to the average height of a person). In certain setups, sensors,

such as trackers, chair sensors, Kinect, may be available to estimate the location of the speaker in

the room. In such a situation, only one of the RIRs above are selected based on position. Several

training models are stored in a classifier bank, and during runtime the system adaptively selects the

best classifier to use based on the current position.

4.3 System Implementation

We show a working example of the system operation in Figure 4.2. First, a node (with a micro-

phone, beaglebone, and WiFi) is placed in each room where conversation typically occurs. Every

person who lives in the home will train on one of the microphone devices close to the microphone

to minimize reverberation and distortion. e recordings are sent to the basestation. Frequent

visitors to the home can also do training, perhaps on their personal computer or phones, and have

their training samples uploaded to the model generator which can either be on a webserver or home

basestation. Each of the training samples are transformed to sound as if they came from a particular

kind of room, and a tailored classification model is generated and that model is sent to the corre-

sponding node in the system so that classification can be done in realtime without transmitting raw

signals from the node. Finally, the classification result is sent back to the basestation.
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basestation

A1 A2 A3 A4

S

S 1) speaker trains

2) model is built

3) model is pushed 
to devices

4) speaker is classified

Figure 4.2: Fourmicrophones andBeaglebones are installed in different rooms. e speaker trains
in front of the microphone in room A4 and the base station builds a model that is pushed down to
the other devices for classification later.

4.3.1 Audio Capture

ere are many varieties of microphones and they are often referred to by their transducer type such

as a condenser, being dynamic, or using MEMS. Most microphones also have a specific directional-

ity (polar pattern) it was designed for (i.e. omnidirectional, unidirectional, cardioid, and shotgun),

indicates how sensitive it responds to sounds arriving at various angles about its central axis. Mi-

crophones also have a unique dynamic range. Although microphone instrinsics are important to

consider, evaluation of microphone selection is out of the scope of this chapter. For our testing,

we used two types of microphones: high-end dynamic microphones and a desktop USB dynamic

microphone, and both have cardioid response patterns.

We built a distributed system based on the device shown in Figure 4.3. For each node, we

used a Beaglebone Black platform eqipped with an ARM7 Cortex-8 microcontroller and 512 MB

of memory. We loaded a Linux kernel (v.3.81) compiled for the ARM. We also created a similar

device with the RaspberryPi.



Chapter 4 Passive Speech Monitoring 48

Figure 4.3: Our unobtrusive audio capture and classification device uses a USB desktop micro-
phone with a Beaglebone.

4.3.2 Preprocessing

Noise plays a large part in the success of the classification and also for reverberation estimation.

After capturing the audio, we perform normalization to remove the DC offset and to keep the max-

imum amplitude capped at -1.0dB. Preemphasis is applied to reduce the adverse effects of noise and

attenuation. All environments have some level of baseline noise typically from the HVAC. Since

most signals will capture non-speech (over 95% in our experience), we can build a noise model

of the uniform noise in the room and use spectral subtraction. Our system used a Wiener noise

suppressor with two-step noise reduction (TSNR) technique [79]. eir approach uses harmonic

regeneration noise reduction (HRNR) to refine the SNR a priori to compute a spectral gain to pre-

serve speech harmonics. More sophisticated machine learning-based noise subtractors can extend

this approach.
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4.3.3 Segmentation

e next step, segmentation, obtains discrete chunks of speech for processing. ere are many

voice activity detectors (VADs), silence detectors, and turn-taking options in the literature [80,

81, 82, 83]. We used a combination of volume, spectral energy, fundamental frequency (F0), and

spectral flatness for creating a predictor for speech segments. e spectral flatness can be used for

characterizing an audio spectrum for how tone-like a sound is, and hence can eliminate signals with

a large mixture of sources (such as multiple people talking at once, or music or TV in background).

4.3.4 Feature Extraction

We ported the OpenSMILE library (already written in C++) to be compiled on the ARM7 plat-

form (with NEON optimizations). Doing classification on-node decreases network traffic, but also

improves privacy concerns about transferring conversation data through the air in which eavesdrop-

pers can intercept, or to the Cloud where other unwanted parties could access the information. We

configured the feature extractor to extract a total of 384 functional features, the min, max, mean,

stdev of each of the 16 low-level features. e device sends the classification result encrypted over

WiFi to the base station. Because frame level features are not sent, reconstructing the speech con-

tent using automatic speech recognition would be very hard if not impossible to achieve.

For each segment, we extract the acoustic features described in the Interspeech 2009 Emotion

Challenge [84]. By aggregating a series of low level descriptors (such as pitch) recorded at each in-

stance, we compute general statistics over the duration of the utterance, resulting in a total set of 384

features. e OpenSMILE audio feature extractor [85] was used for extracting the features. First,

the signal is framed into 20ms chunks using a sliding window of 10ms. A Hamming window is

applied to each frame before the fast fourier transform (FFT) is taken. e mel-frequency cepstral

coefficients (MFCC) are derived by mapping the powers of the spectrum to the mel scale, taking

the logs of the powers at each mel frequency, then finally taking the discrete cosine transform of

those log powers. e result of the FFT is also passed to a autocorrelation processor in order to
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estimate the fundamental frequency (F0) from the relationship of its harmonic frequencies. e

root-mean-square (RMS) energy and the zero crossing rate (ZCR) are also extracted.

We smooth the values of the features into speech contours by using a moving average filter of

three window lengths, which minimizes any pops or any abrupt fluctuations in the signal. For each

of these contours, various statistical functionals are computed including the maximum, minimum,

range, arithmetic mean, standard deviation, skewness, and kurtosis. Additionally, the contour is

approximated by a linear approximation, resulting in a value for the slope and offset as well as the

quadratic error this approximation with the actual contour.

4.3.5 Classification

We use a support vector machine (SVM) for classification because of the large feature size. e

LIBSVM library is used for both the training and testing. Before fitting the model, all features

are scaled to the range [−1, +1] so that attributes in greater numeric ranges do not dominate those

in smaller numeric ranges. e radial basis function (RBF) kernel then maps the samples onto a

higher dimensional space. We configure the parameters of the RBF kernel, C and γ, using the

grid-search method using cross-validation to find the best combination with the highest accuracy.

4.4 Evaluation

We evaluated RESONATE with three separate sets of experiments: First, we used an impulse

response database on a dataset of emotional speech to investigate the effect of reverberation on

both speaker identification and mood detection classification, and demonstrated how our system

improves accuracy in the presence of reverberation. In the second category of experiments, we col-

lected speech samples from four volunteers in homes and offices in a controlled manner, with a

script and a predefined configuration of speaker positions. Finally, we conducted two case stud-

ies with the system running continuously for multiple weeks in real environments (one in a home,

another in an office). For the controlled study and case study, we only evaluated the speaker iden-

tification because of the difficulty of assessing the mood of our speakers empirically.
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Table 4.1: AIR database Room Characteristics

Room Dimensions (m) RT 60 (s)
Office room 5 x 6.4 x 2.9 0.43
Meeting room 8 x 5 x 3.1 0.23
Lecture room 10.8m x 10.9m x 3.15 0.78

4.4.1 Public Data Set Evaluation

We investigated the effects of reverberation on both speaker identification and mood detection by

artificially introducing reverberation by convolving empirically collected impulse responses (AIR

dataset) with recorded speech segments from a popular emotional speech data set (EmoDb). ere

are limited emotion datasets that are freely available [86]. We selected EmoDb [87] because it

contains large number of speakers, is freely available, and is widely accepted in the affective com-

puting community. It contains a collection of utterances spoken by 10 different actors (5 male,

5 female) using a variety of emotions. e recordings include various short phrases taken in an

non-reverberant (anechoic) chamber.

e empirical set of RIRs came from the Aachen Impulse Response (AIR) database [78]. A

summary room types of the collected RIRs are shown in Table 4.1. For each room type, there were

5 different RIRs corresponding to 5 different speaker positions.

We considered four different scenarios for this evaluation: for the baseline, we assumed that in

the real scenario we would have access to clean recordings of the person’s speech to properly train

our classifiers on, and that we would have a clean sample to test against such as gathered from a

worn microphone. is is a “best case scenario” for the ability to properly classify the user and her

mood. e second case introduced reverberation, but no correction was applied i.e., we trained

with the clean samples, and tested with the reverberated samples created by simulation. In the

third case, RESONATE1, we used simulation to form a better training set and assumed that we

know the dimensions of the room. e final case, RESONATE2, assumes that along with the

dimensions we could determine also the position of the speaker in the real room when speaking.

We evaluated the accuracy of the speaker identification and mood detection classifier under
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Figure 4.4: Speaker identification classifier performance using the EmoDB corpus. e effects of
reverberation are most notable in larger rooms.
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Figure 4.5: e results of the mood detection classification using the EmoDB corpus. Larger
rooms aremost impacted from reverberation, but RESONATE can improve the accuracy close to
baseline.

these four different scenarios. We used 10-fold cross-validation on the training and testing set for

each scenario. e results are shown in Figures 4.4 and 4.5. What we found was that the speaker

identification accuracy varied considerably depending upon the room, however the RESONATE

approach consistently gave better results, often near the baseline.

In addition to speaker identification and mood detection accuracy, we also evaluated the effects

of two important parameters in the system. e first is the estimation error of RT 60, since our

training system must estimate this parameter from the training samples. e second is the effect

of the utterance length on classification accuracy since this can vary. We present these evaluations

next.
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Figure 4.6: e 384 features extracted are sorted by their importance for identifying the speaker
and the amount of distortion occurring from the effects of reverberation.

Not all of the 384 features are distorted to the same degree by the effects of reverberation and

noise. Also, not all of them are useful for the classification task. To evaluate which features are most

important for classification, we used an algorithm by Chen et al [88] that uses F scores to compute

the importance of the feature for correct classification. Our goal is to choose features that maximize

the number of important features and minimize the number of features prone to distortion.

We plot the importance of feature (from its f-statistic) and the normalized level of distortion in

Figure 4.6. e features in the bottom-right portion of the graph should be selected because they

exhibit low distortion, but high importance. In general, among the highest importance features are

those related to the MFCC, particularly the higher band frequency (in the 11th band). However

when reverberation is introduced, those MFCC suffer from the largest distortions. We discovered

that the set of features related to PCM and F0 to offer a balance between high importance and low

distortion.

Next, we evaluated whether choosing a smaller subset of the original 384 features could offer

better performance than the list as a whole. In Figure 4.7 we show how selecting a smaller set of

features that have low distortion, but high classification importance improves accuracy. For the



Chapter 4 Passive Speech Monitoring 54

..

0

.

20

.

40

.

60

.

80

.

100

.
382

.
191

.
95

.
47

.
23

.
11

.
5

.
2

.

A
cc

ur
ac

y

. Num features

Figure 4.7: Using the f-statistic criteria we decreased the number of features used for classification.
e peak accuracy was 68.86% with 95 features.

speaker identification task, we saw a maximum accuracy of 68.86% when 95 features were chosen

versus 63% accuracy when all 384 were used. It is important to note that these accuracy numbers are

from uncontrolled long-term collection in real environments, which would explain the low accuracy

numbers.

4.4.2 Benchmarking

Model building is a computationally intensive task and the Beaglebones take several minutes to

complete feature extraction, reverberation simulation, and SVMmodel fitting on the node, however

the base station (multi-core machine with several gigabytes of memory) completes this task in a few

seconds as shown in Table 4.2. For these benchmarks, we recorded the time the processing thread

spends inside of the user-level of the OS. e Beaglebone has a Cortex A8 ARM processor, and all

of our C++ code was compiled for the architecture using aggressive optimizations and the NEON

extensions. e results show that realtime classification and feature extraction can be done on-

node, however the corpus training and reverberation simulation should be done on a more powerful

platform such as a base station (or web service).

Reverb Estimation and Accuracy

In practice, the RT 60 parameter must be estimated by having no additional information other than

the signal itself. e algorithm for blind estimation maximum likelihood estimates the RT 60, but
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Table 4.2: Classification Benchmarks

Task Beaglebone Base station
Feature extract (clip) 2.51 sec 0.10 sec
Feature extract (corpus) 18.25 min 20.84 sec
SVM Training 4.88 sec 0.25 sec
Classification 5 ms 0.3 ms
Fast Conv. (corpus) 17 min 5 sec
Sim. building (room) 4.92 s 0.40s
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Figure 4.8: RT 60 estimation error effect on speaker ID performance.

will result in some errors – especially when there is noise in the signal. erefore, in this section,

we evaluate how a poor estimation of RT 60 effects overall accuracy. Because the Aachen Impulse

Response database reports the ground truth RT 60 value, we evaluate the accuracy of the speaker

identification task as a function of error. We vary the error in milliseconds in steps of 0.05ms. e

evaluation was done using the EmoDB speech samples and the results are shown in Figure 4.8.

e results show that if there is zero or very small error in RT 60, then accuracy is above the 80%

level. If the RT 60 error is large, e.g. 0.2, then speaker ID accuracy drops to about 60% and mood

accuracy drops to about 30%. In the EmoDb data set evaluation, because of the quality of the

original recording, rarely did the error exceed 0.05ms. e estimation error our system noticed

were within ±0.1s in the living rooms, but in the lecture hall the error was over 0.2s.
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Figure 4.9: Relationship of the length and the speaker identification accuracy.

Length of segment and Accuracy

While collecting in-home and in-office audio data for many weeks, we observed that the speaking

segments vary greatly in duration. Because the classification works by extracting the statistics of the

features across frames for the entire utterance length, a large utterance size will increase the accuracy

of the classification. We again used the EmoDb corpus, but varied the segment size and observed

the classifier accuracy. In Figure 4.9 we see that if the utterance length is above 2 secs we obtain well

over 80% accuracy for the classifier, while utterances under 0.5 secs are in an unacceptable 20-40%

range.

4.4.3 Controlled Testing in Real Environments

e controlled experiments above show the potential for the RESONATE method for producing

favorable accuracy, and in this section we demonstrate how well it performs when collecting audio

from our system’s microphones in actual environments. We selected a variety of rooms based on

where conversation typically occurs, 2 living rooms, 1 office, 1 conference room, and 2 kitchens.

e basic geometry and features of the rooms used in the experiments are shown in Table 4.3. It is

important to note that these rooms were furnished with sofas, desks, curtains, and other objects that

affect the acoustics of the space. Our test rooms also had typical noise sources such as the hum of

the refrigerator and air conditioning system, which could be consistent or intermittent throughout

the recordings. Additionally, none of these rooms were precisely cuboid in geometry, and often had
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Table 4.3: Experiment Room Characteristics

Type Dimensions (m) Floor
Living room 3.9x4.3x3.05 Wood & Rug
Kitchen 2.3x4.3x3.05 Linoleum
Living room 3.7x4.7x2.43 Wood
Kitchen 3.7x4.4x2.43 Linoleum
Meeting 10.0x6.9x2.74 Carpet
Office 15.0x10x2.94 Linoleum

3.65 m

4.72 m

Living room 2

1 2

34
3.65 m

4.42 m

Kitchen

1 2

3

6.70 m

Conference Room

1 2

34

10.05 m

3.90 m

4.34 m

Living room 1

1 2

34

Figure 4.10: Our approach was evaluated in 2 living rooms, a kitchen, and an office for the con-
trolled experiments.

open doorways and openings to other rooms, as most real environments do. One of the significant

results of this section is that modeling these rooms as simple cuboids in our simulation, despite

their small geometric aberrations, was quite successful for accurate speech analysis.

We recruited four volunteers (2 male, 2 female) and recorded them in each of the rooms. We

placed four microphones in each of the corners of the room. Additionally, the speaker carried

a hand-held microphone in order to simultaneously capture the signal with minimal reverberant

effects. is signal was used as the ‘clean’ sample for base case training and testing, as well as later

for the signal on which simulated RIRs would be applied. We divided the room into a grid (similar

to the method described in producing simulated sampling), and at each point, the speaker spoke

facing the four ordinal orientations (approximately north, south, east, and west). Speakers read the

same three-sentence passage from a book to ensure consistency in our experiment. e speakers

were instructed to remain in a neutral speaking tone. We did not evaluate the case of a moving

speaker in this experiment.
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Figure 4.11: Conference Room
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Figure 4.12: Living Room 1
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Figure 4.13: Living Room 2

Here, in the ‘Baseline’ case, we trained and tested with the samples recorded by a particular

microphone at any corner. In the ‘Non-matched’ case we trained with the ‘clean’ samples recorded

by the handheld microphone, and tested with the samples recorded by a particular microphone

at any corner. In the RESONATE1 case (simulation without known location), we converted the
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Figure 4.14: Kitchen 1

‘clean’ recordings of the speaker’s microphone to a reverberated version, assuming the receiver is

a corner microphone and the speaker can be in any of grid positions of the room; then we tested

on the recordings of the corner microphones. Finally, in the RESONATE2 case (simulation with

known location), we used the location of the speaker in the room and generated a reverberated

signal accordingly from the ‘clean’ signal from the speaker’s microphone. In all four cases, we first

removed the ambient noise from the recordings by all microphones using a noise removal algorithm

[79] before processing. We applied 10-fold cross-validation as before, and again only evaluated

speaker identification accuracy. e results are presented in Figures 4.11, 4.12, 4.13 and 4.14.

e accuracy for the ‘Baseline’ scenario was typically around 90% in each room. However, this

scenario requires training for each user in each room where the system will be deployed. e ‘Non-

matched’ scenario (where nothing was done to compensate for reverberation) shows results below

70% and as low as 40%. is shows the dramatic impact of reverberation on speaker identification

accuracy. In the RESONATE2 scenario (simulation with known location), the classification accu-

racy rises to within 5% of the base case for most of the tests, except for the conference room. In

addition to having an unusual variety of sound-reflective surfaces, the conference room had consid-

erable HVAC noise in the background. is noise was difficult to subtract using our Wiener filter

and when reverberation was applied, the noise was amplified. is is another example why noise

subtraction is a fundamental step to this strategy. As we do not know the location of the speaker in

the RESONATE1 scenario, the speaker identification accuracy drops. However, it is still signifi-



Chapter 4 Passive Speech Monitoring 60

Table 4.4: Training Time

Case Training Time Accuracy
Base Case 45 min 90%
Do Nothing 1.5 min 60%
RESONATE1 1.5 min 80%
RESONATE2 1.5 min 85%

cantly better than the non-matched scenario. Our results here show that our techniques to address

reverberation significantly improve speaker identification accuracy compared to the non-matched

scenario by roughly 30%, and in most cases closely approach the baseline accuracy of training all of

the speech in the environment that it will be tested in.

Training Time

Our results show that the baseline case still provided the greatest speaker identification accuracy.

However, this came at the cost of a lengthy training period. For example, in one room, each

speaker must occupy 34 total positions at 4 orientations each, totalling 136 recordings. At 20

seconds per recording, the minimum amount of time it would take to complete the training for

4 rooms would be approximately 45 minutes per person. Although this method provides good

accuracy, this time investment is not always convenient especially considering multiple rooms and

many speakers. In addition, there are also some situations where training in the real environment

is not even possible. One such example is where the classifier has been trained from a preexisting

corpus (such as EmoDB) that cannot be trained in an environment. RESONATE is able to solve

this problem by giving close to baseline accuracy with minimal training time (1.5 minutes), without

requiring access to the real environment for training.

4.4.4 Long-term Real Deployment Evaluation

We now test the system in a completely uncontrolled manner in the long term, by testing it in

two real deployments: one in a living room in a home, and the other in our office space. e
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Office Room Living room and Kitchen

Figure 4.15: e two environments used for the uncontrolled long-term studies

Beaglebone system shown in Figure 4.3 was used, and was ideal for this purpose since it is compact,

unobtrusive, and powered by a wall outlet. Although the system can do classification on-node, for

post-experiment analysis of the data, we captured the signal and compressed it using the libVorbis

codec at 44.1 kHz sampling rate and stored onto the 16 GB microSD card.

For the home, data was collected for 4 weeks and for the office for 6 weeks. e floor plan of

the living room and office room is shown in Figures 4.15. In the living room was a large sofa, a TV,

and an electric keyboard. e microphone was placed on the table next to the TV. Adjacent to the

living room was a long hallway and an entrance to the kitchen. e office space was a large room

(almost 10m x 10m) with cubicles down its center line, and the microphone was placed in the last

cubicle next to the far wall.

Since our system does not have a robust signal selector, we selected only speech segments that

were over 2 s long and did not process laughter or TV noises in the background. e signals often

had pops, knocks, and clicks in the audio, there were also examples of typing and some appliances

that were filtered out as well. We show a table of the types of sounds we came across other than voice

in our listening stage in Table C.1. Voice vs. noise detection is outside of the scope of this chapter,

however the literature uses many machine learning approaches similar to speaker identification and

mood detection, and with similar feature sets and classifier types. e RESONATE approach

might help augment those machine learning techniques as well.
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Table 4.5: Sounds Encountered

Type Examples
Physiological Sneezing, nose blowing, sniffling, clearing throat, hiccup,

eating, burp, humming, laughter, drinking
Objects phone vibrating or ringing, typing, mouse wheel, unwrap-

ping food, papers rustling, clothes rustling, television, piano,
moving furniture, doors opening and closing, objects drop-
ping or moving, footsteps, pouring liquid, coffee percolation,
dishwasher, cleaning sounds

Ambient truck backing up, siren, birds chirping, passing airplane, traf-
fic, motorized tools (lawnmower, etc)

Challenges and Solutions

Real deployments offered a number of challenges that did not occur in the controlled recordings.

For speech itself, many observations came to light: First, that real utterances are most often brief

statements averaging 1 second long. is duration is insufficient for reasonable accuracy from our

classifier. However, since mood detection only requires a small number of longer speech samples

over the entire day, eliminating short samples might not affect overall mood detection. Second,

the speech of multiple people is often mixed and overlapping. If these instances of speech are

not separated by silence, the system cannot detect that they are separate utterances by different

people. ird, in a real environment, people do not speak in the same consistent manner as they do

when creating their training set. e occupants of the home in particular often took on different

affects, and raised their voice into a higher register when talking to their cat. People are also prone

to making many vocal noises that could be confused for speech, such as laughter and coughing.

ese issues have a negative effect on the system’s overall accuracy. Another problem was that the

microphone in the living room was able to pick up sounds and speech signals from adjacent rooms

like the kitchen and the hallway. However, when using the networked configuration of Beaglebone

devices, one in each room, only the cleanest signal is used for analysis. Advancements made in the

area of blind source separation (BSS) can be used to separate mixed sources in a signal because the

received signal is a linear mixture of statistically independent sources. However, to date, BSS tends
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to not produce good results in reverberant environments.
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Figure 4.16: Speaker ID classification for the long-term 2-month studies in the home and the
office.

For establishing ground truth for the speaker identification, an occupant living in the home and

also working in the office listened to each audio clip and assigned a speaker label. e classifier

was trained with three people who work in the office, and the two people who live in the home.

In Figure 4.16, we show the performance of the classifier in the home and the office. Since the

speakers’ location was not tracked in this experiment, we did not use distance information as in

our previous evaluations for RESONATE2. e accuracy was roughly 75% for classifying among

four speakers in the best case. It is important to consider that the accuracy even for state-of-the-

art approaches for speaker identification is poor in the case for an unconstrained freeform speech.

However, we demonstrate that RESONATE is able to resolve almost all the problems resulting

from reverberation to match within 5-10% of the baseline. e accuracy of speaker ID in the

controlled setting was significantly higher than in the long-term deployment because there was

more consistency in the input to the classifier. As discussed, there are two main sources of variation:

the first, which our system helps to overcome, is the reverberation and sounds from the environment.

e second, however, is the variety of different ways that speakers talk in a real environment, in

comparison to the consistent tone and content used during a training session. In our controlled

experiments, the scripted content and tone during the training and testing cases were identical;
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however, if testing had been performed instead on spontaneous speech, it can be projected that the

accuracy would have been much lower.

4.5 Conclusions

Wepresent and thoroughly evaluate a novel system called RESONATE,which combines amatched

condition training approach with a unique reverberation impulse response simulator. is system

allows a single training corpus to be adapted for various environments, minimizing necessary train-

ing and configuration time. We have practically demonstrated how it mitigates the negative effects

of reverberation in real home or office environments for speech classification applications such as

speaker identification and mood detection. Our results show that reverberation has a significantly

negative effect on the performance of these applications in real environments, and we also show

how our approach improves performance considerably in the presence of reverberation using only

very basic room information. RESONATE minimizes training efforts for users using a shared large

corpus of voices and then creates a tailored training set by generating reverbed samples of their voice

considering different room acoustics, based solely on simple room acoustic models. We believe that

this solution is extensible and in the future can be used in conjunction with other machine learning

strategies such as multiple classifier models, improved feature sets, improved noise elimination, and

blind source separation (BSS). We have evaluated RESONATE using public data sets, collecting

voice samples from volunteers in different rooms in homes and offices in controlled settings, and

finally by deploying our system for two long-term studies.



5 | Improving Sleep Monitoring

Options

Among the most important elements of tracking a person’s wellbeing is their sleep patterns. In

numerous clinical studies, depression has been shown to frequently disrupt sleep patterns. For

instance, depressed individuals show difficulty falling asleep or staying asleep and will also wake up

early. ese patterns are present among 80% of people withmajor depression [89]. e prevalenceof

sleeping disorders among the depressed shows the importance of monitoring sleep. Problems with

sleep could also be related to stress, disease, or sleep apnea. In this chapter, we present solutions

for sleep monitoring that are are cheaper and more easily deployable than current systems.

e contributions provided in this chapter are:

1. We present a novel system using an RFID-based accelerometer called theWISP which allows

battery-less operation and be placed directly on the mattress without wires.

2. In Section 5.2, we present another accelerometer-based solution with motes to be used in

most of our studies for its price and versatility.

3. We compare various types of sleep systems with our systems showing the tradeoffs between

privacy, accuracy, cost, and comfort.

65
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5.1 WISP Sleep Sensor

RFIDs are an important technology for many application areas in particular for product inventory

tracking. A new technology introucing sensors to RFIDs, called WISP tags, makes many new

applications possible. One important area for WISP’s use is for smart homes. ere are potential

applications for WISP tags in application areas such as saving energy or continuous health moni-

toring.

Wireless and batteryless sensors are now possible with this technology making the sensing

component in the homes more transparent and can be run for longer periods of time before main-

tainence. is chapter explores the use of the WISP sensor on bed mattresses in order to determine

the quantity and quality of sleep.

Many sleep monitoring systems have been developed and they attempt to recognize sleeping

disorders by providing healthcare providers with quantitative data about irregularity in sleeping

periods and durations or the amount of agitation and restlessness experienced during the night.

ese solutions vary in cost, comfort and accuracy. Our WISP system does not require any specific

action from patients. In this system, we attach several WISP tags to the bed mattress and collect

accelerometer data. Using the data we can infer body positions, movements, and entries and exits

from the bed. We compare the performance of our system with several baseline systems including

using pressure pads, video recording, a popular iPhone based sleep monitoring application, and the

Zeo™ headband.

5.1.1 Design

An picture of the WISP tag is shown in Figure 5.1. e device’s antenna and power harvesting

circuitry enable off the shelf EPC Gen 2 RFID readers, shown in Figure 5.2 to power the nodes

enough for a sample to be taken and returned by backscattering to the transceiver. To an RFID

reader, a WISP appears as a normal RFID tag, however the tag is equipped with a 16-bit fully

programmable ultra low-powermicrocontroller. emicrocontroller can sample a variety of sensing
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Figure 5.1: e WISP is an RFID-based mote that can report acceleration values

Figure 5.2: SpeedWay RFID reader

devices including triaxis accelerometers, lights, and temperature sensors. In our system, we only

use the accelerometer capabilitity. e WISP tags send these readings by encoding the values in

the bitstring for the RFID’s identifier.

For each bed we monitor, we attach three WISP tags along the edge of the mattress as shown

in Figure 5.4. An example of the accelerometer readings, in shown in Figure 5.3: here the y-axis

reading is shown as someone enters the bed. is raw data are used to differentiate between when

the bed is empty, someone is lying on it, or someone is just sitting on the bed watching television

or reading. When the bed is empty, the y-axis accelerometer of the tag is aligned perpendicular

with respect to gravity, but when someone lays on the bed, because of the impact of the body on

the mattress, the orientation changes. ese orientations are different from the one when someone

is just sitting on the bed.
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Figure 5.3: Accelerometer Reading for Empty, Lying, and Sitting
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Figure 5.4: WISPs are attached to the corners of the bed.

Using the accelerometer readings, we distinguish among four positions: lying on the back, stom-

ach, left, or right sides (shown in Figure 5.5) In the Figure 5.10 as an example, we show the ac-

celerometer readings along the y-axis. Note that the readings along the z-axis (which is parallel to
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Figure 5.5: Accelerometer Reading Variation for Different Lying Positions

gravity) show similar variation. e readings along the x-axis do not show too much variation, but

if we combine them with the readings along the y and z-axes, together they accurately differentiate

among the four positions. e evaluation sections demonstrate the accuracy of this technique.

Our system can also detect the amount of movement to discover periods of restlessness and agi-

tation. Each time someone moves on the bed, the accelerometer readings change rapidly. Using the

standard deviation in these readings we can determine the amount of movement in time windows.

e system monitors how many times a person tosses and turns during the course of the night and

how many times the person leaves the bed. If someone is lying on the bed and does not move for a

significant amount of time, then we assume the person is asleep. Frequency of movements is also

different for different sleep stages and thus can be related to which sleep stage a person is currently

in [90]. Transitions between different sleep stages also correspond to change in frequency of body

movements. us, based on a summary of movements made during each night, doctors can infer

duration, quality of sleep and irregular sleeping patterns.
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Figure 5.6: e volunteers for our controlled experiments had diverse heights and weights.

5.1.2 Controlled Experiments

Our evaluation of usingWISP for sleepmonitoring has three parts: controlled experiments for body

position in Section 5.1.2 and for movement (Section 5.1.3) as well as real overnight experiments

(the following section).

For our controlled experiments, 10 graduate students volunteered as subjects. e subject pop-

ulation was diverse in height and weight (shown in Figure 5.6) All participants were volunteers

and were informed of the experimental procedures and the study’s goals prior to participation. We

conducted our experiments in three different beds to consider how different mattresses affect the

measurements. Five subjects were evaluated on a twin-size bed in AlarmNET’s medical testbed

[63]. Five other subjects participated in each of the other two beds that were in a graduate student’s

apartment. All three of them were twin mattresses. So, for each bed, five subjects participated in

the experiments. For two of the three beds the participating subjects were the same.

For each experiment, we attached 3 WISP tags to the mattress of a bed. Again, in Figure 5.4

we show the bed along with the positions of the tags. Note that we also investigated the use of a

fourth tag near the head. However, this tag did not improve the accuracy and so we eliminated

it. We placed the tags in such a way that when someone lies on the bed, there is one tag on each

side of his body and one tag near the legs. We used two antenna for reading from the tags. e
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Left Right Stomach Back

Figure 5.7: Accelerometer Reading Variation for Different Lying Positions

reader sends 10 read requests per second. e read rate from each of the tags were 4-7 reads per

second during all our experiments. When we use more than one antenna, the total transmission

rate drops. Another disadvantage of using the WISP tags is that they need to be placed within

1-2 meters of the antenna of the reader. To meet our range requirements and not to obstruct the

residents’ movement, we placed the antenna below the bed. e antennas were wired to the reader

and the the device was connected to a laptop through a USB cable.

In the experiment, each subject lay on the bed in the following four positions: on the back, on

the stomach, on the left side and on the right side. ese four positions are shown in Figure 5.7.

Each subject also sat on the bed with his or her back on the wall and faced towards the camera

shown in Figure 5.4. is position modelled the position when someone lies in bed while watching

television or reading a book while sitting in bed. For each position, we recorded data for two

minutes. For each WISP tag, we obtained the acceleration along all 3 axis. From the readings of

all three tags, we get a 9-tuple feature vector. Note that, the three tags do not report their values

synchronously. We combine the readings from the three tags within each second and construct each

possible 9-tuple. We associate all the 9-tuples collected during these two minutes to that particular

body position. We also recorded the readings from the tags when the bed was empty. We use the

collected data to train our system.
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Figure 5.8: Average Classification Error for 5 Subjects for One of the Beds

After the training phase, the subject repeats the tasks again and we record data for 30 seconds

for each position. Our system then classifies the new data based on previous training. For training

and classification, we use the open source software, Orange Canvas, [91] which supports a number

of classifiers. We decided to use the Naive Bayesian Classifier. Note that for each subject, first we

train our system based on the subject’s training data and then classify his or her remaining data.

5.1.3 Controlled Experiments - Body position

For each subject, we classify the collected data under three different settings. In the first setting,

we test whether it is possible to differentiate between the bed being empty and someone lying on it

(in any position). So we label all data collected during a subject lying on the bed in four different

positions as lying. We do not include the data when the subject was sitting on the bed. In the

second setting, we include the data for sitting and test whether it is possible to differentiate among

the bed being empty, or someone lying on it (in any position), or someone sitting on it. In the

last setting, we test whether it is possible to differentiate among all six cases: empty, lying on back,

lying on stomach, lying on back, lying on left side, lying on right side and sitting. We name the

above three cases as set1, set2 and set3.

For each setting, first we train and classify based on the data collected from one tag only (tag no.

1 or 2 or 3 of Figure 5.4. en we use data from a combination of two of the three tags. Finally, we
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Figure 5.9: Average Classification Error for All Mattresses

use data from all three tags. Our goal is to test how increasing the number of tags helps in reducing

classification error. e results of our experiments on one of the three beds are summarized in

Figure 5.8. Five of the 10 subjects participated in the experiments on this bed. For each case,

the y-axis shows the average of percentage classification errors for all five subjects. e error bars

represent the standard deviations of the errors for each experiment. As we see from Figure 5.8, if

we increase the number of tags, the classification error decreases. When we use data from only one

tag, the performance of tag 2 is the worst. is is expected, because it is placed near the leg, and so

it fails to capture enough of the variation of body impact on the middle portion of the mattress for

different positions. When we use data from any two of the three tags, we see that the combination

of tags 1 and 3 performs best. is is because both of them are placed in the middle parts of the two

opposite edges of the mattress. When we use data from all three tags, the error for set1 becomes

almost zero. For set2 and set3, average percentage errors are 1.06% and 5.64%, respectively. For the

other two mattresses, we also observe similar trends, i.e., increasing the number of tags increases

classification accuracy.

We also check how classification error varies over different mattresses. Figure 5.9 shows average

classification error for all mattresses. Here we calculate the average over the classification errors for

all subjects that participated in the experiments on a particular bed. As we see from the figure,

classification error for set1 is almost zero for all mattresses. But for the other two sets, classification
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error is greater for mattress 3 than the other two mattresses. is mattress is the one that is in our

university testbed. e testbed quality is different than the other two. It is hard and inflexible. So,

the impact of the body weight does not change the orientation of the WISP tags immediately. As

mentioned earlier, we classify the body positions for 30 seconds of data for each subject. Later we

used the data from the last 20 seconds and the classification error went down significantly and was

approximately same as the other two mattresses. So for such mattresses, we need to classify the

body position after the body settles in to a new position. One implication of these results is that we

could build a new mattress with the correct flexibility and embedded WISP tags that is especially

targeted for those wanting or needing sleep monitoring.

Now, we analyze what body positions are misclassified the most. Here, we consider misclassi-

fications for set3 only. For every mattress, the case when the bed is empty is classified correctly.

For the other positions, the average of misclassifications for each mattress is shown in Figure 5.9.

Here, we see that classification error is most prominent for the two body positions where a subject

lies on back and on stomach. e reason is that sometimes one of these is classified as the other.

For both these positions, the impact of body weight on the mattress remains almost same. For the

other three positions, the classification error remains less than 10% for each mattress.

Note that, for these controlled experiments, the training period is only two minutes for each

body position. For practical use, we need to train the system for longer periods. During our realistic

overnight experiments, we train our system for several nights (about seven hours per night) and then

run the system. e results are much better and shown in the realistic overnight experiments.

5.1.4 Controlled Experiments - Movement Detection

As we see from Figures 5.10 and 5.11 when a subject lies on the bed in a particular position or

when the bed remains empty, the accelerometer values returned by the WISP tags remain within a

noise level of a particular value. is is true for acceleration values along each of the three axes. To

find the maximum deviation in the readings, we calculate the derivative of all the readings when

a subject remained in a particular position. e derivatives show that if the subjects remain in a
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Figure 5.10: Accelerometer Reading along Y-axis During a Movement

particular position or if the bed is empty, the deviation remains in the interval [+a, −b]. e values

of a and b vary for different tags, axes and mattresses, but remain same for different subjects. We

calculate these values from the data collected during the controlled experiments of the previous

section.

If the subject moves to a new position or makes significant movements while remaining in the

same body position, the derivative of the accelerations of all three tags along both y-axis and z-axis

become higher than the corresponding +a or lower than the corresponding −b. So during the

movements, the derivatives of y and z acceleration values cross the threshold values (+a and −b)

several times. Figure 5.10 shows y-axis accelerometer readings during such a move. Here the values

of both a and b are 1.

Our algorithm to extract movement events from derivatives of y and z-axes accelerations of the

three tags is as follows: For each axis of each tag, we record timestamps when the reported reading

is outside the interval [+a, −b]. We consider each of these moments a possible movement. Note

that the three tags do not report values synchronously. We calculate the total number of movements

reported by the three tags within each two second time window. If the total number of movements

within a time window is less than a predefined threshold, we consider those as discrete movements

that do not affect sleep quality. We then cluster the other time windows, when a significant number

of movements take place, using the DB-SCAN clustering algorithm [92] to compute discrete move-
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Figure 5.11: e number of movements in a 2s time window during a 70Minute controlled exper-
iment.

ment events. e clustering also ensures that discrete movement events that happen within a short

amount of time are combined as a period of restlessness. For each cluster, we set the movement

level as the maximum of movement levels of all the time-windows belonging to that cluster.

Figure 5.11 shows the number of movements for each 2 second time window during 70 minutes

of a controlled experiment. During the experiment, the subject got on the bed, laid there for 70

minutes during which he made several movements and finally got off the bed. Some movements

were from one body position to another and in some cases, the subject made significant movements

while remaining in the same body position. We normalize the y-axis by dividing the number of

movements for each time window by the maximum number of movements in any time window to

get themovement level. We use 0.3 as the threshold to filter out the time windows wheremovement

level is insignificant.

Figure 5.12 shows the discrete movement events as clustered by DB-SCAN. All the discrete

movement events during the controlled experiment were successfully detected by our system. As

we can see from Figure 5.12 some movement events span several minutes. During these movement

events, the subject made a number of movements in quick succession. We comprehensively validate

the performance of our movement detection algorithm by realistic overnight experiments that we

present in the next section.



5.1 WISP Sleep Sensor 77

2:00 PM 2:10 PM 2:20 PM 2:30 PM 2:40 PM 2:50 PM 3:00 PM 3:10 PM 3:20 PM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

M
o
v
e
m

e
n
t

L
e
v
e
l

Figure 5.12: Discrete Movement Events During 70 Minutes of Controlled Experiment
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Figure 5.13: A DDR Pad has 8 binary pressure sensitive buttons on the side of a square. When
two pads are placed next to one another they can cover a twin size bed.

To evaluate the performance of our movement detection algorithm, we compare it with a base-

line system that uses pressure pads to measure the movement levels. e pressure sensor we used

was a USB interface Multi-Platform Dance Dance Revolution (DDR) pad typically used in the

popular DDR video game series. e configuration of the pad is shown in Figure 5.13. Two pads

were tiled to cover the area of a twin size bed. Data collected from the DDR pad is a bit-vector of
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Figure 5.14: A DDR is placed under the bottom sheet on the bed.
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Figure 5.15: We windowed the high sampling rate accelerometer readings to form epochs of vari-
ous lengths.

size 16 representing which of the 16 buttons are activated. Our algorithm examines a time window,

and takes the sum of the number of changes occurring in this bit-vector in that window. We chose

a window size of two seconds, same as we did for WISP tags. After calculating the number of

movements during each two-second time window during the night, we clustered them in the same

way as discussed in the previous section.

We also compare the performance of our system with an iPhone-based sleep monitoring appli-

cation SleepCycle that uses accelerometer data to infer sleep quality. e application requires the
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Figure 5.16: Movement determined by our system during One Night’s Sleep of Evaluation Set 1.

iPhone to be placed on a suitable position of the bed (e.g., beside the pillow) all night and it collects

data from the accelerometer of the iPhone for the whole night. Based on the data, it produces sleep

quality related data that includes transitions between different sleep cycles. Durations of different

sleep cycles over the course of the night are part of a person’s sleeping pattern. So monitoring the

transitions between sleep cycles helps in identifying irregular sleeping patterns. Our hypothesis is

that transitions between the sleep cycles will correspond to higher number of movements per time

window. So from our overnight report of number of movements during each time window, we can

infer the transitions between sleep cycles and the duration of each of them. We test our hypothesis

in this section.

e study participant slept on the same bed for six nights. We collected and logged data from

the DDR pads and the WISP devices simultaneously, and also placed an iPhone on the bed (beside

the pillow) during each of these six nights. e SleepCycle application recorded sleep quality data

and produced a report for each night. We also videotaped the sleeping period of the subject for

each night after being given the subject’s consent. We first validated the performance of the DDR

pads in detecting movements during sleeping by comparing it with the video data for the first three

hours of the recorded data for the first night. e validation result confirmed that the DDR pads

can be used as ground truth to detect movements during sleeping. For evaluation, we use a cross

validation approach. For each evaluation set, we choose five nights’ data to train our system and

evaluate the performance for the remaining night’s data. So, there are six possible sets of training

data. us, we have six sets of evaluation.

For each evaluation set, training of the movement detection algorithm includes calculating the
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Figure 5.17: Movement Determined from the DDR Pad during one night’s sleep of Evaluation
Set 1.
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Figure 5.18: Comparison of sleeping duration between our system and the DDR pads.

thresholds of rate of change of acceleration values (i.e., values of a and b) along each axis for each

tag and also the threshold to filter out the time windows where movement level is insignificant.

During training, we consider movements detected by the DDR pads as ground truth. Training

of the body inference algorithm includes training the Bayesian classifier with the accelerometer

readings collected during the five nights with the corresponding body position. Collecting the

actual body position for each time instant of each of these five nights is challenging. One option

was to monitor the recorded video for each night and assign body positions accordingly. But this

requires significant effort. To reduce effort, for each night, we watch the initial body position from

the video and from then on we assume that unless there is a movement detected by the DDR pads,

the position remains unchanged. When the DDR pads detect a movement, we fast forward to that

time instant and see the new body position from the video and we continue in this way. us, we

collect the ground truth for body position. Figures 5.16 and 5.17 show the movement events during
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Figure 5.19: e SleepCycle App is placed on the mattress and can produce reports of awake,
dreaming, and deep sleep stages.

one night’s evaluation (from the first evaluation set) of the subject as detected by the WISP tags

and DDR pads, respectively. If we compare these two figures, the first and last movements on both

the figures represent the events when the subject got on and off the bed, respectively. Our system

reported all movement events detected by the DDR pads. e timings of the movements are same

in both figures. ere was one movement that our system reported, but the DDR pads did not.

It happened just after 7:00 AM in the morning. To investigate this incident, we fast forwarded

to that specific time of the recorded video and observed that there was no significant movement

during that time. So it was indeed a false positive.

Another notable difference occurred just before 9:00 AM, when our system reported two move-

ment events and the DDR pads reported one movement event. However, the two events reported

by our system are very close to each other and can be considered a part of the same movement.

e duration of the nine movements during this night that both systems detected are shown in

Figure 5.18 From this figure, we see that there are no notable differences between the duration of

movements calculated by both the systems. We present a summary of results and their implications

for all six evaluation sets at the end of this section.

Figure 5.19 shows the report produced by the iPhone application SleepCycle to show the sleep
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Figure 5.20: Body Positions During 1 Night’s sleep of Evaluation Set 1

quality for the same night as shown in Figures 5.16 . e application shows various sleep stages like

awake, deep sleep and dreaming. ese sleep stages are irrelevant for our comparison. e application

recorded data up to 8:00 AM in the morning. e vertical bars show when movement events

are reported by our system. As we know, transitions between different sleep cycles correspond to

movements made by a person. From the figure we can see that the timings of the movement events

match to those of transitions between sleep cycles. ere are no vertical bars for two transitions: one

that happened between 7:00 and 8:00AMand the other in between 4:00AMand 5:00AM.During

the latter one, the subject was in deep sleep stage before and after the transition. So this is why there

were no major movements. We explain the reason of lack of movements during this transition at the

end of this section. But this result proves our hypothesis that from the frequency of movements

reported by our system, it is possible to infer transitions between sleep cycles. In addition, our

system provides fine-grained body position monitoring which the Sleep Cycle application does

not.

Figure 5.20 shows the body positions as inferred by our system for the same night that was

considered in Figures 5.16 and 5.17. If we compare these four figures, we see that during each

transition from one body position to another, there was a discrete movement event detected by

our movement detection algorithm. Also, for the last three movements, the body position did not

change. To ensure robustness against discrete erroneous classifications, we consider that the subject

changed his body position if 20 successive instances are classified as the new body position. Also,
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if the movement detection algorithm detects that a movement is taking place, the body position is

considered to be the same as it was before the movement until the movement is complete.

To evaluate the performance of the body position inference algorithm of our system, we generate

10 random instances of time for each night and check the subject’s body position during each of

those instances. For each night, the time instances are uniformly distributed over the course of the

night. We define the accuracy of our inference algorithm to be the percentage of time instances

when the body position inferred by our system match to the actual body position as seen from the

recorded video data. We present the accuracy for each night as part of the summary of all results

next.

Table 5.1: Summary of Results for 6 Datasets

Evaluation Set 1 2 3 4 5 6
False Negatives 0 0 0 0 0 0
False Positives 1 0 0 1 0 0
Avg. Error in Movement Detection 6.9s 6.2s 2.2s 5.2s 4.1s 5.2s
Sleep Cycle Detection Accuracy 71.4% 75% 80% 75% 90% 80%
Body Position Inference Accuracy 100% 100% 100% 90% 100% 90%

Table 5.1 presents a summary of results for our six sets of evaluation. False negatives refer to the

number of movement events that are detected by the DDR pads, but not by our system. Similarly,

false positives refer to the number of movement events that are detected by our system, but not by

the DDR pads. For each night, we define ‘average error in movement duration’ as the average of

absolute differences between the movement durations calculated by our system and the DDR pads.

Sleep cycle detection accuracy refers to the percentage of sleep cycle transitions (as shown by the

iPhone application) that correspond to increased number of movements detected by our system.

From Table 5.1 we see that for each set, our system detected all the movement events detected

by the DDR pads. Average error in calculating movement duration is less than six seconds for each

night. But, for two nights, we observe one false positive each in our system. is may be due to the

threshold in change of acceleration that we selected to filter insignificant movements. We believe

by training the system for more nights, we can get rid of such false positives.
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Overall, our system shows 100% accuracy in detecting discrete movement events and calculates

the durations of each movement with reasonable accuracy. e accuracy of the body position in-

ference algorithm is at least 90% for all sets. Our evaluation was based on 10 randomly selected

time instances that are uniformly spread over one night. More detailed evaluation is necessary to

guarantee its performance. erefore, we can say that, with proper training, our system performs

as well as a system that uses pressure sensors and also is more comfortable for the users and com-

pletely unobtrusive. Moreover, our system provides fine grained body position monitoring which

no existing pressure sensor based sleep monitoring system provides.

We also compare our system with the popular iPhone based application “Sleep Cycle”. Com-

parison results show that by only looking at the movement reports of our system, it is possible to

identify most of the transitions between sleep cycles. Among the transitions that were not possible

to identify, most of them were during deep sleep stages. e pressure sensors also did not iden-

tify them. So, these types of transitions do not correspond to significant body movements. We

need to lower the value of the threshold for filtering out insignificant body movements which was

set assuming the DDR pads’ detected movements as ground truth. erefore, we can say that, by

training our system with the transitions detected by the iPhone application, it is possible to detect

all the transitions between sleep cycles by our system.

5.2 Cheaper Mote and Accelerometer Solution

e WISP solution, along with the algorithms for detecting movement on the mattress was suffi-

cient for many sleep applications. However, there were two notable problems with using this system

in practice. Although the RFIDs themselves did not require power, the reader device required a

large amount of energy in order to power and use backscattering to receive the signal. ere were

notable warnings to exposing people to this amount of radiation over long periods of time, espe-

cially when the device is place directly under the bed. In addition to this problem, the reader was

prohibitively expensive, $1200, for use for just a few tags on the bed.
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Figure 5.21: e sleeping monitoring setup. Two tri-axis accelerometers are taped onto the bed
under the mattress pad and connected to a wireless mote.

To monitor sleep cheaply and non-invasively, we built our own devices using embedded pro-

grammable microcontrollers. Our first is shown in Figure 5.21 and consists of a Wixel wireless

module with a TI CC2511F32 microcontroller and a 2.4Ghz radio shown in Figure 5.22. We con-

nected the two tri-axis accelerometers to the mote’s 6 GP-IO ADC pins with a 6ft CAT-5 cable.

A program written in C was compiled and loaded onto the flash to sample the ADC pins at 50 Hz

and send the data to the serial adapter. When installing the sensors, the accelerometers are secured

by duct tape to the mattress on the left and right side of the area where the user sleeps. Although
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Figure 5.22: e Wixel mote has 4 ADC pins and can run on battery or wall outlet power.

the Wixel was equipped with a wireless radio, because the Wixel communication protocol did not

have a MAC network layer, we used a direct USB serial connection to the mote to gather the data.

One of the most important higher-level data gathered using these devices were to record the

time in and out of bed and periods of restlessness during sleep. We created an algorithm based on

existing and clinically validated actigraphy algorithms [93, 94]. Time is divided into one minute

epochs in which the σ and µ is recorded on each of the axis (x, y, z). e σ values are a good esti-

mation of the level of movement during this epoch, and is robust to the sensor gradually changing

orientation through the night. e µ values are valuable for recognizing the position of the person

in the bed, since when a person’s weight is applied to the mattress, the mattress deforms and tilts

the sensor’s normal vector inwards towards the center.

5.3 Conclusions

We have presented two sleep monitoring systems that advance the state-of-the-art in sleep mon-

itoring. Additionally, we compared our systems with the most used solutions based on the level

of comfort, perceived degree of privacy, the accuracy, and price. We show that the our solutions
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Table 5.2: Out comparison of sleep monitoring systems show that our system can effectively bal-
ance comfort levels, privacy, and cost with high degree of accuracy.

Device Comfort Privacy Accuracy Price
Empath High High High Low
WISP Tag High Good High Moderate
Pressure Sensor Medium Good High Moderate
Camera High Very Low Excellent Medium
Zeo Low Good Excellent Medium
Actiwatch Low Good Excellent High

provide high accuracy, low cost, and high degree of privacy, and high degree of comfort than the

Zeo™, the Camera, and the Actiwatch. are shown in Table 5.2.



6 | Case Studies

In this chapter we describe three adaptations of the Empath system for monitoring three different

clinical problems, some of which are difficult to monitor with just one modality. Empath has been

used on two long-term deployments of people with Epilepsy, three week-long deployments on

studying Alzheimer’s disease and urinary incontinence, and one deployment configured for moni-

toring depression. For each study, we describe the motivation and medical hypotheses formulated,

the design of the configuration of the Empath system components, and present the data gathered

from each deployment and conclusions.

6.1 Epilepsy and Stress

e most commonly identified precipitant of seizures in people with epilepsy is stress, and the most

common comorbidities associated with epilepsy are mood disorders. Elucidation of the psycholog-

ical and biological mechanisms that link stress and anxiety to seizures may provide a foundation for

preemptive treatment. e working hypothesis for this study was that a reduction in the amount

of stress experienced by persons with epilepsy will lead to a reduction in the number of seizures

reported and potentially improve overall health-related quality of life (HQoL) for these individu-

als. e overall goal of this mixed-methods study is to reduce stress, which can potentially reduce

seizure frequency and enhance HQoL in patients with epilepsy. We investigated using an ancient

Chinese healing art based in Eastern philosophy, internal qigong, referred to as Reflective Exercise

in this study, as an alternative therapy intended to reduce the number of seizures and improve the

HQoL of the participants.

88
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Epilepsy and seizure disorders affect nearly 3 million Americans and more than 45 million

people worldwide, making epilepsy a common chronic disease affecting about 1% of the population,

with the lifetime incidence being about 3%. Approximately one-third of these individuals (nearly

one million Americans) do not respond to medical therapy. us, any intervention to reduce seizure

frequency in these patients can potentially have a huge societal impact. e treatment of epilepsy

extends far beyond controlling the number of seizures a person has, given that a number of factors,

including other existing health conditions, can affect seizure activity. In addition, Boro and Haut

[95] report that mood disorders, including major depression, anxiety disorders, and psychosis, have

a high prevalence in epilepsy.

Research shows that important and complex linkages exist between stress, sleep, and epilepsy.

Synchronized non-rapid eye movement (NREM) sleep facilitates seizure occurrence, while desyn-

chronized rapid eye movement (REM) sleep discourages it. Whereas REM sleep seems to suppress

seizures, sleep disorders, particularly sleep apnea, exacerbate seizures. Seizures themselves can also

disrupt sleep structure, particularly REM sleep. Insufficient sleep may contribute to decreased

daytime functioning and increased seizure activity. Unfortunately, sleep disturbance in patients

with epilepsy is frequently overlooked, and an understanding of these relationships is important in

seizure control and in improving sleep and maximizing HQoL for patients with epilepsy. In a sys-

tematic survey, themost commonly identified precipitant of seizures in people with epilepsy is stress.

Biological indicators of stress and anxiety include changes in heart rate, systolic blood pressure, and

diastolic blood pressure. Individual baselines of these measures could serve to demonstrate hyper-

arousal states. us, the psychological and biological mechanisms that link stress and anxiety to

seizures require further exploration and may provide a foundation for preemptive treatment. Rajesh

and colleagues, in a study of a yoga meditation protocol, concluded that yoga (and perhaps other

mind-body modalities that reduce stress) shows promise as a cost-effective and risk-free adjunctive

treatment in patients with drug-resistant epilepsy.

Although a variety of anti epileptic drugs (AEDs) are available, 38% of new cases of epilepsy

are resistant to AEDs. Even when effective, AEDs can produce toxic reactions, and use of these
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medications is associated with mood and cognitive dysfunction. us, the development of comple-

mentary therapy approaches that could enhance the efficacy of current AEDs or perhaps reduce the

dosage needed by reducing seizure frequency, with few or no side effects, and improving HQoL is

of considerable importance. Given the limited effectiveness of conventional treatment for epilepsy,

some patients have used complementary and alternative therapies, suggesting its acceptability to this

population. Data from the 2007 National Health Interview Survey indicate that around 35% of

individuals who self-report a physician diagnosis of seizures have usedmind-body therapies, as com-

pared to about 20% of the general US population. Of the modalities that patients reportedly used,

Wahbeh and colleagues argue that meditative relaxation techniques are among the most promising

mind-body interventions for control of epileptic seizures, although these researchers acknowledge

that more research is needed. Sahaja yoga, which includes components of meditation, has been

shown to clinically benefit patients with epilepsy by reducing seizure frequency and reducing the

effects of stress on patients.

Figure 6.1: Reflective exercises combines elements of Qigong and meditation to try to improve
symptoms of epilepsy.

6.1.1 System Design

e epilepsy study was designed to monitor the sleeping habits of the participants over a long period

of time; sleep was the only modality used, since the study organizers did not want to burden the
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Figure 6.2: e Epilepsy study required only the sleep monitoring components of the Empath
system.

subjects with overwhelming instrumentation. is deployment was a simple instantiation of the

Empath flexible architecture where only a single modality is required.

To measure sleep quality and disturbances, we instrumented the bed with accelerometers. In

our design, two tri-axis accelerometers, sampling at 50 Hz, are placed on the right and left sides

of the bed. Because the accelerometers are placed just beneath the mattress pad, we are able to

detect fine movements while the patient is unaware of their presence. e movement levels for one

minute epochs are calculated by computing the mean and standard deviation of the samples. e

weighted sum of activity values across a time window of seven minutes is used to estimate wake

and sleep periods using Cole’s Actigraphy algorithm [93]. e following objective measures for

sleep are determined: time in bed, sleep onset latency, wake and the number, degree, and duration

of restlessness. e details of our accelerometer-based sleep monitoring systems are covered in

Chapter 5.

We configured the Empath platform for this data collection application. e system is shown

in Figure 6.2. When patients were recruited for the study, it came to light that many lived in rural

areas and did not have internet service providers. In order to enable these subjects to participate,

we adapted the Empath system architecture to use wireless access points. Even so, the wireless con-

nectivity was intermittent and unreliable; therefore, we uploaded data in an opportunistic manner

by synchronizing the local data with the server’s database. We chose the Amazon Cloud Services

hosting because of our need for reliability, load balancing, cheap storage, and accessibility. An Elas-

tic Compute (EC2) instance ran the Java application in a Jetty container. MongoDB was installed
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on another dedicated instance. During the deployment, each one-minute epoch of bed movement

data was stored as a record in the database. e data then can be accessed through a web interface

for the engineers to ensure the deployment is running correctly, and for the clinical researchers to

investigate the patients’ data.

6.1.2 Results and Lessons Learned

We deployed the system in two homes for 6 weeks each. e first participant was a 19-year-old

female who had experienced seizures since adolescence. She lived in a rural mobile home one hour

from the University. e second participant was a female 28-year-old living in Charlottesville,

who also started her seizures as a teenager. We tracked the participant’s bedtime, wake time, and

duration to discover any anomalies in sleeping patterns. e normal sleeping patterns could be

represented as a density distribution as shown in Figures 6.3 and 6.4.

Our practical experience with these two deployments led to the following discoveries, which

informed future designs and deployments:

• People do not necessarily sleep on their bed when they sleep, which affects the accuracy of

the data. For example, one participant often fell asleep in front of the television on the sofa

many nights, and also took frequent trips on weekends and did not sleep on the mattress.

• Accelerometers can only detect whether an individual is on the bed, not whether they are

actually asleep. One participant, for instance, reported multiple cases of sleep walking during

our data collection.

• Devices fail and the software will crash, therefore a system that allows remote administration

is vital, so that problems can be resolved without traveling or entering the patient’s home.
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Figure 6.4: Wake Time Density Plot.

6.2 Alzheimer’s Disease and Incontinence

Alzheimer’s disease is the most prevalent type of dementia in the US, affecting 4-6 million people,

and is estimated to expand to 17 million by 2050. Alzheimer’s frequently presents with episodes

of nighttime agitation, which are highly burdensome and costly for caregivers and for the health

care system. Additionally, people with dementia such as Alzheimer’s are also much more prone

to urinary incontinence than others. Family caregivers report that coping with nighttime agita-
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tion, associated sleep disturbances, and urinary incontinence can be overwhelming and that these

disturbances are often a “tipping point” for seeking institutional care for their loved ones.

ere is anecdotal evidence that there is a relationship among incontinence, sleep disturbance,

and agitation in these patients. Urinary incontinence is thought to trigger awakening from sleep,

with subsequent agitation, although there is a lack of systematic evidence that these phenomena are

related. Based on previous work with urinary incontinence and sleep in persons with Alzheimer’s

disease, this study aims to describe the relationships among the times of occurrence of nighttime

agitation, sleep continuity and duration, and urinary incontinence in persons with Alzheimer’s

disease by using innovative, non-invasive sensing technology.

Currently, nocturnal agitation in older adults with Alzheimer’s disease is most frequently treated

with anti-psychotic and hypnotic medications, although these pharmacological therapies result in

little success and have adverse effects on persons’ outcomes and quality of life. is study hopes

to prove that simple, non-pharmacological nursing interventions such as regularly waking patients

to use the toilet may reduce nighttime agitation, sleep disturbances, and urinary incontinence in

persons with Alzheimer’s disease. the study will lead to interventions that can improve the quality

of life for patients and their caregivers: delaying institutionalization, reducing caregiver burden,

and resulting in substantial savings in the cost of caring for many persons with Alzheimer’s disease.

6.2.1 System Design

is case study shows that the Empath architecture is easily extended for multiple modalities. e

system design for the incontinence study begins with the accelerometer-based sleep monitoring

system that the epilepsy project required, plus three additional modalities shown in Figure 6.5.

Perhaps the most important is the ability to detect when a wetness episode occurs. e Dry buddy

is a small, lightweight, and wireless sensor that uses a magnetic locking system to keep the sensor

in place on the outside of the undergarment or pajama. It uses electrical conductivity within an

incontinence pad to determine if a wetness event has occurred. In Figure 6.7 we show the sensor and

where it attaches. We monitor audible speech outbursts by way of a microphone. We additionally
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Figure 6.5: e incontinence study uses wetness sensor, bed accelerometer, and bedside micro-
phone.

collect more detailed data about body movement by using TEMPO motes strapped to the left and

right wrists of the patient.

6.2.2 Results and Lessons Learned

1. e voice agitation sensor picked up other sounds besides vocal outbursts, including the snor-

ing of the participant. It was also not possible to automatically and accurately discern the

character of all vocalizations, especially whether it was an intelligible utterance or a mumble.

2. e DryBuddy device had connectivity problems, in one instance producing a false negative

despite a incontinence episode occuring. is was confirmed by both the husband attending
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Figure 6.6: DryBuddy System detects incontinence episodes and sends event packets by radio by
X10

Figure 6.7: e system bed-side monitor combines mattress accelerometers, wrist accelerometers,
a microphone, and a wetness sensor to investigate agitation before wetness episodes.

to the episode, and the weight of the pad afterwards. Although the DryBuddy was triggered,

the signal was attenuated and lost in transmission. We fixed this problem by introducing
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Figure 6.8: Incontinence study deployment 1: shows the relationship of the vocal outbursts, move-
ment, and wetness episodes.

multiple X10 receivers on either side of the bed to more closely detect when the device is

triggered, so the signal could not be blocked the patient’s body. Adding more DryBuddy

sensors on the pad was another potential option, however it was too uncomfortable for the

user. is is an excellent example of the versatility and freedom of the Empath architecture.

6.3 Depression Monitoring

Depression is a major health issue that affects over 21 million American men and women each

year. Depression often goes unrecognized and untreated, and even once treatment begins it is often

difficult tomonitor its effectiveness. is poses particular challenges for the diagnosis and treatment

of depression, particularly for those who avoid visiting a doctor or therapist due to social stigmas or

a lack of energy. Currently, depression diagnosis is based on subjective screening questionnaires or

structured clinical interviews that rely on timely in-person visits as well as accurate recollections by

the patient, these have been shown to be inaccurate since symptom reports are often exaggerated

or left incomplete. is makes monitoring depression symptoms exceedingly difficult. Yet early

detection and treatment of this debilitating disorder has been shown to improve patient outcomes
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considerably [96, 97]. Also, the period of a few months after recovery is particularly prone to

recurrence of depression, and that over time the longer one goes without relapse the less likely one

is to develop a new episode. erefore monitoring of symptoms even after they are ameliorated,

recognizing early signs of an emerging episode is important to long term care of depression.

Along with depression’s detrimental affect on mood, it can lead to other associated problems

because of reduced social interactions, decrease in personal hygiene, increased alcohol use, and ne-

glect of medications for current medical conditions. Depression is a listed under the Americans

with Disabilities Act (ADA), and equates to large amount of money lost due to missing work, dis-

ability, and lost productivity. According to a recent study, the cost to the workplace in terms of

short-term disability alone, is greater than that of lower back pain, heart disease, high blood pres-

sure, and diabetes together. Assessment and treatment are often hampered by a lack objective data

to corroborate patients’ retroactive self-reports about their current functioning; hence an objective

symptom-monitoring tool such as Empath could complement subject self-report measurement and

enhance diagnostic accuracy.

Depression has several behavioral and psychosomatic manifestations [98, 99]. Independently,

each has been studied and is well documented in clinical research as well as in the widely used

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [65]. For example, depressed

speech is marked by pauses, fewer words, monotone voice, and less eye contact. Depressive episodes

frequently affect sleeping patterns, leading to increased or decreased sleep duration as well as dimin-

ished sleep quality (with frequent bouts of waking in the night, and more restlessness during sleep).

Depressive episodes are also commonly characterized by lack of social interaction and signs of an-

hedonia, the lack of pleasure in doing things one previously enjoyed, and hence withdrawing from

social, exercise, or recreational activities or deviating from one’s usual patterns. Appetite changes

and resulting weight gain and loss are other commonly observed symptoms of depression. Behav-

ioral changes associated with depression onset also include listlessness, lethargy, and reduction in

gross motor activity and slowing of gait. Each of these components on its own will not give care-

takers a complete picture of an individual’s condition, since depression is marked by a combination
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Figure 6.9: e inference system for creating a depression risk index.

of symptoms and each individual exhibits symptoms in different ways, and moreover, the way they

are expressed is dependent on the severity of the case.

6.3.1 System Design

To address this problem, we adapt Empath with the necessary components for multi-factor depres-

sion monitoring. When properly configured, the system can assist with collecting and compiling

necessary data for caregivers, predicting signs of a possible depressive episode, and can track symp-

tom severity in order to evaluate a treatments effectiveness. e benefits over current diagnostic

methods could result in lowered recurrence of episodes, shorter episode length, and ultimately im-

proved quality of life for many sufferers of this disease.

e system was deployed in a real apartment for over 30 days. It took less than one hour

to install Empath in the participant’s home. 17 X10 devices were attached to the stove, freezer,

refrigerator, kitchen sink, microwave, cabinets, bathroom sink, trash can, wardrobe closet, and
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shower. A wireless weight scale was placed on the floor of the bathroom. A PC running the

basestation software was in the living room. e total cost of the system excluding the PC is less

than $500. Twice each day, the participant recorded his subjective mood and once a day provided

voice data through a touchscreen kiosk.

6.3.2 Activity Levels

We use passive activity detection sensors to detect symptoms that are related to loss of energy,

anhedonia, and social isolation. In particular, Empath’s activity detection module examines two

key factors linked to depression: 1) home occupancy and 2) movement levels.

Depression can express itself as anhedonia or by social isolation. If this is the case, patients will

leave their homes less than normal. We measure the percentage of time spent in the home versus

away, and monitor for anomalies in this pattern. Many factors can contribute to a change in these

activities, and the results are sensitive to false positives that do not have a mood component, such

as going on a vacation, injuries or illnesses, and varying work schedules.

We created a simple algorithm to predict the time the patient would be in their home. e

basic principle is that we can segment the periods where people are inside or outside of their homes

by noting when a front door sensor fires. In our deployment, the front door was the only door

through which someone could enter or leave the apartment. (However, we discovered that each

time the door opened, the patient did not necessarily enter or leave their home, since the resident

often kept the door to let a breeze or more light in.) Next, each segment between door opening

events is labelled as ’occupied’ or ’not occupied’ by incorporating data from the other X10 devices in

the home (motion detectors, kitchen cabinet sensors, etc.). If the sum of events within a segment

exceeds a threshold, the segment is labeled as ’occupied.’ is simple approach works sufficiently

well, however it has a single point of failure. If the front door sensor malfunctions, the system

cannot define crisp boundaries for home occupancy, and instead would have to rely on clustering

of other activities to estimate occupancy. We updated the system architecture by using double

redundancy on front door sensors to improve reliability. A score from 0 to 3 is generated for the
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social isolation score, and one point is given for each increase in time spent at home by one standard

deviation. Next, the movement factor is computed from the number of sensor firings that go off in

a day. We scale the activity level to the amount of time spent in the home.

6.3.3 Activities of Daily Living

e activities of daily living are logged for viewing by a caregiver, but are not automatically used

for various reasons. Firstly, the calculations of factors from these data streams that have a high

mis-classification rate can make determining anomalies challenging. Secondly, it is difficult to

determine what is an anomaly. is problem is addressed in the Holmes framework that we present

in the paper [100, 101] and in Section 7.2.3. e activities that can be monitored include cooking,

hygiene, and cleaning. We differentiate two types of cooking: preparing light meals and snacks, or

preparing more complex meals. To do this, we placed contact switches on the microwave, the oven,

and the cabinets (spice and sauces), the refrigerator, and the freezer. If the activity recognition

module detects the opening of the spice cabinet or the use of the oven and stove during a cooking

activity cluster, the whole cluster is labelled as a meal. However, if just the microwave or the freezer

is opened but without the previous mentioned sensors, it is considered a light meal. Detecting

whether someone is eating out, or not eating at all is challenging, and perhaps cannot be easily

determined using only our in-home activity recognition system. For tracking regular cleaning and

hygiene, we detect showering, using the bathroom sink, opening cleaning closets, and opening the

trash lid. A motion sensor was placed in the shower unit and over the sink, and contact sensors are

placed between the trash can and the lid and storage cabinets.

6.3.4 Patient Questionnaires

e patient interface shown in Figure 3.3 runs on a touchscreen inside the patient’s apartment. Its

primary purpose is to receive continuous subjective scores from the items in the CES-D exam. e

test is available at all times, but encouraged to be taken once a week. e exam consists of 20-items,

where each item is scored on a scale from 0-3 points. e sum of these items are used to predict
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the severity of the episode. A score of 15-21 might suggest mild to moderate depression and over

21 a possibility of major depression. is application was implemented with Adobe AIR 2, which

connects to the server and transmits the scores through JSON. Notifications and alerts can be sent

from the server to the patient that appear on the screen. Some examples of alerts include: reminders

to check body weight on the scale and to complete a late CES-D exam. e touchscreen’s role

could be expanded to serve as a mood coach, social planner, and mood journal. Personal behavioral

factors similar to the caregiver is presented to patient for positive feedback. We created an iPhone

application that serves as an sensor for instantaneous mood measurements. e patient to input

instantaneous mood on a 1-10 ladder on the continuum of extreme depressed to extreme elevated

mood. We created this mobile interface so that the patient does not necessarily need to be in his

or her home to input data into the system. is experiential sampling approach [102] is useful for

collecting instantaneous measurements. e iPhone’s local notifications can be enabled to alert the

patient when a new measurement is recommended. e application’s capabilities can be expanded

in the future to record other types of emotions, such as levels of anxiety or irritability which are also

typically experienced during depression.

6.3.5 Results

In this section, we present a case study of the first version of the Empath system configured for

tracking depression and deployed in a real apartment over a period of 4 weeks. Although these

results are not meant to investigate any medical hypotheses, it however shows an example of the

system in operation and how it is able to collect useful data about a depressive episode continuously

in the home. Adding additional modalities involved registering an X10 receiver to the broker to add

activitity recognition and the a touchscreen client that will report the questionnaire. In addition,

on the server, the weightscale API was configured to pull information from the webservice.

It took less than one hour to install Empath in the subject’s home. X10 devices were attached

to the stove, freezer, refrigerator, kitchen sink, microwave, spice cabinet, plate cabinet, glasses and

cups cabinet, front door, cleaning closet, medicinal closet, bathroom sink, trash can, wardrobe
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Figure 6.10: e sleep quality factor measure for each day for a month.

closet , and shower. e weight scale was placed on the floor of the bathroom. A computer with

the client software was placed in the living room. e total cost of the system excluding the laptop

and phone is less than $500. e subject used the iPhone App to record his mood twice daily. Due

to the diurnal variation of symptoms during depression, these measurements can vary greatly. We

took measurements more frequently than would be typically needed by a patient using Empath.

But the high-granularity of data is useful for comparing against the objective factors.

Each morning, the subject reported his subjective rating of the previous night’s rest as being

good or poor. Figure 6.10 shows the sleep quality rating for each night. We inverted the sleep

score by taking the difference from 9, since we wanted to present in the graph poor sleep quality

with a lower number. e nights where the subject responded that his sleep was poor were on days

2, 3, and 10, which appears to correlate with our sleep quality index. e graph suggests that for

this subject, the previous day’s mood highly affects the sleeping quality that night. ese results

show how Empath’s sleep monitoring solution can approximate sleep quality with some degree of

accuracy. However, one challenging problem we aim to solve, is determining the sleep efficiency ,

the amount of time spent in bed attempting to sleep rather than actually sleeping. We plan to run

studies showing the relationship between actual sleep times and bed motion

e occupancy detection algorithm was used on 11 days worth of data. Figure 6.12 shows for
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Figure 6.11: e X10 Readings from the deployment.
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Figure 6.12: e house occupancy can be used to estimate social isolation.

each of the 11 days the amount of time spent away (vacant) each day. For this particular dataset, we

found no relationship between mood and time spent away from the home, by running an ANOVA

on the linear relationship between mood and duration. e assumption here is that higher levels of

vacancy correlate to less social isolation. ere are complications to this measure as if the subject

stays at home, but receives visitors, the factor will be lower than it should be. In addition, times

spent on vacation can produces errors in this estimation. We see that this is where other factors are
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Figure 6.13: e movements in the home are related to depression.

important in this measure.

For each day, we recorded the number of sensor firings in the home to give us a gross estimate

of the amount of motion and activities occurring in the home. ose who stay still, and therefore

do not interact with many devices, and will receive a lower movement factor. We realized that the

number of firings do not give us an fair measure of the activity level, since a person who scurries

about their apartment for a few hours would receive a lower score than someone who spent the

entire day in the apartment but spending most of the time on the couch. So we normalized the

score based on the apartment occupancy times. Figure 6.13 shows the results of producing this

factor against the reported mood. e sixth day was the most active for the participant, since

day was spent cleaning the apartment. We ran an ANOVA on the linear model again to find a

relationship between the movement factor and mood levels, but no significance were found. is

method gives us an approximation of energy levels, that may correlated heavily to psycho-motor

retardation that depressed individuals experience.

We use various factors together for arriving at a depression risk index. People exhibit depres-

sion in different ways, so relying on single measures is not accurate. In this case study, for instance,

the speech factor and sleeping factors were most highly indicative of depression, while the weight,

movement, and isolation were within healthy limits. e depression index is a weighted sum of

various subcomponents, however should any of the sub-factors be in extremely high risk, the de-

pression index should be elevated to a high level. Studies on the population need to be run first to

make decisions on the appropriate weighting factors.
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6.3.6 Lessons Learned

• Although the touchscreen device was able to capture voice data, the mood was sampled only

once a day in artificial situations and not through real conversations happening in the home.

is motivated our research direction of applying the same voice classification strategy but

captured ambiently as discussed in Chapter 4.

6.4 Conclusion

In this chapter, we presented 3 different configurations of the Empath system for handling col-

lecting useful information to clinicians. is adaptability was useful since all of the applications

required ease of deployment, minimal invasiveness, and reporting of data to the cloud. New modal-

ities were able to be introduced such as the case when migrating the existing platform for studying

epilepsy and augmenting it with acoustics, wetness episode, and TEMPO. For the incontinence

project, a new X10 receiver had to be added with minimal reconfiguration to the existing system.

All of the architectures required reporting time series information collected over various dif-

ferent time frames from one minute epochs to infrequent event-based data. Finally, for many

applications transforming the data from low level epochs to higher-level epochs represented by

different streams was trivial.



7 | Conclusions

is thesis presented many advancements to home monitoring systems. For each, we place them

in context of existing approaches.

7.1 Key contributions towards home monitoring systems

7.1.1 Extensible, multimodal, easily deployable

Most home monitoring systems are expensive and hard to deploy. ey are aimed for general

monitoring, but more applications are needing a system to be adaptable to targetted monitoring

scenarios. For instance, many applications do not need all of the sensors useful for a depression

monitoring setup, some systems require specialized devices to be integrated into an existing setup.

We have presented an extensible, multimodal, largely passive behavioral monitoring system called

Empath in that is useful to caregivers in order to monitor their patient’s behavior, and thereby track

their well-being and their response to treatment and therapies. It is unique because it provides a

flexible system architecture that allows easy introduction of new custom components or commercial

off-the-shelf products to be integrated using popular web service abstractions such as RESTful

interfaces and JSON. is enables 3rd party APIs to be integrated into Empath, or Empath can

integrate into their services.

107
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7.1.2 Passive acoustic monitoring

Acoustics are a valuable information source for clinicians attempting the track complicated diseases.

A major hurdle to the integration of speech monitoring into these systems has been because of re-

verberation. We were able to effectively target the unwanted effects of reverberation captured by

emplaced room microphones by creating a matched-condition classification strategy called RES-

ONATE that uses room acoustic simulation to quickly generate models for a particular room. We

show that this kind of classification can be done in realtime, on-node in a distributed architecture

so that this information can be generated without raw data being sent to a basestation or cloud

service.

7.1.3 Sleep monitoring

We showed that existing sleep monitoring systems are either too burdensome, expensive, or inaccu-

rate. We have presented a passive and cheap sleep monitoring system that can collect useful features

such as insomnia, restlessness, and sleeping patterns that are necessary for many applications. Be-

sides engineering new hardware, we have evaluated the use of machine learning to infer sleeping

position. e sleep monitoring system is tested in each case for several weeks or months in three

clinical studies and three non-clinical studies.

7.1.4 Tested in the field

By deploying various iterations of the system in different settings, the Empath system has results

and observations from deploying the system in real clinical studies: examining the relationship of

sleep and stress on the number of seizures that people with epilepsy experience, the relationships

between nighttime agitation and incontinence events with those with Alzheimer’s disease, and

finally case-studies with configuring the system for depression monitoring. Despite the differences

in the design, we demonstrate that each data source can generate discrete epochs of data that enter
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into the system at various points including a publish-subscribe channel at a message broker or a

URL at a RESTful interface.

7.2 Future Improvements

ere are many notable extensions and improvements to the research we have presented in this

research.

7.2.1 Privacy

Due to the dynamic nature of sensor data and techniques for inference in an attacker’s arsenal,

there is an overwhelming threat to an individual’s confidentiality of private data. Emerging per-

sonal health record applications such as Microsoft’s Health Vault and Google Health have created

controversy over the security of medical information. But as more devices such as mobile devices,

body sensor networks, implantable medical devices and smart environments are integrated, and as

the number of 3rd party applications using subsets of that data, the challenge of keeping informa-

tion secure will be worse. Although advancing research is addressing maintaining access control,

confidentiality, and anonymity in respect to generic medical databases, there has been limited work

in regard to stream-centric data collected from these home environments. ere is a considerable

challenge since these system generate vast amounts of highly correlated information, and medical

applications would not be able to run effectively if stringent policies are held regarding the release

of data.

7.2.2 Recommendation Systems

e system could be enhanced to provide encouragement or behavior modification. Recommen-

dations could be sent with or without the assistance of a caregiver. We formed a list of possible

activities shown in Appendix C taken from a local Senior Activity center and labeled each with

the category that the corresponding activity targets, such as Social, Mental, and Exercise. Behavior
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modification is a burgeoning research area that poses considerable challenges in developing proper

techniques for influencing human behaviors both effectively and ethically. Many businesses have

successfully used Gamification to leverage people’s natural desires for competition, achievement,

status, self-expression, altruism, and closure by influencing behavior in a game-like framework.

Typically, gamification will reward badges or unlock achievements for doing certain activities. Fi-

tocracy is an example of a health and wellness app that has effectively used Gamification. e app

allows people to record the type and duration of the exercise they do, and the system rewards ex-

perience points commensurate with the difficulty of the exercise; after enough experience points

have been earned, the user will gain a level and be able to share their achievements with their so-

cial network. Similiar techniques could be employed in home monitoring systems, where points

could be awarded for making social contact with someone, attending events, doing regular exercises,

preparing home-cooked meals, or keeping a regular schedule.

7.2.3 Semantic Anomaly Detection

With Semantic AnomalyDetection, activities of daily living can bemonitoring by detecting anomalies

in their behavior. But unlike traditional anomaly detection systems, the aim is to reduce false

positives in anomaly detection with the help of semantic rules. Some of these rules are predefined

based on expert knowledge and the rest are learned by the system with the help of resident/expert

feedback. In our co-author’s work [100], trend of change in different activities can be used to

improve anomaly detection. In addition to monitor statistical deviation from regular behavior, they

detected deviation from healthy and social norms (defined by experts) as anomalies. Future work

is investigating whether the concept of entropy can be used to describe the amount of anomalous

behavior in the home. Integration of this work with Empath could help finding difficult to find

anomalies and minimize the number of false positives.
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7.2.4 Acoustic Monitoring

is thesis presented a solution to the reverberation problem, however, there are many open chal-

lenges for ambient and passive sound monitoring in home environments. ere are many sounds

in the home that must be filtered out in order for the system to effectively only monitor the speech.

In addition, when multiple people are talking at once, or if television or music is played in the back-

ground, the system will fail. Advancements in Blind Source Separation (BSS) could eventually

disentangle different sound streams in a clean environment. Unfortunately, it is hard to get BSS to

produce good results in reverberant environments. We have shown that other physiological sounds

such as coughing, laughter, and snoring are picked up by the microphone as unclassifiable speech

and therefore new classifier chains must be developed.

7.3 Other example applications

We have demonstrated in this thesis that Empath is an extensible, multimodal and easily deployable

home health system that is able to provide useful data for tracking a variety of health conditions.

ere are numerous other potential avenues where this system could be useful. Besides the three

application examples we mentioned above, there are many additional biomarkers that could be

tracked with similar components to the existing ones in Empath:

Any mood disorder such as PTSD, anxiety, bipolar, or schizophrenia could be tracked with

very similar components to the ones used in the depression configuration because these disorders

produce similar erratic behaviors in activities of daily living and sleep. General wellness monitoring

is another example, such as keeping a healthy lifestyle, which could be measured through exercise,

recreation, and healthy meals. e system could also be adapted to provide targeted tracking of

drinking, obesity, or eating disorders. In addition, ambulatory tracking could be achieved with

integration of body sensor networks into the current system, to assess the progression of ALS,

arthritis, or Parkinson’s disease. is is just a cursory list of other immediate applications for Em-
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path; we believe that in the future will show many opportunities for this system to make a positive

impact on modern healthcare.



Appendices

113



A | DSM-IV Depression Criteria

A.1 Major Depressive Episode and Major Depressive Dis-

order

Major Depressive Disorder requires two or more major depressive episodes. Depressed mood

and/or loss of interest or pleasure in life activities for at least 2 weeks and at least five of the follow-

ing symptoms that cause clinically significant impairment in social, work, or other important areas

of functioning almost every day:

1. Depressed mood most of the day.

2. Diminished interest or pleasure in all or most activities.

3. Significant unintentional weight loss or gain.

4. Insomnia or sleeping too much.

5. Agitation or psychomotor retardation noticed by others.

6. Fatigue or loss of energy.

7. Feelings of worthlessness or excessive guilt.

8. Diminished ability to think or concentrate, or indecisiveness.

9. Recurrent thoughts of death.
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A.2 Dysthymic Disorder

Depressed mood most of the day for more days than not, for at least 2 years, and the presence of

two or more of the following symptoms that cause clinically significant impairment in social, work,

or other important areas of functioning:

1. Poor appetite or overeating.

2. Insomnia or sleeping too much.

3. Low energy or fatigue.

4. Low self-esteem.

5. Poor concentration or difficulty making decisions.

6. Feelings of hopelessness

A.3 Bipolar Episode and Bipolar Disorder

Bipolar disorder is characterized by more than one bipolar episode. ere are three types of bipolar

disorder:

1. Bipolar 1 Disorder, in which the primary symptom presentation is manic, or rapid (daily)

cycling episodes of mania and depression.

2. Bipolar 2 Disorder, in which the primary symptom presentation is recurrent depression ac-

companied by hypomanic episodes (a milder state of mania in which the symptoms are not

severe enough to cause marked impairment in social or occupational functioning or need for

hospitalization, but are sufficient to be observable by others).

3. Cyclothymic Disorder, a chronic state of cycling between hypomanic and depressive episodes

that do not reach the diagnostic standard for bipolar disorder.
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Manic episodes are characterized by:

1. A distinct period of abnormally and persistently elevated, expansive, or irritable mood, lasting

at least 1 week (or any duration if hospitalization is necessary)

2. During the period of mood disturbance, three (or more) of the following symptoms have

persisted (4 if the mood is only irritable) and have been present to a significant degree:

(a) Increased self-esteem or grandiosity

(b) Decreased need for sleep (e.g., feels rested after only 3 hours of sleep)

(c) More talkative than usual or pressure to keep talking

(d) Flight of ideas or subjective experience that thoughts are racing

(e) Distractibility (i.e., attention too easily drawn to unimportant or irrelevant external stim-

uli)

(f ) Increase in goal-directed activity (either socially, at work or school, or sexually) or psy-

chomotor agitation

(g) Excessive involvement in pleasurable activities that have a high potential for painful con-

sequences (e.g., engaging in unrestrained buying sprees, sexual indiscretions, or foolish

business investments).



B | PHQ-9 Questionnaire

Over the past 2 weeks, how often have you been bothered by any of the following problems?.

e response given is one of the following: Not at all, Several Days, More an Half the Days,

Nearly Every Day.

1. Little interest or pleasure in doing things

2. Feeling down, depressed or hopeless

3. Trouble falling asleep, staying asleep, or sleeping too much

4. Feeling tired or having little energy

5. Poor appetite or overeating

6. Feeling bad about yourself - or that you’re a failure or have let yourself or your family down

7. Trouble concentrating on things, such as reading the newspaper or watching television

8. Moving or speaking so slowly that other people could have noticed. Or, the opposite - being

so fidgety or restless that you have been moving around a lot more than usual

9. oughts that you would be better off dead or of hurting yourself in some way
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Table C.1: Recommendation Items

Name Type
Aerobic Dance S, E
Alzheimer’s Caregiver’s Support Group H
Art Group S, M
Ballroom Dance S, E
BBQ S
Bingo S
Blood pressure screenings H
Book discussion S, M
Bowling S, E
Bridge S
Canasta S
Ceramics S, M
Chess Club S, M
Crafty Ladies S
Current Affairs Discussion S, M
DanceFit S, E
Essential Tremmor Support H
Falun Gong E, M
Fitness Exercise E
Golf S, E
Happy hour S
Hiking S, E
Jazzercise E
Laughter Gathering S
Line Dancing S, E
Massage H
Maj-jongg S, M
Men’s Night Out S
Movie Night S
Parkinson’s Yoga E, H
Poker S, M
Qigong E
Racquetball S, E
Scrabble S, M
Sing Along S, M
Socrates Cafe S, M
Tennis S, E
Walking groups S, E
Water Workout E
Wine Club S
YogaLight E
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