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ABSTRACT

In an era of rapid design of microprocessors for desktop systems, embedded systems, and 

handheld computing devices, the timely construction of systems software is essential. Systems 

software, such as assemblers, compilers, and debuggers, must be constructed before develop-

ment of application software for a microprocessor can commence. However, the implementa-

tion of such machine-specific applications is difficult and time consuming. Therefore, to 

remain competitive, it is imperative that systems software designs focus on portability to 

reduce implementation time and ensure rapid delivery of complete systems to the market. 

This dissertation presents the Computing System Description Language (CSDL) framework 

that addresses these rapid development requirements.

We illustrate the CSDL framework by developing an instruction-set description com-

ponent (τRTL), an optional procedure calling convention description component (CCL), and 

the mechanism we use to extend extant descriptions (CSDL). τRTL and its accompanying 

microinstruction descriptions (µRTL) further the state-of-the-art in specifying semantics of 

machine instructions. τRTL adds a new type system and abstract syntax that facilitates more 

accurate specification and automatic detection of errors by τRTL manipulators. τRTL 

machine descriptions are also application independent—they completely separate the specifi-

cation of semantics from the application’s implementation. The CCL specification language is 

the first work to formally describe procedure calling conventions. We demonstrate two dis-

tinct uses for CCL descriptions: code generation and fault detection. Using CCL we have 

built compilers that are more robust, and found and diagnosed faults in production compil-

ers. CCL, τRTL, and µRTL descriptions are bound together using CSDL. CSDL is the first 

description system to recognize that specifications must evolve and that specifications will fre-

quently include application-dependent features. The CSDL environment provides facilities 



for adding new components, sharing information between components, and extending exist-

ing components for use in a wide variety of applications. 
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CHAPTER 1

INTRODUCTION

In an era of rapid design of microprocessors for desktop systems, embedded systems, and 

handheld computing devices, the timely construction of systems software is essential. Systems 

software, such as assemblers, compilers, and debuggers, must be constructed before develop-

ment of application software for a microprocessor can commence. However, the implementa-

tion of such machine-specific applications is difficult and time consuming. Therefore, to 

remain competitive, it is imperative that systems software designs focus on portability to 

reduce implementation time and ensure rapid delivery of complete systems to the market.

A proven technique for building portable systems software—particularly compilers—

is to isolate machine-specific details of an implementation through the use of a machine 

description. A machine description is the specification of a machine’s features that the imple-

mentation needs to perform its task. The machine description is used to automatically gener-

ate the machine-specific portion of the application’s implementation. In theory, the machine 

description focuses on describing the machine rather than describing the implementation. In 

practice, machine descriptions often describe not only the machine, but also the process by 

which the machine’s features are used in the implementation. Such descriptions contain appli-

cation dependencies that preclude their reuse in other applications. Unfortunately, description 

systems, and the machine descriptions they contain are, themselves, difficult and time con-

suming to construct. This research concentrates on the design of description languages that 

promote writing reusable computing system descriptions. 
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1.1 Background
A survey of machine description techniques reveals two approaches to describing machines: 

the procedural approach and the declarative approach. The procedural approach uses an 

implementation to present the features of the target machine to the application. By interpret-

ing the implementation, the desired machine-specific features are recognized. The second 

approach uses a table, or database, of information. Aspects of an application’s implementation 

that are machine-specific are located in the table for convenient access by the application.

In the procedural approach, the machine description is read by a description processor 

which passes through source code taken from the machine description and, optionally, gener-

ates additional code from other parts of the description. Figure 1-1 depicts this process. This 

method has two advantages. Foremost, it is easy to implement. Often, the description is writ-

ten in a special-purpose language that is augmented by the application’s implementation lan-

guage. Shortcomings in the special-purpose language can easily be addressed by using the 

application’s implementation language. The other advantage to this approach is that the 

description language is extensible. If the application’s implementation language is used, then 

all of the procedural and data abstraction facilities of the implementation language are avail-

able. This approach, however, also has its limitations. First, the machine descriptions are spe-

cific to an application. This makes them difficult to reuse, even though the information they 

contain could be useful to other applications. Second, while the characteristics of a target 

machine may be easy to understand, it is usually difficult for someone unfamiliar with the 

application’s implementation to write a description of a new target machine. Third, since the 

descriptions are implementations, they suffer the problems of any implementation: they are 

difficult to read and maintain. Fourth, since these implementations are typically written in an 

ad-hoc manner, it is difficult to prove anything about the resulting descriptions.  

In the declarative approach the machine description contains little or no source code. 

Instead, machine-independent source code that accesses the machine-dependent table is 

included in the application. The description processor then produces a table in the form of 

code that will be accessed by the supplied access routines. This process is shown in Figure 1-2. 

The declarative method is significantly better than the procedural technique. First, the 

descriptions have a fixed format. This makes them more straightforward. The details of the 

target machine are simply placed in the appropriate entries in the table. Thus, the descriptions 
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Figure 1-1. Procedural machines description use.

Figure 1-2. Declarative machine description use.
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are more compact and concise. Consequently, they are easier to write, read and maintain. Sec-

ond, a program can automatically generate, from the description tables, an implementation 

that is similar to the procedural approach in function and form. Also, the resulting implemen-

tation is likely to be more robust. Third, all descriptions have a similar form; similar charac-

teristics are described in similar ways. Hence, applications using these descriptions are more 

easily retargeted. Fourth, this approach can be more application-independent. This approach 

has one disadvantage: it may be difficult to describe all of the relevant information about the 

target machine if the table is not general enough. 

1.2 The Problem
The use of a machine description can significantly reduce the time to retarget an application. 

However, with each retarget of the application, a description for the new target machine must 

be written. For an application of any substance, this itself can be a daunting task. There are 

three sources of difficulty:

1. Information about the machine must be found, encoded using whatever description 

technique is used, and it must be tested, verified, and debugged to ensure accuracy. For 

some machines, the finding of information is itself difficult. For some applications, the 

sheer volume of information to be encoded is a significant obstacle.

2. A description system that is tailored for a particular application usually contains bias 

toward that application. Thus, for example, a retargetable compilation system may 

include a machine description facility. This facility may require that information be 

encoded in a particular way, or that only some information be encoded. Typically, only 

an expert familiar with the compiler can write such a description though the concepts 

that are described do not require expertise in compilers to understand.

3. Because the application does not share a common description format with other appli-

cations, one can be certain that there is not already a description available for one’s use.

Using a common description format that contains no application bias eliminates these three 

sources of difficulties. Such a description facility is called application independent. Obviously 

for an application independent description it may at least be possible that the description 

already exists for the new target machine (source 3). Further, no knowledge of a particular 

application is required to successfully write a description (source 2). Thus any computer pro-
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fessional who is familiar with the machine should be qualified to write a description. Finally, if 

an application-independent description system becomes widely used, finding information 

about a target machine should become easier since computer manufacturers could supply doc-

umentation about the machine in the form of a system description (source 1). 

The goal of this research is to develop a more effective method for describing target 

machines. For the method to be effective, it should be application independent. The class of 

machines we support is the traditional von Neumann architectures. The level of abstraction is 

the view that applications, such as assemblers, compilers and debuggers, have of the target 

machines.

1.3 Motivation
Although there have been numerous efforts to design machine description techniques, many 

of which have been successful, none of these solutions have been very general, complete, or 

application-independent.

For many years, compilers have used machine descriptions to capture details about the 

compiler’s target machine. Through the use of a machine description, target-specific informa-

tion can be isolated from the rest of the implementation so that it may easily be examined and 

changed. Despite their success in compilers, machine descriptions have not been widely used 

by other systems software such as linkers, debuggers, profilers, and simulators. For the most 

part, where machine descriptions have been used, new systems have been developed rather 

borrowing the technology from an extant description system. A primary motive for this action 

is that machine descriptions have been application dependent. That is, inherent in the way the 

description is written is the purpose for which the application will use the information. This 

application dependence stifles the reuse of descriptions in other applications. 

By providing a more complete description method, we can reduce the retarget time of 

applications. Current techniques manage only to describe a subset of the characteristics of the 

target machine. In doing so, these methods require that the remaining characteristics be pro-

vided in a less retargetable form. 

In addition to completeness, we see the need for a more general solution. Many of the 

existing description systems only allow the description of a small class of machines—such as 
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Reduced Instruction-Set Computers (RISC’s). These systems, therefore, are of limited use to 

retargetable applications. 

Current methods of description have been designed with a specific application in 

mind, despite the fact that the following applications can use information about the target 

machine at the same level of abstraction:

• Assemblers - Assemblers require information about the instructions and data types of 

the target machine. They also require the binary format of each of the instructions.

• Compilers - Compilers need instruction information (both binary and symbolic), 

resource information (registers, functional units, busses, etc.), details of the subprogram 

calling convention, etc.

• Debuggers - For disassembly purposes, debuggers need information about the binary 

format of instructions and their respective symbolic form.

• Emulators/Simulators - These applications require information at the appropriate level 

of abstraction. In this case, what instructions are available and their syntax and seman-

tics. 

• Synthesis tools - Tools for synthesis require similar information as simulators.

• Evaluation tools - For example, profilers require resource and instruction information.

• Testing tools - Automatic testing and verification tools can use the instructions and 

resources as a basis for their testing.

• Documentation - People could use a formal description as a form of machine documen-

tation.

Thus, there is clearly a need for an application-independent description technique. With such 

a description facility, all of the above tools could use a single description. This, in fact, changes 

the role of the description language to that of a definition language. By standardizing the 

descriptions, we can establish a formal method of communication among computer architects 

and software developers. 

1.4 Structure
The following chapter presents a brief overview of previous machine description systems. 

Chapter three presents the CSDL (Computing System Description Language) core language 

used to describe a machine’s instruction set. Chapter four discusses the Calling Convention 
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Language that we use to describe a machine’s procedure calling convention. Chapter five pre-

sents the general CSDL framework that delivers flexibility and extensibility to the applications 

that use CSDL. Chapter six concludes by summarizing the research results and contributions 

of this work. 
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CHAPTER 2

COMPUTING SYSTEM DESCRIPTIONS

Since the 1960’s researchers have investigated methods for effectively describing computing 

systems. Over the years, three categories of descriptions have emerged: computer hardware 

description languages, machine descriptions, and multipurpose descriptions. Computer hard-

ware description languages (CHDL’s) focus exclusively on the hardware for the purpose of sim-

ulation and synthesis of the hardware. Machine descriptions aim to isolate machine-specific 

characteristics of an implementation—typically a compiler—with the goal of making the 

implementation retargetable. Multipurpose descriptions aim to provide the same service as 

machine descriptions with the primary goal of serving a wider application audience. In this 

chapter, we present languages from each of these three categories in turn.

2.1 Computer Hardware Description Languages
Hardware designers started developing and using languages for the description of computer 

hardware systems in the 1960’s. These languages, called Computer Hardware Description 

Languages (CHDL’s) represent the earliest attempts to describe machines.

An important characteristic of a CHDL is the level of abstraction that the language 

was intended to be used for. The level of abstraction refers to the logical level of computer 

design that the language most naturally describes. Examples of abstraction levels include regis-

ter transfer, microprogramming and microarchitecture. Languages that are best suited for a 

particular design level, such as the register transfer, typically have a notion of objects native to 

the design level (e.g., registers). The direct support of such objects in CHDL’s give them their 

expressive power, and also limit their scope of applicability. The support of objects at a partic-
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ular abstraction level makes descriptions at that level natural to read and write, while making 

the description at other levels, whose objects are not directly supported, awkward if even pos-

sible.

The plethora of CHDL’s makes a thorough discussion of them here infeasible (Das-

gupta presents a more in-depth discussion [Das89]). Table 2-1 (from [Das89]) presents exam-

ples of CHDL’s representative of each of a number of levels of abstraction. Notice that a large 

number of these languages attempt, to some degree, to be multi-level. Since applications often 

view machines at a higher level of abstraction than most CHDL’s are designed to present, the 

multi-level CHDL’s appear to be the most promising candidates for building retargetable 

applications. 

The abundance of CHDL’s has given designers a large selection of description meth-

ods; it has also stifled language standardization. In an effort to alleviate the situation, the U.S. 

Department of Defense (DoD) has developed, as part of its Very High Speed Integrated Cir-

cuits (VHISC) project, a DoD standard CHDL called VHDL. As a result, VHDL is rapidly 

being adopted as an industry-wide standard CHDL. We will, therefore, review VHDL 

[Coe89, LSU89] which is representative of these multi-level languages.

2.1.1 VHDL

A VHDL description is composed of design entities that are organized hierarchically. An entity, 

in turn, is composed of an interface and one or more bodies. An interface defines ports which 

are the only method of communication between an entity and other entities. There are two 

types of bodies: structural and behavioral. A structural body simply connects the entity’s ports 

to ports of sub-entities contained in the entity body. A behavioral body, on the other hand, 

specifies the behavior of an entity using a procedural language. Behavioral bodies are used to 

define simple entities, while structural bodies are used to hierarchically build new composite 

entities from existing ones.

Data objects in VHDL may be one of constant, variable, or signal. Constants and 

variables are similar to their counterparts in programming languages. Signals, however, are 

new. A signal is connected to an interface port, and holds a value just as a variable does, but 

has an additional dimension—time. Signals are changed using a signal assignment. The 

assignment occurs when a value in the assignment (another signal) changes value. A time 



Chapter 2: Computing System Descriptions Computer Hardware Description Languages 10

L
ev

el
s 

o
f 

A
b

st
ra

ct
io

n
E

xa
m

p
le

s 
o

f 
L

an
g

u
ag

es

A
rc

hi
te

ct
ur

al

E
xo

-a
rc

hi
te

ct
ur

e
IS

P
S

E
nd

o-
ar

ch
ite

ct
ur

e
S

LI
D

E
S

*A
M

IT
/A

D
L

H
IS

D
L

M
ic

ro
-a

rc
hi

te
ct

ur
e

M
ID

L
PA

D
L

S
A

R
A

S
*M

A
A

D
L

M
ic

ro
pr

og
ra

m
m

in
g

M
IM

O
LA

V
H

D
L

C
O

N
LA

N

M
ac

hi
ne

-in
de

pe
nd

en
t

M
A

R
B

LE
S

*
O

hn
e

u-
C

V
M

P
L

A
da

M
ac

hi
ne

-d
ep

en
de

nt
S

T
R

U
M

YA
LL

L

R
eg

is
te

r 
Tr

an
sf

er
D

D
L

C
D

L
A

H
P

L

Z
E

U
S

S
A

R
A

Lo
gi

c 
de

si
gn

Ta
bl

e 
2-

1.
 A

bs
tr

ac
ti

on
 L

ev
el

s 
an

d 
C

H
D

L 
E

xa
m

pl
es

 (
Ta

bl
e 

3.
1 

in
 [D

as
89

])
.



Chapter 2: Computing System Descriptions Computer Hardware Description Languages 11

delay may also be added to delay when the assignment takes place. Thus, signals may easily be 

used to model the wire connections of a computer. 

In summary, VHDL uses entities to model the components of a system. Just as com-

ponents are made up of sub-components, entities may be constructed using sub-entities. 

Wires connecting components are modeled using signals connecting ports. Finally, the behav-

ior of the simple entities is described using a procedural language.

VHDL has a number of strengths. The hierarchical design makes it possible to man-

age descriptions of large, complex systems. Information about the behavior of components of 

the system can be precisely defined. Further, VHDL already has an established user base in 

simulation, design and synthesis, which could facilitate the sharing of descriptions. Unfortu-

nately, for our purposes, VHDL’s shortcomings are severe. The descriptions provide informa-

tion at an inappropriate level of abstraction, making it difficult to extract the needed 

information.

2.1.2 ISP

The first language to deviate from describing purely hardware is Bell and Newell’s ISP 

(Instruction-set Processor) descriptive system [BN71]. However, we still place ISP in the 

CHDL category. ISP focuses on characteristics of the instruction-set architecture (ISA). The 

purpose of the notation is to uniformly describe instruction sets of a variety of machines. An 

ISP description has two parts: “the nature of the operations and the rules of interpretation.” 

As such, Bell and Newell argue that this completely describes the behavior of the machine.

A typical ISP description is divided into five sections: the processor state, instruction 

format, effective address calculation, instruction interpretive process, and instruction set. The 

processor state and instruction format sections define the names and sizes of storage locations 

and instruction fields, respectively. The remaining three sections use a more procedural 

approach. Rather than describing what an instruction does, or what addressing modes are 

available, ISP descriptions describe how each of these work. Addressing modes are defined in 

terms of operations on the previously declared storage locations. Instructions are defined by 

their effect on the state of the machine using a register transfer notation to indicate the seman-

tics. Finally, the instruction interpreter is defined in a similar way by using register transfers to 

describe the interpreter’s effect on the state of the machine.
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ISP has a couple of good points. First, it is general. This is illustrated by the forty 

machine descriptions provided in Bell and Newell’s book. Second, the entire “programmer’s 

view” of the system, as defined by the programmer’s manual, can be described. Third, the lan-

guage provides detailed information about the binary format of the machine’s instructions. 

This is very useful information for applications that manipulate machine code.

Bell and Newell’s system has several serious disadvantages, though. First, ISP describes 

machines at the wrong level of abstraction. Graham notes that “ISP contained too much 

detail, making it hard to extract the needed information from the description” [GH84]. Sec-

ond, the descriptive system provides no information about software conventions, which are of 

interest to our applications. Third, ISP is not formal; its syntax and semantics are open-ended 

which makes it unusable by an automated system [Lun83]. This is primarily because ISP was 

designed as a notation for communicating machine characteristics between people [Wic75]. 

Thus, for an automated system to use ISP, a number of restrictions would have to be imposed 

on the language.

2.1.3 LISAS

Cook and Harcourt also describe the instruction-set architecture using a specification lan-

guage called LISAS [Coo94, CH94a, CH94b]. LISAS is described as a functional language that 

models machines as a machine state and transformations on that state. The descriptions 

include storage bases, access classes (instead of operand addressing), data type descriptions, 

and instruction formats. Cook aims for application independence and raising the level of 

abstraction above CHDL’s. 

Unlike the other description systems, LISAS was designed for instruction-set simula-

tion. This places them squarely in the class of CHDL’s. A LISAS description presents informa-

tion at a level of abstraction somewhere between CHDL’s and machine descriptions. Although 

Cook claims that LISAS can be used for applications other than simulation, it is not at all 

apparent how applications that generate assembly language could make use of the descriptions 

since they detail the binary format of instructions, but not the symbolic assembly format. 

LISAS primary abstraction seems to be the instruction. If one wishes to describe other architec-

tural features, such as the instruction execution pipeline, it is not clear how one could accom-

plish this within the current LISAS framework.
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2.2 Machine Descriptions
Unlike traditional CHDL’s, Bell and Newell’s ISP appealed to systems software developers. 

Shortly after ISP’s introduction, machine descriptions emerged to aid in the construction of 

both assemblers and compilers. Machine descriptions are used to isolate and describe features 

of computing systems for retargetable software. In this section, present the most successful 

machine description systems. 

2.2.1 ISP´

Despite its shortcomings, ISP forms a foundation for many subsequent description systems. 

Since ISP has never been formally defined, a number of interpretations have evolved. One 

such interpretation is Wick’s ISP´ which is used in his assembler generating system [Wic75], 

and also in Fraser’s automatic code-generator generator [Fra77a, Fra77b]. ISP´ has a formal 

definition for its syntax and semantics, thus enabling it to be parsed, and used by such sys-

tems. Wick’s system, however, places very few demands on the machine description system. In 

particular, the assembler generator has no need for a description of the semantics of each 

instruction, although they are present. Only details such as the binary format of the instruc-

tions, their mnemonics, and the data type encodings are used [Fra77b].

2.2.2 TMDL

One of the first to abandon the ISP notation were Graham and Glanville. They use a machine 

description to enhance the retargetability of their table-driven code generation system 

[GG78b, GG78a]. Their language, called TMDL (Target Machine Description Language), 

uses attribute-grammar productions as its form of machine description.1 A machine descrip-

tion is composed of sections that describe the resources of the machine (such as the register 

set) and the instruction set.

The resource description is rather limited; it allows for specification of “logical group-

ings of register classes and pairs,” and of which registers are available for allocation. The 

instruction-set section, however, is much more flexible. Instructions are described using a syn-

tax-directed translation [ASU86]. Each target machine instruction is “described” using a 

1. Ganapathi and Fischer have subsequently used this technique in their description-driven code-gen-
eration system [GF82].
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semantically equivalent intermediate representation (IR) expression and a template for the 

corresponding assembly language instruction. Code is generated for the target machine by 

finding an instruction in the table that matches the IR expression. The assembly language 

template provides the translation from the IR to the target machine’s assembly language. So, 

TMDL is not a machine description, but instead a code generator description.

Early versions of TMDL required a separate rule for each combination of instruction 

and addressing mode. Graham and Henry refer to this structure as a “flat” grammar since 

every grammar rule corresponds to a single instruction. Thus, an instruction with three oper-

ands, each with four possible addressing modes would require 43 = 64 different rules! Com-

plete descriptions of a machine like the VAX-11 [Dig78] would be impractically large, since it 

would require several million grammar rules [GH84]. Later versions “factored” the grammar 

allowing descriptions of common portions of instructions, such as addressing modes, to be 

centralized [GHS82]. 

TMDL, in its final form, is a significant improvement over previous languages. Since 

the descriptions are essentially syntax-directed translations, they are easy for the implementor 

(in this case, a compiler writer) to understand. The original goal of isolating the machine’s 

instruction set and assembly language format has been accomplished. Consequently, a num-

ber of machines have been described, thus providing working compilers. Finally, this 

approach has, to some extent, managed to separate the implementation using the descriptions 

from the descriptions themselves. This feature diverges from the previous descriptions which 

are more procedural—making it more suitable for other applications.

TMDL has several shortcomings, however. Although the compiler implementation 

has been separated from the description, the description still reflects the purpose of the imple-

mentation. The choice of the intermediate language as a method for describing the semantics 

of instructions reduces the usefulness of TMDL as a description system for other applications. 

The language requires an understanding of the IR for the compiler system and of syntax-

directed translation which are skills that should not be required to describe the characteristics 

of machines.

Eventually, Graham and Henry abandoned TMDL altogether. A new LISP-like 

description language, called LISPMD (LISP machine description), was created [AGH+84]. 

Although LISPMD’s design evolved from TMDL, its syntax and semantics diverge from it. 
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LISPMD is much more a general pattern-processor than a description system. A description is 

composed of “meta-family patterns,” “meta-rules,” semantic actions, and cost and weighting 

factors for each instruction. The semantics and rules for macro expansion make writing, or 

even reading, machine descriptions daunting for someone unfamiliar with the implementa-

tion of the compiler, the description system, and LISP.

2.2.3 MDL

Boulton and Goguen developed a machine description language (MDL) to aid in the develop-

ment of retargetable compilers [BG79]. In particular, MDL was designed to describe instruc-

tion-sets and memory structures in a form that could be processed by a machine. MDL is a 

direct descendent of ISP. Consequently, they decompose their description into structures sim-

ilar to ISP’s. MDL has separate facilities for describing the instruction semantics, instruction 

format, the structure of memory and data, and basic units (the basic addressable unit, number 

base, and instruction alignment). MDL is also hierarchical; basic units such as memory struc-

ture are used to describe the instruction format, which is subsequently used in the instruction 

description.

MDL provides a great deal of information at the bottom of its hierarchical structure. 

Details such as the base of the number system used by the machine and the data representa-

tion encoding (two’s-complement, sign-magnitude, EBCDIC, etc.) are easily expressed. In 

addition, structures with similar properties can be grouped together, resulting in a more com-

pact description. However, higher in the hierarchical description, where the language more 

closely interfaces with the intermediate language, details become more ad-hoc. In particular, 

unlike TMDL, the addressing modes for instructions are not separated from the form of the 

instructions. There is also no uniform model or formal language for the semantics of the 

instructions. Moreover, the addressing mode is implicitly derived from the format of the 

instructions. This greatly restricts the variety of instructions that can be described by the 

model.

2.2.4 Mop

Cattell designed an instruction-set formalism for use in a machine-independent code genera-

tor for the PQCC (Production-Quality Compiler-Compiler) project at Carnegie Mellon Uni-

versity [LCH+80]. Cattell uses a declarative, rather than a procedural description called Mop 
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[Cat78, Cat80]. The model assumes, as ISP does, a machine composed of a processor and 

memory. Information provided by the model is divided into five categories:

1. Storage bases—locations that store the processor state. Each location is assigned a type, 

such as primary memory, reserved, or temporary.

2. Operand addressing—defined using an expression in terms of storage bases.

3. Machine operations—semantics of each instruction in terms of input and output asser-

tions on the processor state. The semantics are described using a tree notation similar to 

the TMDL’s. Attached to each instruction is its cost.

4. Data Types—size, type, and encoding of each supported data type.

5. Instruction fields and formats—the format and encoding of each of the machine instruc-

tions described in the machine operations section. These also include the type and oper-

and class of each instruction field.

As mentioned earlier, Mop is used with a machine-independent code generator. Cattell identi-

fies problems in the interface between the description and the code generator. Specifically, he 

discovered that a set of general axioms were required to transform some intermediate language 

forms into different, equivalent forms that would match the semantic descriptions of the 

machine operations. The axioms are used to express the identity and commutativity relations 

for the operators in the intermediate language. 

Many of the problems with TMDL descriptions can be found in Mop descriptions as 

well, since the semantic descriptions of instructions are similar to TMDL’s. However, Cattell 

addressed several problems found in earlier systems. In particular, he determined that specify-

ing the commutativity of operators should be solved outside the description of the target 

machine, in this case by using axioms. Cattell also observed that: “the machine representation 

does not say how to generate code for the machine in any way” [Cat80].

2.2.5 PO and VPO

Davidson and Fraser use a machine description to achieve machine-independence in their 

peephole optimizer, PO [DF80, DF84b]. PO’s descriptions use a technique similar to 

TDML. Consequently, the descriptions take the form of a grammar for syntax-directed trans-

lation. One significant difference is that Davidson and Fraser describe the effects of each 

instruction using ISP-like register transfers, called RTL’s (Register Transfer Lists) [DF84b]. 
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Although PO’s notation allows storage locations to be named, the only name that has specific 

meaning is PC, which is used for the program counter. PO assumes that the PC will be incre-

mented after each instruction, therefore, this effect need not be described by each instruction. 

Davidson makes an observation about the nature of machine descriptions at any level [DF80]:

“Details irrelevant to the object code may be omitted from the machine description. 

… PO does not need to know how the condition code represents comparisons, so the 

machine description does not say.”

Therefore, there are specific details about the machine, such as the condition code representa-

tion, that do not affect the interface to the machine. PO’s machine descriptions are small; they 

can be written in an hour or two by someone familiar with the target machine. 

Later, Davidson and Fraser developed a compiler—that used PO—for the Y program-

ming language [DF84a]. Combiner1, a phase of PO, is retargeted using a machine descrip-

tion. However, Combiner does not use the description directly. Instead, the description is 

translated into a table that Combiner uses. Machine descriptions sometimes require tuning 

for the compiler to generate good code. Thus, Combiner is not tuned from machine to 

machine, making it more portable. Combiner does not make time-space trade-offs, so this 

information is not explicitly encoded in the machine description. Rather, the order of instruc-

tions is important in the descriptions. Thus, more specific instructions are placed before their 

more general, more expensive counterparts. In addition, PO uses a register assignment mod-

ule that contains tables of information about the register set—a form of register description 

[DF84a].

Benitez and Davidson have since developed a successor to PO, called vpo [BD88, 

Ben89]. vpo uses an improved machine description technique. Many of the problems that 

Davidson discovered while using PO descriptions have been addressed. Both PO and vpo use 

the machine descriptions to generate recognizers for RTL’s [Dav85]. PO descriptions were 

used to produce finite state automata (FSA) that recognized valid RTL’s. Benitez and David-

son refined this method by using Yacc [Joh83] to generate the RTL recognizers [Dav85]. By 

1. Combiner is the phase of PO that replaces sequences of register transfer instructions with single 
instructions that are semantically equivalent [DF84a].
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using Yacc-based descriptions, they describe machines with large instruction sets more com-

pletely. Furthermore, the PO regular expressions used to generate the FSA’s were not powerful 

enough to describe the assembly language expressions.

In addition to the Yacc-based description, vpo uses a formal description of register sets. 

Register sets are assigned type, size and alignment requirements. Furthermore, the register 

descriptions allow multiple abstract register sets to be mapped onto the same hardware register 

set. This provides multiple views of a single register set, which is convenient for machines that 

use the same registers to store floating-point and fixed-point values.

The vpo machine descriptions integrate the techniques used in ISP and PO. From 

PO, vpo takes its Yacc-based description. By using a grammar, common features can be fac-

tored and described in a single location. Also, since the description is a Yacc grammar, seman-

tic actions can be used, providing additional flexibility. From ISP, vpo takes the register 

transfer notation (the RTL’s) to describe the semantics of instructions. In fact, vpo uses RTL’s 

to represent instructions throughout its optimization phases. The notation is a simple, intui-

tive, application-independent representation of instruction semantics. 

Despite the benefits described above, vpo descriptions have a number of disadvan-

tages. First, the LALR [ASU86] parsers generated by Yacc are still too restrictive. For some 

machines, it is difficult to remove reduce-reduce conflicts without compromising the concise-

ness or readability of the descriptions. Second, the addition of semantic actions, which at first 

seems beneficial, makes the descriptions more difficult to read since the information is distrib-

uted across multiple files. Third, vpo provides no formal description of software conventions. 

Finally, most of the description is still in the form of an implementation—making it less suit-

able for other applications.

2.2.6 The GNU C Compiler

Using the ideas from PO, The Free Software Foundation’s GNU C compiler [Sta92] also uses 

both RTL’s and a machine description to attain retargetability. The machine description is 

broken into two parts: a set of instruction patterns, and a set of C macro definitions. The 

macro definitions parameterize the implementation by providing information about the target 

machine, such as storage layout (e.g., big-endian or little-endian), sizes of supported data 

types, register usage, and subprogram calling convention. The instruction patterns contain 
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RTL templates, constraints on the missing pieces of the templates, and an output pattern or C 

code to generate the assembler output. 

The GNU C compiler’s machine description is probably the most thorough attempt 

at parameterizing an implementation. Most aspects of the target machine can be described, in 

some way, using the instruction patterns and macro definitions. The macro definitions isolate 

machine-specific details, but do not really describe the target architecture in any traditional 

sense. The technique is not only application-specific, but compiler-specific. Similar to PO, 

GNU’s instruction patterns are used for peephole optimization. Unlike PO, these patterns use 

a combination of a complex LISP-like syntax for describing the RTL templates, and C code 

for specifying the format of the assembly output. This combination makes the patterns con-

fusing and difficult to read. It would not be possible to reuse these descriptions since they are 

so tightly coupled with the implementation of the compiler. 

2.2.7 Maril

Bradlee, Henry and Eggers’ Marian system [Bra91, BHE91] uses Maril, a machine description 

language, for describing not only the instruction set, but also the instruction scheduling prop-

erties and a limited register description. Maril is the first description system to incorporate 

details about instruction pipelines. Specifically, associated with each machine instruction are 

the resources, such as the fetch, decode and execution units, that the instruction requires dur-

ing each cycle of its execution. This information makes it possible for Marion to use a 

machine-independent instruction-scheduling algorithm. Additionally, limited information 

about the register sets can be specified. This includes which registers are volatile or used to 

pass arguments, which registers are assigned to the frame and stack pointers, which registers 

hold the return address and return value, and registers that have constant value (e.g., a value of 

zero).

The Marian system is limited in its use of the description provided by Maril. For 

example, Marian uses lcc [FH91, FH95] to generate code. Since lcc has its own code genera-

tor, the description is not consulted during code generation; the only portion from the 

instruction description that is used is the pipeline resource information. Furthermore, it is not 

clear how effectively Marian uses the information it is given since none of the code generated 

by the compiler has been run on the target machines. 
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2.3 Multipurpose Descriptions
As machine descriptions matured, three facts became apparent: 1) machine description sys-

tems are difficult to build, 2) machine descriptions are difficult to write and debug, and 3) 

machine descriptions contain information of interest to all sorts of retargetable applications. 

As a result, there has been a growing interest in machine description systems that can be used 

in more than a single application. In this section, we present languages that have the potential 

of being multipurpose descriptions. 

2.3.1 SLED

Ramsey and Fernandéz’s New Jersey Machine Code Toolkit [RF95, RF97] aids in the devel-

opment of programs that process machine code. The toolkit uses a Specification Language for 

Encoding and Decoding (SLED) machine code instructions. The toolkit presents the users 

with an assembly language level of abstraction. Tools that use the toolkit can easily read or 

emit machine code instructions through a procedural interface. 

SLED descriptions concisely specify the binary format of a machine’s instructions. 

From these descriptions, two different procedural interfaces can be generated: an interface 

that reads machine code and an interface that emits machine code. Using these interfaces, 

applications can be written that manipulate machine code in a machine-independent manner. 

The descriptions do not specify how the machine code will be manipulated, but rather the 

format of machine code. 

SLED is a superb example of a description language that can be used for multiple pur-

poses. Although SLED does not describe any other features of machine instructions—includ-

ing their semantics—SLED provides an effective solution to a difficult problem: describing 

machine instruction formats. SLED would be a good choice for solving the encoding/decod-

ing problem in a larger system.

2.3.2 λ-RTL

The Zephyr component [ADR98] of DARPA and NSF’s National Compiler Infrastructure 

includes λ-RTL machine descriptions developed by Ramsey and Davidson [RD98a, RD98b]. 

Since Zephyr uses vpo as its optimizer, it must model machine instructions as RTL’s. Ramsey 

and Davidson attempt to formalize vpo’s RTL’s by using a description language called λ-RTL. 
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λ-RTL is based on λ-calculus and models a machine’s instructions as transformations on the 

machine’s state. 

The λ-RTL specification language is still being developed. However, initial descrip-

tions yield insight into the nature of the language. λ-RTL imposes strong types on RTL’s. 

However, because of the underlying formalism, often the λ-RTL processor can infer the types 

of operations without having to specify them everywhere. This makes the descriptions more 

compact, while, at the same time difficult to understand without reading the entire descrip-

tion. At this early stage, the effectiveness of λ-RTL has not been evaluated. Unfortunately, the 

specifications trade readability for conciseness to such a degree that it is not clear that anyone 

but the specification’s author will be able to read them. 

2.4 Summary
This chapter presented examples of computer hardware description languages, machine 

descriptions, and potential multipurpose languages. CHDL’s are used in the simulation and 

synthesis of hardware, while machine descriptions are used in the construction of software. In 

contrast to their predecessors, multipurpose descriptions attempt to separate what is being 

described from the description’s use. 

Although research in the field of computer description systems has been active, no sys-

tem provides a complete or general solution to the problem. This body of work presents 

strong evidence that subsequent description systems should address the following problems:

• Retargetable software is difficult to write; so are machine description systems. New 

description systems should separate a description’s form from its purpose.

• It is difficult to anticipate all the information that all applications may deem necessary. 

Description systems should be extensible.

• Descriptions must not only be written, but read. Notation must be familiar to potential 

authors.

• Descriptions never seem to be complete. Incomplete descriptions should be usable.

• Different applications view machines differently. Descriptions must support multiple 

levels of abstraction and multiple views of a single abstraction.
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CHAPTER 3

SPECIFYING INSTRUCTION SEMANTICS: 
CSDL CORE DESCRIPTIONS

In the next three chapters, we develop a framework for building reusable computing system 

descriptions called CSDL (Computing System Description Language). We divide CSDL 

descriptions into components that are each responsible for describing one feature of a target 

architecture. In this chapter, we present the CSDL core component which is responsible for 

describing machine characteristics of interest to most, if not all, applications: the target archi-

tecture’s instruction set. 

A core description presents the instruction-set architecture of the machine. This 

abstraction level consists of the information that is necessary to produce or manipulate 

instructions for the target machine. We provide this information by defining the effects of 

instructions on the state of the machine.

Core descriptions are composed of two parts: the semantics of the instruction set and 

alternative forms or views of instructions such as the assembly language format, the binary 

encoding of instructions, or the cycle cost of instruction execution. In this chapter, we focus 

on the formal description of instruction semantics in isolation. Chapter 5 will present how 

core descriptions may be augmented with whatever additional information an application 

writer considers necessary. 

Our instruction semantics are based on a register transfer notation called register 

transfer lists (RTL’s), so we first present an extant register transfer notation. 
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3.1 String RTL’s
Traditional systems software generates, or operates on, assembly language or binary machine 

language instructions. Unfortunately, both of these forms of machine instructions vary from 

machine to machine. For example, to perform a 32-bit signed addition on the MIPS [KH92], 

the assembly language instruction is:

add r1, r1, r2

while on the Motorola 68020 [Mot85] the assembly form is:

add d2, d1

these two instructions differ not in their semantics, but rather in their concrete syntax. One 

reason this difference occurs is that each assembler defines the format of lexical tokens (e.g., 

opcode mnemonics, registers, constants, and addressing modes) and the ways in which they 

may be combined (the assembly language). The result is that it is impossible to determine 

without knowing the particular assembly language whether the instruction:

add r2, r3, r1

adds registers two and three and places the result in register one, or if it adds registers three 

and one and stores the result in register two. 

Such trivial machine dependencies, as well as far less trivial differences, can be elimi-

nated by expressing the semantics of instructions using register transfers, or RTL’s (Register 

Transfer Lists). One dialect of register transfers that is representative of the technique was 

developed by Davidson and Benitez [BD88]. This form, which we call “string RTL’s,” is pre-

sented in this section. RTL’s make it possible for software to eliminate trivial syntactic differ-

ences and concentrate on semantic differences that reflect each machine’s capabilities at the 

machine instruction level.

A highly successful method of eliminating machine dependencies is to express each 

machine instruction in a language whose semantics are invariant across platforms. Instruc-

tions are then manipulated in this language by systems software whose algorithms are machine 

independent. 

3.1.1 String RTL Syntax and Semantics

String RTL’s are composed of registers, memory references, constants, labels, local and global 

identifiers, macros, and operators. We briefly describe the syntax of each of these tokens here. 
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3.1.1.1 Registers

Registers are represented using the notation:

r[num]

where r is a lower-case letter that indicates the type of value the register currently holds. num 

is a decimal number that indicates which register is being referenced. For example, b[5] typ-

ically designates the sixth register. This register holds a byte (thus, the b register type).

3.1.1.2 Constants

Constants are always positive and can be either integer or floating-point. Integer constants are 

strings of decimal digits. Floating-point constants use the notation:

mantissa E sign exponent

where mantissa is a string of decimal digits representing the integer value of the mantissa, 

exponent is a string of decimal digits representing the value of the exponent, and sign is 

either ‘+’ or ‘-’ to indicate the sign of the exponent. Negative constants can be obtained by 

applying the unary negation operator (‘-’) to the constant.

3.1.1.3 Operations

Register transfers not only transfer data from one location to another, they also perform vari-

ous arithmetic and logical operations. The set of operations is limited to 36 built-in unary and 

binary operators that are available on most architectures. This includes the standard arith-

metic operations such as addition and subtraction of signed integers (denoted ‘+’ and ‘-’, 

respectively), bitwise logical operations such as AND, OR, and NOT (‘&’, ‘|’, and ‘~’), and 

relational operations such as less than, greater than, and equal (‘<’, ‘>’, and ‘:’). Finally, an 

RTL effect is not complete without the assignment operator (‘=’) which performs a store oper-

ation (thus the use of ‘:’ for relational equal). The RTL effect:

r[1]=r[2]+r[3]; (3-1)

denotes that register two is added (using signed integer arithmetic) to register three with the 

result being placed in register one. The semicolon (‘;’) marks the end of the effect. RTL oper-

ators are often overloaded, and the type of operation is determined by the type of the oper-

ands. For example, addition of two registers that contain floating-point values could be 

described using the effect:

f[1]=f[2]+f[3];
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Thus, the same operator, ‘+’, is used to designate two different operations: signed-integer 

addition and floating-point addition. 

3.1.1.4 Macros

Often times, it is necessary to extend the set of built-in operations. This is accomplished using 

RTL function macros. A function macro is represented by an identifier composed of exactly 

two uppercase letters followed by a comma-separated list of expressions enclosed in brackets. 

A common use of function macros is to perform type conversions. For example, to convert a 

floating-point value into an integer value, one could introduce the FI macro:

r[5]=FI[f[5]];

The meaning of function macros is machine-dependent and is thus undefined by the nota-

tion. Their meaning must be implicitly understood by the algorithms that manipulate them.

Function macros are also used to abstract away the details of complex instructions. For 

example, the SAVE instruction on the SPARC [Sun87] that provides a new register window is 

described using the SV function macro:

r[14]=SV[r[14]+64];

This effect only indicates that r[14] is both read and written. The details of which registers 

are saved, and which registers change values because the register window has moved, remain 

unspecified. 

In addition to function macros, string RTL’s also allow for macros to be used to 

describe special storage locations in the target machine. Examples of these include PC and CC 

which designate the program counter and condition codes respectively. 

3.1.1.5 Memory

Memory references are represented using the notation:

M[address]

where M is an uppercase letter that indicates the type of value the memory location currently 

holds. address is an arbitrary RTL expression that indicates the address of the memory loca-

tion being referenced. The RTL expression for a memory fetch using register displacement is:

F[r[4]+12]
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In this case, the result of this expression is likely a single-precision floating-point value1. 

Unlike register indices, memory addresses may use arbitrarily complex expressions to repre-

sent the necessary addressing mode. Table 3-1 shows several of the most commonly known 

addressing modes. 

3.1.1.6 Symbolic Addresses

String RTL’s use three types of expressions to name memory addresses and constants symboli-

cally. They are: labels, global identifiers, and local identifiers. Labels most commonly mark 

the target of a branch instruction. Labels are designated using the character ‘L’ followed by a 

decimal number (e.g., L15). Global identifiers mark constant address values and function 

entry points. A global is represented using a string of letters and digits (e.g., index0). Local 

identifiers usually represent constant offset values (typically from the stack pointer). A local is 

represented using a string of letters and digits followed by a period (e.g., i.). 

Locals and globals, as well as other tokens, have an encoded string variation as their 

internal representation. The internal form uses two bytes to compactly store which symbol is 

referenced in the RTL. These two bytes are used as the key for a symbol table to quickly access 

all necessary symbol information, such as a symbol’s offset.

3.1.1.7 Instruction Effects

Ultimately, the purpose of string RTL’s is to describe the effect a machine instruction has on 

the state of the target machine. This is achieved by combining the various string RTL expres-

1. Although there are conventions regarding the meaning of memory types, their meanings are 
machine dependent.

RTL Expression Addressing Mode

R[_global_id] memory direct

R[w[4]] register indirect

R[w[4]+12] displacement

R[w[4]*4] scaled

R[(w[4]*4)+12] scaled displacement

R[w[4]+w[7]] indexed

R[R[_global_id]] memory indirect

Table 3-1. Sample RTL address expressions (excerpted from [Ben94]).
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sions described above (and summarized in Table 3-2) into a list of instruction effects. An 

effect contains a single assignment operation on some storage location. In many cases, as 

shown above, instructions can be described using a single effect. Instructions that modify 

more than a single location are described using multiple string RTL effects. For example, on 

many machines, addition also sets a condition code register. This would be expressed using:

r[4]=r[4]+r[3];CC=(r[4]+r[3])?0;

where the assignment to the macro CC describes the instruction’s effect on the machine’s con-

dition codes. All expressions are assumed to be evaluated before any assignments are made.

Type Regular Expressiona

a. Tokens are described using extended regular expressions. Literals are displayed 
in bold.

Example

Register [a–z][[0–9]+] r[5]

Integer Constant [0–9]+ 15

Floating-point Constant [0–9]+E[+-][0–9]+ 15E10

Operation expr b opc expr 
or
op expr

b. expr is any RTL expression defined in the table.
c. op is any one character RTL operator such as +, -, *, /, <, >, etc.

r[1]+5

Macro [A–Z][A–Z] PC

Function Macro [A–Z][A–Z][expr,...] FI[f[5]]

Memory Reference [A–Z][expr] R[r[14]+12]

Local identifiers [A–Za–z0–9_]+. i.

Labels L[0–9]+ L15

Global identifiers [A–Za–z0–9_]+ _main

effect expr = expr; r[5]=12;

RTL effect + r[1]=r[2];r[1]=r[2]

Table 3-2. Summary of formats for string RTL expressions.
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3.1.1.8 Transfers of Control

Instructions that perform transfers of control use several different formulations. Both condi-

tional and unconditional branches are described by assigning to the program counter. The 

string RTL:

PC=L43;

describes an unconditional branch to the instruction labeled L43. Conditional branches use 

the relational operators to compute the target address:

PC=CC:0,L43;

In this case, the PC is set to L43 only if the value of the condition codes equals zero. Other-

wise, PC is not set by this effect. The list operator (‘,’) is used to augment the assignment 

operator to designate conditional assignment. 

The two other common forms of transfer of control are procedure call and return. 

Procedure calls are represented by assignment to the ST macro:

ST=_doit;

and returns are described as:

PC=RT;

which indicates that control is transferred back to the address found at the top of the call 

stack. Although the effect of a procedure is to set the program counter, the string RTL effect 

for procedure call sets the special macro ST instead of PC. This makes it possible to quickly 

distinguish procedure calls from branches in string RTL’s. Finding procedure calls quickly is 

important since procedure call sites are of interest for many analyses including building pro-

gram call graphs. The procedure return effect has a special form for similar reasons. 

3.1.2 Analysis and Manipulation

With a firm understanding of the syntax and semantics of string RTL’s, we can now discuss 

how software that uses string RTL’s can analyze and manipulate machine-dependent informa-

tion in a machine-independent way. 

First, assume that there are ways to convert an assembly language program into a 

semantically equivalent sequence of string RTL’s and vice versa. Both translations can be easily 

achieved using syntax directed translation1 [ASU86]. Given these translations, it is common 

1. Benitez’s VPO optimizer [BD88] in fact uses syntax directed translation to convert the string RTL’s 
it generates into assembly language before the result is assembled.
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to think of a program that is expressed as a sequence of RTL’s as an assembly language pro-

gram without the obvious shortcomings that such a machine-dependent notation has.

String RTL notation has been applied to a wide variety of systems software applica-

tions that traditionally manipulate or generate assembly or machine language instructions. 

These include compilers, optimizers, linkers, and programs that perform program instrumen-

tation [DF80, BD88, Wha90, Sta92]. In this section, we briefly detail how RTL’s are used to 

achieve simple program transformations in an optimizer. However, the ideas are equally appli-

cable to any other application that works with machine language instructions.

Probably the single most important aspect of string RTL’s is that they make the sets 

and uses of registers and memory locations explicit. This makes it easy to identify data depen-

dencies in sequences of instructions. For example, given the following sequence of instruc-

tions:

r[1]=r[2];

r[1]=r[2]+r[3];

it is trivial to identify that the first instruction is useless since the second instruction immedi-

ately writes (sets) over the result of the first instruction. Therefore, the first instruction may be 

harmlessly deleted without changing the semantics of the sequence. 

More commonly, RTL’s are used to identify where multiple RTL’s can be combined, 

similar to peephole optimization, into a single RTL or a shorter sequence of RTL’s. For exam-

ple, in the RTL sequence:

r[1]=r[2];

r[3]=R[r[14]+12];

r[4]=r[1]+r[3]; (3-2)

we can substitute the expression r[2] for r[1] and R[r[14]+12] for r[3] in the third 

RTL to yield the RTL:

r[4]=r[2]+R[r[14]+12]; (3-3)

This RTL describes a new effect. If this new effect is performed by an instruction on the target 

machine, then the three-instruction sequence of (3-2) may safely be replaced with (3-3). The 

true benefit of this transformation is not realized until the first two RTL’s are removed from 

the sequence. This may occur if there are no more uses of the current values of r[1] and 

r[3]. 
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Benefits may also be reaped through algebraic manipulation of RTL expressions. The 

RTL:

r[1]=r[2]*8;

uses multiplication which is often an expensive operation. In this special case, we can replace 

this with the cheaper RTL:

r[1]=r[2]{3;

where ‘{’ denotes signed shift-left.

Finally, because sets and uses are explicit in RTL’s, it is possible to write general, 

machine-independent algorithms to reorder sequences of RTL’s into more efficient sequences 

that are semantically equivalent. This is often performed in the presence of memory refer-

ences. Here is a sequence of RTL’s that contains two memory references to local variables i 

and j: 

r[7]=r[7]+1;

r[6]=R[r[14]+i.];

R[r[14]+j.]=r[7];

r[6]=r[6]{2;

Because the second RTL does not use r[7] and the third RTL does not use r[6], these two 

RTL’s can be exchanged yielding a sequence of RTL’s in which the lifetime of r[6] does not 

overlap the lifetime of r[7]. Therefore, all instances of r[6] can be replaced by r[7], yield-

ing the following sequence of RTL’s:

r[7]=r[7]+1;

R[r[14]+j.]=r[7];

r[7]=R[r[14]+i.];

r[7]=r[7]{2;

Although this sequence of RTL’s is no shorter, and uses the same operations, the sequence uses 

one fewer registers. The unused r[6] can then be used in other locations to reduce the num-

ber of memory references. This, in turn, will improve the overall quality of the code.

Each of these examples are transformations that are performed by typical optimizers 

including those that do not use RTL’s. The important difference is that the algorithms that 

perform these RTL transformations need only be written once rather than again and again for 

each new assembly language and target machine. When a new target machine is introduced, 

the translations to and from its assembly language must be made. This, however, is signifi-
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cantly easier than rewriting and debugging all the algorithms that manipulate the target 

machine’s instructions. Finally, perhaps the greatest benefit of string RTL’s is their natural 

human-readable form. All of the above manipulations were described independently of any 

particular architecture. RTL’s are an excellent medium for discussing machine-dependent 

instruction manipulations without the burden of presenting a new assembly language nota-

tion for each machine.

3.2 τRTL’s
Using RTL’s to specify the semantics of instructions has significantly improved the retargeta-

bility of systems software that use them. However, experience with string RTL’s has revealed a 

number of shortcomings that prevent software from exploiting the full potential of the RTL 

concept. These shortcomings are, in some cases, so severe that a complete reworking of the 

notation was warranted. In this section, we present τRTL’s, a new RTL form that addresses 

these concerns. 

τRTL’s differ from string RTL’s in three fundamental ways: their type system, syntax, 

and underlying representation. At first glance, the most noticeable change is the use of an 

extended character set and formatting for the concrete syntax of τRTL’s. We will discuss these 

features in Chapter 5. Presently, we describe the fundamental differences that enable more 

effective use of RTL’s in building machine-independent software.

3.2.1 Syntax

Before discussing the conceptual differences between string RTL’s and τRTL’s, we first present 

the concrete syntax of each τRTL expression.

3.2.1.1 Constants

The simplest expressions are integer and floating-point constants. Integer constants have the 

form:

[-] digits

where digits is a string of decimal digits, optionally proceeded by a minus sign. Floating-point 

constants have the form:

[-] mantissa sign exponent
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where mantissa is a string of decimal digits representing the integer value of the mantissa, 

exponent is a string of decimal digits representing the value of the exponent, and sign is either 

‘+’ or ‘-’ to indicate the sign of the exponent. 

3.2.1.2 Types

New with τRTL’s is the type expression. A type is specified using the notation:

i, size

where i is a subscripted single letter specifying the interpretation (such as signed or floating-

point) of the value being typed, and size is a subscripted string of decimal digits indicating the 

size of the value in bits. Types are used to indicate the interpretation and size of intermediate 

values. 

3.2.1.3 Operations (Typed Expressions)

Operations take zero or more operands and produce a single result. The types of each operand 

and result must be specified using a type expression. Operations using binary infix operators 

are written as:

( texpr op texpr ) type

where texpr is a type-decorated expression, op is a single character built-in operator, and type is 

a type specifying the type of the result. Operations may also use the prefix form:

func ( texpr, ... ) type

where func is either a built-in operator or a string of letters. Using either form yields another 

type-decorated expression.

3.2.1.4 Storage

Storage expressions represent fetches and stores to a machine’s memory—either primary 

memory or registers. There are three forms of storage expressions:

name (3-4)

name [ texpr ] (3-5)

name [ texpr, size] (3-6)

where name is a string of one or more letters (typically just one) that names the storage loca-

tion, texpr is a type-decorated expression denoting the index, and size is a string of digits rep-

resenting the number of cells referenced. For individual locations, such as the program 

counter, or condition codes, form (3-4) is used. For primary memory and register sets that 
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appear as arrays of cells, form (3-5) is used for individual cell references, while form (3-6) is 

used for contiguous multi-cell references (e.g., as multi-byte memory fetches).

In addition to basic storage cell references, cells may be concatenated together using:

( storage : storage )

where storage is any basic storage expression. Sub-cell references may also be made by using 

the bit extraction expression:

storage high..low

where storage is any basic storage expression and high and low are strings of superscripted dig-

its specifying the highest and lowest bit locations to be extracted.

3.2.1.5 Instruction Effects

As with string RTL’s, an instruction’s effect on storage is specified using a list of effect expres-

sions. The syntax for an effect is 

storage ← texpr ;

where storage is a storage expression and texpr is a type-decorated expression. When more 

than one effect is included in an list, each right-hand expression is evaluated before any assign-

ment is made to left-hand storage locations.

3.2.1.6 Syntax Summary

In summary, τRTL’s are composed of the following kinds of expressions:

• constants (integer, or floating-point),

• memory fetches (registers or primary memory locations),

• operators, and 

• memory stores.

We summarize the syntax for τRTL expressions in Figure 3-1 using a context free grammar.

Unlike string RTL’s, all τRTL expressions and sub-expressions have explicit types. 

Conversely, storage locations are not typed. We think of this difference as moving the types 

away from the storage locations towards the operators. For example, the simple register-regis-

ter addition from (3-1) would be expressed in τRTL as:

r[1u,5]s,32 ← r[2u,5]s,32 + r[2u,5]s,32;

If you remove all the type expressions, which are indicated using subscripts, the result looks 

very much like its string RTL equivalent. These type expressions are the subject of the next 

section.
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3.2.2 τRTL Types

Each τRTL expression is labeled with a type. τRTL types have a type signifier and size. These 

are denoted using subscripts. For example, the expression 

15u,13

indicates that the integer constant 15 is represented using a 13-bit unsigned integer represen-

tation. Both type and size are necessary since the constant expression 15 indicates neither the 

number of bits used to represent the number, nor the representation (unsigned or two’s com-

plement). Currently, our descriptions use four type-signifiers, although additional ones can be 

added at any time. They are:

• u (unsigned integer)

• s (signed two’s complement integer)

• f (floating-point)

• b (bitstring)

Using these types, we can build up larger τRTL expressions. A simple register ADD instruc-

tion from the MIPS can be expressed as follows:

1. RTL → effects
2. value → int | float | storage_expr | operation
3. type → letter, int
4. typed_value → value type | typed_operation

5. storage_expr → storage_expr int..int

6. | ( storage_expr : storage_expr )
7. | storage
8. storage → letters [ typed_value ] |
9. | letters [ typed_value, int ]

10. | letters
11. operation → typed_value op typed_value
12. | func ( arg_list )
13. typed_operation → ( typed_value op typed_value ) type
14. | func ( arg_list ) type
15. arg_list →
16. | typed_value typed_values
17. typed_values → , typed_value
18. → , typed_value typed_values
19. func → op | letters
20. effect → storage_expr ← typed_value 
21. | storage_expr type ← value
22. effects → effect ;
23. | effect ; effects

Figure 3-1. Context-free grammar for τRTL’sa.

a. int, letter, letters, and op are grammar terminals described by the regular expressions [0–9], [A–z], 
[A–z]+, and [+<?...], respectively.
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r[1u,5]s,32 ← r[2u,5]s,32 + r[3u,5]s,32; (3-7)

This yields significantly more useful information than string RTL’s. First, from the register 

numbers’ type, we know that register indices may not exceed 31. Second, we know that each 

of the three registers is capable of holding a 32-bit value. An important feature of the notation 

that we use for τRTL’s is locations are not typed, but rather intermediate values and operators 

are typed. Consequently, the type on the left-hand side (left of ‘←’) of (3-7) does not apply to 

the register r[1u,5] but rather to the result of the addition operation on the right-hand side. 

The same is true of the registers on the right-hand side. Thus, each of the three s,32 types des-

ignate the type of addition being performed rather than the type of the registers. Therefore, 

we know that the machine can perform the addition of two signed 32-bit numbers, with an 

signed 32-bit number as its result (we denote this +s,32 × s,32 → s,32).

To some, it may seem strange to place the types near the operands (or more strangely 

near the result location) rather than near the operators to which they belong. Here are two 

other formulations we considered:

r[1u,5] ← r[2u,5] +s,32 × s,32 → s,32 r[3u,5]; (3-8)

r[1u,5] ← (r[2u,5]s,32 + r[3u,5]s,32)s,32; (3-9)

Formulation (3-8) is quite cumbersome. The operator’s type significantly increases the dis-

tance from operator to operand. As the number of operators in the expression increases, the 

expressions become more and more unwieldy. Formulation (3-9) moves the type of the opera-

tor’s result closer to where the result is produced. It also has the undesirable effect of requiring 

the addition of parenthesis to separate the result type from the type of the rightmost operand. 

However, this form is used when we include more than a single infix operand, such as:

r[1u,5]s,32 ← (r[2u,5]s,32 + 15s,32)s,32 − r[3u,5]s,32;

however, here the parenthesis are also needed to determine the order of expression evaluation.

The inclusion of types for register indices may also seem like a strange formulation. 

However, this is just a specialization of a more general method of specifying addressing modes 

using τRTL. A great advantage of string RTL’s is their very general treatment of computa-

tional expressions. Whether a computation represents the result of an instruction execution, 

or is just a calculation of an address computation, the expression is the same. However, string 

RTL’s treat register indices specially. Register indices may only be integer constants. In τRTL, 

we treat registers as any other type of storage. Therefore, arbitrary expressions may be used as 
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register index expressions. Since the indices of memory references have types (as much a result 

of the operators in the memory address calculation as anything) the analogous form for a ref-

erence to register 14 is the same:

r[14u,5]

3.2.3 Aliasing

A common problem with string RTL’s, as well as other instruction description techniques, is 

memory aliasing. In string RTL’s, aliasing occurs in two ways:

1. Memory aliasing due to typing of storage, and

2. Memory aliasing due to multiple-unit fetches.

In string RTL’s, the type of a memory location is encoded in the location’s name. So, when 

register one contains a byte, its name is b[1]. When register one contains a long, its name is 

r[1]. This convention makes it easy to keep track of what kind of value is held in the register. 

However, it makes it difficult to identify that r[1] and b[1] are, in fact, the same register. 

An optimizer that uses string RTL’s will consider these two registers to be distinct. This wreaks 

havoc when the following sequence of string RTL’s are incorrectly generated1 by a code gener-

ator:

b[1]=255;

r[2]=r[2]&r[1];

In this case, register r[1] switches types between the two RTL’s. This will cause an optimizer 

to remove the first RTL because it appears to be useless code (b[1] is set but never used). 

This will cause a error in the resulting code because b[1] may not contain the correct value. 

Although there is an error in the compiler’s implementation (the wrong RTL was generated), 

the memory aliasing makes it difficult or impossible for the error to be automatically detected. 

A second common source of memory aliasing involves multi-addressable-unit refer-

ences. Take, for example, the following sequence of string RTL’s:

r[2]=R[r[14]+18];

R[r[14]+16]=r[1];

1. Although this example occurs when there is a bug in the code generator, such bugs commonly hap-
pen and must be tracked down. Furthermore, such bugs are, in fact, caused by the awkward typing 
that string RTL’s impose on storage locations. The programmer knows that b[1] and r[1] are the 
same, but the notation makes it appear to the software that they are different.
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When an optimizer examines this sequence, it may wish to move the first RTL down past the 

second to reduce the lifetime for register r[1] (or register r[2] for that matter). This 

appears to be safe since the load in the first RTL appears to be from a different location than 

the store in the second RTL. However, because both the load and store are 32-bit data instruc-

tions, they reference multi-byte quantities causing the two memory references to overlap (they 

both reference offsets 18 and 19 off of r[14]), as shown in Figure 3-2. If the first RTL is 

moved past the second, these values may change due to the store in the second RTL. Such 

transformations are common in many optimizations and require specialized machine-depen-

dent logic in the algorithms to recognize and handle this case correctly. 

From the two examples above, it is clear that we would like to eliminate the opportu-

nities for aliasing of locations. By removing aliasing as a problem, we can significantly reduce 

the problems that applications have when performing various analyses on τRTL’s. We elimi-

nate the first form of aliasing by not typing (or giving multiple names to) registers and mem-

ory locations. The second form of aliasing is eliminated by requiring that all memory 

addresses be explicit. The concrete syntax for the above memory location is:

m[(r[14u,5]u,32 + 16u,32)u,32, 4]

The ‘4’ at the end of the index refers to the number of addressable units that the address is ref-

erencing and is required for multi-cell memory references. From the address and the size, the 

addresses are automatically expanded to include locations 16, 17, 18, and 19 in the abstract 

form of the τRTL’s. 

Figure 3-2. Memory aliases created by overlapping memory references.

Key:
Referenced
by R[r[14]+16]

Referenced
by R[r[14]+18]

Referenced
by both

Offset:
(from r[14])

16 17 18 19 20 21

R[r[14]+18]

R[r[14]+16]
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3.2.4 Notation

Although the addition of extended characters and a new type system make τRTL’s appear 

quite different from string RTL’s, underneath, they share many common features:

• instructions are still described using lists of effects,

• address computations are expressed using arbitrary τRTL subexpressions,

• storage location reads and writes are explicit, and 

• instructions that transfer control assign to the program counter storage location.

There are a few differences outside the type system and memory aliasing that make the 

τRTL notation easier to read for humans and easier to manipulate for machines. There is no 

better example than the subtle interaction of types and operator overloading. 

String RTL’s overload operators to yield natural expressions like:

r[1]=r[2]+r[3];

and

f[1]=f[2]+f[3];

These two string RTL’s use the same operator, but perform two different operations (integer 

versus floating-point addition). Unfortunately such overloading is only as flexible as the type 

system. String RTL types describe size (i.e., byte, word, and long), and in some cases encoding 

(i.e., long versus float which are different encodings but the same size). Operations that use 

identical storage types but different representations, such as signed- and unsigned-integers, 

cannot simply use operator overloading to distinguish operations. For example, there are 

signed and unsigned versions of many of the relational operations. The string RTL expression 

r[1]=r[2]>r[3]; (3-10)

compares the registers r[1] and r[2] using signed greater-than. To perform unsigned 

greater-than, a different operator must be used since the same RTL as (3-10) would be formed 

if the ‘>’ operator were used. We must select a new operator to distinguish the two different 

operations on the same storage type. Unsigned less-than is formed using the ugly ‘h’ operator 

(‘g’ is used for greater-than-or-equal):

r[1]=r[2]hr[3];

Perhaps the most ridiculous formulation is:

r[1]=r[2] r[3];
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where the space operator (‘ ’) indicates unsigned shift left! In τRTL, each of these operations 

is cleanly described using the same operator and different types on values being extracted from 

the storage locations:

r[1u,5]s,32 ← r[2u,5]s,32 > r[3u,5]s,32;

r[1u,5]u,32 ← r[2u,5]u,32 > r[3u,5]u,32;

Spaces may also be used to separate the operators from the operands since the space character 

is not an operator in τRTL.

The improved type system and extended character set change the formulation of some 

string RTL operations. Other string RTL operators are not replaced, but instead deleted. For 

example, the compound operator AND NOT (‘b’) is deleted and formed in τRTL by the 

composition of the built-in AND and NOT operators. So, the string RTL:

r[1]=r[2]br[3];

becomes

r[1u,5]b,32 ← ¬ (r[2u,5]b,32 ∧  r[3u,5]b,32)b,32;

The changes in built-in operators from string RTL’s to τRTL’s are summarized in Table 3-3.

3.2.5 Abstract Syntax

From the preceding sections it may appear that τRTL’s are just another string representation 

of RTL’s. This is intentional. We designed the concrete syntax of τRTL’s to be intuitive and 

natural for the programmer. Since this was one of the strengths of string RTL’s we included it 

in our design. However, the internal representation, or abstract syntax, is not based on strings 

as string RTL’s are. Instead, τRTL’s are represented internally using trees (τ stands for tree). 

This distinction is important because, although RTL’s are often viewed by the programmer, 

their primary role is to present machine-dependent information in a machine-independent 

form for manipulation by programs. 

Using trees as an internal representation has many benefits. First, all τRTL subexpres-

sions are τRTL subtrees which permits the replacement of one subexpression by another. This 

facilitates a common RTL operation: forward substitution. Second, once in tree form, the 

order of evaluation of subexpressions is explicit. Third, since trees use pointers, it is possible 

for two or more τRTL’s to share common subtrees, or common subexpressions. Fourth, unlike 

strings, trees provide faster than linear-time access to subtrees (in strings, to find the right-
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String RTL 
Character

τRTL 
Operator Description

‘ ’ (space) ⇐ Left shift, unsigned

! ≠ Not equal, signed and unsigned

" ⇒ Right shift, unsigned

# mod Modulus, unsigned

$ ∆ Sign extend

% mod Modulus, signed

& ∧ Bitwise AND

’ ≤ Less than or equal to, signed

* × Multiplication, unsigned

+ + Addition

, unused List separator

- − Subtraction, unary minus

/ ÷ Division, signed

: ≡ Equal, signed and unsigned

; ; RTL separator

< < Less than, signed

= ← Assignment

> > Greater than, signed

? unused Compare, signed

@ × Multiplication, unsigned

\ ÷ Division, unsigned

^ ⊕ Bitwise XOR

‘ ≥ Greater than or equal to, signed

b Synthesized Bitwise AND NOT

d Second effect Auto-decrement

g ≥ Greater than or equal to, unsigned

h > Greater than, unsigned

i Second effect Auto-increment

l < Less than, unsigned

o Synthesized Bitwise OR NOT

s ≤ Less than or equal to, unsigned

Table 3-3. Built-in RTL operator summary .
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hand side of an RTL, the left-hand side must be scanned). This should improve the perfor-

mance of many algorithms. Fifth, as we will see shortly, string RTL’s rely on string parsing 

techniques, specifically, LALR (Yacc) grammars. Trees free us from this restriction and pro-

mote the use of quick tree matching techniques [AGT89, FHP92]. Sixth, in contrast to 

strings, it is not possible to build a malformed tree. Properly formed trees that are illegal (due 

to the type system) can easily be detected using machine-independent algorithms. Finally, 

during the process of changing τRTL token strings into trees, many errors can be detected 

because only a subset of τRTL token strings correspond to properly formed τRTL trees.

In addition to all of the above benefits, τRTL’s make fetching and storing of storage 

locations explicit. The trees are also strongly typed. For example, the tree shown in Figure 3-3 

attempts to describe a memory load using displacement addressing. In this case, the s,16 type 

attached to the displacement constant 15 does not match the corresponding u,32 operand 

type in the addition operation. Such errors can be detected because each subtree must have a 

type and each operator must specify the types of its operands. In this case, the type conflict is 

due to a missing conversion operation. A properly typed tree for this instruction is shown in 

Figure 3-4.   

This load example illustrates that since τRTL’s are strongly typed, explicit type conver-

sions are required. Although it is possible to infer that the type conversion is happening, we 

choose to insist that the conversion be explicit. This makes it possible to easily identify com-

mon errors in instruction semantics. It is not uncommon to accidently forget to put a conver-

sion in place, thus creating an RTL with the improper semantics. 

u unused Compare, unsigned

x Synthesized Bitwise XOR NOT

{ ⇒ Left shift, signed

| ∨ Bitwise OR

} ⇐ Right shift, signed

~ ¬ Unary negate

String RTL 
Character

τRTL 
Operator Description

Table 3-3. Built-in RTL operator summary (Continued).
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Using the τRTL types also makes it possible to automatically identify common errors 

in manipulation of trees. For example, consider the two τRTL sequence:

r[1u,5]u,32 ← r[2u,5]u,32 + ∆(15u,15)u,32; (3-11)

r[3u,5]b,32 ← m[(r[1u,5]u,32 + ∆(5u,9)u,32)u,32,4]; (3-12)

The τRTL trees corresponding to these instructions are shown in Figure 3-5. Using forward 

substitution, we can replace the fetch of r[1u,5] in (3-12) with the right-hand side of (3-11). 

The resulting subtree is shown in Figure 3-6 and corresponds to the subexpression: 

((r[2u,5]u,32 + ∆(15u,15)u,32)u,32 + ∆(5u,9)u,32)u,32 (3-13)

This subtree can then be algebraically simplified to combine the two constants. In doing so, a 

type must be chosen for the resulting constant (20). There are two obvious choices: u,9 and 

u,15. Choosing the type u,15 could result in the subtree pictured in Figure 3-7. Since the type 

for the constant (u,15) and the type for the convert (∆) operand (u,9) differ, we have an incor-

Figure 3-3. Improperly typed τRTL for a load.

Figure 3-4. A properly typed τRTL for a load.

U)(7&+X���→ X���

�X��

��V���

�X����î�X����→ X���

P)(7&+X����→ X����X��

U6725(X���î�X���

Type mismatch

rFETCHu,2 → u,32

2u,2
15s,16

+u,32 × u,32 → u,32

mFETCHu,32 → u,321u,2

rSTOREu,2 × u,32

∆s,16 → u,32
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rectly constructed τRTL subtree. Such errors can easily be detected by a general tree type-

checker.     

Clearly, using trees as the abstract syntax provides significant improvement over the 

string-based approach used previously. Although trees are an excellent representation for 

machine manipulation, they are not a natural form for humans to use. Fortunately, τRTL’s use 

Figure 3-5(a). τRTL tree for (3-11). Figure 3-5(b). τRTL tree for (3-12).

Figure 3-5. Abstract syntax for two τRTL’s.

Figure 3-6. Combined subexpression.

Figure 3-7. Incorrect simplification of (r[2u,5]u,32 + ∆(20u,9)u,32)u,32 tree.

rFETCHu,5 → u,32

2u,5 15u,15

+u,32 × u,32 → u,32

∆u,15 → u,32

1u,5

rSTOREu,5 × u,32
3u,5

rSTOREu,5 × u,32

mFETCHu,32 → u,32

rFETCHu,5 → u,32

1u,5 5u,9

+u,32 × u,32 → u,32

∆u,9 → u,32

∆u,15 → u,32rFETCHu,5 → u,32

2u,5 15u,15

+u,32 × u,32 → u,32

5u,9

+u,32 × u,32 → u,32

∆u,9 → u,32

∆X���→ X���U)(7&+X���→ X���

�X�� ��X���

�X����î�X����→ X���

Type mismatch
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a natural string concrete syntax freeing the programmer from having to think of τRTL’s as 

trees when describing the semantics of machine instructions. 

3.3 Using τRTL’s to Describe Machines
The previous section described the notation for specifying the effects of single instances of 

machine instructions. Building on this foundation, we can describe entire instruction sets. 

Such specifications are commonly called machine descriptions.

Given the above syntax, we could describe a machine that is the functional equivalent 

of a simple calculator by listing each instruction:

r[1u,2]s,32 ← r[2u,2]s,32 + r[3u,2]s,32;

r[1u,2]s,32 ← r[2u,2]s,32 − r[3u,2]s,32;

r[1u,2]s,32 ← r[2u,2]s,32 × r[3u,2]s,32;

r[1u,2]s,32 ← r[2u,2]s,32 ÷ r[3u,2]s,32;

Such lists are simple enough to build, but lack the descriptive power to concisely specify the 

set of instructions. In this case, we’ve shown four different operations that can operate on 

three different registers. However, this is probably far from complete since each of the three 

registers can probably be used anywhere. Assuming a machine with four registers, this yields 

256 different instances of these four instructions. 

We rely, as others have before us, on context-free grammars to describe the language, 

or instruction set, of the target machine. A grammar for the above example is shown in 

Figure 3-9. The syntax for the grammars is similar to the those found in texts on formal lan-

guages [HU79]. Productions are terminated by the ‘//’ token. Context-free grammars are a 

good choice for describing sets of instructions since programmers are familiar with Yacc gram-

mars.

Figure 3-8. Correct simplification of (r[2u,5]u,32 + ∆(20u,9)u,32)u,32 tree.

∆u,9 → u,32rFETCHu,5 → u,32

2u,5 20u,9

+u,32 × u,32 → u,32
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Unlike string RTL’s that use Yacc grammars, τRTL machine descriptions are not Yacc 

specifications and are therefore not limited to the set of LALR grammars. τRTL machine 

descriptions describe sets of τRTL’s, or sets of trees. So, although there is no LALR restriction, 

we do require that all machine descriptions describe only valid τRTL trees. We achieve this by 

requiring that all grammar nonterminals derive complete τRTL subtrees. The grammar start 

symbol (indicated by the first production in the grammar) must derive a complete τRTL tree.

For example, to extend the grammar of Figure 3-9 to include arbitrary sequences of 

operations, one might write the grammar shown in Figure 3-10. This grammar describes 

τRTL token strings such as:

r[1u,2]s,32 ← r[2u,2]s,32 − r[3u,2]s,32 + r[4u,2]s,32;

which, at first glance, may appear to be a valid τRTL. However, since τRTL does not define 

an explicit precedence, it is not known if subtraction or addition should be performed first. 

Further, assuming the subtraction is to be performed first, the type of the result of subtraction 

has not been specified. The proper specification would be 

r[1u,2]s,32 ← (r[2u,2]s,32 − r[3u,2]s,32)s,32 + r[4u,2]s,32;

which specifies the order of evaluation and the result type for the subtraction. Such errors can 

easily be detected in the τRTL machine description since the first rexpr production in the 

grammar of Figure 3-10 does not specify a complete τRTL subtree. 

inst → reg ← reg op reg; //

reg → r[numu,2]s,32 //

op → + | − | × | ÷ //

num → 1 | 2 | 3 | 4 //

Figure 3-9. An τRTL grammar for a very simple machine.

inst → reg ← reg op rexpr; //

rexpr → reg op rexpr | reg //

reg → r[numu,2]s,32 //

op → + | − | × | ÷ //

num → 1 | 2 | 3 | 4 //

Figure 3-10. An illegal τRTL grammar.
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The conciseness of these grammars is due to the use of grammar variables. In a gram-

mar that includes common subexpressions, the same grammar variable may be used. Such 

identification of common subexpressions is called grammar factoring [GHS82]. The introduc-

tion of grammar variables has several other benefits. First, names can be given to grammar 

productions that indicate their purpose (e.g., inst obviously derives instructions). Second, 

where τRTL notation may be awkward (register index types), an expression can be named and 

used again and again by name rather than by repeating the awkward expression. 

τRTL grammars make it possible to generalize specific expressions. So concise descrip-

tions can be derived for general machines. However, not all instructions and not all machines 

are so regular. Take for example, a modified version of our simple machine that only has two-

address instructions. On such a machine, an example of an RTL describing a valid instruction 

would be:

r[1u,2]s,32 ← r[1u,2]s,32 + r[2u,2]s,32;

but the RTL:

r[1u,2]s,32 ← r[2u,2]s,32 + r[3u,2]s,32; (3-14)

would not describe a valid instruction because it uses three different registers. We cannot use 

the grammar rule:

inst → reg ← reg op reg; //

since it could derive (3-14). The problem is that both the first and second instance of the 

grammar variable reg are free to derive any of their expressions (any register). τRTL grammars 

extend the syntax of context free grammars to solve this common description problem. Gram-

mar variables found on the right-hand side of productions may be tagged with one or more 

primes (‘'’) to name instances of grammar variable derivations. So, the grammar production:

inst → reg’← reg’ op reg; //

inst → reg ← reg op rexpr; //

rexpr → (reg op rexpr)s,32 | reg //

reg → r[numu,2]s,32 //

op → + | − | × | ÷ //

num → 1 | 2 | 3 | 4 //

Figure 3-11. A properly formed τRTL grammar.
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requires that both reg’’s must derive the same expression. We limit the scope of matching 

primed grammar variables to the current production. Grammar variables that are not deco-

rated with primes remain unrestricted in derivations. 

There are three additional grammar syntax extensions. τRTL provides expressions that 

match any integer constant, any floating-point constant, or any symbolic name (labels, locals, 

and globals). These expressions are constant, fconstant, and name. So, for a production that 

derives any register, we would write:

reg → r[constantu,5] //

rather than having to include an additional production such as:

regno → 0 | 1 | 2 | ... | 31 //

that defines regno as a register number. 

Finally, often it is useful to place constraints on the terminals that a grammar variable 

may derive. On many machines, register zero, when read, always produces zero. To define a 

grammar that includes all registers, except zero, we would write the production:

reg → r[constant’u,5] { constant’ ≠ 0 } //

the constraint { constant’ ≠ 0 } must always evaluate to true upon any derivation. The con-

straint language is limited to C-like Boolean expressions on integer values. Although limited, 

these expressions provide the necessary power to constrain the derivation of productions in 

useful ways. 

This completes our presentation of τRTL grammar syntax. Using τRTL grammars, we 

can easily define the set of valid instruction semantics for common machines. Figure 3-12 

shows a small but complete τRTL machine description for Hennessy and Patterson’s hypo-

thetical DLX machine used for instruction in computer architecture courses [HP96]. Addi-

tional machine descriptions can be found in Appendix A.

3.4 Operation Semantics – µRTL’s
The τRTL notation provides a machine-independent form that uses a set of built-in opera-

tions for describing the effects of machine instructions. However, when user-defined opera-

tions are used, τRTL says nothing about the semantics of the user-defined operations. In the 

presence of user-defined operations, it is only possible, in many cases, to determine what loca-

tions have been read and written. In order to provide semantics for operations that are not 
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1. start → inst // 
2. aop → + | − | × | ÷ //
3. add_op → + | − //
4. mul_op → × | ÷ //
5. bit_op → ∧  | ∨  | ⊕  //
6. shift_op → ⇐  | ⇒  //
7. rel_op → < | > | ≤ | ≥ //
8. eq_op → ≡ | ≠ //
9. i → u | s //

10. int → u,32 | s,32 //
11. reg → r[constantu,5] { constant ≠ 0 } //
12. regz → reg | 0 //
13. freg → f[constantu,5] //
14. dreg → f[constantu,5, 2] //
15. uregimm → reg | ∆(constantu,16)u,32 //

16. addr → (regu,32 + ∆(constantu,16)u,32)u,32 addressing modes
17. |  regzu,32
18. | ∆(constantu,16)u,32 //
19. jaddr → PCu,32 + ∆(constants,26)u,32 //
20. jump → PCu,32 ← jaddr //
21. link → r[31u,5]b,32 ← PC //

22. inst → regint’ ← regzint’ add_op regzint’; arithmetic
23. | regi’,32 ← regzi’,32 add_op ∆(constanti’,16)i’,32
24. | fregf,32 ← fregf,32 aop fregf,32;
25. | dregd,64 ← dregd,64 aop dregd,64;
26. | fregint’ ← fregint’ mul_op fregint’;

27. | regb,32 ← regzb,32 bit_op regzb,32; bitwise operations
28. | regb,32 ← regzb,32 bit_op ∆(constantb,16)b,32;

29. | regb,32 ← regzb,32 shift_op regz4..0
u,5; shifts

30. | regs,32 ← regzs,32 ⇒  regz4..0
u,5;

31. | regb,32 ← regzb,32 shift_op constantu,5;
32. | regs,32 ← regzs,32 ⇒  constantu,5;

33. | regb,32 ← ∆((regzint’ rel_op regzint’)b,1); compares
34. | regb,32 ← ∆((regzb,32 eq_op regzb,32)b,1);

35. | fregs,32 ← ∆(fregf,32); converts
36. | fregf,32 ← ∆(fregs,32);
37. | fregd,32 ← ∆(fregf,32);
38. | fregf,32 ← ∆(fregd,32);
39. | fregs,32 ← ∆(fregd,32);
40. | fregd,32 ← ∆(fregs,32);

41. | fregb,32 ← freg; moves
42. | dregb,64 ← dreg;
43. | fregb,32 ← regz;
44. | regb,32 ← freg;

45. | regb,32 ← ∆((regzi’,32 rel_op ∆(constanti’,16)i’,32)b,1); sets
46. | regb,32 ← ∆((regzb,32 eq_op ∆(constantb,16)b,32)b,1);
47. | FCCb,1 ← fregf,32 rel_op fregf,32;
48. | FCCb,1 ← fregb,32 eq_op fregb,32;
49. | FCCb,1 ← dregd,64 rel_op dregd,64;
50. | FCCb,1 ← dregb,64 eq_op dregb,64;

Figure 3-12. A complete τRTL machine description of the DLX .
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built-in (all built-in operations are listed in Table 3-4), we rely on an operational semantics 

using a language called µRTL. µRTL is designed to describe instructions at the micro-archi-

tecture level. Details that are not of use at the τRTL level can be provided in a µRTL descrip-

tion.

The concept of µRTL is simple: describe the semantics of user-defined operations 

using the built-in operations. Once one understands the τRTL notation, one can easily begin 

specifying the semantics of user-defined operations. For example, a good candidate for a user-

defined operator is string copy. String copy copies an array of bytes from one location to 

another. The array is terminated by a byte whose value is zero. This instruction cannot be 

described completely at the τRTL level because it contains an internal loop. Further, the 

details of the semantics are really too complicated to be present at the τRTL level. Instead, we 

can rely on µRTL to describe string copy’s semantics. A τRTL that uses the user-defined oper-

ator strcpy might look like:

← strcpy(regu,32, regu,32);

51. | regb,32 ← ∆(constantb,16)b,32 ⇐  16u,5; loads
52. | regi’,32 ← ∆(m[addr]i’,8);
53. | regi’,32 ← ∆(m[addr, 2]i’,16);
54. | regb,32 ← m[addr, 4];
55. | fregb,32 ← m[addr, 4];
56. | dregb,64 ← m[addr, 8];

57. | m[addr]b,8 ← regz7..0 ; stores

58. | m[addr, 2]b,16 ← regz15..0 ;
59. | m[addr, 4]b,32 ← regz ;
60. | m[addr, 4]b,32 ← freg ;
61. | m[addr, 8]b,64 ← dreg ;

62. | jump; jumps
63. | jump; link;
64. | PCb,32 ← regz;
65. | PCb,32 ← regz; link;

66. | PCu,32 ← ?((FCCb,1 ≡ 1b,1)b,1, jaddr, PCu,32); branches
67. | PCu,32 ← ?((FCCb,1 ≡ 0b,1)b,1, jaddr, PCu,32);
68. | PCu,32 ← ?((regzb,32 eq_op 0b,32)b,1, jaddr, PCu,32);
69. | PCu,32 ← trap(constantu,26);
70. | PCu,32 ← rfe();

//

Figure 3-12. A complete τRTL machine description of the DLX (Continued).
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where both reg’s specify the starting memory addresses for the destination and source arrays. 

The lack of a storage location on the left hand side of ‘←’ indicates that the operation does not 

store a value (beyond the setting of bytes pointed to by the destination register). 

To specify strcpy’s semantics, we simply write a sequence of τRTL built-in operations 

that implement the operation. Such an implementation is shown in Figure 3-13. On line 1, 

we specify the name of the operation, the number and type of operands, and the type of the 

Category Operations

Signed arithmetic
s,n × s,n → s,n

+ , − , ÷, mod (modulus),
×s,n × s,n → s,2n ,

−s,n → s,n (unary minus)

Unsigned arithmetic
u,n × u,n → u,n

+ , − , ÷ , mod (modulus),
×u,n × u,n → u,2n

Floating-point arithmetic
f,n × f,n → f,n

+ , − , ÷ , ×

Signed relational
s,n × s,n → b,1

< , > , ≤ , ≥

Unsigned relational
u,n × u,n → b,1

< , > , ≤ , ≥

Equality
b,n × b,n → b,1

≡  , ≠

Bitwise
b,n × b,n → b,n

∧  , ∨  , ⊕  , ¬  (complement)

Logical
b,1 × b,1 → b,1

∧  ,∨  , ⊕  , ¬  (not)

Bitwise shift
b,n × u,m → b,n

⇐  , ⇒

Signed shift
s,n × u,m → s,n

⇐  , ⇒

Type Conversion ∆s,n → u,n
∆u,n → s,n

∆s,n → s,m (where n < m) (sign extend)

∆u,n → u,m (where n < m)

∆f,n → f,m
∆s,n → f,m
∆f,n → s,m

Selection
b,1 × b,n × b,n → b,n

?

Table 3-4. Summary of τRTL built-in operations.
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result (in this case none). Local variables and their sizes (in bits) are declared on line 2. Such 

local variables might correspond to hidden registers in the machine’s microarchitecture. 

Because string copy has an internal loop, we label line 5 (the top of the loop) with a µRTL 

label. Jumps are accomplished by assigning to the µRTL program counter (µPC). In this case, 

we want a conditional branch at the bottom of the loop (line 10), so we use the µRTL ‘?’ 

operator (analogous to the ‘?’ operator in C) to select between loop and the current value of 

µPC based on the value of the Boolean variable t4. So, the only additions to the τRTL lan-

guage are the operation’s header, a syntax for declaring temporary storage locations, labels, and 

the µRTL program counter.

Figure 3-14 illustrates another use of µRTL to specify the semantics of the Pentium 

PADDB instruction [Int93]. PADDB performs a packed-addition on bytes. PADDB adds the 

individual bytes of a 64-bit source operand to the individual bytes of a 64-bit destination 

operand. A carry out of an individual byte addition is not propagated into the adjacent byte. 

We can describe PADDB by introducing a new type ‘p’ (packed) using the τRTL1:

dest’p,64 ← paddb(dest’p,64, srcp,64);

The µRTL implementation uses a loop to add each of the individual quantities separately.  

Thus, µRTL is an ideal mechanism for specifying microinstruction-level detail without clut-

tering the τRTL notation.

1. ← strcpy(destu,32, sourceu,32) {

2. var t1:32, t2:32, t3:8, t4:1;
3. t1b,32 ← dest;

4. t2b,32 ← source;

5. loop: t3b,8 ← m[t2u,32];

6. m[t1u,32]b,8 ← t3;

7. t1u,32 ← t1u,32 + 1u,32;

8. t2u,32 ← t2u,32 + 1u,32;

9. t4b,1 ← t3b,8 ≡ 0b,8;

10. µPCb,32 ← ?(t4b,1, loopb,32, µPCb,32);

11. }

Figure 3-13.  µRTL operational semantics for a user-defined string copy operator.

1. We have used the τRTL grammar syntax to illustrate that the destination operand must correspond 
to one of the source operands. We also use this form to abstract away unnecessary details of the 
source and destination address calculations. 
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3.5 Summary
In this chapter, we have presented a new formulation of RTL’s that address shortcomings of 

string RTL’s. Using τRTL’s, the semantics of instructions are presented in both a machine 

independent and application-independent manner. As with string RTL’s the abstractions that 

τRTL’s provide are well suited for many systems software applications. Additionally, τRTL 

types match the types found at the assembly language abstraction level by associating the types 

with the operations rather than with operands as high-level languages do. This prevents the 

ambiguities found in string RTL’s and increases the readability and processability of the τRTL 

form.

Although the RTL level of abstraction has often been demonstrated to be appropriate 

for systems software, there are times when too many details are abstracted away. To accommo-

date the need for additional detail, without cluttering τRTL’s, we have introduced a new 

method for describing both the semantics of user-defined τRTL’s and features of a machine’s 

microarchitecture: the µRTL. By using this hierarchical approach, τRTL in combination with 

µRTL can satisfy the needs of a wider audience of applications than previous description sys-

tems.

Finally, we have shown how grammars for τRTL’s can be constructed to describe the 

language that corresponds to a machine’s instruction set. Unlike string RTL descriptions, and 

most other description systems, these descriptions maintain the application-independent 

nature of τRTL’s. In fact, in this chapter, these descriptions stand alone, specifying the lan-

guage of τRTL’s that corresponds to a machine’s capabilities without specifying how such 

information might be used. As stand-alone, τRTL grammars can be used to recognize a 

machine’s capabilities by using the description’s grammar as a τRTL recognizer in the tradi-

1. destp,64 ← paddb(src1p,64, src2p,64) {

2. var lo:8, hi:8;
3. lou,8 ← 0;

4. hiu,8 ← 7;

5. loop: desthi..lo
u,8 ← src1hi..lo

u,8 + src2hi..lo
u,8;

6. hiu,8 ← hiu,8 + 8u,8;

7. lou,8 ← lou,8 + 8u,8;

8. µPCb,32 ← ?((hiu,8 < 64u,8)b,1, loopb,32, µPCb,32);

9. }

Figure 3-14. Operational semantics for the Pentium PADDB instruction.
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tional way. Further, the grammar can be used to enumerate all valid τRTL’s for the target 

machine. Although isolated from purpose, recognition is used in code optimization while 

enumeration has uses in test generation. Nonetheless, in Chapter 5, we will show how these 

specifications can be extended to include additional types of information—both application-

specific and application-independent.
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CHAPTER 4

SPECIFYING PROCEDURE CALLING 
CONVENTIONS

Beyond the core CSDL module, additional modules can be defined that describe features of 

computing systems not covered by the core description. In this chapter, we examine a module 

that describes procedure calling conventions. The procedure calling convention dictates the way 

that program values are communicated across procedure calls, and how machine resources are 

shared between a procedure making a call (the caller) and the procedure being called (the 

callee). The procedure calling convention represents one of CSDL’s highest levels of abstrac-

tion because it spans the software-hardware boundary. 

In this chapter, we introduce two important new concepts: 1) the distinction between 

the procedure calling convention and its implementation (the calling sequence), and 2) the 

recognition that two procedures create two distinct points of view by naming the same mem-

ory locations with different names. These concepts, in themselves are important. However, by 

using them, we are able to build both more robust implementations and identify and isolate 

faults in less robust implementations. Finally, we also demonstrate how, by building applica-

tion-independent descriptions, we can use the same description for multiple purposes.

4.1 Introduction
The procedure calling convention impacts the operation of many systems software compo-

nents. The interface between procedures, which is established by the calling convention, facil-

itates separate compilation of program modules and interoperability of programming 

languages. What makes calling conventions unique and interesting is that they are not imple-
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mentation dependent or entirely language dependent. Instead, the calling convention is 

machine-dependent because the rules for passing values from one procedure to another 

depend on machine-specific features such as memory alignment restrictions and register usage 

conventions. Further, code that implements the calling convention must be generated by the 

compiler and understood by other systems software.

4.1.1 Motivation

Currently, information about a particular calling convention can be found by looking in the 

programmer’s reference manual for the given machine, or reverse-engineering the code gener-

ated by one of its compilers. Reverse-engineering a compiler has many obvious shortcomings. 

Using the programmer’s reference manual may be equally problematical. As with much of the 

information in the programmer’s manual, the description is likely to be written in English and 

is liable to be ambiguous, or inaccurate. For example, in the MIPS programmer’s manual 

[KH92] the English description is so difficult to understand that the authors provide fifteen 

examples, several of which are contradictory [Fra93]—and this is the second edition of the 

programmer’s manual. Furthermore, the convention, once understood, is difficult to imple-

ment. For example, the GNU ANSI C compiler fails on an example listed in the manual. 

Digital Equipment Corporation, in recognizing the problem, has published a calling standard 

document for their Alpha series processors [Dig93] that exceeds 100 pages1. Thus, it should 

be clear that there is a need for accurate, concise descriptions of procedure calling conventions 

and software to use them.

One reason that such a need exists is that the few investigations of calling sequences 

have been ad-hoc. For example, Johnson and Richie discuss some rules of thumb for designing 

and implementing a calling sequence for the C programming language [JR]. Davidson and 

Whalley experimentally evaluated several different C calling conventions [DW91]. However, 

no work has been done to formally analyze calling conventions.

1. Although this document also includes information on exception handling and information perti-
nent to multithreaded execution environments, more than 42 pages are devoted to documenting the 
calling convention.
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4.1.2 Applications

Any application that must process, or generate procedures at the machine-language abstrac-

tion level is likely to need to know about a procedure calling convention. Example applica-

tions include compilers, debuggers, linkers and evaluation tools such as profilers. The code 

that implements the calling convention in these applications lends itself to automatic genera-

tion. Often, the convention itself is not difficult to understand or implement, for a given 

instance of a procedure call. However, a general solution that covers all possible cases is diffi-

cult to implement correctly.

To address these problems, we have developed a formal specification language for 

describing procedure calling conventions. This language, called CCL (Calling Convention 

Language), has been used to generate automatically the calling sequence generator for a com-

piler [BD95]. The compiler, called vpcc/vpo, is a retargetable optimizing compiler for the C 

language that has been targeted to over a dozen different architectures [BD88, BD94]. 

The procedure calling convention for a target machine is described using CCL. The 

resulting specification is processed by an interpreter that generates tables that can be used in 

the calling-convention-specific portion of vpcc/vpo, or in a test suite generator. Figure 4-1 

shows this process. The test suite generator uses information from the table to build a test 

suite for the specific calling convention. The test suite can be used to either confirm that the 

vpcc/vpo implementation properly uses the convention tables, or confirm that another, inde-

pendent compiler conforms to the convention described in the CCL specification. 

Figure 4-1. How CCL specifications are used.

vpcc/vpo compilerCCL InterpreterCalling
Convention

Specification

Test
Suite

Calling
Convention

Tables

Test Suite
Generator



Chapter 4: Specifying Procedure Calling Conventions Procedure Calling Conventions 57

4.2 Procedure Calling Conventions
To facilitate local compilation of procedures, compiler developers establish rules about how 

procedures interact. These rules establish an agreement between the caller and callee on how 

information and control are passed between the two, as well as how and who will maintain the 

state of the machine. Collectively, these rules are known as the procedure calling convention.

4.2.1 A Simple Calling Convention

To aid in our discussion of calling conventions, we use a simplified example calling conven-

tion. Figure 4-2 contains the calling convention rules for a hypothetical machine. Consider 

the following ANSI C prototype for a function warp:

int warp(char p1, int p2, int p3, double p4);

For the purpose of transmitting procedure arguments for our simple convention, we are only 

interested in the signature of the procedure. We define a procedure’s signature to be the proce-

dure’s name, the order and types of its arguments, and its return type. This is analogous to 

ANSI C’s abstract declarator [KR88], which for the above function prototype is:

int warp(char, int, int, double);

which defines a function that takes four arguments (a char, two int’s, and a double), and 

returns an int. 

1. Registers a1, a2, a3, and a4 are 32-bit argument-transmitting registers.

2. Arguments are also passed on the stack in increasing memory locations starting at the 

stack pointer (M[sp]).

3. An argument may have type char (1 byte), int (4 bytes), or double (8 bytes).

4. An argument is passed in registers (if enough are available to hold the entire argu-

ment), and then on the stack.

5. Arguments of type int are 4-byte aligned on the stack.

6. Arguments of type double are 8-byte aligned on the stack.

7. Stack elements that are skipped over cannot be allocated later.

8. Return values are passed in registers a1 and a2.

9. Values of registers a6, a7, a8, and a9 must be preserved across a procedure call.

Figure 4-2. Rules for a simple calling convention.
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With warp’s signature, we can apply the calling convention in Figure 4-2 to determine 

how to call warp. Arguments to warp would be placed in the following locations:

• p1 in register a1,

• p2 in register a2,

• p3 in register a3, and 

• p4 on the stack in M[sp:sp + 7] (M denotes memory).

Notice that although register a4 is available, p4 is placed on the stack since it cannot be placed 

completely in argument-transmitting registers (rule 4). Such restrictions are common in 

actual calling conventions. 

4.2.2 Convention, Language, and Implementation

The first thing to notice about our simple calling convention is the lack of detail. There are 

many questions that are left unanswered. Among them are:

• In what order are the procedure’s arguments evaluated?

• In what order are the procedure’s arguments placed in registers and on the stack?

• Where are the persistent1 registers stored?

• Which persistent registers need to be saved?

• What is the activation frame layout?

Each of these questions must be answered in order to produce a working implementation. 

These questions are answered by two other elements that interact with the procedure calling 

convention: the definition of the procedure’s source language and the language’s implementa-

tion. In this work, we have made a conscious effort to separate the concepts of calling conven-

tion, language definition, and implementation. 

The choice to isolate the concepts of the convention from those of the language defi-

nition is an obvious one. To facilitate inter-language procedure calls, a single convention sepa-

rate from the language definition, must be available. There are, however, features of the source 

language that may be present in the convention. For example, in our hypothetical convention, 

where an argument is placed is determined, in part, by the type of the argument. Such lan-

guage features cannot be avoided in the description of the convention, but they should be 

1. A register whose value is preserved across a procedure call is persistent.
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kept to a minimum. Also, it illustrates what features both languages must share to make inter-

language procedure calls possible at all.

The need for the second separation, between the convention and the language imple-

mentation, may be less obvious. Compiler writers commonly refer to the mechanism by 

which procedure calls are made as either the calling convention, or the calling sequence. 

Although these two terms are frequently used interchangeably, they are separate concepts and 

we treat them as such. Without additional information, the calling convention itself does not 

provide enough information to produce an implementation. The calling sequence, on the 

other hand, is an implementation of the calling convention. It is a sequence of machine 

instructions that implement a procedure call. There may be many calling sequences for a 

given calling convention. Furthermore, since the sequence implements the convention, the 

caller cannot distinguish between two different calling sequences used by the callee, and vice 

versa. Thus, while it is imperative that a caller and a callee use the same calling convention, it 

is not necessary that they use the same calling sequence. 

4.2.3 Separating Convention from Sequence

An important result of this work is the identification of calling convention and calling 

sequence as separate concepts. Although at first this distinction may seem unnatural, it has 

many benefits. The reason it seems unnatural is that the two concepts are so closely coupled. 

It is impossible to discuss calling sequences without calling conventions. However, the reverse 

is not true. By extracting the concept of convention from the calling sequence, we are able to 

more accurately model the interaction between procedures and the interaction between sys-

tems software that process procedures. 

When discussing calling conventions, we have found it useful to have a litmus test 

that helps us identify what features of the procedure call are part of the calling convention, 

and what features are part of the calling sequence. We ask the following question:

If I change the implementation of this feature on one side of the procedure call, will 

it impact the other side of the call?

If the answer to this question is “yes,” then the feature is part of the calling convention. If 

“no,” the feature is part of the calling sequence. For example, if the callee changes where it 
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stores the values of persistent registers that it uses, the caller need not be changed. Thus, where 

these values are stored is a feature of the calling sequence. Conversely, if the callee changes 

where it stores its return value, the caller must also be changed so it can properly retrieve the 

value upon return. Therefore, the placement of the return value is a matter of calling conven-

tion.

Separating the convention from the sequence is often quite difficult. Conventions are 

usually illustrated using sequences, and when considering a convention, it is natural to think 

of how it might be implemented—the sequence. However unnatural this process may at first 

seem, we have reaped great benefits by performing this delicate separation. The calling con-

vention descriptions that we have developed are more accurate, and can be used for many 

applications primarily due to their application independence. A good deal of this indepen-

dence is due to the specification of convention without consideration of sequence. The result 

is specifications that describe how procedures must interact at a high level without describing 

the implementation of these interactions. Descriptions of such implementations would have 

many obvious shortcomings.

4.2.4 Interfaces and Agents

So far, we have mentioned a single procedure call interface. Actually, there are two interfaces: 

the procedure call interface and the procedure return interface as shown in Figure 4-3. We 

model the actions and responsibilities on each side of these interfaces using agents. An agent 

ensures that its side of the interface satisfies the requirements of the calling convention. These 

agents are the whom in the definition of the calling convention. For the procedure call inter-

face, there are the caller prologue and callee prologue agents that are responsible for correctly 

passing the procedure arguments and constructing an environment in which the callee can 

execute. For the procedure return interface, there are the callee epilogue and caller epilogue that 

are responsible for correctly passing the procedure return values and restoring the environ-

ment of the caller. The responsibilities of each of the four agents are closely related. The caller 

prologue and callee prologue agents must agree on how to pass information, as must the caller 

epilogue and callee epilogue. Additionally, actions of the epilogue agents must be symmetric 

to the actions of the prologue agents to properly restore the environment (e.g., if the call dec-
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rements the stack pointer, the return must increment it). It is precisely these restrictions that 

make it difficult to correctly construct a calling sequence. 

4.2.5 Addressing

One responsibility of each agent is to maintain the environment in which procedures execute. 

Depending on the language and its implementation, the environment can contain arbitrary 

information. However, one aspect of the environment that almost all languages are likely to 

share is the concept of addressing. Addressing describes how a name in the source language is 

bound to a location in the implementation. For example, local variables are commonly found 

on the stack, while global variables may be referenced through a global space pointer. 

Sometimes, to properly construct an environment for a procedure, the caller must 

provide to the callee details about the caller’s environment. For example, in Pascal [KJ74], 

where nested procedures can refer to variables in the scope of their containing procedures (up-

level references), the caller must provide the callee with environment information for the 

callee to properly implement the scoping rules of the language. Using our litmus test, clearly 

the structure of the environment information is part of the calling convention. If the structure 

were changed, the callee would need to be changed so it could properly find variables that are 

visible to the callee. 

Although the structure of information that is transmitted between procedures is a 

matter of convention, we have not included it in our convention specifications. Just as it is 

Figure 4-3. The role of agents in procedure call and return interfaces.
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reasonable to discuss calling convention rules using data types that are never formally defined, 

it is also reasonable to specify how information is passed between procedures without defining 

its structure. We believe that description of the structure of information is itself an interesting 

and difficult problem that is best left as a future research effort. 

4.2.6 Activation Frame Layout 

An important decision that must be made when implementing a procedure calling conven-

tion is the layout of the procedure activation frame. An activation frame is one of several 

implementation choices for storing the information specific to a particular activation of a pro-

cedure. A surprising result of studying calling conventions is that a complete specification of 

the calling convention is unlikely to determine the frame layout. 

Information that is typically found in a procedure activation frame includes the proce-

dure’s parameters, locations for storing local variables and temporaries, space for saving the 

values of persistent registers, and space for any other environment information. Where this 

information is found in the frame is determined, in part, by the convention and, in part, by 

the implementation. The convention fixes the location of the procedure’s arguments, while it 

is up to the implementation to specify where local variables are stored. Thus, any implementa-

tion must make some decisions about frame layout. Section 4.5.2 discusses how this is done 

in our implementation. 

4.3 The CCL Specification Language
In this section, we present the specification language that we use to describe procedure calling 

conventions. Once a convention is specified in CCL, we avoid the pitfalls related to using the 

programmer’s reference manual and reverse-engineering the compiler. We present the key fea-

tures of CCL and enough syntax of the language to understand the examples. 

4.3.1 Design Philosophy

In designing CCL, there were a number of features that we wanted to be include. First and 

foremost, the language had to be processed automatically. Second, we wanted the descriptions 

to be natural. Hence, the elements of the language had to reflect concepts common to calling 

conventions. Third, the design had to avoid over-specification of conventions. To achieve this, 

we tried to exploit the symmetry of the procedure call to eliminate redundancy in the descrip-
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tions. Finally, the feature that received the least priority was the syntax of the language. The 

selection of what symbols to use for operators, for example, was only of secondary concern.

We describe the key features of CCL by presenting a simple CCL description. We 

develop the example description piece-by-piece as each part of description is presented. This 

section concludes with a complete description of our hypothetical calling convention in 

Figure 4-5. As with other modules in CSDL, CCL uses an extended ASCII character set and 

typographical elements such as bold face, superscripts and special fonts.

4.3.2 Resources

The primary objects in CCL are resources. A resource is simply any location that can store a 

value. Examples include registers and memory locations, such as the stack. Since resources 

correspond to a machine’s memory locations, CCL models them as arrays. The name of the 

resource is bold and indices are usually superscripted. For example, a5 would designate register 

five. Memory indices are treated similarly: M1023 to designate address 1023. However, the 

combination of the two—such as using a register to compute a memory address—would yield 

expressions such as: . Therefore, we also permit indices to be specified within brackets 

(‘[’ and ‘]’) to avoid superscripting superscripts: M1023 may be written as M[1023]. This treat-

ment is identical to the mathematics convention of writing  as  when x is typo-

graphically complicated.

In addition to resources, CCL descriptions use sets. Sets contain elements that are 

either integers, resources, or sets. Where possible, CCL uses standard mathematical notation 

for building sets. For example, the expression:

{1, 2, 3, 4}

describes the set containing the first four positive integers. It is most useful to define sets of 

resources, such as the first four locations of the stack (if a5 is the stack pointer):

{M[a5], M[a5 + 1], M[a5 + 2], M[a5 + 3]}

such expressions can be more concisely expressed by using the range operator (‘:’). An equiva-

lent formulation of the resource set above is: {M[a5:a5 + 3]}. Infinite sets can be constructed 

with the use of the special integer infinity (‘∞’). To describe the set of all memory locations 

M
a5 12+

e
x

x( )exp
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addressable from the stack pointer, use {M[sp:∞]} where ‘sp’ is an alias for the stack pointer. 

Such an alias can be introduced using the alias statement:

alias sp ≡ a5 

More complicated sets can be constructed using the condition operator (‘|’) that usually is 

accompanied by the introduction of a set variable. For example, the expression:

{ M[addr] | addr mod 4 = 0}

describes all of the four-byte-aligned memory locations. In this expression the variable addr is 

introduced in the set expression and is then constrained within the condition expression. 

Obviously, set variables are indicated by using italics. Such conditions may include the stan-

dard relational operators and set membership (‘∈ ’) bound together using Boolean AND (‘∧ ’). 

Finally, in addition to sets, CCL allows for ordered sets (often called lists) by changing the 

delimiters to angle brackets (‘<’ and ‘>’): <M[sp:∞]>. Ordered sets define the order in which 

elements can be extracted or considered. 

CCL descriptions are composed of five sections: a global declaration section and a sec-

tion for each of the four agents (caller prologue, callee prologue, callee epilogue and caller epi-

logue). The global section introduces names that are used in two or more agent descriptions. 

An agent description, if present, may include zero or more resource placements and zero or 

more view changes. We describe each of these in detail in the following paragraphs. 

4.3.3 Global Section

The global section introduces names and defines properties that impact all convention agents. 

Three types of statements may be used in the global section: external, persistent, and alias. 

An example global section is:

external NVSIZE, SPILL_SIZE, LOCALS_SIZE 
persistent {a6, a7, a8, a9} 
alias sp ≡ a5 

The external statement indicates identifiers that whose values are defined by the outer envi-

ronment (discussed below). The persistent statement identifies those machine resources 

whose values must persist1 (be preserved) across a procedure call. Finally, the alias statement, 

which we already have seen, introduces more meaningful names for expressions. 

1. Persistent resources are often called callee save locations, or non-volatile locations.
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4.3.3.1 Outer Environment

Although CCL is used to capture information about a calling convention, a CCL description 

does not contain all necessary information to produce a calling sequence. Indeed, CCL 

descriptions are not complete by themselves. CCL descriptions require information from the 

outer CSDL environment to complete the descriptions. Information about the machine and 

language, such as the size of registers, the base data types and local procedure information, 

such as the amount of space needed for temporary variables, and which registers are used, are 

provided by other components of the CSDL description system. Four variables that are always 

defined by the outer environment are the special resources ARG, RVAL, and the correspond-

ing special resource sizes ‘ARG_TOTAL’ and ‘RVAL_TOTAL’. Since these values are always 

defined, they are implicitly declared as external values. All other variables whose values are 

provided by the outer environment are declared using the external statement. 

4.3.4 Agent Descriptions

The responsibilities agents are specified in each agent’s corresponding section. An agent’s 

responsibilities fall into one of two categories: data transfers, and view changes. Thus, each 

agent’s section may be composed of zero or more data transfer and view change statements. 

Data transfers describe movement of values from one resource to another that the agent must 

perform, while view changes describe shifts in an agent’s point-of-view with regard to machine 

resources.

4.3.4.1 Data Transfers

The primary responsibility of each agent is to make possible the transmission of information 

from the caller to the callee and vice versa. These transmissions are specified using a 

data transfer statement within an agent’s section. The data transfer statement always includes 

a resources declaration and a map statement. In addition, new aliases, constants, and names 

may be introduced in the data transfer statement. 

Each parameter or return value must be assigned a resource to communicate the value 

across the call. These locations are taken from the set of declared mapping resources. In 

declaring these resources, two things must be considered: what resources may be allocated for 

data transmission, and in what order may they be allocated. The resources declaration speci-

fies both of these. For example, the statement:
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resources {<a1:4, M[sp:∞]>}

indicates that the first four ‘a’ registers and all stack memory locations may be targets for 

moves. The inner set is ordered because once a resource later in the list is used (such as a4), 

resources earlier in the list may no longer be considered (such as a2). 

Once a set of target resources has been declared, the resources are partitioned into 

classes. A class is an ordered set of ordered sets that indicate where to start placing a value. For 

example, we could introduce the ‘regs’ class using the following class statement:

class regs ← <<register> | register ∈  <a1:4>> 

This binds the ‘regs’ identifier to an ordered set of ordered sets, each of which contains a single 

register. This set is equivalent to:

class regs ← <<a1>, <a2>, <a3>, <a4>> 

The inner ordered set is used to indicate a list of starting locations if a value cannot be placed 

in a single resource. 

Once the set of resources has been declared and partitioned into classes, the actual 

mapping of values to resources can be specified using the map statement. In its simplest form, 

map takes a source resource and maps it to a class. For example, the map statement:

map ARG1 → <regs, mem> 

takes a single resource as the source (left hand side) and an ordered set classes as the destina-

tion. In this case, ARG1 would be mapped to a location in the ‘regs’ class, or if none were 

available, ARG1 would be mapped to a location in the ‘mem’ class.

During the mapping process several resource attributes are examined and set. A 

resource attribute is specified by naming the resource followed by a period, followed by the 

name of the attribute. There are four resource attributes in CCL:

• ‘type’: the type of the parameter or return value (defined for ARG and RVAL resources 

only).

• ‘size’: the size of the resource in bytes.

• ‘assigned’: a Boolean value, that if true, indicates the resource has been used in a map-

ping.

• ‘unavailable’: a Boolean value, that if true, indicates the resource may not be used in a 

mapping.
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The map operator uses the ‘size’, ‘assigned’, and ‘unavailable’ attributes. The ‘type’ attribute is 

often used to select one of many possible targets for a mapping. For example, in combination 

with the case expression (‘⊥ ’), the lines:

map ARG1→ ARG1.type ⊥  { 
char: <regs, mem>, 
int: <regs, imem>, 
double: <regs, dmem>, 

} 

select one of three sets of ordered sets based on the value of ARG1’s type and maps ARG1 to 

the set.

4.3.4.2 Conditionals and Iteration

As with many languages, CCL has expressions for both conditional evaluation and iteration. 

Both types of expressions introduce variables whose scope is the enclosed expression. The uni-

versal quantifier (‘∀ ’) operator iterates over a set, each time binding the variable to an element 

of the set. For example, to perform mappings for all arguments, we could use iteration in 

combination with map:

∀  argument ∈  <ARG1:ARG_TOTAL> 
map argument → <regs, mem>

In this example, the variable argument is bound to each element of the set in order (the set is 

ordered), and the statement is evaluated with that binding. Similarly, the existential quantifier 

(‘∃ ’) can be used to perform a statement conditionally.

4.3.4.3 Internal Values

The final type of agent statement is the internal statement. In contrast to external, internal 

values are defined by the CCL description. The internal keyword is used to introduce a 

named integer value. Most often, it is used to compute sizes for various parts of an activation 

frame. In our example, we define ‘ARG_SIZE’ using:

internal ARG_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧  M[addr].assigned>) 

Expressions on the right-hand-side of ‘←’ may be simple integer expressions or the special 

summation operator (‘∑’) used here that sums the values of a set of integers. In this example, 

we compute the sum of the sizes of each memory resource whose assigned attribute is set. This 

corresponds to the amount of memory that the above map operator used when placing the 

arguments.
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At this point, we coalesce our CCL statements presented in this section to yield the 

entire data transfer block for the caller prologue of our simple convention. The specification is 

shown in Figure 4-4. To review, the two aliases ‘mindex’ and ‘argregs’ are introduced to name 

the possible argument memory indices and argument registers, respectively. The set of desti-

nations for placement specified as the registers followed by memory in the resources state-

ment. Three subsets of these resources are defined as ‘regs’, ‘imem’, and ‘dmem’ using the class 

statement. The ‘regs’ class contains all argument registers, ‘imem’ contains all four-byte-

aligned memory locations, and ‘dmem’ contains all eight-byte-aligned memory locations. The 

map statement, in combination with iteration and the case selection operator, maps all argu-

ments to registers and various memory locations based on the type of the argument. In all 

cases, registers are considered first, and then memory. When registers are exhausted, ints are 

placed in four-byte-aligned memory while doubles are aligned by eight bytes. Finally, the 

amount of memory used by map is computed and placed in the variable ‘ARG_SIZE’ for use 

in other parts of the description.  

4.3.4.4 View Changes

In addition to data transfers, CCL can describe changes in an agent’s point of view. Such 

changes, called view changes, describe shifts in resource names and are an important CCL 

innovation. Without view changes, we cannot describe the effects of procedure memory allo-

cation such as stack allocation and register windows.

1. alias mindex ≡ sp:∞ 
2. alias argregs ≡ a1:4 
3. resources {<argregs, M[mindex]>} 
4. class regs ← <<register> | register ∈  <argregs>> 
5. class imem ← <<M[addr]> | addr ∈  <mindex> ∧  addr mod 4 = 0> 
6. class dmem ← <<M[addr]> | addr ∈  <mindex> ∧  addr mod 8 = 0> 
7. ∀  argument ∈  <ARG1:ARG_TOTAL> 
8. map argument → argument.type ⊥  { 
9. char: <regs, M[mindex]>, 

10. int: <regs, imem>, 
11. double: <regs, dmem>, 
12. } 
13. internal ARG_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧
14. M[addr].assigned>) 

Figure 4-4. The caller prologue.
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When a procedure is called, memory must be allocated somewhere to store the proce-

dure’s arguments and local variables. When a procedure returns, this memory must be deallo-

cated. This space may consist of registers or memory, or a combination of the two. Often, this 

allocation takes the form of stack allocation. Since stack allocation requires a change in the 

stack pointer, an unfortunate side-effect occurs: all memory locations that are referenced 

through the stack pointer change names. For example, say a local variable X is stored at 

M[sp + 12]. If, in the process of allocating an activation frame, the stack pointer is decre-

mented by 48, the name for X must change to M[sp + 60] to reflect the shift in the value of 

‘sp’. Such shifts happen in all calling conventions, but are often difficult to express.

In CCL, we could model shifts in names using a data transfer statement. However, 

this would imply that the values actually moved and would cause moves to occur. Instead, 

CCL allows such shifts to be expressed using view changes that, in turn, are mapped to actions 

that cause such shifts to occur without moving the data. For example, in our simple conven-

tion, allocation is performed using the stack. Within a view change statement, the becomes 

keyword can be used to express this shift for a single location:

M[sp + 12] becomes M[sp + 60]

When many such changes in view occur, iteration can be used:

∀ offset ∈  {-∞:∞} 
M[sp + offset] becomes M[sp + offset + 48] 

This corresponds to a push of a 48-byte activation frame onto the stack. 

The view change concept encompasses more than just stack allocation. Any action 

that causes names to change can be described using changes in view. The register window 

mechanism on the SPARC microprocessor is an example. When the register window slides, 

the contents of the registers appear to move because the names of the registers have changed. 

This shift can be expressed in exactly the same way that stack pushes and pops are expressed.

4.3.4.5 Symmetry

The data transfer and view change statements are sufficient to describe the agent responsibili-

ties of complex calling conventions. However, such descriptions would be repetitive and 

therefore more error-prone without the use of CCL symmetry. Procedure calls are highly sym-

metric; many actions done in the call must be “undone” in the return. CCL descriptions 

exploit this symmetry in both view changes and data transfers.
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An action is defined to be symmetric if the action is performed in both an agent and 

the agent’s symmetric agent. The caller prologue’s symmetric agent is the caller epilogue, while 

the callee prologue’s symmetric agent is the callee epilogue. Both view changes and data trans-

fers are considered symmetric unless they are tagged with the asymmetric keyword. 

Symmetry is used most often with view changes. When the caller prologue causes a 

view change by decrementing the stack pointer, the callee epilogue usually is responsible for 

performing the symmetric action of incrementing the stack pointer by the same amount. 

When this occurs, only one view change needs to be specified. The corresponding view 

change in the agent’s symmetric agent is assumed to occur. Although symmetry may be used 

in data transfer statements, we have found no use for it. Initially, we had used symmetric data 

transfers to save and restore the values of persistent registers. In further refinements of the 

descriptions, we removed such symmetric data transfers because they were found to be inde-

pendent of the calling convention (they define where in the activation record such registers 

should be stored, which is a calling sequence detail). 

4.3.5 Summary

CCL descriptions are composed of a global section and four agent sections. These descrip-

tions manipulate resources and sets to define the responsibilities of each of the calling conven-

tion agents. Data transfers are used to define the placement of arguments and return values. 

View changes are used to define how changes in the machine state changes an agent’s point of 

view. Finally symmetry is used to reduce the amount of repetitive code by exploiting the natu-

ral symmetry of procedure calls. We conclude this section with the complete specification for 

the hypothetical calling convention shown in Figure 4-5.  

4.4 The Formal Model

4.4.1 P-FSA Representation

We use finite state automata to model each placement in a calling convention. The use of 

FSA’s for modeling parts of a compiler, and as an implementation tool, has a long and success-

ful history. For example, FSA’s have often been used to implement lexical analyzers [JPAR68]. 

More recently, Proebsting and Fraser [PF94], and Muller [Mul93] have used finite state 

automata to model and detect structural hazards in pipelines for instruction scheduling.
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An example FSA that we use to model calling convention placement is shown in 

Figure 4-6. This FSA models the placement of procedure arguments for the simple calling 

convention. A placement FSA (P-FSA) takes a procedure’s signature as input and produces 

locations for the procedure’s arguments as output. The automaton works by moving from 

1. external NVSIZE, SPILL_SIZE, LOCALS_SIZE 
2. persistent {a6, a7, a8, a9} 
3. alias sp ≡ a5 
4. caller prologue 
5. view change 
6. ∀  offset ∈  {−∞:∞} 
7. M[sp + offset] becomes M[sp + offset + ARG_SIZE] 
8. end view change 
9. data transfer (asymmetric) 

10. alias mindex ≡ sp:∞ 
11. alias argregs ≡ a1:4 
12. resources {<argregs, M[mindex]>} 
13. internal ARG_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧
14. M[addr].assigned>) 
15. class regs ← <<register> | register ∈  <argregs>> 
16. class imem ← <<M[addr]> | addr ∈  <sp:∞> ∧  addr mod 4 = 0> 
17. class dmem ← <<M[addr]> | addr ∈  <sp:∞> ∧  addr mod 8 = 0> 
18. ∀  argument ∈  <ARG1:ARG_TOTAL> 
19. map argument → argument.type ⊥  { 
20. char: <regs, M[mindex]>, 
21. int: <regs, imem>, 
22. double: <regs, dmem>, 
23. } 
24. end data transfer 
25. end caller prologue 
26. callee prologue 
27. view change 
28. ∀ offset ∈  {-∞:∞} 
29. M[sp + offset] becomes
30. M[sp + offset + SPILL_SIZE + LOCALS_SIZE + NVSIZE] 
31. end view change 
32. end callee prologue 
33. callee epilogue 
34. data transfer (asymmetric) 
35. resources {a1:2} 
36. map RVAL1 → <<<a1>>> 
37. end data transfer 
38. end callee epilogue 
39. caller epilogue 
40. end caller epilogue 

Figure 4-5. A CCL description of the calling convention of Figure 4-2.
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state to state as the location of each value is determined. When a transition is used to move 

from one state to the next, information about the current parameter is read from the input, 

and the resulting placement is written to the output.

The states of the machine represent that state of allocation for the machine resources. 

For example, the state labeled q2 represents the fact that registers a1 and a2 have been allo-

cated, but that registers a3, a4, and stack locations have not been allocated. A transition 

between states represents the placement of a single argument. Since arguments of different 

types and sizes impose different demands on the machine’s resources, we may find more than 

one transition leaving a particular state. In our example, q8 has three transitions even though 

two of them (int and double) have the same target state (q4). This duplication is required since 

the output from mapping an int is different from the output from mapping a double.

Modeling the allocation of an infinite resource, such as the stack, using an FSA poses 

a problem, however. As mentioned above, the state indicates which resources have been allo-

cated. For finite resources, this is easily accomplished by maintaining a bit vector. When a 

resource no longer may be used, the associated bit is set to indicate this. For an infinite 

resource this scheme cannot work if we hope to use an FSA since this would require a bit vec-

tor of infinite length. To simplify the problem, we impose a restriction on infinite resources: 

their allocation must be contiguous. Thus, for an infinite resource I = { i1, i2, …} , we can 

Figure 4-6. P-FSA for transmission of parameters for a simple calling convention.
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store the allocation state by maintaining an index p whose value corresponds to the index of 

the first available resource in I. Because the allocation of I must be contiguous, p partitions the 

resources since a resource ij is unavailable if j < p or available if j ≥ p. For instance, if the stack 

is the infinite resource, p can be considered the stack pointer. 

Nevertheless, we still have a problem. Although for a particular machine, the value of 

p must be finite, the resulting FSA could have as many as 232 stack allocation states for a 

32-bit machine. However, we can significantly reduce this number by observing that the deci-

sion of where to place a parameter in memory is not based on p, but rather on alignment 

restrictions. For our example, we care only if the next available memory location is one-, four-, 

or eight-byte aligned. Consequently, we can capture the allocation state of the machine with 

three bits that distinguish the memory allocation states. We call these the distinguishing bits 

for infinite resource allocation.

Handling pass-by-value structures creates a complimentary problem. Since only the 

“alignment state” of the stack is of interest, structures that affect the state of the P-FSA differ-

ently must use different transitions. So for a convention that requires structures to be passed 

in 8-byte aligned memory locations, all structures of size n where n mod 8 = 1 share the same 

transition out of a given state because they leave the alignment, p, in the same state. There-

fore, the number of transitions leaving a state is limited by the alignment restrictions of the 

machine. 

Placement functions are described in terms of finite resources, infinite resources, and 

selection criteria. A set of finite resources R = { r1, r2, …, rn}  is used to represent machine reg-

isters, while an infinite resource I = { i1, i2, …} 1 is used to represent the stack. The selection 

criteria C = { c1, c2, …, cm} correspond to characteristics about arguments (such as their type 

and size) that the calling convention uses to select the appropriate location for a value. We 

encode the signature of a procedure with a tuple w ∈ ( C*, C*). Each state q in the automaton 

is labeled according to the allocation state that it represents. The label includes a bit vector v 

of size n that encodes the allocation of each of the finite resources in R. Additionally, to 

express the state of allocation for the stack, we include d, the distinguishing bits that indicate 

the state of stack alignment. So, a state label is a string vd that indicates the resource allocation 

1. This can easily be extended to model more than one infinite resource.
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state. In our example convention, n = 4, and the length of the string d ( ) is 3. So, each state 

is labeled by a string from the language { 0, 1} 4{ 0, 1} 3. The output of M is a string s ∈ P, 

where 

which contains the placement information. 

Since the P-FSA produces output on transitions, we have a Mealy machine [Mea55]. 

We define a P-FSA, M, as a six-tuple1 M = (Q, Σ, ∆, δ, λ, q0), where:

• Q is the set of states with labels  representing the allocation state of 

machine resources,

• the input alphabet Σ = C, is the set of selection criteria,

• the output alphabet ∆ = P, is the set of placement strings,

• the transition function δ:Q × Σ → Q,

• the output function λ:Q × Σ → ∆+, and

• q0 is the state labeled by 0nw where , and w is the initial state of d.

We also define δ̂:Q × Σ∗ → Q and λ̂:Q × Σ∗ → ∆* which are just string versions2 of δ and λ, 

respectively. So, for our example, we have

M = (Q, { char, int, double} , { a1, a2, a3, a4}∪{ 0, 1} 3, δ, λ, q0)

where Q and δ are pictured in Figure 4-6 and λ is defined in Table 4-1. Note that we have 

modified the traditional definition of λ to allow multiple symbols to be output on a single 

transition. This reflects the fact that arguments can be located in more than one resource. For 

example, in state q5 on an int, Table 4-1 indicates that M produces the string of four symbols 

100 101 110 111 that designates four bytes that are four-byte aligned, but are not eight-byte 

aligned.

The signature:

int phred(double, double, char, int);

1. We use the notation of [HU79] for finite state automata and regular expressions. We use letters early 
in the alphabet (a, b, c) to denote single symbols. Letters late in the alphabet (w, x, y, z) will denote 
strings of symbols.

2. Defined by Hopcroft and Ullman [HU79].

d

P R 0 1,{ } d∪=

0 1{ , } n 0 1{ , } d

w d=
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will take the P-FSA in Figure 4-6 along the path q0→q2→q4→q5→q4 producing the string 

(a1 a2) (a3 a4) (000) (100 101 110 111) along the way. The parentheses in the output string are 

required to determine where the placement of one argument ends and the next argument’s 

placement begins. From the string, we can derive the placement of the phred’s arguments. The 

first double is placed in registers a1 and a2, the second in registers a3 and a4, the char at the 

stack location with offset zero and the int at the stack location with offset four. 

4.4.2 Automatic P-FSA Construction

In this section, we present an algorithm for automatically constructing P-FSA’s. For the 

moment, we assume the existence of a function f :Σ* → ∆∗ . f computes the same value as M. 

Since f and M are equivalent, why construct M at all? The answer is that f may have undesir-

able properties. For instance, M may be used in a context, such as a compiler, where perfor-

mance is an issue. If f is implemented as an interpreter, the time it takes to compute a 

placement may not satisfy the performance constraints. Additionally, by using a P-FSA, there 

are several properties (such as an upper bound on M’s execution time) we can prove about the 

P-FSA that we cannot prove about f.

We construct the P-FSA by performing a depth-first-traversal of the states in Q to 

determine the set of reachable states from q0. At each state q, the states that are reachable from 

q in one step are determined by using each element of { wc | c ∈ C}  as input to f. Each newly 

reachable state q' is added to Q and is subsequently visited by BUILD-P-FSA (see Figure 4-7). 

Finally, the appropriate additions to δ and λ are made for q'. BUILD-P-FSA also uses an auxil-

iary function STATE-LABEL:P → Q. STATE-LABEL takes an output string from M and com-

putes the label for the state that M was in when the input was exhausted. 

λ q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

char a1 a2 a3 a4 000 001 010 011 100 101 110 111

int a1 a2 a3 a4 m1
a m2

b m2 m2 m2 m1 m1 m1

double a1a2 a2a3 a3a4 m3
c m3 m3 m3 m3 m3 m3 m3 m3

Table 4-1. Definition of λ for example P-FSA.

a. m1 = 000 001 010 011
b. m2 = 100 101 110 111
c. m3 = 000 001 010 011 100 101 110 111
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4.4.2.1 Construction Algorithms

We define the algorithm Build-P-FSA in Figure 4-7. The algorithm starts with the initial state 

q0 as the only element of Q. Since there are no transitions yet, λ and δ have no rules. A call to 

Build-P-FSA takes three parameters, q, w, and x. q represents the state for Build-P-FSA to 

visit, while w represents the input string such that (q0, w) yields (q, ε), and x is output string 

upon reaching q. From this definition, the initial call to Build-P-FSA must be 

Build-P-FSA(q0, ε, ε).

In the algorithm for STATE-LABEL we start with state q0. As STATE-LABEL reads each 

symbol from the string, it encounters either the name of a finite resource, or a symbol repre-

senting the distinguishing bits of p. In the finite case, the bit corresponding to the resource is 

set in the finite resource vector. In the infinite case, the distinguishing bits of the state are set 

to the input symbol that was read. At the end of the input, all finite resources that have been 

read have their bits set to indicate they are unavailable, and the distinguishing bits indicate the 

last set of distinguishing bits read. To complete the computation, we need to move the infinite 

resource index to the next available resource (it currently points to the last unavailable one)1. 

The result of this computation is precisely the label for the final state of M for output w since 

it indicates which resources are available for allocation. The complete algorithm is shown in 

Figure 4-8.  

function BUILD-P-FSA(q, w, x)
// q ∈ Q, w ∈ Σ *, x ∈ ∆ * | λ̂(w) = x
for each criterion c ∈ C do

y ← f(wc); // compute placement of signature wc
q’ ← STATE-LABEL(y); // compute state label from placement
if q’ ∉  Q then

Q ← Q ∪ {q’};
BUILD-P-FSA(q’, wc, y);

end if
a ← b | xb = y; // set a as the suffix of y not in x
add λ(q, c) = q’;
add δ(q, c) = a;

end for
end function

Figure 4-7. Algorithm to build a P-FSA.

1. An ordered list of values for p’s distinguishing bits is known so that we can perform this calculation, 
although this is usually just an increment.
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Our construction is now complete, except the definition of the function f. We supply 

f ’s definition using an interpreter. The interpreter takes as input a CCL specification, infor-

mation about a procedure’s signature and some additional information about the target 

machine, and produces the necessary mapping information to properly call the given proce-

dure. Thus, this interpreter can be used to implement f  in our algorithm above. In 

Section 4.5.1, we present the interpreter’s use in an implementation.

4.4.3 Completeness and Consistency in P-FSA’s

Applications, such as compilers and debuggers, which generate, or process procedures at the 

machine-language level require knowledge of the calling convention. Until now, the portion 

of such an application’s implementation that concerned itself with the procedure call interface 

was constructed in an ad-hoc manner. The resulting code is complicated with details, difficult 

to maintain, and often incorrect. In our experience, we have encountered many recurring dif-

ficulties in the calling convention portion of a retargetable compiler. There are three sources 

for these problems: the convention specification, the convention implementation, and the 

implementation process. We address each of these in the following paragraphs.

Many problems arise from the method of convention specification. Often, no specifi-

cation exists at all. Instead the native compiler uses a convention that must be extracted by 

reverse engineering. In the cases where a specification exists, it typically takes the form of writ-

ten prose, or a few general rules (e.g., our example description in Figure 4-2). Such methods of 

specification have obvious deficiencies. Furthermore, even if we have an accurate method for 

function STATE-LABEL(w) // w ∈ ∆ *

z ← 0n; // z is the finite resource vector
while w ≠ ε do

// extract the first symbol from w
define a and x such that ax = w;
w ← x; // set w to the rest of w
if a ∈ R then // for finite resources:

// mark it as used
set a’s corresponding bit in z;

else // for infinite resources:
d ← a; // keep the last one encountered

end if
end while
d ← d + 1; // set d to the next resource
return zd; // return state label made of z and d

end function

Figure 4-8. Definition of STATE-LABEL.
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specifying a convention, it still may be possible to describe conventions that are internally 

inconsistent, or incomplete. For example, the convention may require that more than one 

procedure argument be placed in a particular resource. Another possibility is that the specifi-

cation may omit rules for a particular data type, or combination of data types.

Those problems that do not stem from the specification result from incorrect imple-

mentation of the convention. Many of the same problems in the specification process also 

plague the implementation. Many conventions have numerous rules, and exceptions that 

must be reflected in the implementation. Another difficulty is that the implementation may 

require the use of the convention in several different locations. Maintaining a correspondence 

between the various implementations can itself be a great source of errors. Finally, this prob-

lem is exacerbated by the fact that the implementation frequently undergoes incremental 

development. Rather than taking on the chore of implementing the entire convention at once, 

a single aspect of the convention, such as providing support for a single data type, is tackled. 

After successfully implementing this subset, the next increment is tackled. During this pro-

cess, some aspect of the first stage may break due to the interactions between the two pieces. 

The result of these observations is that there are several properties that we would like 

to ensure about a specification and implementation. The above discussion motivates the fol-

lowing categories of questions:

• Completeness:

— Does the specified convention handle any number of arguments?

— Does the convention handle any combination of argument types?

• Consistency:

— Does the convention map more than one argument to a single machine resource?

— Do the caller and callee’s implementations agree on the convention?

Many questions like these can be answered using P-FSA’s. The following sections show how 

we can prove certain properties about CCL specifications that ensure desirable responses to 

the above questions.

4.4.3.1 Completeness

The completeness properties address how well the convention covers the possible input cases. 

A convention must handle any procedure signature. If we could guarantee that the convention 

was complete, or covered the input set, then we could answer the completeness questions 
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posed in the previous section. We can determine if a convention is complete by looking at the 

resulting P-FSA. For example, will the convention work for any combination of argument 

types? The answer lies in the P-FSA transitions. For the convention to be complete, each state 

q ∈ Q must have δ(q, c) defined for all c ∈ C. 

Using P-FSA’s, we can guarantee that no incomplete convention will go undetected. 

For an incomplete convention K to not be detected, it would first have to be constructed 

using our algorithm. Assume such a P-FSA M exists for K. Then there must be some state qk 

that is reachable from q0 but does not have δ(qk, a) defined for some a ∈ C. Let Wk denote 

the set of all strings x such that δ̂(q0, x) = qk. That is, Wk is the set of strings that take M from 

state q0 to qk. Thus, for all strings x such that x ∈ Wk, xa represents a signature that K does 

not cover. However, during construction, BUILD-P-FSA visited state qk with some string w 

such that δ̂(q0, w) = qk. Thus, w must be in Wk and must not be covered by K. Since 

BUILD-P-FSA calls f (wc) for all c ∈  C, f will be called using f (wa). Since wa is not covered by 

K, f (wa) will be undefined. At this point the construction process will signal that K is incom-

plete.

4.4.3.2 Consistency

The consistency properties address whether the convention is internally and externally consis-

tent. A convention is internally consistent if there is no machine resource that can be assigned 

to more than one argument. A convention is externally consistent if the caller and callee agree 

on the locations of transmitted values. In our model, we detect internal inconsistency, and pre-

vent external inconsistency.

To detect internal inconsistencies, we again turn to the P-FSA. If the convention only 

used finite resources, detecting a cycle in the P-FSA would be sufficient to detect the error. 

However, when infinite resources are introduced, so are cycles. We cannot have an internal 

inconsistency for an infinite resource since p is defined to be monotonically increasing. We 

detect finite resource inconsistencies in the following manner. An inconsistency can occur 

when there is a transition from some state qj to qk where bit i in the finite bit vector is 1 in qj, 

but 0 in qk. At this point, M has lost the information that resource ri was already allocated. 
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We can detect this change by comparing all pairs of bit vectors v1, v2 such that v1 labels qj, v2 

labels qk and δ(qj, c) = qk for some c ∈ C. To do the comparison, we compute

v3 = (v1 ⊕ v2) ∧ v1

v1 ⊕ v2 selects all bits that differ between v1 and v2. We logically AND this with v1 to deter-

mine if any set bits change value. Thus, if v3 has any bit set, we have an inconsistency. 

Our convention specification language prevents external inconsistencies in the calling 

convention. A convention specification only defines the argument transmission locations 

once. Although both the caller and the callee must make use of this information, the specifica-

tion does not duplicate the information. Since we only have a single definition of argument 

locations, we only construct a single P-FSA to model the placement mapping. This single 

P-FSA is used in both the caller and callee. Thus, we prevent external inconsistencies by 

requiring the caller and callee use the same implementation for the placement mapping. 

4.5 Use in a Compiler
In this section, we present how the information from our CCL descriptions can be used to 

generate calling sequences for an optimizing compiler.

4.5.1 The Interpreter

We have implemented an interpreter for the CCL specification language. The interpreter’s 

source is approximately 2500 lines of Icon code [GG90]. The interpreter takes as input the 

CCL description of a procedure calling convention, a procedure’s signature, and some addi-

tional information about the target architecture, and produces locations of the values to be 

transmitted, in terms of both the callee and the caller’s frame of reference. 

We have developed CCL specifications for the following machines: MIPS R3000 

[KH92], SPARC [Sun87], DEC VAX-11 [Dig78], Motorola M68020 [Mot85], and Motor-

ola M88100 [Mot88]. Each of these CCL specifications is approximately one page in length. 

Using the specification for the MIPS, and the CCL interpreter, we constructed a P-FSA that 

implements the MIPS calling convention. The MIPS P-FSA uses only 70 out of a possible 

512 states (the state label has nine bits), but requires up to 25 transitions for each state to 

implement the selection criteria for the C programming language. Since the MIPS convention 

has more machine resource classes and alignment requirements than any of the other 
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machines, it represents the most complicated convention we have. For machines that pass pro-

cedure arguments on the stack with no alignment restrictions, such as the VAX-11, the FSA’s 

contain only a few states.

For comparison purposes, we have examined the calling convention specific code for a 

retargetable compiler. The MIPS implementation requires 781 lines of C code, while the 

SPARC implementation has 618 lines. This code is one of the most complex sections of the 

machine-dependent code. This code is replaced by the P-FSA tables and a simple automaton 

interpreter. 

4.5.2 Realizing the Calling Sequence

In our compiler, the code for the procedure bodies is generated without knowledge of the call-

ing convention. For a callee, the optimizer treats formal parameters as local variables. It assigns 

each parameter either a register or a memory location, based on the parameter’s predicted ref-

erence frequency. Thus, although an established convention for where values cross the proce-

dure call interface exists, the code generated by our compiler for a procedure’s body may not 

conform to the convention. 

To correct this problem, instructions are placed before and after the callee’s body, and 

before and after the call site in the caller. We call these instructions the caller/callee prologue/

epilogue sequences. It is these sequences of instructions that are collectively called the calling 

sequence. The sequences introduce four new interfaces shown in Figure 4-9. In each 

sequence, the instructions transform a convention interface to a code body interface or vice 

versa. Since these sequences of instructions are used to “attach” the procedure bodies to the 

convention interfaces, they correspond to the agents, shown in Figure 4-3, of our high-level 

model.

An agent’s responsibilities fall into each of three categories: allocation or deallocation 

of storage space, movement of values from their locations in the first interface to locations in 

the second interface, and the construction/restoration of procedure execution environments. 

Hence, to generate an agent’s actions, we must have information about where the calling con-

vention expects values, what space to allocate or free, and the procedure’s environment struc-

ture. We can automatically generate the first two.
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To illustrate our technique, we show how to generate the instruction sequence for one agent. 

The instruction sequences that correspond to the other three agents are generated exactly the 

same way. For our example, we focus on the prologue callee agent for the procedure warp 

introduced in Section 4.2.1. Again, warp’s signature:

int warp(char p1, int p2, int p3, double p4);

Recall that for our hypothetical machine, warp’s arguments are placed by the caller in 

locations a1, a2, a3, M[sp:sp+7]. Assume that in generating warp’s body, the optimizer uses two 

persistent registers, allocates 12 bytes of memory for local variables (including warp’s argu-

ments) and uses eight bytes of spill space. One possible frame layout is shown in Figure 4-10. 

Figure 4-10(a) shows the generic layout for any procedure, while Figure 4-10(b) shows warp’s 

layout using this scheme. The relative locations of the temporary spill space, local variable 

space and persistent register save space are determined by the optimizer. The optimizer pro-

vides the locations where the callee body expects values. These are listed in the second column 

of Table 4-2. These locations represent an agreement between the callee body and the callee 

prologue agent. 

The optimizer calls the P-FSA interpreter with warp’s signature and values of the exter-

nal variables:

[SPILL_SIZE=8, LOCALS_SIZE=12, NVSIZE=8,

(ARG1, type:char, size:1), (ARG2, type:int, size:4), (ARG3, type:int, size:4),

(ARG4, type:double, size:8)]

Figure 4-9. Calling sequence locations.
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The P-FSA returns view changes, a list of argument locations that correspond to the calling 

convention, and a list of persistent registers:

[(∀ offset ∈  {-∞:∞}, M[sp + offset] : M[sp + offset + 32]),

[(ARG1, a1), (ARG2, a2), (ARG3, a3), (ARG4, M[sp+32:sp+39])],

[persistent: a6, a7, a8, a9]]

In this example, the view change occurred before the list of locations. Therefore, the locations 

reflect this fact. 

View change information corresponds to the allocation or deallocation of storage 

space. This view change indicates that any memory location’s address that contains a valid 

value for offset, shifts down by 32 bytes. Since offset can take on any positive or negative value 

(-∞:∞), this corresponds to all addresses relative to the stack pointer. Thus, a decrement of the 

stack pointer by 32 bytes is needed. This allocation of stack space will appear as a view change 

since it changes the names of all locations referenced by the stack pointer. A table is consulted 

for each view change in the CCL description. The table maps all view changes to valid 

machine instructions. 

After the view change has been performed, the necessary moves must be made to 

transform the agreement between the caller prologue agent and callee prologue agent to the 

agreement between the callee prologue agent and the callee body. Table 4-2 summarizes the 

location information. Column one shows the locations returned by the P-FSA. Column two 

shows the locations that the optimizer supplies. Column three, which can be trivially derived 

Figure 4-10(a). Generic Frame Layout. Figure 4-10(b). warp’s Frame Layout.

Figure 4-10. A possible procedure activation frame structure.
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from columns one and two, indicates the necessary actions. Each of these moves is a register/

memory to register/memory move. A table of available move instructions is consulted to 

determine the necessary instructions to be inserted into the callee prologue’s sequence. 

After the agent’s actions are determined, the list of sources and destinations must be 

examined to determine if there are any dependencies. If a source is also a destination, the 

move containing the source must be performed before the move containing the destination, 

otherwise the source value will be lost. It is not uncommon for a circularity to exist. For exam-

ple, if a1 → a2 and a2 → a1, we must introduce a third location to break the circularity: 

a1 → temp, a2 → a1, temp → a2. Either an available register or a memory location must be 

used to temporarily hold one of the values. In our compiler, we usually have a register avail-

able. 

At this point, the callee prologue instruction sequence is complete. So far, we have not 

addressed instruction sequence efficiency. Because of the frequency of procedure calls, gener-

ating efficient instruction sequences is an important feature of optimizing compilers. In our 

compiler, the resulting instruction sequences are processed by the optimizer. Thus, although 

the instruction sequences that are initially generated by this process are naive, they benefit 

from thorough optimization just as other code does. The resulting code is as good, if not bet-

ter, than the code generated by our handwritten version of our compiler. Often, the code 

Convention

Callee Prologue
Agent/Callee
Agreement

Callee Prologue
Agent Actions

A
rg

u
m

en
ts

p1:a1 p1:a3 a1 → a3

p2:a2 p2:M[sp+4:sp+7] a2 → M[sp+4:sp+7]

p3:a3 p3:a4 a3 → a4

p4:M[sp+32:sp+39] p4:a1,a2 M[sp+32:sp+39] → a1,a2

P
er

si
st

en
t

a6 M[sp+20:sp+23] a6 → M[sp+20:sp+23]

a7 M[sp+24:sp+27] a7 → M[sp+24:sp+27]

a8 a8 —

a9 a9 —

Table 4-2. Determining agent actions from placement information.
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improves because the additional peephole optimization phase that is performed after the call-

ing sequence instructions are generated can remove unnecessary register-to-register moves.

Clearly, P-FSA’s are very useful for generating code in compilers. We have shown how 

we can use CCL descriptions to build P-FSA’s that can subsequently be used in the implemen-

tation of a compiler. Code based on such formalisms has many advantages. However, the use-

fulness of P-FSA’s are not limited to code generation. In the next section, we illustrate how P-

FSA’s are used to build target-sensitive test suites for compilers. Using CCL descriptions for 

such a variety of applications is only possible because CCL specifications exhibit such a degree 

of application-independence. 

4.6 Construction of Diagnostic Programs
Building compilers that generate correct code is difficult. To achieve this goal, compiler writ-

ers rely on automated compiler building tools and thorough testing. Automated tools, such as 

parser generators, take a specification of a task and generate implementations that are more 

robust than hand-coded implementations. Conversely, testing tries to make hand-coded 

implementations more robust by detecting errors. In this section, we discuss how CCL 

descriptions can be used to make compilers more robust without requiring that the compiler’s 

implementation use CCL [BD96b]. 

4.6.1 Test Vector Selection

To test a compiler’s implementation of a calling convention, we must select a set of programs 

to compile. To exercise the calling convention, each test program must contain a caller and a 

callee procedure. For the purpose of testing the proper transmission of program values 

between procedures, the signature of the callee uniquely identifies a test case. Thus, two dif-

ferent programs, whose callees’ signatures match, perform the same test. Therefore, the prob-

lem of generating test cases reduces to the problem of selecting signatures to test. 

Selecting which procedure signatures to test is a difficult problem. Obviously, one 

cannot test all signatures since the set of signatures, S = {(C*, C*)} , is infinite. However, since 

we can model the function that computes the placement of arguments as an FSA, there must 

be a finite number of states in an implementation to be tested. This is the case for any imple-

mentation, including those that do not explicitly use FSA’s to model the placement function. 
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The problem of confirming that an implementation properly places procedure argu-

ments is equivalent to experimentally determining if the implementation behaves as described 

by the P-FSA state table. This problem is known as the checking experiment problem from 

finite-automata theory [Hen64, Koh78]. There are numerous approaches to this problem, 

most of which are based on transition testing. Transition testing forces the implementation to 

undergo all the transitions that are specified in the specification FSA.

An obvious first approach to generating test vectors using the P-FSA specification is to 

generate all vectors whose paths through the FSA are acyclic and those whose path ends in a 

cycle1. This solution insures that each state q is visited, and each transition δ(q, a) is traversed. 

For an FSA with few states, and a small input alphabet, this may be acceptable. However, the 

number of such paths for an FSA is . To illustrate the characteristics of P-FSA’s, 

Table 4-3 contains profiles for five P-FSA’s that we have built from CCL descriptions. For 

complex conventions, like the MIPS and SPARC, the number of transitions, and more 

important, the number of states can be large. For the MIPS, this results in an upper bound of 

 test vectors. In practice, the number of test vectors is closer to 108 vectors. 

However, this is still too many to run feasibly. 

Another, simpler approach is to guarantee that each transition is exercised at least 

once. Since there are no more than  transitions, the number of test vectors that this 

generates is not unreasonable. However, this method results in poor coverage that does not 

1. We define a path that ends in a cycle to be a cyclic path wa where the path w is acyclic. 

Machine
Allocation
Vector Bits

Memory
Partition Bits

Longest
Acyclic Path

DEC VAX 0 0 1 3 3 0

M68020 (Sun) 0 2 4 24 6 3

SPARC (Sun) 6 3 9 90 10 8

M88100 (Motorola) 8 3 72 720 10 15

MIPS R3000 (DEC) 6 3 70 772 25 11

Table 4-3. P-FSA profiles for several calling conventions.
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inspire confidence in the test suite. For example, for the P-FSA in Figure 4-6, the three signa-

tures:

void f(double, double);

void f(int, int, int, int);

void f(int, double);

cover all int and double transitions leaving states q0–2. This leaves the signature:

void f(double, int);

untested. Clearly such a test should be included in the suite. To further illustrate the problem, 

consider the FSA specification shown in Figure 4-11(a). An erroneous implementation, 

shown in Figure 4-11(b), contains an extra state q1’ that is reached on initial input b. The two 

strings, aaa and bbb completely cover the specification FSA transitions. Unfortunately, these 

test vectors will not detect that the implementation has an additional (fault) state. Thus, it is 

not sufficient to include only test vectors that cover the transition set. 

An alternative, which falls between the simple transition approach and the acyclic 

path approach, we call the transition-pairing approach. In transition pairing, we examine each 

state in the specification FSA. As shown in Figure 4-12, a state has entering and exiting transi-

tions. For each state, we include a test vector that covers each pair of entering and exiting tran-

sitions. This eliminates the faulty state detection problem illustrated in Figure 4-11. To 

illustrate how, consider the test vectors this process generates: While examining state q1, tran-

sition-pairing will add the substrings aa, ab, ba, and bb to the set of substrings used to gener-

ate test vectors. Since the context that these substrings are be used is q0, they contribute 

prefixes to the test vector set. Upon exercising q1 using the prefix ba, the implementation FSA 

Figure 4-11(a). Specification FSA. Figure 4-11(b). Implementation FSA.

Figure 4-11. Example FSA where a fault will not be detected.
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will generate incorrect output: 10 instead of 11. This difference can be identified, and the 

faulty state detected.

In addition to such fault detection, transition-pairing provides tests that have a similar 

characteristic to the acyclic method: transitions are tested in “all” the contexts that they can be 

applied. Although there are many combinations that are not tested, they are similar to ones 

included in the set. For example, in the simple FSA pictured in Figure 4-6, we could have a set 

of test vectors that includes the vector double double double to exercise the state q4 with the 

transition pair ((q2, double), (q4, double)). Such a set would not need to include int int double 

double to cover the same transition pair. 

This method of test vector generation provides a complete coverage of transitions in 

the specification FSA. Further, the tests reflect the context sensitivity that transitions have. 

This allows for some erroneous state and transition detection, while significantly reducing the 

number of test vectors. The test vector sizes are significantly smaller than the acyclic method, 

while still providing a significant confidence level. 

An algorithm for generating transition-pair paths is shown in Figure 4-13. The algo-

rithm performs a depth-first search of the FSA state graph. Each time a transition (q, a) is 

Figure 4-12. Entering and exiting transitions for a state.

Machine Transition Paths Transition-Pair Paths Acyclic Paths

DEC VAX 3 12 3

M68020 (Sun) 24 324 96

SPARC (Sun) 224 7,434 > 108

M88100 (Motorola) 720 22,412 > 108

MIPS R3000 (DEC) 772 5,655 8x108

Table 4-4. Sizes of test suites for various selection methods.

qn
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encountered, it is marked. This mark indicates that all paths that go beyond (q, a) have been 

visited. When the algorithm reaches a state qn on transition (qm, a), each transition (qn, b) 

where b ∈ Σ  is visited whether or not it is marked. This causes all pairs of transitions 

((qm, a), (qn, b)) to be included. These pairs represent all combinations of one entering transi-

tion with all exiting transitions. Because the algorithm is depth-first, each entering transition 

is guaranteed to be visited. Thus, all combinations of entering and exiting transitions are 

included. 

Work related to the automatic generation of test suites has received much attention 

recently in the area of conformance testing of network protocols [SL89]. The purpose of these 

suites is to determine if the implementation of a communication protocol adheres to the pro-

tocol’s specification. Often, the protocol specification is provided as a finite-state machine. 

This has resulted in many methods of test selection including the Transition tour, Partial W-

method [FvBK+91], Distinguishing Sequence Method [Koh78], and Unique-Input-Output 

method [ADLU91]. These methods are derivatives of the checking experiment problem 

Input. A finite-state machine M.

Output. The set of transition-pair paths in M that take M from q0 to qn with at most one cycle. The set
traverses all pairs of transitions ((qr, a), (qs, b)) such that δ(qr, a) = qs.

Initial call. TRANSITION-PAIRS(q0, ε, ∅ , 0);

Algorithm:
function TRANSITION-PAIRS(q, w, V, cycle)

paths ← ∅;
for each a where a ∈  Σ ∧  δ(q, a) is defined do // For each transition from state q...

if cycle ≠ 1 ∧  (q, a) ∉  T then // No cycles and (q, a) is new 
if q ∉  V then // If there is no cycle

T ← T ∪  {(q, a)}; // Mark transition as followed
cycle ← 0; // Indicate no cycle

else
cycle ← 1; // Indicate cycle

end if
P ← TRANSITION-PAIRS(δ(q, a), wa, V ∪ {q}, cycle); // Compute paths from here
paths ← paths ∪  P;

end if
paths ← paths ∪  {wa}; // Add this path to paths

end for
return paths; // Return paths from q

end function

Figure 4-13. Test vector generation algorithm.
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where an implementation is checked against a specification FSM [YL95]. Such techniques 

have also been used in the automatic verification of digital circuits [Hen64, HYHD95]

What distinguishes these methods from ours are the underlying assumptions concern-

ing the characteristics of the implementation FSA’s. Unlike theirs, our FSA’s can have a large 

number of states and transitions. This significantly changes the nature of the solution to the 

problem. Furthermore, much of the problem that network conformance researchers are faced 

with is identifying which state the implementation FSA is in. A significant portion of their 

work focuses on generating test vectors that discover the state of the machine. Fortunately, we 

can always put our implementation state machine in the start state. Also, in their work, a 

bound on the number of states in the implementation FSA’s is assumed. Because we have no 

practical bound on the number of states in the implementation, their work is not applicable. 

4.6.2 Test Case Generation

After selecting the appropriate test vectors, or procedure signatures, the corresponding test 

cases must be realized. In our approach, we generate a separate test program for each test vec-

tor so that we can easily match any reported errors to the specific test vector. 

A procedure call is broken into two pieces: the procedure call within the caller (the 

call-site) and the body of the callee. Because they are implemented differently, these two 

pieces of code are typically generated in separate locations in a compiler. This natural separa-

tion is reflected in the way that we construct our test cases. Each test case is comprised of two 

files, one contains the caller, the other contains the callee. The two files are compiled and 

linked together. The programs are self-checking, so that if a procedure call fails, this event is 

reported by the test itself.

Figure 4-14 shows the compiler conformance test process. One file is compiled by the 

compiler-under-test (CUT), while the other is compiled by the reference compiler. The refer-

ence compiler operationally defines the procedure calling convention (its implementation is 

defined to be correct). The resulting objects files are linked together and run. Results of the 

test are checked by the conformance verifier and given to the test conductor. The test conduc-

tor tallies the results of all tests for a test suite and generates a conformance report. Although 

this process uses two compilers, the same process may still be used if a reference compiler is 
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not available. However, this will weaken the conformance verifier’s ability to automatically 

diagnose errors as discussed in the next section. 

In each test case, the caller loads each argument with randomly selected bytes. How-

ever, the values of these bytes have an important property: each contiguous set of two bytes is 

unique. Thus, for a string B of m bytes, for all indexes , there exists no index 

 and  such that  for all . We can easily guarantee 

this property for all strings B whose length is no more than 65536 (216) bytes. Since the like-

lihood of using an argument list of size greater than 64 Kbytes is small, this is sufficient to 

guarantee that any two bytes passed between procedures are unique. This makes it easier to 

identify if an argument has been shifted or misplaced. The callee receives the values, and 

checks them against the expected values. If the values do not match, an error condition is sig-

nalled.

As one might expect, the generation of good test cases from selected signatures is lan-

guage dependent. One convention used in the C programming language is varargs. varargs is a 

standard for writing procedures that accept variable length argument lists. The proper imple-

mentation of varargs in a C compiler is difficult. For each test case that we generate we also 

generate a varargs version to verify that this standard convention is implemented correctly. 

Figure 4-14. The compiler conformance test process.
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4.6.3 Automatic Diagnosis of Errors

Generation of good tests is only a part of the testing process. If a test fails, the problem must 

be diagnosed and a solution developed. In this section, we discuss how the second step, diag-

nosis, can be partially automated.

As discussed above, the conformance verifier links a caller and callee together and runs 

the resulting program. When both a reference compiler and CUT are used, this results in four 

distinct caller-callee pairs. The result of running all four programs is called an outcome. 

Figure 4-15 shows an outcome graphically. Procedures generated by the reference compiler are 

filled, while CUT generated components are unfilled. The result of a single test is indicated by 

an arrow connecting a pair of components. When the result is that a test passed, a solid line is 

shown, while a dotted line is used for test failure. 

The result of a single test, taken in isolation, provides limited information: whether a 

fault has been detected or not. However, we can glean more information by considering the 

composite result that an outcome provides. By using multiple versions of object files gener-

ated by different compilers, we can exploit the interface of the procedure call. Each test has an 

object file in common with two other tests. When a test fails, the results of the two other tests 

can help isolate the fault. For example, in the outcome shown in Figure 4-15, the CUT/refer-

ence test (the test comprised of the CUT caller and reference callee) has failed. To isolate if the 

caller or callee contains the fault, the reference/reference test result is considered. This test 

replaces the CUT caller with the reference caller, keeping the callee in common between the 

Figure 4-15. An example outcome.
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two tests. Since the test passed, we have reason to believe that the CUT caller contains the 

fault since the fault disappeared when the CUT caller was removed. Our suspicion is con-

firmed when we consider the CUT/CUT test. Since this test fails, the fault remains when the 

reference callee was removed. Thus, the fault must be in the CUT caller. We would come to 

the same conclusion had we started with the CUT/CUT fault and considered the CUT/refer-

ence and reference/CUT test results. 

This method of isolating errors by swapping different components makes it possible 

to automatically diagnose common errors. Since each outcome is comprised of four results 

that may indicate a pass or fail, there are 16 outcome configurations. Since this number is 

small, each outcome can be hand-analyzed once and the results tabulated. Table 4-5 summa-

rizes such an analysis. Several diagnoses deserve mention. First, although the reference com-

piler is considered the authority, there are many cases where the reference can be determined 

to be faulty. This occurs in six of the outcomes. Second, three of the outcome configurations 

are not possible. These are the outcomes where only a single test failed. This indicates a con-

flict in conventions. This cannot occur with a single test failure since we assume each compo-

nent uses a single convention1. Finally, for two of the cases, we not only can isolate the 

location of the fault, but we can identify the nature of the error. This occurs in outcomes D 

and M where two conflicting conventions have been discovered.

The combination of test vector selection and automatic diagnosis proves to be a pow-

erful debugging tool. As tests are generated, run, and analyzed, patterns of errors tend to 

emerge. We have found that the patterns themselves suggest the nature of the problem. For 

example, finding that an error occurred for every signature that included a struct of size greater 

than seven bytes might suggest an alignment problem. More complicated patterns can exist, 

and, with knowledge of the calling convention can significantly help the developer correct 

faults. 

1. Appel observes that such outcomes actually are possible [App96]. In his counter example, the CUT 
caller implements a different convention than the reference compiler, but the CUT callee imple-
ments both conventions. In this scenario, the fault is detected in the CUT/reference test, but not in 
either the CUT/CUT or the reference/reference tests. Although such a case is possible, the chances 
of a callee implementing two different conventions that do not conflict (i.e., use the same register for 
two different purposes) are remote. The benefits, in terms of diagnostic ability, of considering such a 
case as invalid, far outweigh any accuracy gained by labeling it a valid outcome. Finally, if such a case 
were to occur, it would still be detected; it just could not be automatically diagnosed.
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Outcome Diagnosis Outcome Diagnosis

Outcome A:
Faults in at least three compo-
nents.

Outcome B:
Faults in both components of the 
CUT.

Outcome C:
Faults in both components of ref-
erence compiler.

Outcome D:
CUT implements wrong conven-
tion (does not externally conform 
with the reference).

Outcome E:
Fault in the reference compiler’s 
caller.
Fault in the CUT’s callee.

Outcome F:
Fault in the CUT’s callee.

Outcome G:
Fault in the reference compiler’s 
caller.

Outcome H:
Not a possible outcome.

Outcome I:
Fault in reference compiler’s 
callee.
Fault in CUT’s caller.

Outcome J:
Fault in the CUT’s caller.

Outcome K:
Fault in reference compiler’s 
callee.

Outcome L:
Not a possible outcome.

Outcome M:
Two conventions. One shared 
between the reference compiler’s 
callee and CUT’s caller, and vice 
versa.

Outcome N:
Not a possible outcome.

Outcome O:
Not a possible outcome.

Outcome P:
No faults detected.

Table 4-5. All outcome configurations.
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4.6.4 Test Results

We used our technique for selecting test vectors to test several compilers on several target 

machines. Several errors were found in C compilers on the MIPS. In this section, we present 

these results.

We selected several C compilers that generate code for the MIPS architecture (a DEC-

Station Model 5000/125). These included the native compiler supplied by DEC, two versions 

of Fraser and Hanson’s lcc compiler [FH91, FH95], several versions of GNU’s gcc [Sta92], and 

a previous version of our own C compiler that used a hand-coded calling sequence generator. 

Although we feel that this technique is extremely valuable throughout the compiler develop-

ment cycle, we believe that it would be fairest to evaluate its effectiveness in finding errors in 

young implementations of compilers. Where possible, we have used early versions of these 

compilers. These versions, called legacy compilers, represent younger implementations that 

more accurately exhibit bugs found in initial releases of compilers. However, each of these 

compilers is a production-quality compiler that has been widely used for years. Finding any 

bugs in their implementations is still a significant challenge.

In testing the compilers, we checked for two types of conformance: internal and exter-

nal. Compiler A internally conforms if code that it generates for a caller can properly call code 

for a callee that it generated. We denote this using A →c A. Compiler A externally conforms if 

its caller code can call another compiler B’s callee code, and vice versa (A →c B and B →c A). 

Thus, the callees and callers are compiled using each of the compilers under test. This results 

in n object versions for n compilers. Each caller version is then linked with the callee that was 

generated by the same compiler. This results in the n tests necessary to verify internal con-

formance for this test case. To establish external conformance, we could naively link each 

caller to each callee, which would yield 2n2 tests. However, we can do better. Recognizing that 

procedure call (→c ) is symmetric we can easily reduce this to n2 (since if A →c B, then B →c A). 

Furthermore, procedure call is also transitive, so if A →c B and B →c C, then A →c C. This 

reduces the number to  as pictured in Figure 4-16. Each compiler’s caller is linked to 

the reference compiler’s callee. This facilitates the isolation of which compiler does not con-

form when an error is detected. 

2n n–
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The results of running both internal and external tests on the compiler set for the 

MIPS are shown in Table 4-6. We found both internal and external conformance errors in all 

of the tested compilers. Table 4-6 reports internal and external errors separately. Within each 

class, the number of actual tests that failed and the number of faults that caused failure are 

indicated1. The numbers reported in the fault columns indicate the approximate number of 

actual coding errors resulting in test failures. These numbers are only approximate. We tried, 

as best we could, to glean this information from the results of tests. More accurate numbers 

can only be obtained by examining the compiler’s source.

Figure 4-16. Determining conformance of n compilers.

1. These numbers include tests of both standard procedure calls and variadic procedure calls. 

Internal External

Compiler Failed Tests Faults Failed Tests Faults

cc (native) 2,346 1 2,346 1

gcc (1.38) 2,370 2 2,567 3

gcc (2.1) 0 0 2,346 1

gcc (2.4.5) 1 1 2,374 3

lcc (1.9)a

a. Version 1.9 of lcc was not tested using varargs because we 
could not get the compiler to accept varargs callees. This 
could either be a problem with the compiler, or the particu-
lar version of stdarg.h on our machine. 

0 0 0 0

lcc (3.3) 2,407 2 2,407 2

vpcc/vpo 2,346 1 486 3

Total 9,470 7 12,526 13

Table 4-6. Results of running the MIPS test suite on several compilers.
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4.6.4.1 Standard Procedure Calls

Internal conformance errors were found in two versions of gcc. gcc 1.38 failed 24 tests that 

focus on passing structures in registers. Structures between nine and 12 bytes in size (three 

words) are not properly passed starting in the second argument register. Procedure signatures 

that correspond to these tests include:

void(int, struct(9-12));

gcc 2.4.5 fails a single test. The fault occurs with procedures with the signature:

void (struct(1), struct(1), struct(1));

gcc 2.4.5 fails to even compile a procedure with this signature1. The fact that gcc 2.1 does not 

have this error indicates that the error was introduced after version 2.1. This supports our con-

jecture that such method of automatic testing is extremely useful throughout the development 

and maintenance life-cycle of a compiler. 

External conformance errors were more prevalent. gcc 1.38 does not properly pass 

1-byte structures in registers. This results in 208 test case failures. gcc 1.38 and 2.4.5 cannot 

pass a structure in the third argument register when that structure is followed by another. The 

fault occurs with signatures matching:

void(int, int, struct(1-4), struct(any));

This results in another 13 test failures. Finally, vpcc/vpo has 486 tests that fail. Two faults are 

responsible: 1) structures are not passed properly in registers, and 2) 1 to 4-byte structures are 

not passed in memory correctly if they are immediately followed by another structure. These 

match signatures:

void (int, int, int, int, struct(1-4), struct); 

4.6.4.2 Variadic Procedure Calls

Procedures that take variable-length argument lists (variadic functions) are written 

using one the of two standard header files: varargs.h (for traditional C) and stdarg.h 

(for ANSI C). These files provide a standard interface for the programmer to write variadic 

functions. Because a variadic function’s caller uses the standard procedure calling convention, 

the variadic callee must also conform to this convention. The following paragraphs detail the 

results of calling callees that are implemented using varargs/stdarg.

1. The error returned by gcc 2.4.5 was:
gcc: Internal compiler error: program cc1 got fatal signal 4.
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Most variadic functions in C have signatures similar to the standard library function 

printf:

void func(char *, ...);

The function determines the number of arguments from the first parameter. However, func-

tions of the form:

void func(double, ...);

are also valid. When running test cases that contained variadic functions whose first argument 

was a double, we found that none of the compilers, including the reference compiler, properly 

implemented the calling convention. The difficulty stems from the fact that until the type of 

the argument is known, the callee cannot determine whether to fetch the first argument from 

the floating-point register or the integer register. Most implementations of varargs dump the 

contents of the argument-passing registers to the stack in the function’s prologue. For calling 

conventions like the MIPS, a more sophisticated solution must be used. This error caused 

2,346 test cases to fail for all of the compilers. Version 2 releases of gcc managed to avoid this 

problem at the expense of interoperability; their generated callees do not conform to the 

established calling convention. 

From these results, obviously the state-of-the-art in compiler testing is inadequate. 

Because these are production-quality compilers, each of them has undoubtedly undergone rig-

orous testing. However, hand development of test suites is an arduous and itself error-prone 

task. Furthermore, because these tests are target specific, they must be revisited with each 

retargeting of the compiler. In contrast, by using automatic test generators that are target sen-

sitive, compilers can quickly be validated before each release.

4.7 Summary
Current methods of procedure calling convention specification are frequently imprecise, 

incomplete, or contradictory. This comes from the lack of a formal model, or specification 

language that can guarantee completeness and consistency properties. We have presented a 

formal model, called P-FSA’s, for procedure calling conventions that can ensure these proper-

ties. Furthermore, we have developed a language and interpreter for the specification of proce-

dure calling conventions. With the interpreter, a P-FSA that models a convention can be 

automatically constructed from the convention’s specification. During construction, the con-
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vention can be analyzed to determine if it is complete and consistent. The resulting P-FSA 

can then be directly used as an implementation of the convention in an application.

Although we have shown that it is possible to automatically generate the calling 

sequence generator of a compiler, some work is required to retrofit an existing compilation 

system to use CCL descriptions. Fortunately, it is possible to reap the benefits of CCL without 

any modification of the compiler. Using automated compiler tools and testing, one can signif-

icantly increase the robustness of any compiler. We have combined these two techniques, in a 

new way, that further closes the gap between actual compiler implementations and the ever-

sought-after correct compiler. By using formal specifications of procedure calling conventions, 

we have designed and implemented a technique that automatically identifies boundary test 

cases for calling sequence generators. We then applied this technique to measure the conform-

ance of a number of production-quality compilers for the MIPS. This system identified a total 

of a least 22 faults in the tested compilers. These errors were significant enough to cause over 

2,300 different test cases to fail. Clearly, this technique is effective at exposing and isolating 

faults in calling sequence generators of mature compilers. Undoubtedly, it would be even 

more effective during the initial development of a compilation system.
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CHAPTER 5

COMPUTING SYSTEM DESCRIPTION 
LANGUAGE

Chapters three and four presented two description languages that describe distinctly different 

machine features. In this chapter, we show how to we bring these two descriptions together 

using a general framework for building reusable descriptions for systems software.

For years, machine descriptions have been used in a variety of ways to parameterize 

software implementations. However, except in the very rarest of instances, none of these 

description systems have been reused. It is clear that for any new description language to make 

a contribution to the state-of-the-art, it must bring more than just the ability to describe a sin-

gle machine feature for a single application. Thus, we put forth the following observations 

about description systems and their use:

• Application dependence stifles sharing. If a description is tailored to a particular applica-

tion, it will be difficult for a new application to make use of the description. 

• Application dependence is inevitable. No matter how pure the intention, or what form 

the description takes, machine dependence will always creep into descriptions. Often, 

modification of the description to suit the application is easier than modifying the 

application to suit the description.

• Partial descriptions are useful. Many applications only require a subset of information. 

For example, many instructions are never generated by compilers. If the application 

does not use the information, the application writer should not be required to provide 

the information in the description.
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• Comprehensive descriptions are large. Modern computing systems are complex and 

applications often view the same information in different ways. Capturing all of these 

details will cause descriptions to become large and monolithic. Organizational tools 

should be available.

• Writing new descriptions is difficult. Often, just gathering the information to be 

described can be a significant obstacle.

• Different applications may view the same machine features differently. Compilers often 

view instructions in assembly language format, whereas simulators may view instruc-

tions in their binary format. 

• Descriptions and their languages are continuously evolving. After a description is ini-

tially written, it is likely to live in constant flux as new machine models are introduced, 

as additional machine features are included, and as new applications make use of its 

content.

Obviously, modern description systems must contend with considerable demands, many of 

which appear to contradictory. After consideration of these observations, we propose the fol-

lowing set of design goals:

1. Application independence should be encouraged.

2. Application dependence should be tolerated.

3. Partial descriptions should be permitted.

4. Descriptions should be modular and composed from simple components.

5. Descriptions should be reusable.

6. Different views of the same feature should be permitted.

7. Descriptions should be extensible. 

Any description system should strive to meet each of these goals—particularly application 

independence. In this chapter, we present a system for building computing system descrip-

tions that are application dependent, but can still be shared among many applications. 

5.1 CSDL Overview
Our system extends previous work in machine descriptions in four key ways: abstraction level, 

extensibility, reusability, and modularity. Because this new description system widens the 

abstraction level of machine descriptions, we call them computing system descriptions to reflect 
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their broader applicability [BD96a]. Our description system, called Computing System 

Description Language (CSDL), is a framework for developing more thorough, complete 

descriptions of target machines for use in retargetable systems software implementations. 

5.1.1 Modules

As shown in Figure 5-1, CSDL is a framework that divides computing-system information 

into modules, or components. One component is distinguished from all the others: it con-

tains the core description for the system. The core contains the description of the instruction 

set of the machine described in chapter three. As its name implies, it is required to be present 

in all CSDL descriptions, while the other components may be optionally added or removed. 

The description of the instruction set, which is needed in nearly all systems software, gives an 

otherwise amorphous system a coherent structure. Unlike the optional components, where 

nothing but the most minimal structure is imposed, the core’s structure, or format is defined 

by CSDL. 

In addition to the core, CSDL incorporates application-defined components. A com-

ponent provides additional information that is of interest to some, but not necessarily all, sys-

tems software. Since a component is application defined, it can present the information at the 

level of abstraction that is most appropriate for the defining application. Examples of compo-

nents include pipeline and memory descriptions for different implementations of the same 

Figure 5-1. Computing system description framework.
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architecture, object file formats used by the assembler and linker, and high-level-language pro-

cedure calling conventions. 

By providing modular descriptions, applications only need to examine the parts they 

are concerned with. Thus, descriptions need not be “complete” to be valid or useful. Different 

machine models might share certain parts of a description, but distinct models might have 

different pipeline descriptions or memory interface descriptions. Modularity also supports 

ease of modification. A new model of a machine might have a different pipeline, but the ISA 

and calling conventions likely remain the same. Only the part of the description that involves 

the pipeline needs to be modified. Similarly, modularity helps keep the various pieces of a sys-

tem description concise. The component that describes the pipeline does just that, and noth-

ing else. 

Because CSDL descriptions are modular, significant flexibility is available to each 

application. The disadvantage of dividing descriptions into smaller more manageable pieces is 

that this isolates each module. Without additional support, each component is likely to 

encounter the same pitfalls that many modular systems have: repetition among modules, and 

inconsistency between modules. To counter this tendency, CSDL has several mechanisms that 

aid in preventing inconsistency and repetition its modules: objects, linked values, application 

annotations, and object aspects. These mechanisms are the glue that holds CSDL descriptions 

together, and give them their descriptive power.

5.1.2 Linked Values

A disadvantage of dividing descriptions into modules is that it is common for two or more 

modules to need access to the same information. To promote the sharing of common infor-

mation between modules, CSDL provides a mechanism for introducing linked values. 

Any module may introduce a name/value pair. For example, a register description 

would want to be able to introduce names and values for the following registers: the program 

counter, the stack pointer, a register that is always zero, and the register that contains a rou-

tine’s return address. Using CSDL’s naming system, the register description can easily provide 

names and values for each of these registers. These names can then be subsequently referenced 

in other modules. Although the convention about which register contains the stack pointer 
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must be written down, it is only written down once. The value can then be propagated 

throughout the system to the other modules using links.

Figure 5-2 demonstrates module linking. A register description excerpt, shown in 

Figure 5-2(b), defines the valid register indices as well as defining register zero (R[0]) as always 

storing the value zero. An instruction description excerpt, shown in Figure 5-2(a), contains 

references to these two values. To accurately define the valid instructions for the machine, the 

instruction description must know what register indices are valid. The instruction description 

refers to the valid register indices by name. Changes to the register description are immedi-

ately reflected in each referencing module. 

The definition of values and their successive reference in other modules creates a web 

of information. These linked values are hypertext values that facilitate navigation throughout 

the description system. They also represent the relationship between objects in different mod-

ules. The reader of a description can better understand the interaction between objects in dif-

ferent description components because of the explicit representation of value references. 

5.1.3 Application Annotations

The primary shortcoming of previous machine description techniques is that they present 

information in an application-dependent way. While the inclusion of application-specific 

information makes the descriptions easier for the particular application to use, it frequently 

makes the descriptions useless for other purposes. CSDL provides application annotations to 

reconcile these differences.

Annotations are pieces of information that are attached to existing descriptions for an 

application. Annotations are tagged as belonging to a particular application. When that appli-

Figure 5-2(a). Instruction module excerpt. Figure 5-2(b). Register module excerpt.

Figure 5-2. Linked values.

imm → constants,16 //
rindex → constantu,5 { constant <= 31 }  //
offset → constantu,16  //
rd → R[rindex]  //
zero → R[0]  //

register {
    type = ’R’;
    size = 32;
    index = 0..31
}
R[0] = zero
SP : R[31]
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cation is viewing the description, the annotations appear as part of it, whereas when other 

applications view the description, the annotations are not present. Annotations can be 

thought of as an overlay, as shown in Figure 5-3, which an application places over a module. 

The application developers can include whatever information they wish without impacting 

other applications that are using the same module.

To illustrate the use of annotations, consider a compiler that uses information in the 

core instruction module for generating assembly language instructions for the MIPS R2000. 

The compiler needs to generate an instruction to move a value from one register to another. 

However, the MIPS does not explicitly provide a register-to-register move instruction. The 

τRTL instruction description is pure1, that is, it contains no synthetic instructions. Thus, no 

move instruction is listed. On the MIPS, a logical OR instruction is used, with register R[0] as 

the second operand, to synthesize the move instruction. If the compiler cannot glean this 

information from the description, an annotation can be attached to the OR instruction, as 

shown in Figure 5-4, to indicate that a specific form may be used to achieve the move. 

Figure 5-3. An application’s annotation overlay.

1. A pure description contains no synthetic or artificial instructions. We forbid the use of such impuri-
ties so that applications that depend on pure descriptions are not misled. 
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5.1.4 Module Aspects

A concept closely related to annotations are module aspects. Although annotations may be 

used to attach small amounts of information to selective parts of a module, for situations 

where more significant additions to modules are necessitated, CSDL provides module aspects. 

A compiler’s instruction description may include an enormous amount of informa-

tion: semantics of the instructions, assembler mnemonics, binary format, instruction costs, 

pipeline scheduling information, etc. However, much of this information is not contained in 

the core description for instructions. Many applications may only have use for the semantics 

of the instructions and the assembler format. Each feature of the description can be tagged as 

an aspect. An aspect is another view of an object in the description. The aspect is used to selec-

tively filter the descriptions. Just as annotations can be viewed as overlays, aspects can as well. 

However, unlike an annotation overlay that is tagged for a particular application, an aspect 

overlay may be made available for use by any application. Thus, if a compiler is only inter-

ested in the semantics, instruction cost, and binary format, only those overlays are taken from 

the overlay “library” and placed over the module. This provides a mechanism for components 

to have many facets that are used by many applications. 

Figure 5-5 illustrates the use of aspects. Here, the core description is augmented with 

two aspects: an assembly language aspect and a binary format aspect. Although aspects are 

usually keyed using color, here they appear as labeled boxes. The assembly aspect is shown in 

the left box, while the binary format aspect appears on the right. In each case, each element of 

an aspect has a corresponding element in the original module. So, for our example, each ele-

ment of the binary format and assembly language aspects is associated with an instruction, or 

other object in the instruction description.

| reg ← reg op imm

| reg’ ← reg’ op reg 

Figure 5-4. A CSDL annotation.

reg´ ← reg´´ ≡ reg´ ← reg´´ ∨  zerocompiler
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5.2 Module Processing

Each CSDL module describes some machine feature. In each module, one language must be 

designated as the host. The language provides the skeleton to which CSDL aspects and anno-

tations are attached. Typically, the host language defines the kinds of objects, and indirectly, 

the level of abstraction for the module. In contrast, the languages used in aspects and annota-

tions are called guest languages. Guest languages are typically small languages that augment 

the information provided by the host language. However, their syntax is not dictated by either 

the host language or CSDL. 

5.2.1 CSDL Language Processing

The CSDL language processor must contend with elements from two or more languages: 

CSDL (objects, annotations, etc.), the host language, and possibly embedded guest language 

elements embedded in CSDL annotations and aspects. CSDL provides all necessary facilities 

to process and separate each language’s elements while maintaining the semantic linkages 

between the language elements. This process is achieved by providing CSDL with language 

processors (scanners and parsers) for the host language and each guest language. CSDL reads 

the CSDL source and dispatches strings of symbols to the appropriate processor as shown in 

Figure 5-6.  

A grammar for the abstract syntax of CSDL modules is shown in Figure 5-7. We use a 

standard grammar syntax augmented with regular expression syntax. Terminals are shown in 

bold, nonterminals are shown in italic, brackets (‘[’ and ‘]’) indicate optional (zero or one) 

instances, and Kleene star (‘*’) indicates zero or more instances of a grammar symbol. A name 

token is a string of one or more alphabetic characters and a string token is a string of one or 

more symbols. From the grammar, it is clear that CSDL imposes little structure on the 

reg → « R[rindex]  »//

zero → « R[0]  » //

op → « +  »

| « -  » //

arith → « reg’ ← reg’’ op imm  »

| « reg’ ← reg’’ op1 reg’’ »

//

Figure 5-5. Assembly language and binary format aspects of instructions.

$rindexassembly rindexbinary

0assembly 0binary

addiassembly ADDIbinary

subiassembly SUBIbinary

op reg´,reg´´,immassembly [op, reg´´, reg´, imm]binary

op1 reg´, reg´´, reg´´assembly [SP, reg´´, reg´´, reg´, 0, op1]binary
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embedded languages. A CSDL module is simply a string of host language tokens and CSDL 

language elements (except aspects). An object is a string of host language tokens and CSDL 

language elements. Annotations and aspects are strings of guest language tokens and CSDL 

language elements. Aspects may only be found in CSDL objects. A link is simply a cross refer-

ence to a CSDL object definition, and as such, may produce any string an object can contain.

Obviously parsing CSDL modules is simple enough. However, the string token can 

contain either host language elements or any guest language elements. Using the grammar, it 

is easy for CSDL to identify which language the string belongs to, but it is impossible, with-

out more information, for CSDL to identify if the string contains only valid language tokens 

Figure 5-6. CSDL Language Dispatching.

1. module → ( module [name] mvalue* )
2. mvalue → object | string | annotation | link
3. value → mvalue | aspect
4. object → ( object [name] value* )
5. annotation → ( annotation name value* )
6. link → ( link ( name+ [ ( name ) ] ) value*)
7. aspect → ( aspect name value* )

Figure 5-7. CSDL Grammar.
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or if the string of language tokens is in the given language. Take, for example, the following 

abstract CSDL string: 

CSDL terminals are shown in bold. Non-terminals for all languages are shown in italics. Each 

string of tokens is labeled by the language to which it belongs. In this example, a sequence of 

host language tokens has been named using the CSDL naming mechanism. This creates an 

object which, in turn, may have aspects attached to it. 

The procedure for processing CSDL strings is best illustrated with a concrete example. 

The following excerpt from Figure 5-5:

describes a single production from a CSDL core grammar. In this example, the module con-

tains language elements from four languages: CSDL, the core host language, and two guest 

languages. In order for CSDL to properly process this string, it must have a way to identify 

host and guest tokens. To demonstrate why, we examine what must happen to successfully 

process the above example. 

Our excerpt picks up during core language processing. When the CSDL begin object 

token (‘«’) is encountered, we must mark the beginning of the CSDL object that is embedded 

in the core language string. When we reach the assembly aspect, we must switch processing 

from core language scanning to assembly aspect scanning. Similarly, when we reach the binary 

aspect, we must switch to the binary aspect scanner. Finally, when we encounter the CSDL 

close object token (‘»’), we must complete the object definition by associating the results of 

processing the aspects with the designated core substring. To enable this parsing, host and 

guest languages must provide token and language information in the form of Lex [LS83] and 

Yacc [Joh83] specifications. When processing a module, the CSDL parser absorbs all CSDL 

tokens. These direct the processor to switch processing between CSDL, the host language, 

and the guest languages. This process is illustrated in Figure 5-8. 

( module name (object name htoken htoken ... htoken ( aspect name gtoken gtoken ... gtoken htoken htoken ... htoken

Processed by host language CSDL Processed by guest language host

)))

Processed by CSDL

arith → « reg´ ← reg´´ op imm [op, reg´´, reg´, imm]binaryop reg´,reg´´,immassembly

Core Module

 Host Language

»

assembly

Guest Language

binary

Guest Language

CSDLCSDLCSDL

Core

Host

CSDL
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First, all tokens are scanned and parsed by the CSDL front end. Based on the CSDL 

tokens, the CSDL processor passes symbols that are not part of CSDL tokens to either the 

host language scanner or a guest language scanner. These are, in turn, passed to their respec-

tive parsers and processors. 

When the CSDL processor encounters the following tokens, it takes the indicated 

action:

• module — this is the beginning of a CSDL module. 

Action: the host language is set as the current language.

• string — this string of symbols belongs to the current language. 

Action: the string is passed symbol-by-symbol to the current language’s scanner. Begin-

ning and end positions of the language’s tokens are noted (processing may not end in 

the middle of a token).

• aspect, annotation — this marks the beginning of a guest language string of symbols. 

Action: push the current language on a language stack. Set the indicated guest language 

as the current language.

Figure 5-8. Processing of a CSDL module.
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• object — the enclosed string of symbols is a CSDL object. 

Action: identify the current language’s grammar production that derives the enclosed 

string of symbols. The current language is unchanged.

• link — the name refers to a named CSDL object. 

Action: the derivation of some production in the current language is found within the 

link. This derivation is passed, symbol-by-symbol to the current language’s scanner.

• ) — that matches a token that switched the current language (an annotation or aspect).

Action: the current language is switched back to the previous language by popping it 

from the language stack.

By processing the module in this way, it is possible to identify which symbols belong to which 

languages. Because CSDL embeds strings of host and guest language tokens, CSDL must 

ensure that strings of symbols derive complete strings of tokens in the given language (aspects 

and annotations cannot begin or end in the middle of a language’s token, nor can they be 

embedded in the middle of a token from the enclosing language). In the case of guest lan-

guage strings, CSDL must also ensure that complete strings of guest language tokens are 

derived from the guest language’s grammar start symbol. 

In order to satisfy the above requirements, CSDL must be aware of the processing of 

symbols that each language performs. We achieve this by modifying the Lex and Yacc routines 

for each of the languages. Lex and Yacc produce their respective scanners and parsers by pro-

ducing tables from their input specifications. In the case of Yacc, these tables are used to direct 

the shift and reduce actions of a general purpose parser. For Lex, they direct the tokenizing 

actions of a general purpose scanner. So, a parser is built by linking a table specifying the shift 

and reduce actions for the given language with a library of routines, called the parser skeleton, 

that actually perform the parsing based on the table. We replaced the stock Lex and Yacc skel-

etons with custom skeletons that interact with the CSDL language processor. These routines 

are used to redirect the scanner’s input to strings provided by CSDL and provide information 

to CSDL regarding the state of both the scanner and parser for a given language. This is why 

we require that guest and host language processor use Lex and Yacc specifications. However, 

the same technique could be used with any parser or scanner generator system. Handwritten 

parsers or scanners would, of course, have to provide these linkages to CSDL. 
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Obviously, the processing of CSDL modules is tightly integrated with the processing 

of each of the embedded languages. However, as long as Lex and Yacc specifications are pro-

vided, the host and guest language designers need not concern themselves with the tight inter-

action between CSDL and the language syntax analysis. Furthermore, producing CSDL 

modules that embed such a variety of languages might, at first, seem difficult. Fortunately, the 

environment that is used to edit these modules provides the necessary support to make the 

writing of even complex modules manageable. In the next section, we present the CSDL edit-

ing environment.

5.2.2 An Environment for CSDL

CSDL provides a flexible system for embedding guest languages that extend module host lan-

guages. In addition, host and guest languages have available to them facilities for using 

extended character sets (e.g., Greek alphabetic symbols), advanced character formatting using 

font variations (e.g., bold, italic, etc.), and character positioning (e.g., subscripts and sub-

scripts). Even with the most advanced text editors, such as emacs, these facilities are just 

becoming available. Instead, we turned to Adobe’s FrameMaker desktop publishing system 

[Ado97a]. FrameMaker provides all of these editing features to the user natively while it also 

provides two ways to extend the FrameMaker application: the FDK (Frame Developer’s Kit) 

[Ado97b] and MIF (Maker Interchange Format) [Ado97c]. We use both of these to access the 

CSDL module source code written in FrameMaker.

Because FrameMaker was designed for formatting large documents, it provides a 

number of features that support the creation and maintenance of large descriptions as well. 

These include hypertext links, text variables, text inclusion from other documents, cross refer-

ences, and conditional text. Currently, CSDL makes use of but a few of these features. After 

more experience, we may leverage off more of the features that FrameMaker provides.

5.2.2.1 Supporting Annotations and Aspects

The two most visible features of CSDL are annotations and aspects. Both of these features 

need significant support from the editing environment. Since these features allow embedding 

of languages within the CSDL module, at a minimum there need to be ways of delimiting the 

embedded language’s text and naming which language the text belongs to. Further, it is desir-
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able to easily select which annotations and aspects to view or process. FrameMaker’s condi-

tional text feature has these capabilities. 

In FrameMaker, regions of text can be associated with one or more “conditions.” In 

turn, these conditions have two properties: visibility and display characteristics. The condi-

tion name and its visibility property are “out of band” data. That is, they are not visible in the 

document itself. However, the display characteristics do control how the conditional text is 

displayed. Typical display characteristics include underlining, bold, italic, and font color. 

These font variations cue the reader that the text belongs to a particular condition.

We use conditional text to mark both aspects and annotations. Typically, different 

font colors are used to indicate different aspects or annotations. For example, in instruction 

descriptions, an assembly language syntax aspect could be displayed in red, while the instruc-

tion’s cost could be displayed in blue. With each instance of conditional text, the name of the 

condition is available for CSDL to examine. Thus, while FrameMaker and the user think of 

aspects as colored text, CSDL just views the text as being associated with a particular aspect 

name or identifier. In addition, when the user is concentrating on one aspect of a description, 

such as assembly language syntax, they can disable the display of all of the other aspects by 

toggling individual visibility properties. So, while a particular CSDL object might have a 

plethora of different aspects, the author can selectively view those aspects that require inspec-

tion or modification. CSDL can, of course, do this as well; this yields a powerful technique for 

constructing custom descriptions from general descriptions. 

Using conditional text also makes descriptions more compact. Neither the aspect or 

annotation’s name, nor its beginning and ending delimiters take up space in the text of the 

description. This comes at a cost though: printed descriptions are not necessarily complete 

(because not all of the conditional text tags are visible) and the names of aspects and annota-

tions are not printed on the page. Further, if one chooses color as the distinguishing display 

property, and the description is printed on a monotone printer, the display characteristics are 

lost as well. However, we feel that the advantages that conditional text provides in building 

manageable descriptions outweighs these printing deficiencies.

5.2.2.2 Extended Character Sets and Token Matching

By using a desktop publishing system, CSDL presents new issues in language design. When is 

it appropriate to use special characters? How does the addition of font variation impact scan-
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ning? How can different fonts and positioning be effectively used in language design? Each of 

these questions deserves more attention that we can give them here, so we will only summarize 

our limited experience with these issues in this section.

Using special characters can deliver great semantic benefits. Long have ASCII-based 

language designers struggled with the shortage of special symbols. For example, the Boolean 

operators are typically synthesized from multiple symbol sequences, such as ‘&&’ for AND and 

‘||’ for OR in the C programming language, or previously unused symbols that yield expres-

sions that are not intuitive, such as the exclusive OR (‘^’) operator in C. Having to access to 

the symbols ‘∧ ’, ‘∨ ’, and ‘⊕ ’ that are traditionally used for these operations in Boolean expres-

sions greatly increases the readability of languages that use them. 

Nevertheless, the addition of special characters can be abused. Take for example, the 

use of ‘⊥ ’ in the CCL language. This symbol is used as a selection operator. However, there is 

no historical use of this symbol for this purpose. Simply using a special symbol for no other 

reason than its availability (or because it makes expressions more concise) is not appropriate. 

We must be sure to make judicious use of special symbols if we hope to increase the readabil-

ity of languages rather than to further obfuscate the notation as in the tradition of the C 

exclusive OR operator. 

In addition to special symbols, using a modern desktop publishing system gives the 

language designer access to font variation in token specification. This is not, by far, a new con-

cept. Programmers of case-sensitive languages have used capitalization of identifiers for years 

to impart the semantics of scope (capitalized for globals, lowercase for locals) and type (all 

caps for macros, capitalization conventions for functions, etc.). With the addition of font vari-

ation, such as bold and italic, language designers can separate the namespaces of keywords and 

identifiers. For example, as is often done with program pretty printers, bold can be used to 

indicate language keywords. In τRTL descriptions, we use italic to distinguish between gram-

mar terminals and nonterminals. We also use character positioning (superscripting and sub-

scripting) to build expressions that, in traditional computer languages, would use a bracketed 

notation. For instance, τRTL’s use superscripting for bit selection: exprm..n. If character posi-

tioning were not available, two brackets would be probably be used to delimit the beginning 

and end of the superscripted expression. By using character positioning, we achieve a more 

concise expression without sacrificing readability. 
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Clearly, there are some situations in which special symbols and font formatting can be 

effectively used in language design. This does, however, come at a cost in implementation 

complexity. For each character of a source file, the font and variations must be recorded to dis-

tinguish between visually different instances of the same character (‘⊥ ’ and ‘^’ are the same 

character in different font families, and ‘X’ and ‘X’ are the same character with different font 

variations). These differences cannot be encoded in the same byte as the character’s value, so at 

least an additional byte must be used to encode the character’s format. Therefore, languages 

that use special symbols and font variation must be capable of reading and matching multi-

byte characters. 

An interesting problem with building scanners that handle multi-byte characters is the 

difficulty of recognizing tokens with font variations. For example, in τRTL where we use sub-

scripting to designate value interpretation, we might encounter the following two different 

token strings: exprb,32 and exprb,32. These two expressions probably do not appear differently 

to the author, but the scanner will see that the subscripted comma (‘,’) is, in fact, italicized in 

the second expression. We would like to think of these two sequences of tokens as equivalent 

since either version might occur when writing the expression. In this case, there is really no 

semantic difference between italicizing the comma and not. In contrast, we want to think of 

the two token strings exprb,32 and exprb,32 as different because the ‘b’ is italicized in the second 

expression but not in the first, indicating that ‘b’ is a τRTL variable rather than a terminal in 

the language. In this case, the meaning of the two expressions, as defined by the language, is 

dramatically different. It is the job of the token scanner to match either version of the comma 

to the same comma token and to match the two instances of the ‘b’ token to different tokens.

To achieve the desired result, the scanners for languages that make use of enhanced 

character formatting match symbols in the following manner. Each symbol that makes up a 

token is described using two bytes. The first indicates which character in the font is to be 

used. The second encodes eight bits of font formatting information. As the characters are 

extracted from the FrameMaker document, these bytes are generated by recording current 

font settings for each character. Four bits are used for font name (or number) and the other 

four are used to indicate bold, italic, superscript, and subscript. The tokens in the Lex scanner 

specify the values of each of these formatting bits. For each bit, the token may specify “set,” 

“not set,” or “don’t care.” In our above examples, the “variable” token specifies the italic bit as 
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“set” for each of its characters while the “comma” token specifies all bits as “don’t care” since 

none of the variations, including font, influence its identification as the comma token. 

The correct specification of tokens that include font formatting requires careful atten-

tion to detail. If tokens are specified too loosely, multiple token definitions will overlap1. If 

tokens are specified too tightly, numerous tokens that appear valid to the user will be rejected 

by the scanner. This behavior yields a language that is frustrating for authors to use. This 

interaction is most apparent with subtle changes in font variation such as italic in combina-

tion with small symbols (punctuation), or superscripting, or subscripting. There is probably 

no instance in which period ‘.’ should set formatting bits to anything but “don’t care!”

5.2.2.3 Objects

CSDL provides minimal support for objects. An object is defined to be any sequence of 

tokens that is derived from a language’s grammar production. Put another way, objects are 

used to name instances of grammar production derivations. This is about as concrete a defini-

tion of an object as CSDL can provide given that language grammars and token specifications 

are the only things that CSDL knows about host and guest languages. 

A CSDL object is delimited using french quotation marks (guillemet): ‘«’ ‘»’. These 

symbols were chosen because they are intuitively delimiters that are not already available to 

ASCII based languages. So, although we preclude future languages from using these symbols, 

we can be fairly certain that no existing language uses them. Using these symbols, we can 

mark the beginning and end of a CSDL object, as in the τRTL line from the DLX instruction 

description:

addr → « (regu,32 + ∆(constantu,16)u,32)u,32 »

Here, we have designated the entire right-hand-side of the rule as a CSDL object. The object 

corresponds to a derivation of a grammar symbol from the τRTL core description language’s 

grammar (this is a grammar whose start symbol derives grammars). This is the grammar sym-

bol that describes what may be on the right-hand-side of a τRTL grammar. Conceptually, the 

above example is one of several addressing modes on the DLX. Extending this example, we 

1. Luckily, this overlap can be identified by Lex automatically. If this were not the case, whole classes of 
tokens would never be matched by the scanner.
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can attach an assembly language aspect that describes the syntax of the assembly language for 

this addressing mode:

addr → « (reg’u,32 + ∆(constant’u,16)u,32)u,32  »

We use a box here to indicate the beginning and end points of the aspect. However, usually 

the aspect would be indicated using a different text color from the surrounding text. The 

underlined text corresponds to a guest language that describes the assembly language syntax. 

As often is the case, the guest language depends on the syntax of the host language. Here, the 

variables in the host language derive τRTL expressions, which also have assembly language 

aspects associated with them. Thus, we have two parallel derivations: one that derives the 

τRTL expression while the other—the one found in the aspects—derives the equivalent 

assembly language expression. When processing the τRTL grammar, the host language would 

then have access to the associated assembly language aspect. 

5.2.3 Processing Summary

CSDL provides a rich set of features that support modular description development and 

description extensibility through language embedding. Language elements from different lan-

guages are distinguished by the color of their text. Symbols that are not available on standard 

computer keyboards may be used to enhance the readability of the embedded languages. Font 

variations can be used to strengthen the recognition of language elements. The description 

editing environment, although not a programmer’s editor, is as familiar environment: the 

desktop publishing system.

Once descriptions have been written in FrameMaker, CSDL extracts the text using 

the Frame Developer’s Kit that provides an API to the underlying FrameMaker document. 

The result is a CSDL module that contains CSDL directives that mark the beginning and end 

of CSDL objects, aspects, annotations, and links. Host and guest language symbols are repre-

sented using two-byte pairs that encode the character and various font display characteristics. 

As the CSDL module is processed, symbols are passed to the appropriate host or guest lan-

guage scanner for tokenizing. The scanner must consider font formatting when trying to 

determine which token type to match. Tokens are passed up to the language’s parser, where 

parser actions are recorded by the underlying CSDL processor. CSDL objects always name 

entire language grammar production derivations. CSDL associates each object’s aspects with 

constant´(reg´)assembly
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the attribute that the parser pushes onto the parsing stack upon the grammar rule reduction 

that represents the object’s derivation production. Using this mechanism, it is possible for the 

host language processor to gain access to the guest language aspects. 

5.3 Applications
CSDL has been designed as a multi-application description framework from the outset. 

Applications can use or extend existing CSDL modules, or add additional modules to suit 

their needs. In this section, we present a couple of examples of how different systems software 

applications could use CSDL to build descriptions that can be shared among many applica-

tions. 

5.3.1 Binary Translation

Binary translators take executable programs for a source machine and translate them to exe-

cutable programs for a target machine. This application requires information about the binary 

instruction format for two machines [AKS00, ZT00, GAS+00, CE00]. At first, it may seem 

that an implementation could simply take two instruction descriptions and automatically 

derive the translation from one format to the other. However, binary translation is not such a 

simple problem [CER99]. Often, the necessary translation from one instruction set to 

another is not readily apparent; human intervention is necessary to glean the proper transla-

tion.

Consider a translator that converts SPARC executables into MIPS executables. An 

alternative approach to the one described above would be to annotate the SPARC description 

with the necessary information to perform the translation to MIPS instructions. This can be 

accomplished using a CSDL SPARC description by adding a MIPS translation aspect to each 

of the SPARC instructions. Figure 5-9 shows an excerpt from such solution.

To each SPARC instruction, a piece of C code is attached to perform the necessary 

translation. For example, the SPARC contains a load instruction that uses an indexed address-

ing mode. Since the MIPS doesn’t contain an indexed mode, one is synthesized using two 

instructions: an add and a load word instruction. The MIPS and SPARC also differ on the 

size of their immediate operands. On the SPARC, an immediate value is 13 bits, while on the 

MIPS, an immediate value is 16 bits. Thus, SPARC load-immediate instructions are trivial to 
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translate to MIPS instructions since SPARC immediate values are always smaller. However, to 

form a 32-bit constant, the SPARC has a sethi instruction that loads the high 22 bits of a reg-

ister. When such an instruction is encountered, several MIPS instructions must be emitted to 

synthesize the load. 

It is possible that one could automatically generate the translations described above. 

However, for complex instructions, such as CALL, it is unlikely that an automatic process will 

succeed. Such instructions assume other processor state, such as a particular stack layout or 

register usage. However, by attaching small portions of C code, we can easily reference exter-

nal handwritten functions that perform these complex translations. Other situations, such as 

operating system traps, exception handlers, and instructions that use special-purpose registers 

can be handled in a similar way.

By providing extensions to modules, CSDL permits applications to embed applica-

tion-dependent information into otherwise application-independent descriptions. In our 

example, the translations are application dependent, however, the instruction description is 

not. Although the description contains the binary translator’s translation methods, CSDL’s 

| « rt ← rs + imm »

| « rt ← R[rs + rx] »

| « R[rt + rx] ← rs » 

| « ST ← label, n »

| « rt ← HI[const] » 

Figure 5-9. Specifying binary translation using a CSDL aspect.

{ emit("addi rt,rs,imm"); }cvt

{
  emit("add tmp,rs,rx");
  emit("lw rt,0(tmp)");
}

cvt

{
  emit("add tmp,rt,rx");
  emit("sw tmp,0(rs)");
}

cvt

 { Call_Fixup_and_Emit(label,n);}cvt

{ high16 = const >> 6;
  low6 = (const & 0x3f << 13);
  emit("andi rt,rt,0x1fff");
  emit("ori rt,rt,low6");
  emit("lui rt,high16");
}

cvt
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aspect mechanism makes it easy for other applications to filter out these application-specific 

instruction aspects and make use of the rest of the instruction description. 

5.3.2 Specifying a Procedural Interface to Assembly Language

Often, machine descriptions are used to map the description’s notation (τRTL in our case) 

that is known to the application to some format (e.g., assembly language, binary instruction 

formats, etc.) whose format or notation is foreign to the application. This would occur, for 

instance, in the implementation of retargetable code generator. However, in some circum-

stances, the opposite is desired: a mapping to the description’s notation from some other nota-

tion. A link-time optimizer that reads binary instructions and manipulates them in τRTL 

would perform such a translation. In this section, we briefly discuss how translation in this 

direction can be achieved.

The New Jersey Machine-Code Toolkit [RF95] includes a Specification Language for 

Encoding and Decoding (SLED) [RF97] machine language (binary) instructions. From 

SLED specifications, one can generate interfaces that can encode or decode machine language 

instructions. A SLED interface is just a proceduralized assembly language. For example, a 

SLED assembly language interface for the MIPS would include the following C language 

functions:

Addr addr(int imm, unsigned rs);

void add(unsigned rs1, unsigned rs2, unsigned rd);

void sub(unsigned rs1, unsigned rs2, unsigned rd);

void sw(unsigned rt, Addr addr);

void lw(Addr addr, unsigned rt);

Using such an interface, the New Jersey Machine-Code Toolkit can generate either binary or 

assembly language instructions. What if, instead, you wanted to generate τRTL? The answer 

is that this is easily accomplished by providing an identical interface that generates τRTL 

instead of assembly language. 

Figure 5-10 shows a brief excerpt from the MIPS τRTL description that has been dec-

orated with SLED aspects. The right-hand sides of τRTL grammar productions are CSDL 

objects, each of which has a SLED aspect. The SLED aspect specifies the C language signature 

for the function that will emit τRTL trees. As before, these aspects build a grammar parallel to 

the τRTL grammar on the left. To build the necessary functions, we enumerate all of the C 
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signatures that can be derived from the grammar start symbol discarding duplicates when they 

are produced. As each signature is generated, the matching τRTL tree is constructed. From 

the signature and the tree, a C function that matches the signature can be generated that, 

itself, generates the matching τRTL tree.

Just as we can use this technique to build an interface for generating τRTL trees, we 

can use this technique to call functions produced by the Toolkit to generate binary instruc-

tions from τRTL’s. This is possible due to the declarative nature of both the τRTL grammar 

and the matching SLED aspects. However, the aspects themselves do not provide sufficient 

information to generate the necessary code. Instead, the processor that takes the aspects and 

generates the interface must include whatever information is necessary to generate the C func-

tions from the mappings of C signatures to τRTL’s. This is appropriate though since this 

information is application dependent.

5.4 Summary
In this chapter, we have presented a new framework for developing descriptions of computing 

systems. The CSDL system facilitates the construction of descriptions that can be shared 

among many software applications. As a goal, we would like to build application-independent 

descriptions. In practice, this is not always feasible. CSDL recognizes this fact and provides 

the appropriate mechanisms to software developers.

start → inst //

w → u,32 //

bs → b,32 //

imm16→ « constants,16  » //

regno → « constantu,5  » //

reg → « r[regno]  » //

addr → « (regw + ∆(imm16)s,32)w  »

//

aop → « +  » 

| « −  »

//

inst → « reg'w ← reg''w aop reg'''w;  » 

| « M[addr,4]bs ← reg;  » 

| « regbs ← M[addr,4];  » 

//

Figure 5-10. A small MIPS excerpt with SLED aspects.

int constantsled

int constantsled

unsigned regnosled

Addr addr(imm16, reg)sled

addsled

subsled

void aop(reg´, reg´´, reg´´´)sled

void sw(reg, addr)sled

void lw(addr, reg)sled
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Because it is difficult, if even possible, to anticipate all of the information that all 

applications will need about a target machine, there always will be a need to add information 

to existing descriptions. By introducing annotations, modules, and aspects, our description 

system makes it possible to make these necessary extensions—without impacting existing 

applications. When details about a target machine are missing from a description, an applica-

tion can extend the description system in whatever way is most appropriate for the applica-

tion’s purposes.

Finally, choosing the CSDL system for parameterizing an application does not pre-

clude the use of an already proven system of description. Instead, with few, or no modifica-

tions, an extant description can be integrated with CSDL, enhancing its descriptive capability 

and making it available for other applications to use and extend. 
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CHAPTER 6

CONCLUSIONS

This dissertation presents a framework for building application-independent descriptions of 

computing systems for use in retargetable software. We illustrate the framework by developing 

the core description component (τRTL), an optional calling convention component (CCL), 

and the mechanism we use to extend extant descriptions (CSDL). In addition, another CSDL 

language, called PLUNGE, is being developed for describing the pipeline structure of a 

machine [Mil99]. The features of the Computing System Description Language directly sup-

port the evolution that machine descriptions experience. 

Description systems have traditionally been tailored for a single application to make 

retargeting of the application more manageable. In this spirit, machine descriptions generally 

forgo application independence in trade for ease of application implementation. Frequently, 

this results in machine descriptions that actually describe the process that the application is 

performing (code generation, optimization, binary decoding, etc.) rather than solely the char-

acteristics of the target machine. CSDL recognizes that while machine descriptions usually 

have information that is valuable to multiple applications, they also commonly contain details 

that are of use to only one application. Rather than forbidding such application dependencies, 

CSDL provides mechanisms to denote application-specific information.

At the center of CSDL is the core machine description. The core builds upon a proven 

method of modeling the effects of machine instructions: register transfer lists. RTL’s are then 

extended to address their known shortcomings. The result is a mature, application-indepen-

dent representation for concisely describing the semantics of machine instructions. 
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Applications that use instruction descriptions manipulate an internal or intermediate 

representation of instructions. CSDL provides the τRTL representation to aid in building 

more robust implementations. It is the nature of these instruction “manipulators” that 

instructions must be added, removed, or rearranged. Often, the goal is to build semantically 

equivalent sequences of instructions. τRTL provides a natural type system that makes it possi-

ble for software to easily identify malformed τRTL expressions. Unlike other instruction rep-

resentations, τRTL uses a type system better suited to the kinds of objects being manipulated. 

Types are not associated with objects, as they are in high-level programming languages, but 

instead with operators. This reflects the process that is used when translating instructions 

from a high-level language to a low-level language. The types of objects in high-level lan-

guages are used to determine the types of the operations to use in implementing the high-level 

language expressions in the low-level form. This abstraction is appropriate for high-level lan-

guages, but not for software that manipulates a representation of low-level machine-language 

instructions. 

When designing an instruction representation, one must always balance between a 

particular application’s need for detailed information and the appropriate level of abstraction 

to present to all applications. If too much detail is chosen, an operation’s effect cannot be eas-

ily determined by the software that manipulates the instructions. If too little detail is chosen, 

the application is starved for information. In the CSDL core, we balance these competing 

demands by providing just the right level of detail in τRTL for many applications, while pro-

viding access to additional detail through the µRTL definition of operations. This acknowl-

edges the fact that many applications, such as optimizers, require some information about the 

instructions they manipulate, while other applications, such as simulators, need more detailed 

information about the operation of an instruction. This approach is hierarchical, and, 

although this is a common approach in computer hardware description languages, it has not 

been applied to the machine description domain. 

Other components beyond the core can be added to CSDL descriptions. A compo-

nent unique to CSDL is the module that specifies procedure calling conventions. Unlike 

many other target machine characteristics, the implementation of procedure call combines 

language dependent-information with machine dependent-information. As such, the part of 

an application’s implementation that works with the calling convention is among the most 
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difficult to retarget. Generally, the cause is that conventions are inappropriately modeled as 

sequences of target machine instructions. An important contribution of this thesis is the iden-

tification of the procedure calling convention and the procedure calling sequence as separate 

concepts that can—and should—be separated in an application’s implementation. 

Once a procedure calling convention is established, software must be built that 

adheres to the convention. Although traditional programming techniques are generally used, 

programming languages do not provide the appropriate abstractions for building robust 

implementations of calling conventions. We demonstrate this by identifying errors in the 

implementations of mature production compilers. CCL provides the appropriate abstractions 

to accurately and succinctly specify the agreement of how information must be transmitted 

between caller and callee. By using CCL, we have developed convention implementations like 

no other: robust, bug-free, with provable properties.

Using formal specifications can often simplify implementations as well. Our experi-

ence with CCL specifications reinforces this observation. Before CCL’s integration with our 

compiler, the compiler’s hand-written calling-sequence generator was error prone and usually 

required examination several times during the process of retargeting the compiler. The result 

of CCL’s integration is a small, simple implementation of an FSA whose actions are directed 

by a generated table. Because the purpose of the implementation is formally defined, the code 

is easy to write and debug. Further, since the machine-specific details are encoded in the table, 

the result is machine-independent code that need not be revisited at all when the compiler is 

retargeted. 

CCL’s formal specifications enable us to leverage off the language’s theoretical founda-

tion in many ways. For example, these descriptions are truly multipurpose; they can be used 

to generate calling sequence code generators or to build compiler test suite generators. These 

two applications of CCL exercise the specifications in fundamentally different ways. This is 

only possible because CCL achieves an unusually high degree of application-independence 

due to the separation of convention from sequence. The result is that from CCL descriptions 

we can automatically generate test suites that are target-machine sensitive. Because target 

machine information is considered when constructing the test suite, the test suite generator 

can isolate many potential weaknesses of a compiler’s convention implementation. Finally, 
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perhaps the most exciting benefit is that compiler writers need not rework this aspect of a 

compiler’s test suite when the compiler is retargeted.

Since CCL uses FSA’s to model the transmission of information between caller and 

callee, the problem of generating a test suite for a compiler’s convention generator can be 

reduced to exercising the FSA that is implicit (or explicit in our case) in a compiler’s imple-

mentation. However, exercising a machine that recognizes strings from an infinite language 

poses a serious problem: not all inputs can be tested. This is a well known problem that has 

been investigated in many domains. We present a new solution to the infinite test problem. 

By using transition-pairing, we can select inputs that consider the context of a FSA transition’s 

use. The result is a drastic reduction in the input test language’s size, while maintaining a high 

degree of test coverage confidence. This method of test vector selection automatically identi-

fies boundary conditions that are the most likely to pose problems in hand-written compiler 

implementations. 

Generating exhaustive test suites, as we have done with CCL, is sufficient to identify 

errors and provide examples that will reproduce the errors. This only solves half the problem. 

In order to correct the implementation, one must isolate and diagnose the cause of the error. 

The test suite generator is capable of automatic diagnosis of some types of common errors. 

The diagnosis suggests the type of error in calling convention terms. When automatic diagno-

sis cannot be provided, usually the set of tests that fail can suggest to the compiler writer the 

nature of the implementation error. Best of all, the test suite and the diagnostic driver can be 

used in environments that do not to use CCL generated implementations, or even in cases 

where a CCL generator is not available to generate the test suite.

Both the τRTL and CCL components are bound together by CSDL. CSDL provides 

an extremely extensible environment for collecting target machine information. As descrip-

tion systems mature, CSDL can accommodate descriptions of new features through its 

description components. Applications that view the same abstractions in different ways can 

include these alternative views in CSDL components without impacting existing applications 

or descriptions. The result is a flexible environment that gives applications room to grow and 

evolve. 

In summary, we have presented a system for building computing system descriptions 

that can be used by more than a single application. τRTL descriptions further the state-of-the-
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art in specifying effects of machine instructions. µRTL provides a hierarchical solution for 

applications that need more detailed information about an instruction’s effect. The CCL spec-

ification language is the first work to formally describe procedure calling conventions. It also 

represents one of the first languages to be used by more than a single application. The enclos-

ing CSDL environment houses the first description system to recognize that specifications 

must evolve and that specifications will frequently include application-dependent features. As 

these specifications grow, CSDL is poised to grow with them. 
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APPENDIX A

CSDL DESCRIPTIONS

This appendix contains the CSDL core descriptions for the MIPS and Motorola M68020. 

A.1 The MIPS Core Description

inst → load
| store
| arithmetic
| mult
| branch
| float
| special
| reg’ ← reg’’bs; 
| dreg’ ← dreg’’b,64; 
| reg ← exprw;
| reg’ ← abs(reg’’s,32)w;
| reg’ ← −(reg’’s,32)s,32;
| reg’ ← −(reg’’w)w;
| reg’ ← ¬(reg’’bs)bs;
| dreg'd ← dreg’’d aop dreg’’’d;  
| reg ← bsimm32;  
| reg ← 0bs;
| reg'bs ← reg’’bs ∧  ∆(imm16)bs;
//

w → u,32 //

bs → b,32 //

d → f,64 //

FC → fc //

PC → pc //

HI → hi //

LO → lo //

shamt → constant
//

imm → ∆(constants,16)
| constant
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| local
| label
| locals,32 + constants,32

| labels,32 + constants,32

//

expr → ∆(constants,16)
| constant
//

offset → ∆(constants,16)
| constant
//

reloc → global
| local
| label
//

addr → regw  
| (regw + offsetw)w
| relocw
| (regw + relocw)w
| (relocw + offsetw)w
| (regw + (relocw + offsetw)w)w
//

imm16→ constants,16  
| locals,16

| (locals,16 + constants,16)s,16
//

bsimm16→constantb,16  
| labelb,16

//

bsimm32→ globalb,32

| labelb,32
//

imm32→ globalb,32

| (globalw + ∆(constants,16)w)w
//

bimm16→ constants,16  
//

imm26→ constant
| global
//

regimm→reg
//

regno → constantu,5 //

dregno→ constantu,5 //

freg → f[dregno]31..0 //

dreg → f[dregno] //

reg → r[regno]//
reg0 → reg

| 0
//

mem → m[addr]
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//

immlop→ ∧  
| ∨  
| ⊕  
//

lop → immlop  
| nor  
//

frelop → =  
| ≤
| <
//

relop → =  
| ≠  
//

signedrelop→≤
| <
| >
| ≥
//

shiftop→ ⇐  
| ⇒  
//

immaop→ +  
| −
//

aop → +  
| −
| ×
| ÷
//

load → reg ← membs;  
| reg ← ∆(mems,8)s,32;  
| reg ← ∆(mems,16)s,32;  
| reg ← addr;  
| reg ← ∆(memu,8)w;  
| reg ← ∆(memu,16)w;  
| dreg ← memb,64;  
| freg ← memb,32;  
| reg ← imm32;
//

store → mem ← regbs;  
| mem ← 0w;  
| mem ← 0u,16;  
| mem ← 0u,8;  
| mem ← ∆(regb,32)b,8;  
| mem ← ∆(regb,32)b,16;  
| mem ← dregb,64;  
| mem ← fregb,32;  
//

arithmetic→ reg’s,32 ← reg’’s,32 immaop imms,32; 
| reg’w ← reg’’w immaop immw; 
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| reg’ ← imms,32; 
| reg’ ← immw; 
| reg’bs ← reg’’bs immlop immbs;
| reg’s,32 ← reg’’s,32 aop reg’’’s,32;
| reg’w ← reg’’w aop reg’’’w;  
| reg’bs ← reg’’bs lop reg’’’bs;  
| reg’ ← ¬ ((reg’’bs ∨  reg’’’bs)bs)bs;  
| reg’bs ← reg’’s,32 < reg’’’s,32;  
| reg’bs ← reg’’w < reg’’’w;  
| reg’bs ← reg’’s,32 signedrelop constants,32;  
| reg’bs ← reg’’s,32 signedrelop reg’’’s,32;  
| reg’bs ← reg’’w signedrelop constantw;  
| reg’bs ← reg’’w signedrelop reg’’’w;  
| reg’bs ← reg’’bs relop constantbs;  
| reg’bs ← reg’’bs relop reg’’’bs;  
| reg’bs ← reg’’bs rol constantbs;  
| reg’bs ← reg’’bs rol reg’’’bs;  
| reg’bs ← reg’’bs ror constantbs;  
| reg’bs ← reg’’bs ror reg’’’bs;  
| reg’bs ← reg’’bs shiftop shamtu,5; 
| reg’s,32 ← reg’’s,32 ⇒  shamtu,5;  
| reg’bs ← reg’’bs shiftop ∆(reg’’’w)u,5;  
| reg’s,32 ← reg’’s,32 ⇒  ∆(reg’’’w)u,5; 
//

mult → HI ← ∆((reg’s,32 × reg’’s,32)s,64)s,32; LO ← ∆((reg’s,32 × reg’’s,32)s,64)s,32;
| reg’s,32 ← reg’’s,32 × reg’’’s,32;
| reg’w ← reg’’w × reg’’’w;
| reg’s,32 ← reg’’s,32 × constants,32;
| reg’w ← reg’’w × constantw;
| reg’s,32 ← reg’’s,32 mulo reg’’’s,32;
| reg’w ← reg’’w mulou reg’’’w;
| reg’s,32 ← reg’’s,32 mulo constants,32;
| reg’w ← reg’’w mulou constantw;
| reg’s,32 ← reg’’s,32 ÷ reg’’’s,32;
| reg’w ← reg’’w ÷ reg’’’w;
| reg’s,32 ← reg’’s,32 ÷ constants,32;
| reg’w ← reg’’w ÷ constantw;
| reg’s,32 ← reg’’s,32 % reg’’’s,32;
| reg’w ← reg’’w % reg’’’w;
| reg’s,32 ← reg’’s,32 % constants,32;
| reg’w ← reg’’w % constantw;
| reg ← HIbs; 
| reg ← LObs; 
| LO ← regbs; 
| HI ← regbs; 
//

jtarget → ∆(constantb,26)bs 
| regbs

| labelbs

| globalbs
//
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btarget→ ∆((PCw + ∆(bimm16)w)w)bs  
| labelbs

//

balrelop→ <
| ≥
//

branch→ PC ← jtarget;  
| PC ← jtarget; r[31u,5] ← PCbs;  
| PC ← regbs;  
| PC ← regbs; r[31u,5] ← PCbs;  
| PC ← ¿((reg’bs relop reg’’bs)bs, btarget, PCbs)bs;  
| PC ← ¿((regs,32 signedrelop regimms,32)bs, btarget, PCbs)bs;  
| PC ← ¿((regw signedrelop regimmw)bs, btarget, PCbs)bs;  
| PC ← ¿((regbs relop 0bs)bs, btarget, PCbs)bs;  
| PC ← ¿((reg0s,32 signedrelop 0s,32)bs, btarget, PCbs)bs;  
| PC ← ¿((regs,32 balrelop 0s,32)bs, btarget, PCbs)bs;r[31u,5] ← PCbs;  
| PC ← ¿((FCs,32 = 0s,32)bs, btarget, PCbs)bs;  
| PC ← ¿((FCs,32 = 1s,32)bs, btarget, PCbs)bs;  
//

special→break(constantb,20)  
| tlbp  
| tlbr  
| tlbwr  
| tlbwl  
| rfe  
| syscall  
//

float → dreg ← (r[regno’]bs:r[regno’’]bs)b,64; { ((regno’ % 2) = 0) ∧  (regno’ = (regno’’ + 1)) }
| (r[regno’]:r[regno’’])← dregb,64;

| f[dregno’]63..32 ← reg’bs; f[dregno’]31..0 ← reg’’bs; { ((regno’ % 2) = 0) ∧  (regno’ = (regno’’ + 1)) }

| reg’bs← f[dregno’]63..32; reg’’bs ← f[dregno’]31..0; { ((regno’ % 2) = 0) ∧  (regno’ = (regno’’ + 1)) }
| freg ← regbs;
| reg ← fregbs;
| fregbs ← mem;
| dregb,64 ← mem;
| membs ← freg;
| memb,64 ← dreg;
| dregd ← ∆(fregf,32);
| fregf,32 ← ∆(dregd);
| freg’f,32 ← ∆(freg’’s,32);
| fregf,32 ← ∆(regs,32);
| dregf,64 ← ∆(fregs,32);
| dregf,64 ← ∆(regs,32);
| freg’s,32 ← ∆(freg’’f,32);
| fregs,32 ← ∆(dregf,64);
| dreg'd ← dreg’’d aop dreg’’’d;
| freg'f,32 ← freg’’f,32 aop freg’’’f,32;
| freg'f,32 ← −(freg’’f,32);
| dreg'f,32 ← −(dreg’’f,32);
| dreg’ ← dreg’’b,64;
| freg’ ← freg’’b,32;
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| freg’f,32 ← abs(freg’’f,32);
| dreg’f,32 ← abs(dreg’’f,32);
| FCbs ← dreg’d frelop dreg’’d;  
| FCbs ← freg’f,32 frelop freg’’f,32;  
| dreg ← fconstantd;
| freg ← fconstantf,32;
//

A.2 The Motorola M68020 Core Description
inst → move 

| arith 
| logical 
| shift 
| bitfield 
| branch 
//

PC → pc  //

CC → cc //

SP → a[7] //

regno → constantu,3  //

dreg → d[regno]  //

areg → a[regno]  //

pcareg→ areg 
| PC  //

reg → areg  
| dreg  
//

sz → 8  
| 16  
| 32  
//

bbwl → b,8  
| b,16  
| b,32  
//

bwl → u,8  
| u,16  
| u,32  
//

wl → u,16  
| u,32  
//

L → u,32  //

sbwl → s,8  
| s,16  
| s,32  
//

scale → 1  
| 2  
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| 4  
| 8  
//

swl → s,16  
| s,32  
// 

index → (∆(regsbwl)L × ∆(scaleu,8)L)L  
| ∆(regsbwl)L  
//

wlindex→ (∆(regswl)L × ∆(scaleu,8)L)L  
| ∆(regswl)L  
//

indirect→ (aregL + wlconstL)L  
| wlconstL  
| aregL  
//

wlconst→ ∆(constants,16)  
| ∆(constants,32)  
//

ea → dreg   
| areg  
| m[aregL]  
| m[(pcaregL + ∆(constants,16)L)L]  
| m[((pcaregL + ∆(constants,8)L)L + wlindex)L]  
| m[((pcaregL + wlconstL)L + index)L]  
| m[(pcaregL + index)L]  
| m[(wlconstL + index)L]  
| m[(pcaregL + wlconstL)L]  
| m[index]  
| m[pcaregL]  
| m[wlconstL]  
| m[((areg’L ← areg’L + scaleL) - scaleL)L]  
| m[areg’L ← areg’L − scaleL]  
| m[0L]  
| m[((m[indirect]L + index)L + wlconstL)L]  
| m[(m[indirect]L + wlconst’’L)L]  
| m[(m[indirect]L + index)L]  
| m[m[indirect]L]  
| m[indirect]  
| m[wlconstL]  
| m[index]  
| m[(m[(indirect + index)L]L + wlconstL)L]  
| m[∆(constants,16)L]  
| m[constantL]  
| constant  
//

imm →constant  
//

wl → 16   
| 32   
//

bw → 8   
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| 16   
//

n → s   
| u   
//

move →
| dreg’b,32 ← dreg’’; dreg’’b,32 ← dreg’;  
| dregb,32 ← areg; aregb,32 ← dreg;  
| areg’b,32 ← areg’’; areg’’b,32 ← areg’;  
| aregb,32 ← ea;  
| m[(SPL - 4L)L]b,32 ← areg’; areg’L ← SPL - 4L;

SPL ← (SPL - 4L)L + ∆(constantswl)L;
  

| ea’bbwl ← ea’’; setcc;   
| areg’b,32 ← m[areg’L]; SPL ← areg’L + 4L;  
| m[(SPL - 4L)L]b,32 ← ea; SPL ← SPL - 4L  
//

setcc →  CCb,5 ← //

aop →  
| +   
| -   
//

arith →  
| dreg’bwl’ ← eabwl’ aop dreg’bwl’; setcc;  
| ea’bwl’ ← dregbwl’ aop ea’bwl’; setcc;  
| areg’wl’ ← eawl’ aop areg’wl’;  
| dreg’bwl’ ← addx(dreg’’bwl’, dreg’bwl’); setcc;  
| ea’bwl’ ← 0; setcc;  
| ccb,5 ← dregsbwl’ - easbwl’;  
| ccb,5 ← aregswl’ - easwl’;  

| dreg’15..0
n’,16 ← dreg’n’,16 ÷ ea’n’,16;

dreg’31..16
n’,16 ← dreg’n’,16 mod ea’n’,16; setcc;  

| dreg’n’,32 ← dreg’n’,32 ÷ ean’,32; setcc;  
| dreg’n’,32 ← (dreg’’:dreg’)n’,64 ÷ ea’n’,32; 

dreg’’n’,32 ← (dreg’’:dreg’)n’,64 mod ea’n’,32; setcc;  
| dreg’n’,32 ← dreg’n’,32 ÷ ea’n’,32; 

dreg’’n’,32 ← dreg’n’,32 mod ea’n’,32; setcc;
 

| dreg’s,32 ← ∆(dreg’s,bw);  
| dreg’s,16 ← ∆(dreg’s,8);  
| dreg’n’,wl’ ← dreg’n’,wl’ × ean’,wl’; setcc;  
| (dreg’:dreg’’)n’,64 ← ean’,32 × dreg’’n’,32; setcc;  
| ea’sbwl’ ← -ea’sbwl’); setcc;  
| ea’sbwl’ ← negx(ea’sbwl’); setcc;  
//

logop → ∧  
| ⊕  
| ∨  
//

logical → dreg’bbwl’ ← eabbwl’ logop dreg’bbwl’  
| ea’bbwl’ ← dregbbwl’ logop ea’bbwl’  
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| ea’bbwl’ ← ¬(ea'bbwl’)  
//

ashiftop→ ⇐  
| ⇒  
//

shiftop→ ⇐  
| ⇒  
| rol  
| ror  
| roxl  
| roxr  
//

al → b  
| s  
//

shift →
| dreg'sbwl’ ← dreg'sbwl’ ashiftop dreg''u,5;  
| dreg'sbwl’ ← dreg'sbwl’ ashiftop immu,5;  
| ea's,16 ← ea's,16 ashiftop 1u,5;  
| dreg'bbwl’ ← dreg'bbwl’ shiftop dreg''u,5;  
| dreg'bbwl’ ← dreg'bbwl’ shiftop immu,5;  
| ea'b,16 ← ea'b,16 shiftop 1u,5;  

| dreg'15..0
b,16 ← dreg'31..16; dreg'31..16

b,16 ← dreg15..0; 
//

bfop → bfexts  
| bfextu  
| bfins  
//

bitfield→ dreg'b,32 ← bfop(eab,32, constant'u,5, constant''u,5); setcc; 
//

relop → =   
| « ≠   
| ≤  
| <  
| >  
| ≥  
//

cmp → CCu,5 relop 0u,32  //

branch→ PCL ← PCL + ∆(labelsbwl)L; label 
| PCL ← PCL + ∆(labelsbwl)L; m[SPL]b,32 ← PC; SPL ← SPL - 4L;

label 
| PCb,32 ← ea;  
| PCb,32 ← ea; m[SPL]b,32 ← PC; SPL ← SPL - 4L;  
| PCL ← PCL + 2L;  
| PCb,32 ← ?(cmpb,1, labelb,32, PCb,32); label 
| PCb,32 ← ?(DB(cmpb,1)b,1, labelb,32, PCb,32); label 
| eab,32 ← cmp; label 
| PCb,32 ← m[SPL]; SPL ← (SPL + 4L)L + ∆(constants,16)L;  
| PCb,32 ← m[SPL]; SPL ← SPL + 4L;  
//
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APPENDIX B

CCL DESCRIPTIONS

This appendix contains the CCL calling convention descriptions.

2.1 The MIPS R3000 CCL Description
1. external SPILL_SIZE, LOCALS_SIZE 
2. persistent {r1, r16:23, r26:31} 
3. alias REG_ARGS ≡ 16 
4. alias sp ≡ r29 
5. caller prologue  
6. view change 
7. ∀  offset ∈  {−∞:∞} 
8. M[sp + offset] becomes M[sp + offset +  ARG_BLOCK_SIZE 8] 
9. end view change 

10. data transfer (asymmetric) 
11. alias rindex ≡ 4:7 
12. alias fpindex ≡ 12,14 
13. alias mstart ≡ sp + REG_ARGS 
14. alias mindex ≡ mstart:∞ 
15. resources {<rrindex, Mmindex>, <ffpindex, Mmindex>, <Mmindex>} 
16. ∀ mem ∈ { M[sp(REG_ARGS)]} set mem.assigned ← true 
17. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈  <mindex>  
18. ∧  M[addr].assigned>) 
19. class intregs ← <<rx>| x ∈  <rindex>> 
20. class intfpregs ← <<rx> | x ∈  <rindex> ∧  x mod 2 = 0> 
21. class fpfpregs ← <<fx> | x ∈  <fpindex>> 
22. class mem ← <<Mloc> | loc ∈ <mindex> ∧  loc mod 4 = 0> 
23. class aligned_mem ← <<Mloc> | loc ∈ <mindex> ∧  loc mod 8 = 0 > 
24. class struct_mem ← <<rx, Mmstart> | x ∈  <rindex>> 
25. class aligned_struct_mem ← <<rx, Mmstart> | x ∈  <rindex> ∧  x mod 2 = 0> 
26. ∃ reg ∈  {reg | reg ∈  {f12} ∧ reg.assigned} ⇒ set r4.unavailable ← true 
27. ∃ reg ∈  {reg | reg ∈  {f12} ∧ reg.assigned} ⇒ set r5.unavailable ← true 
28. ∃ reg ∈  { reg | reg ∈  {f14} ∧ reg.assigned} ⇒ set r6.unavailable ← true 
29. ∃ reg ∈  { reg | reg ∈  {f14} ∧ reg.assigned} ⇒ set r7.unavailable ← true 
30. ∃ reg ∈  {reg | reg ∈  {r4:5} ∧ reg.assigned} ⇒  set f12.unavailable ← true 
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31. ∃ reg ∈  {reg | reg ∈  {r6:7} ∧ reg.assigned} ⇒  set f14.unavailable ← true 
32. ∀ argument ∈  <ARG1:ARG_TOTAL> 
33. map argument → argument.type ⊥  { 
34. byte, word, longword: <intregs, mem>, 
35. struct: argument.size ⊥  { 
36. 1,2,3,4,5,6,7: <struct_mem, mem>, 
37. default: <aligned_struct_mem, aligned_mem> 
38. }, 
39. float, double: ARG1.type ⊥  { 
40. struct, byte, word, longword:<intfpregs, aligned_mem>, 
41. float, double: <fpfpregs, aligned_mem> 
42. } 
43. } 
44. end data transfer 
45. end caller prologue 
46. callee prologue 
47. view change 
48. ∀  offset ∈  {−∞:∞} 
49. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + 
50. LOCALS_SIZE + NVSIZE 8] 
51. end view change 
52. end callee prologue 
53. callee epilogue 
54. data transfer (asymmetric) 
55. resources {<r2>,<f0>} 
56. ∃ return ∈  <RVAL1:RVAL_TOTAL> ⇒  
57. map return → return.type ⊥  { 
58. byte, word, longword: <<<r2>>>, 
59. float, double: <<<f0>>>, 
60. struct: ↑(<<<r2>>>) 
61. } 
62. end data transfer 
63. end callee epilogue 
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2.2 The M68020 CCL Description

Description for the M68020

1. external SPILL_SIZE, LOCALS_SIZE 
2. persistent {d2:7,a2:7} 
3. alias sp ≡ a7 
4. caller prologue 
5. view change 
6. ∀  offset ∈  {−∞:∞} 
7. M[sp + offset] becomes M[sp + offset +  ARG_BLOCK_SIZE 4] 
8. end view change 
9. data transfer (asymmetric) 

All arguments, regardless of type, are saved on the stack, just
below the local variable space. The extra 4 bytes is included
because the call instruction pushes the return address on the

stack, causing an additional 4 bytes to be calculated.

10. alias mindex ≡ sp:∞ 
11. resources {<Mmindex>} 
12. class mem ← <<Mloc> | loc ∈  <mindex>> 
13. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧
14.  M[addr].assigned>) 
15. ∀  argument ∈  <ARG1:ARG_TOTAL> 
16. map argument → <mem> 
17. end data transfer 
18. end caller prologue 
19. callee prologue 
20. view change 
21. ∀  offset ∈  {-∞:∞} 
22. M[sp + offset] becomes M[sp + offset + 4 +  SPILL_SIZE + LOCALS_SIZE +
23.  NVSIZE 4] 
24. end view change 
25. end callee prologue 
26. callee epilogue 
27. data transfer (asymmetric) 
28. resources {<d0:1>} 
29. ∃  return ∈  <RVAL1:RVAL_TOTAL> ⇒ 
30. map return → return.type ⊥  { 
31. byte, word, longword, float, double:<<<d0>>>, 
32. struct: ↑(<<<d0>>>) 
33. } 
34. end data transfer 
35. end callee epilogue 
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2.3 The M88100 CCL Description

Description for the M88100

1. external ARG_SIZE, SPILL_SIZE, LOCALS_SIZE 
2. persistent {r1, r14:31} 
3. alias sp ≡ r31 
4. alias mem_bytes ≡ 32 
5. caller prologue  
6. data transfer (asymmetric)  
7. alias rindex ≡ 2:9 
8. alias mstart ≡ sp + mem_bytes 
9. alias mindex ≡ mstart:∞ 

10. resources {<rrindex, Mmindex>} 
11. class regs ← <<rx>| x ∈  <rindex>> 
12. class mem ← <<Mloc> | loc ∈ <mindex> ∧  loc mod 4 = 0> 
13. class aligned_mem ← <<Mloc> | loc ∈ <mindex> ∧  loc mod 8 = 0 > 
14. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧
15.  M[addr].assigned>) 

This explicitly requires that an additional 32 bytes be allocated
on the stack if there is any stack space allocated by the caller.

16. ∃  memarg ∈  {memory | memory ∈  <M[mstart]> ∧  memory.assigned} ⇒  
17. stackloc ∈ {M[loc] | loc ∈ { sp(mem_bytes)}} set stackloc.assigned ← true 
18. ∀  argument ∈  <ARG1:ARG_TOTAL> 
19. map argument → argument.type ⊥  {  
20. byte, word, longword: <regs, mem>,
21. float, double:<regs, aligned_mem>,
22. struct: <aligned_mem>
23. }
24. end data transfer 
25. end caller prologue 
26. callee prologue 
27. view change 
28. ∀ offset ∈  {-∞:∞}
29. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + LOCALS_SIZE +
30.  NVSIZE + ARG_BLOCK_SIZE8]
31. end view change 
32. end callee prologue 
33. callee epilogue 
34. data transfer (asymmetric) 
35. resources {<r2:3>}
36. ∃ return ∈  <RVAL1:RVAL_TOTAL> ⇒ 
37. map return → return.type ⊥  {
38. byte, word, longword, float, double:<<<r2>>>,
39. struct: ↑(<<<r2>>>)
40. }
41. end data transfer 
42. end callee epilogue 



Appendix B: CCL Descriptions The DEC VAX-11 CCL Description 141

2.4 The DEC VAX-11 CCL Description

Description for the DEC VAX-11

1. external SPILL_SIZE, LOCALS_SIZE 
2. persistent {r6:15} 
3. alias sp ≡ r14 
4. caller prologue 
5. view change 
6. ∀  offset ∈  {−∞:∞} M[sp + offset] becomes M[sp + offset +  ARG_BLOCK_SIZE 8] 
7. end view change 
8. data transfer (asymmetric) 
9. alias mindex ≡ sp+4:∞ 

10. resources {<Mmindex>} 
11. class mem ← <<Mloc> | loc ∈  <mindex> > 
12. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧
13.  M[addr].assigned>) 
14. ∀  argument ∈  <ARG1:ARG_TOTAL> 
15. map argument → argument.type ⊥  { 
16. byte, word, longword, float, double:<mem>, 
17. struct: ↑(<mem>) 
18. } 
19. end data transfer 
20. end caller prologue 
21. callee prologue 
22. view change 
23. ∀  offset ∈  {-∞:∞} 
24. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + LOCALS_SIZE +
25. NVSIZE 8] 
26. end view change 
27. end callee prologue 
28. callee epilogue 
29. data transfer (asymmetric) 
30. resources {<r0:1>} 
31. ∃  return ∈  <RVAL1:RVAL_TOTAL> ⇒ 
32. map return → return.type ⊥  { 
33. byte, word, longword, float, double:<<<r0>>>, 
34. struct: ↑(<<<r0>>>) 
35. } 
36. end data transfer 
37. end callee epilogue 
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2.5 The SPARC CCL Description

Description for the SPARC

1. external SPILL_SIZE, LOCALS_SIZE 
2. persistent {r14:31} 
3. alias sp ≡ r14 
4. internal REG_MEM_SIZE ← 92 
5. caller prologue 
6. data transfer (asymmetric) 
7. alias rindex ≡ 8:13 
8. alias mstart ≡ sp + REG_MEM_SIZE 
9. alias mindex ≡ mstart:∞ 

10. resources {<rrindex, Mmindex>} 
11. class regsmem ← <<rx, Mmstart> | x ∈  <rindex>> 
12. class mem ← <<Mloc> | loc ∈  <mindex>> 
13. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧
14. M[addr].assigned>) 
15. ∀  argument ∈  <ARG1:ARG_TOTAL> 
16. map argument → argument.type ⊥  {
17. byte, word, longword, float, double:<regsmem, mem>,
18. struct: <regsmem, mem>
19. }
20. end data transfer 
21. end caller prologue 
22. callee prologue 
23. view change 
24. ∀  offset ∈  {-∞:∞}
25. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + LOCALS_SIZE +
26.  NVSIZE + ARG_BLOCK_SIZE + 4 8] 
27. ∀ x ∈  {8:15}
28.  r[x] becomes r[x + 16]
29. end view change 
30. data transfer 
31. alias mindex ≡ sp:∞ 
32. resources {<Mmindex>} 
33. class mem ← <<Mloc> | loc ∈  <mindex>>
34. internal NVSIZE ← ∑(<M[addr].size | addr ∈  <mindex> ∧  M[addr].assigned>)
35. ∀  register ∈ < rx | x ∈  <16:31> ∧ rx.assigned>
36. map register → <mem>
37. end data transfer 
38. end callee prologue
39. callee epilogue 
40. data transfer (asymmetric) 
41. resources {<r8>, <f0>} 
42. ∃  return ∈  <RVAL1:RVAL_TOTAL> ⇒ 
43. map return → return.type ⊥  { 
44. byte, word, longword:<<<r8>>>,
45. float, double: <<<f0>>>,
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46. struct: ↑(<<<r8>>>)
47. }
48. end data transfer
49. end callee epilogue 
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