

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

at the

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

CSDL: REUSABLE
COMPUTING SYSTEM DESCRIPTIONS

FOR

RETARGETABLE SYSTEMS SOFTWARE

Mark W. Bailey

ABSTRACT

In an era of rapid design of microprocessors for desktop systems, embedded systems, and

handheld computing devices, the timely construction of systems software is essential. Systems

software, such as assemblers, compilers, and debuggers, must be constructed before develop-

ment of application software for a microprocessor can commence. However, the implementa-

tion of such machine-specific applications is difficult and time consuming. Therefore, to

remain competitive, it is imperative that systems software designs focus on portability to

reduce implementation time and ensure rapid delivery of complete systems to the market.

This dissertation presents the Computing System Description Language (CSDL) framework

that addresses these rapid development requirements.

We illustrate the CSDL framework by developing an instruction-set description com-

ponent (τRTL), an optional procedure calling convention description component (CCL), and

the mechanism we use to extend extant descriptions (CSDL). τRTL and its accompanying

microinstruction descriptions (µRTL) further the state-of-the-art in specifying semantics of

machine instructions. τRTL adds a new type system and abstract syntax that facilitates more

accurate specification and automatic detection of errors by τRTL manipulators. τRTL

machine descriptions are also application independent—they completely separate the specifi-

cation of semantics from the application’s implementation. The CCL specification language is

the first work to formally describe procedure calling conventions. We demonstrate two dis-

tinct uses for CCL descriptions: code generation and fault detection. Using CCL we have

built compilers that are more robust, and found and diagnosed faults in production compil-

ers. CCL, τRTL, and µRTL descriptions are bound together using CSDL. CSDL is the first

description system to recognize that specifications must evolve and that specifications will fre-

quently include application-dependent features. The CSDL environment provides facilities

for adding new components, sharing information between components, and extending exist-

ing components for use in a wide variety of applications.

ACKNOWLEDGMENTS

I would like to thank everyone who has contributed, supported, or encouraged me in this

work.

First and foremost, I would like to thank my advisor, Jack Davidson. Over the many

years, Jack has been much more than just an advisor; he’s been a teacher and friend. I owe all

of the good ideas in this dissertation to Jack. The bad ones are all mine.

The members of my examining committee, Jim Cohoon, Jack Davidson, John

Knight, Alf Weaver, and Ron Williams had the unfortunate job of reading this dissertation

cover-to-cover. I thank them for holding me to their high standards.

I could not have completed this degree without the wonderful support of the faculty,

staff, and students in the Computer Science Department at the University of Virginia. There

are, unfortunately, too many to list here. I’ve made so many friends and learned so much. In

return, I will always be grateful.

All of my family supported me with encouragement and enthusiasm. In particular, my

parents, Duane and Leeta, and my wife’s parents, John and Carol provided much needed spir-

itual support. They never asked “how much longer?” at the wrong time.

Finally, I wish to thank my wife, Ann, for her love, continuous support and encour-

agement. I will never understand how she stuck with me during the hard times.

To Dad

i

CONTENTS

Chapter 1 — Introduction . 1

1.1 Background . 2
1.2 The Problem . 4
1.3 Motivation . 5
1.4 Structure . 6

Chapter 2 — Computing System Descriptions. 8

2.1 Computer Hardware Description Languages . 8
2.1.1 VHDL . 9
2.1.2 ISP . 11
2.1.3 Lisas . 12

2.2 Machine Descriptions . 13
2.2.1 ISP´ . 13
2.2.2 TMDL. 13
2.2.3 MDL . 15
2.2.4 Mop. 15
2.2.5 PO and VPO . 16
2.2.6 The GNU C Compiler . 18
2.2.7 Maril . 19

2.3 Multipurpose Descriptions. 20
2.3.1 SLED. 20
2.3.2 λ-RTL . 20

2.4 Summary . 21

Chapter 3 — Specifying Instruction Semantics: CSDL Core Descriptions 22

3.1 String RTL’s . 23
3.1.1 String RTL Syntax and Semantics . 23
3.1.2 Analysis and Manipulation. 28

3.2 τRTL’s . 31

ii

3.2.1 Syntax . 31
3.2.2 τRTL Types . 34
3.2.3 Aliasing . 36
3.2.4 Notation . 38
3.2.5 Abstract Syntax . 39

3.3 Using τRTL’s to Describe Machines . 44
3.4 Operation Semantics – µRTL’s . 47
3.5 Summary . 52

Chapter 4 — Specifying Procedure Calling Conventions . 54

4.1 Introduction. 54
4.1.1 Motivation . 55
4.1.2 Applications . 56

4.2 Procedure Calling Conventions . 57
4.2.1 A Simple Calling Convention . 57
4.2.2 Convention, Language, and Implementation 58
4.2.3 Separating Convention from Sequence. 59
4.2.4 Interfaces and Agents . 60
4.2.5 Addressing . 61
4.2.6 Activation Frame Layout . 62

4.3 The CCL Specification Language. 62
4.3.1 Design Philosophy . 62
4.3.2 Resources . 63
4.3.3 Global Section . 64
4.3.4 Agent Descriptions. 65
4.3.5 Summary . 70

4.4 The Formal Model. 70
4.4.1 P-FSA Representation . 70
4.4.2 Automatic P-FSA Construction . 75
4.4.3 Completeness and Consistency in P-FSA’s . 77

4.5 Use in a Compiler . 80
4.5.1 The Interpreter. 80
4.5.2 Realizing the Calling Sequence. 81

4.6 Construction of Diagnostic Programs . 85
4.6.1 Test Vector Selection . 85
4.6.2 Test Case Generation . 90
4.6.3 Automatic Diagnosis of Errors . 92
4.6.4 Test Results . 95

4.7 Summary . 98

iii

Chapter 5 — Computing System Description Language . 100

5.1 CSDL Overview. 101
5.1.1 Modules . 102
5.1.2 Linked Values . 103
5.1.3 Application Annotations . 104
5.1.4 Module Aspects . 106

5.2 Module Processing . 107
5.2.1 CSDL Language Processing . 107
5.2.2 An Environment for CSDL . 112
5.2.3 Processing Summary . 117

5.3 Applications . 118
5.3.1 Binary Translation . 118
5.3.2 Specifying a Procedural Interface to Assembly Language 120

5.4 Summary . 121

Chapter 6 — Conclusions . 123

Appendix A — CSDL Descriptions . 128

A.1 The MIPS Core Description . 128
A.2 The Motorola M68020 Core Description . 133

Appendix B — CCL Descriptions. 137

2.1 The MIPS R3000 CCL Description . 137
2.2 The M68020 CCL Description . 139
2.3 The M88100 CCL Description . 140
2.4 The DEC VAX-11 CCL Description. 141
2.5 The SPARC CCL Description . 142

References . 144

iv

LIST OF FIGURES

Chapter 1 — Introduction

Figure 1-1. Procedural machines description use . 3
Figure 1-2. Declarative machine description use. 3

Chapter 2 — Computing System Descriptions

Chapter 3 — Specifying Instruction Semantics: CSDL Core Descriptions

Figure 3-1. Context-free grammar for τRTL’s . 34
Figure 3-2. Memory aliases created by overlapping memory references. 37
Figure 3-3. Improperly typed τRTL for a load . 42
Figure 3-4. A properly typed τRTL for a load. 42
Figure 3-5. Abstract syntax for two τRTL’s . 43
Figure 3-6. Combined subexpression . 43
Figure 3-7. Incorrect simplification of (r[2u,5]u,32 + ∆(20u,9)u,32)u,32 tree 43
Figure 3-8. Correct simplification of (r[2u,5]u,32 + ∆(20u,9)u,32)u,32 tree 44
Figure 3-9. An τRTL grammar for a very simple machine 45
Figure 3-10. An illegal τRTL grammar. 45
Figure 3-11. A properly formed τRTL grammar. 46
Figure 3-12. A complete τRTL machine description of the DLX 48
Figure 3-13. µRTL operational semantics for a user-defined string copy operator 51
Figure 3-14. Operational semantics for the Pentium PADDB instruction 52

Chapter 4 — Specifying Procedure Calling Conventions

Figure 4-1. How CCL specifications are used. 56
Figure 4-2. Rules for a simple calling convention . 57
Figure 4-3. The role of agents in procedure call and return interfaces 61
Figure 4-4. The caller prologue . 68
Figure 4-5. A CCL description of the calling convention of Figure 4-2 71
Figure 4-6. P-FSA for transmission of parameters for a simple calling convention 72
Figure 4-7. Algorithm to build a P-FSA . 76

v

Figure 4-8. Definition of State-Label . 77
Figure 4-9. Calling sequence locations . 82
Figure 4-10. A possible procedure activation frame structure 83
Figure 4-11. Example FSA where a fault will not be detected. 87
Figure 4-12. Entering and exiting transitions for a state . 88
Figure 4-13. Test vector generation algorithm . 89
Figure 4-14. The compiler conformance test process . 91
Figure 4-15. An example outcome . 92
Figure 4-16. Determining conformance of n compilers . 96

Chapter 5 — Computing System Description Language

Figure 5-1. Computing system description framework . 102
Figure 5-2. Linked values . 104
Figure 5-3. An application’s annotation overlay . 105
Figure 5-4. A CSDL annotation . 106
Figure 5-5. Assembly language and binary format aspects of instructions 107
Figure 5-6. CSDL Language Dispatching. 108
Figure 5-7. CSDL Grammar . 108
Figure 5-8. Processing of a CSDL module . 110
Figure 5-9. Specifying binary translation using a CSDL aspect 119
Figure 5-10. A small MIPS excerpt with SLED aspects . 121

Chapter 6 — Conclusions

Appendix A — CSDL Descriptions

Appendix B — CCL Descriptions

vi

LIST OF TABLES

Chapter 1 — Introduction

Chapter 2 — Computing System Descriptions

Table 2-1. Abstraction Levels and CHDL Examples (Table 3.1 in [Das89]). . . 10

Chapter 3 — Specifying Instruction Semantics: CSDL Core Descriptions

Table 3-1. Sample RTL address expressions (excerpted from [Ben94]) 26
Table 3-2. Summary of formats for string RTL expressions. 27
Table 3-3. Built-in RTL operator summary . 40
Table 3-4. Summary of τRTL built-in operations . 50

Chapter 4 — Specifying Procedure Calling Conventions

Table 4-1. Definition of λ for example P-FSA. 75
Table 4-2. Determining agent actions from placement information 84
Table 4-3. P-FSA profiles for several calling conventions. 86
Table 4-4. Sizes of test suites for various selection methods 88
Table 4-5. All outcome configurations . 94
Table 4-6. Results of running the MIPS test suite on several compilers 96

Chapter 5 — Computing System Description Language

Chapter 6 — Conclusions

Appendix A — CSDL Descriptions

Appendix B — CCL Descriptions

1

CHAPTER 1

INTRODUCTION

In an era of rapid design of microprocessors for desktop systems, embedded systems, and

handheld computing devices, the timely construction of systems software is essential. Systems

software, such as assemblers, compilers, and debuggers, must be constructed before develop-

ment of application software for a microprocessor can commence. However, the implementa-

tion of such machine-specific applications is difficult and time consuming. Therefore, to

remain competitive, it is imperative that systems software designs focus on portability to

reduce implementation time and ensure rapid delivery of complete systems to the market.

A proven technique for building portable systems software—particularly compilers—

is to isolate machine-specific details of an implementation through the use of a machine

description. A machine description is the specification of a machine’s features that the imple-

mentation needs to perform its task. The machine description is used to automatically gener-

ate the machine-specific portion of the application’s implementation. In theory, the machine

description focuses on describing the machine rather than describing the implementation. In

practice, machine descriptions often describe not only the machine, but also the process by

which the machine’s features are used in the implementation. Such descriptions contain appli-

cation dependencies that preclude their reuse in other applications. Unfortunately, description

systems, and the machine descriptions they contain are, themselves, difficult and time con-

suming to construct. This research concentrates on the design of description languages that

promote writing reusable computing system descriptions.

Chapter 1: Introduction Background 2

1.1 Background
A survey of machine description techniques reveals two approaches to describing machines:

the procedural approach and the declarative approach. The procedural approach uses an

implementation to present the features of the target machine to the application. By interpret-

ing the implementation, the desired machine-specific features are recognized. The second

approach uses a table, or database, of information. Aspects of an application’s implementation

that are machine-specific are located in the table for convenient access by the application.

In the procedural approach, the machine description is read by a description processor

which passes through source code taken from the machine description and, optionally, gener-

ates additional code from other parts of the description. Figure 1-1 depicts this process. This

method has two advantages. Foremost, it is easy to implement. Often, the description is writ-

ten in a special-purpose language that is augmented by the application’s implementation lan-

guage. Shortcomings in the special-purpose language can easily be addressed by using the

application’s implementation language. The other advantage to this approach is that the

description language is extensible. If the application’s implementation language is used, then

all of the procedural and data abstraction facilities of the implementation language are avail-

able. This approach, however, also has its limitations. First, the machine descriptions are spe-

cific to an application. This makes them difficult to reuse, even though the information they

contain could be useful to other applications. Second, while the characteristics of a target

machine may be easy to understand, it is usually difficult for someone unfamiliar with the

application’s implementation to write a description of a new target machine. Third, since the

descriptions are implementations, they suffer the problems of any implementation: they are

difficult to read and maintain. Fourth, since these implementations are typically written in an

ad-hoc manner, it is difficult to prove anything about the resulting descriptions.

In the declarative approach the machine description contains little or no source code.

Instead, machine-independent source code that accesses the machine-dependent table is

included in the application. The description processor then produces a table in the form of

code that will be accessed by the supplied access routines. This process is shown in Figure 1-2.

The declarative method is significantly better than the procedural technique. First, the

descriptions have a fixed format. This makes them more straightforward. The details of the

target machine are simply placed in the appropriate entries in the table. Thus, the descriptions

Chapter 1: Introduction Background 3

Figure 1-1. Procedural machines description use.

Figure 1-2. Declarative machine description use.

Source from
Machine

Description

Procedural
Machine

Description

Description
Processor

Application
Source

Application
Executable

Compiler

Generated
Source

Declarative
Machine

Description

Description
Processor

Application
Source

Application
Executable

Compiler

Machine
Information

Access
Routines

Machine
Information

Table

Chapter 1: Introduction The Problem 4

are more compact and concise. Consequently, they are easier to write, read and maintain. Sec-

ond, a program can automatically generate, from the description tables, an implementation

that is similar to the procedural approach in function and form. Also, the resulting implemen-

tation is likely to be more robust. Third, all descriptions have a similar form; similar charac-

teristics are described in similar ways. Hence, applications using these descriptions are more

easily retargeted. Fourth, this approach can be more application-independent. This approach

has one disadvantage: it may be difficult to describe all of the relevant information about the

target machine if the table is not general enough.

1.2 The Problem
The use of a machine description can significantly reduce the time to retarget an application.

However, with each retarget of the application, a description for the new target machine must

be written. For an application of any substance, this itself can be a daunting task. There are

three sources of difficulty:

1. Information about the machine must be found, encoded using whatever description

technique is used, and it must be tested, verified, and debugged to ensure accuracy. For

some machines, the finding of information is itself difficult. For some applications, the

sheer volume of information to be encoded is a significant obstacle.

2. A description system that is tailored for a particular application usually contains bias

toward that application. Thus, for example, a retargetable compilation system may

include a machine description facility. This facility may require that information be

encoded in a particular way, or that only some information be encoded. Typically, only

an expert familiar with the compiler can write such a description though the concepts

that are described do not require expertise in compilers to understand.

3. Because the application does not share a common description format with other appli-

cations, one can be certain that there is not already a description available for one’s use.

Using a common description format that contains no application bias eliminates these three

sources of difficulties. Such a description facility is called application independent. Obviously

for an application independent description it may at least be possible that the description

already exists for the new target machine (source 3). Further, no knowledge of a particular

application is required to successfully write a description (source 2). Thus any computer pro-

Chapter 1: Introduction Motivation 5

fessional who is familiar with the machine should be qualified to write a description. Finally, if

an application-independent description system becomes widely used, finding information

about a target machine should become easier since computer manufacturers could supply doc-

umentation about the machine in the form of a system description (source 1).

The goal of this research is to develop a more effective method for describing target

machines. For the method to be effective, it should be application independent. The class of

machines we support is the traditional von Neumann architectures. The level of abstraction is

the view that applications, such as assemblers, compilers and debuggers, have of the target

machines.

1.3 Motivation
Although there have been numerous efforts to design machine description techniques, many

of which have been successful, none of these solutions have been very general, complete, or

application-independent.

For many years, compilers have used machine descriptions to capture details about the

compiler’s target machine. Through the use of a machine description, target-specific informa-

tion can be isolated from the rest of the implementation so that it may easily be examined and

changed. Despite their success in compilers, machine descriptions have not been widely used

by other systems software such as linkers, debuggers, profilers, and simulators. For the most

part, where machine descriptions have been used, new systems have been developed rather

borrowing the technology from an extant description system. A primary motive for this action

is that machine descriptions have been application dependent. That is, inherent in the way the

description is written is the purpose for which the application will use the information. This

application dependence stifles the reuse of descriptions in other applications.

By providing a more complete description method, we can reduce the retarget time of

applications. Current techniques manage only to describe a subset of the characteristics of the

target machine. In doing so, these methods require that the remaining characteristics be pro-

vided in a less retargetable form.

In addition to completeness, we see the need for a more general solution. Many of the

existing description systems only allow the description of a small class of machines—such as

Chapter 1: Introduction Structure 6

Reduced Instruction-Set Computers (RISC’s). These systems, therefore, are of limited use to

retargetable applications.

Current methods of description have been designed with a specific application in

mind, despite the fact that the following applications can use information about the target

machine at the same level of abstraction:

• Assemblers - Assemblers require information about the instructions and data types of

the target machine. They also require the binary format of each of the instructions.

• Compilers - Compilers need instruction information (both binary and symbolic),

resource information (registers, functional units, busses, etc.), details of the subprogram

calling convention, etc.

• Debuggers - For disassembly purposes, debuggers need information about the binary

format of instructions and their respective symbolic form.

• Emulators/Simulators - These applications require information at the appropriate level

of abstraction. In this case, what instructions are available and their syntax and seman-

tics.

• Synthesis tools - Tools for synthesis require similar information as simulators.

• Evaluation tools - For example, profilers require resource and instruction information.

• Testing tools - Automatic testing and verification tools can use the instructions and

resources as a basis for their testing.

• Documentation - People could use a formal description as a form of machine documen-

tation.

Thus, there is clearly a need for an application-independent description technique. With such

a description facility, all of the above tools could use a single description. This, in fact, changes

the role of the description language to that of a definition language. By standardizing the

descriptions, we can establish a formal method of communication among computer architects

and software developers.

1.4 Structure
The following chapter presents a brief overview of previous machine description systems.

Chapter three presents the CSDL (Computing System Description Language) core language

used to describe a machine’s instruction set. Chapter four discusses the Calling Convention

Chapter 1: Introduction Structure 7

Language that we use to describe a machine’s procedure calling convention. Chapter five pre-

sents the general CSDL framework that delivers flexibility and extensibility to the applications

that use CSDL. Chapter six concludes by summarizing the research results and contributions

of this work.

8

CHAPTER 2

COMPUTING SYSTEM DESCRIPTIONS

Since the 1960’s researchers have investigated methods for effectively describing computing

systems. Over the years, three categories of descriptions have emerged: computer hardware

description languages, machine descriptions, and multipurpose descriptions. Computer hard-

ware description languages (CHDL’s) focus exclusively on the hardware for the purpose of sim-

ulation and synthesis of the hardware. Machine descriptions aim to isolate machine-specific

characteristics of an implementation—typically a compiler—with the goal of making the

implementation retargetable. Multipurpose descriptions aim to provide the same service as

machine descriptions with the primary goal of serving a wider application audience. In this

chapter, we present languages from each of these three categories in turn.

2.1 Computer Hardware Description Languages
Hardware designers started developing and using languages for the description of computer

hardware systems in the 1960’s. These languages, called Computer Hardware Description

Languages (CHDL’s) represent the earliest attempts to describe machines.

An important characteristic of a CHDL is the level of abstraction that the language

was intended to be used for. The level of abstraction refers to the logical level of computer

design that the language most naturally describes. Examples of abstraction levels include regis-

ter transfer, microprogramming and microarchitecture. Languages that are best suited for a

particular design level, such as the register transfer, typically have a notion of objects native to

the design level (e.g., registers). The direct support of such objects in CHDL’s give them their

expressive power, and also limit their scope of applicability. The support of objects at a partic-

Chapter 2: Computing System Descriptions Computer Hardware Description Languages 9

ular abstraction level makes descriptions at that level natural to read and write, while making

the description at other levels, whose objects are not directly supported, awkward if even pos-

sible.

The plethora of CHDL’s makes a thorough discussion of them here infeasible (Das-

gupta presents a more in-depth discussion [Das89]). Table 2-1 (from [Das89]) presents exam-

ples of CHDL’s representative of each of a number of levels of abstraction. Notice that a large

number of these languages attempt, to some degree, to be multi-level. Since applications often

view machines at a higher level of abstraction than most CHDL’s are designed to present, the

multi-level CHDL’s appear to be the most promising candidates for building retargetable

applications.

The abundance of CHDL’s has given designers a large selection of description meth-

ods; it has also stifled language standardization. In an effort to alleviate the situation, the U.S.

Department of Defense (DoD) has developed, as part of its Very High Speed Integrated Cir-

cuits (VHISC) project, a DoD standard CHDL called VHDL. As a result, VHDL is rapidly

being adopted as an industry-wide standard CHDL. We will, therefore, review VHDL

[Coe89, LSU89] which is representative of these multi-level languages.

2.1.1 VHDL

A VHDL description is composed of design entities that are organized hierarchically. An entity,

in turn, is composed of an interface and one or more bodies. An interface defines ports which

are the only method of communication between an entity and other entities. There are two

types of bodies: structural and behavioral. A structural body simply connects the entity’s ports

to ports of sub-entities contained in the entity body. A behavioral body, on the other hand,

specifies the behavior of an entity using a procedural language. Behavioral bodies are used to

define simple entities, while structural bodies are used to hierarchically build new composite

entities from existing ones.

Data objects in VHDL may be one of constant, variable, or signal. Constants and

variables are similar to their counterparts in programming languages. Signals, however, are

new. A signal is connected to an interface port, and holds a value just as a variable does, but

has an additional dimension—time. Signals are changed using a signal assignment. The

assignment occurs when a value in the assignment (another signal) changes value. A time

Chapter 2: Computing System Descriptions Computer Hardware Description Languages 10

L
ev

el
s

o
f

A
b

st
ra

ct
io

n
E

xa
m

p
le

s
o

f
L

an
g

u
ag

es

A
rc

hi
te

ct
ur

al

E
xo

-a
rc

hi
te

ct
ur

e
IS

P
S

E
nd

o-
ar

ch
ite

ct
ur

e
S

LI
D

E
S

*A
M

IT
/A

D
L

H
IS

D
L

M
ic

ro
-a

rc
hi

te
ct

ur
e

M
ID

L
PA

D
L

S
A

R
A

S
*M

A
A

D
L

M
ic

ro
pr

og
ra

m
m

in
g

M
IM

O
LA

V
H

D
L

C
O

N
LA

N

M
ac

hi
ne

-in
de

pe
nd

en
t

M
A

R
B

LE
S

*
O

hn
e

u-
C

V
M

P
L

A
da

M
ac

hi
ne

-d
ep

en
de

nt
S

T
R

U
M

YA
LL

L

R
eg

is
te

r
Tr

an
sf

er
D

D
L

C
D

L
A

H
P

L

Z
E

U
S

S
A

R
A

Lo
gi

c
de

si
gn

Ta
bl

e
2-

1.
 A

bs
tr

ac
ti

on
 L

ev
el

s
an

d
C

H
D

L
E

xa
m

pl
es

 (
Ta

bl
e

3.
1

in
 [D

as
89

])
.

Chapter 2: Computing System Descriptions Computer Hardware Description Languages 11

delay may also be added to delay when the assignment takes place. Thus, signals may easily be

used to model the wire connections of a computer.

In summary, VHDL uses entities to model the components of a system. Just as com-

ponents are made up of sub-components, entities may be constructed using sub-entities.

Wires connecting components are modeled using signals connecting ports. Finally, the behav-

ior of the simple entities is described using a procedural language.

VHDL has a number of strengths. The hierarchical design makes it possible to man-

age descriptions of large, complex systems. Information about the behavior of components of

the system can be precisely defined. Further, VHDL already has an established user base in

simulation, design and synthesis, which could facilitate the sharing of descriptions. Unfortu-

nately, for our purposes, VHDL’s shortcomings are severe. The descriptions provide informa-

tion at an inappropriate level of abstraction, making it difficult to extract the needed

information.

2.1.2 ISP

The first language to deviate from describing purely hardware is Bell and Newell’s ISP

(Instruction-set Processor) descriptive system [BN71]. However, we still place ISP in the

CHDL category. ISP focuses on characteristics of the instruction-set architecture (ISA). The

purpose of the notation is to uniformly describe instruction sets of a variety of machines. An

ISP description has two parts: “the nature of the operations and the rules of interpretation.”

As such, Bell and Newell argue that this completely describes the behavior of the machine.

A typical ISP description is divided into five sections: the processor state, instruction

format, effective address calculation, instruction interpretive process, and instruction set. The

processor state and instruction format sections define the names and sizes of storage locations

and instruction fields, respectively. The remaining three sections use a more procedural

approach. Rather than describing what an instruction does, or what addressing modes are

available, ISP descriptions describe how each of these work. Addressing modes are defined in

terms of operations on the previously declared storage locations. Instructions are defined by

their effect on the state of the machine using a register transfer notation to indicate the seman-

tics. Finally, the instruction interpreter is defined in a similar way by using register transfers to

describe the interpreter’s effect on the state of the machine.

Chapter 2: Computing System Descriptions Computer Hardware Description Languages 12

ISP has a couple of good points. First, it is general. This is illustrated by the forty

machine descriptions provided in Bell and Newell’s book. Second, the entire “programmer’s

view” of the system, as defined by the programmer’s manual, can be described. Third, the lan-

guage provides detailed information about the binary format of the machine’s instructions.

This is very useful information for applications that manipulate machine code.

Bell and Newell’s system has several serious disadvantages, though. First, ISP describes

machines at the wrong level of abstraction. Graham notes that “ISP contained too much

detail, making it hard to extract the needed information from the description” [GH84]. Sec-

ond, the descriptive system provides no information about software conventions, which are of

interest to our applications. Third, ISP is not formal; its syntax and semantics are open-ended

which makes it unusable by an automated system [Lun83]. This is primarily because ISP was

designed as a notation for communicating machine characteristics between people [Wic75].

Thus, for an automated system to use ISP, a number of restrictions would have to be imposed

on the language.

2.1.3 LISAS

Cook and Harcourt also describe the instruction-set architecture using a specification lan-

guage called LISAS [Coo94, CH94a, CH94b]. LISAS is described as a functional language that

models machines as a machine state and transformations on that state. The descriptions

include storage bases, access classes (instead of operand addressing), data type descriptions,

and instruction formats. Cook aims for application independence and raising the level of

abstraction above CHDL’s.

Unlike the other description systems, LISAS was designed for instruction-set simula-

tion. This places them squarely in the class of CHDL’s. A LISAS description presents informa-

tion at a level of abstraction somewhere between CHDL’s and machine descriptions. Although

Cook claims that LISAS can be used for applications other than simulation, it is not at all

apparent how applications that generate assembly language could make use of the descriptions

since they detail the binary format of instructions, but not the symbolic assembly format.

LISAS primary abstraction seems to be the instruction. If one wishes to describe other architec-

tural features, such as the instruction execution pipeline, it is not clear how one could accom-

plish this within the current LISAS framework.

Chapter 2: Computing System Descriptions Machine Descriptions 13

2.2 Machine Descriptions
Unlike traditional CHDL’s, Bell and Newell’s ISP appealed to systems software developers.

Shortly after ISP’s introduction, machine descriptions emerged to aid in the construction of

both assemblers and compilers. Machine descriptions are used to isolate and describe features

of computing systems for retargetable software. In this section, present the most successful

machine description systems.

2.2.1 ISP´

Despite its shortcomings, ISP forms a foundation for many subsequent description systems.

Since ISP has never been formally defined, a number of interpretations have evolved. One

such interpretation is Wick’s ISP´ which is used in his assembler generating system [Wic75],

and also in Fraser’s automatic code-generator generator [Fra77a, Fra77b]. ISP´ has a formal

definition for its syntax and semantics, thus enabling it to be parsed, and used by such sys-

tems. Wick’s system, however, places very few demands on the machine description system. In

particular, the assembler generator has no need for a description of the semantics of each

instruction, although they are present. Only details such as the binary format of the instruc-

tions, their mnemonics, and the data type encodings are used [Fra77b].

2.2.2 TMDL

One of the first to abandon the ISP notation were Graham and Glanville. They use a machine

description to enhance the retargetability of their table-driven code generation system

[GG78b, GG78a]. Their language, called TMDL (Target Machine Description Language),

uses attribute-grammar productions as its form of machine description.1 A machine descrip-

tion is composed of sections that describe the resources of the machine (such as the register

set) and the instruction set.

The resource description is rather limited; it allows for specification of “logical group-

ings of register classes and pairs,” and of which registers are available for allocation. The

instruction-set section, however, is much more flexible. Instructions are described using a syn-

tax-directed translation [ASU86]. Each target machine instruction is “described” using a

1. Ganapathi and Fischer have subsequently used this technique in their description-driven code-gen-
eration system [GF82].

Chapter 2: Computing System Descriptions Machine Descriptions 14

semantically equivalent intermediate representation (IR) expression and a template for the

corresponding assembly language instruction. Code is generated for the target machine by

finding an instruction in the table that matches the IR expression. The assembly language

template provides the translation from the IR to the target machine’s assembly language. So,

TMDL is not a machine description, but instead a code generator description.

Early versions of TMDL required a separate rule for each combination of instruction

and addressing mode. Graham and Henry refer to this structure as a “flat” grammar since

every grammar rule corresponds to a single instruction. Thus, an instruction with three oper-

ands, each with four possible addressing modes would require 43 = 64 different rules! Com-

plete descriptions of a machine like the VAX-11 [Dig78] would be impractically large, since it

would require several million grammar rules [GH84]. Later versions “factored” the grammar

allowing descriptions of common portions of instructions, such as addressing modes, to be

centralized [GHS82].

TMDL, in its final form, is a significant improvement over previous languages. Since

the descriptions are essentially syntax-directed translations, they are easy for the implementor

(in this case, a compiler writer) to understand. The original goal of isolating the machine’s

instruction set and assembly language format has been accomplished. Consequently, a num-

ber of machines have been described, thus providing working compilers. Finally, this

approach has, to some extent, managed to separate the implementation using the descriptions

from the descriptions themselves. This feature diverges from the previous descriptions which

are more procedural—making it more suitable for other applications.

TMDL has several shortcomings, however. Although the compiler implementation

has been separated from the description, the description still reflects the purpose of the imple-

mentation. The choice of the intermediate language as a method for describing the semantics

of instructions reduces the usefulness of TMDL as a description system for other applications.

The language requires an understanding of the IR for the compiler system and of syntax-

directed translation which are skills that should not be required to describe the characteristics

of machines.

Eventually, Graham and Henry abandoned TMDL altogether. A new LISP-like

description language, called LISPMD (LISP machine description), was created [AGH+84].

Although LISPMD’s design evolved from TMDL, its syntax and semantics diverge from it.

Chapter 2: Computing System Descriptions Machine Descriptions 15

LISPMD is much more a general pattern-processor than a description system. A description is

composed of “meta-family patterns,” “meta-rules,” semantic actions, and cost and weighting

factors for each instruction. The semantics and rules for macro expansion make writing, or

even reading, machine descriptions daunting for someone unfamiliar with the implementa-

tion of the compiler, the description system, and LISP.

2.2.3 MDL

Boulton and Goguen developed a machine description language (MDL) to aid in the develop-

ment of retargetable compilers [BG79]. In particular, MDL was designed to describe instruc-

tion-sets and memory structures in a form that could be processed by a machine. MDL is a

direct descendent of ISP. Consequently, they decompose their description into structures sim-

ilar to ISP’s. MDL has separate facilities for describing the instruction semantics, instruction

format, the structure of memory and data, and basic units (the basic addressable unit, number

base, and instruction alignment). MDL is also hierarchical; basic units such as memory struc-

ture are used to describe the instruction format, which is subsequently used in the instruction

description.

MDL provides a great deal of information at the bottom of its hierarchical structure.

Details such as the base of the number system used by the machine and the data representa-

tion encoding (two’s-complement, sign-magnitude, EBCDIC, etc.) are easily expressed. In

addition, structures with similar properties can be grouped together, resulting in a more com-

pact description. However, higher in the hierarchical description, where the language more

closely interfaces with the intermediate language, details become more ad-hoc. In particular,

unlike TMDL, the addressing modes for instructions are not separated from the form of the

instructions. There is also no uniform model or formal language for the semantics of the

instructions. Moreover, the addressing mode is implicitly derived from the format of the

instructions. This greatly restricts the variety of instructions that can be described by the

model.

2.2.4 Mop

Cattell designed an instruction-set formalism for use in a machine-independent code genera-

tor for the PQCC (Production-Quality Compiler-Compiler) project at Carnegie Mellon Uni-

versity [LCH+80]. Cattell uses a declarative, rather than a procedural description called Mop

Chapter 2: Computing System Descriptions Machine Descriptions 16

[Cat78, Cat80]. The model assumes, as ISP does, a machine composed of a processor and

memory. Information provided by the model is divided into five categories:

1. Storage bases—locations that store the processor state. Each location is assigned a type,

such as primary memory, reserved, or temporary.

2. Operand addressing—defined using an expression in terms of storage bases.

3. Machine operations—semantics of each instruction in terms of input and output asser-

tions on the processor state. The semantics are described using a tree notation similar to

the TMDL’s. Attached to each instruction is its cost.

4. Data Types—size, type, and encoding of each supported data type.

5. Instruction fields and formats—the format and encoding of each of the machine instruc-

tions described in the machine operations section. These also include the type and oper-

and class of each instruction field.

As mentioned earlier, Mop is used with a machine-independent code generator. Cattell identi-

fies problems in the interface between the description and the code generator. Specifically, he

discovered that a set of general axioms were required to transform some intermediate language

forms into different, equivalent forms that would match the semantic descriptions of the

machine operations. The axioms are used to express the identity and commutativity relations

for the operators in the intermediate language.

Many of the problems with TMDL descriptions can be found in Mop descriptions as

well, since the semantic descriptions of instructions are similar to TMDL’s. However, Cattell

addressed several problems found in earlier systems. In particular, he determined that specify-

ing the commutativity of operators should be solved outside the description of the target

machine, in this case by using axioms. Cattell also observed that: “the machine representation

does not say how to generate code for the machine in any way” [Cat80].

2.2.5 PO and VPO

Davidson and Fraser use a machine description to achieve machine-independence in their

peephole optimizer, PO [DF80, DF84b]. PO’s descriptions use a technique similar to

TDML. Consequently, the descriptions take the form of a grammar for syntax-directed trans-

lation. One significant difference is that Davidson and Fraser describe the effects of each

instruction using ISP-like register transfers, called RTL’s (Register Transfer Lists) [DF84b].

Chapter 2: Computing System Descriptions Machine Descriptions 17

Although PO’s notation allows storage locations to be named, the only name that has specific

meaning is PC, which is used for the program counter. PO assumes that the PC will be incre-

mented after each instruction, therefore, this effect need not be described by each instruction.

Davidson makes an observation about the nature of machine descriptions at any level [DF80]:

“Details irrelevant to the object code may be omitted from the machine description.

… PO does not need to know how the condition code represents comparisons, so the

machine description does not say.”

Therefore, there are specific details about the machine, such as the condition code representa-

tion, that do not affect the interface to the machine. PO’s machine descriptions are small; they

can be written in an hour or two by someone familiar with the target machine.

Later, Davidson and Fraser developed a compiler—that used PO—for the Y program-

ming language [DF84a]. Combiner1, a phase of PO, is retargeted using a machine descrip-

tion. However, Combiner does not use the description directly. Instead, the description is

translated into a table that Combiner uses. Machine descriptions sometimes require tuning

for the compiler to generate good code. Thus, Combiner is not tuned from machine to

machine, making it more portable. Combiner does not make time-space trade-offs, so this

information is not explicitly encoded in the machine description. Rather, the order of instruc-

tions is important in the descriptions. Thus, more specific instructions are placed before their

more general, more expensive counterparts. In addition, PO uses a register assignment mod-

ule that contains tables of information about the register set—a form of register description

[DF84a].

Benitez and Davidson have since developed a successor to PO, called vpo [BD88,

Ben89]. vpo uses an improved machine description technique. Many of the problems that

Davidson discovered while using PO descriptions have been addressed. Both PO and vpo use

the machine descriptions to generate recognizers for RTL’s [Dav85]. PO descriptions were

used to produce finite state automata (FSA) that recognized valid RTL’s. Benitez and David-

son refined this method by using Yacc [Joh83] to generate the RTL recognizers [Dav85]. By

1. Combiner is the phase of PO that replaces sequences of register transfer instructions with single
instructions that are semantically equivalent [DF84a].

Chapter 2: Computing System Descriptions Machine Descriptions 18

using Yacc-based descriptions, they describe machines with large instruction sets more com-

pletely. Furthermore, the PO regular expressions used to generate the FSA’s were not powerful

enough to describe the assembly language expressions.

In addition to the Yacc-based description, vpo uses a formal description of register sets.

Register sets are assigned type, size and alignment requirements. Furthermore, the register

descriptions allow multiple abstract register sets to be mapped onto the same hardware register

set. This provides multiple views of a single register set, which is convenient for machines that

use the same registers to store floating-point and fixed-point values.

The vpo machine descriptions integrate the techniques used in ISP and PO. From

PO, vpo takes its Yacc-based description. By using a grammar, common features can be fac-

tored and described in a single location. Also, since the description is a Yacc grammar, seman-

tic actions can be used, providing additional flexibility. From ISP, vpo takes the register

transfer notation (the RTL’s) to describe the semantics of instructions. In fact, vpo uses RTL’s

to represent instructions throughout its optimization phases. The notation is a simple, intui-

tive, application-independent representation of instruction semantics.

Despite the benefits described above, vpo descriptions have a number of disadvan-

tages. First, the LALR [ASU86] parsers generated by Yacc are still too restrictive. For some

machines, it is difficult to remove reduce-reduce conflicts without compromising the concise-

ness or readability of the descriptions. Second, the addition of semantic actions, which at first

seems beneficial, makes the descriptions more difficult to read since the information is distrib-

uted across multiple files. Third, vpo provides no formal description of software conventions.

Finally, most of the description is still in the form of an implementation—making it less suit-

able for other applications.

2.2.6 The GNU C Compiler

Using the ideas from PO, The Free Software Foundation’s GNU C compiler [Sta92] also uses

both RTL’s and a machine description to attain retargetability. The machine description is

broken into two parts: a set of instruction patterns, and a set of C macro definitions. The

macro definitions parameterize the implementation by providing information about the target

machine, such as storage layout (e.g., big-endian or little-endian), sizes of supported data

types, register usage, and subprogram calling convention. The instruction patterns contain

Chapter 2: Computing System Descriptions Machine Descriptions 19

RTL templates, constraints on the missing pieces of the templates, and an output pattern or C

code to generate the assembler output.

The GNU C compiler’s machine description is probably the most thorough attempt

at parameterizing an implementation. Most aspects of the target machine can be described, in

some way, using the instruction patterns and macro definitions. The macro definitions isolate

machine-specific details, but do not really describe the target architecture in any traditional

sense. The technique is not only application-specific, but compiler-specific. Similar to PO,

GNU’s instruction patterns are used for peephole optimization. Unlike PO, these patterns use

a combination of a complex LISP-like syntax for describing the RTL templates, and C code

for specifying the format of the assembly output. This combination makes the patterns con-

fusing and difficult to read. It would not be possible to reuse these descriptions since they are

so tightly coupled with the implementation of the compiler.

2.2.7 Maril

Bradlee, Henry and Eggers’ Marian system [Bra91, BHE91] uses Maril, a machine description

language, for describing not only the instruction set, but also the instruction scheduling prop-

erties and a limited register description. Maril is the first description system to incorporate

details about instruction pipelines. Specifically, associated with each machine instruction are

the resources, such as the fetch, decode and execution units, that the instruction requires dur-

ing each cycle of its execution. This information makes it possible for Marion to use a

machine-independent instruction-scheduling algorithm. Additionally, limited information

about the register sets can be specified. This includes which registers are volatile or used to

pass arguments, which registers are assigned to the frame and stack pointers, which registers

hold the return address and return value, and registers that have constant value (e.g., a value of

zero).

The Marian system is limited in its use of the description provided by Maril. For

example, Marian uses lcc [FH91, FH95] to generate code. Since lcc has its own code genera-

tor, the description is not consulted during code generation; the only portion from the

instruction description that is used is the pipeline resource information. Furthermore, it is not

clear how effectively Marian uses the information it is given since none of the code generated

by the compiler has been run on the target machines.

Chapter 2: Computing System Descriptions Multipurpose Descriptions 20

2.3 Multipurpose Descriptions
As machine descriptions matured, three facts became apparent: 1) machine description sys-

tems are difficult to build, 2) machine descriptions are difficult to write and debug, and 3)

machine descriptions contain information of interest to all sorts of retargetable applications.

As a result, there has been a growing interest in machine description systems that can be used

in more than a single application. In this section, we present languages that have the potential

of being multipurpose descriptions.

2.3.1 SLED

Ramsey and Fernandéz’s New Jersey Machine Code Toolkit [RF95, RF97] aids in the devel-

opment of programs that process machine code. The toolkit uses a Specification Language for

Encoding and Decoding (SLED) machine code instructions. The toolkit presents the users

with an assembly language level of abstraction. Tools that use the toolkit can easily read or

emit machine code instructions through a procedural interface.

SLED descriptions concisely specify the binary format of a machine’s instructions.

From these descriptions, two different procedural interfaces can be generated: an interface

that reads machine code and an interface that emits machine code. Using these interfaces,

applications can be written that manipulate machine code in a machine-independent manner.

The descriptions do not specify how the machine code will be manipulated, but rather the

format of machine code.

SLED is a superb example of a description language that can be used for multiple pur-

poses. Although SLED does not describe any other features of machine instructions—includ-

ing their semantics—SLED provides an effective solution to a difficult problem: describing

machine instruction formats. SLED would be a good choice for solving the encoding/decod-

ing problem in a larger system.

2.3.2 λ-RTL

The Zephyr component [ADR98] of DARPA and NSF’s National Compiler Infrastructure

includes λ-RTL machine descriptions developed by Ramsey and Davidson [RD98a, RD98b].

Since Zephyr uses vpo as its optimizer, it must model machine instructions as RTL’s. Ramsey

and Davidson attempt to formalize vpo’s RTL’s by using a description language called λ-RTL.

Chapter 2: Computing System Descriptions Summary 21

λ-RTL is based on λ-calculus and models a machine’s instructions as transformations on the

machine’s state.

The λ-RTL specification language is still being developed. However, initial descrip-

tions yield insight into the nature of the language. λ-RTL imposes strong types on RTL’s.

However, because of the underlying formalism, often the λ-RTL processor can infer the types

of operations without having to specify them everywhere. This makes the descriptions more

compact, while, at the same time difficult to understand without reading the entire descrip-

tion. At this early stage, the effectiveness of λ-RTL has not been evaluated. Unfortunately, the

specifications trade readability for conciseness to such a degree that it is not clear that anyone

but the specification’s author will be able to read them.

2.4 Summary
This chapter presented examples of computer hardware description languages, machine

descriptions, and potential multipurpose languages. CHDL’s are used in the simulation and

synthesis of hardware, while machine descriptions are used in the construction of software. In

contrast to their predecessors, multipurpose descriptions attempt to separate what is being

described from the description’s use.

Although research in the field of computer description systems has been active, no sys-

tem provides a complete or general solution to the problem. This body of work presents

strong evidence that subsequent description systems should address the following problems:

• Retargetable software is difficult to write; so are machine description systems. New

description systems should separate a description’s form from its purpose.

• It is difficult to anticipate all the information that all applications may deem necessary.

Description systems should be extensible.

• Descriptions must not only be written, but read. Notation must be familiar to potential

authors.

• Descriptions never seem to be complete. Incomplete descriptions should be usable.

• Different applications view machines differently. Descriptions must support multiple

levels of abstraction and multiple views of a single abstraction.

22

CHAPTER 3

SPECIFYING INSTRUCTION SEMANTICS:
CSDL CORE DESCRIPTIONS

In the next three chapters, we develop a framework for building reusable computing system

descriptions called CSDL (Computing System Description Language). We divide CSDL

descriptions into components that are each responsible for describing one feature of a target

architecture. In this chapter, we present the CSDL core component which is responsible for

describing machine characteristics of interest to most, if not all, applications: the target archi-

tecture’s instruction set.

A core description presents the instruction-set architecture of the machine. This

abstraction level consists of the information that is necessary to produce or manipulate

instructions for the target machine. We provide this information by defining the effects of

instructions on the state of the machine.

Core descriptions are composed of two parts: the semantics of the instruction set and

alternative forms or views of instructions such as the assembly language format, the binary

encoding of instructions, or the cycle cost of instruction execution. In this chapter, we focus

on the formal description of instruction semantics in isolation. Chapter 5 will present how

core descriptions may be augmented with whatever additional information an application

writer considers necessary.

Our instruction semantics are based on a register transfer notation called register

transfer lists (RTL’s), so we first present an extant register transfer notation.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 23

3.1 String RTL’s
Traditional systems software generates, or operates on, assembly language or binary machine

language instructions. Unfortunately, both of these forms of machine instructions vary from

machine to machine. For example, to perform a 32-bit signed addition on the MIPS [KH92],

the assembly language instruction is:

add r1, r1, r2

while on the Motorola 68020 [Mot85] the assembly form is:

add d2, d1

these two instructions differ not in their semantics, but rather in their concrete syntax. One

reason this difference occurs is that each assembler defines the format of lexical tokens (e.g.,

opcode mnemonics, registers, constants, and addressing modes) and the ways in which they

may be combined (the assembly language). The result is that it is impossible to determine

without knowing the particular assembly language whether the instruction:

add r2, r3, r1

adds registers two and three and places the result in register one, or if it adds registers three

and one and stores the result in register two.

Such trivial machine dependencies, as well as far less trivial differences, can be elimi-

nated by expressing the semantics of instructions using register transfers, or RTL’s (Register

Transfer Lists). One dialect of register transfers that is representative of the technique was

developed by Davidson and Benitez [BD88]. This form, which we call “string RTL’s,” is pre-

sented in this section. RTL’s make it possible for software to eliminate trivial syntactic differ-

ences and concentrate on semantic differences that reflect each machine’s capabilities at the

machine instruction level.

A highly successful method of eliminating machine dependencies is to express each

machine instruction in a language whose semantics are invariant across platforms. Instruc-

tions are then manipulated in this language by systems software whose algorithms are machine

independent.

3.1.1 String RTL Syntax and Semantics

String RTL’s are composed of registers, memory references, constants, labels, local and global

identifiers, macros, and operators. We briefly describe the syntax of each of these tokens here.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 24

3.1.1.1 Registers

Registers are represented using the notation:

r[num]

where r is a lower-case letter that indicates the type of value the register currently holds. num

is a decimal number that indicates which register is being referenced. For example, b[5] typ-

ically designates the sixth register. This register holds a byte (thus, the b register type).

3.1.1.2 Constants

Constants are always positive and can be either integer or floating-point. Integer constants are

strings of decimal digits. Floating-point constants use the notation:

mantissa E sign exponent

where mantissa is a string of decimal digits representing the integer value of the mantissa,

exponent is a string of decimal digits representing the value of the exponent, and sign is

either ‘+’ or ‘-’ to indicate the sign of the exponent. Negative constants can be obtained by

applying the unary negation operator (‘-’) to the constant.

3.1.1.3 Operations

Register transfers not only transfer data from one location to another, they also perform vari-

ous arithmetic and logical operations. The set of operations is limited to 36 built-in unary and

binary operators that are available on most architectures. This includes the standard arith-

metic operations such as addition and subtraction of signed integers (denoted ‘+’ and ‘-’,

respectively), bitwise logical operations such as AND, OR, and NOT (‘&’, ‘|’, and ‘~’), and

relational operations such as less than, greater than, and equal (‘<’, ‘>’, and ‘:’). Finally, an

RTL effect is not complete without the assignment operator (‘=’) which performs a store oper-

ation (thus the use of ‘:’ for relational equal). The RTL effect:

r[1]=r[2]+r[3]; (3-1)

denotes that register two is added (using signed integer arithmetic) to register three with the

result being placed in register one. The semicolon (‘;’) marks the end of the effect. RTL oper-

ators are often overloaded, and the type of operation is determined by the type of the oper-

ands. For example, addition of two registers that contain floating-point values could be

described using the effect:

f[1]=f[2]+f[3];

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 25

Thus, the same operator, ‘+’, is used to designate two different operations: signed-integer

addition and floating-point addition.

3.1.1.4 Macros

Often times, it is necessary to extend the set of built-in operations. This is accomplished using

RTL function macros. A function macro is represented by an identifier composed of exactly

two uppercase letters followed by a comma-separated list of expressions enclosed in brackets.

A common use of function macros is to perform type conversions. For example, to convert a

floating-point value into an integer value, one could introduce the FI macro:

r[5]=FI[f[5]];

The meaning of function macros is machine-dependent and is thus undefined by the nota-

tion. Their meaning must be implicitly understood by the algorithms that manipulate them.

Function macros are also used to abstract away the details of complex instructions. For

example, the SAVE instruction on the SPARC [Sun87] that provides a new register window is

described using the SV function macro:

r[14]=SV[r[14]+64];

This effect only indicates that r[14] is both read and written. The details of which registers

are saved, and which registers change values because the register window has moved, remain

unspecified.

In addition to function macros, string RTL’s also allow for macros to be used to

describe special storage locations in the target machine. Examples of these include PC and CC

which designate the program counter and condition codes respectively.

3.1.1.5 Memory

Memory references are represented using the notation:

M[address]

where M is an uppercase letter that indicates the type of value the memory location currently

holds. address is an arbitrary RTL expression that indicates the address of the memory loca-

tion being referenced. The RTL expression for a memory fetch using register displacement is:

F[r[4]+12]

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 26

In this case, the result of this expression is likely a single-precision floating-point value1.

Unlike register indices, memory addresses may use arbitrarily complex expressions to repre-

sent the necessary addressing mode. Table 3-1 shows several of the most commonly known

addressing modes.

3.1.1.6 Symbolic Addresses

String RTL’s use three types of expressions to name memory addresses and constants symboli-

cally. They are: labels, global identifiers, and local identifiers. Labels most commonly mark

the target of a branch instruction. Labels are designated using the character ‘L’ followed by a

decimal number (e.g., L15). Global identifiers mark constant address values and function

entry points. A global is represented using a string of letters and digits (e.g., index0). Local

identifiers usually represent constant offset values (typically from the stack pointer). A local is

represented using a string of letters and digits followed by a period (e.g., i.).

Locals and globals, as well as other tokens, have an encoded string variation as their

internal representation. The internal form uses two bytes to compactly store which symbol is

referenced in the RTL. These two bytes are used as the key for a symbol table to quickly access

all necessary symbol information, such as a symbol’s offset.

3.1.1.7 Instruction Effects

Ultimately, the purpose of string RTL’s is to describe the effect a machine instruction has on

the state of the target machine. This is achieved by combining the various string RTL expres-

1. Although there are conventions regarding the meaning of memory types, their meanings are
machine dependent.

RTL Expression Addressing Mode

R[_global_id] memory direct

R[w[4]] register indirect

R[w[4]+12] displacement

R[w[4]*4] scaled

R[(w[4]*4)+12] scaled displacement

R[w[4]+w[7]] indexed

R[R[_global_id]] memory indirect

Table 3-1. Sample RTL address expressions (excerpted from [Ben94]).

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 27

sions described above (and summarized in Table 3-2) into a list of instruction effects. An

effect contains a single assignment operation on some storage location. In many cases, as

shown above, instructions can be described using a single effect. Instructions that modify

more than a single location are described using multiple string RTL effects. For example, on

many machines, addition also sets a condition code register. This would be expressed using:

r[4]=r[4]+r[3];CC=(r[4]+r[3])?0;

where the assignment to the macro CC describes the instruction’s effect on the machine’s con-

dition codes. All expressions are assumed to be evaluated before any assignments are made.

Type Regular Expressiona

a. Tokens are described using extended regular expressions. Literals are displayed
in bold.

Example

Register [a–z][[0–9]+] r[5]

Integer Constant [0–9]+ 15

Floating-point Constant [0–9]+E[+-][0–9]+ 15E10

Operation expr b opc expr
or
op expr

b. expr is any RTL expression defined in the table.
c. op is any one character RTL operator such as +, -, *, /, <, >, etc.

r[1]+5

Macro [A–Z][A–Z] PC

Function Macro [A–Z][A–Z][expr,...] FI[f[5]]

Memory Reference [A–Z][expr] R[r[14]+12]

Local identifiers [A–Za–z0–9_]+. i.

Labels L[0–9]+ L15

Global identifiers [A–Za–z0–9_]+ _main

effect expr = expr; r[5]=12;

RTL effect + r[1]=r[2];r[1]=r[2]

Table 3-2. Summary of formats for string RTL expressions.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 28

3.1.1.8 Transfers of Control

Instructions that perform transfers of control use several different formulations. Both condi-

tional and unconditional branches are described by assigning to the program counter. The

string RTL:

PC=L43;

describes an unconditional branch to the instruction labeled L43. Conditional branches use

the relational operators to compute the target address:

PC=CC:0,L43;

In this case, the PC is set to L43 only if the value of the condition codes equals zero. Other-

wise, PC is not set by this effect. The list operator (‘,’) is used to augment the assignment

operator to designate conditional assignment.

The two other common forms of transfer of control are procedure call and return.

Procedure calls are represented by assignment to the ST macro:

ST=_doit;

and returns are described as:

PC=RT;

which indicates that control is transferred back to the address found at the top of the call

stack. Although the effect of a procedure is to set the program counter, the string RTL effect

for procedure call sets the special macro ST instead of PC. This makes it possible to quickly

distinguish procedure calls from branches in string RTL’s. Finding procedure calls quickly is

important since procedure call sites are of interest for many analyses including building pro-

gram call graphs. The procedure return effect has a special form for similar reasons.

3.1.2 Analysis and Manipulation

With a firm understanding of the syntax and semantics of string RTL’s, we can now discuss

how software that uses string RTL’s can analyze and manipulate machine-dependent informa-

tion in a machine-independent way.

First, assume that there are ways to convert an assembly language program into a

semantically equivalent sequence of string RTL’s and vice versa. Both translations can be easily

achieved using syntax directed translation1 [ASU86]. Given these translations, it is common

1. Benitez’s VPO optimizer [BD88] in fact uses syntax directed translation to convert the string RTL’s
it generates into assembly language before the result is assembled.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 29

to think of a program that is expressed as a sequence of RTL’s as an assembly language pro-

gram without the obvious shortcomings that such a machine-dependent notation has.

String RTL notation has been applied to a wide variety of systems software applica-

tions that traditionally manipulate or generate assembly or machine language instructions.

These include compilers, optimizers, linkers, and programs that perform program instrumen-

tation [DF80, BD88, Wha90, Sta92]. In this section, we briefly detail how RTL’s are used to

achieve simple program transformations in an optimizer. However, the ideas are equally appli-

cable to any other application that works with machine language instructions.

Probably the single most important aspect of string RTL’s is that they make the sets

and uses of registers and memory locations explicit. This makes it easy to identify data depen-

dencies in sequences of instructions. For example, given the following sequence of instruc-

tions:

r[1]=r[2];

r[1]=r[2]+r[3];

it is trivial to identify that the first instruction is useless since the second instruction immedi-

ately writes (sets) over the result of the first instruction. Therefore, the first instruction may be

harmlessly deleted without changing the semantics of the sequence.

More commonly, RTL’s are used to identify where multiple RTL’s can be combined,

similar to peephole optimization, into a single RTL or a shorter sequence of RTL’s. For exam-

ple, in the RTL sequence:

r[1]=r[2];

r[3]=R[r[14]+12];

r[4]=r[1]+r[3]; (3-2)

we can substitute the expression r[2] for r[1] and R[r[14]+12] for r[3] in the third

RTL to yield the RTL:

r[4]=r[2]+R[r[14]+12]; (3-3)

This RTL describes a new effect. If this new effect is performed by an instruction on the target

machine, then the three-instruction sequence of (3-2) may safely be replaced with (3-3). The

true benefit of this transformation is not realized until the first two RTL’s are removed from

the sequence. This may occur if there are no more uses of the current values of r[1] and

r[3].

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions String RTL’s 30

Benefits may also be reaped through algebraic manipulation of RTL expressions. The

RTL:

r[1]=r[2]*8;

uses multiplication which is often an expensive operation. In this special case, we can replace

this with the cheaper RTL:

r[1]=r[2]{3;

where ‘{’ denotes signed shift-left.

Finally, because sets and uses are explicit in RTL’s, it is possible to write general,

machine-independent algorithms to reorder sequences of RTL’s into more efficient sequences

that are semantically equivalent. This is often performed in the presence of memory refer-

ences. Here is a sequence of RTL’s that contains two memory references to local variables i

and j:

r[7]=r[7]+1;

r[6]=R[r[14]+i.];

R[r[14]+j.]=r[7];

r[6]=r[6]{2;

Because the second RTL does not use r[7] and the third RTL does not use r[6], these two

RTL’s can be exchanged yielding a sequence of RTL’s in which the lifetime of r[6] does not

overlap the lifetime of r[7]. Therefore, all instances of r[6] can be replaced by r[7], yield-

ing the following sequence of RTL’s:

r[7]=r[7]+1;

R[r[14]+j.]=r[7];

r[7]=R[r[14]+i.];

r[7]=r[7]{2;

Although this sequence of RTL’s is no shorter, and uses the same operations, the sequence uses

one fewer registers. The unused r[6] can then be used in other locations to reduce the num-

ber of memory references. This, in turn, will improve the overall quality of the code.

Each of these examples are transformations that are performed by typical optimizers

including those that do not use RTL’s. The important difference is that the algorithms that

perform these RTL transformations need only be written once rather than again and again for

each new assembly language and target machine. When a new target machine is introduced,

the translations to and from its assembly language must be made. This, however, is signifi-

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 31

cantly easier than rewriting and debugging all the algorithms that manipulate the target

machine’s instructions. Finally, perhaps the greatest benefit of string RTL’s is their natural

human-readable form. All of the above manipulations were described independently of any

particular architecture. RTL’s are an excellent medium for discussing machine-dependent

instruction manipulations without the burden of presenting a new assembly language nota-

tion for each machine.

3.2 τRTL’s
Using RTL’s to specify the semantics of instructions has significantly improved the retargeta-

bility of systems software that use them. However, experience with string RTL’s has revealed a

number of shortcomings that prevent software from exploiting the full potential of the RTL

concept. These shortcomings are, in some cases, so severe that a complete reworking of the

notation was warranted. In this section, we present τRTL’s, a new RTL form that addresses

these concerns.

τRTL’s differ from string RTL’s in three fundamental ways: their type system, syntax,

and underlying representation. At first glance, the most noticeable change is the use of an

extended character set and formatting for the concrete syntax of τRTL’s. We will discuss these

features in Chapter 5. Presently, we describe the fundamental differences that enable more

effective use of RTL’s in building machine-independent software.

3.2.1 Syntax

Before discussing the conceptual differences between string RTL’s and τRTL’s, we first present

the concrete syntax of each τRTL expression.

3.2.1.1 Constants

The simplest expressions are integer and floating-point constants. Integer constants have the

form:

[-] digits

where digits is a string of decimal digits, optionally proceeded by a minus sign. Floating-point

constants have the form:

[-] mantissa sign exponent

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 32

where mantissa is a string of decimal digits representing the integer value of the mantissa,

exponent is a string of decimal digits representing the value of the exponent, and sign is either

‘+’ or ‘-’ to indicate the sign of the exponent.

3.2.1.2 Types

New with τRTL’s is the type expression. A type is specified using the notation:

i, size

where i is a subscripted single letter specifying the interpretation (such as signed or floating-

point) of the value being typed, and size is a subscripted string of decimal digits indicating the

size of the value in bits. Types are used to indicate the interpretation and size of intermediate

values.

3.2.1.3 Operations (Typed Expressions)

Operations take zero or more operands and produce a single result. The types of each operand

and result must be specified using a type expression. Operations using binary infix operators

are written as:

(texpr op texpr) type

where texpr is a type-decorated expression, op is a single character built-in operator, and type is

a type specifying the type of the result. Operations may also use the prefix form:

func (texpr, ...) type

where func is either a built-in operator or a string of letters. Using either form yields another

type-decorated expression.

3.2.1.4 Storage

Storage expressions represent fetches and stores to a machine’s memory—either primary

memory or registers. There are three forms of storage expressions:

name (3-4)

name [texpr] (3-5)

name [texpr, size] (3-6)

where name is a string of one or more letters (typically just one) that names the storage loca-

tion, texpr is a type-decorated expression denoting the index, and size is a string of digits rep-

resenting the number of cells referenced. For individual locations, such as the program

counter, or condition codes, form (3-4) is used. For primary memory and register sets that

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 33

appear as arrays of cells, form (3-5) is used for individual cell references, while form (3-6) is

used for contiguous multi-cell references (e.g., as multi-byte memory fetches).

In addition to basic storage cell references, cells may be concatenated together using:

(storage : storage)

where storage is any basic storage expression. Sub-cell references may also be made by using

the bit extraction expression:

storage high..low

where storage is any basic storage expression and high and low are strings of superscripted dig-

its specifying the highest and lowest bit locations to be extracted.

3.2.1.5 Instruction Effects

As with string RTL’s, an instruction’s effect on storage is specified using a list of effect expres-

sions. The syntax for an effect is

storage ← texpr ;

where storage is a storage expression and texpr is a type-decorated expression. When more

than one effect is included in an list, each right-hand expression is evaluated before any assign-

ment is made to left-hand storage locations.

3.2.1.6 Syntax Summary

In summary, τRTL’s are composed of the following kinds of expressions:

• constants (integer, or floating-point),

• memory fetches (registers or primary memory locations),

• operators, and

• memory stores.

We summarize the syntax for τRTL expressions in Figure 3-1 using a context free grammar.

Unlike string RTL’s, all τRTL expressions and sub-expressions have explicit types.

Conversely, storage locations are not typed. We think of this difference as moving the types

away from the storage locations towards the operators. For example, the simple register-regis-

ter addition from (3-1) would be expressed in τRTL as:

r[1u,5]s,32 ← r[2u,5]s,32 + r[2u,5]s,32;

If you remove all the type expressions, which are indicated using subscripts, the result looks

very much like its string RTL equivalent. These type expressions are the subject of the next

section.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 34

3.2.2 τRTL Types

Each τRTL expression is labeled with a type. τRTL types have a type signifier and size. These

are denoted using subscripts. For example, the expression

15u,13

indicates that the integer constant 15 is represented using a 13-bit unsigned integer represen-

tation. Both type and size are necessary since the constant expression 15 indicates neither the

number of bits used to represent the number, nor the representation (unsigned or two’s com-

plement). Currently, our descriptions use four type-signifiers, although additional ones can be

added at any time. They are:

• u (unsigned integer)

• s (signed two’s complement integer)

• f (floating-point)

• b (bitstring)

Using these types, we can build up larger τRTL expressions. A simple register ADD instruc-

tion from the MIPS can be expressed as follows:

1. RTL → effects
2. value → int | float | storage_expr | operation
3. type → letter, int
4. typed_value → value type | typed_operation

5. storage_expr → storage_expr int..int

6. | (storage_expr : storage_expr)
7. | storage
8. storage → letters [typed_value] |
9. | letters [typed_value, int]

10. | letters
11. operation → typed_value op typed_value
12. | func (arg_list)
13. typed_operation → (typed_value op typed_value) type
14. | func (arg_list) type
15. arg_list →
16. | typed_value typed_values
17. typed_values → , typed_value
18. → , typed_value typed_values
19. func → op | letters
20. effect → storage_expr ← typed_value
21. | storage_expr type ← value
22. effects → effect ;
23. | effect ; effects

Figure 3-1. Context-free grammar for τRTL’sa.

a. int, letter, letters, and op are grammar terminals described by the regular expressions [0–9], [A–z],
[A–z]+, and [+<?...], respectively.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 35

r[1u,5]s,32 ← r[2u,5]s,32 + r[3u,5]s,32; (3-7)

This yields significantly more useful information than string RTL’s. First, from the register

numbers’ type, we know that register indices may not exceed 31. Second, we know that each

of the three registers is capable of holding a 32-bit value. An important feature of the notation

that we use for τRTL’s is locations are not typed, but rather intermediate values and operators

are typed. Consequently, the type on the left-hand side (left of ‘←’) of (3-7) does not apply to

the register r[1u,5] but rather to the result of the addition operation on the right-hand side.

The same is true of the registers on the right-hand side. Thus, each of the three s,32 types des-

ignate the type of addition being performed rather than the type of the registers. Therefore,

we know that the machine can perform the addition of two signed 32-bit numbers, with an

signed 32-bit number as its result (we denote this +s,32 × s,32 → s,32).

To some, it may seem strange to place the types near the operands (or more strangely

near the result location) rather than near the operators to which they belong. Here are two

other formulations we considered:

r[1u,5] ← r[2u,5] +s,32 × s,32 → s,32 r[3u,5]; (3-8)

r[1u,5] ← (r[2u,5]s,32 + r[3u,5]s,32)s,32; (3-9)

Formulation (3-8) is quite cumbersome. The operator’s type significantly increases the dis-

tance from operator to operand. As the number of operators in the expression increases, the

expressions become more and more unwieldy. Formulation (3-9) moves the type of the opera-

tor’s result closer to where the result is produced. It also has the undesirable effect of requiring

the addition of parenthesis to separate the result type from the type of the rightmost operand.

However, this form is used when we include more than a single infix operand, such as:

r[1u,5]s,32 ← (r[2u,5]s,32 + 15s,32)s,32 − r[3u,5]s,32;

however, here the parenthesis are also needed to determine the order of expression evaluation.

The inclusion of types for register indices may also seem like a strange formulation.

However, this is just a specialization of a more general method of specifying addressing modes

using τRTL. A great advantage of string RTL’s is their very general treatment of computa-

tional expressions. Whether a computation represents the result of an instruction execution,

or is just a calculation of an address computation, the expression is the same. However, string

RTL’s treat register indices specially. Register indices may only be integer constants. In τRTL,

we treat registers as any other type of storage. Therefore, arbitrary expressions may be used as

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 36

register index expressions. Since the indices of memory references have types (as much a result

of the operators in the memory address calculation as anything) the analogous form for a ref-

erence to register 14 is the same:

r[14u,5]

3.2.3 Aliasing

A common problem with string RTL’s, as well as other instruction description techniques, is

memory aliasing. In string RTL’s, aliasing occurs in two ways:

1. Memory aliasing due to typing of storage, and

2. Memory aliasing due to multiple-unit fetches.

In string RTL’s, the type of a memory location is encoded in the location’s name. So, when

register one contains a byte, its name is b[1]. When register one contains a long, its name is

r[1]. This convention makes it easy to keep track of what kind of value is held in the register.

However, it makes it difficult to identify that r[1] and b[1] are, in fact, the same register.

An optimizer that uses string RTL’s will consider these two registers to be distinct. This wreaks

havoc when the following sequence of string RTL’s are incorrectly generated1 by a code gener-

ator:

b[1]=255;

r[2]=r[2]&r[1];

In this case, register r[1] switches types between the two RTL’s. This will cause an optimizer

to remove the first RTL because it appears to be useless code (b[1] is set but never used).

This will cause a error in the resulting code because b[1] may not contain the correct value.

Although there is an error in the compiler’s implementation (the wrong RTL was generated),

the memory aliasing makes it difficult or impossible for the error to be automatically detected.

A second common source of memory aliasing involves multi-addressable-unit refer-

ences. Take, for example, the following sequence of string RTL’s:

r[2]=R[r[14]+18];

R[r[14]+16]=r[1];

1. Although this example occurs when there is a bug in the code generator, such bugs commonly hap-
pen and must be tracked down. Furthermore, such bugs are, in fact, caused by the awkward typing
that string RTL’s impose on storage locations. The programmer knows that b[1] and r[1] are the
same, but the notation makes it appear to the software that they are different.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 37

When an optimizer examines this sequence, it may wish to move the first RTL down past the

second to reduce the lifetime for register r[1] (or register r[2] for that matter). This

appears to be safe since the load in the first RTL appears to be from a different location than

the store in the second RTL. However, because both the load and store are 32-bit data instruc-

tions, they reference multi-byte quantities causing the two memory references to overlap (they

both reference offsets 18 and 19 off of r[14]), as shown in Figure 3-2. If the first RTL is

moved past the second, these values may change due to the store in the second RTL. Such

transformations are common in many optimizations and require specialized machine-depen-

dent logic in the algorithms to recognize and handle this case correctly.

From the two examples above, it is clear that we would like to eliminate the opportu-

nities for aliasing of locations. By removing aliasing as a problem, we can significantly reduce

the problems that applications have when performing various analyses on τRTL’s. We elimi-

nate the first form of aliasing by not typing (or giving multiple names to) registers and mem-

ory locations. The second form of aliasing is eliminated by requiring that all memory

addresses be explicit. The concrete syntax for the above memory location is:

m[(r[14u,5]u,32 + 16u,32)u,32, 4]

The ‘4’ at the end of the index refers to the number of addressable units that the address is ref-

erencing and is required for multi-cell memory references. From the address and the size, the

addresses are automatically expanded to include locations 16, 17, 18, and 19 in the abstract

form of the τRTL’s.

Figure 3-2. Memory aliases created by overlapping memory references.

Key:
Referenced
by R[r[14]+16]

Referenced
by R[r[14]+18]

Referenced
by both

Offset:
(from r[14])

16 17 18 19 20 21

R[r[14]+18]

R[r[14]+16]

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 38

3.2.4 Notation

Although the addition of extended characters and a new type system make τRTL’s appear

quite different from string RTL’s, underneath, they share many common features:

• instructions are still described using lists of effects,

• address computations are expressed using arbitrary τRTL subexpressions,

• storage location reads and writes are explicit, and

• instructions that transfer control assign to the program counter storage location.

There are a few differences outside the type system and memory aliasing that make the

τRTL notation easier to read for humans and easier to manipulate for machines. There is no

better example than the subtle interaction of types and operator overloading.

String RTL’s overload operators to yield natural expressions like:

r[1]=r[2]+r[3];

and

f[1]=f[2]+f[3];

These two string RTL’s use the same operator, but perform two different operations (integer

versus floating-point addition). Unfortunately such overloading is only as flexible as the type

system. String RTL types describe size (i.e., byte, word, and long), and in some cases encoding

(i.e., long versus float which are different encodings but the same size). Operations that use

identical storage types but different representations, such as signed- and unsigned-integers,

cannot simply use operator overloading to distinguish operations. For example, there are

signed and unsigned versions of many of the relational operations. The string RTL expression

r[1]=r[2]>r[3]; (3-10)

compares the registers r[1] and r[2] using signed greater-than. To perform unsigned

greater-than, a different operator must be used since the same RTL as (3-10) would be formed

if the ‘>’ operator were used. We must select a new operator to distinguish the two different

operations on the same storage type. Unsigned less-than is formed using the ugly ‘h’ operator

(‘g’ is used for greater-than-or-equal):

r[1]=r[2]hr[3];

Perhaps the most ridiculous formulation is:

r[1]=r[2] r[3];

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 39

where the space operator (‘ ’) indicates unsigned shift left! In τRTL, each of these operations

is cleanly described using the same operator and different types on values being extracted from

the storage locations:

r[1u,5]s,32 ← r[2u,5]s,32 > r[3u,5]s,32;

r[1u,5]u,32 ← r[2u,5]u,32 > r[3u,5]u,32;

Spaces may also be used to separate the operators from the operands since the space character

is not an operator in τRTL.

The improved type system and extended character set change the formulation of some

string RTL operations. Other string RTL operators are not replaced, but instead deleted. For

example, the compound operator AND NOT (‘b’) is deleted and formed in τRTL by the

composition of the built-in AND and NOT operators. So, the string RTL:

r[1]=r[2]br[3];

becomes

r[1u,5]b,32 ← ¬ (r[2u,5]b,32 ∧ r[3u,5]b,32)b,32;

The changes in built-in operators from string RTL’s to τRTL’s are summarized in Table 3-3.

3.2.5 Abstract Syntax

From the preceding sections it may appear that τRTL’s are just another string representation

of RTL’s. This is intentional. We designed the concrete syntax of τRTL’s to be intuitive and

natural for the programmer. Since this was one of the strengths of string RTL’s we included it

in our design. However, the internal representation, or abstract syntax, is not based on strings

as string RTL’s are. Instead, τRTL’s are represented internally using trees (τ stands for tree).

This distinction is important because, although RTL’s are often viewed by the programmer,

their primary role is to present machine-dependent information in a machine-independent

form for manipulation by programs.

Using trees as an internal representation has many benefits. First, all τRTL subexpres-

sions are τRTL subtrees which permits the replacement of one subexpression by another. This

facilitates a common RTL operation: forward substitution. Second, once in tree form, the

order of evaluation of subexpressions is explicit. Third, since trees use pointers, it is possible

for two or more τRTL’s to share common subtrees, or common subexpressions. Fourth, unlike

strings, trees provide faster than linear-time access to subtrees (in strings, to find the right-

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 40

String RTL
Character

τRTL
Operator Description

‘ ’ (space) ⇐ Left shift, unsigned

! ≠ Not equal, signed and unsigned

" ⇒ Right shift, unsigned

mod Modulus, unsigned

$ ∆ Sign extend

% mod Modulus, signed

& ∧ Bitwise AND

’ ≤ Less than or equal to, signed

* × Multiplication, unsigned

+ + Addition

, unused List separator

- − Subtraction, unary minus

/ ÷ Division, signed

: ≡ Equal, signed and unsigned

; ; RTL separator

< < Less than, signed

= ← Assignment

> > Greater than, signed

? unused Compare, signed

@ × Multiplication, unsigned

\ ÷ Division, unsigned

^ ⊕ Bitwise XOR

‘ ≥ Greater than or equal to, signed

b Synthesized Bitwise AND NOT

d Second effect Auto-decrement

g ≥ Greater than or equal to, unsigned

h > Greater than, unsigned

i Second effect Auto-increment

l < Less than, unsigned

o Synthesized Bitwise OR NOT

s ≤ Less than or equal to, unsigned

Table 3-3. Built-in RTL operator summary .

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 41

hand side of an RTL, the left-hand side must be scanned). This should improve the perfor-

mance of many algorithms. Fifth, as we will see shortly, string RTL’s rely on string parsing

techniques, specifically, LALR (Yacc) grammars. Trees free us from this restriction and pro-

mote the use of quick tree matching techniques [AGT89, FHP92]. Sixth, in contrast to

strings, it is not possible to build a malformed tree. Properly formed trees that are illegal (due

to the type system) can easily be detected using machine-independent algorithms. Finally,

during the process of changing τRTL token strings into trees, many errors can be detected

because only a subset of τRTL token strings correspond to properly formed τRTL trees.

In addition to all of the above benefits, τRTL’s make fetching and storing of storage

locations explicit. The trees are also strongly typed. For example, the tree shown in Figure 3-3

attempts to describe a memory load using displacement addressing. In this case, the s,16 type

attached to the displacement constant 15 does not match the corresponding u,32 operand

type in the addition operation. Such errors can be detected because each subtree must have a

type and each operator must specify the types of its operands. In this case, the type conflict is

due to a missing conversion operation. A properly typed tree for this instruction is shown in

Figure 3-4.

This load example illustrates that since τRTL’s are strongly typed, explicit type conver-

sions are required. Although it is possible to infer that the type conversion is happening, we

choose to insist that the conversion be explicit. This makes it possible to easily identify com-

mon errors in instruction semantics. It is not uncommon to accidently forget to put a conver-

sion in place, thus creating an RTL with the improper semantics.

u unused Compare, unsigned

x Synthesized Bitwise XOR NOT

{ ⇒ Left shift, signed

| ∨ Bitwise OR

} ⇐ Right shift, signed

~ ¬ Unary negate

String RTL
Character

τRTL
Operator Description

Table 3-3. Built-in RTL operator summary (Continued).

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 42

Using the τRTL types also makes it possible to automatically identify common errors

in manipulation of trees. For example, consider the two τRTL sequence:

r[1u,5]u,32 ← r[2u,5]u,32 + ∆(15u,15)u,32; (3-11)

r[3u,5]b,32 ← m[(r[1u,5]u,32 + ∆(5u,9)u,32)u,32,4]; (3-12)

The τRTL trees corresponding to these instructions are shown in Figure 3-5. Using forward

substitution, we can replace the fetch of r[1u,5] in (3-12) with the right-hand side of (3-11).

The resulting subtree is shown in Figure 3-6 and corresponds to the subexpression:

((r[2u,5]u,32 + ∆(15u,15)u,32)u,32 + ∆(5u,9)u,32)u,32 (3-13)

This subtree can then be algebraically simplified to combine the two constants. In doing so, a

type must be chosen for the resulting constant (20). There are two obvious choices: u,9 and

u,15. Choosing the type u,15 could result in the subtree pictured in Figure 3-7. Since the type

for the constant (u,15) and the type for the convert (∆) operand (u,9) differ, we have an incor-

Figure 3-3. Improperly typed τRTL for a load.

Figure 3-4. A properly typed τRTL for a load.

U)(7&+X���→ X���

�X��

��V���

�X����î�X����→ X���

P)(7&+X����→ X����X��

U6725(X���î�X���

Type mismatch

rFETCHu,2 → u,32

2u,2
15s,16

+u,32 × u,32 → u,32

mFETCHu,32 → u,321u,2

rSTOREu,2 × u,32

∆s,16 → u,32

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions τRTL’s 43

rectly constructed τRTL subtree. Such errors can easily be detected by a general tree type-

checker.

Clearly, using trees as the abstract syntax provides significant improvement over the

string-based approach used previously. Although trees are an excellent representation for

machine manipulation, they are not a natural form for humans to use. Fortunately, τRTL’s use

Figure 3-5(a). τRTL tree for (3-11). Figure 3-5(b). τRTL tree for (3-12).

Figure 3-5. Abstract syntax for two τRTL’s.

Figure 3-6. Combined subexpression.

Figure 3-7. Incorrect simplification of (r[2u,5]u,32 + ∆(20u,9)u,32)u,32 tree.

rFETCHu,5 → u,32

2u,5 15u,15

+u,32 × u,32 → u,32

∆u,15 → u,32

1u,5

rSTOREu,5 × u,32
3u,5

rSTOREu,5 × u,32

mFETCHu,32 → u,32

rFETCHu,5 → u,32

1u,5 5u,9

+u,32 × u,32 → u,32

∆u,9 → u,32

∆u,15 → u,32rFETCHu,5 → u,32

2u,5 15u,15

+u,32 × u,32 → u,32

5u,9

+u,32 × u,32 → u,32

∆u,9 → u,32

∆X���→ X���U)(7&+X���→ X���

�X�� ��X���

�X����î�X����→ X���

Type mismatch

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Using τRTL’s to Describe Machines 44

a natural string concrete syntax freeing the programmer from having to think of τRTL’s as

trees when describing the semantics of machine instructions.

3.3 Using τRTL’s to Describe Machines
The previous section described the notation for specifying the effects of single instances of

machine instructions. Building on this foundation, we can describe entire instruction sets.

Such specifications are commonly called machine descriptions.

Given the above syntax, we could describe a machine that is the functional equivalent

of a simple calculator by listing each instruction:

r[1u,2]s,32 ← r[2u,2]s,32 + r[3u,2]s,32;

r[1u,2]s,32 ← r[2u,2]s,32 − r[3u,2]s,32;

r[1u,2]s,32 ← r[2u,2]s,32 × r[3u,2]s,32;

r[1u,2]s,32 ← r[2u,2]s,32 ÷ r[3u,2]s,32;

Such lists are simple enough to build, but lack the descriptive power to concisely specify the

set of instructions. In this case, we’ve shown four different operations that can operate on

three different registers. However, this is probably far from complete since each of the three

registers can probably be used anywhere. Assuming a machine with four registers, this yields

256 different instances of these four instructions.

We rely, as others have before us, on context-free grammars to describe the language,

or instruction set, of the target machine. A grammar for the above example is shown in

Figure 3-9. The syntax for the grammars is similar to the those found in texts on formal lan-

guages [HU79]. Productions are terminated by the ‘//’ token. Context-free grammars are a

good choice for describing sets of instructions since programmers are familiar with Yacc gram-

mars.

Figure 3-8. Correct simplification of (r[2u,5]u,32 + ∆(20u,9)u,32)u,32 tree.

∆u,9 → u,32rFETCHu,5 → u,32

2u,5 20u,9

+u,32 × u,32 → u,32

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Using τRTL’s to Describe Machines 45

Unlike string RTL’s that use Yacc grammars, τRTL machine descriptions are not Yacc

specifications and are therefore not limited to the set of LALR grammars. τRTL machine

descriptions describe sets of τRTL’s, or sets of trees. So, although there is no LALR restriction,

we do require that all machine descriptions describe only valid τRTL trees. We achieve this by

requiring that all grammar nonterminals derive complete τRTL subtrees. The grammar start

symbol (indicated by the first production in the grammar) must derive a complete τRTL tree.

For example, to extend the grammar of Figure 3-9 to include arbitrary sequences of

operations, one might write the grammar shown in Figure 3-10. This grammar describes

τRTL token strings such as:

r[1u,2]s,32 ← r[2u,2]s,32 − r[3u,2]s,32 + r[4u,2]s,32;

which, at first glance, may appear to be a valid τRTL. However, since τRTL does not define

an explicit precedence, it is not known if subtraction or addition should be performed first.

Further, assuming the subtraction is to be performed first, the type of the result of subtraction

has not been specified. The proper specification would be

r[1u,2]s,32 ← (r[2u,2]s,32 − r[3u,2]s,32)s,32 + r[4u,2]s,32;

which specifies the order of evaluation and the result type for the subtraction. Such errors can

easily be detected in the τRTL machine description since the first rexpr production in the

grammar of Figure 3-10 does not specify a complete τRTL subtree.

inst → reg ← reg op reg; //

reg → r[numu,2]s,32 //

op → + | − | × | ÷ //

num → 1 | 2 | 3 | 4 //

Figure 3-9. An τRTL grammar for a very simple machine.

inst → reg ← reg op rexpr; //

rexpr → reg op rexpr | reg //

reg → r[numu,2]s,32 //

op → + | − | × | ÷ //

num → 1 | 2 | 3 | 4 //

Figure 3-10. An illegal τRTL grammar.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Using τRTL’s to Describe Machines 46

The conciseness of these grammars is due to the use of grammar variables. In a gram-

mar that includes common subexpressions, the same grammar variable may be used. Such

identification of common subexpressions is called grammar factoring [GHS82]. The introduc-

tion of grammar variables has several other benefits. First, names can be given to grammar

productions that indicate their purpose (e.g., inst obviously derives instructions). Second,

where τRTL notation may be awkward (register index types), an expression can be named and

used again and again by name rather than by repeating the awkward expression.

τRTL grammars make it possible to generalize specific expressions. So concise descrip-

tions can be derived for general machines. However, not all instructions and not all machines

are so regular. Take for example, a modified version of our simple machine that only has two-

address instructions. On such a machine, an example of an RTL describing a valid instruction

would be:

r[1u,2]s,32 ← r[1u,2]s,32 + r[2u,2]s,32;

but the RTL:

r[1u,2]s,32 ← r[2u,2]s,32 + r[3u,2]s,32; (3-14)

would not describe a valid instruction because it uses three different registers. We cannot use

the grammar rule:

inst → reg ← reg op reg; //

since it could derive (3-14). The problem is that both the first and second instance of the

grammar variable reg are free to derive any of their expressions (any register). τRTL grammars

extend the syntax of context free grammars to solve this common description problem. Gram-

mar variables found on the right-hand side of productions may be tagged with one or more

primes (‘'’) to name instances of grammar variable derivations. So, the grammar production:

inst → reg’← reg’ op reg; //

inst → reg ← reg op rexpr; //

rexpr → (reg op rexpr)s,32 | reg //

reg → r[numu,2]s,32 //

op → + | − | × | ÷ //

num → 1 | 2 | 3 | 4 //

Figure 3-11. A properly formed τRTL grammar.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Operation Semantics – µRTL’s 47

requires that both reg’’s must derive the same expression. We limit the scope of matching

primed grammar variables to the current production. Grammar variables that are not deco-

rated with primes remain unrestricted in derivations.

There are three additional grammar syntax extensions. τRTL provides expressions that

match any integer constant, any floating-point constant, or any symbolic name (labels, locals,

and globals). These expressions are constant, fconstant, and name. So, for a production that

derives any register, we would write:

reg → r[constantu,5] //

rather than having to include an additional production such as:

regno → 0 | 1 | 2 | ... | 31 //

that defines regno as a register number.

Finally, often it is useful to place constraints on the terminals that a grammar variable

may derive. On many machines, register zero, when read, always produces zero. To define a

grammar that includes all registers, except zero, we would write the production:

reg → r[constant’u,5] { constant’ ≠ 0 } //

the constraint { constant’ ≠ 0 } must always evaluate to true upon any derivation. The con-

straint language is limited to C-like Boolean expressions on integer values. Although limited,

these expressions provide the necessary power to constrain the derivation of productions in

useful ways.

This completes our presentation of τRTL grammar syntax. Using τRTL grammars, we

can easily define the set of valid instruction semantics for common machines. Figure 3-12

shows a small but complete τRTL machine description for Hennessy and Patterson’s hypo-

thetical DLX machine used for instruction in computer architecture courses [HP96]. Addi-

tional machine descriptions can be found in Appendix A.

3.4 Operation Semantics – µRTL’s
The τRTL notation provides a machine-independent form that uses a set of built-in opera-

tions for describing the effects of machine instructions. However, when user-defined opera-

tions are used, τRTL says nothing about the semantics of the user-defined operations. In the

presence of user-defined operations, it is only possible, in many cases, to determine what loca-

tions have been read and written. In order to provide semantics for operations that are not

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Operation Semantics – µRTL’s 48

1. start → inst //
2. aop → + | − | × | ÷ //
3. add_op → + | − //
4. mul_op → × | ÷ //
5. bit_op → ∧ | ∨ | ⊕ //
6. shift_op → ⇐ | ⇒ //
7. rel_op → < | > | ≤ | ≥ //
8. eq_op → ≡ | ≠ //
9. i → u | s //

10. int → u,32 | s,32 //
11. reg → r[constantu,5] { constant ≠ 0 } //
12. regz → reg | 0 //
13. freg → f[constantu,5] //
14. dreg → f[constantu,5, 2] //
15. uregimm → reg | ∆(constantu,16)u,32 //

16. addr → (regu,32 + ∆(constantu,16)u,32)u,32 addressing modes
17. | regzu,32
18. | ∆(constantu,16)u,32 //
19. jaddr → PCu,32 + ∆(constants,26)u,32 //
20. jump → PCu,32 ← jaddr //
21. link → r[31u,5]b,32 ← PC //

22. inst → regint’ ← regzint’ add_op regzint’; arithmetic
23. | regi’,32 ← regzi’,32 add_op ∆(constanti’,16)i’,32
24. | fregf,32 ← fregf,32 aop fregf,32;
25. | dregd,64 ← dregd,64 aop dregd,64;
26. | fregint’ ← fregint’ mul_op fregint’;

27. | regb,32 ← regzb,32 bit_op regzb,32; bitwise operations
28. | regb,32 ← regzb,32 bit_op ∆(constantb,16)b,32;

29. | regb,32 ← regzb,32 shift_op regz4..0
u,5; shifts

30. | regs,32 ← regzs,32 ⇒ regz4..0
u,5;

31. | regb,32 ← regzb,32 shift_op constantu,5;
32. | regs,32 ← regzs,32 ⇒ constantu,5;

33. | regb,32 ← ∆((regzint’ rel_op regzint’)b,1); compares
34. | regb,32 ← ∆((regzb,32 eq_op regzb,32)b,1);

35. | fregs,32 ← ∆(fregf,32); converts
36. | fregf,32 ← ∆(fregs,32);
37. | fregd,32 ← ∆(fregf,32);
38. | fregf,32 ← ∆(fregd,32);
39. | fregs,32 ← ∆(fregd,32);
40. | fregd,32 ← ∆(fregs,32);

41. | fregb,32 ← freg; moves
42. | dregb,64 ← dreg;
43. | fregb,32 ← regz;
44. | regb,32 ← freg;

45. | regb,32 ← ∆((regzi’,32 rel_op ∆(constanti’,16)i’,32)b,1); sets
46. | regb,32 ← ∆((regzb,32 eq_op ∆(constantb,16)b,32)b,1);
47. | FCCb,1 ← fregf,32 rel_op fregf,32;
48. | FCCb,1 ← fregb,32 eq_op fregb,32;
49. | FCCb,1 ← dregd,64 rel_op dregd,64;
50. | FCCb,1 ← dregb,64 eq_op dregb,64;

Figure 3-12. A complete τRTL machine description of the DLX .

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Operation Semantics – µRTL’s 49

built-in (all built-in operations are listed in Table 3-4), we rely on an operational semantics

using a language called µRTL. µRTL is designed to describe instructions at the micro-archi-

tecture level. Details that are not of use at the τRTL level can be provided in a µRTL descrip-

tion.

The concept of µRTL is simple: describe the semantics of user-defined operations

using the built-in operations. Once one understands the τRTL notation, one can easily begin

specifying the semantics of user-defined operations. For example, a good candidate for a user-

defined operator is string copy. String copy copies an array of bytes from one location to

another. The array is terminated by a byte whose value is zero. This instruction cannot be

described completely at the τRTL level because it contains an internal loop. Further, the

details of the semantics are really too complicated to be present at the τRTL level. Instead, we

can rely on µRTL to describe string copy’s semantics. A τRTL that uses the user-defined oper-

ator strcpy might look like:

← strcpy(regu,32, regu,32);

51. | regb,32 ← ∆(constantb,16)b,32 ⇐ 16u,5; loads
52. | regi’,32 ← ∆(m[addr]i’,8);
53. | regi’,32 ← ∆(m[addr, 2]i’,16);
54. | regb,32 ← m[addr, 4];
55. | fregb,32 ← m[addr, 4];
56. | dregb,64 ← m[addr, 8];

57. | m[addr]b,8 ← regz7..0 ; stores

58. | m[addr, 2]b,16 ← regz15..0 ;
59. | m[addr, 4]b,32 ← regz ;
60. | m[addr, 4]b,32 ← freg ;
61. | m[addr, 8]b,64 ← dreg ;

62. | jump; jumps
63. | jump; link;
64. | PCb,32 ← regz;
65. | PCb,32 ← regz; link;

66. | PCu,32 ← ?((FCCb,1 ≡ 1b,1)b,1, jaddr, PCu,32); branches
67. | PCu,32 ← ?((FCCb,1 ≡ 0b,1)b,1, jaddr, PCu,32);
68. | PCu,32 ← ?((regzb,32 eq_op 0b,32)b,1, jaddr, PCu,32);
69. | PCu,32 ← trap(constantu,26);
70. | PCu,32 ← rfe();

//

Figure 3-12. A complete τRTL machine description of the DLX (Continued).

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Operation Semantics – µRTL’s 50

where both reg’s specify the starting memory addresses for the destination and source arrays.

The lack of a storage location on the left hand side of ‘←’ indicates that the operation does not

store a value (beyond the setting of bytes pointed to by the destination register).

To specify strcpy’s semantics, we simply write a sequence of τRTL built-in operations

that implement the operation. Such an implementation is shown in Figure 3-13. On line 1,

we specify the name of the operation, the number and type of operands, and the type of the

Category Operations

Signed arithmetic
s,n × s,n → s,n

+ , − , ÷, mod (modulus),
×s,n × s,n → s,2n ,

−s,n → s,n (unary minus)

Unsigned arithmetic
u,n × u,n → u,n

+ , − , ÷ , mod (modulus),
×u,n × u,n → u,2n

Floating-point arithmetic
f,n × f,n → f,n

+ , − , ÷ , ×

Signed relational
s,n × s,n → b,1

< , > , ≤ , ≥

Unsigned relational
u,n × u,n → b,1

< , > , ≤ , ≥

Equality
b,n × b,n → b,1

≡ , ≠

Bitwise
b,n × b,n → b,n

∧ , ∨ , ⊕ , ¬ (complement)

Logical
b,1 × b,1 → b,1

∧ ,∨ , ⊕ , ¬ (not)

Bitwise shift
b,n × u,m → b,n

⇐ , ⇒

Signed shift
s,n × u,m → s,n

⇐ , ⇒

Type Conversion ∆s,n → u,n
∆u,n → s,n

∆s,n → s,m (where n < m) (sign extend)

∆u,n → u,m (where n < m)

∆f,n → f,m
∆s,n → f,m
∆f,n → s,m

Selection
b,1 × b,n × b,n → b,n

?

Table 3-4. Summary of τRTL built-in operations.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Operation Semantics – µRTL’s 51

result (in this case none). Local variables and their sizes (in bits) are declared on line 2. Such

local variables might correspond to hidden registers in the machine’s microarchitecture.

Because string copy has an internal loop, we label line 5 (the top of the loop) with a µRTL

label. Jumps are accomplished by assigning to the µRTL program counter (µPC). In this case,

we want a conditional branch at the bottom of the loop (line 10), so we use the µRTL ‘?’

operator (analogous to the ‘?’ operator in C) to select between loop and the current value of

µPC based on the value of the Boolean variable t4. So, the only additions to the τRTL lan-

guage are the operation’s header, a syntax for declaring temporary storage locations, labels, and

the µRTL program counter.

Figure 3-14 illustrates another use of µRTL to specify the semantics of the Pentium

PADDB instruction [Int93]. PADDB performs a packed-addition on bytes. PADDB adds the

individual bytes of a 64-bit source operand to the individual bytes of a 64-bit destination

operand. A carry out of an individual byte addition is not propagated into the adjacent byte.

We can describe PADDB by introducing a new type ‘p’ (packed) using the τRTL1:

dest’p,64 ← paddb(dest’p,64, srcp,64);

The µRTL implementation uses a loop to add each of the individual quantities separately.

Thus, µRTL is an ideal mechanism for specifying microinstruction-level detail without clut-

tering the τRTL notation.

1. ← strcpy(destu,32, sourceu,32) {

2. var t1:32, t2:32, t3:8, t4:1;
3. t1b,32 ← dest;

4. t2b,32 ← source;

5. loop: t3b,8 ← m[t2u,32];

6. m[t1u,32]b,8 ← t3;

7. t1u,32 ← t1u,32 + 1u,32;

8. t2u,32 ← t2u,32 + 1u,32;

9. t4b,1 ← t3b,8 ≡ 0b,8;

10. µPCb,32 ← ?(t4b,1, loopb,32, µPCb,32);

11. }

Figure 3-13. µRTL operational semantics for a user-defined string copy operator.

1. We have used the τRTL grammar syntax to illustrate that the destination operand must correspond
to one of the source operands. We also use this form to abstract away unnecessary details of the
source and destination address calculations.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Summary 52

3.5 Summary
In this chapter, we have presented a new formulation of RTL’s that address shortcomings of

string RTL’s. Using τRTL’s, the semantics of instructions are presented in both a machine

independent and application-independent manner. As with string RTL’s the abstractions that

τRTL’s provide are well suited for many systems software applications. Additionally, τRTL

types match the types found at the assembly language abstraction level by associating the types

with the operations rather than with operands as high-level languages do. This prevents the

ambiguities found in string RTL’s and increases the readability and processability of the τRTL

form.

Although the RTL level of abstraction has often been demonstrated to be appropriate

for systems software, there are times when too many details are abstracted away. To accommo-

date the need for additional detail, without cluttering τRTL’s, we have introduced a new

method for describing both the semantics of user-defined τRTL’s and features of a machine’s

microarchitecture: the µRTL. By using this hierarchical approach, τRTL in combination with

µRTL can satisfy the needs of a wider audience of applications than previous description sys-

tems.

Finally, we have shown how grammars for τRTL’s can be constructed to describe the

language that corresponds to a machine’s instruction set. Unlike string RTL descriptions, and

most other description systems, these descriptions maintain the application-independent

nature of τRTL’s. In fact, in this chapter, these descriptions stand alone, specifying the lan-

guage of τRTL’s that corresponds to a machine’s capabilities without specifying how such

information might be used. As stand-alone, τRTL grammars can be used to recognize a

machine’s capabilities by using the description’s grammar as a τRTL recognizer in the tradi-

1. destp,64 ← paddb(src1p,64, src2p,64) {

2. var lo:8, hi:8;
3. lou,8 ← 0;

4. hiu,8 ← 7;

5. loop: desthi..lo
u,8 ← src1hi..lo

u,8 + src2hi..lo
u,8;

6. hiu,8 ← hiu,8 + 8u,8;

7. lou,8 ← lou,8 + 8u,8;

8. µPCb,32 ← ?((hiu,8 < 64u,8)b,1, loopb,32, µPCb,32);

9. }

Figure 3-14. Operational semantics for the Pentium PADDB instruction.

Chapter 3: Specifying Instruction Semantics: CSDL Core Descriptions Summary 53

tional way. Further, the grammar can be used to enumerate all valid τRTL’s for the target

machine. Although isolated from purpose, recognition is used in code optimization while

enumeration has uses in test generation. Nonetheless, in Chapter 5, we will show how these

specifications can be extended to include additional types of information—both application-

specific and application-independent.

54

CHAPTER 4

SPECIFYING PROCEDURE CALLING
CONVENTIONS

Beyond the core CSDL module, additional modules can be defined that describe features of

computing systems not covered by the core description. In this chapter, we examine a module

that describes procedure calling conventions. The procedure calling convention dictates the way

that program values are communicated across procedure calls, and how machine resources are

shared between a procedure making a call (the caller) and the procedure being called (the

callee). The procedure calling convention represents one of CSDL’s highest levels of abstrac-

tion because it spans the software-hardware boundary.

In this chapter, we introduce two important new concepts: 1) the distinction between

the procedure calling convention and its implementation (the calling sequence), and 2) the

recognition that two procedures create two distinct points of view by naming the same mem-

ory locations with different names. These concepts, in themselves are important. However, by

using them, we are able to build both more robust implementations and identify and isolate

faults in less robust implementations. Finally, we also demonstrate how, by building applica-

tion-independent descriptions, we can use the same description for multiple purposes.

4.1 Introduction
The procedure calling convention impacts the operation of many systems software compo-

nents. The interface between procedures, which is established by the calling convention, facil-

itates separate compilation of program modules and interoperability of programming

languages. What makes calling conventions unique and interesting is that they are not imple-

Chapter 4: Specifying Procedure Calling Conventions Introduction 55

mentation dependent or entirely language dependent. Instead, the calling convention is

machine-dependent because the rules for passing values from one procedure to another

depend on machine-specific features such as memory alignment restrictions and register usage

conventions. Further, code that implements the calling convention must be generated by the

compiler and understood by other systems software.

4.1.1 Motivation

Currently, information about a particular calling convention can be found by looking in the

programmer’s reference manual for the given machine, or reverse-engineering the code gener-

ated by one of its compilers. Reverse-engineering a compiler has many obvious shortcomings.

Using the programmer’s reference manual may be equally problematical. As with much of the

information in the programmer’s manual, the description is likely to be written in English and

is liable to be ambiguous, or inaccurate. For example, in the MIPS programmer’s manual

[KH92] the English description is so difficult to understand that the authors provide fifteen

examples, several of which are contradictory [Fra93]—and this is the second edition of the

programmer’s manual. Furthermore, the convention, once understood, is difficult to imple-

ment. For example, the GNU ANSI C compiler fails on an example listed in the manual.

Digital Equipment Corporation, in recognizing the problem, has published a calling standard

document for their Alpha series processors [Dig93] that exceeds 100 pages1. Thus, it should

be clear that there is a need for accurate, concise descriptions of procedure calling conventions

and software to use them.

One reason that such a need exists is that the few investigations of calling sequences

have been ad-hoc. For example, Johnson and Richie discuss some rules of thumb for designing

and implementing a calling sequence for the C programming language [JR]. Davidson and

Whalley experimentally evaluated several different C calling conventions [DW91]. However,

no work has been done to formally analyze calling conventions.

1. Although this document also includes information on exception handling and information perti-
nent to multithreaded execution environments, more than 42 pages are devoted to documenting the
calling convention.

Chapter 4: Specifying Procedure Calling Conventions Introduction 56

4.1.2 Applications

Any application that must process, or generate procedures at the machine-language abstrac-

tion level is likely to need to know about a procedure calling convention. Example applica-

tions include compilers, debuggers, linkers and evaluation tools such as profilers. The code

that implements the calling convention in these applications lends itself to automatic genera-

tion. Often, the convention itself is not difficult to understand or implement, for a given

instance of a procedure call. However, a general solution that covers all possible cases is diffi-

cult to implement correctly.

To address these problems, we have developed a formal specification language for

describing procedure calling conventions. This language, called CCL (Calling Convention

Language), has been used to generate automatically the calling sequence generator for a com-

piler [BD95]. The compiler, called vpcc/vpo, is a retargetable optimizing compiler for the C

language that has been targeted to over a dozen different architectures [BD88, BD94].

The procedure calling convention for a target machine is described using CCL. The

resulting specification is processed by an interpreter that generates tables that can be used in

the calling-convention-specific portion of vpcc/vpo, or in a test suite generator. Figure 4-1

shows this process. The test suite generator uses information from the table to build a test

suite for the specific calling convention. The test suite can be used to either confirm that the

vpcc/vpo implementation properly uses the convention tables, or confirm that another, inde-

pendent compiler conforms to the convention described in the CCL specification.

Figure 4-1. How CCL specifications are used.

vpcc/vpo compilerCCL InterpreterCalling
Convention

Specification

Test
Suite

Calling
Convention

Tables

Test Suite
Generator

Chapter 4: Specifying Procedure Calling Conventions Procedure Calling Conventions 57

4.2 Procedure Calling Conventions
To facilitate local compilation of procedures, compiler developers establish rules about how

procedures interact. These rules establish an agreement between the caller and callee on how

information and control are passed between the two, as well as how and who will maintain the

state of the machine. Collectively, these rules are known as the procedure calling convention.

4.2.1 A Simple Calling Convention

To aid in our discussion of calling conventions, we use a simplified example calling conven-

tion. Figure 4-2 contains the calling convention rules for a hypothetical machine. Consider

the following ANSI C prototype for a function warp:

int warp(char p1, int p2, int p3, double p4);

For the purpose of transmitting procedure arguments for our simple convention, we are only

interested in the signature of the procedure. We define a procedure’s signature to be the proce-

dure’s name, the order and types of its arguments, and its return type. This is analogous to

ANSI C’s abstract declarator [KR88], which for the above function prototype is:

int warp(char, int, int, double);

which defines a function that takes four arguments (a char, two int’s, and a double), and

returns an int.

1. Registers a1, a2, a3, and a4 are 32-bit argument-transmitting registers.

2. Arguments are also passed on the stack in increasing memory locations starting at the

stack pointer (M[sp]).

3. An argument may have type char (1 byte), int (4 bytes), or double (8 bytes).

4. An argument is passed in registers (if enough are available to hold the entire argu-

ment), and then on the stack.

5. Arguments of type int are 4-byte aligned on the stack.

6. Arguments of type double are 8-byte aligned on the stack.

7. Stack elements that are skipped over cannot be allocated later.

8. Return values are passed in registers a1 and a2.

9. Values of registers a6, a7, a8, and a9 must be preserved across a procedure call.

Figure 4-2. Rules for a simple calling convention.

Chapter 4: Specifying Procedure Calling Conventions Procedure Calling Conventions 58

With warp’s signature, we can apply the calling convention in Figure 4-2 to determine

how to call warp. Arguments to warp would be placed in the following locations:

• p1 in register a1,

• p2 in register a2,

• p3 in register a3, and

• p4 on the stack in M[sp:sp + 7] (M denotes memory).

Notice that although register a4 is available, p4 is placed on the stack since it cannot be placed

completely in argument-transmitting registers (rule 4). Such restrictions are common in

actual calling conventions.

4.2.2 Convention, Language, and Implementation

The first thing to notice about our simple calling convention is the lack of detail. There are

many questions that are left unanswered. Among them are:

• In what order are the procedure’s arguments evaluated?

• In what order are the procedure’s arguments placed in registers and on the stack?

• Where are the persistent1 registers stored?

• Which persistent registers need to be saved?

• What is the activation frame layout?

Each of these questions must be answered in order to produce a working implementation.

These questions are answered by two other elements that interact with the procedure calling

convention: the definition of the procedure’s source language and the language’s implementa-

tion. In this work, we have made a conscious effort to separate the concepts of calling conven-

tion, language definition, and implementation.

The choice to isolate the concepts of the convention from those of the language defi-

nition is an obvious one. To facilitate inter-language procedure calls, a single convention sepa-

rate from the language definition, must be available. There are, however, features of the source

language that may be present in the convention. For example, in our hypothetical convention,

where an argument is placed is determined, in part, by the type of the argument. Such lan-

guage features cannot be avoided in the description of the convention, but they should be

1. A register whose value is preserved across a procedure call is persistent.

Chapter 4: Specifying Procedure Calling Conventions Procedure Calling Conventions 59

kept to a minimum. Also, it illustrates what features both languages must share to make inter-

language procedure calls possible at all.

The need for the second separation, between the convention and the language imple-

mentation, may be less obvious. Compiler writers commonly refer to the mechanism by

which procedure calls are made as either the calling convention, or the calling sequence.

Although these two terms are frequently used interchangeably, they are separate concepts and

we treat them as such. Without additional information, the calling convention itself does not

provide enough information to produce an implementation. The calling sequence, on the

other hand, is an implementation of the calling convention. It is a sequence of machine

instructions that implement a procedure call. There may be many calling sequences for a

given calling convention. Furthermore, since the sequence implements the convention, the

caller cannot distinguish between two different calling sequences used by the callee, and vice

versa. Thus, while it is imperative that a caller and a callee use the same calling convention, it

is not necessary that they use the same calling sequence.

4.2.3 Separating Convention from Sequence

An important result of this work is the identification of calling convention and calling

sequence as separate concepts. Although at first this distinction may seem unnatural, it has

many benefits. The reason it seems unnatural is that the two concepts are so closely coupled.

It is impossible to discuss calling sequences without calling conventions. However, the reverse

is not true. By extracting the concept of convention from the calling sequence, we are able to

more accurately model the interaction between procedures and the interaction between sys-

tems software that process procedures.

When discussing calling conventions, we have found it useful to have a litmus test

that helps us identify what features of the procedure call are part of the calling convention,

and what features are part of the calling sequence. We ask the following question:

If I change the implementation of this feature on one side of the procedure call, will

it impact the other side of the call?

If the answer to this question is “yes,” then the feature is part of the calling convention. If

“no,” the feature is part of the calling sequence. For example, if the callee changes where it

Chapter 4: Specifying Procedure Calling Conventions Procedure Calling Conventions 60

stores the values of persistent registers that it uses, the caller need not be changed. Thus, where

these values are stored is a feature of the calling sequence. Conversely, if the callee changes

where it stores its return value, the caller must also be changed so it can properly retrieve the

value upon return. Therefore, the placement of the return value is a matter of calling conven-

tion.

Separating the convention from the sequence is often quite difficult. Conventions are

usually illustrated using sequences, and when considering a convention, it is natural to think

of how it might be implemented—the sequence. However unnatural this process may at first

seem, we have reaped great benefits by performing this delicate separation. The calling con-

vention descriptions that we have developed are more accurate, and can be used for many

applications primarily due to their application independence. A good deal of this indepen-

dence is due to the specification of convention without consideration of sequence. The result

is specifications that describe how procedures must interact at a high level without describing

the implementation of these interactions. Descriptions of such implementations would have

many obvious shortcomings.

4.2.4 Interfaces and Agents

So far, we have mentioned a single procedure call interface. Actually, there are two interfaces:

the procedure call interface and the procedure return interface as shown in Figure 4-3. We

model the actions and responsibilities on each side of these interfaces using agents. An agent

ensures that its side of the interface satisfies the requirements of the calling convention. These

agents are the whom in the definition of the calling convention. For the procedure call inter-

face, there are the caller prologue and callee prologue agents that are responsible for correctly

passing the procedure arguments and constructing an environment in which the callee can

execute. For the procedure return interface, there are the callee epilogue and caller epilogue that

are responsible for correctly passing the procedure return values and restoring the environ-

ment of the caller. The responsibilities of each of the four agents are closely related. The caller

prologue and callee prologue agents must agree on how to pass information, as must the caller

epilogue and callee epilogue. Additionally, actions of the epilogue agents must be symmetric

to the actions of the prologue agents to properly restore the environment (e.g., if the call dec-

Chapter 4: Specifying Procedure Calling Conventions Procedure Calling Conventions 61

rements the stack pointer, the return must increment it). It is precisely these restrictions that

make it difficult to correctly construct a calling sequence.

4.2.5 Addressing

One responsibility of each agent is to maintain the environment in which procedures execute.

Depending on the language and its implementation, the environment can contain arbitrary

information. However, one aspect of the environment that almost all languages are likely to

share is the concept of addressing. Addressing describes how a name in the source language is

bound to a location in the implementation. For example, local variables are commonly found

on the stack, while global variables may be referenced through a global space pointer.

Sometimes, to properly construct an environment for a procedure, the caller must

provide to the callee details about the caller’s environment. For example, in Pascal [KJ74],

where nested procedures can refer to variables in the scope of their containing procedures (up-

level references), the caller must provide the callee with environment information for the

callee to properly implement the scoping rules of the language. Using our litmus test, clearly

the structure of the environment information is part of the calling convention. If the structure

were changed, the callee would need to be changed so it could properly find variables that are

visible to the callee.

Although the structure of information that is transmitted between procedures is a

matter of convention, we have not included it in our convention specifications. Just as it is

Figure 4-3. The role of agents in procedure call and return interfaces.

Caller

Caller Prologue
Agent

Callee Prologue
Agent

Caller Epilogue
Agent

Callee Epilogue
Agent

Callee

Procedure Return

Interface

Procedure Call

Interface

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 62

reasonable to discuss calling convention rules using data types that are never formally defined,

it is also reasonable to specify how information is passed between procedures without defining

its structure. We believe that description of the structure of information is itself an interesting

and difficult problem that is best left as a future research effort.

4.2.6 Activation Frame Layout

An important decision that must be made when implementing a procedure calling conven-

tion is the layout of the procedure activation frame. An activation frame is one of several

implementation choices for storing the information specific to a particular activation of a pro-

cedure. A surprising result of studying calling conventions is that a complete specification of

the calling convention is unlikely to determine the frame layout.

Information that is typically found in a procedure activation frame includes the proce-

dure’s parameters, locations for storing local variables and temporaries, space for saving the

values of persistent registers, and space for any other environment information. Where this

information is found in the frame is determined, in part, by the convention and, in part, by

the implementation. The convention fixes the location of the procedure’s arguments, while it

is up to the implementation to specify where local variables are stored. Thus, any implementa-

tion must make some decisions about frame layout. Section 4.5.2 discusses how this is done

in our implementation.

4.3 The CCL Specification Language
In this section, we present the specification language that we use to describe procedure calling

conventions. Once a convention is specified in CCL, we avoid the pitfalls related to using the

programmer’s reference manual and reverse-engineering the compiler. We present the key fea-

tures of CCL and enough syntax of the language to understand the examples.

4.3.1 Design Philosophy

In designing CCL, there were a number of features that we wanted to be include. First and

foremost, the language had to be processed automatically. Second, we wanted the descriptions

to be natural. Hence, the elements of the language had to reflect concepts common to calling

conventions. Third, the design had to avoid over-specification of conventions. To achieve this,

we tried to exploit the symmetry of the procedure call to eliminate redundancy in the descrip-

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 63

tions. Finally, the feature that received the least priority was the syntax of the language. The

selection of what symbols to use for operators, for example, was only of secondary concern.

We describe the key features of CCL by presenting a simple CCL description. We

develop the example description piece-by-piece as each part of description is presented. This

section concludes with a complete description of our hypothetical calling convention in

Figure 4-5. As with other modules in CSDL, CCL uses an extended ASCII character set and

typographical elements such as bold face, superscripts and special fonts.

4.3.2 Resources

The primary objects in CCL are resources. A resource is simply any location that can store a

value. Examples include registers and memory locations, such as the stack. Since resources

correspond to a machine’s memory locations, CCL models them as arrays. The name of the

resource is bold and indices are usually superscripted. For example, a5 would designate register

five. Memory indices are treated similarly: M1023 to designate address 1023. However, the

combination of the two—such as using a register to compute a memory address—would yield

expressions such as: . Therefore, we also permit indices to be specified within brackets

(‘[’ and ‘]’) to avoid superscripting superscripts: M1023 may be written as M[1023]. This treat-

ment is identical to the mathematics convention of writing as when x is typo-

graphically complicated.

In addition to resources, CCL descriptions use sets. Sets contain elements that are

either integers, resources, or sets. Where possible, CCL uses standard mathematical notation

for building sets. For example, the expression:

{1, 2, 3, 4}

describes the set containing the first four positive integers. It is most useful to define sets of

resources, such as the first four locations of the stack (if a5 is the stack pointer):

{M[a5], M[a5 + 1], M[a5 + 2], M[a5 + 3]}

such expressions can be more concisely expressed by using the range operator (‘:’). An equiva-

lent formulation of the resource set above is: {M[a5:a5 + 3]}. Infinite sets can be constructed

with the use of the special integer infinity (‘∞’). To describe the set of all memory locations

M
a5 12+

e
x

x()exp

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 64

addressable from the stack pointer, use {M[sp:∞]} where ‘sp’ is an alias for the stack pointer.

Such an alias can be introduced using the alias statement:

alias sp ≡ a5

More complicated sets can be constructed using the condition operator (‘|’) that usually is

accompanied by the introduction of a set variable. For example, the expression:

{ M[addr] | addr mod 4 = 0}

describes all of the four-byte-aligned memory locations. In this expression the variable addr is

introduced in the set expression and is then constrained within the condition expression.

Obviously, set variables are indicated by using italics. Such conditions may include the stan-

dard relational operators and set membership (‘∈ ’) bound together using Boolean AND (‘∧ ’).

Finally, in addition to sets, CCL allows for ordered sets (often called lists) by changing the

delimiters to angle brackets (‘<’ and ‘>’): <M[sp:∞]>. Ordered sets define the order in which

elements can be extracted or considered.

CCL descriptions are composed of five sections: a global declaration section and a sec-

tion for each of the four agents (caller prologue, callee prologue, callee epilogue and caller epi-

logue). The global section introduces names that are used in two or more agent descriptions.

An agent description, if present, may include zero or more resource placements and zero or

more view changes. We describe each of these in detail in the following paragraphs.

4.3.3 Global Section

The global section introduces names and defines properties that impact all convention agents.

Three types of statements may be used in the global section: external, persistent, and alias.

An example global section is:

external NVSIZE, SPILL_SIZE, LOCALS_SIZE
persistent {a6, a7, a8, a9}
alias sp ≡ a5

The external statement indicates identifiers that whose values are defined by the outer envi-

ronment (discussed below). The persistent statement identifies those machine resources

whose values must persist1 (be preserved) across a procedure call. Finally, the alias statement,

which we already have seen, introduces more meaningful names for expressions.

1. Persistent resources are often called callee save locations, or non-volatile locations.

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 65

4.3.3.1 Outer Environment

Although CCL is used to capture information about a calling convention, a CCL description

does not contain all necessary information to produce a calling sequence. Indeed, CCL

descriptions are not complete by themselves. CCL descriptions require information from the

outer CSDL environment to complete the descriptions. Information about the machine and

language, such as the size of registers, the base data types and local procedure information,

such as the amount of space needed for temporary variables, and which registers are used, are

provided by other components of the CSDL description system. Four variables that are always

defined by the outer environment are the special resources ARG, RVAL, and the correspond-

ing special resource sizes ‘ARG_TOTAL’ and ‘RVAL_TOTAL’. Since these values are always

defined, they are implicitly declared as external values. All other variables whose values are

provided by the outer environment are declared using the external statement.

4.3.4 Agent Descriptions

The responsibilities agents are specified in each agent’s corresponding section. An agent’s

responsibilities fall into one of two categories: data transfers, and view changes. Thus, each

agent’s section may be composed of zero or more data transfer and view change statements.

Data transfers describe movement of values from one resource to another that the agent must

perform, while view changes describe shifts in an agent’s point-of-view with regard to machine

resources.

4.3.4.1 Data Transfers

The primary responsibility of each agent is to make possible the transmission of information

from the caller to the callee and vice versa. These transmissions are specified using a

data transfer statement within an agent’s section. The data transfer statement always includes

a resources declaration and a map statement. In addition, new aliases, constants, and names

may be introduced in the data transfer statement.

Each parameter or return value must be assigned a resource to communicate the value

across the call. These locations are taken from the set of declared mapping resources. In

declaring these resources, two things must be considered: what resources may be allocated for

data transmission, and in what order may they be allocated. The resources declaration speci-

fies both of these. For example, the statement:

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 66

resources {<a1:4, M[sp:∞]>}

indicates that the first four ‘a’ registers and all stack memory locations may be targets for

moves. The inner set is ordered because once a resource later in the list is used (such as a4),

resources earlier in the list may no longer be considered (such as a2).

Once a set of target resources has been declared, the resources are partitioned into

classes. A class is an ordered set of ordered sets that indicate where to start placing a value. For

example, we could introduce the ‘regs’ class using the following class statement:

class regs ← <<register> | register ∈ <a1:4>>

This binds the ‘regs’ identifier to an ordered set of ordered sets, each of which contains a single

register. This set is equivalent to:

class regs ← <<a1>, <a2>, <a3>, <a4>>

The inner ordered set is used to indicate a list of starting locations if a value cannot be placed

in a single resource.

Once the set of resources has been declared and partitioned into classes, the actual

mapping of values to resources can be specified using the map statement. In its simplest form,

map takes a source resource and maps it to a class. For example, the map statement:

map ARG1 → <regs, mem>

takes a single resource as the source (left hand side) and an ordered set classes as the destina-

tion. In this case, ARG1 would be mapped to a location in the ‘regs’ class, or if none were

available, ARG1 would be mapped to a location in the ‘mem’ class.

During the mapping process several resource attributes are examined and set. A

resource attribute is specified by naming the resource followed by a period, followed by the

name of the attribute. There are four resource attributes in CCL:

• ‘type’: the type of the parameter or return value (defined for ARG and RVAL resources

only).

• ‘size’: the size of the resource in bytes.

• ‘assigned’: a Boolean value, that if true, indicates the resource has been used in a map-

ping.

• ‘unavailable’: a Boolean value, that if true, indicates the resource may not be used in a

mapping.

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 67

The map operator uses the ‘size’, ‘assigned’, and ‘unavailable’ attributes. The ‘type’ attribute is

often used to select one of many possible targets for a mapping. For example, in combination

with the case expression (‘⊥ ’), the lines:

map ARG1→ ARG1.type ⊥ {
char: <regs, mem>,
int: <regs, imem>,
double: <regs, dmem>,

}

select one of three sets of ordered sets based on the value of ARG1’s type and maps ARG1 to

the set.

4.3.4.2 Conditionals and Iteration

As with many languages, CCL has expressions for both conditional evaluation and iteration.

Both types of expressions introduce variables whose scope is the enclosed expression. The uni-

versal quantifier (‘∀ ’) operator iterates over a set, each time binding the variable to an element

of the set. For example, to perform mappings for all arguments, we could use iteration in

combination with map:

∀ argument ∈ <ARG1:ARG_TOTAL>
map argument → <regs, mem>

In this example, the variable argument is bound to each element of the set in order (the set is

ordered), and the statement is evaluated with that binding. Similarly, the existential quantifier

(‘∃ ’) can be used to perform a statement conditionally.

4.3.4.3 Internal Values

The final type of agent statement is the internal statement. In contrast to external, internal

values are defined by the CCL description. The internal keyword is used to introduce a

named integer value. Most often, it is used to compute sizes for various parts of an activation

frame. In our example, we define ‘ARG_SIZE’ using:

internal ARG_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧ M[addr].assigned>)

Expressions on the right-hand-side of ‘←’ may be simple integer expressions or the special

summation operator (‘∑’) used here that sums the values of a set of integers. In this example,

we compute the sum of the sizes of each memory resource whose assigned attribute is set. This

corresponds to the amount of memory that the above map operator used when placing the

arguments.

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 68

At this point, we coalesce our CCL statements presented in this section to yield the

entire data transfer block for the caller prologue of our simple convention. The specification is

shown in Figure 4-4. To review, the two aliases ‘mindex’ and ‘argregs’ are introduced to name

the possible argument memory indices and argument registers, respectively. The set of desti-

nations for placement specified as the registers followed by memory in the resources state-

ment. Three subsets of these resources are defined as ‘regs’, ‘imem’, and ‘dmem’ using the class

statement. The ‘regs’ class contains all argument registers, ‘imem’ contains all four-byte-

aligned memory locations, and ‘dmem’ contains all eight-byte-aligned memory locations. The

map statement, in combination with iteration and the case selection operator, maps all argu-

ments to registers and various memory locations based on the type of the argument. In all

cases, registers are considered first, and then memory. When registers are exhausted, ints are

placed in four-byte-aligned memory while doubles are aligned by eight bytes. Finally, the

amount of memory used by map is computed and placed in the variable ‘ARG_SIZE’ for use

in other parts of the description.

4.3.4.4 View Changes

In addition to data transfers, CCL can describe changes in an agent’s point of view. Such

changes, called view changes, describe shifts in resource names and are an important CCL

innovation. Without view changes, we cannot describe the effects of procedure memory allo-

cation such as stack allocation and register windows.

1. alias mindex ≡ sp:∞
2. alias argregs ≡ a1:4
3. resources {<argregs, M[mindex]>}
4. class regs ← <<register> | register ∈ <argregs>>
5. class imem ← <<M[addr]> | addr ∈ <mindex> ∧ addr mod 4 = 0>
6. class dmem ← <<M[addr]> | addr ∈ <mindex> ∧ addr mod 8 = 0>
7. ∀ argument ∈ <ARG1:ARG_TOTAL>
8. map argument → argument.type ⊥ {
9. char: <regs, M[mindex]>,

10. int: <regs, imem>,
11. double: <regs, dmem>,
12. }
13. internal ARG_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧
14. M[addr].assigned>)

Figure 4-4. The caller prologue.

Chapter 4: Specifying Procedure Calling Conventions The CCL Specification Language 69

When a procedure is called, memory must be allocated somewhere to store the proce-

dure’s arguments and local variables. When a procedure returns, this memory must be deallo-

cated. This space may consist of registers or memory, or a combination of the two. Often, this

allocation takes the form of stack allocation. Since stack allocation requires a change in the

stack pointer, an unfortunate side-effect occurs: all memory locations that are referenced

through the stack pointer change names. For example, say a local variable X is stored at

M[sp + 12]. If, in the process of allocating an activation frame, the stack pointer is decre-

mented by 48, the name for X must change to M[sp + 60] to reflect the shift in the value of

‘sp’. Such shifts happen in all calling conventions, but are often difficult to express.

In CCL, we could model shifts in names using a data transfer statement. However,

this would imply that the values actually moved and would cause moves to occur. Instead,

CCL allows such shifts to be expressed using view changes that, in turn, are mapped to actions

that cause such shifts to occur without moving the data. For example, in our simple conven-

tion, allocation is performed using the stack. Within a view change statement, the becomes

keyword can be used to express this shift for a single location:

M[sp + 12] becomes M[sp + 60]

When many such changes in view occur, iteration can be used:

∀ offset ∈ {-∞:∞}
M[sp + offset] becomes M[sp + offset + 48]

This corresponds to a push of a 48-byte activation frame onto the stack.

The view change concept encompasses more than just stack allocation. Any action

that causes names to change can be described using changes in view. The register window

mechanism on the SPARC microprocessor is an example. When the register window slides,

the contents of the registers appear to move because the names of the registers have changed.

This shift can be expressed in exactly the same way that stack pushes and pops are expressed.

4.3.4.5 Symmetry

The data transfer and view change statements are sufficient to describe the agent responsibili-

ties of complex calling conventions. However, such descriptions would be repetitive and

therefore more error-prone without the use of CCL symmetry. Procedure calls are highly sym-

metric; many actions done in the call must be “undone” in the return. CCL descriptions

exploit this symmetry in both view changes and data transfers.

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 70

An action is defined to be symmetric if the action is performed in both an agent and

the agent’s symmetric agent. The caller prologue’s symmetric agent is the caller epilogue, while

the callee prologue’s symmetric agent is the callee epilogue. Both view changes and data trans-

fers are considered symmetric unless they are tagged with the asymmetric keyword.

Symmetry is used most often with view changes. When the caller prologue causes a

view change by decrementing the stack pointer, the callee epilogue usually is responsible for

performing the symmetric action of incrementing the stack pointer by the same amount.

When this occurs, only one view change needs to be specified. The corresponding view

change in the agent’s symmetric agent is assumed to occur. Although symmetry may be used

in data transfer statements, we have found no use for it. Initially, we had used symmetric data

transfers to save and restore the values of persistent registers. In further refinements of the

descriptions, we removed such symmetric data transfers because they were found to be inde-

pendent of the calling convention (they define where in the activation record such registers

should be stored, which is a calling sequence detail).

4.3.5 Summary

CCL descriptions are composed of a global section and four agent sections. These descrip-

tions manipulate resources and sets to define the responsibilities of each of the calling conven-

tion agents. Data transfers are used to define the placement of arguments and return values.

View changes are used to define how changes in the machine state changes an agent’s point of

view. Finally symmetry is used to reduce the amount of repetitive code by exploiting the natu-

ral symmetry of procedure calls. We conclude this section with the complete specification for

the hypothetical calling convention shown in Figure 4-5.

4.4 The Formal Model

4.4.1 P-FSA Representation

We use finite state automata to model each placement in a calling convention. The use of

FSA’s for modeling parts of a compiler, and as an implementation tool, has a long and success-

ful history. For example, FSA’s have often been used to implement lexical analyzers [JPAR68].

More recently, Proebsting and Fraser [PF94], and Muller [Mul93] have used finite state

automata to model and detect structural hazards in pipelines for instruction scheduling.

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 71

An example FSA that we use to model calling convention placement is shown in

Figure 4-6. This FSA models the placement of procedure arguments for the simple calling

convention. A placement FSA (P-FSA) takes a procedure’s signature as input and produces

locations for the procedure’s arguments as output. The automaton works by moving from

1. external NVSIZE, SPILL_SIZE, LOCALS_SIZE
2. persistent {a6, a7, a8, a9}
3. alias sp ≡ a5
4. caller prologue
5. view change
6. ∀ offset ∈ {−∞:∞}
7. M[sp + offset] becomes M[sp + offset + ARG_SIZE]
8. end view change
9. data transfer (asymmetric)

10. alias mindex ≡ sp:∞
11. alias argregs ≡ a1:4
12. resources {<argregs, M[mindex]>}
13. internal ARG_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧
14. M[addr].assigned>)
15. class regs ← <<register> | register ∈ <argregs>>
16. class imem ← <<M[addr]> | addr ∈ <sp:∞> ∧ addr mod 4 = 0>
17. class dmem ← <<M[addr]> | addr ∈ <sp:∞> ∧ addr mod 8 = 0>
18. ∀ argument ∈ <ARG1:ARG_TOTAL>
19. map argument → argument.type ⊥ {
20. char: <regs, M[mindex]>,
21. int: <regs, imem>,
22. double: <regs, dmem>,
23. }
24. end data transfer
25. end caller prologue
26. callee prologue
27. view change
28. ∀ offset ∈ {-∞:∞}
29. M[sp + offset] becomes
30. M[sp + offset + SPILL_SIZE + LOCALS_SIZE + NVSIZE]
31. end view change
32. end callee prologue
33. callee epilogue
34. data transfer (asymmetric)
35. resources {a1:2}
36. map RVAL1 → <<<a1>>>
37. end data transfer
38. end callee epilogue
39. caller epilogue
40. end caller epilogue

Figure 4-5. A CCL description of the calling convention of Figure 4-2.

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 72

state to state as the location of each value is determined. When a transition is used to move

from one state to the next, information about the current parameter is read from the input,

and the resulting placement is written to the output.

The states of the machine represent that state of allocation for the machine resources.

For example, the state labeled q2 represents the fact that registers a1 and a2 have been allo-

cated, but that registers a3, a4, and stack locations have not been allocated. A transition

between states represents the placement of a single argument. Since arguments of different

types and sizes impose different demands on the machine’s resources, we may find more than

one transition leaving a particular state. In our example, q8 has three transitions even though

two of them (int and double) have the same target state (q4). This duplication is required since

the output from mapping an int is different from the output from mapping a double.

Modeling the allocation of an infinite resource, such as the stack, using an FSA poses

a problem, however. As mentioned above, the state indicates which resources have been allo-

cated. For finite resources, this is easily accomplished by maintaining a bit vector. When a

resource no longer may be used, the associated bit is set to indicate this. For an infinite

resource this scheme cannot work if we hope to use an FSA since this would require a bit vec-

tor of infinite length. To simplify the problem, we impose a restriction on infinite resources:

their allocation must be contiguous. Thus, for an infinite resource I = { i1, i2, …} , we can

Figure 4-6. P-FSA for transmission of parameters for a simple calling convention.

q0 =
0000
000

q1 =
1000
000

q2 =
1100
000

q3 =
1110
000

q4 =
1111
000

q5 =
1111
001

q6 =
1111
010

q7 =
1111
011

q8 =
1111
100

q9 =
1111
101

q10 =
1111
110

q11 =
1111
111

c,i c,i c,i

d

c c

c

cc

c

ii d

d
i

c,i

d

d

i

i

i c
d

i

dd

i

d d
d

d

c

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 73

store the allocation state by maintaining an index p whose value corresponds to the index of

the first available resource in I. Because the allocation of I must be contiguous, p partitions the

resources since a resource ij is unavailable if j < p or available if j ≥ p. For instance, if the stack

is the infinite resource, p can be considered the stack pointer.

Nevertheless, we still have a problem. Although for a particular machine, the value of

p must be finite, the resulting FSA could have as many as 232 stack allocation states for a

32-bit machine. However, we can significantly reduce this number by observing that the deci-

sion of where to place a parameter in memory is not based on p, but rather on alignment

restrictions. For our example, we care only if the next available memory location is one-, four-,

or eight-byte aligned. Consequently, we can capture the allocation state of the machine with

three bits that distinguish the memory allocation states. We call these the distinguishing bits

for infinite resource allocation.

Handling pass-by-value structures creates a complimentary problem. Since only the

“alignment state” of the stack is of interest, structures that affect the state of the P-FSA differ-

ently must use different transitions. So for a convention that requires structures to be passed

in 8-byte aligned memory locations, all structures of size n where n mod 8 = 1 share the same

transition out of a given state because they leave the alignment, p, in the same state. There-

fore, the number of transitions leaving a state is limited by the alignment restrictions of the

machine.

Placement functions are described in terms of finite resources, infinite resources, and

selection criteria. A set of finite resources R = { r1, r2, …, rn} is used to represent machine reg-

isters, while an infinite resource I = { i1, i2, …} 1 is used to represent the stack. The selection

criteria C = { c1, c2, …, cm} correspond to characteristics about arguments (such as their type

and size) that the calling convention uses to select the appropriate location for a value. We

encode the signature of a procedure with a tuple w ∈ (C*, C*). Each state q in the automaton

is labeled according to the allocation state that it represents. The label includes a bit vector v

of size n that encodes the allocation of each of the finite resources in R. Additionally, to

express the state of allocation for the stack, we include d, the distinguishing bits that indicate

the state of stack alignment. So, a state label is a string vd that indicates the resource allocation

1. This can easily be extended to model more than one infinite resource.

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 74

state. In our example convention, n = 4, and the length of the string d () is 3. So, each state

is labeled by a string from the language { 0, 1} 4{ 0, 1} 3. The output of M is a string s ∈ P,

where

which contains the placement information.

Since the P-FSA produces output on transitions, we have a Mealy machine [Mea55].

We define a P-FSA, M, as a six-tuple1 M = (Q, Σ, ∆, δ, λ, q0), where:

• Q is the set of states with labels representing the allocation state of

machine resources,

• the input alphabet Σ = C, is the set of selection criteria,

• the output alphabet ∆ = P, is the set of placement strings,

• the transition function δ:Q × Σ → Q,

• the output function λ:Q × Σ → ∆+, and

• q0 is the state labeled by 0nw where , and w is the initial state of d.

We also define δ̂:Q × Σ∗ → Q and λ̂:Q × Σ∗ → ∆* which are just string versions2 of δ and λ,

respectively. So, for our example, we have

M = (Q, { char, int, double} , { a1, a2, a3, a4}∪{ 0, 1} 3, δ, λ, q0)

where Q and δ are pictured in Figure 4-6 and λ is defined in Table 4-1. Note that we have

modified the traditional definition of λ to allow multiple symbols to be output on a single

transition. This reflects the fact that arguments can be located in more than one resource. For

example, in state q5 on an int, Table 4-1 indicates that M produces the string of four symbols

100 101 110 111 that designates four bytes that are four-byte aligned, but are not eight-byte

aligned.

The signature:

int phred(double, double, char, int);

1. We use the notation of [HU79] for finite state automata and regular expressions. We use letters early
in the alphabet (a, b, c) to denote single symbols. Letters late in the alphabet (w, x, y, z) will denote
strings of symbols.

2. Defined by Hopcroft and Ullman [HU79].

d

P R 0 1,{ } d∪=

0 1{ , } n 0 1{ , } d

w d=

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 75

will take the P-FSA in Figure 4-6 along the path q0→q2→q4→q5→q4 producing the string

(a1 a2) (a3 a4) (000) (100 101 110 111) along the way. The parentheses in the output string are

required to determine where the placement of one argument ends and the next argument’s

placement begins. From the string, we can derive the placement of the phred’s arguments. The

first double is placed in registers a1 and a2, the second in registers a3 and a4, the char at the

stack location with offset zero and the int at the stack location with offset four.

4.4.2 Automatic P-FSA Construction

In this section, we present an algorithm for automatically constructing P-FSA’s. For the

moment, we assume the existence of a function f :Σ* → ∆∗ . f computes the same value as M.

Since f and M are equivalent, why construct M at all? The answer is that f may have undesir-

able properties. For instance, M may be used in a context, such as a compiler, where perfor-

mance is an issue. If f is implemented as an interpreter, the time it takes to compute a

placement may not satisfy the performance constraints. Additionally, by using a P-FSA, there

are several properties (such as an upper bound on M’s execution time) we can prove about the

P-FSA that we cannot prove about f.

We construct the P-FSA by performing a depth-first-traversal of the states in Q to

determine the set of reachable states from q0. At each state q, the states that are reachable from

q in one step are determined by using each element of { wc | c ∈ C} as input to f. Each newly

reachable state q' is added to Q and is subsequently visited by BUILD-P-FSA (see Figure 4-7).

Finally, the appropriate additions to δ and λ are made for q'. BUILD-P-FSA also uses an auxil-

iary function STATE-LABEL:P → Q. STATE-LABEL takes an output string from M and com-

putes the label for the state that M was in when the input was exhausted.

λ q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

char a1 a2 a3 a4 000 001 010 011 100 101 110 111

int a1 a2 a3 a4 m1
a m2

b m2 m2 m2 m1 m1 m1

double a1a2 a2a3 a3a4 m3
c m3 m3 m3 m3 m3 m3 m3 m3

Table 4-1. Definition of λ for example P-FSA.

a. m1 = 000 001 010 011
b. m2 = 100 101 110 111
c. m3 = 000 001 010 011 100 101 110 111

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 76

4.4.2.1 Construction Algorithms

We define the algorithm Build-P-FSA in Figure 4-7. The algorithm starts with the initial state

q0 as the only element of Q. Since there are no transitions yet, λ and δ have no rules. A call to

Build-P-FSA takes three parameters, q, w, and x. q represents the state for Build-P-FSA to

visit, while w represents the input string such that (q0, w) yields (q, ε), and x is output string

upon reaching q. From this definition, the initial call to Build-P-FSA must be

Build-P-FSA(q0, ε, ε).

In the algorithm for STATE-LABEL we start with state q0. As STATE-LABEL reads each

symbol from the string, it encounters either the name of a finite resource, or a symbol repre-

senting the distinguishing bits of p. In the finite case, the bit corresponding to the resource is

set in the finite resource vector. In the infinite case, the distinguishing bits of the state are set

to the input symbol that was read. At the end of the input, all finite resources that have been

read have their bits set to indicate they are unavailable, and the distinguishing bits indicate the

last set of distinguishing bits read. To complete the computation, we need to move the infinite

resource index to the next available resource (it currently points to the last unavailable one)1.

The result of this computation is precisely the label for the final state of M for output w since

it indicates which resources are available for allocation. The complete algorithm is shown in

Figure 4-8.

function BUILD-P-FSA(q, w, x)
// q ∈ Q, w ∈ Σ *, x ∈ ∆ * | λ̂(w) = x
for each criterion c ∈ C do

y ← f(wc); // compute placement of signature wc
q’ ← STATE-LABEL(y); // compute state label from placement
if q’ ∉ Q then

Q ← Q ∪ {q’};
BUILD-P-FSA(q’, wc, y);

end if
a ← b | xb = y; // set a as the suffix of y not in x
add λ(q, c) = q’;
add δ(q, c) = a;

end for
end function

Figure 4-7. Algorithm to build a P-FSA.

1. An ordered list of values for p’s distinguishing bits is known so that we can perform this calculation,
although this is usually just an increment.

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 77

Our construction is now complete, except the definition of the function f. We supply

f ’s definition using an interpreter. The interpreter takes as input a CCL specification, infor-

mation about a procedure’s signature and some additional information about the target

machine, and produces the necessary mapping information to properly call the given proce-

dure. Thus, this interpreter can be used to implement f in our algorithm above. In

Section 4.5.1, we present the interpreter’s use in an implementation.

4.4.3 Completeness and Consistency in P-FSA’s

Applications, such as compilers and debuggers, which generate, or process procedures at the

machine-language level require knowledge of the calling convention. Until now, the portion

of such an application’s implementation that concerned itself with the procedure call interface

was constructed in an ad-hoc manner. The resulting code is complicated with details, difficult

to maintain, and often incorrect. In our experience, we have encountered many recurring dif-

ficulties in the calling convention portion of a retargetable compiler. There are three sources

for these problems: the convention specification, the convention implementation, and the

implementation process. We address each of these in the following paragraphs.

Many problems arise from the method of convention specification. Often, no specifi-

cation exists at all. Instead the native compiler uses a convention that must be extracted by

reverse engineering. In the cases where a specification exists, it typically takes the form of writ-

ten prose, or a few general rules (e.g., our example description in Figure 4-2). Such methods of

specification have obvious deficiencies. Furthermore, even if we have an accurate method for

function STATE-LABEL(w) // w ∈ ∆ *

z ← 0n; // z is the finite resource vector
while w ≠ ε do

// extract the first symbol from w
define a and x such that ax = w;
w ← x; // set w to the rest of w
if a ∈ R then // for finite resources:

// mark it as used
set a’s corresponding bit in z;

else // for infinite resources:
d ← a; // keep the last one encountered

end if
end while
d ← d + 1; // set d to the next resource
return zd; // return state label made of z and d

end function

Figure 4-8. Definition of STATE-LABEL.

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 78

specifying a convention, it still may be possible to describe conventions that are internally

inconsistent, or incomplete. For example, the convention may require that more than one

procedure argument be placed in a particular resource. Another possibility is that the specifi-

cation may omit rules for a particular data type, or combination of data types.

Those problems that do not stem from the specification result from incorrect imple-

mentation of the convention. Many of the same problems in the specification process also

plague the implementation. Many conventions have numerous rules, and exceptions that

must be reflected in the implementation. Another difficulty is that the implementation may

require the use of the convention in several different locations. Maintaining a correspondence

between the various implementations can itself be a great source of errors. Finally, this prob-

lem is exacerbated by the fact that the implementation frequently undergoes incremental

development. Rather than taking on the chore of implementing the entire convention at once,

a single aspect of the convention, such as providing support for a single data type, is tackled.

After successfully implementing this subset, the next increment is tackled. During this pro-

cess, some aspect of the first stage may break due to the interactions between the two pieces.

The result of these observations is that there are several properties that we would like

to ensure about a specification and implementation. The above discussion motivates the fol-

lowing categories of questions:

• Completeness:

— Does the specified convention handle any number of arguments?

— Does the convention handle any combination of argument types?

• Consistency:

— Does the convention map more than one argument to a single machine resource?

— Do the caller and callee’s implementations agree on the convention?

Many questions like these can be answered using P-FSA’s. The following sections show how

we can prove certain properties about CCL specifications that ensure desirable responses to

the above questions.

4.4.3.1 Completeness

The completeness properties address how well the convention covers the possible input cases.

A convention must handle any procedure signature. If we could guarantee that the convention

was complete, or covered the input set, then we could answer the completeness questions

Chapter 4: Specifying Procedure Calling Conventions The Formal Model 79

posed in the previous section. We can determine if a convention is complete by looking at the

resulting P-FSA. For example, will the convention work for any combination of argument

types? The answer lies in the P-FSA transitions. For the convention to be complete, each state

q ∈ Q must have δ(q, c) defined for all c ∈ C.

Using P-FSA’s, we can guarantee that no incomplete convention will go undetected.

For an incomplete convention K to not be detected, it would first have to be constructed

using our algorithm. Assume such a P-FSA M exists for K. Then there must be some state qk

that is reachable from q0 but does not have δ(qk, a) defined for some a ∈ C. Let Wk denote

the set of all strings x such that δ̂(q0, x) = qk. That is, Wk is the set of strings that take M from

state q0 to qk. Thus, for all strings x such that x ∈ Wk, xa represents a signature that K does

not cover. However, during construction, BUILD-P-FSA visited state qk with some string w

such that δ̂(q0, w) = qk. Thus, w must be in Wk and must not be covered by K. Since

BUILD-P-FSA calls f (wc) for all c ∈ C, f will be called using f (wa). Since wa is not covered by

K, f (wa) will be undefined. At this point the construction process will signal that K is incom-

plete.

4.4.3.2 Consistency

The consistency properties address whether the convention is internally and externally consis-

tent. A convention is internally consistent if there is no machine resource that can be assigned

to more than one argument. A convention is externally consistent if the caller and callee agree

on the locations of transmitted values. In our model, we detect internal inconsistency, and pre-

vent external inconsistency.

To detect internal inconsistencies, we again turn to the P-FSA. If the convention only

used finite resources, detecting a cycle in the P-FSA would be sufficient to detect the error.

However, when infinite resources are introduced, so are cycles. We cannot have an internal

inconsistency for an infinite resource since p is defined to be monotonically increasing. We

detect finite resource inconsistencies in the following manner. An inconsistency can occur

when there is a transition from some state qj to qk where bit i in the finite bit vector is 1 in qj,

but 0 in qk. At this point, M has lost the information that resource ri was already allocated.

Chapter 4: Specifying Procedure Calling Conventions Use in a Compiler 80

We can detect this change by comparing all pairs of bit vectors v1, v2 such that v1 labels qj, v2

labels qk and δ(qj, c) = qk for some c ∈ C. To do the comparison, we compute

v3 = (v1 ⊕ v2) ∧ v1

v1 ⊕ v2 selects all bits that differ between v1 and v2. We logically AND this with v1 to deter-

mine if any set bits change value. Thus, if v3 has any bit set, we have an inconsistency.

Our convention specification language prevents external inconsistencies in the calling

convention. A convention specification only defines the argument transmission locations

once. Although both the caller and the callee must make use of this information, the specifica-

tion does not duplicate the information. Since we only have a single definition of argument

locations, we only construct a single P-FSA to model the placement mapping. This single

P-FSA is used in both the caller and callee. Thus, we prevent external inconsistencies by

requiring the caller and callee use the same implementation for the placement mapping.

4.5 Use in a Compiler
In this section, we present how the information from our CCL descriptions can be used to

generate calling sequences for an optimizing compiler.

4.5.1 The Interpreter

We have implemented an interpreter for the CCL specification language. The interpreter’s

source is approximately 2500 lines of Icon code [GG90]. The interpreter takes as input the

CCL description of a procedure calling convention, a procedure’s signature, and some addi-

tional information about the target architecture, and produces locations of the values to be

transmitted, in terms of both the callee and the caller’s frame of reference.

We have developed CCL specifications for the following machines: MIPS R3000

[KH92], SPARC [Sun87], DEC VAX-11 [Dig78], Motorola M68020 [Mot85], and Motor-

ola M88100 [Mot88]. Each of these CCL specifications is approximately one page in length.

Using the specification for the MIPS, and the CCL interpreter, we constructed a P-FSA that

implements the MIPS calling convention. The MIPS P-FSA uses only 70 out of a possible

512 states (the state label has nine bits), but requires up to 25 transitions for each state to

implement the selection criteria for the C programming language. Since the MIPS convention

has more machine resource classes and alignment requirements than any of the other

Chapter 4: Specifying Procedure Calling Conventions Use in a Compiler 81

machines, it represents the most complicated convention we have. For machines that pass pro-

cedure arguments on the stack with no alignment restrictions, such as the VAX-11, the FSA’s

contain only a few states.

For comparison purposes, we have examined the calling convention specific code for a

retargetable compiler. The MIPS implementation requires 781 lines of C code, while the

SPARC implementation has 618 lines. This code is one of the most complex sections of the

machine-dependent code. This code is replaced by the P-FSA tables and a simple automaton

interpreter.

4.5.2 Realizing the Calling Sequence

In our compiler, the code for the procedure bodies is generated without knowledge of the call-

ing convention. For a callee, the optimizer treats formal parameters as local variables. It assigns

each parameter either a register or a memory location, based on the parameter’s predicted ref-

erence frequency. Thus, although an established convention for where values cross the proce-

dure call interface exists, the code generated by our compiler for a procedure’s body may not

conform to the convention.

To correct this problem, instructions are placed before and after the callee’s body, and

before and after the call site in the caller. We call these instructions the caller/callee prologue/

epilogue sequences. It is these sequences of instructions that are collectively called the calling

sequence. The sequences introduce four new interfaces shown in Figure 4-9. In each

sequence, the instructions transform a convention interface to a code body interface or vice

versa. Since these sequences of instructions are used to “attach” the procedure bodies to the

convention interfaces, they correspond to the agents, shown in Figure 4-3, of our high-level

model.

An agent’s responsibilities fall into each of three categories: allocation or deallocation

of storage space, movement of values from their locations in the first interface to locations in

the second interface, and the construction/restoration of procedure execution environments.

Hence, to generate an agent’s actions, we must have information about where the calling con-

vention expects values, what space to allocate or free, and the procedure’s environment struc-

ture. We can automatically generate the first two.

Chapter 4: Specifying Procedure Calling Conventions Use in a Compiler 82

To illustrate our technique, we show how to generate the instruction sequence for one agent.

The instruction sequences that correspond to the other three agents are generated exactly the

same way. For our example, we focus on the prologue callee agent for the procedure warp

introduced in Section 4.2.1. Again, warp’s signature:

int warp(char p1, int p2, int p3, double p4);

Recall that for our hypothetical machine, warp’s arguments are placed by the caller in

locations a1, a2, a3, M[sp:sp+7]. Assume that in generating warp’s body, the optimizer uses two

persistent registers, allocates 12 bytes of memory for local variables (including warp’s argu-

ments) and uses eight bytes of spill space. One possible frame layout is shown in Figure 4-10.

Figure 4-10(a) shows the generic layout for any procedure, while Figure 4-10(b) shows warp’s

layout using this scheme. The relative locations of the temporary spill space, local variable

space and persistent register save space are determined by the optimizer. The optimizer pro-

vides the locations where the callee body expects values. These are listed in the second column

of Table 4-2. These locations represent an agreement between the callee body and the callee

prologue agent.

The optimizer calls the P-FSA interpreter with warp’s signature and values of the exter-

nal variables:

[SPILL_SIZE=8, LOCALS_SIZE=12, NVSIZE=8,

(ARG1, type:char, size:1), (ARG2, type:int, size:4), (ARG3, type:int, size:4),

(ARG4, type:double, size:8)]

Figure 4-9. Calling sequence locations.

Caller Body

Caller Epilogue
Sequence

Caller Prologue
Sequence

Sequence-to-body

Interface

Calling Convention Interface

Callee Prologue
Sequence

Callee Body

Callee Epilogue
Sequence

Caller Body

Chapter 4: Specifying Procedure Calling Conventions Use in a Compiler 83

The P-FSA returns view changes, a list of argument locations that correspond to the calling

convention, and a list of persistent registers:

[(∀ offset ∈ {-∞:∞}, M[sp + offset] : M[sp + offset + 32]),

[(ARG1, a1), (ARG2, a2), (ARG3, a3), (ARG4, M[sp+32:sp+39])],

[persistent: a6, a7, a8, a9]]

In this example, the view change occurred before the list of locations. Therefore, the locations

reflect this fact.

View change information corresponds to the allocation or deallocation of storage

space. This view change indicates that any memory location’s address that contains a valid

value for offset, shifts down by 32 bytes. Since offset can take on any positive or negative value

(-∞:∞), this corresponds to all addresses relative to the stack pointer. Thus, a decrement of the

stack pointer by 32 bytes is needed. This allocation of stack space will appear as a view change

since it changes the names of all locations referenced by the stack pointer. A table is consulted

for each view change in the CCL description. The table maps all view changes to valid

machine instructions.

After the view change has been performed, the necessary moves must be made to

transform the agreement between the caller prologue agent and callee prologue agent to the

agreement between the callee prologue agent and the callee body. Table 4-2 summarizes the

location information. Column one shows the locations returned by the P-FSA. Column two

shows the locations that the optimizer supplies. Column three, which can be trivially derived

Figure 4-10(a). Generic Frame Layout. Figure 4-10(b). warp’s Frame Layout.

Figure 4-10. A possible procedure activation frame structure.

new
frame

sp

outgoing arguments

local variables

temporary spill
locations

 non-volatile memory
save space

return address

incoming arguments

caller’s frame

stack

0

12

20

28
32

40

local variable 1
register a2 (p2)
local variable 2

temporary spills

register a6

register a7

return address

p4

warp’s caller’s frame

stack

Chapter 4: Specifying Procedure Calling Conventions Use in a Compiler 84

from columns one and two, indicates the necessary actions. Each of these moves is a register/

memory to register/memory move. A table of available move instructions is consulted to

determine the necessary instructions to be inserted into the callee prologue’s sequence.

After the agent’s actions are determined, the list of sources and destinations must be

examined to determine if there are any dependencies. If a source is also a destination, the

move containing the source must be performed before the move containing the destination,

otherwise the source value will be lost. It is not uncommon for a circularity to exist. For exam-

ple, if a1 → a2 and a2 → a1, we must introduce a third location to break the circularity:

a1 → temp, a2 → a1, temp → a2. Either an available register or a memory location must be

used to temporarily hold one of the values. In our compiler, we usually have a register avail-

able.

At this point, the callee prologue instruction sequence is complete. So far, we have not

addressed instruction sequence efficiency. Because of the frequency of procedure calls, gener-

ating efficient instruction sequences is an important feature of optimizing compilers. In our

compiler, the resulting instruction sequences are processed by the optimizer. Thus, although

the instruction sequences that are initially generated by this process are naive, they benefit

from thorough optimization just as other code does. The resulting code is as good, if not bet-

ter, than the code generated by our handwritten version of our compiler. Often, the code

Convention

Callee Prologue
Agent/Callee
Agreement

Callee Prologue
Agent Actions

A
rg

u
m

en
ts

p1:a1 p1:a3 a1 → a3

p2:a2 p2:M[sp+4:sp+7] a2 → M[sp+4:sp+7]

p3:a3 p3:a4 a3 → a4

p4:M[sp+32:sp+39] p4:a1,a2 M[sp+32:sp+39] → a1,a2

P
er

si
st

en
t

a6 M[sp+20:sp+23] a6 → M[sp+20:sp+23]

a7 M[sp+24:sp+27] a7 → M[sp+24:sp+27]

a8 a8 —

a9 a9 —

Table 4-2. Determining agent actions from placement information.

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 85

improves because the additional peephole optimization phase that is performed after the call-

ing sequence instructions are generated can remove unnecessary register-to-register moves.

Clearly, P-FSA’s are very useful for generating code in compilers. We have shown how

we can use CCL descriptions to build P-FSA’s that can subsequently be used in the implemen-

tation of a compiler. Code based on such formalisms has many advantages. However, the use-

fulness of P-FSA’s are not limited to code generation. In the next section, we illustrate how P-

FSA’s are used to build target-sensitive test suites for compilers. Using CCL descriptions for

such a variety of applications is only possible because CCL specifications exhibit such a degree

of application-independence.

4.6 Construction of Diagnostic Programs
Building compilers that generate correct code is difficult. To achieve this goal, compiler writ-

ers rely on automated compiler building tools and thorough testing. Automated tools, such as

parser generators, take a specification of a task and generate implementations that are more

robust than hand-coded implementations. Conversely, testing tries to make hand-coded

implementations more robust by detecting errors. In this section, we discuss how CCL

descriptions can be used to make compilers more robust without requiring that the compiler’s

implementation use CCL [BD96b].

4.6.1 Test Vector Selection

To test a compiler’s implementation of a calling convention, we must select a set of programs

to compile. To exercise the calling convention, each test program must contain a caller and a

callee procedure. For the purpose of testing the proper transmission of program values

between procedures, the signature of the callee uniquely identifies a test case. Thus, two dif-

ferent programs, whose callees’ signatures match, perform the same test. Therefore, the prob-

lem of generating test cases reduces to the problem of selecting signatures to test.

Selecting which procedure signatures to test is a difficult problem. Obviously, one

cannot test all signatures since the set of signatures, S = {(C*, C*)} , is infinite. However, since

we can model the function that computes the placement of arguments as an FSA, there must

be a finite number of states in an implementation to be tested. This is the case for any imple-

mentation, including those that do not explicitly use FSA’s to model the placement function.

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 86

The problem of confirming that an implementation properly places procedure argu-

ments is equivalent to experimentally determining if the implementation behaves as described

by the P-FSA state table. This problem is known as the checking experiment problem from

finite-automata theory [Hen64, Koh78]. There are numerous approaches to this problem,

most of which are based on transition testing. Transition testing forces the implementation to

undergo all the transitions that are specified in the specification FSA.

An obvious first approach to generating test vectors using the P-FSA specification is to

generate all vectors whose paths through the FSA are acyclic and those whose path ends in a

cycle1. This solution insures that each state q is visited, and each transition δ(q, a) is traversed.

For an FSA with few states, and a small input alphabet, this may be acceptable. However, the

number of such paths for an FSA is . To illustrate the characteristics of P-FSA’s,

Table 4-3 contains profiles for five P-FSA’s that we have built from CCL descriptions. For

complex conventions, like the MIPS and SPARC, the number of transitions, and more

important, the number of states can be large. For the MIPS, this results in an upper bound of

 test vectors. In practice, the number of test vectors is closer to 108 vectors.

However, this is still too many to run feasibly.

Another, simpler approach is to guarantee that each transition is exercised at least

once. Since there are no more than transitions, the number of test vectors that this

generates is not unreasonable. However, this method results in poor coverage that does not

1. We define a path that ends in a cycle to be a cyclic path wa where the path w is acyclic.

Machine
Allocation
Vector Bits

Memory
Partition Bits

Longest
Acyclic Path

DEC VAX 0 0 1 3 3 0

M68020 (Sun) 0 2 4 24 6 3

SPARC (Sun) 6 3 9 90 10 8

M88100 (Motorola) 8 3 72 720 10 15

MIPS R3000 (DEC) 6 3 70 772 25 11

Table 4-3. P-FSA profiles for several calling conventions.

O Σ Q()

2512 2.3
22×10=

Q δ Σ

Q Σ⋅

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 87

inspire confidence in the test suite. For example, for the P-FSA in Figure 4-6, the three signa-

tures:

void f(double, double);

void f(int, int, int, int);

void f(int, double);

cover all int and double transitions leaving states q0–2. This leaves the signature:

void f(double, int);

untested. Clearly such a test should be included in the suite. To further illustrate the problem,

consider the FSA specification shown in Figure 4-11(a). An erroneous implementation,

shown in Figure 4-11(b), contains an extra state q1’ that is reached on initial input b. The two

strings, aaa and bbb completely cover the specification FSA transitions. Unfortunately, these

test vectors will not detect that the implementation has an additional (fault) state. Thus, it is

not sufficient to include only test vectors that cover the transition set.

An alternative, which falls between the simple transition approach and the acyclic

path approach, we call the transition-pairing approach. In transition pairing, we examine each

state in the specification FSA. As shown in Figure 4-12, a state has entering and exiting transi-

tions. For each state, we include a test vector that covers each pair of entering and exiting tran-

sitions. This eliminates the faulty state detection problem illustrated in Figure 4-11. To

illustrate how, consider the test vectors this process generates: While examining state q1, tran-

sition-pairing will add the substrings aa, ab, ba, and bb to the set of substrings used to gener-

ate test vectors. Since the context that these substrings are be used is q0, they contribute

prefixes to the test vector set. Upon exercising q1 using the prefix ba, the implementation FSA

Figure 4-11(a). Specification FSA. Figure 4-11(b). Implementation FSA.

Figure 4-11. Example FSA where a fault will not be detected.

q0 q1 q2

a/0
a/0

b/1

a/1

b/0

b/1

q0 q1 q2

q1’

a/0 a/1
a/0

b/1

b/1

b/0
b/0a/0

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 88

will generate incorrect output: 10 instead of 11. This difference can be identified, and the

faulty state detected.

In addition to such fault detection, transition-pairing provides tests that have a similar

characteristic to the acyclic method: transitions are tested in “all” the contexts that they can be

applied. Although there are many combinations that are not tested, they are similar to ones

included in the set. For example, in the simple FSA pictured in Figure 4-6, we could have a set

of test vectors that includes the vector double double double to exercise the state q4 with the

transition pair ((q2, double), (q4, double)). Such a set would not need to include int int double

double to cover the same transition pair.

This method of test vector generation provides a complete coverage of transitions in

the specification FSA. Further, the tests reflect the context sensitivity that transitions have.

This allows for some erroneous state and transition detection, while significantly reducing the

number of test vectors. The test vector sizes are significantly smaller than the acyclic method,

while still providing a significant confidence level.

An algorithm for generating transition-pair paths is shown in Figure 4-13. The algo-

rithm performs a depth-first search of the FSA state graph. Each time a transition (q, a) is

Figure 4-12. Entering and exiting transitions for a state.

Machine Transition Paths Transition-Pair Paths Acyclic Paths

DEC VAX 3 12 3

M68020 (Sun) 24 324 96

SPARC (Sun) 224 7,434 > 108

M88100 (Motorola) 720 22,412 > 108

MIPS R3000 (DEC) 772 5,655 8x108

Table 4-4. Sizes of test suites for various selection methods.

qn

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 89

encountered, it is marked. This mark indicates that all paths that go beyond (q, a) have been

visited. When the algorithm reaches a state qn on transition (qm, a), each transition (qn, b)

where b ∈ Σ is visited whether or not it is marked. This causes all pairs of transitions

((qm, a), (qn, b)) to be included. These pairs represent all combinations of one entering transi-

tion with all exiting transitions. Because the algorithm is depth-first, each entering transition

is guaranteed to be visited. Thus, all combinations of entering and exiting transitions are

included.

Work related to the automatic generation of test suites has received much attention

recently in the area of conformance testing of network protocols [SL89]. The purpose of these

suites is to determine if the implementation of a communication protocol adheres to the pro-

tocol’s specification. Often, the protocol specification is provided as a finite-state machine.

This has resulted in many methods of test selection including the Transition tour, Partial W-

method [FvBK+91], Distinguishing Sequence Method [Koh78], and Unique-Input-Output

method [ADLU91]. These methods are derivatives of the checking experiment problem

Input. A finite-state machine M.

Output. The set of transition-pair paths in M that take M from q0 to qn with at most one cycle. The set
traverses all pairs of transitions ((qr, a), (qs, b)) such that δ(qr, a) = qs.

Initial call. TRANSITION-PAIRS(q0, ε, ∅ , 0);

Algorithm:
function TRANSITION-PAIRS(q, w, V, cycle)

paths ← ∅;
for each a where a ∈ Σ ∧ δ(q, a) is defined do // For each transition from state q...

if cycle ≠ 1 ∧ (q, a) ∉ T then // No cycles and (q, a) is new
if q ∉ V then // If there is no cycle

T ← T ∪ {(q, a)}; // Mark transition as followed
cycle ← 0; // Indicate no cycle

else
cycle ← 1; // Indicate cycle

end if
P ← TRANSITION-PAIRS(δ(q, a), wa, V ∪ {q}, cycle); // Compute paths from here
paths ← paths ∪ P;

end if
paths ← paths ∪ {wa}; // Add this path to paths

end for
return paths; // Return paths from q

end function

Figure 4-13. Test vector generation algorithm.

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 90

where an implementation is checked against a specification FSM [YL95]. Such techniques

have also been used in the automatic verification of digital circuits [Hen64, HYHD95]

What distinguishes these methods from ours are the underlying assumptions concern-

ing the characteristics of the implementation FSA’s. Unlike theirs, our FSA’s can have a large

number of states and transitions. This significantly changes the nature of the solution to the

problem. Furthermore, much of the problem that network conformance researchers are faced

with is identifying which state the implementation FSA is in. A significant portion of their

work focuses on generating test vectors that discover the state of the machine. Fortunately, we

can always put our implementation state machine in the start state. Also, in their work, a

bound on the number of states in the implementation FSA’s is assumed. Because we have no

practical bound on the number of states in the implementation, their work is not applicable.

4.6.2 Test Case Generation

After selecting the appropriate test vectors, or procedure signatures, the corresponding test

cases must be realized. In our approach, we generate a separate test program for each test vec-

tor so that we can easily match any reported errors to the specific test vector.

A procedure call is broken into two pieces: the procedure call within the caller (the

call-site) and the body of the callee. Because they are implemented differently, these two

pieces of code are typically generated in separate locations in a compiler. This natural separa-

tion is reflected in the way that we construct our test cases. Each test case is comprised of two

files, one contains the caller, the other contains the callee. The two files are compiled and

linked together. The programs are self-checking, so that if a procedure call fails, this event is

reported by the test itself.

Figure 4-14 shows the compiler conformance test process. One file is compiled by the

compiler-under-test (CUT), while the other is compiled by the reference compiler. The refer-

ence compiler operationally defines the procedure calling convention (its implementation is

defined to be correct). The resulting objects files are linked together and run. Results of the

test are checked by the conformance verifier and given to the test conductor. The test conduc-

tor tallies the results of all tests for a test suite and generates a conformance report. Although

this process uses two compilers, the same process may still be used if a reference compiler is

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 91

not available. However, this will weaken the conformance verifier’s ability to automatically

diagnose errors as discussed in the next section.

In each test case, the caller loads each argument with randomly selected bytes. How-

ever, the values of these bytes have an important property: each contiguous set of two bytes is

unique. Thus, for a string B of m bytes, for all indexes , there exists no index

 and such that for all . We can easily guarantee

this property for all strings B whose length is no more than 65536 (216) bytes. Since the like-

lihood of using an argument list of size greater than 64 Kbytes is small, this is sufficient to

guarantee that any two bytes passed between procedures are unique. This makes it easier to

identify if an argument has been shifted or misplaced. The callee receives the values, and

checks them against the expected values. If the values do not match, an error condition is sig-

nalled.

As one might expect, the generation of good test cases from selected signatures is lan-

guage dependent. One convention used in the C programming language is varargs. varargs is a

standard for writing procedures that accept variable length argument lists. The proper imple-

mentation of varargs in a C compiler is difficult. For each test case that we generate we also

generate a varargs version to verify that this standard convention is implemented correctly.

Figure 4-14. The compiler conformance test process.

Compiler
Under Test

Reference
Compiler

Test Conductor Test
Conform.
Report

Calling
Convention

Specification

Test Suite
Generator

Conformance
Verifier

Caller
Test
Case

Callee
Test
Case

0 i m≤<

0 j m≤< j i≠ B j k+[] B i k+[]= 0 k 2<≤

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 92

4.6.3 Automatic Diagnosis of Errors

Generation of good tests is only a part of the testing process. If a test fails, the problem must

be diagnosed and a solution developed. In this section, we discuss how the second step, diag-

nosis, can be partially automated.

As discussed above, the conformance verifier links a caller and callee together and runs

the resulting program. When both a reference compiler and CUT are used, this results in four

distinct caller-callee pairs. The result of running all four programs is called an outcome.

Figure 4-15 shows an outcome graphically. Procedures generated by the reference compiler are

filled, while CUT generated components are unfilled. The result of a single test is indicated by

an arrow connecting a pair of components. When the result is that a test passed, a solid line is

shown, while a dotted line is used for test failure.

The result of a single test, taken in isolation, provides limited information: whether a

fault has been detected or not. However, we can glean more information by considering the

composite result that an outcome provides. By using multiple versions of object files gener-

ated by different compilers, we can exploit the interface of the procedure call. Each test has an

object file in common with two other tests. When a test fails, the results of the two other tests

can help isolate the fault. For example, in the outcome shown in Figure 4-15, the CUT/refer-

ence test (the test comprised of the CUT caller and reference callee) has failed. To isolate if the

caller or callee contains the fault, the reference/reference test result is considered. This test

replaces the CUT caller with the reference caller, keeping the callee in common between the

Figure 4-15. An example outcome.

.H\

test passed

test failed

reference

generated callee

Reference

Component

CUT

Component

C
a

lle
r

C
a

lle
e

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 93

two tests. Since the test passed, we have reason to believe that the CUT caller contains the

fault since the fault disappeared when the CUT caller was removed. Our suspicion is con-

firmed when we consider the CUT/CUT test. Since this test fails, the fault remains when the

reference callee was removed. Thus, the fault must be in the CUT caller. We would come to

the same conclusion had we started with the CUT/CUT fault and considered the CUT/refer-

ence and reference/CUT test results.

This method of isolating errors by swapping different components makes it possible

to automatically diagnose common errors. Since each outcome is comprised of four results

that may indicate a pass or fail, there are 16 outcome configurations. Since this number is

small, each outcome can be hand-analyzed once and the results tabulated. Table 4-5 summa-

rizes such an analysis. Several diagnoses deserve mention. First, although the reference com-

piler is considered the authority, there are many cases where the reference can be determined

to be faulty. This occurs in six of the outcomes. Second, three of the outcome configurations

are not possible. These are the outcomes where only a single test failed. This indicates a con-

flict in conventions. This cannot occur with a single test failure since we assume each compo-

nent uses a single convention1. Finally, for two of the cases, we not only can isolate the

location of the fault, but we can identify the nature of the error. This occurs in outcomes D

and M where two conflicting conventions have been discovered.

The combination of test vector selection and automatic diagnosis proves to be a pow-

erful debugging tool. As tests are generated, run, and analyzed, patterns of errors tend to

emerge. We have found that the patterns themselves suggest the nature of the problem. For

example, finding that an error occurred for every signature that included a struct of size greater

than seven bytes might suggest an alignment problem. More complicated patterns can exist,

and, with knowledge of the calling convention can significantly help the developer correct

faults.

1. Appel observes that such outcomes actually are possible [App96]. In his counter example, the CUT
caller implements a different convention than the reference compiler, but the CUT callee imple-
ments both conventions. In this scenario, the fault is detected in the CUT/reference test, but not in
either the CUT/CUT or the reference/reference tests. Although such a case is possible, the chances
of a callee implementing two different conventions that do not conflict (i.e., use the same register for
two different purposes) are remote. The benefits, in terms of diagnostic ability, of considering such a
case as invalid, far outweigh any accuracy gained by labeling it a valid outcome. Finally, if such a case
were to occur, it would still be detected; it just could not be automatically diagnosed.

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 94

Outcome Diagnosis Outcome Diagnosis

Outcome A:
Faults in at least three compo-
nents.

Outcome B:
Faults in both components of the
CUT.

Outcome C:
Faults in both components of ref-
erence compiler.

Outcome D:
CUT implements wrong conven-
tion (does not externally conform
with the reference).

Outcome E:
Fault in the reference compiler’s
caller.
Fault in the CUT’s callee.

Outcome F:
Fault in the CUT’s callee.

Outcome G:
Fault in the reference compiler’s
caller.

Outcome H:
Not a possible outcome.

Outcome I:
Fault in reference compiler’s
callee.
Fault in CUT’s caller.

Outcome J:
Fault in the CUT’s caller.

Outcome K:
Fault in reference compiler’s
callee.

Outcome L:
Not a possible outcome.

Outcome M:
Two conventions. One shared
between the reference compiler’s
callee and CUT’s caller, and vice
versa.

Outcome N:
Not a possible outcome.

Outcome O:
Not a possible outcome.

Outcome P:
No faults detected.

Table 4-5. All outcome configurations.

.H\

test passed

test failed
Caller

Callee

Reference
CUT

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 95

4.6.4 Test Results

We used our technique for selecting test vectors to test several compilers on several target

machines. Several errors were found in C compilers on the MIPS. In this section, we present

these results.

We selected several C compilers that generate code for the MIPS architecture (a DEC-

Station Model 5000/125). These included the native compiler supplied by DEC, two versions

of Fraser and Hanson’s lcc compiler [FH91, FH95], several versions of GNU’s gcc [Sta92], and

a previous version of our own C compiler that used a hand-coded calling sequence generator.

Although we feel that this technique is extremely valuable throughout the compiler develop-

ment cycle, we believe that it would be fairest to evaluate its effectiveness in finding errors in

young implementations of compilers. Where possible, we have used early versions of these

compilers. These versions, called legacy compilers, represent younger implementations that

more accurately exhibit bugs found in initial releases of compilers. However, each of these

compilers is a production-quality compiler that has been widely used for years. Finding any

bugs in their implementations is still a significant challenge.

In testing the compilers, we checked for two types of conformance: internal and exter-

nal. Compiler A internally conforms if code that it generates for a caller can properly call code

for a callee that it generated. We denote this using A →c A. Compiler A externally conforms if

its caller code can call another compiler B’s callee code, and vice versa (A →c B and B →c A).

Thus, the callees and callers are compiled using each of the compilers under test. This results

in n object versions for n compilers. Each caller version is then linked with the callee that was

generated by the same compiler. This results in the n tests necessary to verify internal con-

formance for this test case. To establish external conformance, we could naively link each

caller to each callee, which would yield 2n2 tests. However, we can do better. Recognizing that

procedure call (→c) is symmetric we can easily reduce this to n2 (since if A →c B, then B →c A).

Furthermore, procedure call is also transitive, so if A →c B and B →c C, then A →c C. This

reduces the number to as pictured in Figure 4-16. Each compiler’s caller is linked to

the reference compiler’s callee. This facilitates the isolation of which compiler does not con-

form when an error is detected.

2n n–

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 96

The results of running both internal and external tests on the compiler set for the

MIPS are shown in Table 4-6. We found both internal and external conformance errors in all

of the tested compilers. Table 4-6 reports internal and external errors separately. Within each

class, the number of actual tests that failed and the number of faults that caused failure are

indicated1. The numbers reported in the fault columns indicate the approximate number of

actual coding errors resulting in test failures. These numbers are only approximate. We tried,

as best we could, to glean this information from the results of tests. More accurate numbers

can only be obtained by examining the compiler’s source.

Figure 4-16. Determining conformance of n compilers.

1. These numbers include tests of both standard procedure calls and variadic procedure calls.

Internal External

Compiler Failed Tests Faults Failed Tests Faults

cc (native) 2,346 1 2,346 1

gcc (1.38) 2,370 2 2,567 3

gcc (2.1) 0 0 2,346 1

gcc (2.4.5) 1 1 2,374 3

lcc (1.9)a

a. Version 1.9 of lcc was not tested using varargs because we
could not get the compiler to accept varargs callees. This
could either be a problem with the compiler, or the particu-
lar version of stdarg.h on our machine.

0 0 0 0

lcc (3.3) 2,407 2 2,407 2

vpcc/vpo 2,346 1 486 3

Total 9,470 7 12,526 13

Table 4-6. Results of running the MIPS test suite on several compilers.

ccref
caller

CUT1
caller

CUT2
caller

CUTn
caller

ccref
callee

CUT2
callee

CUT1
callee

CUTn
callee

Chapter 4: Specifying Procedure Calling Conventions Construction of Diagnostic Programs 97

4.6.4.1 Standard Procedure Calls

Internal conformance errors were found in two versions of gcc. gcc 1.38 failed 24 tests that

focus on passing structures in registers. Structures between nine and 12 bytes in size (three

words) are not properly passed starting in the second argument register. Procedure signatures

that correspond to these tests include:

void(int, struct(9-12));

gcc 2.4.5 fails a single test. The fault occurs with procedures with the signature:

void (struct(1), struct(1), struct(1));

gcc 2.4.5 fails to even compile a procedure with this signature1. The fact that gcc 2.1 does not

have this error indicates that the error was introduced after version 2.1. This supports our con-

jecture that such method of automatic testing is extremely useful throughout the development

and maintenance life-cycle of a compiler.

External conformance errors were more prevalent. gcc 1.38 does not properly pass

1-byte structures in registers. This results in 208 test case failures. gcc 1.38 and 2.4.5 cannot

pass a structure in the third argument register when that structure is followed by another. The

fault occurs with signatures matching:

void(int, int, struct(1-4), struct(any));

This results in another 13 test failures. Finally, vpcc/vpo has 486 tests that fail. Two faults are

responsible: 1) structures are not passed properly in registers, and 2) 1 to 4-byte structures are

not passed in memory correctly if they are immediately followed by another structure. These

match signatures:

void (int, int, int, int, struct(1-4), struct);

4.6.4.2 Variadic Procedure Calls

Procedures that take variable-length argument lists (variadic functions) are written

using one the of two standard header files: varargs.h (for traditional C) and stdarg.h

(for ANSI C). These files provide a standard interface for the programmer to write variadic

functions. Because a variadic function’s caller uses the standard procedure calling convention,

the variadic callee must also conform to this convention. The following paragraphs detail the

results of calling callees that are implemented using varargs/stdarg.

1. The error returned by gcc 2.4.5 was:
gcc: Internal compiler error: program cc1 got fatal signal 4.

Chapter 4: Specifying Procedure Calling Conventions Summary 98

Most variadic functions in C have signatures similar to the standard library function

printf:

void func(char *, ...);

The function determines the number of arguments from the first parameter. However, func-

tions of the form:

void func(double, ...);

are also valid. When running test cases that contained variadic functions whose first argument

was a double, we found that none of the compilers, including the reference compiler, properly

implemented the calling convention. The difficulty stems from the fact that until the type of

the argument is known, the callee cannot determine whether to fetch the first argument from

the floating-point register or the integer register. Most implementations of varargs dump the

contents of the argument-passing registers to the stack in the function’s prologue. For calling

conventions like the MIPS, a more sophisticated solution must be used. This error caused

2,346 test cases to fail for all of the compilers. Version 2 releases of gcc managed to avoid this

problem at the expense of interoperability; their generated callees do not conform to the

established calling convention.

From these results, obviously the state-of-the-art in compiler testing is inadequate.

Because these are production-quality compilers, each of them has undoubtedly undergone rig-

orous testing. However, hand development of test suites is an arduous and itself error-prone

task. Furthermore, because these tests are target specific, they must be revisited with each

retargeting of the compiler. In contrast, by using automatic test generators that are target sen-

sitive, compilers can quickly be validated before each release.

4.7 Summary
Current methods of procedure calling convention specification are frequently imprecise,

incomplete, or contradictory. This comes from the lack of a formal model, or specification

language that can guarantee completeness and consistency properties. We have presented a

formal model, called P-FSA’s, for procedure calling conventions that can ensure these proper-

ties. Furthermore, we have developed a language and interpreter for the specification of proce-

dure calling conventions. With the interpreter, a P-FSA that models a convention can be

automatically constructed from the convention’s specification. During construction, the con-

Chapter 4: Specifying Procedure Calling Conventions Summary 99

vention can be analyzed to determine if it is complete and consistent. The resulting P-FSA

can then be directly used as an implementation of the convention in an application.

Although we have shown that it is possible to automatically generate the calling

sequence generator of a compiler, some work is required to retrofit an existing compilation

system to use CCL descriptions. Fortunately, it is possible to reap the benefits of CCL without

any modification of the compiler. Using automated compiler tools and testing, one can signif-

icantly increase the robustness of any compiler. We have combined these two techniques, in a

new way, that further closes the gap between actual compiler implementations and the ever-

sought-after correct compiler. By using formal specifications of procedure calling conventions,

we have designed and implemented a technique that automatically identifies boundary test

cases for calling sequence generators. We then applied this technique to measure the conform-

ance of a number of production-quality compilers for the MIPS. This system identified a total

of a least 22 faults in the tested compilers. These errors were significant enough to cause over

2,300 different test cases to fail. Clearly, this technique is effective at exposing and isolating

faults in calling sequence generators of mature compilers. Undoubtedly, it would be even

more effective during the initial development of a compilation system.

100

CHAPTER 5

COMPUTING SYSTEM DESCRIPTION
LANGUAGE

Chapters three and four presented two description languages that describe distinctly different

machine features. In this chapter, we show how to we bring these two descriptions together

using a general framework for building reusable descriptions for systems software.

For years, machine descriptions have been used in a variety of ways to parameterize

software implementations. However, except in the very rarest of instances, none of these

description systems have been reused. It is clear that for any new description language to make

a contribution to the state-of-the-art, it must bring more than just the ability to describe a sin-

gle machine feature for a single application. Thus, we put forth the following observations

about description systems and their use:

• Application dependence stifles sharing. If a description is tailored to a particular applica-

tion, it will be difficult for a new application to make use of the description.

• Application dependence is inevitable. No matter how pure the intention, or what form

the description takes, machine dependence will always creep into descriptions. Often,

modification of the description to suit the application is easier than modifying the

application to suit the description.

• Partial descriptions are useful. Many applications only require a subset of information.

For example, many instructions are never generated by compilers. If the application

does not use the information, the application writer should not be required to provide

the information in the description.

Chapter 5: Computing System Description Language CSDL Overview 101

• Comprehensive descriptions are large. Modern computing systems are complex and

applications often view the same information in different ways. Capturing all of these

details will cause descriptions to become large and monolithic. Organizational tools

should be available.

• Writing new descriptions is difficult. Often, just gathering the information to be

described can be a significant obstacle.

• Different applications may view the same machine features differently. Compilers often

view instructions in assembly language format, whereas simulators may view instruc-

tions in their binary format.

• Descriptions and their languages are continuously evolving. After a description is ini-

tially written, it is likely to live in constant flux as new machine models are introduced,

as additional machine features are included, and as new applications make use of its

content.

Obviously, modern description systems must contend with considerable demands, many of

which appear to contradictory. After consideration of these observations, we propose the fol-

lowing set of design goals:

1. Application independence should be encouraged.

2. Application dependence should be tolerated.

3. Partial descriptions should be permitted.

4. Descriptions should be modular and composed from simple components.

5. Descriptions should be reusable.

6. Different views of the same feature should be permitted.

7. Descriptions should be extensible.

Any description system should strive to meet each of these goals—particularly application

independence. In this chapter, we present a system for building computing system descrip-

tions that are application dependent, but can still be shared among many applications.

5.1 CSDL Overview
Our system extends previous work in machine descriptions in four key ways: abstraction level,

extensibility, reusability, and modularity. Because this new description system widens the

abstraction level of machine descriptions, we call them computing system descriptions to reflect

Chapter 5: Computing System Description Language CSDL Overview 102

their broader applicability [BD96a]. Our description system, called Computing System

Description Language (CSDL), is a framework for developing more thorough, complete

descriptions of target machines for use in retargetable systems software implementations.

5.1.1 Modules

As shown in Figure 5-1, CSDL is a framework that divides computing-system information

into modules, or components. One component is distinguished from all the others: it con-

tains the core description for the system. The core contains the description of the instruction

set of the machine described in chapter three. As its name implies, it is required to be present

in all CSDL descriptions, while the other components may be optionally added or removed.

The description of the instruction set, which is needed in nearly all systems software, gives an

otherwise amorphous system a coherent structure. Unlike the optional components, where

nothing but the most minimal structure is imposed, the core’s structure, or format is defined

by CSDL.

In addition to the core, CSDL incorporates application-defined components. A com-

ponent provides additional information that is of interest to some, but not necessarily all, sys-

tems software. Since a component is application defined, it can present the information at the

level of abstraction that is most appropriate for the defining application. Examples of compo-

nents include pipeline and memory descriptions for different implementations of the same

Figure 5-1. Computing system description framework.

Register Set

regs

C Procedure
Calling

Convention

Cconv

Memory
Hierarchy

mem

Instructions
(Core)

inst

Floating-
Point

Format

float

Chapter 5: Computing System Description Language CSDL Overview 103

architecture, object file formats used by the assembler and linker, and high-level-language pro-

cedure calling conventions.

By providing modular descriptions, applications only need to examine the parts they

are concerned with. Thus, descriptions need not be “complete” to be valid or useful. Different

machine models might share certain parts of a description, but distinct models might have

different pipeline descriptions or memory interface descriptions. Modularity also supports

ease of modification. A new model of a machine might have a different pipeline, but the ISA

and calling conventions likely remain the same. Only the part of the description that involves

the pipeline needs to be modified. Similarly, modularity helps keep the various pieces of a sys-

tem description concise. The component that describes the pipeline does just that, and noth-

ing else.

Because CSDL descriptions are modular, significant flexibility is available to each

application. The disadvantage of dividing descriptions into smaller more manageable pieces is

that this isolates each module. Without additional support, each component is likely to

encounter the same pitfalls that many modular systems have: repetition among modules, and

inconsistency between modules. To counter this tendency, CSDL has several mechanisms that

aid in preventing inconsistency and repetition its modules: objects, linked values, application

annotations, and object aspects. These mechanisms are the glue that holds CSDL descriptions

together, and give them their descriptive power.

5.1.2 Linked Values

A disadvantage of dividing descriptions into modules is that it is common for two or more

modules to need access to the same information. To promote the sharing of common infor-

mation between modules, CSDL provides a mechanism for introducing linked values.

Any module may introduce a name/value pair. For example, a register description

would want to be able to introduce names and values for the following registers: the program

counter, the stack pointer, a register that is always zero, and the register that contains a rou-

tine’s return address. Using CSDL’s naming system, the register description can easily provide

names and values for each of these registers. These names can then be subsequently referenced

in other modules. Although the convention about which register contains the stack pointer

Chapter 5: Computing System Description Language CSDL Overview 104

must be written down, it is only written down once. The value can then be propagated

throughout the system to the other modules using links.

Figure 5-2 demonstrates module linking. A register description excerpt, shown in

Figure 5-2(b), defines the valid register indices as well as defining register zero (R[0]) as always

storing the value zero. An instruction description excerpt, shown in Figure 5-2(a), contains

references to these two values. To accurately define the valid instructions for the machine, the

instruction description must know what register indices are valid. The instruction description

refers to the valid register indices by name. Changes to the register description are immedi-

ately reflected in each referencing module.

The definition of values and their successive reference in other modules creates a web

of information. These linked values are hypertext values that facilitate navigation throughout

the description system. They also represent the relationship between objects in different mod-

ules. The reader of a description can better understand the interaction between objects in dif-

ferent description components because of the explicit representation of value references.

5.1.3 Application Annotations

The primary shortcoming of previous machine description techniques is that they present

information in an application-dependent way. While the inclusion of application-specific

information makes the descriptions easier for the particular application to use, it frequently

makes the descriptions useless for other purposes. CSDL provides application annotations to

reconcile these differences.

Annotations are pieces of information that are attached to existing descriptions for an

application. Annotations are tagged as belonging to a particular application. When that appli-

Figure 5-2(a). Instruction module excerpt. Figure 5-2(b). Register module excerpt.

Figure 5-2. Linked values.

imm → constants,16 //
rindex → constantu,5 { constant <= 31 } //
offset → constantu,16 //
rd → R[rindex] //
zero → R[0] //

register {
 type = ’R’;
 size = 32;
 index = 0..31
}
R[0] = zero
SP : R[31]

regs

inst

Chapter 5: Computing System Description Language CSDL Overview 105

cation is viewing the description, the annotations appear as part of it, whereas when other

applications view the description, the annotations are not present. Annotations can be

thought of as an overlay, as shown in Figure 5-3, which an application places over a module.

The application developers can include whatever information they wish without impacting

other applications that are using the same module.

To illustrate the use of annotations, consider a compiler that uses information in the

core instruction module for generating assembly language instructions for the MIPS R2000.

The compiler needs to generate an instruction to move a value from one register to another.

However, the MIPS does not explicitly provide a register-to-register move instruction. The

τRTL instruction description is pure1, that is, it contains no synthetic instructions. Thus, no

move instruction is listed. On the MIPS, a logical OR instruction is used, with register R[0] as

the second operand, to synthesize the move instruction. If the compiler cannot glean this

information from the description, an annotation can be attached to the OR instruction, as

shown in Figure 5-4, to indicate that a specific form may be used to achieve the move.

Figure 5-3. An application’s annotation overlay.

1. A pure description contains no synthetic or artificial instructions. We forbid the use of such impuri-
ties so that applications that depend on pure descriptions are not misled.

Linker Overlay

1 2
3 4
3 32
23
23

Use the stack pointer for this

more text
here

annotation

module

annotation

overlay

Chapter 5: Computing System Description Language CSDL Overview 106

5.1.4 Module Aspects

A concept closely related to annotations are module aspects. Although annotations may be

used to attach small amounts of information to selective parts of a module, for situations

where more significant additions to modules are necessitated, CSDL provides module aspects.

A compiler’s instruction description may include an enormous amount of informa-

tion: semantics of the instructions, assembler mnemonics, binary format, instruction costs,

pipeline scheduling information, etc. However, much of this information is not contained in

the core description for instructions. Many applications may only have use for the semantics

of the instructions and the assembler format. Each feature of the description can be tagged as

an aspect. An aspect is another view of an object in the description. The aspect is used to selec-

tively filter the descriptions. Just as annotations can be viewed as overlays, aspects can as well.

However, unlike an annotation overlay that is tagged for a particular application, an aspect

overlay may be made available for use by any application. Thus, if a compiler is only inter-

ested in the semantics, instruction cost, and binary format, only those overlays are taken from

the overlay “library” and placed over the module. This provides a mechanism for components

to have many facets that are used by many applications.

Figure 5-5 illustrates the use of aspects. Here, the core description is augmented with

two aspects: an assembly language aspect and a binary format aspect. Although aspects are

usually keyed using color, here they appear as labeled boxes. The assembly aspect is shown in

the left box, while the binary format aspect appears on the right. In each case, each element of

an aspect has a corresponding element in the original module. So, for our example, each ele-

ment of the binary format and assembly language aspects is associated with an instruction, or

other object in the instruction description.

| reg ← reg op imm

| reg’ ← reg’ op reg

Figure 5-4. A CSDL annotation.

reg´ ← reg´´ ≡ reg´ ← reg´´ ∨ zerocompiler

Chapter 5: Computing System Description Language Module Processing 107

5.2 Module Processing

Each CSDL module describes some machine feature. In each module, one language must be

designated as the host. The language provides the skeleton to which CSDL aspects and anno-

tations are attached. Typically, the host language defines the kinds of objects, and indirectly,

the level of abstraction for the module. In contrast, the languages used in aspects and annota-

tions are called guest languages. Guest languages are typically small languages that augment

the information provided by the host language. However, their syntax is not dictated by either

the host language or CSDL.

5.2.1 CSDL Language Processing

The CSDL language processor must contend with elements from two or more languages:

CSDL (objects, annotations, etc.), the host language, and possibly embedded guest language

elements embedded in CSDL annotations and aspects. CSDL provides all necessary facilities

to process and separate each language’s elements while maintaining the semantic linkages

between the language elements. This process is achieved by providing CSDL with language

processors (scanners and parsers) for the host language and each guest language. CSDL reads

the CSDL source and dispatches strings of symbols to the appropriate processor as shown in

Figure 5-6.

A grammar for the abstract syntax of CSDL modules is shown in Figure 5-7. We use a

standard grammar syntax augmented with regular expression syntax. Terminals are shown in

bold, nonterminals are shown in italic, brackets (‘[’ and ‘]’) indicate optional (zero or one)

instances, and Kleene star (‘*’) indicates zero or more instances of a grammar symbol. A name

token is a string of one or more alphabetic characters and a string token is a string of one or

more symbols. From the grammar, it is clear that CSDL imposes little structure on the

reg → « R[rindex] »//

zero → « R[0] » //

op → « + »

| « - » //

arith → « reg’ ← reg’’ op imm »

| « reg’ ← reg’’ op1 reg’’ »

//

Figure 5-5. Assembly language and binary format aspects of instructions.

$rindexassembly rindexbinary

0assembly 0binary

addiassembly ADDIbinary

subiassembly SUBIbinary

op reg´,reg´´,immassembly [op, reg´´, reg´, imm]binary

op1 reg´, reg´´, reg´´assembly [SP, reg´´, reg´´, reg´, 0, op1]binary

Chapter 5: Computing System Description Language Module Processing 108

embedded languages. A CSDL module is simply a string of host language tokens and CSDL

language elements (except aspects). An object is a string of host language tokens and CSDL

language elements. Annotations and aspects are strings of guest language tokens and CSDL

language elements. Aspects may only be found in CSDL objects. A link is simply a cross refer-

ence to a CSDL object definition, and as such, may produce any string an object can contain.

Obviously parsing CSDL modules is simple enough. However, the string token can

contain either host language elements or any guest language elements. Using the grammar, it

is easy for CSDL to identify which language the string belongs to, but it is impossible, with-

out more information, for CSDL to identify if the string contains only valid language tokens

Figure 5-6. CSDL Language Dispatching.

1. module → (module [name] mvalue*)
2. mvalue → object | string | annotation | link
3. value → mvalue | aspect
4. object → (object [name] value*)
5. annotation → (annotation name value*)
6. link → (link (name+ [(name)]) value*)
7. aspect → (aspect name value*)

Figure 5-7. CSDL Grammar.

CSDL Module
CSDL

Language
Processor

Guest A Symbols

Host Symbols
Host

Language
Processor

Guest
Language A
Processor

Guest
Language B
Processor

Guest
Language N
Processor

Guest N Symbols

Guest B Symbols

.

.

.

Chapter 5: Computing System Description Language Module Processing 109

or if the string of language tokens is in the given language. Take, for example, the following

abstract CSDL string:

CSDL terminals are shown in bold. Non-terminals for all languages are shown in italics. Each

string of tokens is labeled by the language to which it belongs. In this example, a sequence of

host language tokens has been named using the CSDL naming mechanism. This creates an

object which, in turn, may have aspects attached to it.

The procedure for processing CSDL strings is best illustrated with a concrete example.

The following excerpt from Figure 5-5:

describes a single production from a CSDL core grammar. In this example, the module con-

tains language elements from four languages: CSDL, the core host language, and two guest

languages. In order for CSDL to properly process this string, it must have a way to identify

host and guest tokens. To demonstrate why, we examine what must happen to successfully

process the above example.

Our excerpt picks up during core language processing. When the CSDL begin object

token (‘«’) is encountered, we must mark the beginning of the CSDL object that is embedded

in the core language string. When we reach the assembly aspect, we must switch processing

from core language scanning to assembly aspect scanning. Similarly, when we reach the binary

aspect, we must switch to the binary aspect scanner. Finally, when we encounter the CSDL

close object token (‘»’), we must complete the object definition by associating the results of

processing the aspects with the designated core substring. To enable this parsing, host and

guest languages must provide token and language information in the form of Lex [LS83] and

Yacc [Joh83] specifications. When processing a module, the CSDL parser absorbs all CSDL

tokens. These direct the processor to switch processing between CSDL, the host language,

and the guest languages. This process is illustrated in Figure 5-8.

(module name (object name htoken htoken ... htoken (aspect name gtoken gtoken ... gtoken htoken htoken ... htoken

Processed by host language CSDL Processed by guest language host

)))

Processed by CSDL

arith → « reg´ ← reg´´ op imm [op, reg´´, reg´, imm]binaryop reg´,reg´´,immassembly

Core Module

 Host Language

»

assembly

Guest Language

binary

Guest Language

CSDLCSDLCSDL

Core

Host

CSDL

Chapter 5: Computing System Description Language Module Processing 110

First, all tokens are scanned and parsed by the CSDL front end. Based on the CSDL

tokens, the CSDL processor passes symbols that are not part of CSDL tokens to either the

host language scanner or a guest language scanner. These are, in turn, passed to their respec-

tive parsers and processors.

When the CSDL processor encounters the following tokens, it takes the indicated

action:

• module — this is the beginning of a CSDL module.

Action: the host language is set as the current language.

• string — this string of symbols belongs to the current language.

Action: the string is passed symbol-by-symbol to the current language’s scanner. Begin-

ning and end positions of the language’s tokens are noted (processing may not end in

the middle of a token).

• aspect, annotation — this marks the beginning of a guest language string of symbols.

Action: push the current language on a language stack. Set the indicated guest language

as the current language.

Figure 5-8. Processing of a CSDL module.

CSDL Module

Host
Language
Processor

Host
Language

Parser

Host
Language
Scanner

CSDL
Language

Parser

CSDL
Language
Scanner

Guest
Language
Processor

Guest
Language

Parser

Guest
Language
Scanner

CSDL
Language
Processor

Guest Aspect/
Annotation
Database

Host Language Symbols

Guest Language Symbols

Chapter 5: Computing System Description Language Module Processing 111

• object — the enclosed string of symbols is a CSDL object.

Action: identify the current language’s grammar production that derives the enclosed

string of symbols. The current language is unchanged.

• link — the name refers to a named CSDL object.

Action: the derivation of some production in the current language is found within the

link. This derivation is passed, symbol-by-symbol to the current language’s scanner.

•) — that matches a token that switched the current language (an annotation or aspect).

Action: the current language is switched back to the previous language by popping it

from the language stack.

By processing the module in this way, it is possible to identify which symbols belong to which

languages. Because CSDL embeds strings of host and guest language tokens, CSDL must

ensure that strings of symbols derive complete strings of tokens in the given language (aspects

and annotations cannot begin or end in the middle of a language’s token, nor can they be

embedded in the middle of a token from the enclosing language). In the case of guest lan-

guage strings, CSDL must also ensure that complete strings of guest language tokens are

derived from the guest language’s grammar start symbol.

In order to satisfy the above requirements, CSDL must be aware of the processing of

symbols that each language performs. We achieve this by modifying the Lex and Yacc routines

for each of the languages. Lex and Yacc produce their respective scanners and parsers by pro-

ducing tables from their input specifications. In the case of Yacc, these tables are used to direct

the shift and reduce actions of a general purpose parser. For Lex, they direct the tokenizing

actions of a general purpose scanner. So, a parser is built by linking a table specifying the shift

and reduce actions for the given language with a library of routines, called the parser skeleton,

that actually perform the parsing based on the table. We replaced the stock Lex and Yacc skel-

etons with custom skeletons that interact with the CSDL language processor. These routines

are used to redirect the scanner’s input to strings provided by CSDL and provide information

to CSDL regarding the state of both the scanner and parser for a given language. This is why

we require that guest and host language processor use Lex and Yacc specifications. However,

the same technique could be used with any parser or scanner generator system. Handwritten

parsers or scanners would, of course, have to provide these linkages to CSDL.

Chapter 5: Computing System Description Language Module Processing 112

Obviously, the processing of CSDL modules is tightly integrated with the processing

of each of the embedded languages. However, as long as Lex and Yacc specifications are pro-

vided, the host and guest language designers need not concern themselves with the tight inter-

action between CSDL and the language syntax analysis. Furthermore, producing CSDL

modules that embed such a variety of languages might, at first, seem difficult. Fortunately, the

environment that is used to edit these modules provides the necessary support to make the

writing of even complex modules manageable. In the next section, we present the CSDL edit-

ing environment.

5.2.2 An Environment for CSDL

CSDL provides a flexible system for embedding guest languages that extend module host lan-

guages. In addition, host and guest languages have available to them facilities for using

extended character sets (e.g., Greek alphabetic symbols), advanced character formatting using

font variations (e.g., bold, italic, etc.), and character positioning (e.g., subscripts and sub-

scripts). Even with the most advanced text editors, such as emacs, these facilities are just

becoming available. Instead, we turned to Adobe’s FrameMaker desktop publishing system

[Ado97a]. FrameMaker provides all of these editing features to the user natively while it also

provides two ways to extend the FrameMaker application: the FDK (Frame Developer’s Kit)

[Ado97b] and MIF (Maker Interchange Format) [Ado97c]. We use both of these to access the

CSDL module source code written in FrameMaker.

Because FrameMaker was designed for formatting large documents, it provides a

number of features that support the creation and maintenance of large descriptions as well.

These include hypertext links, text variables, text inclusion from other documents, cross refer-

ences, and conditional text. Currently, CSDL makes use of but a few of these features. After

more experience, we may leverage off more of the features that FrameMaker provides.

5.2.2.1 Supporting Annotations and Aspects

The two most visible features of CSDL are annotations and aspects. Both of these features

need significant support from the editing environment. Since these features allow embedding

of languages within the CSDL module, at a minimum there need to be ways of delimiting the

embedded language’s text and naming which language the text belongs to. Further, it is desir-

Chapter 5: Computing System Description Language Module Processing 113

able to easily select which annotations and aspects to view or process. FrameMaker’s condi-

tional text feature has these capabilities.

In FrameMaker, regions of text can be associated with one or more “conditions.” In

turn, these conditions have two properties: visibility and display characteristics. The condi-

tion name and its visibility property are “out of band” data. That is, they are not visible in the

document itself. However, the display characteristics do control how the conditional text is

displayed. Typical display characteristics include underlining, bold, italic, and font color.

These font variations cue the reader that the text belongs to a particular condition.

We use conditional text to mark both aspects and annotations. Typically, different

font colors are used to indicate different aspects or annotations. For example, in instruction

descriptions, an assembly language syntax aspect could be displayed in red, while the instruc-

tion’s cost could be displayed in blue. With each instance of conditional text, the name of the

condition is available for CSDL to examine. Thus, while FrameMaker and the user think of

aspects as colored text, CSDL just views the text as being associated with a particular aspect

name or identifier. In addition, when the user is concentrating on one aspect of a description,

such as assembly language syntax, they can disable the display of all of the other aspects by

toggling individual visibility properties. So, while a particular CSDL object might have a

plethora of different aspects, the author can selectively view those aspects that require inspec-

tion or modification. CSDL can, of course, do this as well; this yields a powerful technique for

constructing custom descriptions from general descriptions.

Using conditional text also makes descriptions more compact. Neither the aspect or

annotation’s name, nor its beginning and ending delimiters take up space in the text of the

description. This comes at a cost though: printed descriptions are not necessarily complete

(because not all of the conditional text tags are visible) and the names of aspects and annota-

tions are not printed on the page. Further, if one chooses color as the distinguishing display

property, and the description is printed on a monotone printer, the display characteristics are

lost as well. However, we feel that the advantages that conditional text provides in building

manageable descriptions outweighs these printing deficiencies.

5.2.2.2 Extended Character Sets and Token Matching

By using a desktop publishing system, CSDL presents new issues in language design. When is

it appropriate to use special characters? How does the addition of font variation impact scan-

Chapter 5: Computing System Description Language Module Processing 114

ning? How can different fonts and positioning be effectively used in language design? Each of

these questions deserves more attention that we can give them here, so we will only summarize

our limited experience with these issues in this section.

Using special characters can deliver great semantic benefits. Long have ASCII-based

language designers struggled with the shortage of special symbols. For example, the Boolean

operators are typically synthesized from multiple symbol sequences, such as ‘&&’ for AND and

‘||’ for OR in the C programming language, or previously unused symbols that yield expres-

sions that are not intuitive, such as the exclusive OR (‘^’) operator in C. Having to access to

the symbols ‘∧ ’, ‘∨ ’, and ‘⊕ ’ that are traditionally used for these operations in Boolean expres-

sions greatly increases the readability of languages that use them.

Nevertheless, the addition of special characters can be abused. Take for example, the

use of ‘⊥ ’ in the CCL language. This symbol is used as a selection operator. However, there is

no historical use of this symbol for this purpose. Simply using a special symbol for no other

reason than its availability (or because it makes expressions more concise) is not appropriate.

We must be sure to make judicious use of special symbols if we hope to increase the readabil-

ity of languages rather than to further obfuscate the notation as in the tradition of the C

exclusive OR operator.

In addition to special symbols, using a modern desktop publishing system gives the

language designer access to font variation in token specification. This is not, by far, a new con-

cept. Programmers of case-sensitive languages have used capitalization of identifiers for years

to impart the semantics of scope (capitalized for globals, lowercase for locals) and type (all

caps for macros, capitalization conventions for functions, etc.). With the addition of font vari-

ation, such as bold and italic, language designers can separate the namespaces of keywords and

identifiers. For example, as is often done with program pretty printers, bold can be used to

indicate language keywords. In τRTL descriptions, we use italic to distinguish between gram-

mar terminals and nonterminals. We also use character positioning (superscripting and sub-

scripting) to build expressions that, in traditional computer languages, would use a bracketed

notation. For instance, τRTL’s use superscripting for bit selection: exprm..n. If character posi-

tioning were not available, two brackets would be probably be used to delimit the beginning

and end of the superscripted expression. By using character positioning, we achieve a more

concise expression without sacrificing readability.

Chapter 5: Computing System Description Language Module Processing 115

Clearly, there are some situations in which special symbols and font formatting can be

effectively used in language design. This does, however, come at a cost in implementation

complexity. For each character of a source file, the font and variations must be recorded to dis-

tinguish between visually different instances of the same character (‘⊥ ’ and ‘^’ are the same

character in different font families, and ‘X’ and ‘X’ are the same character with different font

variations). These differences cannot be encoded in the same byte as the character’s value, so at

least an additional byte must be used to encode the character’s format. Therefore, languages

that use special symbols and font variation must be capable of reading and matching multi-

byte characters.

An interesting problem with building scanners that handle multi-byte characters is the

difficulty of recognizing tokens with font variations. For example, in τRTL where we use sub-

scripting to designate value interpretation, we might encounter the following two different

token strings: exprb,32 and exprb,32. These two expressions probably do not appear differently

to the author, but the scanner will see that the subscripted comma (‘,’) is, in fact, italicized in

the second expression. We would like to think of these two sequences of tokens as equivalent

since either version might occur when writing the expression. In this case, there is really no

semantic difference between italicizing the comma and not. In contrast, we want to think of

the two token strings exprb,32 and exprb,32 as different because the ‘b’ is italicized in the second

expression but not in the first, indicating that ‘b’ is a τRTL variable rather than a terminal in

the language. In this case, the meaning of the two expressions, as defined by the language, is

dramatically different. It is the job of the token scanner to match either version of the comma

to the same comma token and to match the two instances of the ‘b’ token to different tokens.

To achieve the desired result, the scanners for languages that make use of enhanced

character formatting match symbols in the following manner. Each symbol that makes up a

token is described using two bytes. The first indicates which character in the font is to be

used. The second encodes eight bits of font formatting information. As the characters are

extracted from the FrameMaker document, these bytes are generated by recording current

font settings for each character. Four bits are used for font name (or number) and the other

four are used to indicate bold, italic, superscript, and subscript. The tokens in the Lex scanner

specify the values of each of these formatting bits. For each bit, the token may specify “set,”

“not set,” or “don’t care.” In our above examples, the “variable” token specifies the italic bit as

Chapter 5: Computing System Description Language Module Processing 116

“set” for each of its characters while the “comma” token specifies all bits as “don’t care” since

none of the variations, including font, influence its identification as the comma token.

The correct specification of tokens that include font formatting requires careful atten-

tion to detail. If tokens are specified too loosely, multiple token definitions will overlap1. If

tokens are specified too tightly, numerous tokens that appear valid to the user will be rejected

by the scanner. This behavior yields a language that is frustrating for authors to use. This

interaction is most apparent with subtle changes in font variation such as italic in combina-

tion with small symbols (punctuation), or superscripting, or subscripting. There is probably

no instance in which period ‘.’ should set formatting bits to anything but “don’t care!”

5.2.2.3 Objects

CSDL provides minimal support for objects. An object is defined to be any sequence of

tokens that is derived from a language’s grammar production. Put another way, objects are

used to name instances of grammar production derivations. This is about as concrete a defini-

tion of an object as CSDL can provide given that language grammars and token specifications

are the only things that CSDL knows about host and guest languages.

A CSDL object is delimited using french quotation marks (guillemet): ‘«’ ‘»’. These

symbols were chosen because they are intuitively delimiters that are not already available to

ASCII based languages. So, although we preclude future languages from using these symbols,

we can be fairly certain that no existing language uses them. Using these symbols, we can

mark the beginning and end of a CSDL object, as in the τRTL line from the DLX instruction

description:

addr → « (regu,32 + ∆(constantu,16)u,32)u,32 »

Here, we have designated the entire right-hand-side of the rule as a CSDL object. The object

corresponds to a derivation of a grammar symbol from the τRTL core description language’s

grammar (this is a grammar whose start symbol derives grammars). This is the grammar sym-

bol that describes what may be on the right-hand-side of a τRTL grammar. Conceptually, the

above example is one of several addressing modes on the DLX. Extending this example, we

1. Luckily, this overlap can be identified by Lex automatically. If this were not the case, whole classes of
tokens would never be matched by the scanner.

Chapter 5: Computing System Description Language Module Processing 117

can attach an assembly language aspect that describes the syntax of the assembly language for

this addressing mode:

addr → « (reg’u,32 + ∆(constant’u,16)u,32)u,32 »

We use a box here to indicate the beginning and end points of the aspect. However, usually

the aspect would be indicated using a different text color from the surrounding text. The

underlined text corresponds to a guest language that describes the assembly language syntax.

As often is the case, the guest language depends on the syntax of the host language. Here, the

variables in the host language derive τRTL expressions, which also have assembly language

aspects associated with them. Thus, we have two parallel derivations: one that derives the

τRTL expression while the other—the one found in the aspects—derives the equivalent

assembly language expression. When processing the τRTL grammar, the host language would

then have access to the associated assembly language aspect.

5.2.3 Processing Summary

CSDL provides a rich set of features that support modular description development and

description extensibility through language embedding. Language elements from different lan-

guages are distinguished by the color of their text. Symbols that are not available on standard

computer keyboards may be used to enhance the readability of the embedded languages. Font

variations can be used to strengthen the recognition of language elements. The description

editing environment, although not a programmer’s editor, is as familiar environment: the

desktop publishing system.

Once descriptions have been written in FrameMaker, CSDL extracts the text using

the Frame Developer’s Kit that provides an API to the underlying FrameMaker document.

The result is a CSDL module that contains CSDL directives that mark the beginning and end

of CSDL objects, aspects, annotations, and links. Host and guest language symbols are repre-

sented using two-byte pairs that encode the character and various font display characteristics.

As the CSDL module is processed, symbols are passed to the appropriate host or guest lan-

guage scanner for tokenizing. The scanner must consider font formatting when trying to

determine which token type to match. Tokens are passed up to the language’s parser, where

parser actions are recorded by the underlying CSDL processor. CSDL objects always name

entire language grammar production derivations. CSDL associates each object’s aspects with

constant´(reg´)assembly

Chapter 5: Computing System Description Language Applications 118

the attribute that the parser pushes onto the parsing stack upon the grammar rule reduction

that represents the object’s derivation production. Using this mechanism, it is possible for the

host language processor to gain access to the guest language aspects.

5.3 Applications
CSDL has been designed as a multi-application description framework from the outset.

Applications can use or extend existing CSDL modules, or add additional modules to suit

their needs. In this section, we present a couple of examples of how different systems software

applications could use CSDL to build descriptions that can be shared among many applica-

tions.

5.3.1 Binary Translation

Binary translators take executable programs for a source machine and translate them to exe-

cutable programs for a target machine. This application requires information about the binary

instruction format for two machines [AKS00, ZT00, GAS+00, CE00]. At first, it may seem

that an implementation could simply take two instruction descriptions and automatically

derive the translation from one format to the other. However, binary translation is not such a

simple problem [CER99]. Often, the necessary translation from one instruction set to

another is not readily apparent; human intervention is necessary to glean the proper transla-

tion.

Consider a translator that converts SPARC executables into MIPS executables. An

alternative approach to the one described above would be to annotate the SPARC description

with the necessary information to perform the translation to MIPS instructions. This can be

accomplished using a CSDL SPARC description by adding a MIPS translation aspect to each

of the SPARC instructions. Figure 5-9 shows an excerpt from such solution.

To each SPARC instruction, a piece of C code is attached to perform the necessary

translation. For example, the SPARC contains a load instruction that uses an indexed address-

ing mode. Since the MIPS doesn’t contain an indexed mode, one is synthesized using two

instructions: an add and a load word instruction. The MIPS and SPARC also differ on the

size of their immediate operands. On the SPARC, an immediate value is 13 bits, while on the

MIPS, an immediate value is 16 bits. Thus, SPARC load-immediate instructions are trivial to

Chapter 5: Computing System Description Language Applications 119

translate to MIPS instructions since SPARC immediate values are always smaller. However, to

form a 32-bit constant, the SPARC has a sethi instruction that loads the high 22 bits of a reg-

ister. When such an instruction is encountered, several MIPS instructions must be emitted to

synthesize the load.

It is possible that one could automatically generate the translations described above.

However, for complex instructions, such as CALL, it is unlikely that an automatic process will

succeed. Such instructions assume other processor state, such as a particular stack layout or

register usage. However, by attaching small portions of C code, we can easily reference exter-

nal handwritten functions that perform these complex translations. Other situations, such as

operating system traps, exception handlers, and instructions that use special-purpose registers

can be handled in a similar way.

By providing extensions to modules, CSDL permits applications to embed applica-

tion-dependent information into otherwise application-independent descriptions. In our

example, the translations are application dependent, however, the instruction description is

not. Although the description contains the binary translator’s translation methods, CSDL’s

| « rt ← rs + imm »

| « rt ← R[rs + rx] »

| « R[rt + rx] ← rs »

| « ST ← label, n »

| « rt ← HI[const] »

Figure 5-9. Specifying binary translation using a CSDL aspect.

{ emit("addi rt,rs,imm"); }cvt

{
 emit("add tmp,rs,rx");
 emit("lw rt,0(tmp)");
}

cvt

{
 emit("add tmp,rt,rx");
 emit("sw tmp,0(rs)");
}

cvt

 { Call_Fixup_and_Emit(label,n);}cvt

{ high16 = const >> 6;
 low6 = (const & 0x3f << 13);
 emit("andi rt,rt,0x1fff");
 emit("ori rt,rt,low6");
 emit("lui rt,high16");
}

cvt

Chapter 5: Computing System Description Language Applications 120

aspect mechanism makes it easy for other applications to filter out these application-specific

instruction aspects and make use of the rest of the instruction description.

5.3.2 Specifying a Procedural Interface to Assembly Language

Often, machine descriptions are used to map the description’s notation (τRTL in our case)

that is known to the application to some format (e.g., assembly language, binary instruction

formats, etc.) whose format or notation is foreign to the application. This would occur, for

instance, in the implementation of retargetable code generator. However, in some circum-

stances, the opposite is desired: a mapping to the description’s notation from some other nota-

tion. A link-time optimizer that reads binary instructions and manipulates them in τRTL

would perform such a translation. In this section, we briefly discuss how translation in this

direction can be achieved.

The New Jersey Machine-Code Toolkit [RF95] includes a Specification Language for

Encoding and Decoding (SLED) [RF97] machine language (binary) instructions. From

SLED specifications, one can generate interfaces that can encode or decode machine language

instructions. A SLED interface is just a proceduralized assembly language. For example, a

SLED assembly language interface for the MIPS would include the following C language

functions:

Addr addr(int imm, unsigned rs);

void add(unsigned rs1, unsigned rs2, unsigned rd);

void sub(unsigned rs1, unsigned rs2, unsigned rd);

void sw(unsigned rt, Addr addr);

void lw(Addr addr, unsigned rt);

Using such an interface, the New Jersey Machine-Code Toolkit can generate either binary or

assembly language instructions. What if, instead, you wanted to generate τRTL? The answer

is that this is easily accomplished by providing an identical interface that generates τRTL

instead of assembly language.

Figure 5-10 shows a brief excerpt from the MIPS τRTL description that has been dec-

orated with SLED aspects. The right-hand sides of τRTL grammar productions are CSDL

objects, each of which has a SLED aspect. The SLED aspect specifies the C language signature

for the function that will emit τRTL trees. As before, these aspects build a grammar parallel to

the τRTL grammar on the left. To build the necessary functions, we enumerate all of the C

Chapter 5: Computing System Description Language Summary 121

signatures that can be derived from the grammar start symbol discarding duplicates when they

are produced. As each signature is generated, the matching τRTL tree is constructed. From

the signature and the tree, a C function that matches the signature can be generated that,

itself, generates the matching τRTL tree.

Just as we can use this technique to build an interface for generating τRTL trees, we

can use this technique to call functions produced by the Toolkit to generate binary instruc-

tions from τRTL’s. This is possible due to the declarative nature of both the τRTL grammar

and the matching SLED aspects. However, the aspects themselves do not provide sufficient

information to generate the necessary code. Instead, the processor that takes the aspects and

generates the interface must include whatever information is necessary to generate the C func-

tions from the mappings of C signatures to τRTL’s. This is appropriate though since this

information is application dependent.

5.4 Summary
In this chapter, we have presented a new framework for developing descriptions of computing

systems. The CSDL system facilitates the construction of descriptions that can be shared

among many software applications. As a goal, we would like to build application-independent

descriptions. In practice, this is not always feasible. CSDL recognizes this fact and provides

the appropriate mechanisms to software developers.

start → inst //

w → u,32 //

bs → b,32 //

imm16→ « constants,16 » //

regno → « constantu,5 » //

reg → « r[regno] » //

addr → « (regw + ∆(imm16)s,32)w »

//

aop → « + »

| « − »

//

inst → « reg'w ← reg''w aop reg'''w; »

| « M[addr,4]bs ← reg; »

| « regbs ← M[addr,4]; »

//

Figure 5-10. A small MIPS excerpt with SLED aspects.

int constantsled

int constantsled

unsigned regnosled

Addr addr(imm16, reg)sled

addsled

subsled

void aop(reg´, reg´´, reg´´´)sled

void sw(reg, addr)sled

void lw(addr, reg)sled

Chapter 5: Computing System Description Language Summary 122

Because it is difficult, if even possible, to anticipate all of the information that all

applications will need about a target machine, there always will be a need to add information

to existing descriptions. By introducing annotations, modules, and aspects, our description

system makes it possible to make these necessary extensions—without impacting existing

applications. When details about a target machine are missing from a description, an applica-

tion can extend the description system in whatever way is most appropriate for the applica-

tion’s purposes.

Finally, choosing the CSDL system for parameterizing an application does not pre-

clude the use of an already proven system of description. Instead, with few, or no modifica-

tions, an extant description can be integrated with CSDL, enhancing its descriptive capability

and making it available for other applications to use and extend.

123

CHAPTER 6

CONCLUSIONS

This dissertation presents a framework for building application-independent descriptions of

computing systems for use in retargetable software. We illustrate the framework by developing

the core description component (τRTL), an optional calling convention component (CCL),

and the mechanism we use to extend extant descriptions (CSDL). In addition, another CSDL

language, called PLUNGE, is being developed for describing the pipeline structure of a

machine [Mil99]. The features of the Computing System Description Language directly sup-

port the evolution that machine descriptions experience.

Description systems have traditionally been tailored for a single application to make

retargeting of the application more manageable. In this spirit, machine descriptions generally

forgo application independence in trade for ease of application implementation. Frequently,

this results in machine descriptions that actually describe the process that the application is

performing (code generation, optimization, binary decoding, etc.) rather than solely the char-

acteristics of the target machine. CSDL recognizes that while machine descriptions usually

have information that is valuable to multiple applications, they also commonly contain details

that are of use to only one application. Rather than forbidding such application dependencies,

CSDL provides mechanisms to denote application-specific information.

At the center of CSDL is the core machine description. The core builds upon a proven

method of modeling the effects of machine instructions: register transfer lists. RTL’s are then

extended to address their known shortcomings. The result is a mature, application-indepen-

dent representation for concisely describing the semantics of machine instructions.

Chapter 6: Conclusions 124

Applications that use instruction descriptions manipulate an internal or intermediate

representation of instructions. CSDL provides the τRTL representation to aid in building

more robust implementations. It is the nature of these instruction “manipulators” that

instructions must be added, removed, or rearranged. Often, the goal is to build semantically

equivalent sequences of instructions. τRTL provides a natural type system that makes it possi-

ble for software to easily identify malformed τRTL expressions. Unlike other instruction rep-

resentations, τRTL uses a type system better suited to the kinds of objects being manipulated.

Types are not associated with objects, as they are in high-level programming languages, but

instead with operators. This reflects the process that is used when translating instructions

from a high-level language to a low-level language. The types of objects in high-level lan-

guages are used to determine the types of the operations to use in implementing the high-level

language expressions in the low-level form. This abstraction is appropriate for high-level lan-

guages, but not for software that manipulates a representation of low-level machine-language

instructions.

When designing an instruction representation, one must always balance between a

particular application’s need for detailed information and the appropriate level of abstraction

to present to all applications. If too much detail is chosen, an operation’s effect cannot be eas-

ily determined by the software that manipulates the instructions. If too little detail is chosen,

the application is starved for information. In the CSDL core, we balance these competing

demands by providing just the right level of detail in τRTL for many applications, while pro-

viding access to additional detail through the µRTL definition of operations. This acknowl-

edges the fact that many applications, such as optimizers, require some information about the

instructions they manipulate, while other applications, such as simulators, need more detailed

information about the operation of an instruction. This approach is hierarchical, and,

although this is a common approach in computer hardware description languages, it has not

been applied to the machine description domain.

Other components beyond the core can be added to CSDL descriptions. A compo-

nent unique to CSDL is the module that specifies procedure calling conventions. Unlike

many other target machine characteristics, the implementation of procedure call combines

language dependent-information with machine dependent-information. As such, the part of

an application’s implementation that works with the calling convention is among the most

Chapter 6: Conclusions 125

difficult to retarget. Generally, the cause is that conventions are inappropriately modeled as

sequences of target machine instructions. An important contribution of this thesis is the iden-

tification of the procedure calling convention and the procedure calling sequence as separate

concepts that can—and should—be separated in an application’s implementation.

Once a procedure calling convention is established, software must be built that

adheres to the convention. Although traditional programming techniques are generally used,

programming languages do not provide the appropriate abstractions for building robust

implementations of calling conventions. We demonstrate this by identifying errors in the

implementations of mature production compilers. CCL provides the appropriate abstractions

to accurately and succinctly specify the agreement of how information must be transmitted

between caller and callee. By using CCL, we have developed convention implementations like

no other: robust, bug-free, with provable properties.

Using formal specifications can often simplify implementations as well. Our experi-

ence with CCL specifications reinforces this observation. Before CCL’s integration with our

compiler, the compiler’s hand-written calling-sequence generator was error prone and usually

required examination several times during the process of retargeting the compiler. The result

of CCL’s integration is a small, simple implementation of an FSA whose actions are directed

by a generated table. Because the purpose of the implementation is formally defined, the code

is easy to write and debug. Further, since the machine-specific details are encoded in the table,

the result is machine-independent code that need not be revisited at all when the compiler is

retargeted.

CCL’s formal specifications enable us to leverage off the language’s theoretical founda-

tion in many ways. For example, these descriptions are truly multipurpose; they can be used

to generate calling sequence code generators or to build compiler test suite generators. These

two applications of CCL exercise the specifications in fundamentally different ways. This is

only possible because CCL achieves an unusually high degree of application-independence

due to the separation of convention from sequence. The result is that from CCL descriptions

we can automatically generate test suites that are target-machine sensitive. Because target

machine information is considered when constructing the test suite, the test suite generator

can isolate many potential weaknesses of a compiler’s convention implementation. Finally,

Chapter 6: Conclusions 126

perhaps the most exciting benefit is that compiler writers need not rework this aspect of a

compiler’s test suite when the compiler is retargeted.

Since CCL uses FSA’s to model the transmission of information between caller and

callee, the problem of generating a test suite for a compiler’s convention generator can be

reduced to exercising the FSA that is implicit (or explicit in our case) in a compiler’s imple-

mentation. However, exercising a machine that recognizes strings from an infinite language

poses a serious problem: not all inputs can be tested. This is a well known problem that has

been investigated in many domains. We present a new solution to the infinite test problem.

By using transition-pairing, we can select inputs that consider the context of a FSA transition’s

use. The result is a drastic reduction in the input test language’s size, while maintaining a high

degree of test coverage confidence. This method of test vector selection automatically identi-

fies boundary conditions that are the most likely to pose problems in hand-written compiler

implementations.

Generating exhaustive test suites, as we have done with CCL, is sufficient to identify

errors and provide examples that will reproduce the errors. This only solves half the problem.

In order to correct the implementation, one must isolate and diagnose the cause of the error.

The test suite generator is capable of automatic diagnosis of some types of common errors.

The diagnosis suggests the type of error in calling convention terms. When automatic diagno-

sis cannot be provided, usually the set of tests that fail can suggest to the compiler writer the

nature of the implementation error. Best of all, the test suite and the diagnostic driver can be

used in environments that do not to use CCL generated implementations, or even in cases

where a CCL generator is not available to generate the test suite.

Both the τRTL and CCL components are bound together by CSDL. CSDL provides

an extremely extensible environment for collecting target machine information. As descrip-

tion systems mature, CSDL can accommodate descriptions of new features through its

description components. Applications that view the same abstractions in different ways can

include these alternative views in CSDL components without impacting existing applications

or descriptions. The result is a flexible environment that gives applications room to grow and

evolve.

In summary, we have presented a system for building computing system descriptions

that can be used by more than a single application. τRTL descriptions further the state-of-the-

Chapter 6: Conclusions 127

art in specifying effects of machine instructions. µRTL provides a hierarchical solution for

applications that need more detailed information about an instruction’s effect. The CCL spec-

ification language is the first work to formally describe procedure calling conventions. It also

represents one of the first languages to be used by more than a single application. The enclos-

ing CSDL environment houses the first description system to recognize that specifications

must evolve and that specifications will frequently include application-dependent features. As

these specifications grow, CSDL is poised to grow with them.

128

APPENDIX A

CSDL DESCRIPTIONS

This appendix contains the CSDL core descriptions for the MIPS and Motorola M68020.

A.1 The MIPS Core Description

inst → load
| store
| arithmetic
| mult
| branch
| float
| special
| reg’ ← reg’’bs;
| dreg’ ← dreg’’b,64;
| reg ← exprw;
| reg’ ← abs(reg’’s,32)w;
| reg’ ← −(reg’’s,32)s,32;
| reg’ ← −(reg’’w)w;
| reg’ ← ¬(reg’’bs)bs;
| dreg'd ← dreg’’d aop dreg’’’d;
| reg ← bsimm32;
| reg ← 0bs;
| reg'bs ← reg’’bs ∧ ∆(imm16)bs;
//

w → u,32 //

bs → b,32 //

d → f,64 //

FC → fc //

PC → pc //

HI → hi //

LO → lo //

shamt → constant
//

imm → ∆(constants,16)
| constant

Appendix A: CSDL Descriptions The MIPS Core Description 129

| local
| label
| locals,32 + constants,32

| labels,32 + constants,32

//

expr → ∆(constants,16)
| constant
//

offset → ∆(constants,16)
| constant
//

reloc → global
| local
| label
//

addr → regw
| (regw + offsetw)w
| relocw
| (regw + relocw)w
| (relocw + offsetw)w
| (regw + (relocw + offsetw)w)w
//

imm16→ constants,16
| locals,16

| (locals,16 + constants,16)s,16
//

bsimm16→constantb,16
| labelb,16

//

bsimm32→ globalb,32

| labelb,32
//

imm32→ globalb,32

| (globalw + ∆(constants,16)w)w
//

bimm16→ constants,16
//

imm26→ constant
| global
//

regimm→reg
//

regno → constantu,5 //

dregno→ constantu,5 //

freg → f[dregno]31..0 //

dreg → f[dregno] //

reg → r[regno]//
reg0 → reg

| 0
//

mem → m[addr]

Appendix A: CSDL Descriptions The MIPS Core Description 130

//

immlop→ ∧
| ∨
| ⊕
//

lop → immlop
| nor
//

frelop → =
| ≤
| <
//

relop → =
| ≠
//

signedrelop→≤
| <
| >
| ≥
//

shiftop→ ⇐
| ⇒
//

immaop→ +
| −
//

aop → +
| −
| ×
| ÷
//

load → reg ← membs;
| reg ← ∆(mems,8)s,32;
| reg ← ∆(mems,16)s,32;
| reg ← addr;
| reg ← ∆(memu,8)w;
| reg ← ∆(memu,16)w;
| dreg ← memb,64;
| freg ← memb,32;
| reg ← imm32;
//

store → mem ← regbs;
| mem ← 0w;
| mem ← 0u,16;
| mem ← 0u,8;
| mem ← ∆(regb,32)b,8;
| mem ← ∆(regb,32)b,16;
| mem ← dregb,64;
| mem ← fregb,32;
//

arithmetic→ reg’s,32 ← reg’’s,32 immaop imms,32;
| reg’w ← reg’’w immaop immw;

Appendix A: CSDL Descriptions The MIPS Core Description 131

| reg’ ← imms,32;
| reg’ ← immw;
| reg’bs ← reg’’bs immlop immbs;
| reg’s,32 ← reg’’s,32 aop reg’’’s,32;
| reg’w ← reg’’w aop reg’’’w;
| reg’bs ← reg’’bs lop reg’’’bs;
| reg’ ← ¬ ((reg’’bs ∨ reg’’’bs)bs)bs;
| reg’bs ← reg’’s,32 < reg’’’s,32;
| reg’bs ← reg’’w < reg’’’w;
| reg’bs ← reg’’s,32 signedrelop constants,32;
| reg’bs ← reg’’s,32 signedrelop reg’’’s,32;
| reg’bs ← reg’’w signedrelop constantw;
| reg’bs ← reg’’w signedrelop reg’’’w;
| reg’bs ← reg’’bs relop constantbs;
| reg’bs ← reg’’bs relop reg’’’bs;
| reg’bs ← reg’’bs rol constantbs;
| reg’bs ← reg’’bs rol reg’’’bs;
| reg’bs ← reg’’bs ror constantbs;
| reg’bs ← reg’’bs ror reg’’’bs;
| reg’bs ← reg’’bs shiftop shamtu,5;
| reg’s,32 ← reg’’s,32 ⇒ shamtu,5;
| reg’bs ← reg’’bs shiftop ∆(reg’’’w)u,5;
| reg’s,32 ← reg’’s,32 ⇒ ∆(reg’’’w)u,5;
//

mult → HI ← ∆((reg’s,32 × reg’’s,32)s,64)s,32; LO ← ∆((reg’s,32 × reg’’s,32)s,64)s,32;
| reg’s,32 ← reg’’s,32 × reg’’’s,32;
| reg’w ← reg’’w × reg’’’w;
| reg’s,32 ← reg’’s,32 × constants,32;
| reg’w ← reg’’w × constantw;
| reg’s,32 ← reg’’s,32 mulo reg’’’s,32;
| reg’w ← reg’’w mulou reg’’’w;
| reg’s,32 ← reg’’s,32 mulo constants,32;
| reg’w ← reg’’w mulou constantw;
| reg’s,32 ← reg’’s,32 ÷ reg’’’s,32;
| reg’w ← reg’’w ÷ reg’’’w;
| reg’s,32 ← reg’’s,32 ÷ constants,32;
| reg’w ← reg’’w ÷ constantw;
| reg’s,32 ← reg’’s,32 % reg’’’s,32;
| reg’w ← reg’’w % reg’’’w;
| reg’s,32 ← reg’’s,32 % constants,32;
| reg’w ← reg’’w % constantw;
| reg ← HIbs;
| reg ← LObs;
| LO ← regbs;
| HI ← regbs;
//

jtarget → ∆(constantb,26)bs
| regbs

| labelbs

| globalbs
//

Appendix A: CSDL Descriptions The MIPS Core Description 132

btarget→ ∆((PCw + ∆(bimm16)w)w)bs
| labelbs

//

balrelop→ <
| ≥
//

branch→ PC ← jtarget;
| PC ← jtarget; r[31u,5] ← PCbs;
| PC ← regbs;
| PC ← regbs; r[31u,5] ← PCbs;
| PC ← ¿((reg’bs relop reg’’bs)bs, btarget, PCbs)bs;
| PC ← ¿((regs,32 signedrelop regimms,32)bs, btarget, PCbs)bs;
| PC ← ¿((regw signedrelop regimmw)bs, btarget, PCbs)bs;
| PC ← ¿((regbs relop 0bs)bs, btarget, PCbs)bs;
| PC ← ¿((reg0s,32 signedrelop 0s,32)bs, btarget, PCbs)bs;
| PC ← ¿((regs,32 balrelop 0s,32)bs, btarget, PCbs)bs;r[31u,5] ← PCbs;
| PC ← ¿((FCs,32 = 0s,32)bs, btarget, PCbs)bs;
| PC ← ¿((FCs,32 = 1s,32)bs, btarget, PCbs)bs;
//

special→break(constantb,20)
| tlbp
| tlbr
| tlbwr
| tlbwl
| rfe
| syscall
//

float → dreg ← (r[regno’]bs:r[regno’’]bs)b,64; { ((regno’ % 2) = 0) ∧ (regno’ = (regno’’ + 1)) }
| (r[regno’]:r[regno’’])← dregb,64;

| f[dregno’]63..32 ← reg’bs; f[dregno’]31..0 ← reg’’bs; { ((regno’ % 2) = 0) ∧ (regno’ = (regno’’ + 1)) }

| reg’bs← f[dregno’]63..32; reg’’bs ← f[dregno’]31..0; { ((regno’ % 2) = 0) ∧ (regno’ = (regno’’ + 1)) }
| freg ← regbs;
| reg ← fregbs;
| fregbs ← mem;
| dregb,64 ← mem;
| membs ← freg;
| memb,64 ← dreg;
| dregd ← ∆(fregf,32);
| fregf,32 ← ∆(dregd);
| freg’f,32 ← ∆(freg’’s,32);
| fregf,32 ← ∆(regs,32);
| dregf,64 ← ∆(fregs,32);
| dregf,64 ← ∆(regs,32);
| freg’s,32 ← ∆(freg’’f,32);
| fregs,32 ← ∆(dregf,64);
| dreg'd ← dreg’’d aop dreg’’’d;
| freg'f,32 ← freg’’f,32 aop freg’’’f,32;
| freg'f,32 ← −(freg’’f,32);
| dreg'f,32 ← −(dreg’’f,32);
| dreg’ ← dreg’’b,64;
| freg’ ← freg’’b,32;

Appendix A: CSDL Descriptions The Motorola M68020 Core Description 133

| freg’f,32 ← abs(freg’’f,32);
| dreg’f,32 ← abs(dreg’’f,32);
| FCbs ← dreg’d frelop dreg’’d;
| FCbs ← freg’f,32 frelop freg’’f,32;
| dreg ← fconstantd;
| freg ← fconstantf,32;
//

A.2 The Motorola M68020 Core Description
inst → move

| arith
| logical
| shift
| bitfield
| branch
//

PC → pc //

CC → cc //

SP → a[7] //

regno → constantu,3 //

dreg → d[regno] //

areg → a[regno] //

pcareg→ areg
| PC //

reg → areg
| dreg
//

sz → 8
| 16
| 32
//

bbwl → b,8
| b,16
| b,32
//

bwl → u,8
| u,16
| u,32
//

wl → u,16
| u,32
//

L → u,32 //

sbwl → s,8
| s,16
| s,32
//

scale → 1
| 2

Appendix A: CSDL Descriptions The Motorola M68020 Core Description 134

| 4
| 8
//

swl → s,16
| s,32
//

index → (∆(regsbwl)L × ∆(scaleu,8)L)L
| ∆(regsbwl)L
//

wlindex→ (∆(regswl)L × ∆(scaleu,8)L)L
| ∆(regswl)L
//

indirect→ (aregL + wlconstL)L
| wlconstL
| aregL
//

wlconst→ ∆(constants,16)
| ∆(constants,32)
//

ea → dreg
| areg
| m[aregL]
| m[(pcaregL + ∆(constants,16)L)L]
| m[((pcaregL + ∆(constants,8)L)L + wlindex)L]
| m[((pcaregL + wlconstL)L + index)L]
| m[(pcaregL + index)L]
| m[(wlconstL + index)L]
| m[(pcaregL + wlconstL)L]
| m[index]
| m[pcaregL]
| m[wlconstL]
| m[((areg’L ← areg’L + scaleL) - scaleL)L]
| m[areg’L ← areg’L − scaleL]
| m[0L]
| m[((m[indirect]L + index)L + wlconstL)L]
| m[(m[indirect]L + wlconst’’L)L]
| m[(m[indirect]L + index)L]
| m[m[indirect]L]
| m[indirect]
| m[wlconstL]
| m[index]
| m[(m[(indirect + index)L]L + wlconstL)L]
| m[∆(constants,16)L]
| m[constantL]
| constant
//

imm →constant
//

wl → 16
| 32
//

bw → 8

Appendix A: CSDL Descriptions The Motorola M68020 Core Description 135

| 16
//

n → s
| u
//

move →
| dreg’b,32 ← dreg’’; dreg’’b,32 ← dreg’;
| dregb,32 ← areg; aregb,32 ← dreg;
| areg’b,32 ← areg’’; areg’’b,32 ← areg’;
| aregb,32 ← ea;
| m[(SPL - 4L)L]b,32 ← areg’; areg’L ← SPL - 4L;

SPL ← (SPL - 4L)L + ∆(constantswl)L;

| ea’bbwl ← ea’’; setcc;
| areg’b,32 ← m[areg’L]; SPL ← areg’L + 4L;
| m[(SPL - 4L)L]b,32 ← ea; SPL ← SPL - 4L
//

setcc → CCb,5 ← //

aop →
+
//

arith →
| dreg’bwl’ ← eabwl’ aop dreg’bwl’; setcc;
| ea’bwl’ ← dregbwl’ aop ea’bwl’; setcc;
| areg’wl’ ← eawl’ aop areg’wl’;
| dreg’bwl’ ← addx(dreg’’bwl’, dreg’bwl’); setcc;
| ea’bwl’ ← 0; setcc;
| ccb,5 ← dregsbwl’ - easbwl’;
| ccb,5 ← aregswl’ - easwl’;

| dreg’15..0
n’,16 ← dreg’n’,16 ÷ ea’n’,16;

dreg’31..16
n’,16 ← dreg’n’,16 mod ea’n’,16; setcc;

| dreg’n’,32 ← dreg’n’,32 ÷ ean’,32; setcc;
| dreg’n’,32 ← (dreg’’:dreg’)n’,64 ÷ ea’n’,32;

dreg’’n’,32 ← (dreg’’:dreg’)n’,64 mod ea’n’,32; setcc;
| dreg’n’,32 ← dreg’n’,32 ÷ ea’n’,32;

dreg’’n’,32 ← dreg’n’,32 mod ea’n’,32; setcc;

| dreg’s,32 ← ∆(dreg’s,bw);
| dreg’s,16 ← ∆(dreg’s,8);
| dreg’n’,wl’ ← dreg’n’,wl’ × ean’,wl’; setcc;
| (dreg’:dreg’’)n’,64 ← ean’,32 × dreg’’n’,32; setcc;
| ea’sbwl’ ← -ea’sbwl’); setcc;
| ea’sbwl’ ← negx(ea’sbwl’); setcc;
//

logop → ∧
| ⊕
| ∨
//

logical → dreg’bbwl’ ← eabbwl’ logop dreg’bbwl’
| ea’bbwl’ ← dregbbwl’ logop ea’bbwl’

Appendix A: CSDL Descriptions The Motorola M68020 Core Description 136

| ea’bbwl’ ← ¬(ea'bbwl’)
//

ashiftop→ ⇐
| ⇒
//

shiftop→ ⇐
| ⇒
| rol
| ror
| roxl
| roxr
//

al → b
| s
//

shift →
| dreg'sbwl’ ← dreg'sbwl’ ashiftop dreg''u,5;
| dreg'sbwl’ ← dreg'sbwl’ ashiftop immu,5;
| ea's,16 ← ea's,16 ashiftop 1u,5;
| dreg'bbwl’ ← dreg'bbwl’ shiftop dreg''u,5;
| dreg'bbwl’ ← dreg'bbwl’ shiftop immu,5;
| ea'b,16 ← ea'b,16 shiftop 1u,5;

| dreg'15..0
b,16 ← dreg'31..16; dreg'31..16

b,16 ← dreg15..0;
//

bfop → bfexts
| bfextu
| bfins
//

bitfield→ dreg'b,32 ← bfop(eab,32, constant'u,5, constant''u,5); setcc;
//

relop → =
| « ≠
| ≤
| <
| >
| ≥
//

cmp → CCu,5 relop 0u,32 //

branch→ PCL ← PCL + ∆(labelsbwl)L; label
| PCL ← PCL + ∆(labelsbwl)L; m[SPL]b,32 ← PC; SPL ← SPL - 4L;

label
| PCb,32 ← ea;
| PCb,32 ← ea; m[SPL]b,32 ← PC; SPL ← SPL - 4L;
| PCL ← PCL + 2L;
| PCb,32 ← ?(cmpb,1, labelb,32, PCb,32); label
| PCb,32 ← ?(DB(cmpb,1)b,1, labelb,32, PCb,32); label
| eab,32 ← cmp; label
| PCb,32 ← m[SPL]; SPL ← (SPL + 4L)L + ∆(constants,16)L;
| PCb,32 ← m[SPL]; SPL ← SPL + 4L;
//

137

APPENDIX B

CCL DESCRIPTIONS

This appendix contains the CCL calling convention descriptions.

2.1 The MIPS R3000 CCL Description
1. external SPILL_SIZE, LOCALS_SIZE
2. persistent {r1, r16:23, r26:31}
3. alias REG_ARGS ≡ 16
4. alias sp ≡ r29
5. caller prologue
6. view change
7. ∀ offset ∈ {−∞:∞}
8. M[sp + offset] becomes M[sp + offset +  ARG_BLOCK_SIZE 8]
9. end view change

10. data transfer (asymmetric)
11. alias rindex ≡ 4:7
12. alias fpindex ≡ 12,14
13. alias mstart ≡ sp + REG_ARGS
14. alias mindex ≡ mstart:∞
15. resources {<rrindex, Mmindex>, <ffpindex, Mmindex>, <Mmindex>}
16. ∀ mem ∈ { M[sp(REG_ARGS)]} set mem.assigned ← true
17. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈ <mindex>
18. ∧ M[addr].assigned>)
19. class intregs ← <<rx>| x ∈ <rindex>>
20. class intfpregs ← <<rx> | x ∈ <rindex> ∧ x mod 2 = 0>
21. class fpfpregs ← <<fx> | x ∈ <fpindex>>
22. class mem ← <<Mloc> | loc ∈ <mindex> ∧ loc mod 4 = 0>
23. class aligned_mem ← <<Mloc> | loc ∈ <mindex> ∧ loc mod 8 = 0 >
24. class struct_mem ← <<rx, Mmstart> | x ∈ <rindex>>
25. class aligned_struct_mem ← <<rx, Mmstart> | x ∈ <rindex> ∧ x mod 2 = 0>
26. ∃ reg ∈ {reg | reg ∈ {f12} ∧ reg.assigned} ⇒ set r4.unavailable ← true
27. ∃ reg ∈ {reg | reg ∈ {f12} ∧ reg.assigned} ⇒ set r5.unavailable ← true
28. ∃ reg ∈ { reg | reg ∈ {f14} ∧ reg.assigned} ⇒ set r6.unavailable ← true
29. ∃ reg ∈ { reg | reg ∈ {f14} ∧ reg.assigned} ⇒ set r7.unavailable ← true
30. ∃ reg ∈ {reg | reg ∈ {r4:5} ∧ reg.assigned} ⇒ set f12.unavailable ← true

Appendix B: CCL Descriptions The MIPS R3000 CCL Description 138

31. ∃ reg ∈ {reg | reg ∈ {r6:7} ∧ reg.assigned} ⇒ set f14.unavailable ← true
32. ∀ argument ∈ <ARG1:ARG_TOTAL>
33. map argument → argument.type ⊥ {
34. byte, word, longword: <intregs, mem>,
35. struct: argument.size ⊥ {
36. 1,2,3,4,5,6,7: <struct_mem, mem>,
37. default: <aligned_struct_mem, aligned_mem>
38. },
39. float, double: ARG1.type ⊥ {
40. struct, byte, word, longword:<intfpregs, aligned_mem>,
41. float, double: <fpfpregs, aligned_mem>
42. }
43. }
44. end data transfer
45. end caller prologue
46. callee prologue
47. view change
48. ∀ offset ∈ {−∞:∞}
49. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE +
50. LOCALS_SIZE + NVSIZE 8]
51. end view change
52. end callee prologue
53. callee epilogue
54. data transfer (asymmetric)
55. resources {<r2>,<f0>}
56. ∃ return ∈ <RVAL1:RVAL_TOTAL> ⇒
57. map return → return.type ⊥ {
58. byte, word, longword: <<<r2>>>,
59. float, double: <<<f0>>>,
60. struct: ↑(<<<r2>>>)
61. }
62. end data transfer
63. end callee epilogue

Appendix B: CCL Descriptions The M68020 CCL Description 139

2.2 The M68020 CCL Description

Description for the M68020

1. external SPILL_SIZE, LOCALS_SIZE
2. persistent {d2:7,a2:7}
3. alias sp ≡ a7
4. caller prologue
5. view change
6. ∀ offset ∈ {−∞:∞}
7. M[sp + offset] becomes M[sp + offset +  ARG_BLOCK_SIZE 4]
8. end view change
9. data transfer (asymmetric)

All arguments, regardless of type, are saved on the stack, just
below the local variable space. The extra 4 bytes is included
because the call instruction pushes the return address on the

stack, causing an additional 4 bytes to be calculated.

10. alias mindex ≡ sp:∞
11. resources {<Mmindex>}
12. class mem ← <<Mloc> | loc ∈ <mindex>>
13. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧
14. M[addr].assigned>)
15. ∀ argument ∈ <ARG1:ARG_TOTAL>
16. map argument → <mem>
17. end data transfer
18. end caller prologue
19. callee prologue
20. view change
21. ∀ offset ∈ {-∞:∞}
22. M[sp + offset] becomes M[sp + offset + 4 +  SPILL_SIZE + LOCALS_SIZE +
23. NVSIZE 4]
24. end view change
25. end callee prologue
26. callee epilogue
27. data transfer (asymmetric)
28. resources {<d0:1>}
29. ∃ return ∈ <RVAL1:RVAL_TOTAL> ⇒
30. map return → return.type ⊥ {
31. byte, word, longword, float, double:<<<d0>>>,
32. struct: ↑(<<<d0>>>)
33. }
34. end data transfer
35. end callee epilogue

Appendix B: CCL Descriptions The M88100 CCL Description 140

2.3 The M88100 CCL Description

Description for the M88100

1. external ARG_SIZE, SPILL_SIZE, LOCALS_SIZE
2. persistent {r1, r14:31}
3. alias sp ≡ r31
4. alias mem_bytes ≡ 32
5. caller prologue
6. data transfer (asymmetric)
7. alias rindex ≡ 2:9
8. alias mstart ≡ sp + mem_bytes
9. alias mindex ≡ mstart:∞

10. resources {<rrindex, Mmindex>}
11. class regs ← <<rx>| x ∈ <rindex>>
12. class mem ← <<Mloc> | loc ∈ <mindex> ∧ loc mod 4 = 0>
13. class aligned_mem ← <<Mloc> | loc ∈ <mindex> ∧ loc mod 8 = 0 >
14. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧
15. M[addr].assigned>)

This explicitly requires that an additional 32 bytes be allocated
on the stack if there is any stack space allocated by the caller.

16. ∃ memarg ∈ {memory | memory ∈ <M[mstart]> ∧ memory.assigned} ⇒
17. stackloc ∈ {M[loc] | loc ∈ { sp(mem_bytes)}} set stackloc.assigned ← true
18. ∀ argument ∈ <ARG1:ARG_TOTAL>
19. map argument → argument.type ⊥ {
20. byte, word, longword: <regs, mem>,
21. float, double:<regs, aligned_mem>,
22. struct: <aligned_mem>
23. }
24. end data transfer
25. end caller prologue
26. callee prologue
27. view change
28. ∀ offset ∈ {-∞:∞}
29. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + LOCALS_SIZE +
30. NVSIZE + ARG_BLOCK_SIZE8]
31. end view change
32. end callee prologue
33. callee epilogue
34. data transfer (asymmetric)
35. resources {<r2:3>}
36. ∃ return ∈ <RVAL1:RVAL_TOTAL> ⇒
37. map return → return.type ⊥ {
38. byte, word, longword, float, double:<<<r2>>>,
39. struct: ↑(<<<r2>>>)
40. }
41. end data transfer
42. end callee epilogue

Appendix B: CCL Descriptions The DEC VAX-11 CCL Description 141

2.4 The DEC VAX-11 CCL Description

Description for the DEC VAX-11

1. external SPILL_SIZE, LOCALS_SIZE
2. persistent {r6:15}
3. alias sp ≡ r14
4. caller prologue
5. view change
6. ∀ offset ∈ {−∞:∞} M[sp + offset] becomes M[sp + offset +  ARG_BLOCK_SIZE 8]
7. end view change
8. data transfer (asymmetric)
9. alias mindex ≡ sp+4:∞

10. resources {<Mmindex>}
11. class mem ← <<Mloc> | loc ∈ <mindex> >
12. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧
13. M[addr].assigned>)
14. ∀ argument ∈ <ARG1:ARG_TOTAL>
15. map argument → argument.type ⊥ {
16. byte, word, longword, float, double:<mem>,
17. struct: ↑(<mem>)
18. }
19. end data transfer
20. end caller prologue
21. callee prologue
22. view change
23. ∀ offset ∈ {-∞:∞}
24. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + LOCALS_SIZE +
25. NVSIZE 8]
26. end view change
27. end callee prologue
28. callee epilogue
29. data transfer (asymmetric)
30. resources {<r0:1>}
31. ∃ return ∈ <RVAL1:RVAL_TOTAL> ⇒
32. map return → return.type ⊥ {
33. byte, word, longword, float, double:<<<r0>>>,
34. struct: ↑(<<<r0>>>)
35. }
36. end data transfer
37. end callee epilogue

Appendix B: CCL Descriptions The SPARC CCL Description 142

2.5 The SPARC CCL Description

Description for the SPARC

1. external SPILL_SIZE, LOCALS_SIZE
2. persistent {r14:31}
3. alias sp ≡ r14
4. internal REG_MEM_SIZE ← 92
5. caller prologue
6. data transfer (asymmetric)
7. alias rindex ≡ 8:13
8. alias mstart ≡ sp + REG_MEM_SIZE
9. alias mindex ≡ mstart:∞

10. resources {<rrindex, Mmindex>}
11. class regsmem ← <<rx, Mmstart> | x ∈ <rindex>>
12. class mem ← <<Mloc> | loc ∈ <mindex>>
13. internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧
14. M[addr].assigned>)
15. ∀ argument ∈ <ARG1:ARG_TOTAL>
16. map argument → argument.type ⊥ {
17. byte, word, longword, float, double:<regsmem, mem>,
18. struct: <regsmem, mem>
19. }
20. end data transfer
21. end caller prologue
22. callee prologue
23. view change
24. ∀ offset ∈ {-∞:∞}
25. M[sp + offset] becomes M[sp + offset +  SPILL_SIZE + LOCALS_SIZE +
26. NVSIZE + ARG_BLOCK_SIZE + 4 8]
27. ∀ x ∈ {8:15}
28. r[x] becomes r[x + 16]
29. end view change
30. data transfer
31. alias mindex ≡ sp:∞
32. resources {<Mmindex>}
33. class mem ← <<Mloc> | loc ∈ <mindex>>
34. internal NVSIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧ M[addr].assigned>)
35. ∀ register ∈ < rx | x ∈ <16:31> ∧ rx.assigned>
36. map register → <mem>
37. end data transfer
38. end callee prologue
39. callee epilogue
40. data transfer (asymmetric)
41. resources {<r8>, <f0>}
42. ∃ return ∈ <RVAL1:RVAL_TOTAL> ⇒
43. map return → return.type ⊥ {
44. byte, word, longword:<<<r8>>>,
45. float, double: <<<f0>>>,

Appendix B: CCL Descriptions The SPARC CCL Description 143

46. struct: ↑(<<<r8>>>)
47. }
48. end data transfer
49. end callee epilogue

144

REFERENCES

[ADLU91] Alfred V. Aho, Anton T. Dahbura, David Lee, and M. Umit Uyar. An optimi-
zation technique for protocol conformance test generation based on UIO
sequences and rural chinese postman tours. IEEE Transactions on Communica-
tions, 39(11):1604–1615, November 1991.

[Ado97a] Adobe Systems, Inc. Adobe FrameMaker 5.5 User Guide, August 1997.

[Ado97b] Adobe Systems, Inc. Frame Developer’s Kit Programmer’s Reference, August
1997.

[Ado97c] Adobe Systems, Inc. MIF Reference, August 1997.

[ADR98] Andrew Appel, Jack Davidson, and Norman Ramsey. The zephyr compiler
infrastructure. Distributed at Supercomputing ’98, November 1998.

[AGH+84] Philippe Aigrain, Susan L. Graham, Robert R. Henry, Marshall Kirk McKu-
sick, and Eduardo Petegri-Llopart. Experience with a Graham-Glanville style
code generator. In Proceedings of the SIGPLAN Symposium on Compiler Con-
struction, pages 13–24, June 1984.

[AGT89] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code gener-
ation using tree matching and dynamic programming. ACM Transactions on
Programming Languages and Systems, 11(4):491–516, October 1989.

[AKS00] Erik R. Altman, David Kaeli, and Yaron Sheffer. Welcome to the opportuni-
ties of binary translation. IEEE Computer, 33(3), March 2000.

[App96] Andrew W. Appel. Personal Communication, May 1996.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques and Tools. Addison Wesley, 1986.

References 145

[BD88] Manuel E. Benitez and Jack W. Davidson. A portable global optimizer and
linker. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation, pages 329–338, July 1988.

[BD94] Manuel E. Benitez and Jack W. Davidson. The advantages of machine-depen-
dent global optimization. In Proceedings of the 1994 Conference on Program-
ming Languages and Systems Architectures, pages 105–124, March 1994.

[BD95] Mark W. Bailey and Jack W. Davidson. A formal model and specification lan-
guage for procedure calling conventions. In Proceedings of the ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming Languages, pages
298–310, January 1995.

[BD96a] Mark W. Bailey and Jack W. Davidson. Reusable application-dependent
machine descriptions. In Workshop Record of The Inaugural Workshop on Com-
piler Support for Systems Software, pages 77–85, February 1996.

[BD96b] Mark W. Bailey and Jack W. Davidson. Target-sensitive construction of diag-
nostic programs for procedure calling sequence generators. In Proceedings of
the SIGPLAN Conference on Programming Language Design and Implementa-
tion, May 1996. Also available as technical report CS-95-44, Department of
Computer Science, University of Virginia, Charlottesville, VA 22903.

[Ben89] Manuel E. Benitez. A global object code optimizer. Master’s thesis, Depart-
ment of Computer Science, University of Virginia, Charlottesville, VA, Janu-
ary 1989.

[Ben94] Manuel E. Benitez. Register Allocation and Phase Interactions in Retargetable
Optimizing Compilers. PhD thesis, Department of Computer Science, Univer-
sity of Virginia, May 1994.

[BG79] P. I. P. Boulton and J. R. Goguen. A machine description language. Computer
Journal, 22(2):132–135, May 1979.

[BHE91] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The marion system
for retargetable instruction scheduling. In Proceedings of the SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 229–240,
June 1991.

[BN71] C. Gorden Bell and Allen Newell. Computer structures: Readings and exam-
ples. In The PMS and ISP descriptive systems, pages 15–36. McGraw-Hill,
1971.

[Bra91] David Gordon Bradlee. Retargetable Instruction Scheduling for Pipelined Proces-
sors. PhD thesis, University of Washington, 1991.

References 146

[Cat78] Roderic G. G. Cattell. Using machine descriptions for automatic derivation of
code generators. In Proceedings of the Jerusalem Conference on Information Tech-
nology, pages 503–507, 1978.

[Cat80] Roderic G. G. Cattell. Automatic derivation of code generators from machine
descriptions. ACM Transactions on Programming Languages and Systems,
2(2):173–190, April 1980.

[CE00] Cristina Cifuentes and Mike Van Emmerik. Uqbt: Adaptable binary transla-
tion at low cost. IEEE Computer, 33(3):60–66, March 2000.

[CER99] Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey. The design of
a resourceable and retargetable binary translator. In Proceedings of the Sixth
Working Conference on Reverse Engineering, pages 280–291, Atlanta, GA,
October 1999. IEEE-CS Press.

[CH94a] Todd A. Cook and Ed Harcourt. A functional specification language for
instruction set architectures. In International Conference on Computer Lan-
guages, pages 11–19, May 1994.

[CH94b] Todd A. Cook and Ed Harcourt. Instruction set architecture specification.
Submitted to TOCS, February 1994.

[Coe89] David R. Coelho. The VHDL Handbook. Kluwer Academic Publishers, 1989.

[Coo94] Todd A. Cook. Instruction Set Architecture Specification. PhD thesis, North
Carolina State University, April 1994.

[Das89] Subrata Dasgupta. Computer Architecture: A Modern Synthesis, Volume 2:
Advanced Topics. John Wiley and Sons, 1989.

[Dav85] Jack W. Davidson. Simple machine description grammars. Technical Report
CS-85-22, Department of Computer Science, University of Virginia, Charlot-
tesville, VA, November 1985.

[DF80] Jack W. Davidson and Christopher W. Fraser. The design and application of a
retargetable peephole optimizer. ACM Transactions on Programming Languages
and Systems, 2(2):191–202, April 1980.

[DF84a] Jack W. Davidson and Christopher W. Fraser. Code selection through object
code optimization. ACM Transactions on Programming Languages and Systems,
6(4):505–526, October 1984.

[DF84b] Jack W. Davidson and Christopher W. Fraser. Register allocation and exhaus-
tive peephole optimization. Software–Practice and Experience, 14(9):857–866,
September 1984.

References 147

[Dig78] Digital Equipment Corporation. VAX Architecture Handbook. Digital Equip-
ment Corporation, 1978.

[Dig93] Digital Equipment Corporation. Calling Standard for AXP Systems. Digital
Equipment Corporation, Maynard, MA, July 1993.

[DW91] Jack W. Davidson and David B. Whalley. Methods for saving and restoring
register values across function calls. Software–Practice and Experience,
21(2):149–165, February 1991.

[FH91] Christopher W. Fraser and David R. Hanson. A code generation interface for
ANSI C. Software–Practice and Experience, 21(9), 1991.

[FH95] Christopher Fraser and David Hanson. A Retargetable C Compiler: Design and
Implementation. Benjamin Cummings, 1995.

[FHP92] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. Burg – fast
optimal instruction selection and tree parsing. Proceedings of the SIGPLAN
Symposium on Compiler Construction, 27(4):68–76, April 1992.

[Fra77a] Christopher W. Fraser. A knowledge-based code generator generator. SIG-
PLAN Notices, 12(8):126–129, 1977.

[Fra77b] Christopher Warwick Fraser. Automatic Generation of Code Generators. PhD
thesis, Department of Computer Science, Yale University, New Haven, CT,
1977.

[Fra93] Christopher W. Fraser. Personal Communication, November 1993.

[FvBK+91] Susumu Fujiwara, Gregor v. Bochmann, Ferhat Khendek, Mokhtar Amalou,
and Abderrazak Ghedamsi. Test selection based on finite state models. IEEE
Transactions on Software Engineering, 17(6):591–603, June 1991.

[GAS+00] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul Ledak, and David
Appenzeller. Dynamic and transparent binary translation. IEEE Computer,
33(3), March 2000.

[GF82] Mahadevan Ganapathi and Charles N. Fischer. Description-driven code gen-
eration using attribute grammars. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 108–119,
January 1982.

[GG78a] R. Steven Glanville and Susan L. Graham. A new method for compiler code
generation. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 231–240, January 1978.

References 148

[GG78b] Susan L. Graham and R. Steven Glanville. The use of a machine description
for compiler code generation. In Proceedings of the Jerusalem Conference on
Information Technology, pages 509–514, 1978.

[GG90] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language.
Prentice-hall, second edition, 1990.

[GH84] Susan L. Graham and Robert R. Henry. Machine descriptions for compiler
code generation: Experience since JCIT-3. In Proceedings of the Jerusalem Con-
ference on Information Technology, pages 236–250, 1984.

[GHS82] Susan L. Graham, Robert R. Henry, and R. A. Schulman. An experiment in
table driven code generation. In Proceedings of the SIGPLAN Symposium on
Compiler Construction, pages 32–43, June 1982.

[Hen64] F. C. Hennie. Fault detecting experiments for sequential circuits. In Proceed-
ings of the Fifth Annual Symposium on Switching Theory and Logical Design,
pages 95–110, November 1964.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, second edition, 1996.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[HYHD95] Richard C. Ho, C. Han Yang, Mark A. Horowitz, and David L. Dill. Archi-
tecture validation for processors. In Proceedings of the International Symposium
on Computer Architecture, pages 404–413, 1995.

[Int93] Intel Corporation. Pentium Processor User’s Manual: Architecture and Program-
ming Manual, 1993.

[Joh83] Stephen C. Johnson. Yacc: Yet another compiler-compiler. In UNIX program-
mer’s manual, pages 353–387. Holt, Rinehart and Winston, 1983.

[JPAR68] W. L. Johnson, J. H. Porter, S. I. Ackley, and D. T. Ross. Automatic genera-
tion of efficient lexical processors using finite state techniques. Communica-
tions of the ACM, 11(12):805–813, 1968.

[JR] S. C. Johnson and D. M. Ritchie. The C language calling sequence. Bell Labs.

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, Engle-
wood Cliffs, NJ, 1992.

[KJ74] Niklaus Wirth Kathleen Jensen. Pascal User Manual and Report. Spring-Ver-
lag, second edition, 1974.

References 149

[Koh78] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edi-
tion, 1978.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, second edition, 1988.

[LCH+80] Bruce W. Leverett, Roderic G. G. Cattell, Steven O. Hobbs, Joseph M. New-
comer, Andrew H. Reiner, Bruce R. Schatz, and William A. Wulf. An over-
view of the production-quality compiler-compiler project. IEEE Computer,
13(8):38–49, August 1980.

[LS83] M.E. Lesk and E. Schmidt. Lex–a lexical analyzer generator. In UNIX pro-
grammer’s manual, pages 388–400. Holt, Rinehart and Winston, 1983.

[LSU89] Roger Lipsett, Carl Schaefer, and Cary Ussery. VHDL: Hardware Description
and Design. Kluwer Academic Press, 1989.

[Lun83] Hans Lunell. Code Generator Writing Systems. PhD thesis, Linkoping Univer-
sity, Linkoping, Sweden, 1983.

[Mea55] G. H. Mealy. A method for synthesizing sequential circuits. Bell System Techni-
cal Journal, 35(5):1045–1079, 1955.

[Mil99] Christopher W. Milner. Pipeline descriptions for retargetable compilers: A
decoupled approach. Technical Report CS-99-11, Department of Computer
Science, University of Virginia, Charlottesville, VA, June 1999.

[Mot85] Motorola Corporation. MC68020 32-Bit Microprocessor User’s Manual, 1985.

[Mot88] Motorola Corporation. MC88100 RISC Microprocessor User’s Manual, 1988.

[Mul93] T. Muller. Employing finite automata for resource scheduling. In Proceedings
of the 26th Annual International Symposium on Microarchitecture, pages 12–20,
1993.

[PF94] Todd A. Proebsting and Christopher W. Fraser. Detecting pipeline structural
hazards quickly. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 280–286, 1994.

[RD98a] Norman Ramsey and Jack W. Davidson. Machine descriptions to build tools
for embedded systems. In ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’98), pages 172–188. Springer Verlag,
1998.

References 150

[RD98b] Norman Ramsey and Jack W. Davidson. Specifying instructions’ semantics
using csdl (preliminary report). Technical Report CS-97-31, Department of
Computer Science, University of Virginia, Charlottesville, VA, June 1998.

[RF95] Norman Ramsey and Mary F. Fernandéz. The new jersey machine-code tool-
kit. In 1995 Usenix Technical Conference, pages 289–302, January 1995.

[RF97] Norman Ramsey and Mary F. Fernandéz. Specifying representations of
machine instructions. ACM Transactions on Programming Languages and Sys-
tems, 19(3):492–524, May 1997.

[SL89] Deepinder P. Sidhu and Ting-Kau Leung. Formal methods for protocol test-
ing: A detailed study. IEEE Transactions of Software Engineering, 15(4):413–
426, April 1989.

[Sta92] Richard M. Stallman. Using and Porting GNU CC (Version 2.0). Free Software
Foundation, Inc., February 1992.

[Sun87] Sun Microsystems Corporation. The SPARC Architecture Manual, Version 7,
1987.

[Wha90] David B. Whalley. Ease: An Environment for Architecture Study and Experimen-
tation. PhD thesis, Department of Computer Science, University of Virginia,
1990.

[Wic75] John D. Wick. Automatic Generation of Assemblers. PhD thesis, Department of
Computer Science, Yale University, New Haven, CT, 1975.

[YL95] Mihalis Yannakakis and David Lee. Testing finite state machines: Fault detec-
tion. Journal of Computer and System Sciences, 50:209–227, 1995.

[ZT00] Cindy Zheng and Carol Thompson. Pa-risc to ia-64: Transparent execution,
no recompilation. IEEE Computer, 33(3), March 2000.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Background
	Figure 1�1. Procedural machines description use
	Figure 1�2. Declarative machine description use

	1.2 The Problem
	1.3 Motivation
	1.4 Structure

	Computing System Descriptions
	2.1 Computer Hardware Description Languages
	Table 2�1. Abstraction Levels and CHDL Examples (Table 3.1 in [Das89]).
	2.1.1 VHDL
	2.1.2 ISP
	2.1.3 Lisas

	2.2 Machine Descriptions
	2.2.1 ISP´
	2.2.2 TMDL
	2.2.3 MDL
	2.2.4 Mop
	2.2.5 PO and VPO
	2.2.6 The GNU C Compiler
	2.2.7 Maril

	2.3 Multipurpose Descriptions
	2.3.1 SLED
	2.3.2 l-RTL

	2.4 Summary

	Specifying Instruction Semantics: CSDL Core Descriptions
	3.1 String RTL’s
	3.1.1 String RTL Syntax and Semantics
	3.1.1.1 Registers
	3.1.1.2 Constants
	3.1.1.3 Operations
	3.1.1.4 Macros
	3.1.1.5 Memory
	Table 3�1. Sample RTL address expressions (excerpted from [Ben94])

	3.1.1.6 Symbolic Addresses
	3.1.1.7 Instruction Effects
	Table 3�2. Summary of formats for string RTL expressions

	3.1.1.8 Transfers of Control

	3.1.2 Analysis and Manipulation

	3.2 tRTL’s
	3.2.1 Syntax
	3.2.1.1 Constants
	3.2.1.2 Types
	3.2.1.3 Operations (Typed Expressions)
	3.2.1.4 Storage
	3.2.1.5 Instruction Effects
	3.2.1.6 Syntax Summary
	Figure 3�1. Context-free grammar for tRTL’s

	3.2.2 tRTL Types
	3.2.3 Aliasing
	Figure 3�2. Memory aliases created by overlapping memory references

	3.2.4 Notation
	Table 3�3. Built-in RTL operator summary (Continued)

	3.2.5 Abstract Syntax
	Figure 3�3. Improperly typed tRTL for a load
	Figure 3�4. A properly typed tRTL for a load
	Figure 3�6. Combined subexpression
	Figure 3�7. Incorrect simplification of (r[2u,5]u,32 + D(20u,9)u,32)u,32 tree
	Figure 3�8. Correct simplification of (r[2u,5]u,32 + D(20u,9)u,32)u,32 tree

	3.3 Using tRTL’s to Describe Machines
	Figure 3�9. An tRTL grammar for a very simple machine
	Figure 3�10. An illegal tRTL grammar
	Figure 3�11. A properly formed tRTL grammar
	Figure 3�12. A complete tRTL machine description of the DLX (Continued)

	3.4 Operation Semantics – mRTL’s
	Table 3�4. Summary of tRTL built-in operations
	Figure 3�13. mRTL operational semantics for a user-defined string copy operator
	Figure 3�14. Operational semantics for the Pentium PADDB instruction

	3.5 Summary

	Specifying Procedure Calling Conventions
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Applications
	Figure 4�1. How CCL specifications are used

	4.2 Procedure Calling Conventions
	4.2.1 A Simple Calling Convention
	Figure 4�2. Rules for a simple calling convention

	4.2.2 Convention, Language, and Implementation
	4.2.3 Separating Convention from Sequence
	4.2.4 Interfaces and Agents
	Figure 4�3. The role of agents in procedure call and return interfaces

	4.2.5 Addressing
	4.2.6 Activation Frame Layout

	4.3 The CCL Specification Language
	4.3.1 Design Philosophy
	4.3.2 Resources
	4.3.3 Global Section
	4.3.3.1 Outer Environment

	4.3.4 Agent Descriptions
	4.3.4.1 Data Transfers
	4.3.4.2 Conditionals and Iteration
	4.3.4.3 Internal Values
	Figure 4�4. The caller prologue

	4.3.4.4 View Changes
	4.3.4.5 Symmetry

	4.3.5 Summary
	Figure 4�5. A CCL description of the calling convention of Figure�4�2

	4.4 The Formal Model
	4.4.1 P-FSA Representation
	Figure 4�6. P-FSA for transmission of parameters for a simple calling convention
	Table 4�1. Definition of l for example P�FSA

	4.4.2 Automatic P-FSA Construction
	4.4.2.1 Construction Algorithms
	Figure 4�7. Algorithm to build a P-FSA
	Figure 4�8. Definition of State-Label

	4.4.3 Completeness and Consistency in P-FSA’s
	4.4.3.1 Completeness
	4.4.3.2 Consistency

	4.5 Use in a Compiler
	4.5.1 The Interpreter
	4.5.2 Realizing the Calling Sequence
	Figure 4�9. Calling sequence locations
	Table 4�2. Determining agent actions from placement information

	4.6 Construction of Diagnostic Programs
	4.6.1 Test Vector Selection
	Table 4�3. P-FSA profiles for several calling conventions
	Figure 4�12. Entering and exiting transitions for a state
	Table 4�4. Sizes of test suites for various selection methods
	Figure 4�13. Test vector generation algorithm

	4.6.2 Test Case Generation
	Figure 4�14. The compiler conformance test process

	4.6.3 Automatic Diagnosis of Errors
	Figure 4�15. An example outcome
	Table 4�5. All outcome configurations

	4.6.4 Test Results
	Figure 4�16. Determining conformance of n compilers
	Table 4�6. Results of running the MIPS test suite on several compilers
	4.6.4.1 Standard Procedure Calls
	4.6.4.2 Variadic Procedure Calls

	4.7 Summary

	Computing System Description Language
	5.1 CSDL Overview
	5.1.1 Modules
	Figure 5�1. Computing system description framework

	5.1.2 Linked Values
	5.1.3 Application Annotations
	Figure 5�3. An application’s annotation overlay
	Figure 5�4. A CSDL annotation

	5.1.4 Module Aspects
	Figure 5�5. Assembly language and binary format aspects of instructions

	5.2 Module Processing
	5.2.1 CSDL Language Processing
	Figure 5�6. CSDL Language Dispatching
	Figure 5�7. CSDL Grammar
	Figure 5�8. Processing of a CSDL module

	5.2.2 An Environment for CSDL
	5.2.2.1 Supporting Annotations and Aspects
	5.2.2.2 Extended Character Sets and Token Matching
	5.2.2.3 Objects

	5.2.3 Processing Summary

	5.3 Applications
	5.3.1 Binary Translation
	Figure 5�9. Specifying binary translation using a CSDL aspect

	5.3.2 Specifying a Procedural Interface to Assembly Language
	Figure 5�10. A small MIPS excerpt with SLED aspects

	5.4 Summary

	Conclusions
	CSDL Descriptions
	A.1 The MIPS Core Description
	A.2 The Motorola M68020 Core Description

	CCL Descriptions
	2.1 The MIPS R3000 CCL Description
	2.2 The M68020 CCL Description
	2.3 The M88100 CCL Description
	2.4 The DEC VAX-11 CCL Description
	2.5 The SPARC CCL Description

	References

