
Improving System Performance via Design and
Configuration Space Exploration

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Chong Tang

December 2018

c© 2018 Chong Tang

Abstract

The runtime performance of complex software systems often depends on the

settings of a large number of static system configuration and design parameters.

For example, big data systems like Hadoop present hundreds of configuration

parameters to engineers. Many of them influence runtime performance, and

some interact in complex ways, which make the configuration spaces for such

systems large and complex. It is hard for engineers to understand how all

these parameters affect performance, and thus it is hard to find combinations

of parameter values that achieve available levels of performance. The result in

practice is that engineers often just accept default settings or design decisions

made by tools, leading such systems to underperform significantly relative to

their potential. This problem, in turn, has impacts on cost, revenue, customer

satisfaction, business reputation, and mission effectiveness. To improve the

overall performance of such systems, we addressed three sub-problems.

The first is that we lack adequate concepts, methods, and tools to do tradeoff

space analysis to find high-performing designs, where performance is assessed

in multiple dimensions, particularly time and space utilization. To address this

problem, we conducted the first systematic evaluation of an approach to finding

Pareto-optimal system designs in such tradeoff spaces previously developed

by Bagheri et al. This approach starts with relational logic specification of a

system for which a design is to be found. This specification is conjoined with a

separate specification of the mapping from system specifications to tradeoff spaces,

comprising sets of designs, each consistent with a given specification. Second,

this approach uses additional synthesis techniques to implement each design in

i

Abstract ii

the tradeoff space as a running system. The framework that we developed then

uses large-scale distributed computing based on Spark to parallelize the profiling

of each such implementation using a synthesized benchmark test suite to measure

its relevant performance characteristics. Our framework then selects the subset

of Pareto-optimal designs for presentation to the engineer, who makes final

tradeoff decisions. Building on the prior work of Bagheri et al., we evaluated the

feasibility and benefits of the tradeoff space analysis approach with experiments

in the domain of object-relational mapping (ORM) problems. The challenge,

given an object-oriented (OO) data model, is to find a relational database

schema for storing and searching such data efficiently. In general, there are many

such schemas, with varying performance characteristics. Our results show that

our approach can find schemas for OO data models (with tens of classes and

relationships) that significantly outperform, in both time and space performance,

those produced by widely used ORM tools, such as Ruby on Rails and Django.

This work demonstrates the potential for formal tradeoff space synthesis and

profiling to significantly improve the performance of component-level design

problems in industrially meaningful systems.

Second, we lack approaches for developing accurate models for predicting the

performance of highly configurable big-data systems a function of their config-

urations and the complexity of jobs running on them. Having such predictive

models could significantly reduce the cost of finding good configurations for such

systems. This is a hard problem because such mappings are not straightfor-

ward in general. Our overall approach is to derive such models by applying

machine learning techniques to training data obtained from industrial big-data

systems specifically Hadoop. The particular problem that we addressed is that

learning such mappings tends to produce inaccurate models. Our approach

was to find new ways to eliminate noisy values from training data. The first

step is simply to ignore parameters that could have no bearing on performance.

Our additional novel technique was to further exploit semantic meanings of

configuration parameters and the job complexity to eliminate noisy values. Our

results show significant improvement in prediction accuracy of learned models

with such semantically cleaned data. We evaluated our approach by building

Abstract iii

models for the Hadoop MapReduce framework, with and without using our

semantic data cleaning approach on data obtained from Walmart Labs. In our

experiments, our approach improved model accuracy from under 0.75 to over

0.88 for CPU time prediction. These results suggest that semantic cleaning of

data provides real value for training performance prediction models for large

big-data systems.

The third problem that we addressed was to find high-performing configurations

for systems like Hadoop without the need to learn generalized performance

prediction models. Learning such models is costly. Moreover, we observed

that industrial uses of such systems tend to under-sample configuration spaces,

making it hard to learn generalized models from such data. The challenge we

addressed is to find a more effective method: one that doesn’t rely on predictive

models at all. Our overall approach is to employ a direct meta-heuristic search of

performance-relevant configuration parameter values. For each such configuration,

we profile a running system using the well known HiBench benchmark suite.

Novel aspects of our approach include: 1) the use of evolutionary Monte Carlo

Markov Chain configuration space search technique; 2) profiling performance

using HiBench small datasets as proxies for the performance objective function

for much larger datasets; and 3) validating the usefulness of configurations found

for one MapReduce problem on classes of problems with similar resource usage

patterns as judged using operating system call monitoring tools.

We show that, at an acceptable cost, this combination of ideas can find configura-

tions for complex systems that significantly improve their runtime performance.

To evaluate our approach, we applied it in the domain of big-data systems, par-

ticularly Hadoop and Spark. We measured performance improvements achieved

by our approach and by competing approaches by comparing performance using

configurations discovered by these approaches against performance using the

widely employed default configurations distributed with these big data systems.

We compared our approach against three competing approaches by comparing

the extents to which they improved system performance: 1) a naive random

search strategy; 2) a basic genetic algorithm; 3) and the cutting-edge, model-

learning-based approach of Nair et al. Our approach improved the performance

Abstract iv

of five canonical Hadoop jobs by 14% to 25%, relative to default configurations,

and of another five Spark jobs by 2% to 17%, significantly outperforming the

three competing approaches. These experimental results support the claim that

our approach has significant potential to improve the performance of industrial

big-data systems.

This dissertation solves three problems to improve system performance with novel

software synthesis + distributed large-scale profiling, learning with parameters’

semantic meanings, and meta-heuristic searching combined with cost-saving

tactics. The results show that we can significantly improve system performance

in critical engineering domains, such as ORM design and big-data infrastructures

tuning.

Acknowledgments

v

vi

The six years at the University of Virginia were the most precious time of my

life, but it was not so easy. I could not finish this long journey without support,

advice, devotion, and sacrifice of many people. I would like to express my

gratitude to them in this section.

First of all, my sincere gratitude goes to my advisers, Kevin Sullivan and

Baishakhi Ray. I am fortunate to have them as my advisers. They gradually

trained me with insightful ideas and questions, rather than just providing answers.

They were patient, always stood with me and encouraged me. Working with

them was enjoyable and wonderful learning experience. They are not only my

research advisers but also great mentors in my life. I still remember how Kevin

helped when I had a car accident in the first year of my Ph.D. study, and how

Baishakhi encouraged me with her own experience in many difficult times. This

dissertation would not be possible without their help.

I would like to thank Alfred C. Weaver for serving as the chair of my dissertation

committee, and Mary Lou Soffa, Joanne Bechta Dugan, Jonathan Bell for serving

as my committee. They gave me great and constructive advice on my research

and career development.

For the last six years at UVA CS, I am so grateful to have many friends who are

humorous, sophisticated, smart, and hard-working. They are Yue Liu, Xi, Ke,

Chunkun, Lin, Ritambhara, Dezhi, In Kee, Chi, Yong, Haoran, Essex, and so

many friends that I cannot list them all. Thank you all for your friendship and

support. I would like to thank my brothers and sisters in Christ, Diheng, David,

Rachel, Timothy, Yunge, Qing, Yinping, and many others. Thank you for your

pray and encouragement.

I would never be able to accomplish this without endless support from my family.

Thank you, my parents Zibao Tang and Sulan Wu, and my uncle Shaoen and

aunt Lingyan, for their love, support, and advice during this long journey.

At last, I thank my funding resources NSF CCF-1619123 and CNS-1618771 for

their financial support.

Contents

Contents vi
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Problems . 1
1.2 State-of-the-art . 2
1.3 Goal . 4
1.4 Insights and Approaches . 5
1.5 Thesis Statement . 6
1.6 Evaluation Experiments . 6
1.7 Results and Interpretation . 7

2 Background 9
2.1 Software Synthesis . 9
2.2 Performance Modeling . 10
2.3 Searching for Better Configurations 11
2.4 Missing Gaps and Fixes . 12

3 Design Space Exploration to Improve System Performance 13
3.1 Motivation . 16

3.1.1 Incompleteness in Specification 17
3.1.2 Running Example . 18

3.2 Algebraic Model . 22
3.3 Model Implementation . 23

3.3.1 Design Space Synthesis 24
3.3.2 Abstract Load Synthesis 26
3.3.3 Abstract Load Concretization 29

3.4 Dynamic Analysis Experiment 30
3.4.1 Static Metrics Suite . 31
3.4.2 Static Analysis of Synthesized Designs 32
3.4.3 Subject Systems . 34
3.4.4 Planning and Execution 34
3.4.5 Results for Hypothesis H1 (Order) 36
3.4.6 Results for Hypothesis H2 (Magnitudes) 39
3.4.7 Results for H3 (Small vs. Large Loads) 41

3.5 Evaluation of Trademaker . 42
3.6 Astronaut: An Automated tradeoff Analysis Framework 44

3.6.1 Astronaut Design . 45
3.6.2 A Constructive Logic Based Framework 47
3.6.3 Framework Instantiation 51
3.6.4 Parallelization Reasoning 53

vii

Contents viii

3.7 Empirical Study . 55
3.8 Related Work . 62
3.9 Conclusion . 67

4 System Performance Prediction with Semantic Meanings 69
4.1 Background of MapReduce . 73
4.2 Related Work . 76
4.3 Methodology . 78

4.3.1 Approach Overview . 79
4.3.2 Data Collection and Parsing 79
4.3.3 Data Pre-processing with Domain Knowledge 81
4.3.4 Approximating Job Complexity 86
4.3.5 Standard data pre-processing. 88
4.3.6 Model Selection and Training 89
4.3.7 Semi-auto dependent relation discovery 90

4.4 Results . 92
4.5 Conclusion . 96

5 Improving System Performance via Configuration Space Explo-
ration 98
5.1 Background . 101

5.1.1 Heuristic Optimization . 102
5.1.2 Markov Chain Monte Carlo (MCMC) 103
5.1.3 Evolutionary MCMC (EMCMC) 104

5.2 Technical Approach . 104
5.3 Configuration Validity Checking 110

5.3.1 Type Checker Design . 113
5.3.2 Initialize and Check Configuration 121
5.3.3 Checker Evaluation . 123

5.4 Experimental Design . 127
5.4.1 Study Subject . 127
5.4.2 Job Classification . 128
5.4.3 Comparing with Baselines 130

5.5 Experimental Results . 130
5.6 Related Work . 140
5.7 Conclusions . 144

6 Discussion 145
6.1 Limitation . 146
6.2 Threats to Validity . 147
6.3 Future Work . 148

7 Conclusion 150

Bibliography 152

List of Tables

3.1 Insertion Performance (Seconds) 60
3.2 Retrieval Performance (Seconds) 60
3.3 Space Consumption (MB) . 60
3.4 Analysis time to produce tradespaces across subject systems . . . 61

4.1 Example dataset including performance and job configuration . . 80
4.2 Alternative parameter values generation rules 85
4.3 Information extracted from Hive query 87
4.4 CPU time prediction: top 5 parameters and model quality 93
4.5 Memory prediction: top 5 parameters and model quality 95
4.6 Model quality with and without job complexity and dependent

structure . 96

5.1 Configuration Space Characteristics 102
5.2 Example Tuple representing resource usage of a job 129
5.3 Performance improvement for Hadoop jobs from three sampling

strategies . 129
5.4 EMCMC results for Spark jobs 132
5.5 CPU time (secs) of default configuration for each job under three

data inputs . 133
5.6 Most Influential Parameters for Hadoop Jobs 134
5.7 Scale-out Hypothesis Testing . 136
5.8 Descriptive rank differences of 1000 tests 139

ix

List of Figures

3.1 A simple object model with three classes, Order, Customer,
and PreferredCustomer, a one-to-many association between
Customer and Order, and with PreferredCustomer inheriting
from Customer . 19

3.2 Two mapping strategies. White boxes represent classes; gray titles,
corresponding tables, and black and white arrows, mapping and
inheritance relationships. Foreign keys are marked as fKeys. . . . 20

3.3 A view of our tool to provide decision-makers with Pareto-optimal
OR mapping solutions based on static analysis results; columns
and rows represent metrics and solution alternatives, respectively. 21

3.4 Algebraic structure of the Trademaker approach. 22
3.5 High-level overview of the Trademaker implementation for the

particular domain of ORM. 24
3.6 OR mapping for customer-order example 26
3.7 An example of OM-instance. 27
3.8 Multi-dimensional quality measures for pareto-optimal solutions. 33
3.9 Design space sizes for subject systems. 35
3.10 Part of the generated data sets for the ecommerce experiment; the

first row shows abstract loads generated for the ecommerce system
within each data set; each cell in the other rows corresponds to
the size of generated concrete load for the database alternative
and data set given on the axes. 36

3.11 Correlation coefficients between the relative order of solution
alternatives predicted by static metrics and those observed from
actual runtime measures. 36

3.12 Experimental results of evaluating OR metrics as two-class classi-
fiers. 38

3.13 Bar plot of the average precision, recall and F-measure for consid-
ering static metrics as two-class classifiers. 39

3.14 Correlation between static metrics and actual run-time measure;
rows represent scatter plots of observed values versus predicted
values by TATI, NCT and ANV metrics from top to bottom,
respectively; R2 correlation coefficient is shown at the bottom of
each plot. 40

3.15 Summary of Pearson correlation coefficients between experimental
results obtained from smaller data sets and that of the large
Dataset3. 41

3.16 Framework Data Flow . 47
3.17 Tradespace typeclass model . 50

x

List of Figures xi

3.18 tradeoff analysis results; columns represent tradeoff diagrams
across systems in two dimensions of Insert-Select, Insert-Space
and Select-Space from left to right, respectively; each black dot
represents performance of a synthesized database schema, and the
star and diamond entries plot the results of schema generated by
Django and Ruby . 59

3.19 Tradeoff analysis results of subject systems on PostgreSQL . . . 63

4.1 Hive-Hadoop Architecture . 74
4.2 The overall approach of training a performance prediction model 79
4.3 Example of feature dependency 90

5.1 ConEx Workflow . 106
5.2 EMCMC compares with other approaches in performance im-

provement for Hadoop Huge Workload 137

Chapter 1

Introduction

Software performance is critical in many aspects of our lives. Slow applications

can cause revenue loss, deterioration in customer satisfaction and brand rep-

utation, and mission effectiveness. However, it is difficult to design and tune

complex systems that substantially achieve their performance potential because

runtime performance is determined by a large number of design and configura-

tion parameters, the tuning of which is beyond the capabilities of most system

designers and implementers. For example, big data systems like Hadoop [1]

present hundreds of configuration parameters to engineers. Many of them affect

performance, and some of them interact in complex ways. The available evidence

suggests that most users of these systems make little effort to tune them beyond

their default settings [2].

1.1 Problems

The large number of parameters and their interactions create three problems in

software development and usage:

• Designing high-performing systems. It is difficult to find system

designs that meet both functional and performance requirements given

1

1.2 State-of-the-art 2

system specifications that often under-specify non-functional properties.

We say such a specification is incomplete.

• Predicting system performance. It is hard to predict the runtime

performance of given configurations of a complex system due to parameters

often interacting with each other in complex ways.

• Configuring system for high performance. It is hard to find a config-

uration that can yield high performance for complex configurable systems.

The result again is that engineers often simply accept the default set-

tings, which leads to significantly low performance compared to systems’

potential.

This dissertation develops and evaluates a set of methods for dealing with such

problems, mainly focused on exploring design and configuration spaces of software

systems to enable them to operate efficiently.

1.2 State-of-the-art

This section summaries previous work on how researchers and engineers currently

solve the problems mentioned above.

Formal Synthesis and Analysis of System Designs. The state-of-the-art

work starts to adopt formal synthesis in finding system designs given incomplete

specifications and objective functions. Dang [3] provided a tool for embedded

software synthesis. Le [4] provided a framework to synthesize programs for data

extraction from different kinds of sources. Assayed [5] provided a synthesizer for

multi-threaded software on multi-processor architectures. Srivastava et al. [6]

developed a proof-theoretic synthesizer, which accepts user-provided relations

between inputs and outputs of a program and generates a constraint system such

that solutions to that set of constraints yields the desired program. Sketching [7]

is also a synthesis technique in which programmers partially define the control

structure of the program with holes, leaving the details unspecified.

1.2 State-of-the-art 3

This set of work has two main shortcomings in the context of improving runtime

performance. First, most of it focuses on functional requirements not on non-

functional properties, such as runtime performance. Second, it relies on user

input, like user-provided relations between inputs and outputs or control flow,

to synthesize a system. Our work shares the common insight with this work on

incomplete specifications and synthesis based on constraint solving. Given an

incomplete specification which often defines only functional properties but under-

specifies non-functional properties, we provide fully automated synthesizers that

can sample many or in some cases all designs and general a common set of

performance test cases. We then conduct a large-scale dynamically profiling to

figure out the runtime performance of all designs and then find Pareto-optimal

instances. The final designs are those satisfying the given specification with

often greatly improved runtime performance.

Learning Better Performance Models. To solve the second problem of

predicting the performance of a given configuration, researchers aim to learn

generalized predictive models from historical data [8–11]. Most previous work

mainly treated such data as pure numbers and focused on things like how to select

features, and how to transfer the learning problems to another format so that one

can build highly accurate models. Zhang et al. [12] consider the case where all

configuration parameters are independent boolean variables. They formalized the

performance prediction problem as learning the Fourier coefficients of a function

f . A shortcoming is that their approach can only predict system performance

for configurations containing only boolean values. Song et al. [13] presented

a way to predict performance for Hadoop jobs. They profiled job features by

dynamically executing jobs on small sampled data sets. The disadvantage is

that this approach works only on small sets of features: five and six specified

features in the map and reduce phases, respectively, such as data conversion

rates for Map and Reduce function. Due to the specific features related to time

performance, their approach cannot be applied to predict other performance

metrics like memory utilization. In this dissertation, we hypothesize that the

semantic meanings of configuration parameters could be helpful to improve the

accuracy of performance prediction models.

1.3 Goal 4

Searching Configuration Spaces for Performance. To find high-performing

configurations for complex configurable systems, researchers also mainly rely

on learning-based approaches [8–10, 14]. The main challenge of this trend of

work is that the training data mainly determines how accurate a trained model

will be. Many such approaches suffer from a lack of quality training data. For

systems like Hadoop, whose users tend to stick with default settings [2], the

obtained traces are likely not to be diverse enough to learn generalized models.

Moreover, due to complex parameter interactions, it’s difficult to sample a good

set of training data. Nair et al. [11] argued that inaccurate models can also

help find better configurations as long as they preserve the relative ordering of

configurations by performance. This dissertation addresses this problem without

trying to learn generalized performance models at all. Using meta-heuristic

search algorithms, we sample configurations and profile their performance and

use that information to guide the search process. We use two tactics to save the

cost of searching and profiling. First, we profile a configuration with smaller

jobs and verify its validity with 100X larger instances. Second, we hypothesize

that a configuration found with one job could also yield similar performance for

jobs that have similar resource utilization patterns.

1.3 Goal

Our goal is to show that we can expand the scale of tradeoff analysis and config-

uration space exploration and to make them operate efficiently with following

approaches.

• Our first goal is to show that we can find Pareto-optimal system de-

signs w.r.t. to time and space performance for industrial meaningful sys-

tems.

• Our second goal is to show that we can improve the accuracy of performance

prediction models by leveraging the semantic meanings of configuration

parameters of a complex system to clean the training data.

1.4 Insights and Approaches 5

• Our third goal is to show that we can find significant better configurations

for big-data infrastructures which sizes haven’t been studied before.

1.4 Insights and Approaches

Our first insight is that, by leveraging current advances in formal synthesis and

distributed computing techniques, we can find Pareto-optimal designs for given

systems. We developed and evaluated a framework to find desired ORM schemas.

We first formally specify a given ORM model in relational logic embedded in

Alloy [15]. Then, we use a relational constraint solver to synthesize all designs

and a set of common test loads. Next, we dynamically profile all designs. Finally,

we select Pareto-optimal designs based on profiling results.

Our second insight is that semantic meanings like the dependent structure of

configuration parameters, where the relevance of one parameter can depend

on the value of another, can help eliminate spurious information from training

data and can improve the performance of prediction models. To evaluate this

idea, we first collected a broad set of usage data from a commercial Hadoop

cluster. Then, we cleaned the data with parameters’ dependency structure. Next,

we build two prediction models with datasets cleaned with and without such

semantic meanings. Finally, we compared the quality of two models to show the

improvement.

Our third insight is that we can directly search a configuration space with heuristic

algorithms, without learning expensive and inaccurate predictive models at all. In

this dissertation, we use an evolutionary Monte Carlo Markov Chain (EMCMC)

algorithm to search Hadoop and Spark’s configuration spaces for high-performing

configurations. We also use two strategies to save the cost of searching.

1.5 Thesis Statement 6

1.5 Thesis Statement

I claim that our approaches can deal with large and complex systems and can

enable design and configuration space exploration to operate practically and

efficiently.

• First, I claim that our tradeoff space analysis approach can find Pareto-

optimal designs w.r.t. performance objective functions and can outperform

widely-used ORM tools and methods that people use in practice.

• Second, I claim that the semantic meanings of configuration parameters

can improve the accuracy of performance prediction models.

• Third, I claim that our configuration space exploration approach based

on heuristic search can find high-performing configurations for large and

complex software systems and can outperform baseline search algorithms

and cutting-edge learning-based approaches.

1.6 Evaluation Experiments

To evaluate our first approach, we compare it with two widely used ORM tools,

namely Ruby on Rails and Django. We studied seven OO data models from the

literature and real systems. For each one, we specify it in relational logic using

Alloy. Then we synthesize all schemas (obviously only for modest-scale models)

using the Alloy model solver. Next, we profile all schemas with our Spark-based

framework using synthesized and randomly generated test suites. We measured

the performance of all schemas on two common database management systems:

MySQL and PostgreSQL. Finally, we select Pareto-optimal designs and compare

their performance with those generated by Ruby on Rails and Django. We studied

how much performance improvement Pareto-optimal schemas can gain comparing

to the solutions of Rails and Django and found it to be significant.

To evaluate our second approach, we collected a broad set of logs of Hadoop

MapReduce jobs started with Hive queries from an industry cluster of Walmart

1.7 Results and Interpretation 7

Labs. We identified the dependency structure of Hadoop parameters based on

the official documentation. Then we cleaned the data using such semantics,

and we trained two random forest models using datasets with and without our

cleaning approach applied. Finally, we compared the R2 and cross-validation

scores as the indicators of model accuracy.

To evaluate the third approach, we built our search algorithm based on EMCMC,

and compared it with three baseline approaches: 1) a basic genetic algorithm, 2)

a purely random search algorithm, and 3) a cutting-edge model-learning-based

approach of Nair et al. [11]. We selected Hadoop and Spark as the study systems.

For each system, we first studied the performance improvement of configurations

found by our approach over the default configurations shipped with Hadoop and

Spark. Then, we ran all three baseline approaches to see how much performance

improvement they can obtain over the default configurations. At last, we studied

how good our approach performed compared to the baselines.

1.7 Results and Interpretation

All three approaches achieved good results in the domains and systems that we

studied. In particular:

• The first set of evaluation results in the ORM domain shows that our

tradeoff space synthesis + large-scale profiling and selection found Pareto-

optimal designs that have 30% to 70% better time and space performance

than the ORM tools packaged with Ruby on Rails and Django, on both

MySQL and PostgreSQL DBMSs.

This results support our claim that our formal synthesis and profiling

approach has the potential to outperform today’s widely used tools.

• The second set of evaluation results in MapReduce performance prediction

shows that semantic meanings of configuration parameters can help improve

the model accuracy of performance models from under 0.75 to over 0.88.

1.7 Results and Interpretation 8

This suggests that parameters’ semantic meanings do have real value in

improving the performance of prediction models.

• The third set of results in searching high-performing configurations for

Hadoop and Spark shows that we can gain 14% to 25% more performance

for studied jobs over the default configuration. Moreover, our approach

yielded performance improvements of 7% to 125% over a random search

algorithm, 6% to 85% over a basic genetic search technique, and 5.4% to

1, 700% over a cutting-edge model-learning-based approach.

These results strongly suggest that meta-heuristic algorithms can improve

the performance of large and complex big data systems.

Chapter 2 reviews the background of this dissertation and discusses related

work at a high level. Chapter 3, 4, and 5 present these three approaches and

corresponding experiments and evaluation results in detail. Chapter 6 evaluates

the whole work, and Chapter 7 concludes this dissertation.

Chapter 2

Background

We review related work at a high level in this chapter. We will discuss particularly

relevant related work in greater detail in later chapters.

2.1 Software Synthesis

Our first design space analysis approach spans and leverages techniques from

software synthesis and tradeoff analysis. Srivastava et al. [6] developed a proof-

theoretic synthesis method, in which the user provides relations between inputs

and outputs of a program in the form of logical specifications, specifications of the

program control structure as a looping template, a set of program expressions, and

allowed stack space for the program to be synthesized. Their work then generates

a constraint system such that solutions to that set of constraints yields the desired

programs. They have shown the feasibility of their approach by synthesizing

implementations for several algorithms from logical specifications. Sketching [7]

similarly is a synthesis technique in which programmers partially define the

control structure of a program with holes, leaving the details unspecified. This

technique uses an unoptimized program as correctness specification. Given these

partial programs along with correctness specification as inputs, a synthesizer,

based on SAT solver, is then used to complete the low-level details to complete

9

2.2 Performance Modeling 10

the sketch by ensuring that no assertions are violated for any inputs. This work

shares with ours the common emphasis on incomplete specifications, synthesis

based on constraint solving, and optimization under an objective function.

Another work [16] provided a high-level synthesis framework to transfer a

behavioral description, a functional specification, in ANSI-C to register-transfer

level VHDL with parallel compiler transformation technique. They also inte-

grated heuristics based on mutual exclusivity of operations, resource sharing,

and hardware cost models.

The commonality of our work and that discussed above is that they all need

user-provided information, such as system inputs and outputs or control- and

data- flow, to guide the synthesis logic. The synthesis here refers to the concrete

example of correct or incorrect behavior to prune the design space, and finally

narrow down the design space to one implementation that satisfies the given

specification. This early prune is a good way to narrow down the search space.

However, it could also eliminate many high-performing solutions.

Different from all these techniques, our approach tackles the automated tradeoff

space analysis through synthesizing spaces of design alternatives and optimizing

using common measurement functions over such spaces. It thus relieves the

tedium and errors associated with earlier more manual approaches.

2.2 Performance Modeling

In the system performance prediction area, one of the biggest problems is that

it is hard to build highly accurate performance models. The main reason is that

modern software systems typically have extensive configurability. For example,

the Linux kernel has 6918 configuration options in version 2.6.33.3 according to

Liebig et al. [17]. Hadoop has more than 900 parameters in version 2.7.3. Such

dimensions give rise to vast configuration space. Besides, it is very possible that

configuration settings interact with each other with respect to performance, mak-

ing search for high-performing states a complex task. Most recent work focuses

2.3 Searching for Better Configurations 11

on how to reduce the dimension of a configuration space through automatic

feature selection. In work on performance influence models [14], Siegmund et al.

used step-wise linear regression to derive a performance-influence model for a

given configurable system which can provide users the description of possible

impacts among all configuration options and their interactions. They added

the features hierarchically to the learning algorithm. Their approach only con-

siders binary and numeric configure options. One shortcoming is that we do

not know how parameters interact with each other. It could be two-way, or

three-way, or of even higher of arity. Step-wise linear regression cannot catch

such interactions.

In our project, we used the domain knowledge to select features that influence

the performance of a given execution. We selected Hadoop as the study system.

We first studied the dependent structure of all parameters and then reduced

this information to clean the training data. In particular, we would ignore

data that the settings of other parameters made irrelevant. We also referred

to previous work as reviewed and summarized in [18], in which all options are

thoroughly studied. This set of work gives us enough information to determine

the features that are performance-related and their dependent structure. Based

on such information, we grouped all configuration options by sub-systems and

incorporated them one-by-one in a hierarchical model.

2.3 Searching for Better Configurations

Many engineering and applied science systems have complex configuration spaces.

It is not easy to find high-performing configurations for such systems. There-

fore, configuration space exploration with meta-heuristic search is a common

approach in many engineering domains. Zhang et al. [19] use on-chip design

space exploration to solve the problem of unnecessary flushing and energy waste.

They search a 4-parameter space in hardware, whereas we work on much larger

spaces. Weimer et al. [20] uses genetic programming to find test-passing code

snippets to reduce the cost of manual software debugging. It is a compelling

2.4 Missing Gaps and Fixes 12

proof of concept work that broke new ground. However, the correctness of this

approach is unsound and relies entirely on the test suite as a de facto objective

functions. Baltz et al. [21] uses a human-guided meta-heuristic search to find

high-performing configurations for plasma fusion experiments. The configuration

spaces we work on have similar dimensionality, but we also reduce the exploration

cost by 100X yet often find good configurations.

2.4 Missing Gaps and Fixes

Most prior art discussed above does not consider the complexity of design and

configuration spaces, treating them as simple product spaces: “A design space is

a product of possible design choices” [22]. However, in practice, a design space

is a subset of the cross-product of design/configuration parameters: a relation of

design parameters satisfying constraints, which makes the structure of a design/-

configuration space much more complex than often assumed. Moreover, most

previous approaches only work on small and simplified spaces, as exemplified by

work with some thousands of configurations as seen in [11]. By contrast, modern

software systems often have hundreds or even thousands of parameters, making

the sizes of such spaces vast. Applying above methods on such systems would

create high costs. Our first approach synthesizes all satisfying designs, albeit with

similar scale limits, and then conducts large-scale profiling to find Pareto-optimal

designs in the space, while our second approach leverages constraints among

parameters (dependent structure) to improve accuracy in system performance

prediction modeling. In the third approach, we use two tactics, namely which

we refer to as scale-up and scale-out, to vastly reduce the cost of meta-heuristic

configuration space exploration.

The next three chapters will discuss these issues in detail and present solutions

and evaluations.

Chapter 3

Design Space Exploration to

Improve System

Performance

This chapter presents our approach to using formal synthesis and large-scale

profiling based on parallel and distributed computing to find high-performing

system designs based on incomplete specifications, constraints, and objective

functions. We present a set of evaluation results from applying our approach in

the ORM domain to find high-performing database schemas.

Developing software systems that achieve different kinds of performance re-

quirements, balancing various tradeoffs, remains a major engineering problem.

Developers usually start with a specification, like a detailed design document or

a “story” in a project management system, and implement a version based on

their understanding of the specification. However, specifications are generally

incomplete concerning the totality of desirable system properties, especially non-

functional properties, many of which often depend on the choice of design. For

example, while an object-oriented data model, as a specification, constrains the

behavior of a persistent data store, it does not uniquely determine the database

13

Chapter 3 Design Space Exploration to Improve System Performance 14

schema (design); nor does it express preferences for performance properties or

tradeoffs involving read and write times and file sizes, which, in general, can

vary significantly with the choice of schema.

Unspecified or under-specified properties create degrees of freedom that give

rise to tradespaces: sets of designs that satisfy a given specification but that

vary in other relevant properties, again often non-functional properties such as

time and space performance, reliability, and evolvability. An engineer then has

two choices. The first is what we might call a single-point strategy : use design

heuristics, tacit knowledge, or even just training and experience to select some

design that satisfies the explicit specification without systematically considering

tradeoffs in dimensions on which the specification is silent. Such methods develop

point solutions in the hopes they will be good enough for stakeholders in all key

dimensions. In fact, when tools automatically produce implementations, they

often use single-point strategies. Consider object-relation mapping (ORM) tools,

now provided in many programming environments. They map object-oriented

data models to relational schemas and code for managing application data. They

often use a single mapping strategy, just producing some result, and do not

systematically aid engineers in understanding the space of possible solutions or

the tradeoffs in time and space performance that they entail.

Recently, engineers are focusing less on point solutions and more on specifying,

populating, and analyzing points and regions in design spaces. The contribution

of this work is an approach to the specification-driven synthesis of both design

spaces and of common performance benchmark test loads for fair, comparative,

dynamic analysis of non-functional properties of variant designs across such

spaces. It is a challenge to synthesize test loads for fair comparative analysis

because doing so generally requires specialization of common loads to the variant

interfaces of variant designs. Our goal is to synthesize both design spaces

and such loads automatically from common, formal, design-space specifications,

to enable specification-driven automated dynamic analysis of tradeoffs among

non-functional properties across large design spaces.

The alternative to single-point design is a tradespace analysis strategy, in which

Chapter 3 Design Space Exploration to Improve System Performance 15

one considers design spaces explicitly, estimates or measures critical properties

of many alternatives in such spaces, then choose one that realizes a desirable

set of properties, often by optimizing with respect to an objective function that

ultimately includes developer preferences for how to make final tradeoffs on a

Pareto frontier. The fundamental hypothesis driving the development and use of

systematic and automated tradespace analysis is that it often produces results of

greater value than single-point design even net of its additional costs. Indeed,

tradespace analysis (TA) tends to reveal designs that otherwise engineers might

miss.

This chapter presents our tradespace analysis strategy, particularly for design

space models expressible in a relational logic [15], to find optimal system design

under given performance objective functions and tradeoff preferences. This

approach leverages recent advancements in several areas, such as automated

reasoning in relational logic, formal synthesis, and scalable big data analytics, to

develop such a novel technology base. More specifically, this chapter contributes

a formal, general theory of design space tradeoff analysis tools, and a map-

reduce-based framework, derived from the theory, for implementing such tools.

The theory is organized as a hierarchy of Coq typeclasses. From this theory, we

derive a polymorphic framework (in Scala) that developers specialize and extend

to produce domain-specific tradeoff analysis tools.

Our evaluation strongly suggests that our tradespace analysis approach enables

the production of database designs that significantly outperform those produced

by widely-used industrial ORM synthesis tools, such as Rails and Django, yet

are entirely overlooked by such widely-used, industrial tools. To summarize, this

work makes the following contributions:

• Tradespace Analysis: We present a tradespace analysis approach that can

generate and evaluate all possible concrete designs given an (modest-scale)

specification.

• Theoretical framework: We develop a theoretical framework conceptualized

in constructive logic to establish a formal architecture for a generic tradeoff

analysis tool.

3.1 Motivation 16

• Tool implementation: We show how to exploit the power of our formal ab-

stractions by building a mechanically derived, polymorphic implementation

framework for tradeoff analysis tools.

• Empirical evaluation: We present our experiences with an evaluation of our

approach in the context of tradeoff analysis of object-relational database

mappings, the results of which support the claim that our approach re-

veals designs that significantly outperform those produced by widely-used,

industrial ORM tools.

Section 3.1 presents object-relational mapping (ORM) as a concrete driving

problem. Section 3.2 presents a mathematical and solution framework. Sec-

tion 3.3 details an implementation architecture using a relational constraint

language (Alloy) and solver (Alloy Analyzer) for expression and synthesis of

design spaces and loads. Section 3.4 presents our experiments in the ORM

domain and answers questions about the validity of our approach. Section 3.5

presents the evaluation results of our approach. To solve the problem of large

design spaces, section 3.6 describes the detailed design and implementation of

our automated design evaluation framework. Section 3.7 presents the results of a

set of empirical studies using our distributed design space exploration framework.

The rest of this chapter presents our evaluation of this work, related work, and

conclusions.

3.1 Motivation

In this section, we discuss how incompleteness in specification gives rise to

important separations of concerns and the need for a systematic understanding

and application of tradeoff analysis to find optimal designs. We then present a

running example having to do with tradeoff analysis among the space of possible

design alternatives.

3.1 Motivation 17

3.1.1 Incompleteness in Specification

Specifications are often incomplete with respect to the full range of properties

that stakeholders value in a given system. Such incompleteness is often not

a flaw. Rather, it can serve a strategic function in structuring the process of

complex system design. When a specification is silent on system properties

relevant to stakeholders, it partitions the design process, the representation of

acceptable solutions, and the set of design decisions to be made. We address

each of these concerns and explain how they create a need for a better theory of

and technology for tradeoff analysis.

Partitioning of the Design Process. Incompleteness partitions the design

process into at least two distinct parts. The first is a deductive process, in

which candidate solutions are derived from a specification, constrained only

by the condition that they satisfy its terms. Such solutions generally differ

in stakeholder-relevant properties on which the specification was silent. The

second part is thus an optimization process, in which solutions are evaluated for

additional properties, tradeoffs are identified, candidates are ranked, and one is

selected for use or development.

Partitioning of Design Representations. This deductive vs. optimization

partitioning of the design process is mirrored by an explicit vs. implicit parti-

tioning of the representation of what constitutes an acceptable solution. The

explicit part is given by the specification. The implicit part is represented in

the property estimation functions that will be used to evaluate solutions, the

stakeholder utility functions (emergent or documented) that map property esti-

mates to stakeholder utilities, and the stakeholder tradeoff functions (emergent

or documented) that map the multiple stakeholder utilities to a final ranking of,

and ultimately to a choice from among, candidate design solutions.

Partitioning of Design Decision Spaces. The deductive vs. optimization

and explicit vs. implicit dichotomies extend to a split between decisions that

are understood and agreed on well enough to be pinned down in a specification,

and those that are not. This is a split between settled vs. unsettled decisions. A

3.1 Motivation 18

specification speaks explicitly on design decisions that are settled while remaining

silent on relevant but unsettled aspects, leaving them to be worked out in

downstream, optimization-oriented design activities.

These separations of concerns can also sometimes be seen in the evolutionary

dynamics of complex systems. As initially unsettled concerns are settled, they can

migrate from being represented implicitly in measurement and utility functions

to being explicit in specifications. System architectures can be seen as settled

and explicit specifications, for example, that remain incomplete in other key

areas. As optimization-based processes produce knowledge and agreement, these

results can migrate into specifications.

3.1.2 Running Example

Our ultimate goal is to find desired designs with respect to performance for all

kinds of systems that can be expressed in relational logic through advances in

design space science and technology. To motivate this research and illustrate our

approach, here we provide a running example having to do with tradeoff analysis

among the space of possible solution alternatives. Here we use the analysis of

spaces of object-relation mappings (ORM) as a tractable and useful driving

problem.

In the ORM domain, a specification is an object model that contains objects and

relations among these objects. Object-oriented data models serve as specifications

for application database schemas. While these specifications constrain schemas,

they are silent on properties such as time and space performance, and evolvability.

At the same time, degrees of freedom in ORM mappings (e.g., in how inheritance

is mapped to relations) give rise to spaces of satisfying schemas that vary in

these properties. Object-oriented specifications of data models are incomplete

regarding these other properties. While all solution points within the solution

space are equally good at satisfying the specification, they will differ in other

properties of interest in design. A developer starts with an object model as in

Figure 3.1 and eventually selects one of many possible strategies for mapping

3.1 Motivation 19

Figure 3.1: A simple object model with three classes, Order, Customer, and
PreferredCustomer, a one-to-many association between Customer and Order,
and with PreferredCustomer inheriting from Customer

such a model to a relational database, with tradeoffs in response time, space

usage, evolvability. Figure 3.2 illustrates two such strategies; and Listing 3.1, a

database set-up script derived from one of these solutions.

Simple ORM solutions, many in everyday use, lock one into either point solutions

or highly constrained solution spaces. To address this problem, the work of

Bagheri et al. [23] presented a capability to synthesize comprehensive ORM

design spaces from formal object model specifications. Given such a space, the

challenge is to develop, validate, and apply non-functional property prediction

(analysis) functions to designs in the space to predict properties of designs in,

and tradeoffs across, the space.

Ideally, one has a vector of easily computed, well-validated performance analysis

functions. In that case, mapping this vector of functions (or, equivalently, this

vector-valued function) across the points in the space yields a multi-dimensional,

non-functional property image of the design space. Tradeoffs, Pareto-optimal

solutions, and other critical information can then be read from the results.

Static analysis functions predict properties from the structures of design repre-

sentations without actually implemting and testing the designs. Such functions

are often efficient, but might not be available, validated, or sufficiently predictive.

This point is clear in our earlier work. Cognizant of the issues, we applied

3.1 Motivation 20

Figure 3.2: Two mapping strategies. White boxes represent classes; gray titles,
corresponding tables, and black and white arrows, mapping and inheritance
relationships. Foreign keys are marked as fKeys.

1 CREATE TABLE ‘Order ‘ (
2 ‘ orderID ‘ int (11) NOT NULL,
3 ‘ orderValue ‘ int (11) ,
4 ‘ customerID ‘ int (11) ,
5 KEY ‘ FK_customerID_idx ‘ (‘ customerID ‘) ,
6 PRIMARYKEY (‘ orderID ‘)
7) ;
8
9 CREATE TABLE ‘ Customer ‘ (

10 ‘DType ‘ varchar (31) ,
11 ‘ d iscount ‘ int (11) ,
12 ‘ customerID ‘ int (11) NOT NULL,
13 ‘ customerName ‘ varchar (31) ,
14 PRIMARYKEY (‘ customerID ‘)
15) ;

Listing 3.1: Synthesized MySQL database creation script elided for space and
readability.

published but not very well validated static metrics [24,25] to our synthesized

ORM spaces. The results shows that while these predictors had some value, they

were not very reliable. Can design decision makers believe such metrics? What

are the actual properties and tradeoffs?

These questions took on added urgency with our production, reported here for

the first time, of a web-accessible tool that implements our ORM synthesis

and analysis approach. We call it Trademaker-ORM1 (T-ORM). It supports

automated, specification-driven synthesis of ORM design spaces and static

analysis using the aforementioned metrics. It provides a web interface, user

account and job management (job submission, asynchronous execution, status
1Available at www.jazz.cs.virginia.edu:8080/Trademaker at the time of this writing

3.1 Motivation 21

reporting, persistence), computation and presentation of Pareto-optimal subsets

of synthesized designs under the given metrics, and synthesis of SQL databases for

selected designs. Figure 3.3 presents a screen-shot of a T-ORM run. Rows present

Pareto-optimal designs, and columns, analysis results. Listing 3.1 presents an

SQL database creation script obtained by selecting a design from the table.

Figure 3.3: A view of our tool to provide decision-makers with Pareto-optimal OR
mapping solutions based on static analysis results; columns and rows represent
metrics and solution alternatives, respectively.

To test the validity of the results that T-ORM reports, we turned to dynamic

performance analysis. The combination of ample computing capacity and our

ability to synthesize many running databases for given object models suggested

that we measure properties and tradeoffs of actual running systems, in the spirit

of what Cadar et al. call multiplicity computing [26]. Doing so could at least

validate the static metrics through statistical analysis of the power of these

metrics to predict dynamically measured results. If we could validate the static

metrics, we could use them for efficient analysis. If not, we could fall back on less

efficient but more trustworthy dynamic analysis. In this case, a further question

arises: how to optimize dynamic analyses. We were thus led to formulate three

driving hypotheses for the research reported in the rest of this work:

• H1: The ordering of alternatives predicted by the static metrics predicts

that of the dynamic analysis results

• H2: The relative magnitudes of static measures of alternatives predict

those of the dynamic analysis results

• H3: Dynamic analysis using scale-limited synthesized loads predicts per-

formance under much larger loads

3.2 Algebraic Model 22

Designabst Loadabst

Designconc Loadconc

l

t

cl

computeac

Figure 3.4: Algebraic structure of the Trademaker approach.

The problem was now to figure out how to automate fair comparative dynamic

analysis of diverse database designs. There are many commercial tools for

generating database testing loads from schemas. In our case, however, many

variant schemas all implement a common object model. An application that

operates against an object model will thus be evaluate against what we will call

an abstract load. The translation from abstract load to a concrete operations on

a particular database implementation emerges as a real challenge. We faced the

need to synthesize thousands of load specialization functions.

3.2 Algebraic Model

The insight that enabled synthesis of functions mapping from abstract loads to

concrete test loads specialized to individual schemas was that we could recover,

from synthesized database designs, abstraction functions relating concrete designs

back to the abstract object model specifications from which they were derived, and

that from these abstraction functions we could derive functions for concretizing

abstract loads synthesized from the same object models. The commutative

diagram in Figure 3.4 presents the resulting mathematical structure. Designabst

is a set of formal design space specifications in a particular domain, inductively

defined by the grammar and semantics of the language in which the models are

specified. In work to date, we represent design space specifications as expressions

in a domain specific language embedded in a relational logic.

3.3 Model Implementation 23

To an abstract model, m ∈ Designabst, we apply a design space synthesis (con-

cretization) function, c, to compute c(m) ⊂ Designconc, the space of concrete

design variants from which we want to choose a design to achieve desirable trade-

offs. Relation c can be seen as mapping abstract, intensional models of design

spaces to extensional representations, namely sets of concrete design variants.

We represent the design space synthesis function, c, as a semantic mapping

predicate in our relational logic, taking expressions in the abstract modeling

language to corresponding concrete design spaces. Relation a, an abstraction

relation, explains how any given concrete design, d ∈ c(m), instantiates (i.e.,

is a logical model of) its abstract model, m. Function c is specified once for

any given abstract modeling language, as a semantic mapping predicate in our

relational logic.

Relation l, an abstract load generation relation, similarly maps an abstract

model, m ∈ Designabst, to a set of abstract loads l(m) ⊂ Loadabst.

To dynamically analyze a concrete design, d ∈ c(m), an abstract load, ld ∈

l(m) has to be specialized for the particular design. The function t, a load

concretization function, serves this purpose. We compute t from a. As long as

c(m) preserves a representation of a in its output, then from any single design

space model, m, we can synthesize a concrete design space, and both abstract

and concretized loads.

The derivation of t from a induces a mapping, cl, from concrete designs to concrete

loads parameterized by a choice of abstract load. This function completes the

commutative diagram. We do not actually implement this mapping. The next

section describes instantiation of our approach for the particular domain of

object-oriented relational database persistence mappings.

3.3 Model Implementation

This section presents an implementation architecture for our approach (for ORM).

Figure 3.5 gives a high-level overview. Boxes represent processing modules, and

3.3 Model Implementation 24

Figure 3.5: High-level overview of the Trademaker implementation for the
particular domain of ORM.

ovals, module inputs and outputs. Abstract models are given as expressions

in Alloy-OM, a domain-specific language embedded in Alloy’s relational logic

language. Roughly speaking, we specify c and l as predicates in Alloy. Conjoining

these predicates to an Alloy-OM model yields a specification of the desired output

space. The Alloy analyzer computes the results, encoded as Alloy models, which

we then unparse into useful forms. From concrete design models we extract SQL

database creation scripts. From abstract load models combined with choices of

concrete databases, we derive concrete loads represented as sequences of SQL

insert and select queries.

The rest of this section details how we implement the main components of the

approach, corresponding to functions c, l, and t. Subsection 4.1 explains how

we implement c, for synthesizing concrete models from abstract design space

specifications; 4.2, how we implement l, for synthesizing abstract loads from the

same specifications; and 4.3, how we implement t, for concretization abstract

loads.

3.3.1 Design Space Synthesis

Mapping abstract object models to concrete designs was the subject of earlier

work [23]. Our novel results since that work include substantial refinement and

3.3 Model Implementation 25

validation of mapping rules and the production of functions that unparse concrete

designs representations, encoded as Alloy objects, into SQL database creation

scripts. This translation is important for tool users as a key to automating

dynamic analysis.

This subsection briefly reviews the approach. We briefly describe relevant

new work. Given an object model expressed in our Alloy-OM domain-specific

language (which is just a set of definitions in Alloy), we use Alloy’s constraint

solver to synthesize concrete OR mapping strategies, realizing the function,

c. The synthesizer uses our Alloy-encoded formalizations of best practices for

object-relational mapping, described informally in the literature [27–29].

Alloy-OM supports three main constructs: Class, Attribute and Association.

Each class in an object (e.g., UML) model appears as a Class signature in Alloy-

OM. Each attribute of a given class appears as an Alloy-OM Attribute in the

attribute set of the corresponding Alloy-OM Class signature. Each association

in the object model appears as an Alloy-OM Association signature.
1 one sig Order extends Class {}{
2 a t t rS e t = orderID + orderValue
3 id=orderID
4 i sAbs t ra c t = No
5 no parent
6 }

Listing 3.2: Order class in Alloy-OM.

Listing 3.2 presents a fragment of an Alloy-OM model for our customer-order

example. The order class has two attributes, “orderID” and “orderValue”, assigned

to the “attrSet” field of the Order class. The id field specifies the orderID as the

identifier of this class. The last two lines of the Order signature specification

denote that Order is not an abstract class and has no parent. Alloy-OM is

not a sophisticated modeling language. The salient point is that embedding

it in Alloy allows us to use Alloy relations to encode, and the Alloy analyzer

to compute, formally specified semantic mapping rules to other domains: here

concrete database designs and abstract loads for those designs.

Figure 3.6 presents a graphical depiction of an Alloy object encoding a synthesized

OR mapping solution. This solution is one of five Pareto-optimal solutions in the

design space for our customer-order object model. The diagram is accurate but

edited to omit some details for readability. In this diagram, Table1 is associated

3.3 Model Implementation 26

Figure 3.6: OR mapping for customer-order example

to Customer and PreferredCustomer classes, and Table0 is associated to both

Order and CustomerOrderAssociation.

From this Alloy solution, our tools generate the SQL script of Listing 3.1.

The script sets up a database with the two tables: Order, with attributes

orderID, customerID and orderValue; and Customer, with attributes, customerID,

customerName, discount, and DType. Both Customer and PreferredCustomer

objects are stored in this table under this particular mapping strategy, with the

DType field distinguishing the type of record stored.

3.3.2 Abstract Load Synthesis

Our approach to synthesizing abstract loads starts with the automated transfor-

mation of a given Alloy-OM model into a related Alloy specification that we call

a load model. We then use the Alloy Analyzer to synthesize abstract loads from

this load model. Alloy solutions to the load model encode abstract object model

data instances (OM-instances), which are what we take as synthesized loads

with which to test synthesized designs. This section describes this functionality

in more detail.

3.3 Model Implementation 27

Figure 3.7: An example of OM-instance.

For each instance of Class and Association in the Alloy-OM model, our model

transformer synthesizes a signature definition. When the class under consider-

ation inherits from another class, the synthesized signature definition extends

its parent signature definition. Given the specification of Order represented in

Listing 3.2, the following code snippet represents its counterpart in a synthesized

load model.
s ig Order{

orderValue : one Int ,

orderID : one Int

}

The one multiplicity constraints used in the declaration of elements’ signatures

within the Alloy-OM model (Listing 3.2) specify them as singleton signatures.

While these constraints are required by the tradeoff space generator (e.g. to

not generate multiple tables for a class in the model), they are unneeded for

load generation, and thus omitted in the load model. The element attributes in

the object model are also declared as fields of the corresponding load signature

definition representing relations from the signature to the attribute type.

Finally, two sets of constraints are synthesized as fact paragraphs in the load

model to guarantee both referential integrity of generated data as well as unique-

ness of element identifiers with reference to the set of element instances to be

generated. Referential constraints require every value of a particular attribute

of an element instance to exist as a value of another attribute in a different

element.

Consider the association relationship between Customer and Order classes from

our running example (Figure 3.2). The code snippet of Listing 3.4 represents syn-

thesized constraints in the load model for the customer-order association.

3.3 Model Implementation 28

1 fact {
2 a l l o1 , o2 : CustomerOrderAssociat ion | o1 . orderID = o2 . orderID and o1 .

customerID = o2 . customerID => o1=o2
3 }
4
5 fact {
6 a l l o : CustomerOrderAssociat ion | one c : Order | o . orderID = c . orderID
7 a l l o : CustomerOrderAssociat ion | one c : Customer | o . customerID = c .

customerID
8 }

Listing 3.4: Part of the load model specification generated for customer-order
association.

The expression of lines 1–3 states that if any two elements of type CustomerOrderAs-

sociation have the same orderID and customerID, the elements are identical. This

constraint rules out duplicate elements. The fact constraint of lines 5–8 states that

for any orderID and customerID fields of aCustomerOrderAssociation, there are

Order and Customer instances with the same orderID and customerID.

Applying the Alloy Analyzer to the derived load model yields the desired load

in the form of object model data instances (OM-instances). Figure 3.7 depicts a

generated OM-instance, an Alloy solution object. This solution represents two

customers with customerID of 64 and 225, the latter a preferred customer with 10

percent discount, along with their orders. From many such solutions we derive an

abstract (application-object-model-level, rather than concrete-database-schema-

level) load with which to test the performance of many database instances.

Improving the efficiency of the load generator. One of the challenges we faced

involved the scalability of this approach to load synthesis. A large number of

solutions generated by the Alloy Analyzer were symmetric to previously generated

instances, and thus did not contribute usefully to the load being generated. We

explored a number of ways to improve efficiency of the load generator. The one

that we found worked best is the iterative refinement of the load model by adding

constraints that eliminate permutations of the already generated OM-instances.

Without this improvement, it took 21 hours for Trademaker-ORM to generate

test loads for one of our experiments. Given this approach, the time was reduced

to about 2 hours—an order of magnitude speed up in the synthesis of test

loads.

3.3 Model Implementation 29

3.3.3 Abstract Load Concretization

The next challenge we discuss is to convert abstract load OM-instance objects

into concrete SQL queries on a per-database basis. This is the task of specializing

abstract load elements to the variant schemas presented by different solutions in

the design space. Our Alloy-to-SQL transformer handles this task. To create

SQL statements for a given database, Alloy-to-SQL transformer requires an OR

mapping, the abstraction function describing how that concrete database schema

implements the abstract object model.

Algorithm 1 outlines this transformation. For brevity, and because it suffices to

make our point, this section focuses on insert queries. The approach supports

the generation of select and update queries as well, which are important, of

course, for comprehensive dynamic analysis.

Algorithm 1: Generate SQL Insert Statements
Input: omi: OM-instance, map: OR mapping
Output: A set of SQL insert statements

1 for element in omi do
2 T = map.TableAssociat(element);
3 F = T.fields;
4 for field in F do
5 value = getValueFromOMI(field);
6 if value != null then
7 add “field = value" into statements
8 end
9 else
10 if field == “DType" then
11 value = element.name;
12 end
13 if isForeignKey(field) then
14 attr = findAttributeFromAssociation(field);
15 value = getValueFromOMI(attr);
16 end
17 add “field = value" into statements
18 end
19 end
20 end

The logic of the algorithm is as follows. Iterate over all elements in a given

OM-instance (e.g., classes and associations) whose values can be populated into

databases through insert statements. Look up the mapping to determine the

table in which the element values should be stored. For each relational field

3.4 Dynamic Analysis Experiment 30

in the associated table, if the OM-instance contains a value corresponding to

that field, insert the value into the field. Otherwise, in the case that the field

is a DType, insert the name of element into the field. Finally, if the field is a

foreignKey, find the associated attribute from a relevant association in the given

OM-instance, and insert its value into the field.

Consider the database alternative for our running example, in which we store

the customer-order association data into the order table (Figure 3.2b). In that

case, the field of customerID in the Order table is a foreignKey, and its values

comes from the associated customerOrderAssociation element.

1 INSERT INTO ‘ Customer ‘ (‘ customerID ‘ , ‘DTYPE‘) VALUES (64 , ’ Customer ’) ;

2 INSERT INTO ‘ Customer ‘ (‘ customerID ‘ , ‘DTYPE‘) VALUES (225 , ’

PreferredCustomer ’) ;

3 INSERT INTO ‘Order ‘ (‘ orderID ‘ , ‘ orderValue ‘ , ‘ customerID ‘) VALUES

(184 ,511 ,64) ;

4 INSERT INTO ‘Order ‘ (‘ orderID ‘ , ‘ orderValue ‘ , ‘ customerID ‘) VALUES

(366 ,510 ,225) ;

Listing 3.5: Generated SQL insert statements from OM-instance of Figure 3.7

for implementation mapping of Figure 3.6.

Listings 3.5 represents the set of SQL insert statements generated from the

OM-instance of Figure 3.7 according to the mapping of Figure 3.6. The first

two generated statements define insert queries to store instances of Customer

and PreferredCustomer into the Customer table along with appropriate DType

values for each one. The next two statements then store instances of Order and

CustomerOrderAssociation into the Order table.

3.4 Dynamic Analysis Experiment

As an experimental test of our approach to specification-driven, automated

dynamic analysis of non-functional property tradeoffs across design spaces,

we have applied the approach to test the validity of the static predictors of

database performance. This section summarizes the design and execution of

3.4 Dynamic Analysis Experiment 31

our experiment, the data we collected, its interpretation, and our results, which

include novel findings regarding these metrics.

3.4.1 Static Metrics Suite

The choice of mapping strategy impacts key non-functional system properties.

Response time performance, storage space and maintainability are among the set

of quality attributes defined by the ISO/IEC 9126-1 standard that are influenced

by the choice of OR mappings. To statically measure these attributes in an

ORM design space, we use a set of metrics suggested by Holder et al. [25] and

Baroni et al. [24]. The metrics are called Table Access for Type Identification

(TATI), Number of Corresponding Table (NCT), Number of Corresponding

Relational Fields (NCRF), Additional Null Value (ANV), Number of Involved

Classes (NIC) and Referential Integrity Metric (RIM). In this work, we focus on

three of these metrics for time and space performance. Maintainability is out of

scope as we cannot measure it using dynamic analysis technique.

Table Accesses for Type Identification (TATI)

Table Accesses for Type Identification (TATI) is a performance metric for

polymorphic queries [25]. According to the definition, given a class C, TATI(C)

defines the number of different tables that correspond to C and all its subclasses.

Our tools total up TATI values for each class as the overall TATI measure for

each solution alternative.

Number of Corresponding Tables (NCT)

Number of Corresponding Tables (NCT) is a performance metric for insert and

update queries. This metric specifies the number of tables that contain data

necessary to assemble objects of a given class [25]. According to the definition,

given a class C, NCT(C) equals to NCT of its direct super class, if C is mapped

to the same table as its super class. Otherwise, if C is mapped to its own table,

3.4 Dynamic Analysis Experiment 32

NCT(C) equals to NCT of its direct super class plus one. Finally, if C is a root

class, NCT(C) equals to 1. Our tool computes totaled NCT values over classes

as the NCT measure for each solution alternative.

Additional Null Value (ANV)

The Additional Null Value (ANV) metric specifies the storage space for null

values when different classes are stored in a common table [25]. According to

the definition, given a class C, ANV(C) equals to the number of non-inherited

attributes of C multiplied by the number of other classes that are being mapped

to the particular table to which C is mapped. Our tools present totals for ANV

values over all classes as the ANV measures for each solution alternative.

3.4.2 Static Analysis of Synthesized Designs

To apply these metrics to synthesized solutions, we designed specific Alloy queries.

Here we describe one for measuring the TATI metric. The others are evaluated

similarly.

TATI(C) = #(C.*(∼parent).∼tAssociate)

Here the dot operator denotes a relational join. The Alloy ∼ operator represents

the transpose operation over a binary relation, which reverses the order of atoms

within the relation. Given the tAssociate (abstraction) relation that maps tables

to their associated elements (i.e. Class or Association) within the object model,

its transpose is the relation that maps each element to its associated table within

the relational structure. The Alloy * operator represents the reflexive-transitive

closure operation of a relation. Accordingly, the expression of “C.*(∼parent)"

states a set of classes that have the class “C" as their ancestor in their inheritance

hierarchy. The query expressions then, by using the Alloy set cardinality operator

#, computes the TATI metric.

3.4 Dynamic Analysis Experiment 33

Figure 3.8: Multi-dimensional quality measures for pareto-optimal solutions.

Our static metrics suite comprises six such static measures. The vector of

these functions defines a 6-dimensional static analysis function applicable to

Alloy-synthesized concrete designs (e.g., Figure 3.6). Our tools map this function

over all elements of a synthesized design space to produce a tradeoff surface.

The spider diagram, shown in Figure 3.8, illustrates one Pareto-optimal point

on that surface for our example customer-order system. To display quality

measures in one diagram, we normalized the values. Such diagrams can assist

in conducting tradeoff analyses by making it easier to visualize and compare

alternatives. According to the diagram, if the designer opts for performance, she

may decide to use Sol. 5 instead of Sol. 4, as the latter has worse values for the

TATI and NCT performance metrics.

Of course none of this theory or machinery is very useful if the metrics themselves

are not predictive of the actual non-functional (performance) properties of

candidate designs. The rest of this section presents our experiment in automated

dynamic analysis, the goal of which was to help us answer this question. In

particular, this experiment addresses the three hypotheses introduced at the

start of this section.

3.4 Dynamic Analysis Experiment 34

3.4.3 Subject Systems

We synthesized design spaces and compared static predictions with dynamic

results for four subject systems. The first is the object model of an E-commerce

system adopted from Lau and Czarnecki [30]. It represents a common archi-

tecture for open source and commercial E-commerce systems. It has 15 classes

connected by 9 associations with 7 inheritance relationships. The second and

third object models are for systems we are developing in our lab. Decider is

another system to support design space exploration. Its object model has 10

Classes, 11 Associations, and 5 inheritance relationships. The third object

model is for a system, CSOS, a kind of cyber-social operating system meant to

help coordinate people and tasks. In scale, it has 14 Classes, 4 Associations,

and 6 inheritance relationships. We also analyzed an extended version of our

customer-order example.

3.4.4 Planning and Execution

Our experimental procedure involved the synthesis of both design spaces of

database alternatives and several abstract loads in a variety of sizes for each

subject system. Given the synthesized schemas, we created a database for

each alternative. We then populated generated data into databases, and ran

concrete queries over those databases. We measured and collected the numbers

of concrete queries generated from abstract loads for each database alternative,

query execution time, as well as the size of each database.

We used an ordinary PC with an Intel Core i7 3.40 Ghz processor and 6 GB of

main memory, with SAT4J as our SAT solver. Database queries were performed

on a MySQL database management system (DBMS) installed on a machine

equipped with an AMD Opteron 6134 800 Mhz processor and 64GB memory.

Data and statistical information are available at http://jazz.cs.virginia.edu:8080/Trademaker/data.

Figure 3.9 summarizes generated solution space for each subject system. There

is one row for each system. The columns indicate the total number of solutions,

the number of static equivalence classes where equivalence is determined by

3.4 Dynamic Analysis Experiment 35

Subj. Sys. Solutions Eq.Classes Pareto Sols.
decider 386 154 12

ecommerce 846 360 16
CSOS 278 121 21

Cust-order (ext) 28 14 10

Figure 3.9: Design space sizes for subject systems.

equality of static analysis results, and the number of Pareto-optimal solutions

under the given static metrics.

We investigated and compared two different methods for generation of data

sets. The first method generated data using our formal synthesis methods. For

the second, we hand-developed a load generator for generating large loads that

simply respect the constraints in our object models (e.g., referential constraints

between elements).

Three data sets were developed for each subject system to support the task of

evaluating the static metrics.

Dataset 1. This data set is generated using the Alloy-based data generator,

where the maximum bit-width for integers is restricted to 5. This leads to the

generation of small data set for our experiments.

Dataset 2. This data set is generated using our Alloy-based data generator. The

maximum bit-width for integers is restricted to 10, which leads to the generation

a larger data set compared with the former data set.

Dataset 3. As with many formal techniques, the complexity of constraint

satisfaction restricts the size of models that can practically be analyzed and

synthesized [31,32]. For experimental purposes, we hand-implemented a more

scalable data generator. It does not generate queries directly, but rather replaces

the constraint solver for synthesis of abstract loads. Having synthesized larger

abstract loads in the form of OM-instances, using the mechanisms already used

in the Alloy-based data generator (cf. 3.3.3), the generator then transforms

abstract loads into sets of concrete queries targeting diverse implementation

alternatives.

3.4 Dynamic Analysis Experiment 36

Ecommerce Dataset 1 Dataset 2 Dataset 3
abstract load 862 2,576 164,813

Sol.19 (conc. load) 456 13,698 2,471,700
Sol.121 (conc. load) 320 9,770 1,647,800
Sol.264 (conc. load) 397 12,073 2,142,140
Sol.348 (conc. load) 379 11,395 1,977,360

Figure 3.10: Part of the generated data sets for the ecommerce experiment; the
first row shows abstract loads generated for the ecommerce system within each
data set; each cell in the other rows corresponds to the size of generated concrete
load for the database alternative and data set given on the axes.

Figure 3.11: Correlation coefficients between the relative order of solution
alternatives predicted by static metrics and those observed from actual runtime
measures.

Figure 3.10 presents the sizes of generated data sets for some of the solution

alternatives for the E-commerce system. The number of concrete queries refined

from a common abstract load is different in various solution alternatives, de-

pending on the way that each implementation mapping alternative refines the

abstract object model into the concrete representation in relational structure

(cf. 3.3.3).

3.4.5 Results for Hypothesis H1 (Order)

To test the predictive power of our static metrics, we compared its predictions

against the results of our dynamic analysis. To evaluate our first hypothesis—

whether the relative order of implementation alternatives is predicted by static

3.4 Dynamic Analysis Experiment 37

metrics—we compute Spearman correlation coefficients, an appropriate corre-

lation statistic for order-based consistency analysis. It measures the degree of

consistency between two ordinal variables [33]. A correlation of 1 indicates per-

fect correlation, while 0 indicates no meaningful correlation. Negative numbers

indicate negative correlations.

Figure 3.11 summarizes correlation coefficients between static metrics and dy-

namic measures. The data show reasonably strong but somewhat inconsistent

positive correlations between statically predicted and actual run-time perfor-

mance for TATI (average correlation of 0.84) and NCT (average correlation of

0.89). These metrics appear moderately to strongly predictive of the relative

ordering databases run-time performance, at least for the kinds of loads employed

in our experiments.

The performance of the ANV predictor varies across the subject systems. ANV

predicts well in the E-commerce and Decider experiments and moderately in

the CSOS data, but weakly in the customer-order-extended set. Moreover, the

results show negative correlation between the ANV metric and database size.

As number of null values increases, size decreases. This observation for the ANV

metric is in direct contrast to what is predicted. One possible reason is that

when the ANV metric increases, the number of tables for the database solution

under consideration decreases. Assuming that the database system efficiently

stores null values, the database size would reduce.

To further evaluate predictiveness of the static metrics, we considered the case in

which designers use each static metric as a two-class classifier. We, thus, measure

precision, recall and F-measure as follows:

Precision is the percentage of those alternatives predicted by a given metric as

more preferable in terms of a given quality attribute that were also classified as

more preferable by the actual analysis: TP
TP+FP

Recall is the percentage of alternatives classified more preferable by the actual

analysis that were also predicted as more preferable by the a given metric:

TP
TP+FN

3.4 Dynamic Analysis Experiment 38

F-measure is the harmonic mean of precision and recall: 2∗Precision∗Recall
Precision+Recall

where TP (true positive), FP (false positive), and FN (false negative) represent

the number of solution alternatives that are truly predicted as preferable, falsely

predicted as preferable, and missed, respectively.

While static metrics output predictions of quality characteristics as natural

numbers, actual analysis of query execution performance and required storage

space are in terms of Seconds and Bytes, respectively. To classify an alternative

as preferable, we thus use median for each set of result values as a threshold. We

measure evaluation metrics for each subject system with respect to three data

sets.

Figure 3.12: Experimental results of evaluating OR metrics as two-class classifiers.

Figure 3.12 summarizes the results of our experiments to evaluate the accuracy

of static metric predictors as two-class classifiers. The average precision, recall

and F-measure are depicted in Figure 3.13. The results show the accuracy of

the TATI and NCT metrics in classifying implementation alternatives in terms

of their run-time performance. The average precision and recall for all four

experiments are about 90%, showing a low rate of both false positives and false

negatives. The ANV metric, however, achieves the average under 30% in all

evaluation metrics.

3.4 Dynamic Analysis Experiment 39

Figure 3.13: Bar plot of the average precision, recall and F-measure for consider-
ing static metrics as two-class classifiers.

The experimental data thus suggests that, under the generated abstract loads,

the relative order of implementation alternatives predicted by static metrics of

TATI and NCT is indicative of their comparative preference in actual runtime

performance, but this is not the case for ANV as a static predictor of storage

space.

3.4.6 Results for Hypothesis H2 (Magnitudes)

To address the second hypothesis—relative magnitude of static predictions

matter—we employ a coefficient of determination denoted R2, as a metric for

how well actual outcomes are predicted by the static metrics. Figure 3.14 plots

the results. For brevity, only results from Dataset 3 are presented; other data

sets give similar results.

The performance of the predictors varies widely across systems and predictors.

TATI and NCT are predictive of performance for the E-commerce and decider

systems, but relatively poor predictors for CSOS. TATI performs poorly in the

customer-order-extended data. ANV predicts size in the E-commerce experiment,

and moderately in the Decider data, but inconsistently and weakly in the CSOS

data and not at all in the customer-order-extended set.

3.4 Dynamic Analysis Experiment 40

Figure 3.14: Correlation between static metrics and actual run-time measure;
rows represent scatter plots of observed values versus predicted values by TATI,
NCT and ANV metrics from top to bottom, respectively; R2 correlation coeffi-
cient is shown at the bottom of each plot.

3.4 Dynamic Analysis Experiment 41

Figure 3.15: Summary of Pearson correlation coefficients between experimental
results obtained from smaller data sets and that of the large Dataset3.

We interpret this data as suggesting that the relative magnitudes of static

metrics for various solution alternatives are not reliably indicative of the relative

magnitudes of actual performance, and that ANV is a poor indicator of the

storage space. One is advised to use such static metrics with caution. While

TATI and NCT metrics predict the relative order of solution alternatives with

high confidence, the difference in predicted values of two alternatives is not a

good indicator of their actual run-time difference.

3.4.7 Results for H3 (Small vs. Large Loads)

To address the third hypothesis—that small, formally synthesized loads predict

the outcomes of much larger loads—we employ the Pearson product-moment cor-

relation statistic. Pearson measures the degree of linear dependence between two

variables, not necessarily ordinal, as opposed to the Spearman test. A correlation

of 1 represents perfect correlation, and 0, no meaningful correlation.

We summarize correlation coefficients between experimental results obtained

from smaller data sets of 1 and 2 and that of the large Dataset 3 in Figure 3.15.

The average Pearson correlation coefficient between Dataset3 and the first and

second data sets are 88% and 94%, respectively. These data lend support

to the proposition that smaller-scale test sets produced by specification-driven

3.5 Evaluation of Trademaker 42

synthesis can provide valid predictions of performance under larger, more realistic

loads.

3.5 Evaluation of Trademaker

The overarching problem this work addresses is interesting and important:

the need for improved science to support decision making in complex and

poorly understood tradeoff spaces, particularly involving tradeoffs among non-

functional properties, also sometimes called ilities. We need languages in which

to specify design spaces, techniques for synthesizing and analyzing design spaces,

mechanisms for mapping static and dynamic analysis functions across design

spaces, techniques for validating such metrics, and tools that enable engineers

use the science to improve real engineering practice. We also need measures

for ilities that are important but hard to measure today: for evolvability, some

dependability properties, affordability of construction, and more.

This work contributes some new results to the science and engineering of tradeoff

analysis of non-functional properties. It suggests the possibility of useful formal

languages for specifying design spaces in support of formal synthesis of both

designs and comparative analysis loads. We showed that specialization of common

loads is enabled by access to abstraction functions from concrete to abstract

designs, which can be embedded in the results of design synthesis. Concretization

functions proved useful not only for scale-limited, formally synthesized loads,

but for concretizing abstract loads produced by other means. We also presented

an experiment using our tool to test the validity of static predictors of database

performance based on published but not validated metrics. Two of the metrics

appear to produce meaningful signals, while the third appears not useful. The

data also indicate a need for caution in relying on the static metrics. Their

predictive power, even in the “good" cases, varied across application models.

That said, we can now provide automated dynamic analysis as a fall-back. We are

integrating support for invoking such automated analysis into our Trademaker-

ORM tool. Trademaker-ORM itself has real potential utility for object-relational

3.5 Evaluation of Trademaker 43

mapping and partial application synthesis; but its greater significance is as a

demonstration of our research results and a testbed for further research on formal

tradespace modeling and analysis.

There are of course limitations in our approach and in this work. We mention

those most relevant to a proper evaluation of this effort. First, the static metrics

we evaluated sum the values of published metrics over the elements of each

design alternative. We thus extended the original metrics and our statistical

results should technically be read as pertaining to these extensions of the original

measures.

Second, while our synthesis mechanisms are implemented and working, our

infrastructure for running synthesized concrete loads against synthesized designs

still relies on some manual processing. Our statistical data were thus derived

by dynamic analyses of certain subsets of our synthesized designs. We selected

the subsets deemed Pareto-optimal by the static metrics. As our infrastructure

matures, we will conduct whole-space dynamic analyses, which we expect to

produce results consistent the basic result presented here. We are on a path to

support automated whole-space dynamic analysis through Trademaker-ORM.

The work reported in this work did nevertheless involve the synthesis and dynamic

analysis of over 300 database alternatives.

Third, our experiments to date tested our hypotheses for “random" loads of vary-

ing sizes. Real applications will generally produce non-random loads. Whether

the static metrics we tested are predictive for large, real applications remains

unclear. On the other hand, we offer dynamic analysis at scale as an alternative.

We envision a future in which some systems run many design variants in parallel,

perhaps with small but representative loads abstracted from real loads on live

systems, to detect conditions in which dynamic switching to new implementation

strategies should be considered.

Finally, there is the issue of scalability. Using Alloy as a constraint solver

entails scalability constraints. We can handle object models with tens of classes.

Industrial databases often involve thousands of classes. It is unlikely that our

current implementation technology will work at that scale. For now, it does

3.6 Astronaut: An Automated tradeoff Analysis Framework 44

have real potential as an aid to smaller-scale system development. That we

can present an object model for a realistic web service, synthesize a broad

space of ORM strategies, select one based on tradeoff analysis, automatically

obtain an SQL-database setup script, provide it Java EE, and have much of an

enterprise-type application up and running with little effort is significant.

3.6 Astronaut: An Automated tradeoff Analysis

Framework

Our previous experiments in the ORM domain were conducted manually. For all

synthesized designs, we manually execute command line tools to evaluate time

and space performance. However, a large model could lead to tens of thousands

designs. Manually evaluating that many designs are not possible, which in turn

required a new apparatus. In this section, we present the design and implemen-

tation of Astronaut, a framework for automated tradespace analysis. It fully

automates the end-to-end conversion of system specifications into dynamically

profiled tradespaces, i.e., exhaustive dynamic relational-logic-based tradespace

analysis. Its design and evaluation is the second contribution of this work. Our

previous work of Trademaker dynamically profiled only a few hundred designs,

at a cost of months of manual effort, to enable statistical testing of the predictive

accuracy of certain static database performance predictors (which operation

directly on static design models of SQL schemas).

Astronaut in turn implements an abstract model for TA, presented informally in

our previous work [34]. However, we never formalized or mechanically checked

our model. The main contribution of this work is a formal specification, written

in the logic of Coq and checked for consistency, from which we extracted the Scala

implementation of Astronaut. The Coq specification is polymorphic in types that

encode the syntax and semantics of a given domain-specific specification language,

the solver that will be used to enumerate designs, the set of property estimation

or measurement procedures used to profile designs, etc. These parameters are

extracted to Scala as abstract classes that are overridden to instantiate Astronaut

3.6 Astronaut: An Automated tradeoff Analysis Framework 45

for a given domain. This work involves re-engineering ORM-specific code of

Trademaker into sub-classes that we then plugged into Astronaut to instantiate it

as an ORM tool. We present our Coq specification as a straightforward, abstract,

formalized, generalized, and evolvable theory of dynamic TA, from which code

can be extracted automatically, and which we have tested for utility by using it

to create Astronaut.

A comment on scalability is in order. RLTA, thus Astronaut, involves exhaustive

enumeration of models of bounded relational logic models. This is a #P-complete

problem: harder than NP-complete and equivalent to counting the number of

satisfying solutions to a SAT problem. It is intractable in general, and will

not scale to large, complex systems. Yet model checking tools have clearly

demonstrated the potential value in exploring practical uses of solutions to

theoretically intractable problems. RLTA is no panacea. It might be useful.

Here we remain satisfied to explore its potential utility for problems at the scale

of individual modules, such as database schemas for ordinary web applications.

While the modular architecture of Astronaut supports variation in logics and

solvers thus enumeration strategies, we leave the exploration of such variations

on our theme to future work.

3.6.1 Astronaut Design

This section presents an overview of our approach for automated tradeoff analysis,

and describes how it leverages advances in several areas of computer science and

engineering.

Constructive Logic & Certified Programming with Dependent Types

First, we use the expressiveness of dependent type theory in modern constructive

logic proof assistants to produce precise, yet computationally effective, theoretical

framework for tradeoff analysis. We present an algebraic theory of tradeoff

analysis tools structured as a hierarchy of Coq [35] typeclasses, in a style similar

3.6 Astronaut: An Automated tradeoff Analysis Framework 46

to that being used by mathematicians [36,37] to formalize hierarchies of abstract

algebraic structures (e.g., groups, fields, topological spaces).

From this theoretical framework, we use Coq’s extraction facility to derive a

certified [38] implementation of a general-purpose syntesis framework in Scala.

It is then specialized and extended with user-defined, domain-specific types and

functions, subject to the specified laws, to create domain-specific analysis tools.

The framework provides implementations of functions common to all instances

and expresses laws that all instances must obey.

Formal Synthesis from Specifications

Our framework is meant to be specialized using any types of software synthesis

techniques. In this work, we specialize it in the context of database schema

designs for object-oriented applications. We use a relational logic model finder

to exhaustively synthesize relational database schemas as well as test loads for

dynamic analysis of performance from specifications of object-oriented data mod-

els [23, 34]. With this tool, we are now able to fully replicate the largely manual

analysis of synthesized database schemas reported in our earlier work [34].

Scalable Big Data Analytics

We use big data analytics, particularly map-reduce [39], to reduce analysis

runtimes. While synthesizing spaces of design solutions from specifications

may not always be easily parallelized, applying property analysis functions to

dynamically measure each design solution in multiple dimensions of performance

is. In fact, applying each measurement function to each solution has a natural

map-reduce structure. The use of scalable map-reduce technology can benefit

many instances of our framework, so it is practical to support it as a common

middleware plug-in. In the following sections, we describe the details of our

approach.

3.6 Astronaut: An Automated tradeoff Analysis Framework 47

3.6.2 A Constructive Logic Based Framework

This section presents our framework of tradeoff analysis tools as a hierarchy

of typeclasses in Coq. We identified that such a framework must support: 1)

different types of formal specification inputs, which we take to be incomplete

in general regarding all properties of interest; 2) different kinds of synthesizers

to solve the given specification to produce implementations; 3) different kinds

of test loads for dynamic analysis, and specialization of common loads to the

interfaces exposed by particular implementations; 4) different types of system

property measurement functions; 5) different types of analysis results; and 6)

different kinds of filters to select optimal designs based on analysis results.

Figure 3.16: Framework Data Flow

We have exploited the idea of using typeclasses to capture general families

of mathematical structures by having our typeclass-based specification define

the family of Astronaut instances, including dimensions of variation, shared

operations, and invariants common to all family members. Typeclasses in Coq are

useful for specifying interrelated families of mathematical structures, including

carrier sets, operations, and invariants, as well as for specifying instances of

these structures. An example of interrelated families of structure from abstract

algebra include monoids, groups, and fields (each of which enriches the previous

one).

3.6 Astronaut: An Automated tradeoff Analysis Framework 48

The structure of our framework is shown in more detail in Figure 3.16. It takes

user defined specifications as inputs. The synthesizer then synthesizes a set

of implementation and associated test loads. Next, the measurement function

dynamically analyzes each implementation with associated test loads to get a

set of measurement results for each solution point. At last, the filter picks the

set of (Pareto-)optimal solutions based on the measurement results.

Astronaut Typeclass

Figure 3.6 shows Astronaut, which is the most abstract and least structured

typeclass in our hierarchy. It expresses the functionality of a broad family of

tradespace analysis tools at a high level of abstraction. The code fragments

in Listing 1 presents the hierarchy of abstract algebraic structures that we

formalized as Coq typeclasses. Each typeclass (Set in the code) characterizes

a class of possible instances. Each class represents a type, values of the type,

operations on the type, and laws constraining the behaviors of the operations. It

has four types: (1) type of input specification (e.g., a UML class diagram); (2)

type of derived implementation (e.g., SQL schema); (3) type of a set of property

measurement functions (e.g., space performance measurement); and (4) type

of measurement results (e.g., database size in megabytes). Values have to be

provided when instantiating Astronaut typeclass.

1 Class Ast ronaut := {
2 SpecType : Set
3 ; ImplType : Set
4 ; MeasureFuncSetType : Set
5 ; MeasureResu l tSetType : Set
6 ; s y n t h e s i z e : SpecType −>
7 l i s t (ImplType × MeasurFuncSetType)
8 ; mapReduce : l i s t (ImplType ×
9 MeasureFunctSetType) −>
10 l i s t (ImplType × MeasureResu l tSetType)
11 ; a s t r o n au t (spec : SpecType) :
12 l i s t (ImplType × MeasureResu l tSetType) :=
13 map mapReduce (s y n t h e s i z e spec)
14 } .

Listing 3.6: Astronaut Typeclass Coq specification, which defines the most
abstracted framework structure. It takes a specification as input, and outputs
a set of implementations and measurement results.

3.6 Astronaut: An Automated tradeoff Analysis Framework 49

The synthesize component is a function that maps a specification to lists of <

Implementation,MeasurementFunction > pairs. The measurement functions

provide performance comparisons of variant implementations. The mapReduce

component is a function that takes a list of< Implementation,MeasurementFunction >

pairs, and returns a list of < Implementation,MeasurementResult > pairs.

The astronaut function calls the map function to map the measurement functions

over the output of the synthesize function (a list of< Implementation,MeasurementFucntion >

pairs). Implementations of these functions are required when the typeclass is

instantiated.

Tradespace Typeclass

The Astronaut typeclass2 (Listing 1) captures a very general notion of tradespace

analysis, and nicely illustrates some of the aspects of our approach, but it provides

too few details for implementing a tradespace analysis tool. We introduce a new

tradespace typeclass to enrich the Astronaut typeclass to provide a finer-grained

implementation architecture for tradespace analyzers.

Listing 3.7 partially presents Tradespace typeclass Coq specification. The first

two lines state that the Tradespace class extends (is coercible to) the Astronaut

and ParetoFront typeclasses. The latter provides structure for computing Pareto

fronts of sets of vector-valued objects. The following four components (lines

5–8) provide for parameterization of typeclass instances with respect to the key

additional types of the implementation framework. Following the declarations of

these type-valued parameters, lines 10–21 specify the signatures of the mapping

functions required to instantiate the Tradespace typeclass.

The diagram shown in Figure 3.17 graphically depicts the structure of the

Tradespace typeclass. The concretization function (cFunction) maps the formal

specification to a set of formal representations of implementations (FmImplType).

The function abstraction (aFunction) explains how each implementation rep-

resents and satisfies its specification. The load function (lFunction) maps the same
2Research artifacts and the complete model for Astronaut, including all specifications, are

available at http://chongtang.github.io/Astronaut/

3.6 Astronaut: An Automated tradeoff Analysis Framework 50

Figure 3.17: Tradespace typeclass model

formal specification to a set of abstract measurement functions (FmAbsMeasureFuncSetType)

that will be used to produce concrete measurement function (FmConcMeasureFuncSetType)

to measure the properties of implementations. The function tFunction is a con-

ceptual function serves our explanation here and doesn’t require implementation.

It specializes the abstract measurement functions to the particular interfaces

exposed by variant implementations. This function uses the abstraction func-

tion aFunction to do its work. The result of this process is another conceptual

function/relation, as indicated by mf in Figure 3.17, that associates a vector of

implementation specific measurement function(s) to each implementation.

The function sFunction translates a user given specification to an internal formal

specification that can be solved by cFunction. The function iFunction parses the

formal/internal representation of implementations to usable forms: e.g., Alloy so-

lutions to SQL schemas. The function bFunction similarly parses formal/internal

representation of measurement functions to useful forms: e.g., to objects that

run actual SQL scripts against actual databases. The final tradespace analysis

result is the relation rm in Figure 3.17 that associates implementations with

3.6 Astronaut: An Automated tradeoff Analysis Framework 51

their corresponding property measurement vectors.

The final three components (lines 23–30) specify laws that the other components

of the typeclass must follow. In a nutshell, these laws state that the abstraction

function, a, must invert the concretization function, c, and that the two paths

from specification to measurements must yield the same results. Constructing

an instance of the typeclass requires proofs of these propositions for the given

function and data type parameter values.

1 Class Tradespace := {
2 tm_Astronaut :> Ast ronaut
3 ; tm_ParetoFront :> Pare toF ron t
4 (* Internal, Formal-Spec-based types *)
5 ; FmSpecType : Set
6 ; FmImplType : Set
7 ; FmAbsMeasureFuncSetType : Set
8 ; FmConcMeasureFuncSetType : Set
9 (* Internal, Formal-Spec-based functions *)
10 ; cFunc t i on : FmSpecType −> l i s t FmImplType
11 ; aFunct i on : FmImplType −> FmSpecType
12 ; l F u n c t i o n : FmSpecType −>
13 FmAbsMeasureFuncSetType
14 ; t Func t i on : FmAbsMeasureFuncSetType −>
15 l i s t ImplType −>
16 l i s t FmConcMeasureFuncSetType
17 (* map to and from Formal-Spec-based form *)
18 ; s Func t i on : SpecType −> FmSpecType
19 ; i F u n c t i o n : FmImplType −> ImplType
20 ; bFunct ion : FmConcMeasureFuncSetType −>
21 MeasureFuncSetType
22 (* Laws *)
23 ; a I n v e r t sC : f o r a l l (spec : FmSpecType)
24 (f Imp l : FmImplType) ,
25 In f Imp l (cFunc t i on spec) −>
26 (spec = aFunct i on f Imp l)
27 (* See code repo, omission on purpose. *)
28 ; implL ineLaw : . . .
29 (* See code repo, omission on purpose. *)
30 ; t e s tLoadsL ineLaw : . . .
31 } .

Listing 3.7: Tradespace Typeclass Coq specification. It captures the internal
structure of our framework.

3.6.3 Framework Instantiation

Framework users need to provide domain-specific types for the nodes in Fig-

ure 3.17 and domain-specific function implementations for the solid arcs. The

other dashed-line mappings are implicit or automatically computed. This section

describes how we instantiate our framework to create an automation tool in the

context of the ORM domain.

3.6 Astronaut: An Automated tradeoff Analysis Framework 52

To instantiate an automated tool based on the framework for ORM tradespace

analysis, we defined a DBFormalSpec class as an actual parameter for the

FormalSpec slot in this architecture (cf. Fig. 3.17). Concretely, it is a wrapper

around a file containing Alloy specification of an object model. Similarly, we

created aDBImplementation class that wraps a file containing a MySQL schema

definition, as a parameter for the Impl in Figure 3.17. Our implementation of

the function c realizes our Alloy-based approach to synthesize database schemas

from object models. Our other ORM-specific values are similar in their structure:

classes (Scala types) wrap representation details and function implementations

such that they encapsulate details of computations of the various mappings

required to implement our tradespace analysis approach. We also implemented

mapReduce function in Astronaut typeclass using Spark library for Scala. When

the tool actually runs, it sends measurement jobs to a pre-configured Spark

cluster.

We then provided several parameter values to instantiate the framework. The

components include: 1) An Alloy-based ORM domain specification language; 2)

an Alloy-based synthesizer to generate candidate designs and test loads (INSERT

and SELECT SQL scripts) to be executed to dynamically analyze database

designs; 3) two kinds of measurement functions (Time and Space measurement

functions) to measure time and space tradeoffs; 4) a triple of population time,

retrieval time, and space consumption as a group of analysis results; and 5) a

Pareto-optimal filter to filter out non-Pareto-optimal designs.

Our instance for ORM analysis of this framework is produced with the following

parameters.

• SpecType: Object models in formal Alloy-based notation

• ImplType: SQL schema

• MeasureFuncSetType: an instrumented test harness for profiled execution

of synthesized SQL scripts

• MeasureResultSetType: a tuple of time and space performance measures

from instrumented benchmark execution

3.6 Astronaut: An Automated tradeoff Analysis Framework 53

• synthesize: given an object model, produce a list of SQL schema and SQL

script pairs (INSERT and SELECT statements)

• mapReduce: run a profiled SQL script on a database with the given schema

in map-reduce style

• sFunction: An identity function (since the Specification Type in our case is

already a formal object model)

• cFunction: Alloy based analyzer that synthesizes an object model to a set

of database designs in the form of database creation scripts

• aFunction: A function that returns the mapping information in each

database design

• lFunction: A generator that creates formal abstract measurement functions

from an object model

• tFunction: A concrete formal measurement function specializer that map-

ping a formal abstract measurement function to a set of concrete measure-

ment functions based on mapping information of each designs

• iFunction: A parser that parses the database schema embedded in Alloy

solution (XML files) to SQL database initial script

• bFunction: An identity function (the formal concrete measurement function

in our case is already INSERT and SELECT SQL statements)

3.6.4 Parallelization Reasoning

Even simple specifications could map into a vast number of solutions in the

design space. The combination of ample computing capacity and our ability

to synthesize immense solution spaces for given specifications suggests that we

measure properties and tradeoffs of actual running systems in the spirit of what

Cadar et al. called multiplicity computing [26], with the goal of producing new

speed-ups in tradeoff analysis of real-world software systems.

Recall that tradeoff analysis using our approach consists of three steps: (1)

Solution space and abstract measurement functions are synthesized from formal

specifications. (2) The synthesized implementations and abstract measurement

functions are transformed into concrete formats, e.g., here formal models are

3.6 Astronaut: An Automated tradeoff Analysis Framework 54

Algorithm 2: Profiling a given design solution in a worker node.
Input: i: Formal Impl, // design to be analyzed

fa: AbstractionFn, // abstraction function
Ma: List<AbstractMeasFn>
// abstract measurement functions

Output: p: Result // profiling evaluation results
1: Mc = newList() // concrete measurement functions
2: for ma ∈Ma do
3: mc ← generateConcreteMeasure(ma, fa, f)
4: Mc.add(mc)
5: end for
6: profResults← newList()
7: for mc in Mc do
8: for i in [1 : 3] do
9: result← runMeasureFunction(i,mc)

10: profResults.add(result)
11: end for
12: end for
13: p← average(profResults)
14: return p

concretized into database schemas and corresponding test loads. (3) Synthesized

solution spaces are dynamically analyzed by profiling performance of each solution

under its corresponding structure-specific measurement function. In this section,

we focus on steps 2 and 3 that can significantly benefit from parallelizing the

process.

Similar to a conventional cluster computing paradigm, Astronaut’s approach

for parallelization consists of a large number of worker machines managed by

a master node referred to as the cluster manager. Once Astronaut’s cluster

manager deploys a synthesized solution to a worker machine, it runs to profile

the performance of the given design solution in parallel with other worker

machines.

Algorithm 1 outlines the process of profiling a given design solution as realized

in a worker node. It takes as input (1) a design solution to be analyzed, i,

(2) its associated abstraction function, fa, that explains how the given design

solution instantiates its abstract specification, and (3) a vector of measurement

functions, which are essentially abstract test loads automatically generated from

the specification and need to be concretized for the given design solution.

3.7 Empirical Study 55

The logic of the algorithm is as follows. For each abstract measurement func-

tion, ma ∈ Ma, generate concrete measurement functions, or test loads, that

meet the particular structure of the given design solution, i. In doing so,

generateConcreteMeasure relies on the abstraction function that relates the

design solution back to the abstract specification from which input measurement

function, or abstract test load, is derived, and that from these abstraction func-

tions it derives functions for concretizing the given abstract loads. After the

measurement functions are generated for the given design, run them to profile

its performance.

3.7 Empirical Study

This section describes how we use the tool instantiated from the framework to

carry out database schema design and tradespace analysis. More importantly, we

discuss the resulting design of synthesis + tradespace analysis and the comparison

between the resulting design with two other commonly used tools that built

in Django and Ruby on Rails. Previously, we only studied how synthesized

schemas perform on MySQL DBMS due to the limit of carrying out experiments

manually. In this empirical study, we also aim to investigate how they perform

on different DBMSs. Specifically, we study how they perform on PostgreSQL, yet

another popular DBMS. We conduct an experimental evaluation that addresses

the following research questions:

• RQ1. Does Astronaut tradespace analysis enable production of Pareto-

optimal designs that are entirely overlooked by widely-used, industrial

ORM tools?

• RQ2. How well does Astronaut perform? What is the performance

improvement achieved by Astronaut’s designs compared to those produced

by industrial frameworks?

• RQ3. What is Astronaut’s overhead in conducting tradespace analysis?

3.7 Empirical Study 56

• RQ4. In the ORM domain, how do the synthesized schemas perform

across different database management systems?

This section summarizes the design and execution of our experiment, the data

we collected, its interpretation, and our results.

Experimental Objects

Our experimental subjects are selected from different sources and of a variety of

different domains, ranging from our research lab projects to applications adopted

from the database literature and open- source software communities.

Besides the four subject systems studied in previous experiment, we add three

more systems in this empirical study. The fourth object model is the object

model of a documents sharing application called Flagship Docs built with Ruby

on Rails at Rensselaer Polytech [40]. It has 6 classes connected by 8 associations

with no inheritance relationships. We also analyzed an extended version of our

customer-order example [34].

The selected experimental subjects are representatives of large classes of useful

applications at a scale matched to the state-of-the-art synthesis techniques. Their

databases have multiple tables, and several relationships among these tables.

There are multiple ownership relationships among these tables, which induce

many possible choices of object-model to relational schema mappings.

Experimental Setup and Data Collection

We followed several steps to address the research questions. First, we wrote

database specifications using Django, Rails, and the object-modelling language

developed by Bagheri et al. [34], for each one of the five systems. We chose to

focus on time and space performance of CREATE and READ transactions for

dynamic analysis of target database performance. We wrote instrumentation

code to return the desired time and space consumption data into the map-reduce

computation. We used the mysql client command to execute synthesized test

3.7 Empirical Study 57

loads, which our tool parses from internal Alloy representations into MySQL

scripts. The first sets of statements were database structure creation scripts.

Then insert scripts were executed to populate each database with the test data

generated in previous stages. The experimental data collected includes the time

to run these commands as well as the space consumed by the databases. After

populating the databases with test data, we executed READ transactions, which

are essentially collections of select commands. We ran each script three times to

rule out other uncontrolled factors that might influence the data we collected.

The evaluation results are a list of triples: insertion time, retrieval time, and

space consumption. The final result reported in this work is the average time

and space performance.

Astronaut vs. Industrial Platforms

Figure 3.18 depicts tradeoff analysis plots produced by Astronaut. It projects

the results into 2-D tradeoff plots: Each plot presents tradeoff information in two

of the three dimensions for one subject system. Each dot in the plots represents

the analysis result of one schema. The hollow triangles that connected by a

line are the Pareto-optimal designs in corresponding tradeoff space, exhibiting

Pareto-optimal solutions in each plot. We also find out the two schemas produced

by Rails and Django from the synthesized schemas, by looking up the structure

in SQL scripts. We then locate the analysis results of these two schemas, and

mark them in the 2-D plots with different color and shapes. The hollow star is

the design created by Django. The hollow diamond depicts the design generated

by Rails. One can easily distinguish the schemas from the other synthesized

schemas, indicating where the Rails and Django generated schemas are fall in

the tradespace in terms of the triple measures.

Consider the CSOS Insert-Space tradeoff plot (Row 2 and Column 2) as an

example. It shows the tradeoff information of insertion time (in seconds) and

space consumption (in megabytes). The two triangle depicts the Pareto front in

these two dimensions. It could be just one triangle if there were only one design

on the frontier. We can observe that although the schemas created by these

3.7 Empirical Study 58

tools are not same, their performances outcomes are close together. The most

interesting point is that both of the generated schemas by these tools are far from

the Pareto fronts. The same phenomena appear in other plots as well.

The experimental data thus suggests that Astronaut tradespace analysis enables

production of Pareto-optimal designs that are entirely overlooked by widely-used,

industrial ORM tools.

Improvements in Practice

Table 3.1 presents the performance improvement in the insertion time by com-

paring a Pareto-optimal schema produced by Astronaut to the performance of

databases created by Rails and Django ORM systems. The first line are the five

experimental subjects. The second line is the insertion time consumed by the As-

tronaut’s designs. The third line is insertion time consumed by the Rails designs,

and the forth line is insertion time consumed by Django designs. Finally, the

last line represents the average performance improvement over Rails and Django

designs across subject systems. Table 3.2 and table 3.3 similarly tabularize the

performance improvement in the retrieval time and space consumption.

From the experimental results, we can observe that the Pareto-optimal designs

revealed by our analysis generally have much better performance in all dimensions:

insertion times, retrieval times, and space consumption. Based on these analysis

results, we conclude that our synthesis technique tends to perform better than

commonly used tools, particularly, Rails and Django. Our synthesized designs

have better performance, in three models: CustomerOrder, CSOS, ECommerce,

and Decider, in all three dimensions. For the Flagship Docs model, Rails and

Django produced designs equal to ours in performance. We have ascertained that

the reason is that the Flagship Docs data model has no inheritance relationship,

so all of the objects in the object model are mapped as an independent tables in

synthesized database schemas.

3.7 Empirical Study 59

Figure 3.18: tradeoff analysis results; columns represent tradeoff diagrams across
systems in two dimensions of Insert-Select, Insert-Space and Select-Space from
left to right, respectively; each black dot represents performance of a synthesized
database schema, and the star and diamond entries plot the results of schema
generated by Django and Ruby

3.7 Empirical Study 60

Subject CO CSOS EComm Decider Flagship

Astronaut 60.01 78.89 112.64 82.24 13.23

Rails 97.99 133.61 189.93 108.62 13.23

Django 97.99 135.41 189.93 108.62 13.23
Average
Improvement 63.3% 70.5% 68.6% 32.1% 0%

Table 3.1: Insertion Performance (Seconds)

Subject CO CSOS EComm Decider Flagship

Astronaut 82.12 129.10 131.09 94.46 14.03

Rails 125.54 222.25 231.66 131.57 14.03

Django 125.54 221.25 231.66 131.57 14.03
Average
Improvement 52.8% 71.8% 76.7% 39.3% 0%

Table 3.2: Retrieval Performance (Seconds)

Performance and Timing

The final evaluation criteria are the performance benchmarks of tradespace

analysis. To carry out the experiments, we set up a 16-node Spark cluster as

a back-end analysis platform. Each node has a 2-core AMD Opteron(tm) 242

CPU with kernel clock frequency of 1.5GHz, and 3 gigabytes of memory in total,

where 1.9 gigabytes of memory is allocated to Spark. The worker nodes have

MySQL server and client tools installed.

Table 3.4 shows the analysis time taken to produce tradespaces across subject

systems. The first line are the five experimental subjects. The second line

represents the size of tradespace for each subject system. Finally, the last line

shows the time required to automatically conduct the tradeoff analysis.

Subject CO CSOS EComm Decider Flagship

Astronaut 25.55 28.72 53.34 37.73 17.64

Rails 33.58 52.86 80.56 49.83 17.64

Django 33.58 53.36 80.56 49.83 17.64
Average
Improvement 31.4% 85.0% 51% 32.1% 0%

Table 3.3: Space Consumption (MB)

3.7 Empirical Study 61

The experimental results confirm that Astronaut approach is effective in sys-

tematic dynamic tradespace analysis. In this particular case, the generated

Pareto-optimal solutions provide crucial performance improvements to both

systems designers and their end-users. Such analysis is not possible with state-of-

the-practice tools (e.g., Django and Rails) that produce a single point solution.

The results are fascinating, especially when compared with the state-of-the-art

technique that requires more than two person months of efforts, during which

they were able to analyze only a small sample of representative designs [34]:

14 for CustomerOrder, 121 for CSOS, 154 designs for the Decider, and 360 for

the ECommerce model. In fact, Astronaut automates the complete dynamic

analysis of exhaustively enumerated design spaces. Clearly, Astronaut does vastly

reduce the time required for exhaustive dynamic tradeoff analysis. We expect

that performance of Astronaut improves by leveraging more capable computing

resources, such as Amazon Web Services, for its parallel reasoning.

Subject CO CSOS Decider Ecomm Flagship
Solutions 28 3872 144 14400 256
Time 4 m 5.2 h 15 m 17.8 h 17 m

Table 3.4: Analysis time to produce tradespaces across subject systems

Performance Consistency Cross Different DBMSs

Previously, we studied how the synthesized schemas perform on MySQL and

compared their time and space performance with Django and Rails. A question

left unanswered is that whether the results are consistent across different DBMSs.

Therefore, in this section, we explore how they perform on PostgreSQL.

In this section, we studied two more subject systems from real world besides

those considered previously. The first extra system is called MoodleGrade, it

is the grade sub-module of Moodle learning management system. It has eight

classes, two associations, and four inheritance relationships. The second extra

model is called Wordpress, which is the database model of the blog platform

Wordpress. It has 13 classes connected by five associations and eight inheritance

relationships.

3.8 Related Work 62

Figure 3.19 shows tradeoff analysis results of studied subject systems. Each

row presents the result of one system. From left to right, each column presents

insert-select tradeoff, insert-space tradeoff, and select-space tradeoff. Compare

to Figure 3.18, which shows the analysis results on MySQL, these results are

consistent with them. These results show that our tradespace analysis approach

can find Pareto-optimal schemas which work consistently well in MySQL and

PostgreSQL.

3.8 Related Work

Our tradespace analysis approach spans and leverages techniques from three

research areas: software synthesis, tradeoff analysis, and search-based software

engineering.

Software synthesis. There is a large body of research on synthesis techniques.

Dang [3] provided a tool for embedded software synthesis. Andersen [41] provided

a framework for mathematical problems synthesis. Le [4] provided a framework

for data extraction from different kind of sources, like text file, web pages, and

spreadsheets. Gupta [16] provided a high-level synthesis framework to transfer a

behavioral description in ANSI-C to register-transfer level VHDL with parallel

compiler transformation technique. Assayed [5] provided a synthesizer for multi-

threads software on multi-processor architectures. Our work in this chapter is

aimed to provide a general framework for both tradeoff synthesis and analysis.

The plugin-able feature enables the support of arbitrary DSLs and different

forms of final implementations. The users can create their own instance by just

providing necessary components.

Sketeching [7] similarly is a synthesis technique in which programmers partially

define the control structure of the program with holes, leaving the details unspec-

ified. This technique uses an unoptimized program as correctness specification.

Given these partial programs along with correctness specification as inputs, a

synthesizer – developed upon a SAT-based constraint solver – is then used to

complete the low-level details to complete the sketch by ensuring that no asser-

3.8 Related Work 63

Figure 3.19: Tradeoff analysis results of subject systems on PostgreSQL

3.8 Related Work 64

tions are violated for any inputs. This work shares with ours the common insight

on both using incomplete specifications and synthesis based on constraint solving.

However, it does not perform a tradespace analysis over possible completions of

a sketch. The synthesis refers to the concrete example of correct or incorrect

behavior to prune the design space, and finally narrow down the design space to

one implementation that satisfying the given specification.

Different from all these techniques, Astronaut tackles the automated tradeoff

space analysis through synthesizing spaces of design alternatives and common

measurement functions over such spaces. It thus relieves the tedium and errors

associated with their manual development.

Formal derivation of database implementations. A number of researchers

have proposed formal approaches for deriving database-centric implementations

from high-level specifications [42,43]. Alchemy refines Alloy specifications into

PLT Scheme implementations with a special focus on persistent databases [42].

Along the same line, Cunha and Pacheco proposed an approach that translates a

subset of Alloy into the corresponding relational database operations [43]. Both

Alchemy and Cunha and Pacheco’s approach refine the specification into a single

implementation, whereas Trademaker generates spaces of possible database design

alternatives. While these research efforts share with ours the emphasis on using

formal methods, our work differs fundamentally in its emphasis on the generation

of spaces of implementation alternatives, not just point solutions.

Object-relational mapping. A large body of work has focused on object-

relational mapping approaches to the object-relational impedance mismatch

problem [27–29, 44]. Philippi [29] categorized the mapping strategies in a set

of pre-defined quality tradeoff levels, which are used to develop a model driven

approach for the generation of OR mappings. This work similar to many

other work we studied derives a single design solution from input specifications.

Moreover, they did not apply static metrics, nor dynamic analysis to measure

the effectiveness of design alternatives. Our technique is inspired in part by the

work of Cabibbo and Carosi [27], discussed more complex mapping strategies for

inheritance hierarchies, in which various strategies can be applied independently

3.8 Related Work 65

to parts of a multi-level hierarchy. Our approach is novel in having formalized

ORM strategies previously informally described in some of these research efforts,

thereby enabling automatic generation of OR mappings for each application

object model.

Drago et al. [45] considered OR mapping strategies as a variation points in their

work on feedback provisioning. They extended the QVT-relations language with

annotations for describing design variation points, and provided a feedback-

driven backtracking capability to enable engineers to explore the design space.

While this work is concerned with the performance implications of choices of

per-inheritance-hierarchy OR mapping strategies, it does not attack the problem

that we address, the automation of dynamic analysis through synthesis of design

spaces and fair loads for comparative dynamic analysis.

The other relevant thrust of research has focused on mapping UML models

enriched with OCL invariants into relational structures and constraints. Among

others, Heidenreich et al. [46] developed a model-driven framework to map object

models represented in UML/OCL into declarative query languages, such as SQL

and XQuery. While Heidenreich et al.’s approach concentrates on mapping

OCL invariants into an implementation-level language to enforce semantical

data integrity at the implementation level, Trademaker automatically generates

database schemas mainly based on structural constraints. Badawy and Richta [47]

provided some rules guiding derivation of declarative constraints and triggers from

OCL specifications. These two research work are complementary. Extending the

same line, Al-Jumaily et al. [48] developed a model-driven tool transforming the

OCL constraints into SQL triggers. Demuth et al. [49] also discussed a number

of different approaches to implement OCL-to-SQL mapping, and developed a

tool that transforms each OCL invariant into a separate SQL view definition.

Different from these research efforts transforming an object model to a single

counterpart in relational structures, Trademaker generates tradeoff spaces of

object-relational mappings with focus on structural mapping alternatives, rather

than transformation of integrity constraints.

Generating test loads. Numerous techniques have been developed for database

3.8 Related Work 66

test generation generating testing loads [32,50–52], including the generation of

realistic loads for TPC benchmarks [53]. Among others, Khalek et al. proposed

a query-aware test generation technique, called ADUSA [32] that relies on

a constraint solver. Given a database schema and an SQL query as inputs,

ADUSA then exhaustively generates non-isomorphic test databases. Similar to

many other techniques including ours, ADUSA uses a constraint solver as a test

generation engine. However, our work is different in that no prior technique

generates common test loads over spaces of alternative schemas. Doing this

requires enforcement of abstract design constraints as well as constraints implied

by concretization mappings for each alternative. Trademaker, to our knowledge,

is the first tool with this capability.

Tradeoff analysis. The other relevant line of research focuses on tradeoff

analysis. Petke et al. [54] used Genetic Improvement techniques to transplant

code from one version of a system to another, and then profiling the new

system to enhance execution performance. Bondarev et al. [55] proposed a

framework, called DeepCompass, that analyzes architectural alternatives in

dimensions of performance and cost to find Pareto-optimal candidates. Their

approach, however, requires a manual specification of architectural alternatives,

and provides no support for synthesis.

Aleti et al. [56] developed ArcheOpterix for optimizing an embedded system’s

architecture. They applied an evolutionary algorithm to optimize architectures

modeled in the AADL language with special focus on component deployment

problems. Martens et al. [57] also developed PerOpteryx to automatically

improve an initial software architectural model through searching for Pareto-

optimal solution candidates. They applied a genetic algorithm to the Palladio

Component Models of given software architectures. Like many other works we

studied, these efforts do not support automatic production of design tradespaces

from formal yet incomplete specifications. Rather they start from a point solution

and gradually improve it. We see these two approaches for tradeoff analysis as

being complementary.

Along the same lines, Trademaker [34] studies whether relational logic model

3.9 Conclusion 67

finders, such as Alloy, can be used for practical design synthesis and tradeoff

analysis, and how to synthesize test suites for fair performance analysis of the

resulting systems. Astronaut formalizes the notion of tradeoff analysis and

contributes a theoretical framework conceptualized in dependent type theory,

from which a polymorphic implementation framework for tradeoff analysis tools

is mechanically derived.

Search-based software engineering. Harman [58] reviewed the application

of search and optimization in eight software engineering domains, as well as

open problems and challenges. Weimer et al. [20] used search techniques to

help find candidate code snippets to repair buggy code. Jia and Harman [59]

used automated search-based techniques to find rare but valuable test cases.

McMinn [60] surveyed the application of search techniques for test data automatic

generation. Our work uses search related techniques to find Pareto-optimal

solutions.

3.9 Conclusion

This chapter explored how we have advanced the state of the art in searching

design spaces to find system designs that improve performance related system

properties. It makes several contributions to the science and engineering of

software-intensive systems: a mathematical and implementation architecture for

formal, automated dynamic analysis of tradeoff spaces ; a principled approach to

load concretization for specializing common loads to large numbers of variant

implementations; experimental validation of (simple derivatives of) published

ORM metrics—to our knowledge the first experimental evaluation of ORM

metrics; and Trademaker-ORM, an accessible and functional tool enabling

tradeoff analysis in large design spaces for the particular domain of object-

relational mapping, and a testbed for ongoing research of the kind reported in

this chapter. This chapter also contributes to our broader research program,

which is increasingly focused on specifying, validating, realizing, and certifying

3.9 Conclusion 68

acceptable tradeoffs among non-functional properties, which remains a research

challenge of the first order.

We also presented Astronaut, a novel, general-purpose software technology for

practical tradespace analysis. The key contributions of this work are (1) a

theoretical framework conceptualized in constructive logic to make the notion of

tradeoff analysis precise, (2) a mechanically derived, polymorphic implementation

framework for tradeoff analysis tools, (3) results from experiments in the domain

of object-relational database mapping, corroborating the claim that widely-used

industrial ORM tools appear to produce solutions with performance properties

that are far from those achievable through more systematic design space modeling

and analysis, and that systematic dynamic tradespace analysis can find much

better designs within practical time frames, at least for modest-scale but often

still useful systems.

The empirical study shows that our approach can find much better database

schemas, in both time and space performance, for various ORM models of

multiple applications under two common DBMSs. The Pareto-optimal schemas

found by our approach completely dominate those generated by Rails and Django.

Such results supported our claim that our tradeoff space analysis approach can

outperform widely-used tools.

Chapter 4

System Performance

Prediction with Semantic

Meanings

In this chapter, we present our approach to improving the accuracy of performance

prediction models of complex systems. Our approach uses the semantic meanings

of configuration parameters to clean training data. We then compare the accuracy

of trained models using data sets with and without our approach.

Most modern software systems are highly configurable. Configuration parame-

ters are designed to control a software system’s functional properties, but they

also have an impact on non-functional properties. Engineers can adjust pa-

rameter values to adapt a system to underlying hardware and other conditions.

However, it’s difficult to understand how different settings affect a system’s

performance.

The MapReduce framework [39] is a representative system with many hundreds of

configuration parameters. Since its appearance in 2008, MapReduce has become

the de facto standard for implementing large-scale distributed programs to

process large data sets in parallel. It hides many details of distributed computing

69

Chapter 4 System Performance Prediction with Semantic Meanings 70

and only exposes simple interfaces to users. A developer can easily write a

MapReduce program and submit it to a cluster to perform diverse types of

computation like log analysis, Web indexing, etc. without knowing the low-level

details like resource allocation, assigning parallel tasks to different machines and

gathering results from each task, etc.

In the e-commerce industry, e.g., involving Walmart’s online systems, MapReduce

jobs serve various purposes including Search, Ads, and Personalization. Such

jobs have a direct effect on customer satisfaction. Therefore, before deploying a

MapReduce program onto production servers, developers usually need to run a

sequence of experimental jobs to find a proper configuration. Each execution

will trigger a significant amount of resource consumption due to the nature of

MapReduce jobs processing large data sets. This is the most obvious difference

compared with developing traditional single-machine programs, which allow for

experimental execution at much lower costs.

Not only such experimental executions require tremendous resources, but most

turn out to be useless to business. Jim Manzi [61] wrote in his book that

only about 10 percent of such experiments were leading to business changes at

Google. Moran [62] also wrote that at Netflix, 90% of such experiments are

unproductive.

If developers know up front the performance of MapReduce jobs, they can

optimize them without incurring the costs of actual executions. Knowing the

performance of MapReduce jobs can also help the scheduler to get the best

possible cluster resource utilization by placing jobs on the best available ma-

chines/containers. The B=better the job performance prediction, the better

will be scheduler performance, and that means better resource utilization for

a large cluster. In this project, we worked on the first step: predicting the

performance of MapReduce jobs. We trained prediction models with historical

execution data to predict different performance like CPU time and physical

memory consumption.

Hadoop [1] is an open-source implementation of the MapReduce framework. In

today’s practice, people usually submit such jobs using systems like Hive. Such

Chapter 4 System Performance Prediction with Semantic Meanings 71

a system allows engineers to write SQL-like queries which are then translated

into MapReduce jobs.

In this project, we aim to predict the CPU time and physical memory consump-

tion of MapReduce jobs submitted to the same cluster using the configurations of

the cluster and the performance characteristic of Hive queries themselves. Some

previous work studied the qualitative relationship of configuration parameters of

MapReduce jobs and performance [18,63,64]. However, none to our knowledge

study their quantitative relationship. We know that a configuration has an

impact on final performance, but we don’t know how. Previous work also did not

consider job complexity as a feature that can help predict performance.

In this project, we aim to improve the prediction accuracy of performance models

for big data computations. We learned how much impact individual configuration

parameters can have on the performance from historical execution logs of Hadoop

jobs. We also found that almost all previous work considered configurations of

Hadoop only, but ignored the other sub-systems in the Hadoop ecosystem. For

example, many companies are using Hive [65] to run MapReduce jobs. Users to

write a MapReduce job with HiveQL—a SQL-like query language. We found that

not only the core Hadoop but also other sub-systems have important impacts on

performance. Instead of studying Hadoop only, we treat a MapReduce cluster

as a large system combining a number of distinct sub-systems.

To improve the accuracy of trained prediction models, our approach is to use the

semantic meaning of configuration parameters and job complexity measures to

pre-process training data. Previously, such data were treated as pure numbers

only. However, in practice, those numbers have real-world meaning. For example,

the value -1 of parameter mapreduce.job.jvm.numtasks means that there is no

limit on how many tasks to run per JVM. This meaning is lost if we take the value

as a mere number. Another example is that if we set mapred.output.compress to

False, then mapred.output.compression.codec and mapred.output.compression.type

will have no influence on performance because the compression functionality has

been disabled. By considering actual semantic meanings, we can pre-process raw

data to increase its information density to improve training results.

Chapter 4 System Performance Prediction with Semantic Meanings 72

In this chapter, we report the results of an empirical study on the quantita-

tive relationship between job configurations and complexity and performance

in Hadoop ecosystem. We collected data from a production Hadoop cluster

at WalmartLabs. It is part of Walmart Global eCommerce, which supports all

information technology related business, such as shopping website walmart.com

and samsclub.com. The MapReduce jobs includebut are not limited to website

visiting history analysis, user shopping history analysis, and product recom-

mendation. Their logic is spread over various sorting, regression, classification

algorithm, and so on. The performance measures we studied included CPU time

and physical memory consumption. We report the results of a statistical learning

study about predicting the performance of MapReduce jobs running on a shared

cluster.

Overall, we found that there are 49 features out of more than 900 hundred

parameters that have significant impacts on both CPU time and memory con-

sumption. The size of the input data has the largest impact on CPU time, and

the number of reducer tasks has the largest impact on memory consumption. Our

learned model achieves high accuracy with an R2 score around 0.8929 in CPU

time, and 0.9776 in physical memory prediction. Previous work [13] achieves

only 0.6157. To check the validity of using the trained models to predict the

performance of new jobs, we also run cross-validation in both cases, and the

accuracy is around 0.887(+/ − 0.054) in CPU time and 0.937(+/ − 0.058) in

memory consumption.

Although we just reported the prediction results for execution time and memory

consumption, our approach can also predict any other resource consumption

reported by the job tracker.

The rest of this chapter is organized as follows. We introduce the background

of MapReduce in Section 4.1. Related work is discussed in Section 4.2. In

Section 4.3, we talk about the methodology we used to carry on the study. We

report the results and answer two research questions in Section 4.4. At last, we

conclude in Section 4.5.

walmart.com
samsclub.com

4.1 Background of MapReduce 73

4.1 Background of MapReduce

The volume of data has been growing rapidly in almost every industry since

the past decade [66]. This huge data size and the rich information involved

in it change the way to store it, as well as to perform any computation over

it—it is no longer possible to use a single machine due to its limited storage

and computation power. Traditional High-Performance Computing (HPC) [67]

cluster is not a good solution either because HPC aims to solve computationally

expensive problems faster with more computing power. However, most of the

emerging big data problems, such as log mining, web indexing etc. do not need

much computation power. Instead, they can be easily divided into multiple

smaller computation units that can be run in parallel even in off the shelf

commodity machines. Thus, it becomes necessary to (i) conduct less complicated

computation on smaller partitions of the whole data set and then merges the

results, and (ii) send a program to the data rather than sending the data to the

program, as the volume of data is much larger. To address such problem, Google

introduced its MapReduce framework [39]. It assumes that a large problem

can be divided into smaller ones and each small problem can be solved by one

commodity machine. Thus, for a larger data set, many commodity computers

are required.

Apache Hadoop [1] is an open-source implementation of the MapReduce frame-

work. While the Hadoop File System (HDFS) [68] helps to store data in a

distributed way across many machines, the programming model of MapReduce

exposes very simple interfaces to implement the core programming logic by

hiding the details of how data is stored and how the programs are executed in

a distributed fashion. A full ecosystem is developed with many other compo-

nents including Hive [65], Pig [69], Zookeeper [70], etc. to enable developers to

focus on the core business logic. For example, Apache Hive is an open source

infrastructure for querying and analyzing large-scale data. Hive comes with a

SQL-like query language, called Hive Query Language (HiveQL), for querying

data stored in a Hadoop cluster. Figure 4.1 shows an end-to-end system of a

Hive+Hadoop infrastructure.

4.1 Background of MapReduce 74

Figure 4.1: Hive-Hadoop Architecture

Figure4.1 shows the main steps of a typical Hive+Hadoop cluster setup to run a

MapReduce job. The left-most layer is the user interface that allows a user to

submit a Hive query. It could be a command line tool, a web UI, or APT like

JDBC. Hive then compiles the query to a map-reduce job consists of a set of map

and reduce tasks, and wrap them in XML files. In the context of the MapReduce

framework, the typical logic phases of a job are as following: STARTING, MAP,

SHUFFLE, SORT, REDUCE, and CLEANUP. The life cycle of a MapReduce

job starts from the moment it’s submitted to the JobTracker. In step 1 the

JobTracker initializes the job, read necessary configuration files. Step 2, the

JobTracker will first retrieve metadata to computes how many chunks the data

will be divided into. Step 3, the JobTracker computes how many map tasks will

be needed, and then sends the mapper program to the machine where the data is

located. Step 4, a map task starts a JVM to execute its own logic to transform

its data split to some intermediate < key, value > pairs. Step 5, the map task

saves the generated data in its memory (or into HDFS if the size is too large for

the memory to hold). Step 6, the JobTracker starts a number of reduce tasks

according to related settings. Step 7, each reduce task starts a JVM to run its

logic. Step 8, a reduce task reads/shuffles some map tasks’ output data and

sorts them by key to < key, list(value) > pairs. Step 9, the reduce tasks run

its own logic to transform the < key, list(value) > pairs to final < key, value >

pairs. At the last step 10, the JobTracker does cleanup job.

In practice, a MapReduce cluster is equipped with multiple sub-systems, with the

4.1 Background of MapReduce 75

MapReduce framework as its core. The overall system illustrated in Figure 4.1

contains three sub-systems: Hive, MapReduce, and HDFS. Hive is used to submit

MapReduce jobs with its Hive QL, which is familiar to most SQL developers.

HDFS is used to store data in distributed form, and MapReduce is the framework

that performs the actual distributed computing over the data. To make our

discussion easier to understand, here we define some terms we will use to the

left of this chapter.

Job An execution of a MapReduce program.

Component

A sub-system that works with other sub-systems to execute a

MapReduce program.

Feature A single job or cluster configuration, which is an independent

variable in our learning model.

Dependent Relationship

A tree-structure relationship among components and features. For

example, hive.query.string is a child of the Hive component.

Background of some configuration parameters. Here we talk about the

background of some important parameters found by our learning model. mapre-

duce.job.reduces is a parameter that sets how many reducers there will be in

a job. According to Hadoop’s official document, a larger value increases the

framework overhead, but also improves load balancing and lowers the cost of

failure. In practice, it’s hard for developers to set an optimal value for this

parameter. mapreduce.input.fileinputformat.split.maxsize sets the maximum size

chunk that map input should be divided into, which indirectly decides how

many mappers will be started since Hadoop starts a mapper for each chunk.

hive.exec.dynamic.partition.mode is a parameter that controls the way to parti-

tion the data. When it’s set to “strict”, the user must specify at least one static

partition. Otherwise, all partitions are allowed to be dynamic in “nonstrict”

model. It affects the performance of a Hive job through how the data spread

across a cluster. If the user knows the data well in advance, she can set the

4.2 Related Work 76

values to be partitioned at. Dynamic partitioning could result in data skewness

problems. For example, it’s possible that 90% of the data belongs to one partition

and the rest is spread across multiple partitions. Then one reducer will be heavily

loaded and the time required to finish the whole job will depend solely on this

reducer. This will significantly increase the overall execution time.

4.2 Related Work

Most software systems are configurable. The end users can tailor such a system to

meet their own requirements and objectives. However, knowing how configuration

affects the performance of such a system is not easy. It’s possible that the

configuration parameters interact with each other, and the whole configuration is

generally exponential in size in relation to the number of configuration parameters.

In their work on performance influence models [14], Siegmund et al. used

step-wise linear regression to derive performance-influence models for a given

configurable system, which can provide users the description of possible impacts

of all configuration options and their interaction. They added predictive features

hierarchically to the learning algorithm. Their approach only considers binary and

numeric configuration options. However, each subsystem, in our case, comes with

many configurable parameters, and selecting only one (or few) sub-systems while

completely ignoring others in a multi-layered infrastructure does not represent the

real scenario. Although their approach is generic to all configurable systems, it

requires many measurements to profile a configuration space, which is not suitable

for big data system due to each measurement consuming considerable resources.

Meinicke et al. [71] explored the configuration complexity of highly configurable

systems using variability-aware execution, which checks the same variable location

in a program affected by two different configuration settings.

In other work [8,10,72], several automatic ways are presented to detect performance-

related feature interactions, to improve the accuracy of predictive models.

Meinicke et al. [71] conducted dynamic analysis to study the complexity of

configuration spaces. They found that the configuration spaces of the studied

4.2 Related Work 77

Java programs were not as large as expected, but that state-of-the-art strategies

still cannot handle such large spaces. In our project, we used domain knowledge

to select features that influence the performance of a given execution. We first

studied the semantic meaning of features and then identified relationships/inter-

actions among them. We then reduced the space based on the actual meaning

and the relationships. Besides, most configuration options have been studied

in other work and summarized in [18]. All those options are classified by the

parameter level, MapReduce phase, and workload characteristics. This work

gives us enough information to determine the features that are performance

related.

In the general system performance prediction field, Zhang et al. [12] formalized

each system configuration parameter as a boolean value and the overall system

performance as the output of a boolean performance function that takes all con-

figurations as inputs. They then formalized the problem of system performance

prediction as learning the Fourier coefficients of a function f that transformed

from the boolean performance function. However, not all configuration param-

eters are boolean in real-world systems. Their approach cannot predict the

performance of a system with other types of configuration parameters, such

as numerical, float, and string. Venkataraman et al. [73] built a performance

prediction framework to analyze the performance of a shared cloud computing

infrastructure. They derived the performance model by running a set of small

samples of data. In our case, MCS reports details of a MapReduce job, including

the static configurations and dynamic load of a job processed. In our work, we

collected such information from the job tracker in Hadoop. The advantage of

our approach compared to the work in [73] is that we created no overhead to

the production cluster.

There is also some work in performance prediction for the MapReduce framework.

Bonifacio et al. [18] conducted a systematic review of related research work in

Hadoop MapReduce configuration parameters and system performance. They

identified that there are 29 parameters in the Hadoop system that are related to

system performance. In contrast, we collected a more broad set of parameters

spread across multiple components of a MapReduce cluster, including MapReduce

4.3 Methodology 78

and Hive, as well as JVM, IO, DFS, and so on. We found that although some

parameters are clearly performance related, their values are typically set to the

same across all jobs. Therefore, with no variation in settings, they carry no

information to help predict performance as a function of configuration. Barbierato

et al. [74] proposed to use a modeling technique to evaluate the performance of

Hive based applications. This work mainly focuses on the translation of Hive

queries to map and reduce tasks. Our work, on the other hand, focuses on

performance prediction of MapReduce jobs as a whole, including data retrieval

and computation phases. Song et al. [13] also presented a performance model

to predict performance for Hadoop jobs. They profiled the features of a job

by dynamically executing the job on a small sampled data. The advantage,

compared to our work, is that they can catch computation complexity with

dynamic execution more precisely. The disadvantage is that it increases overhead

on the cluster. Besides, they worked on a small set of features: five parameters

in map phase and six for the reduce phase. Because of the specific features

related to execution time, their approach cannot be applied to predict other

performance metrics like memory in our work.

Zhang et al. [75] presented a way to model performance of MapReduce jobs in

heterogeneous cloud environments. Our work aims to predict the performance

of MapReduce jobs running on a specific cluster. Khan et al. [76] proposed a

Hadoop performance modeling technique which targets to predict the required

amount of resource requirements if a job has a deadline requirement. Our

prediction model is a more generalized approach that can be theoretically used

to predict any performance that reported in job running status. In this work,

we just predicted CPU time and memory consumption.

4.3 Methodology

In this section, we talk about how we collect training data and pre-process

it by leveraging the semantic meanings of configuration parameters and job

complexity.

4.3 Methodology 79

4.3.1 Approach Overview

Our purpose is to build a performance prediction model that uses data size, job

complexity, and cluster configurations as features to predict the performance of

MapReduce jobs. The first step is to collect training data, which are Hadoop

execution logs in this case. The second step is to clean the data by leveraging

semantic meaning of configuration parameters, job complexity approximation,

as well as standard data pre-processing techniques. Finally, we train a model

to predict target performance, like CPU time and physical memory usage.

The Figure 4.2 shows the overall approach we adopted to train a performance

prediction model. Different with common prediction model training work, our

approach leverages the semantic meaning of the features (parameters in our

context) and job complexity to pre-process data.

Figure 4.2: The overall approach of training a performance prediction model

4.3.2 Data Collection and Parsing

We collected job running status and job configuration web pages from the job

tracker. For each job, we collect two types of raw data: (i) Job configuration

details: all the configuration settings across all the layers that are used while

running the job; these are our independent variables in the prediction model,

as defined in 4.1. (ii) The detail of the job running status: the progress status

(whether it is finished or still running) and performance of the job including (i)

CPU millisecond that elapsed when executing the job (CPU Time); and (ii) the

physical memory bytes consumed (Memory Consumption). These performance

4.3 Methodology 80

Table 4.1: Example dataset including performance and job configuration

Performance Configuration
CPU Time #maps #reduces ... map.java.opts

job1 3621870 21 25 ... -Xmx4G
job2 1986870 84 22 ... -Xmx8G
job3 546540 18 1 ... -Xmx4G

metrics are dependent variables in our prediction models. The job tracker of

a Hadoop cluster contains necessary details about a MapReduce job, from the

location of data to the running status of the map and/or reduce tasks. The cluster

that we collected data from has MapR Control System (MCS) [77] installed.

MCS provides Hadoop administrators a centralized place to configure, monitor,

and manage a Hadoop cluster. It represents a lot of information as web pages,

including job configurations and running status. To collect web pages from

MCS, we use a web page crawler to crawl MCS’s web pages based on some URL

patterns. The collected data was stored on the local disk as .html files for further

processing.

We collected the data by running the crawler on a production cluster. This

cluster runs different kinds of jobs every day. We collected the data in five

different days randomly spread across three months—this was necessary because

if all the data were in a single day, the resultant corpus might be biased by the

special type of jobs that ran on that day. By collecting data from different days,

we expect that the final data samples are diverse enough to cover a variety of

features, and we have enough data samples for each feature.

In total, we collected 13212 data samples. We save the parsed data in an Excel

file. Table 4.1 shows some example jobs. The first two columns are the CPU

time and physical memory consumption extracted from the running status pages.

The left columns are some example job configurations extracted from the job

configuration pages.

Once we collected all the HTML files from the cluster, we parsed these files

to extract the necessary information. Each job is associated with two types

of HTML files containing configuration and running status respectively; for a

given HTML file we first figure out which type of file it is. Then we parse it

4.3 Methodology 81

by recognizing different HTML tags to extract configuration or status related

information respectively. From the job configuration file, we extract all job

settings and their values and store them in an in-memory database indexed by

job ID. From files containing the running status of the jobs, we first checked

whether the job is still running; we filter out all the unfinished jobs. Then for the

remaining finished jobs, we extract information like the CPU time and memory

consumption. We also store this extracted information in an in-memory database

indexed by job ID. Finally, we merge the two information based on unique job

ID. The final data is saved in Excel file format, with each row corresponding to

a unique job ID and each column is a feature, either representing configuration

setting or performance.

The data preparation infrastructure is primarily implemented in Python. We use

Python package Beautiful Soup [78] to parse the collected HTML files.

4.3.3 Data Pre-processing with Domain Knowledge

The core of a training a prediction model is to pre-process the training data so

that the trained model can achieve its potential high accuracy. The statistical

analysis and machine learning research community have been studying data pre-

processing techniques for a long time. Many of these techniques have become the

standard approaches in pre-processing raw training data, like data integration,

transformation, and feature reduction.

Instead of dealing with the training data as a set of abstract values, we argue

that data gathered from real-world scenarios carries practical meaning or domain

knowledge. Therefore, besides those standard data pre-processing techniques, we

also leverage the semantic meaning of configuration parameters to pre-process

training data. We study how parameters are used in practice and the potential

relationships among them. Such knowledge helps us to identify parameters that

have the potential influence on system performance so that we can remove others

that clearly have no impact. The semantic meanings we leveraged are discussed

in the following sections.

4.3 Methodology 82

As shown in Figure 4.1, a typical end to end big data infrastructure consists of

several components. Each of these components comprises of one to many features

and each feature has many configuration options. Therefore, the configuration

space of a system like Hadoop is huge. Suppose there are n parameters in a

system and all of them are binary options for simplicity, then the theoretical

size of the configuration space is 2n. In reality, configuration parameters can be

binary, categorical, numeric, and more. Such diversity increases configuration

spaces dramatically. For a prediction model built for such a huge space from such

diverse features is often hard to achieve high accuracy. It is important to identify

the important components and features that actually affect end-to-end behavior,

and are mutually independent with minimal interaction with each other. Thus,

data pre-processing to identify these components and features become the most

critical part of this work. The algorithm we used to pre-process data is shown

in Algorithm 3. The semantic meanings we leveraged and specific steps to clean

training data are discussed in the following sections.

Semantic Meaning#1: Irrelevant Parameters. Although a complex soft-

ware system typically has many configuration parameters, many of them are not

related to system performance. From Hadoop’s official documents (four default

configuration .xml files listed online), we can know that Hadoop version 2.7.2

has 952 parameters in total. This is a huge feature space. Luckily, many of them

do not have an impact on performance. For example, “java.runtime.version” is a

parameter specifying the version of Java Virtual Machine. It might influence how

developers should implement a MapReduce program given the slightly different

APIs in different versions of JDK. But it likely does not influence the system’s

performance significantly. Therefore, the first class of semantic meaning we

leveraged is that some parameters are not related to system performance. We

first studied all Hadoop’s parameters to understand their function in the system.

Then we removed those that clearly have no relationship with the performance.

This step greatly reduced the number of parameters to consider.

Semantic Meaning #2: Dependent Parameters Relationship. Standard

feature reduction techniques like Principal Component Analysis (PCA) treat

the correlations among features as flat relationships. The situation is different

4.3 Methodology 83

Algorithm 3: Data pre-processing with semantic meaning
Input: RawData
Output: CleandData
allParameters← getAllParameters(RawData)
for p in allParameters do
if p == hive.query.string then
query ← getParameterV alue(p)
v ← getHiveQueryComplexity(query)
updateParamV alue(p, v)

end if
if hasDefaultV alue(p) then
updateParamV alue(p, 0)

end if
if isJVMOpt(p) then
v ← getParamV alue(p)
numV ← parseXmx(v)
updateParamV alue(p, numV)

end if
end for
iParams← getIndpParams(RawData)
for ip in iParams do
dParams← getDepParams(ip)
pV alue← getParamV alue(ip)
if pV alue == False then
for dp in dParams do
updateParamV alue(dp, 0)

end for
end if

end for
CleandData← RawData
return CleandData

4.3 Methodology 84

in the scenario of software system performance prediction where configuration

parameters often have the dependent structure. They interact with each other

in a dependent way to carry out system functionality. Such interactions are

reflected in the execution trace data as feature interaction and correlation,

which will further negatively impact the prediction accuracy of the trained

model [79–81].

In the system configuration domain, some parameters are usually used to turn

on/off system features, and others are used to tune features. For example, Hive

has two parameters namely hive.exec.parallel and hive.exec.parallel.thread.number.

The first one is used to control whether to execute jobs in parallel, and the second

one is used to indicate how many jobs at most can be executed in parallel. Such a

relationship can help us to pre-process the training data to improve prediction ac-

curacy. If the value of hive.exec.parallel is True, hive.exec.parallel.thread.number

is a parameter that apparently has impact to the final performance. In contrast,

if the value of hive.exec.parallel is False, hive.exec.parallel.thread.number will

not have any impact on the final performance, because the parallel execution

feature is turned off.

There are many groups of parameters which have such dependent relationships.

A parameter which decides the function of some other parameters is called an “In-

dependent Parameter”. A parameter whose function is decided by an Independent

Parameter is called “Dependent Parameter”. In data pre-processing, it is impor-

tant to ignore the dependent parameters like hive.exec.parallel.thread.number

when the independent parameter disables a feature that the dependent parameter

configures.

Semantic Meaning #3: The Default Value of Parameters. In the system

configuration scenario, it is not uncommon that some parameters are set to

the default values. When a parameter is set to its default value, it generally

means that this parameter has no control over system behavior, and thus it has

no impact on system performance as we discussed before. In practice, default

values could be 0 in some cases, or −1, or some other values. For example, one

parameter in the Hadoop system is mapreduce.reduce.memory.mb. Its default

4.3 Methodology 85

value is −1. From the official document, −1 means this feature is disabled. In

the data pre-processing step, we should set the value of such parameters to

0 because the system did not consider it in job execution, and thus it has no

impact on the final performance. Therefore, such parameters with default values

should not be considered as an effective feature in model training.

Removing low-influential parameters. In this step, we reduce the dimension

of a configuration space by removing some parameters if their performance

influence is lower than a threshold t. The performance influence is defined as

follows:

pi =

m∑
k=1

avg(

n∑
i=1

abs(pd− paik)

100
)

, where pi is the performance influence of a parameter, pd is the performance of

the default setting, and pa is the performance of alternative settings. We test

the performance influence on k different benchmarking jobs n times.

To evaluate the influence power of parameters, we first create alternative values

for each parameter. Table 4.2 shows some rules we used to generate alternative

values. We list these rules based on parameter data types.

Table 4.2: Alternative parameter values generation rules

Data Type Generation Rule
Boolean True or False depend on the default value.
Categorical All values specified in the official documents.

Numerical
N values around default one with ∆ as [def/10].
Special case: if the default value is 0 or -1, the
alternative value could be set by hand.

String Options with random string values are unlikely.
So we don’t consider this case.

We first benchmark the Hadoop system with the default setting. Then, for each

alternative value of a parameter, we create a new setting with other parameters

fixed. Next, we benchmark the system under this new configuration and collect

the performance data. At last, we compute the performance influence of a

parameter using the above formula. In the end, we rank all parameters and keep

top-N ones as our important parameters.

Other Special Cases. The configuration parameters in software systems have

some special cases that need to be considered in data pre-processing step. We

4.3 Methodology 86

discuss two of them here.

1. Categorical Parameters to Numerical Values. A large partition of configuration

parameters are categorical values. Their values are usually restricted to a small set

of predefined values. For example, mapreduce.output.fileoutputformat.compress.codec

in the Hadoop system has 5 possible values: GzipCodec, DefaultCodec, BZip2Codec,

LzoCodec, and SnappyCodec. We replaced such values with their category indexes.

For example, if a data sample’s value is org.apache.hadoop.io.compress.GzipCodec,

then its category index is 1. There are five categories in total in this case, so the

transformed values will be from 1 to 5.

2. Special String Values. Some parameters have the string type. For example,

Java memory related parameters usually have values with the pattern like -

Xmx1024m. We convert such values to a numeric value by extracting the

numeric part, like the 1024 in -Xmx1024m.

4.3.4 Approximating Job Complexity

In today’s practical big-data computing environment, Hadoop is the most basic

component to store data and to perform the actual computing framework. Many

other systems are built based on it to provide rich functionality. The company

we worked with uses Hive, which allows users to submit MapReduce jobs using

SQL-like queries. The logic complexity of a Hive query determines things like

how many map and/or reduce tasks to start, which could impact the final

performance a lot. However, it is hard to tell how complex a query is in terms

of how significantly it impacts a job’s performance. In this project, we use a

workaround solution to approximate the complexity of a Hive query.

Given a Hive query, Hive first parses it to an abstract syntax tree (AST), and

then convert into a dependency graph of MapReduce tasks. The number of

vertices and edges of the graph depend on the logic complexity of the give Hive

query1. For example, a simple query could be like “SELECT col1, col2 from

table1”, which retrieves two columns from a table. The dependency graph for
1https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Explain

4.3 Methodology 87

this query is very simple. There is even no “reduce” task needed, only map tasks.

Actually, the shape of the dependency graph is determined by information in a

query like the number of tables, columns, and other data processing operations

like groupby, union, orderby, and so on. Thus, we leveraged such information to

approximate the complexity of Hive queries.

In order to easily extract information from a query, we first built an AST of a

given Hive query using the Hive’s built-in parser [82]. Then we traversed the

AST to extract the number of some entities and operations in a query. The

information we extracted are listed in Table 4.3.

Table 4.3: Information extracted from Hive query

table column select clusterby sub query
join intersect load leftouterjoin leftstemjoin
where crossjoin groupby rightouterjoin fullouterjoin
sortby unionall orderby uniondistinct distributeby

The formula we used to compute the final complexity is:

complexity = #table ∗ (sum(#all other extracted items))

Algorithm 4: Function getHiveQueryComplexity() to approximate Hive query
complexity
Input: query: A Valid Hive Query
Output: complexity
ast← buildAST (query)
#table← getNumTable(ast)
#select← getNumSelect(ast)
#groupBy ← getNumGroupBy(ast)
#insert← getNumInsert(ast)
...
#orderBy ← getNumOrderBy(ast)
#crossJoin← getNumCrossJoin(ast)
#union← getNumUnionAll(ast)
complexity ← #table ∗ (#select+ #insert+ ...+ #orderBy + #crossJoin)
return complexity

4.3 Methodology 88

4.3.5 Standard data pre-processing.

In the previous steps, we leveraged the semantic meaning of parameters to

pre-process the training data, like removing parameters that are not related to

performance. Besides, we also use some standard data pre-processing techniques,

like adding missing values and feature scaling. These steps will further clean the

data to speed up the training procedure, to improve the prediction accuracy,

and so on.

Missing Value Imputation. Data is often dirty in practice. It is often that

we have corrupt or missing values. Missing value imputation is a technique,

which identifies, marks, and handles missing values to get good performance in

learning models. The common steps to apply this technique are: 1) mark missing

values; 2) remove data with missing values; and 3) impute missing values. In this

project, we use Python’s scientific computation and machine learning ecosystem

to parse, clean, and train models. Therefore, all missing values are represented as

NaN value in numpy [83] library. We scan the whole dataset to find NaN values

to find missing values. We then summarized the percentage of missing values

in each feature. There are about 5% of features having more than 20% missing

values. We first remove these features. The features left will be those with less

than 20% missing values. We then replace the missing data with appropriate

values for different types of features. For numerical features, the three most

common replacing values are Mean, Mode, or Median. In this work, we impute

missing values with the Mean value of each feature. For boolean features, we

replaced missing data with False. For category features, we replaced the missing

data with the Mode of all values for each feature. Other than removing feature

by missing values, we also remove jobs using a similar approach. We remove a

job from the training data if it has more than 40% missing values. In this step,

there are 44% features are removed.

Feature Scaling. Feature scaling is a technique to normalize data into a small

range. The purpose is to make the training algorithms converge and run fast.

In this project, we scaled all data into the range [-1, 1]. The formula we used

4.3 Methodology 89

is:

x′ =
x−min(x)

max(x)−min(x)

.

4.3.6 Model Selection and Training

In this section, we will talk about how we choose a machine learning model

and how to train the prediction models for CPU cycles and performance predic-

tion.

Model Selection. To select an appropriate model, we first need to understand

the training data. In our case, they are the configuration parameters of jobs

that successfully executed on a cluster, as well as their performance related

characteristics. In MapReduce performance prediction scenarios, the training

data has two characteristics. The first is that the data collected in two or three

months might not cover all jobs. It’s very possible that some new jobs will be

submitted to the cluster in the future. It’s good to have the ability to predict

performance for those new jobs. The second characteristic is that the data are

possible imbalanced because some jobs were executed multiple times on different

input data, but others were executed only a few times. Because of these two

characteristics, a model that is not sensitive to the imbalance in the training

data is preferred.

Random Forest is a machine learning model that uses bootstrap as its internal

sampling technique, which is not sensitive to the imbalance in the training data.

Moreover, the configuration space here has the nature of tree structure. For

example, if we treat the root of the tree as the final performance, its value is

actually determined by many children like Hive and Hadoop. Figure 4.3 shows

the child tree with “Hive” as its root. The performance of this tree is determined

by 5 other child trees like “compactor” and “exec”. Similar, the performance of

the “Hadoop” tree could be impacted by JVM options and/or the number of

splits of the input data.

4.3 Methodology 90

hive

auto

compactor

convert

enforce

exec

check

delta

initiator

worker

join

sortmerge

bucketing

sorting

compress

dynamic

interval

num

pct

on

threads

timeout

bucket

to

intermediate

out

output

partition

threshold

mapjoin

mode

tez

Figure 4.3: Example of feature dependency

Therefore, we choose Random Forest as the machine learning model in our

MapReduce performance prediction task. We also tried a few other models:

Linear regression, polynomial regression, and support vector machine. In sec-

tion 4.4, we mainly report the results of Random Forest model, and introduce

results from other ones we have tried.

Model Training. We trained two regression models for CPU time and memory

consumption respectively. We used the random forest implementation in Scikit-

learn [84] to train the models. When training the model, we used 67% of

the whole data set as training data, and 33% as the test data. When doing

cross-validation, we used 5-fold splitting strategy.

4.3.7 Semi-auto dependent relation discovery

In previous sections, we discussed how to leverage the semantic meanings of

configuration parameters to pre-process the training data. Here we talk about

how to semi-automatically discover such semantic meanings.

In order to leverage parameters’ semantic meanings to pre-process the training

data, we first need to find out those meanings. Here we talk about how to

automatically discover the dependent relationships among parameters. As we

mentioned before, boolean parameters are usually used to disable/enable system

features, and the other types of parameters are used to tune features. Given

a boolean parameter with a pattern like “AAA.BBB”, we search for all other

4.3 Methodology 91

parameters with the pattern like “AAA.BBB.CCC” where “CCC” could be a

string with multiple dots. Here “AAA.BBB” is an independent parameter and

“AAA.BBB.CCC” is the dependent parameter. All these discovered dependent

relationships are stored in a .json files so one can validate them. Users can

also define extra items based on their understanding of a system. An example

dependent relationship item in a .json file is like Listing 4.1. The value 1 of

“type” property means the type of this item is a dependent relationship. The

“IndpParam” property is the independent parameter. The “DepParams” are

dependent parameters, and its value is an array.

1 {

2 " type" : 1 ,

3 "IndpParam" : " f s . s3a . mult ipart . purge" ,

4 "DepParams" : [" f s . s3a . mult ipart . purge . age" , " f s . s3a . mult ipart . s i z e " ,

" f s . s3a . mult ipart . th r e sho ld "]

5 }

Listing 4.1: An example of dependent features definition

The “Default Value” semantic meaning is hard to be discovered automatically,

due to the default values for different parameters could vary a lot. For example,

some parameters might have −1 as their default value, and other ones might

have 0. Therefore, users need to define the default value for each parameter.

Similarly, one should store the defined “Default Value” meaning in a .json file.

The Listing 4.2 is an example item, where the value 2 of “type” meanings this is

a “Default Value” semantic item, and “IndpParam” is the parameter name, and

“value” is the default value for the parameter.

1 {

2 " type" : 2 ,

3 "IndpParam" : "mapreduce . job . reduces " ,

4 " value " : 1

5 }

Listing 4.2: An example of default value features

We have studied all parameters of Hadoop and Hive and created such .json files

for these two systems. They are published through our code repository. These

defined semantic meanings can be used as a reference. One can add new items

4.4 Results 92

or update existing ones manually or through our tool DooPred. The changed

relationships will be stored in corresponding files for later usage.

DooPred accepts two kinds of input training data. The first kind is a set of

parsed job execution history, which should be stored in an excel file with each

column as a configuration parameter and each row as a job execution record.

The second kind is a folder that contains the raw Hadoop log. In default, Hadoop

stores job configurations in .xml files, and stores the execution reports which

contains performance information in .json files. To train a prediction model with

DooPred, one should first collect the Hadoop log files. We suggest users collect

as much data as possible, and as diverse as possible, due to a large number of

configuration parameters (features) requires more samples in general.

Through DooPred, users can update various settings for data cleaning, model

training, and verification. For example, one can set the percentage thresholds of

missing value in configuration parameters and data samples. Such settings will

affect the quality of the trained model through the number of imputed values.

One can turn on or off cross-validation, and set the number of folds in K-fold

cross-validation. All these settings can be given through a configuration file or

be set from the settings dialog of DooPred.

The model training is simple by clicking the "Train Models" button. DooPred

will train the models given by its configuration. In default, DooPred will only

train random forests models. The accuracy of the trained model will be tested

with cross-validation in default, and the test results will be shown in the result

window. If one thinks the accuracy is not as good as expected, she can adjust

the training settings and try again. The trained model can be saved onto disk

for later usage.

4.4 Results

In this section, we report the prediction results in CPU time and physical memory

consumption and answer two research questions.

4.4 Results 93

RQ1. How efficient our model can predict CPU time of MapReduce jobs?

In this research question, we studied how our prediction model works when

predicting CPU time. Specifically, we report important features recognized by

and accuracy of the random forest model in Table 4.4.

Sub-RQ1: What are the important features in predicting CPU time?

After data pre-processing we discussed in Section 4.3.3, there are 30 features that

have more or less impact to the CPU time. Here we report top 5 and their impor-

tance reported by the random forest model in the upper half of Table4.4. We can

see that the two most important features are mapreduce.job.maps and mapre-

duce.job.reduces, which are the numbers map and reduce tasks. The third feature

is mapreduce.input.fileinputformat.inputdir, which is an approximation of input

data. Hive splits data by meaningful indices like date and each partition ends up

in a new directory. Hence the number of directories or partition counts is a good

approximation of the input data. The fourth feature is hive.query.string.comp,

which is the complexity of a Hive query.

Table 4.4: CPU time prediction: top 5 parameters and model quality

Parameter Importance
mapreduce.job.maps 0.3888

mapreduce.job.reduces 0.3631

mapreduce.input.fileinputformat.inputdir 0.1203

hive.query.string.comp 0.0869

mapreduce.input.fileinputformat.split.maxsize 0.0127

Metrics Value

R^2 Score 0.8929

Cross Validation 0.887 (+/-0.054)

We compared the important parameters found by our approach with the those

discussed by other researchers previously, which are summarized in a review

paper [18] by Bonifacio et al. Since the authors didn’t explicitly mention which

particular parameters are strictly related to the time performance, we assume

that all CPU related parameters contribute to time performance. We found that

4.4 Results 94

our approach can identify more important parameters that cannot be captured

by previous work. To be specific, only one parameter was identified in that paper,

which is mapreduce.job.reduces with 0.3631 importance value computed by our

model. Previous work failed to find other parameters that contribute to the

final time performance. Besides, our model identified the quantitative relation

of each parameter with the time performance, while most of the previous work

only studied the qualitative relation.

Our approach has two advantages compared to previous work. The first is that

we consider the big data infrastructure in a real practice scenario. Most previous

work only considers the parameters in the Hadoop system, per se. The second

is that we quantitatively studied the importance of each parameter to time

performance, which can provide deep understanding to cluster administrators,

while most previous work only studied qualitative relationd.

Sub-RQ2: Performance prediction by random forest In this project, we

use cross-validation result and R^2 score to measure the quality of the trained

model. As the lower half of Table 4.4 shows, the R^2 score is 0.8929 and CV

result is 0.887(+/− 0.054).

RQ2. How efficiently can our model predict physical memory consumption?

In this research question, we report the prediction results for physical memory

consumption, as well as the results of evaluating the prediction model itself.

Sub-RQ1: What are the important features in predicting memory

consumption? The top 5 important features are listed in the upper half

of Table 4.5. In this case, the most important feature is still the number of

map tasks, and its importance is 0.7279. The second important feature is also

mapreduce.job.reducers. Its importance is 0.1731. The third important feature

is the number of input folder with importance 0.0597, which is an approximation

of input data as we discussed. The job complexity if the fourth important

feature.

4.4 Results 95

Table 4.5: Memory prediction: top 5 parameters and model quality

Parameter Importance
mapreduce.job.maps 0.7279

mapreduce.job.reducers 0.1731

mapreduce.input.fileinputformat.inputdir 0.0597

hive.query.string.comp 0.0316

fs.hdfs.impl 0.0021

Metrics Value

R^2 Score 0.9776

Cross Validation 0.937 (+/-0.058)

Just as we evaluate the CPU time prediction model, we used cross-validation

and R^score to evaluate the prediction model. The evaluation results are listed

in the lower half of Table 4.5. The results are better than those for CPU time

prediction.

Theoretically, different kinds of performances are impacted by different sets of

important features. This is verified by the data in Table 4.4 and 4.5. Although

the important parameters are highly similar, their importance values are actually

different. For example, the importance value of mapreduce.job.maps increases

from 0.3888 in CPU time case to 0.7279 in memory case. However, the importance

of mapreduce.job.reduces drops from 0.3631 to 0.1731. The other parameters

also show a significant difference.

RQ3. What are the impacts of job complexity and features’ dependent

structure?

In this research question, we aim to study how job complexity and the dependent

structure of features affect the final performance of a trained model.

Table 4.6 shows the quality of trained models with and without job complexity and

features’ dependent structure. The first two rows are R^2 and cross-validation

scores of the trained model without considering complexity and dependent

structure. The next two rows are those of the model with dependent structure.

And the next two rows are those two scores with job complexity. The last

4.5 Conclusion 96

Table 4.6: Model quality with and without job complexity and dependent
structure

Feature Metrics CPU Time Memory

None R^2 0.7460 0.9366
CV 0.707 (+/-0.095) 0.919 (+/-0.014)

With H. R^2 0.7597 0.9338
CV 0.708 (+/-0.059) 0.929 (+/-0.030)

With C. R^2 0.8779 0.9750
CV 0.871 (+/-0.073) 0.936 (+/-0.062)

Both R^2 0.8929 0.9776
CV 0.887 (+/-0.054) 0.937 (+/-0.058)

two rows list the quality of models with both job complexity as a feature and

pre-process data with dependent structure. As the results show, we can obtain

the best model quality when we incorporate both.

4.5 Conclusion

Performance testing for big-data jobs consumes much more resources than tradi-

tional single-machine applications. Developers usually need to run a sequence of

testing jobs before finding a satisfying one. Generally, a Hadoop cluster runs

production jobs in 10% of the time, whereas 90% resources are consumed by jobs

which are "experimental". Jim Manzi [61] said that at Google, only about 10%

of controlled experiments were leading to business changes. Mike Moran [62]

wrote that Netflix considers 90% of what they try to be wrong. A predictive

tool above exercise can drastically improve developer productivity and can bring

down operation cost.

This chapter presents an approach to improve the performance of MapReduce

jobs using semantic meanings of configuration parameters, such as dependent

structure. These MapReduce jobs are started as Hive queries which is a common

setting in today’s industry practice. Our approach improved the model quality

for both CPU time and memory consumption prediction. We also found that

parameters have different impacts on CPU time and memory consumption.

4.5 Conclusion 97

These results showed that be leveraging parameters’ semantic meanings, we can

remove irrelevant information from the training data to improve the quality of

performance prediction models.

Chapter 5

Improving System

Performance via

Configuration Space

Exploration

An important lesson we learned while doing the work in the last chapter is that

learning an accurate performance prediction model for large and complex systems

is extremely hard. The question is: can we find high-performing configurations

without learning a model? In this chapter, we demonstrate an approach using

meta-heuristic search technique to explore configuration spaces of large systems to

improve their performance. We construct our approach based on an evolutionary

MCMC algorithm and compare it with three baseline approaches. We also

present the advantages of our approach over such baselines, mainly focuses on

how much performance improvements we can gain over them.

Many software systems are highly configurable and can be tailored to meet

different needs in different environments. In practice, people often find it hard

to understand how to take advantages of rich configurability, and just use

98

Chapter 5 Improving System Performance via Configuration Space Exploration99

pre-packaged or default configurations [2]. As a result, they leave significant

performance potential unrealized. Configuring a system to achieve better per-

formance is important [85], in particular, for big data systems because “even a

small percentage of performance improvement immediately translates to huge

cost savings because of the large scale” [86].

However, automatically finding the optimal configuration for big data systems is

often challenging as the configuration spaces of big data systems are vast: (i)

One system usually contains many configurable sub-systems, which increases

the complexity of the whole configuration space [87]. For example, Hadoop has

around 900 parameters across 4 sub-systems. (ii) The configuration parameters

can have fields with diverse types, as well as optional and dependent substruc-

tures. For example, setting one boolean parameter to true can enable an entire

subsystem, requiring many more configuration values. Further, some parameters,

especially the numeric ones, can have thousands of (or more) alternative values.

(iii) Configuration parameters can be parameterized by external constraints: e.g.,

one cannot set a Hadoop number-of-CPUs parameter to a number larger than the

available number of CPUs. (iv) Finally, analysts often do not know key properties

of configuration-to-performance functions: e.g., how parameters interact, whether

properties analogous to convexity, linearity, and differentiability, etc. For such

complex and discrete problems, standard mathematical optimization methods

are known not to apply well [88]. Therefore, selecting the optimal parameters

from such complex configuration space is often a “black-art” [89].

Finding high-performing configurations for traditional software systems is known

to be hard and has given rise to a significant body of work [8–10,12,14,73]. Much

work focuses on learning generalized models to predict a given configuration’s

performance. To learn such a model, one must profile a system under many

configurations to sample the objective function under widely varying conditions.

However, the cost of sampling real-world systems are usually high [90] and they

often do not generalize well for complex configurable systems [11]. To address

these issues, Nair et al. [11] proposed a rank-based model. Instead of predicting

the performance of a configuration, they answer whether one configuration is

better than others. They showed that such a rank-based technique requires fewer

Chapter 5 Improving System Performance via Configuration Space Exploration100

samples than residual-based models.

However, for a much higher-dimensional configuration space, such as ours, it is

hard to learn even a rank preserving model with high accuracy (see in Section 5.5).

One can think of using Neural Networks (NN) in such scenario. However, NNs

are known to require a large amount of data for training; the cost of collecting

such training data for big-data systems can be prohibitively expensive [91]. Thus,

instead of finding an optimal configuration, we reduce the problem as:

• Find a good enough configuration within a limited computation budget to

achieve better performance.

• Find the configuration with as little cost as possible.

The intuition that motivated this work is that learning generalized models

is perhaps unnecessarily expensive to find a good enough configuration. Our

approach is to use meta-heuristic search methods, such as Markov Chain Monte

Carlo (MCMC), genetic algorithms (GA), derivative-free methods, etc., to

converge more directly on good configurations through guided search around

seed configurations, without the need to learn generalized models over the entire

configuration space. In this paper, we present an approach using Evolutionary

Markov Chain Monte Carlo (EMCMC) methods, in particular.

To minimize the search cost, we formulated and experimentally validated two

hypothesis. First, we hypothesize that for approximating the configuration-

to-performance objective function, a 100X smaller instance of a given job can

be an effective proxy. We call it scale-up hypothesis. Second, we hypothesize

that better configurations for given jobs would yield improvements for similar

jobs, avoiding the need for repeated optimization runs. We call it scale-out

hypothesis.

To evaluate, we conducted a set of experiments using the Hadoop and Spark

big data frameworks as experimental testbeds, and five canonical big data

problems as benchmarks for each system. The experimental results show that

our approach can find configurations to improve CPU time performance over the

default configuration from 14.2% to 25.2%. The performance gain achieved by

5.1 Background 101

the best configuration found by EMCMC based search strategy can outperform

the one found by random search by 17% to 77%. We also compare ConEx w.r.t.

state-of-the-art Nair et al.’s learning-based approach [11], and ConEx can gain

5.3% to 1700% (17 times) more performance improvement.

The main contributions of this part of our work are as follows:

• We present a novel approach to searching high-dimensional configuration space

for big-data system to achieve better performance. The search performance

outperforms the base-line system with significant margin.

• Our scale-up hypothesis testing results show that configurations found with

small job instances also tend work for much larger jobs, saving significant

experimental cost.

• Our scale-out hypothesis results show that configurations found with repre-

sentative jobs can also improve the performance of similar jobs, thus saving

significant experimental cost.

5.1 Background

This section presents the relevant background. First, we define some key terms

that we use in this work.

Definition 5.1.1. Configuration Parameter (ci). A configuration parameter is

a variable, the value of which is set by the installer and/or user to specify how

to configure a particular property of a system.

Definition 5.1.2. Configuration (c). A configuration tuple, or simply a config-

uration, c = [c0, . . . , cN], is an N tuple, where each element ci is a configuration

parameter and N is the total number of parameters, i.e., the dimensionality of

the space.

Definition 5.1.3. Configuration Space (ζ). A configuration space, ζ = {c|valid(c)},

is the set of all valid configuration tuples for a given system. The definition of

valid varies from system to system. If there are no constraints on what it means

5.1 Background 102

to be valid, and if N is the number of parameters and M is the average number

of values of each parameter, then the size of ζ will be roughly MN .

Parameter Tuple1 Tuple2

dfs.blocksize 3 2

mapreduce.job.ubertask.enable FALSE True

mapreduce.map.java.opts -Xmx1024m -Xmx2048m

· · · · · · · · ·

mapreduce.reduce.shuffle.merge.percent 0.66 0.75

The above table shows two sample configurations for Hadoop. We list only

four parameters due to space limitations. In practice, configurations have many

parameters, of varying types: boolean, integer, categorical, string, etc. For

parameters with large domains (e.g., integer- or string-valued parameters), the

dimension of the configuration space can be vast even when there are only a

few parameters. Table 5.1 summarizes the configuration space of Hadoop and

Spark.

Table 5.1: Configuration Space Characteristics

Total Studied Parameters Total
System Parameters Total Bool Int Float Categorical String Configurations

Hadoop v2.7.4 901 44 4 26 6 3 5 3 ∗ 1028
Spark v2.2.0 212 27 7 14 4 2 0 4 ∗ 1016

Note that, although we have studied a small subset of the total available parameters, since some
parameter domain is large, the studied configuration space is still huge.

5.1.1 Heuristic Optimization

A promising approach to find optimal configuration can be based on meta-

heuristic search and sampling, as shown by Oh et al. [92] for software product

lines. Since our goal is to find a good enough configuration within a given

computation budget, the choice of heuristic optimization strategy becomes

important for faster convergence. There are many optimization techniques

one could try. Gradient descent, for example, is useful if error functions are

differentiable, but that is not the case here. Coordinate descent and other

derivative-free techniques, e.g., stochastic cyclic coordinate descent [93], are

often useful, but can get stuck in local optima [94], as we saw when we tried

5.1 Background 103

these methods in our domain. Having explored a range of such methods, this work

has adopted an approach based on MCMC methods, as explained below.

5.1.2 Markov Chain Monte Carlo (MCMC)

Monte Carlo is a sampling method to draw samples from a probability distribution

P (.) defined on a high dimensional space [95]. Markov Chain assumes that a

configuration ct, given all its previous instances {c0,c1,...,ct−1}, only depends

on its immediate neighbour ct−1, i.e. P (ct|c0,c1,...,ct−1)=P (ct|ct−1). MCMC

combines the two methods; since the target distribution is unknown, MCMC

operates on a proposal distribution. Given a configuration ci, MCMC draws a

neighbor c∗ from the proposal distribution and evaluates its fitness value (i.e.,

better performance). Then, it decides to accept/reject this neighbor based on

the acceptance probability of the fitness value. The acceptance probability can

be computed using widely used Metropolis algorithm [96]:

A(cnew|ccurr) = min(1,
P (cnew)

P (ccurr)
) (5.1)

If a neighbor is accepted, MCMC transits to the next state (cnew) from current

state (ccurr). Thus, MCMC repeatedly samples a candidate next state, cnew,

from a proposal distribution, accepts it with an acceptance probability, and

repeats until a specified computing budget is reached [97]. Note that, due to the

probabilistic nature of acceptance, it can accept some samples with worse fitness

than ccurr, introducing diversity that mitigates problems due to noise and local

minima.

As the number of accepted samples increases, the MCMC sampling distribution

approaches the target configuration distribution. A good MCMC algorithm

is designed to spend most of the time in the high-density region of the target

distribution. Thus, MCMC is often used to sample approximate global optima.

A detailed description of MCMC can be found in [98].

5.2 Technical Approach 104

5.1.3 Evolutionary MCMC (EMCMC)

MCMC algorithms use a single Markov chain, often initially discarding most

candidate states, thus converging slowly [95]. The Evolutionary-MCMC al-

gorithm addresses this problem. Like evolutionary (e.g., genetic) algorithms

(GA) [99–101], EMCMC starts with a population of N > 1 states, selects a

subset of high fitness states, and then obtains a population of states for the next

round by applying mutation and cross-over operations to the selected states. A

key difference between ordinary GAs and an EMCMC approach is that in GAs,

only strictly better states are accepted, whereas EMCMCs can accept slightly

worse states, as explained previously.

Cross-over. Cross-over operations work by randomly selecting parent configu-

rations, ci and cj . Each configuration is divided in 2-parts (1-point cross-over).

Then the first part of ci is mixed with the second part of cj and vice versa,

generating two offspring configurations.

Mutation. Given a configuration generated by the cross-over operation, ck, the

Mutation operation updates the value of some randomly selected parameters to

generate a new configuration, c∗k.

5.2 Technical Approach

Our basic approach is to use EMCMC algorithms to sample Hadoop and Spark

configuration spaces in search of high-performing configurations. To reduce

the cost of, or even need for, costly EMCMC runs, we employ two additional

tactics.

1. Scale-up: We run Hadoop and Spark using inputs that are 100X smaller

than those that we want to run in production for sampling performance as a

function of configuration.

5.2 Technical Approach 105

2. Scale-out: We use a measure of the similarity of big data jobs to enable

what amounts to a kind of transfer learning, wherein good configurations for

one job are used for another without change.

We have implemented our approach in a tool called ConEx. The rest of this

section describes our approach in detail.

Overview

An overview of ConEx is shown in Figure 5.1. ConEx takes a big data job as

input and outputs a “good-enough” configuration by sampling the configuration

space using EMCMC strategy (see Section 5.1). ConEx works in three phases.

First, in Phase-I, it filters out some configuration parameters that are not

relevant to the objective function (job performance in our case). Next, in

Phase-II, ConEx uses EMCMC sampling strategy to find a “good-enough”

configuration. The sampling process starts with the default system configuration

as the seed value. While sampling, ConEx discards any invalid configurations

that may be generated during sampling using a checker developed by Tang

et al. [102] (Phase-III). If a configuration is valid, ConEx runs the input job

with this new configuration. ConEx records the performance (CPU and wall-

clock time) of this execution. It then compares it with that of the current best

configuration, updating the latter if necessary, as per our acceptance criterion

(see Equation (5.1)). The accepted configurations are subjected to cross-over and

mutation to produce the configurations for the next round of sampling. Once

ConEx exceeds the sampling budget, it outputs the best configuration found so

far. We now describe each of these steps in greater detail.

Phase-I: Pre-processing the configuration space

The total number of configuration parameters for Hadoop and Spark are 901

and 212 respectively (see Table 5.1). However, the majority are unrelated to

performance. Moreover, all values of the related parameters are not equally

relevant when searching for good results. Thus, in this phase, we reduce the

5.2 Technical Approach 106

Dimensionality
reduction

Refined
Configuration

Space (ζ)
Configuration

Space

input: job

Draw
Samples

Cross-over
+ Mutation

Output:
Best-so-far
Configuration

Filter out invalid
samples

Evaluator

Accept?

Update best
configuration

Y

Exceed
Budget?

N

N

Y

Phase-I: preprocessing Phase-II: EMCMC Phase-III: Checker

Figure 5.1: ConEx Workflow

dimensionality of the search space in two ways: (i) we consider only the parame-

ters relevant to performance using domain knowledge, and (ii) for each selected

parameters, we select only a few values for sampling.

The first part is manual; we referred to technical manuals and other work cited

in this review paper [18]. For example, we removed Hadoop parameters related

to version (e.g., java.runtime.version), file paths (e.g., hadoop.bin.path), authen-

tication (e.g., hadoop.http.authentication.kerberos.keytab), server-address, and

ID/names (e.g., mapreduce.output.basename). These parameters have negligible

impacts on the CPU time. For Spark, we selected parameters related to the

runtime environment, shuffle behavior, compression and serialization, memory

management, execution behavior, and scheduling. In this way, we select 44 and

27 parameters to study further. Table 5.1 summarizes these parameters.

Note that, although this step significantly reduces the number of configurations,

since some of the parameter domains are large (e.g. integer, float, string), the

resulting configuration space is still huge: 3 ∗ 1028 and 4 ∗ 1016 for Hadoop and

Spark respectively. Thus, even the reduced configuration space is several orders

of magnitude larger than those studied in previous work. For example, most

systems studied by Nair et al. [11] only have thousands of configurations, with

only a few systems like SQLite have millions of configurations.

We further discretize the configuration space by defining sampling values for

each parameter, varying by parameter type. Boolean parameters are sampled

for only true and false values. We sample numerical parameters within a certain

5.2 Technical Approach 107

distance from their default. For string-valued parameters (e.g., as Java virtual

machine settings) we provide lists of alternative values.

Phase-II: Finding a near-optimal configuration

This phase is the core part of our approach driven by EMCMC strategy and im-

plemented by Algorithms 5 to 7. Algorithm 5 is the main driving function; Line 1

lists the inputs and outputs. The algorithm takes the refined configuration space

(ζ) and a given job as inputs. ConEx samples configurations from ζ and evalu-

ates performance w.r.t. the job. The routine also requires a seed configuration

(confseed), and a termination criterion of the maximum number of generations

(max gen). We choose max gen = 30 in our experiment. The final outputs are

the best found configuration (confbest) and its performance (perfbest).

Algorithm 5: Explore Configuration Space with EMCMC
1 Function EMCMC()
Input :Refined Configuration Space ζ,

job,
seed configuration confseed,
threshold max gen, min improvement

Output :Best configuration confbest,
Corresponding performance perfbest

2 perfseed ← run job with confseed
3 confbest ← confseed
4 perfbest ← perfseed
5 generation ← 1
6 ∆perf ← 0
7 confparents ← sample n random configurations from ζ
8 do
9 confsaccepted ← EmptyList
10 foreach parent confp ∈ confparents do
11 perfp ← run job with confp configuration
12 accepted ← Accept(perfbest, perfp) # based on Eq. 5.1
13 if accepted then
14 confsaccepted.add(confp)
15 if perfp > perfbest then
16 confbest ← confp
17 perfbest ← perfp

18 ∆perf ← (perfbest − perfseed)/perfseed
19 confparents ← evolve(confbest, confsaccepted)
20 generation← generation+ 1

21 while generation < max gen;
22 return confbest, perfbest

5.2 Technical Approach 108

Lines 2 to 6 initialize some parameters including setting the best configuration

and performance to the respective seed values. Line 7 gets the first generation

of configurations by randomly sampling n items from ζ. We choose n = 4D

where D is the number of parameters, but it could be set to any reasonable

value. Lines 10 to 17 are the main procedure for evaluating and evolving

w.r.t. each configuration. Given a configuration confp, Line 11 records the

job’s performance (perfp) and Line 12 decides whether to accept it based

on Equation (5.1). This part is realized in Algorithm 7. If accepted, Line 14

stores the accepted configuration to a list confsaccepted, which is later used

in generating next-generation configurations (Line 19). If the accepted one is

better than the previously found best candidate, Lines 15 to 17 update them

accordingly.

Once all the first generation configurations are processed, Line 18 computes the

performance improvement achieved by this generation w.r.t. the seed performance

and will be used as a part of termination criteria. Next in Line 19, the algorithm

prepares to enter the next generation by generating offspring configurations

using cross-over and mutation operations (see Algorithm 6). Line 20 updates

the generation number. This process repeats until the termination criterion is

satisfied (Line 21). Finally, the last line returns the best found configuration

and the corresponding performance.

Algorithm 6: The evolutionary sub-routine of EMCMC
1 Function Evolve
Input : confbest, confsaccepted
Output : confchildren

2 confchildren ← EmptyList
3 Pcrossover ← randomly select 50% parameters from confbest
4 Pmutate ← randomly select 6% parameters of confbest
5 foreach confp ∈ confsaccepted do
6 confnew ← crossover(confbest, confp, Pcrossover)
7 confnew ← mutate(confnew, Pmutate)
8 confchildren.add(confnew)

9 return confchildren

Algorithm 6 is the evolution sub-routine of the EMCMC algorithm. It is adapted

from a standard Genetic Algorithm [99]. For preparing configurations of the

next generation, it takes the best configuration found so far and a list of parent

5.2 Technical Approach 109

configurations as inputs. There are two main steps in the evolution process:

cross-over and mutation. From the best configuration, Line 3 selects half of

all parameters as cross-over parameters (Pcrossover), and Line 4 identifies 6%

of all parameters as mutation parameters (Pmutate). Next, for each parent

configuration, Line 6 exchanges the values of the cross-over parameters with

Pcrossover. It then randomly mutates the values of the mutation parameters

at Line 7. The resulting offspring is added into the children set at Line 8. A set

of new offspring configurations is returned at Line 9.

Algorithm 7: Acceptance sub-routine of EMCMC
1 Function Accept
Input : perfbest, perfp
Output : bool: accept/reject confp

2 ∆perf ← perfbest−perfp
perfbest

3 accept prob ← exp(50 ∗∆perf)
4 if Rand(0, 1) < accept prob then
5 return True

6 return False

Algorithm 7 computes acceptance probabilities as described in Equation (5.1).

It takes two performances as input: a current candidate under test and the best

one found so far and returns whether to accept/reject the current candidate.

First, Line 2 computes the performance improvement (∆perf) between the two.

If the current configuration is worse than the best value, ∆perf will be negative.

Next, Line 3 computes the acceptance probability of the configuration using an

exponential function, which returns a positive value even if ∆perf is negative.

Finally, the acceptance probability is compared with a random number sampled

between 0 and 1 exclusively. Thus, even if a configuration is slightly worse than

the best one, it still has some chance of being accepted.

Phase-III: Configuration Validity Checking

Configuration spaces are often not complete cross-product spaces. Rather,

they are subsets defined by constraints on individual parameter values and

sets of parameter values. A problem that we encountered is that constraint

on configurations—at least for Hadoop and Spark, and we expect for many

5.3 Configuration Validity Checking 110

systems—are not well documented, nor statically enforced. One might have

to search developer websites to find all relevant constraints or even just run

systems to find out whether configurations cause malfunctions. Indeed, even

the types of fields are often not very well specified. For example, the type of

Hadoop’s JVM options parameter is string, but not any string will do. The lack

of documentation of constraints and enforcement makes it not only easy to make

configuration errors but also vastly increases search space sizes.

To reduce the search space, ConEx filters out the invalid configurations sampled

by the previous phase using a configuration checker developed by Tang et al. [102].

It allows for the imposition of constraints on fields and sets of fields, taking

advantage of Coq’s expressive logic [103] to encode, and its type checker to

enforce, constraints. The checker allowed us to avoid costly dynamic evaluation

of about 8% of all of the configurations that ConEx sampled in the previous

step. We have a different focus with Sayyad et al.’s work [104]. They focus

on finding valid software product line configurations where correctness is the

primary concern. This work focuses on finding configurations that can yield high

performance while running guest jobs.

5.3 Configuration Validity Checking

Configurations are collections of parameter values that can be set by end-users

to specialize and optimize system functions, performance, and other properties

for particular uses or environments. Configurability enables the production of

commodity software and software-intensive systems that can be used for diverse

purposes.

Selecting configurations is a fraught exercise. Even individual components can

have hundreds of configuration parameters. Systems of systems can have orders

of magnitude more. Configurations are also often under-specified, as manifested

in the use of loose machine-level types (e.g., integer, string), for configuration

parameters (or fields), and in the incomplete and imprecise specification of

constraints on and across fields. These issues often make it unclear what values

5.3 Configuration Validity Checking 111

parameters can reasonably have, what they mean precisely, how to set them to

obtain desired system properties (e.g., performance, security), and how not to

set them to avoid comprising system properties.

The complexity, inadequate specification, and opaque meanings of configurations

risks the use of bad configurations and vastly enlarges the configuration spaces

that configuration engineers and auto-tuners must explore. We propose to

address such problems with interpreted formalisms for configurations.

Earlier work by Xiang, Knight and Sullivan [105,106] identified a lack of explicit,

checkable interpretations for code as posing risks to cyber-physical system de-

pendability. They proposed interpreted formalisms as a solution. An interpreted

formalism augments code with an explicit structure—an interpretation, mapped

to the code—that imposes real-world types on, and further explicates the intended

meanings of, code elements, both to aid human understanding and to enable

automated checking of code for consistency with real world constraints.

An interpreted formalism is a (code, interpretation) pair. It can be used to

check that machine-level values can be lifted to values of real-world types. Such

types can extend and further constrain machine-type values (e.g., with units,

limiting integer values to positive values, possibly with with additional range

restrictions, etc.). Xiang et al. [106] demonstrated the efficacy of interpreted

formalisms for finding bugs in Java programs for cyber-physical systems.

The problems we have identified with configurations are analogous to those with

code. We introduce interpreted formalisms for configurations as a solution. We

augment parameters and whole configurations with interpretations to explicate

intended meanings and enable checking of configurations against real-world

constraints. We specify real-world types as what amount to dependent pairs in

Coq. Values of real-world types combine machine-level values lifted to values of

Coq types, with proofs of additionally specified properties of these lifted values.

Real-world type checking involves lifting followed by automated construction of

proofs. Real-world type errors are detected if either lifted values or constructed

proof objects fail to type check in Coq.

5.3 Configuration Validity Checking 112

As evidence of the feasibility, utility, and conceptual clarity afforded by our

approach, we present an interpretation for Apache Hadoop [1] configurations,

including real-world types based on constraints mined from Hadoop documenta-

tion. The main contributions of this section of this chapter can be summarized

as follows:

• We show that formally specified, fully automated, efficient real-world type

checking can be provided for system configurations

• We show that real-world type checking can find previously unrecognized

errors in Hadoop configurations

• We show that filtering malformed configurations can significantly improve-

ment search efficiency

• We show that Coq’s dependent type theory and module system support

clear, practical, and flexible specification of interpreted formalisms for

configurations

• We establish foundations for real-world type systems grounded in type

theory

In recent work [105, 106], Xiang, Knight, and Sullivan identified two major

shortcomings in today’s software practice. First, software engineers tend to

represent properties of real-world phenomena as values of—and in procedures

that operate on values of—under-constrained machine types. As one example,

an altitude relative to ground in meters might be represented only by a value

of the machine type, integer, perhaps with a name such as alt and a comment,

altitude in meters relative to the ground. The formal type is under-specified in

that it permits values, such as −1, that are meaningless in the real world.

The second, closely related, problem is that the intended interpretations of

code are not specified in a form that enables sufficient automated checking of

consistency of code with the real world. Machine-level values and operations are

permitted that have no real-world meaning. There is usually nothing to prevent

a program from adding an integer (in meters) to an integer (in feet), for example.

5.3 Configuration Validity Checking 113

Similar issues involve frames of reference, staleness of sensor data, measurement

error, possibilities for erroneous data from failed sensors, etc.

In order to address these problems, Xiang et al. proposed the concept of the

interpreted formalism based on real-world types. In contrast to the current

practice, the real-world type assigned to alt might be non-negative real integer

expressed in meters above ground level (AGL). The real-world types constrains

the value and adds units and a frame of reference. Real-world type systems limit

machine values to values that are meaningful in the real world while extending

them with information critical to the full specification and automated checking of

their intended interpretations. In addition to real-world types, an interpretation

can include information such as references to relevant standards, expository prose,

etc., to further clarify the intended meanings of machine-typed values.

The present work emerged from an effort in combinatorial optimization of

Hadoop performance through novel meta-heuristic searches for high-performing

configurations. We found that the machine types of Hadoop configuration

parameters (e.g., integer, string, float), and thus of configurations, were often

under-constrained, that their intended interpretations were often unclear, and

that Hadoop was without mechanisms for checking the values of parameters

with real-world constraints. Many fields are documented as being of type

integer, for example, even in cases where not any integer will do. We also

found some Hadoop documentation to be erroneous. Hadoop’s Wiki page1 cites

io.buffer.size as a configuration field name, but there is no such field. It appears

that io.file.buffer.size was meant. Among other harms, under-specification

enlarges search spaces to include configurations that violate known but unchecked

real-world constraints.

5.3.1 Type Checker Design

To address the problems that flow from under-constrained configurations with

poorly specified interpretations, we introduce interpreted formalisms based on

real-world types for configurations. We first describe how we formalize real-world
1https://wiki.apache.org/hadoop/HowManyMapsAndReduces

https://wiki.apache.org/hadoop/HowManyMapsAndReduces

5.3 Configuration Validity Checking 114

types and lift machine-typed field and configuration values to real-world type

checked values. Then we present an example using this mechanism to produce

an interpretation for and to type check a Hadoop configuration.

Extending Configurations with Real-World Types

Configurations, which are collections of constant definitions, are simpler than

imperative code. There are usually no assignments to mutable memory, function

calls, pointers, sub-typing, etc. Their simplicity has enabled us to clarify our

understanding of interpreted formalisms based on real-world types. We formalize

a real-world type as a dependent pair type, (br, pr), where br is what we have

called a base type (such as positive in Coq), and where pr is an additional

property of values of this type—in Coq, a function from values to propositions

about them—such as the property of being divisible by the hardware page size

on a given machine.

Binding a real-world type to a parameter, p, with a machine value vm (such

as 65536) of machine type tm (such as integer), involves the lifting of vm to

a corresponding putative (not yet fully checked) real-world value, vr (such as

65536%positive), of type br (here positive), followed by the construction, if

possible, of a proof, cr, that this particular putative real-world value, vr, has the

additional property pr (e.g., that 65536%positive mod 4096%Z = 0%Z). If a proof,

cr, can be constructed, then the dependent pair, (vr, cr) can be constructed, and

the real-world type of the machine value, vm, is thereby proved.

The lift-and-prove operation is essentially a partial function. A machine value

vm real-world type checks when it has an image under this function. In further

detail, this function takes a given machine term, (vm : tm)—read as machine

value vm of machine type tm—to a real-world term, (vr : br, cr : prvr)—read as

the dependent pair comprising real-world value vr of (Coq) base type, br, along

with proof, cr, of the proposition, (pr vr), that certifies that vr has property

pr. Here cr is a proof term (a value) for the proposition (a type) about vr to

which the Coq property pr (a function) maps vr. The lift-and-prove function is

not defined for vm if either (1) there is no vr to which vm can be lifted, or (2)

5.3 Configuration Validity Checking 115

no proof, cr, can be constructed to certify that vr has the additional property,

pr.

The lifting of a machine value to a putative real-world value generally adds

information that is known to the engineer but not explicit in the machine value

or type. This additional information is vital for real-world type checking. The

addition of constraints on permitted machine values is one example. Another

would be that lifting adds information about the physical units in which a

machine value is expressed, to enable checking of consistent use of units when

machine values are combined. Simple machine types are thus generally lifted to

more complex “base” types in Coq, to provide room for this added information.

For example, we lift machine-level strings representing Hadoop JVM options

(such as “-Xms1024m -Xmx4096m”) to values of record types in Coq with fields

of Coq type positive for the numerical values of the initial and maximum virtual

machine stack sizes, explicit units (e.g., m for megabytes), and a constraint that

the initial value not exceed the maximum value. The lifting operation itself can

add and check constraints. For example, attempting to lift the machine-level

integer value, −1, to a value of the Coq base type positive will fail to type check,

irrespective of any additional property of the base-type value that would have to

be checked had the lifting succeeded.

Working with Hadoop

An explicit interpretation when paired with a Hadoop machine-level configuration

constitutes an interpreted formalism pair. Our interpreted formalisms precisely

specify (1) the previously undocumented parameterization of configurations by

external platform characteristics, such as the number of hardware CPUs, involved

in constraints on the values of Hadoop parameters; (2) units for all relevant

parameters, establishing a pattern if augmenting machine types with additional

information such as units, frames of reference, etc; (3) all constraints ascertained

from both official documentation and other trusted sources, expressed using a

combination of (a) base types, such as positive, that can be more restrictive than

5.3 Configuration Validity Checking 116

the underlying machine types, and (b) pairing of these lifted values with proofs

of additional, declaratively specified properties.

Coq provides very expressive means for documenting properties (constraints),

and powerful facilities for automating much (and in our work to date, all) of the

verification of values against such constraints. It also provides trustworthy strong

and static verification that all constraints are satisfied, via its foundational type

checker. As an example, Hadoop informally documents but does not enforce a

constraint that a certain field should have a value that is a multiple of the platform-

specific hardware page size. Our interpreted formalism quickly reveals violations

of this constraint in failures to generate required proofs. Use cases for such work

include (1) automated real-world type checking of configurations, (2) using such

type checking to reject mechanically generated, inconsistent configurations prior

to costly dynamic profiling, (3) providing a formal specification of the constraints

to be satisfied by a future, envisioned, constraint-driven generator of candidate

configurations, e.g., using a separate SMT solver, (4) supporting the development

of a human-facing interface for improved understanding of complex configurations,

which will be critical for human-in-the-loop configuration search/tuning, and (5)

for generation of good configurations for use in testing, and of counter-examples

for use in fuzz testing. We have already developed (1) through (3) in this

chapter, with (4) and (5) left for future work. We are also exploring applications

of these ideas to configurations for complex, safety- and security-critical systems,

including industrial robots.

Coq Implementation

This section presents the details of our Coq implementation of real-world types

and type checker for Hadoop configuration.

Defined Coq Types

We begin by instantiating a record type whose fields represent environment

parameters: parameters not defined as part of Hadoop configurations but that

5.3 Configuration Validity Checking 117

are implicated in constraints on configurations values. For example, the number

of CPU cores that MapReduce jobs are permitted to use must not exceed the

number of CPUs made available to Hadoop by the hardware and surrounding

system, an environment parameter. The following code presents the Coq record

type. The fields reflect all external parameters that we know to be involved in

constraints on the subset of performance-related Hadoop parameters that we

have modeled. We elide the imports of libraries for the Coq types used in this

code. Details can be found in our GitHub repository at https://github.com/

ChongTang/SoS_Coq.

Record Env := mk env {

env phys CPU cores: positive;

env virt CPU cores: positive;

env phys mem mb: positive;

env virt mem mb: positive;

env hw page size: positive;

env max file desc: positive;

env max threads: positive;

env comp codecs: list string }.

We instantiate a record of this type to specify a particular operating environment.

In the following code, for example, the list of class names for codecs available

in the Java search path on the given platform is encoded as a list of strings.

This will enable us later to define and enforce a constraint that a string-valued

Hadoop parameter listing codec class names include only values in this list. This

environment description record is visible in the parts of our code where one

defines constraints on Hadoop field values and whole configurations.

https://github.com/ChongTang/SoS_Coq
https://github.com/ChongTang/SoS_Coq
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
positive.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
list.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String

5.3 Configuration Validity Checking 118

Definition myEnv:Env := mk env

14%positive

28%positive

32768%positive

32768%positive

4096%positive

3000%positive

500%positive

("org.apache.hadoop.io.compress.DefaultCodec"::. . .::nil).

Next, we formalize real-world types in Coq. As we stated in section 5.3.1, a

real-world type is essentially a dependent pair type, combining a value and a

proof of a property about it. We define a type, RTipe, the values of which

designate the Coq base types for real-world types. These base types are the

types to which we will attempt to lift values of concrete machine types extracted

from Hadoop configuration files and objects. The mapping from these RTipe

values to actual Coq types is given by a function, typeOfT ipe, elided here. This

mechanism allows us to write code that makes decisions based on real-world

types, as one cannot match on actual types in Coq. Arbitrarily complex Coq

types can be used as base types. We use Coq-library-provided string, integer

(Z), positive integer (positive), non-negative integer (N), floating point (float),

and boolean (bool) types, along with a record type that we defined to represent

values of Java VM options, and an option positive type for fields that require

either a positive integer value or a special integer, typically −1 or 0, to indicate

that an exceptional behavior is required. We could, if necessary, use records

that also encode units, frames of reference, and other information critical to

explicating and checking real-world types.

Inductive RTipe := rTipe Z | rTipe pos | rTipe N | rTipe string |

rTipe bool | rTipe JavaOpts | rTipe float | rTipe option pos.

The core of our design is the parameterized type, Field, an instance of which

5.3 Configuration Validity Checking 119

is used to represent a certified Hadoop field holding a lifted value for which

a requisite proof of the associated property has been provided. The default

property imposes no additional constraints. The Field type has two parameters.

The first specifies the RTipe of the base type to which a machine value for this

field will be lifted. The second specifies the additional property that must hold

for any provided value of that base type. A property is represented in Coq as a

function from a value of such a type to a proposition about that value. A Field

type thus amounts to a dependent pair type with a few extra fields: (1) field id :

the string name of the Hadoop field (such as “io.file.buffer.size”); (2) field final :

a boolean value indicating whether the field is final in the sense of Hadoop, i.e.,

that the value can’t be overridden; (3) field value: a value of the Coq base type

specified by the RTipe; and (4) field proof : a proof that that particular value

satisfies the additionally specified property.

Inductive Field (tipe: RTipe) (property : (typeOfTipe tipe)→ Prop) :=

mk field {

field id: string;

field final: bool;

field value: (typeOfTipe tipe);

field proof: property field value; }.

Generate Coq Modules from Configuration

Our next step is to generate one Coq module for each Hadoop configuration field

to be formalized. Each such module will export the parameterized Field type

for the corresponding Hadoop field, a function for creating values of this type,

and functions for getting values of the fields of these Field objects, including

the Coq base value in a given Field instance.

We use the Coq module system to generate these modules. To do this, we first

define a Coq module type (a kind of abstract interface) named Field ModuleType.

The Coq code is elided here. It specifies what field-specific information has to be

provided for each field to generate the required module. We then generate one

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
bool.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes

5.3 Configuration Validity Checking 120

intermediate module, conforming to this interface, for each Hadoop field to be

formalized. We automate this process with a Python script. Each such module

provides field-specific data: the Hadoop field name (a string), its RTipe and

thus indirectly its Coq base type, the additional property that the value of this

type must satisfy, measurement units (if any), and two strings, one for a natural

language explication of the meaning of the field, and another for guidance on

how to set the field value. Our Python script maps machine types to RTipe

specifications in each such module, stubbing out the additional properties to be

fun value ⇒ True and stubbing out the remaining fields, which we don’t yet use,

to be empty strings. We hand-edit these modules to specify any more restrictive

field-level constraints (e.g., here that the io.file.buffer.size value should be

divisible by the hardware page size). Here is an example.

Module io file buffer size desc <: Field ModuleType.

Definition fName := "io.file.buffer.size".

Definition rTipe := rTipe pos.

Definition rProperty := fun value: positive ⇒

((Zpos value) mod (Zpos (myEnv .(env hw page size)))) = 0%Z .

Definition fUnit := "".

Definition fInterp := "".

Definition fAdvice := "".

End io file buffer size desc.

Finally, we run each such module through a module functor to produce the

required module for the given field (details elided). These modules provide the

Field types and associated functions used in constructing and accessing values

encoded in Field objects. Details can be found in the source code.

Having formalized Hadoop fields, we now formalize the types of multi-field

configurations as record types with fields whose types are the Field types exported

by these per-field modules. The following code, for example, formalizes Hadoop’s

core-config configuration. Each field has the same name as its corresponding

Hadoop field except that dots are replaced by underscores due to Coq naming

5.3 Configuration Validity Checking 121

conventions. The type of each field is specified to be the Field type exported

by the corresponding field module. A value of this type will then represent an

actual, concrete, certified Hadoop core configuration object.

Record CoreConfig := mk core config {

io file buffer size: io file buffer size.ftype;

io map index interval: io map index interval.ftype;

io map index skip: io map index skip.ftype;

io seqfile compress blocksize: io seqfile compress blocksize.ftype;

io seqfile sorter recordlimit: io seqfile sorter recordlimit.ftype;

ipc maximum data length: ipc maximum data length.ftype}.

Whereas we specify constraints on individual field values within Field objects, we

specify constraints on whole configurations by including in their type definitions

extra fields of propositional types. As an example, at the end of MapReduce

configuration type we specify a multi-field constraint saying that the maximum

size of the input data chunk must be greater than the minimum size. In this way,

we have fully formalized the real-world types of configurations for Hadoop’s core,

HDFS, Yarn, and Map-Reduce components and of overall Hadoop configurations.

Here’s an example of the kind of constraint we can specify for configuration

objects.

maxsplit lt minsplit:

Z.gt (Zpos (mapreduce input fileinputformat split maxsize.value

mapreduce input fileinputformat split maxsize))

(Z.of N (mapreduce input fileinputformat split minsize.value

mapreduce input fileinputformat split minsize))

5.3.2 Initialize and Check Configuration

We now use a Python script to lift Hadoop configurations to values of Coq

configurations types to type check them. Lifted configurations look much like real

configuration files. See the following example, in which we use themk yarn config

Z.gt.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.ZArith.BinInt
Zpos.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
Z.of N.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.ZArith.BinInt

5.3 Configuration Validity Checking 122

constructor to instantiate a Coq configuration object, a yarn config, of type

Y arnConfig. For each field, we generate a call to the mk function from the per-

field Field module to instantiate a Field object of the requisite type, providing

the required values for its components: (1) a boolean value specifying whether

the value is final or not (the false’s); (2) a field value, now of a value of the

required Coq base type; and (3) a proof object to prove that the value of the

field satisfies the properties specified for that value, but using an underscore as

a hole for a proof to be constructed using Coq tactics. We provide additional

proof objects, again as holes, for the cross-field constraints (elided here). The

whole definition is wrapped in a Coq unshelve refine tactic, with a tactic-based

proof building script at the end that fills in the required proof objects if it’s

possible to construct them.

Definition a yarn config: YarnConfig.

Proof.

unshelve refine (

mk yarn config

(yarn nodemanager container manager thread count.mk

false 20%positive)

. . .

(yarn sharedcache admin thread count.mk

false 1%positive)

. . .);

try (exact I); try compute; try reflexivity; auto.

Qed.

We specify a real-world type for an entire Hadoop configuration as a Record whose

fields are values of the real-world types of the four Hadoop subsystems. We an-

ticipate that the methods developed here can be adapted to deeply hierarchically

structured configurations for large and complex systems.

false.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
I.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic

5.3 Configuration Validity Checking 123

Record HadoopConfig := mk hadoop config {

yarn config: YarnConfig;

mapred config: MapRedConfig;

core config: CoreConfig;

hdfs config: HDFSConfig}.

Given a complete, machine-level Hadoop configuration, with core, map-reduce,

Yarn, and HDFS sub-configurations, our Python script lifts it to a corresponding

value of this HadoopConfig type. In this way, machine-type field and whole

configuration values that encode real-world concepts get converted to values of

real-world types that make their full real-world meanings explicit and subject to

mechanical checking for real-world consistency.

5.3.3 Checker Evaluation

We now consider the extent to which this work makes the contributions claimed

in the introduction.

An Advance in Real-World Type Systems

This work has demonstrated the feasibility and effectiveness of constructing inter-

preted formalisms based on real-world types for complex configurations. It has

shown how Coq’s type system can be used to define real-world types that clearly

express the essential properties of otherwise inadequately typed machine values.

As an example, Hadoop encodes values of what are essentially option positive

real-world types as mere integers, with either 0 or −1 (inconsistently) represent-

ing None. Coq’s parameterized algebraic data types (such as option T), and its

propositions as types paradigm, enable the highly expressive representation and

trustworthy checking of an unlimited range of real-world types. Representing

real world types as Coq types rather than as the simple and somewhat inflexible

record types in the original work of Xiang et al. represents a significant advance

over the prior state of the art in real-world type systems.

5.3 Configuration Validity Checking 124

Detecting Real-World Errors in Configurations

One of the main purposes of a real-world type system is to reveal inconsistencies

in software that elude machine-level type systems. Our case study demonstrates

the potential for real-world type systems to find inconsistencies in configurations.

The context of this chapter is a project on meta-heuristic search through spaces

of configurations. Our work to date generates Hadoop configurations in spaces

spanned by the specifications of a few machine-typed values to be considered

for each Hadoop parameter. Unfortunately, not every combination of machine-

type values make sense in the real world. Interposing our real-world type

checker between our configuration generator and the costly experimental profiling

operation allows us to greatly improve search performance by eliminating many

configurations from consideration before subjecting them to costly experimental

evaluation. Here are a few concrete examples.

As one example, the machine type of mapreduce.jobtracker.maxtasks.perjob is

integer, where a positive value imposes a resource limit and −1 means no limit.

Our generator was programmed to allow this field value to vary between −1 and

4 based on the machine type of the field. A problem is that a value of 0 actually

makes no sense for this field, as that would indicate that the maximum number

of tasks that can be allocated to a given job is zero. Adding a constraint that the

field not be 0, which we did by lifting the field to the real-world option positive

type, eliminated many nonsensical configurations from consideration. Lifting 0

to Some0%positive yields a Coq term that simply doesn’t type check.

Using properties to further constraint lifted terms of Coq base types also revealed

real-world inconsistencies. The formula min(min splitsize,min(blocksize,

max splitsize), for example, is used to compute the chunk size in Hadoop,

where bloacksize is the size of a data block in HDFS. If the min splitsize

is greater than max splitsize, the final chunk size will be the smaller of the

values of blocksize and max splitsize, which is semantically wrong. Although

a MapReduce job won’t fail because of this error, it will behave in unexpected

ways. Our type checker finds violations of this constraint.

5.3 Configuration Validity Checking 125

Another cross-field constraint violation that our type checker found to our

surprise had to do with a set of four constraints about Hadoop’s uber mode. The

constraints are documented in Hadoop’s official documentation 2. They say that

if users enable uber mode, the CPU and memory resources of map and reduce

tasks must be less than those of the application master.

It is not surprising that adding constraints invalidates some, or even many,

configurations. The concept of constraint-driven design space exploration isn’t

new. A more interesting implication is that what we should be doing is to base

our configuration generator on the real-world types of configurations rather than

on their machine types! Consider again the mapreduce.jobtracker.maxtasks.perjob

field. A −1 value indicates not just another numerical limit, but rather is a

flag indicating "no limit is imposed." A generator should treat "no limit" as

fundamentally different than 1 or 2 or 3. A multi-level exploration strategy is

then called for—either no limit or one of a range of numerical values. Proper

consideration of the real-world types of field can inform meta-heuristic search

strategies, a point we plan to pursue further in future work.

Net Improvement in Meta-Heuristic Search Performance

To produce a data point on how filtering constraint-violating configurations can

improve search performance, we used our real-world type checker to type-check

5, 000 randomly generated configurations, of the kind we generate and test in

our search methods. 1, 293 were invalid. One invocation of our runtime Hadoop

performance profiling operation takes about 30 seconds. We run each job 3 times

to obtain an average performance measurement. The saved time is the difference

between the time needed to dynamically evaluate 1, 293 configurations and the

time needed to type-check 5, 000 configurations. The time to dynamically profile

Hadoop running under 1, 293 configurations was about 1293 ∗ 30 ∗ 3 = 116370

seconds. Each type check takes about 0.63 seconds. The total time to check 5, 000

configurations was thus about 5000 ∗ 0.63 = 3150 seconds. The saved time was

116370−3150 = 113220 seconds out of a total time of 5000∗30∗3 = 450000 seconds.
2https://hadoop.apache.org/docs/r2.7.4/hadoop-mapreduce-client/

hadoop-mapreduce-client-core/mapred-default.xml

https://hadoop.apache.org/docs/r2.7.4/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/r2.7.4/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

5.3 Configuration Validity Checking 126

The saved time is about 113220/450000 ≈ 0.25, or 25% of the total search

time. Specifying and checking informally and often incompletely documented

constraints on configurations can clearly reduce search spaces and improve search

efficiency significantly.

A Flexible Real-World Type System for Configurations

Our real-world type system for Hadoop configurations has been easy to use.

We wrote a Python script to (1) instantiate Field meta-data modules for each

Hadoop configuration field, based on a spreadsheet, in which for each field

we entered information about field name, machine type, Coq base type, and

natural language explications of intended interpretations along with guidance

for configuration engineers, and (2) generate all associated configuration type

specifications. Once this code is synthesized, the remaining tasks are to edit

additional properties in-by-hand and to create and check configuration objects,

which we do by automatically running the coqc command-line Coq type checker

on the generated files. It is easy to add and extend real world types to the

system: on the order of an hour of work in our experience.

Precise Formal Specification of Configuration Spaces

Our specification of the real-world type of a Hadoop configuration provides an

authoritative formal specification of this configuration space, and as a template

for specifications of other such configuration spaces. It precisely specifies of

the set of all and only valid Hadoop configurations, limited here to a subset of

about 100 performance-related fields. In particular, we formalize configuration

spaces as types in the constructive logic of Coq. This work enables a precise

specification the optimization problem that motivated this work: find argmin

(c: HadoopConfig) runtime(b,c), where c encodes a configuration in a particular

context, b is a benchmark Hadoop job, and HadoopConfig is the real-world type

of Hadoop configurations. Optimizing system quality attributes by searching over

dependently typed representations thus emerges as a fundamental mathematical

problem formulation that seems worthy of further consideration.

5.4 Experimental Design 127

5.4 Experimental Design

We implement ConEx with about 4000 lines of Python code. The tool is available

in a public Github repository: https://github.com/ChongTang/sysopt.

5.4.1 Study Subject

We developed ConEx by focusing on Hadoop [87] and used Spark [107] for

validating the approach. Hadoop and Spark are the two most popular big data

framework today. The main difference between them is that Spark uses memory

as much as possible in lieu of mass storage to reduce execution times.

Table 5.1 summarizes the parameters and their types that we have studied

for Hadoop v2.7.4 and Spark v2.2.0. Hadoop has 901 parameters across four

sub-systems (CORE, HDFS, MAPREDUCE, and YARN). After Phase-I, we

identified 44 parameters relevant to performance. Similarly, 27 out of 212 Spark

parameters are selected. These parameters, in total, produces 3 ∗ 1028 and

4 ∗ 1016 configurations respectively. Such configuration space is several orders of

magnitude larger and complex than the configuration space studied before [11].

To further reduce the search space, for numeric parameters, we select ±10%

values around the default and all valid values for boolean, string, and categorical

types.

To evaluate ConEx, we select big-data jobs from HiBench [108], a popular

benchmark suite for big data framework evaluation. It provides benchmark jobs

for both Hadoop and Spark. For Hadoop, we selected five jobs: WordCount, Sort,

TeraSort, PageRank, and NutchIndex from the Micro and Websearch categories.

These jobs only need a core Hadoop system to execute as opposed to other

categories that require Hive or Spark. For Spark, we selected five Spark jobs:

WordCount, Sort, TeraSort, RF, and SVD. HiBench has six different sizes of

input workload, from “tiny” to “Bigdata”. For our experiments, we used “small",

“large”, and “huge” data inputs. Table 5.5 shows the CPU times taken by the

Hadoop jobs running with default configurations. As the running time of the

https://github.com/ChongTang/sysopt

5.4 Experimental Design 128

larger jobs much higher compared to the small jobs, we experimented with smaller

jobs and validated with the larger workloads (Scale-up hypothesis).

We conducted our experiments in our in-house Hadoop and Spark clusters having

one master node and four slave nodes. Each node has a Intel(R) Xeon(R) E5-2660

CPU and 32GB memory. We assigned 20GB for Hadoop on each node in our

experiments. We also made sure that no other programs were running except

core Linux OS processes.

5.4.2 Job Classification

To reduce sampling cost, we proposed our scale-out hypothesis, i.e. configurations

found to be good for one kind of job might also work well for other, similar

types of jobs. To test the hypothesis we needed a way to cluster jobs by their

resource usage. HiBench classifies jobs by their business purposes (e.g. web page

indexing and ranking related jobs fall in the Websearch category). However, such

a classification does not necessarily reflect their true resource usage. We thus

developed an approach to clustering jobs by profiling their run-time behaviors

based on system call traces. Similar approaches have been widely used in the

security community [109–111].

A Unix command line tool strace captures system call traces of a process,

typically running on a single machine, and logs how the process has used system

resources. We configure Hadoop and Spark to run on the single-node model;

here, a task runs as a single Java process. We then collect call traces of all

studied jobs.

Based on the system call traces, we represent each job by four-tuples: <

A,B,C,D >, where A: call sequence, B: a set of unique string and cate-

gorical arguments across all system calls, C: term frequencies of string and

categorical arguments captured per system call, and D: the mean value of the

numerical arguments per system call. Table 5.2 shows an example tuple.

5.4 Experimental Design 129

Table 5.2: Example Tuple representing resource usage of a job

Example System foo(1, "b"), bar("b", T rue),
Call Sequence foo(2, "b"), foo(3, "c")

A {foo, bar, foo, foo}
B {foo : ("b", "c"), bar : ("b")}
C {foo : ["b" : 0.66, "c" : 0.33], bar : ["b" : 1.0]}
D {foo : ["1starg" : 2.0]}

Table 5.3: Performance improvement for Hadoop jobs from three sampling
strategies

Exploration Scale-up
Phase Phase

Job Small Large Huge

EMCMC

WordCount 12.5% 15.6% 21.5%
Sort 72.1% 7.7% 15.8%
TeraSort 27.4% 16.1% 18.3%
PageRank 32.7% 44.7% 25.2%
NutchIndex 7.1% 18.7% 14.2%

Genetic Algorithm

WordCount 6.5% 9.8% 11.6%
Sort 70.6% 11.4% 10.3%
TeraSort 21.6% 17.2% 15.9%
PageRank 46.4% 17.5% 21.2%
NutchIndex 5.7% 11.5% 13.4%

Random Sampling

WordCount 5.6% 9.7% 14.6%
Sort 60.6% 5.3% 13.5%
TeraSort 11.6% 8.6% 11.1%
PageRank 32.9% 12.0% 11.2%
NutchIndex 10.4% 14.4% 12.0%

To compute similarity between two jobs, we calculate the similarities between

each tuple-element separately, which contributes equally to the overall simi-

larity estimation. For tuple elements A, we use pattern matching—we slice

the call sequences and compute the similarity between them. To find simi-

larities between two B elements, we compute the Jaccard Index, which is a

common approach to compute the similarity of two sets. For C elements, we

compute the average difference of each term frequency. Finally, for D ele-

ments, we compute the similarity of mean value of numerical arguments as

1 − abs(mean1,mean2)/max(mean1,mean2). We take the average value of

these four scores as the final similarity score between two jobs. We consider two

5.5 Experimental Results 130

jobs is similar, if their similarity score is above 0.77 (i.e. from third quartile (Q3)

of all the similarity scores).

5.4.3 Comparing with Baselines

We compare ConEx’s performance with three baselines: (i) Random sampling,

(ii) Genetic algorithm based evolutionary sampling, and (iii) Learning-based

model. The first two evaluate whether EMCMC is a good sampling strategy

over other sampling strategies. The last baseline evaluates the choice of meta-

heuristic search over popular learning-based approach. In particular, we compare

ConEx with Nair et al.’s ranking based approach [112] as they showed that

their rank-based approach requires fewer samples (an important requirement for

big-data systems) over other residual-based approaches.

5.5 Experimental Results

We will now discuss the way we evaluate ConEx and the results. We developed

ConEx using Hadoop jobs and present the experimental results. To test the

generalizability of our approach, we have also run and report data from exper-

iments using the Spark framework. We start our experiments with the basic

question:

RQ1. Can ConEx find better configurations than the baseline config-

uration within a given computation budget?

We investigate this RQ by exploring the configuration space using small workloads.

First, ConEx runs the benchmark jobs by setting the workload size “Small” in

the HiBench configuration file. HiBench generates a detailed report after each

run, with diverse performance information including CPU time. For Spark jobs,

we use larger dataset instead of the small workload because spark jobs run very

fast under small workload—it is difficult to observe any meaningful performance

gain. Thus, we use a larger workload for exploration, which is about the same

5.5 Experimental Results 131

size as “large” workload defined in HiBench, tailored to take about 30 seconds

per run, making the cost of exploration comparable to that of Hadoop.

Each execution in HiBench contains two steps: data preparation and job execu-

tion. However, we manually prepare the data so that each job under test can

be run with the same workload. Hence, we modify HiBench to bypass its first

step and run jobs with only user-provided data. At the end of each exploration,

some good configurations are output along with their performance data, as well

as how they are compared w.r.t. the baseline configuration (default value in our

case). Thus, if the performances for the default and the best configurations are

perfd and perfb, the performance improvement will be perfd−perfb
perfd

.

Table 5.3 shows the results: configurations found by ConEx with EMCMC

approach achieve 7% to 72% better performances than default configurations

for five Hadoop jobs. For Spark jobs, ConEx finds 2.7% to 40.4% performance

improvements for all five jobs (see “Exploration” column of Table 5.4). The

highest improvement is for TeraSort (40.4%).

Result 1: For Hadoop and Spark jobs with small workload, ConEx can

find configurations that produce up to 72% and 40% performance gains

respectively over the default configurations.

Even if ConEx manages to find a better configuration with small workloads,

ConEx will be most effective if it can improve performance for larger workloads

and thus save significant cost. This leads us to question:

RQ2. Scale-Up: Do configurations found with small workloads also

produce significant improvements in performance for much larger

workloads?

Here, we run the same HiBench jobs as used in RQ1 with “Large” and “Huge”

inputs—10X and 100X times larger workloads respectively (i.e. more than 3-

GB and 30-GB inputs). For a given job, we choose top 50 best performing

configurations from RQ1 and profile them along with the default configuration

5.5 Experimental Results 132

and record the CPU times. We then compare the performance gains w.r.t. the

baseline performance.

Note that, here we choose the top 50 configurations found in the exploration

phase (RQ1) as opposed to the best one because we found them using small

workloads; the behaviors of small and larger workloads may not be exactly same.

Thus, using such multi-resolution approach, we aim to tolerate the variation of

workload size, and yet gain save full-blown exploration cost.

Table 5.3 presents the results for Hadoop jobs. For all five jobs, we see an average

of 20.6% and 19% improvements under large and huge workloads. In fact, for

WordCount, PageRank, and NutchIndex jobs, large workloads achieve better

performance gain than the improvement under the small ones.

Table 5.4: EMCMC results for Spark jobs

Job Exploration Scale-Up

WordCount 2.7% 5.8%
Sort 3.3% 1.6%
TeraSort 40.4% 16.7%
RandomForest 6.4% 7.2%
SVD 0.4% 1.9%

Average 10.64% 6.7%

Similarly, for all Spark jobs we see performance improvements for all the jobs

(see Table 5.4). Here, we use huge workload for scale-up evaluation, since we

use large data in the exploration phase. We saw performance improvements for

all five jobs, ranging from 1.6% to 16.7%. However, for Sort and SVD, there

are limited improvements: 1.6% and 1.9% respectively. Spark jobs run very fast

compared to Hadoop jobs. For example, the Thus, although we have scaled up

the workload 10 times, it becomes difficult to achieve significant gain. Additional

research is needed to better understand the scale-up potential of Spark jobs.

Nevertheless, we saw an average performance improvement of 6.7%, which we

believe is non-trivial at this scale.

Sensitivity Analysis. Here we study how sensitive the performance gain is

w.r.t. each configuration parameter. From the best-found configuration, we

5.5 Experimental Results 133

Table 5.5: CPU time (secs) of default configuration for each job under three
data inputs

Small Large Huge #EXP

WordCount 166.2 862.6 9367.1 #3241 (Gen17)
Sort 133.4 869.8 9891.7 #3318 (Gen17)
Terasort 115.7 1056.6 8751.6 #2876 (Gen15)
Pagerank 300.0 5657.2 13096.1 #3177 (Gen16)
NutchIndex 477.9 6596.5 11215.7 #4685 (Gen24)

set the value of each parameter back to its default value and check how much

the performance has changed. For example, say perfdef and perfbest are the

default and best performances (i.e. CPU times) obtained by ConEx for a

job. Then, the performance improvement w.r.t. the default configuration is

∆best =
perfdef−perfbest

perfdef
. Note that, this is the best gain observed by ConEx.

Next, to measure how sensitive the gain is w.r.t. a parameter ci, we set ci’s

value back to default without changing the other parameter values from the best

configurations. We measure the new performance w.r.t. to the default; Thus,

∆i = (perfdef − perfi)/perfdef . Then the sensitivity of parameter ci is the

difference of performance improvement: sensitivityi = ∆best −∆i.

We conduct this analysis for all the parameters one by one for the Hadoop jobs

with “huge” workload. Table 5.6 shows the results. The second row is the overall

performance gain. 3 It shows that performance improvement is sensitive to only

few parameters. However, no single parameter is responsible for most of the

improvement. Instead, the data seem to indicate that the influences of individual

parameters are limited and that overall improvements come from combinations

of, or interactions among, different parameters. These results suggest that, at

least for Hadoop, higher-order interactions are present in the objective function

and that these will need to be addressed by algorithms that seek high performing

configurations.

Cost saving. The first three columns in Table 5.5 show the total execution

time (in seconds) across the master-slave nodes for each Hadoop job under three

workload sizes on our test platform. For example, WordCount under small
3We used a different cluster to do sensitivity analysis. So the overall performance could be

slightly different from those in Table 5.3.

5.5 Experimental Results 134

Table 5.6: Most Influential Parameters for Hadoop Jobs

Jobs
Total Gain Ranked Parameters

WordCount
22.34%

mapreduce.map.memory.mb: 12.61%
mapreduce.map.sort.spill.percent: 3.76%
mapreduce.reduce.input.buffer.percent: -0.48%
mapreduce.job.max.split.locations: -0.67%
yarn.app.mapreduce.am.resource.mb: -1.54%

Sort
19.77%

mapreduce.reduce.input.buffer.percent: 12.13%
mapreduce.map.memory.mb: 4.29%
io.seqfile.compress.blocksize: 1.83%
io.file.buffer.size: 1.58%
mapreduce.map.java.opts: 1.11%

TeraSort
18.45%

mapreduce.map.java.opts: 8.65%
mapreduce.reduce.input.buffer.percent: 7.22%
mapreduce.task.io.sort.mb: 2.84%
mapreduce.reduce.memory.mb: 1.75%
io.seqfile.compress.blocksize: 1.58%

PageRank
19.56%

mapreduce.map.memory.mb: 10.82%
mapreduce.reduce.input.buffer.percent: 5.38%
mapreduce.map.java.opts: 3.10%
mapreduce.task.io.sort.mb: 2.38%
mapreduce.reduce.memory.mb: 1.95%

NutchIndex
19.04%

mapreduce.map.java.opts: 9.44%
mapreduce.task.io.sort.mb: 6.19%
mapreduce.reduce.memory.mb: 4.92%
mapreduce.map.memory.mb: 1.83%
yarn.resourcemanager.scheduler.class: 0.39%

workload takes about 33 seconds per cluster (166.2/5, where 5 is the number of

nodes of our cluster). However, it takes around 1873 seconds with “huge” data,

with the time difference of 1840 seconds. The last column shows the number of

dynamic evaluations of sampled configurations before ConEx achieves the best

configuration. Thus, for WordCount job, our step-up hypothesis saves 1656 hours

((1873− 33) ∗ 3241 seconds) to find a better configuration. In total, for all the

five jobs, the scale-up hypothesis saves about 9, 600 hours or 39.6 times.

Result 2: Our data support the scale-up hypothesis: good configurations

found using small workloads as proxies produce significant performance

improvement with larger workloads. Thus, it saves a significant experimental

cost.

5.5 Experimental Results 135

Further exploration cost can be saved if our scale-out hypothesis holds good, i.e.

configuration found for one kind of job, A (e.g., Word Count), will also produce

performance gains for a similar kind of job, B (e.g., Sort). Thus, we ask:

RQ3. Scale-Out: Do configurations found for one kind of job pro-

duce significant performance improvements for similar types of jobs?

We test this RQ by evaluating performance gains for job B using configurations

found for job A, where the similarity between A and B is measured using Sec-

tion 5.4.2. Among the five Hadoop jobs, we find that WordCount, Sort, TeraSort

are highly similar, and PageRank is somewhat similar to them, whereas NutchIn-

dex has low similarity with this group. Table 5.7 shows the results of Scale-Out

hypothesis testing. The row header (first column “Rep.Job”) indicates the repre-

sentative job, and the column headers represent the target jobs. The numbers

indicate the performance gains achieved by a target job while running with the

best configuration of Rep.Job for huge workload. The underlined numbers high-

light the best performance in each column. The numbers in the diagonal show

the performance achieved by a job when tested with its own best configuration

(representative job=target job).

For example, Table 5.7a shows that ConEx found a configuration for WordCount

(WC) that improves its performance by 21.5%. When the same configuration is

used for the similar target jobs: Sort, TeraSort, PageRank, the performance gains

achieved (10.7%, 28.1%, and 20.6% respectively) are close to the improvements

found by their own best configurations. However, for NutchIndex, which is not

so similar, we see a performance gain of only 7.1%, while it achieved 14.2% gain

while experimenting with its own best configuration. Similar conclusions can be

drawn for Spark jobs.

A surprising aspect of these results is that, in few cases, a better configuration

found for one job, e.g., Nutch, yielded greater gains for another job, e.g., Sort

(27.6%) than the gain achieved by its own best configuration (15.8% for Sort).

We speculate that dynamic characteristics of jobs such as Nutch might have

5.5 Experimental Results 136

Table 5.7: Scale-out Hypothesis Testing

(a) Hadoop

Rep.
Job Similar Jobs Diff.

Job

WC Sort TeraSort PageRank Nutch

WC 21.5% 10.7% 28.1% 20.6% 7.1%
Sort 11.4% 15.8% 21.1% 18.4% 5.7%
TeraSort 10.4% 1.8% 18.3% 29.9% 3.8%
PageRank 20.8% 23.8% 23.4% 25.2% 16.8%
Nutch 12.2% 27.6% 15.5% 10.4% 14.2%

(b) Spark

Rep.
Job Similar Jobs

WC Sort TeraSort RF SVD

WC 5.8% 50.8% 22.8% 5.9% 1.8%
Sort 3.5% 1.6% 22.3% 9.9% 4.7%
TeraSort 5.1% 17.8% 16.7% 9.9% 3.1%
RF 4.3% 20.1% 10.0% 7.2% 2.5%
SVD 2.2% 23.8% 13.4% 23.4% 1.9%

exerted greater evolutionary pressure than those of other jobs. But we have not

adequately explored the causes of these surprising results, and plan to do so in

future work.

Result 3: Our scale-out hypothesis holds well, i.e., the configuration found

with a representative job can bring significant performance gain for other

similar jobs.

Finally, we evaluate ConEx w.r.t. the baseline approaches as described in Sec-

tion 5.4.3. We present the results for only Haddop jobs here.

In particular we check:

RQ4. How does EMCMC sampling strategy perform compared to

alternative sampling strategies?

Here we compare EMCMC with (i) random and (ii) genetic algorithm (GA)

based evolutionary sampling strategies. A random approach samples a parameter

5.5 Experimental Results 137

value from the uniform distribution, i.e. each value in the value range has the

same probability to be selected. We have also implemented a GA based sampling

strategy with the same cross-over and mutation strategies and the same fitness

function as of EMCMC. For comparison, we run the baseline strategies to generate

the same number of configurations and profile their performances with “Small”

data sets. We then conduct the scale-out validation to evaluate the performance

gain in larger workloads.

Figure 5.2: EMCMC compares with other approaches in performance improve-
ment for Hadoop Huge Workload

Table 5.3 shows the detailed results for different workloads. Overall, for all the

jobs, EMCMC based sampling performs better. Figure 5.2 pictorially represents

the results for “Huge” workload. EMCMC outperforms the random strategy from

17% to 125% under Huge workload across all the studied Hadoop jobs. EMCMC

based sampling strategy also achieves better gain than the genetic algorithm

(GA) based evolutionary search. EMCMC performs 6% to 85% better than GA

for all the five jobs. The improvement of performance of EMCMC over GA also

gives us an estimate of how much the evolutionary part of EMCMC contributes

to ConEx’s performance.

5.5 Experimental Results 138

Result 4: EMCMC based sampling strategy outperforms random and genetic

algorithm based evolutionary sampling strategies to find better performing

configurations.

RQ5. How does search-based approach perform compared to learning-

based approaches?

To compare search based strategy over learning-based approaches, we choose

the state-of-the-art work of Nair et al. [11] published in FSE 2017. They used

a rank-based performance prediction model to find better configuration. The

authors argue that such a model works well when the cost of sampling is high,

such as ours. They show that compared to residual based approaches, their

model saves a few magnitudes of sampling cost and achieves similar and even

better results.

In their experiments with larger systems having millions of configurations (e.g.

SQLite), the training pool covers 4500 configurations, including 4400 feature-

wisely and pair-wisely sampled and extra 100 random configurations. We used

the same approach—we randomly collected the same number of configurations

as of ConEx to profile their performances (similar to RQ4) and used them as

training. We directly used the model published by Nair et al.. Same as they did,

we ran each model 20 times to get the best configurations.

For a fair comparison, following Nair et al., we evaluated both the approaches by

measuring rank difference (RD) between the predicted rank of a configuration

and the rank of the training data (the profiled performance in our case). Table 5.8

shows the result. Here we ran each model 1000 times to get enough data for

the descriptive analysis. The results show that although the minimum RD is 0,

the average and maximum RDs are 13.2 and 408 respectively, and the standard

deviation is 24.4. It means that this model could be largely wrong when trying

to find high-performing configurations.

Note that, both approaches cannot guarantee to find the best candidate. So

we discuss which approach can find the best candidate from all configurations

5.5 Experimental Results 139

Table 5.8: Descriptive rank differences of 1000 tests

Job Mean Std Min Max

WordCount 13.2 24.4 0 408
Sort 28.7 42.6 0 391
TeraSort 14.3 19.1 0 171
NutchIndex 16.4 24.0 0 296
PageRank 9.5 16.7 0 158

they checked. As we see from Table 5.8, although a learning-based approach can

find good configurations, it cannot guarantee the resulting one is the best. In

some cases, the ranking mistake could be as large as 408. On the other hand,

our search-based approach can accurately find the best thanks to the dynamic

evaluation and guided searching algorithms.

How much performance improvement one can gain by using Nair

et al.’s approach? While our final goal is to improve system performance, we

studied which approach can find better configurations, concerning how much

performance one can gain. Suppose an engineer wants to use their approach to

find a good configuration. She knows that all learning-based approaches have

prediction errors. One possible way is to run such a model multiple times to

rank configurations and then find the one with the best ranking in average across

all tries. In this paper, we modified the tool released by Nair et al. to get the

actual ranking of configurations. We run the above-described procedure 20 times

and find out the configuration with the highest rank in average. The last bar

in Figure 5.2 shows the performance improvement of the rank-based approach

w.r.t. the default configuration. ConEx performs 5.4% to 338.9% better than

the ranked-based approach across five Hadoop jobs.

To understand why Nair et al.’s approach doesn’t perform well in finding good

Hadoop configuration, we studied the accuracy of the trained models. In their

implementation, the ranked-based model wraps a decision tree regressor as the

underhood performance prediction model. We checked the R2 scores of these

regressors, and it turns out that all scores are negative for all five jobs. It means

that the trained model performs arbitrarily worse. This is not surprising because

Hadoop’s configuration space is complex, higherarchical, and high-dimensional;

5.6 Related Work 140

it is hard for the models to learn a function approximating such space. A neural

network based regression model might work better; However, that would incur

more sampling cost to gather adequate training sample.

Result 5: Compared to Nair et al’s learning-based approach, EMCMC

driven search-based strategy performs better at finding configurations with

higher performance gains.

5.6 Related Work

Real-world type checking The type checker section advances the theory of

interpreted formalisms and real-world types [113] with a formalization based on

type theory. This approach makes the expressiveness of higher-order constructive

logic available for defining and checking real-world types. Such a checker can

be used to establish comprehensive properties. Pluggable type system [114]

provide the capability to impose additional type rules on code. Compared with

them, our approach exploits the expressive power of dependent types, here with

configurations as the "base code" to be further checked. Finding configuration

errors has been an active research topic. Mechanisms can be categorized as

reactive or proactive. Reactive mechanisms use postmortem analysis of erro-

neous behaviors and check configuration settings against predefined constraints.

Proactive mechanisms try to automatically predict and stop configuration errors

early by using techniques such as emulation [115], inference [116], and learn-

ing [117–119]. Our pro-active mechanism is unique in exploiting real-world types

to exclude configuration errors. Optimizing system performance by configuration

search and tuning is not a new idea. Duan et al. [120] proposed to improve

database performance by auto-tuning configurations, for example. They sample

and profile configurations in a cycle-stealing manner, aborting configuration

profiling operations that exceed runtime limits. A type-checker such as ours

promises to save significant time in such applications. Configuration search

has been used in many domains: energy and delay optimization in embedded

5.6 Related Work 141

hardware [121]; to reduce cache flushing [19]); robot motion planning [122]; and

for connectivity problems [123]. Many approaches account for constraints. Our

work is novel in bringing type theory and proof engineering to bear on both

expressing and checking constraints.

Learning-based approaches. A large body of previous work estimates system

performance by learning performance prediction models. The main challenge

of this trend of work is that the training data mainly determines how accurate

the trained model will be. Many such approaches suffer from a lack of quality

training data. For systems like Hadoop, whose users tend to stick with default

settings [2], the obtained traces are likely not to be diverse enough to learn

generalized models. Moreover, due to complex parameter interactions, it’s

difficult to sample a good set of training data. Meinicke et al. [71] studied the

configuration spaces of some open-source software systems by running multiple

configurations and comparing the differences in control and data flow. They

discovered that the interactions were often less than expected but still enough to

challenge advanced search strategies. Siegmund et al. [10,14] propose to learn how

parameter interactions influence system performance, using different sampling

strategies to generate learning sets, and adding interaction terms in learning

models for binary and numeric parameters. This approach combines domain

knowledge and sampling strategies to generate effective training data. They

showed that they can achieve relatively high accuracy compared to previous

work. Still, their average error rate ranged from 19% to as high as 37.4%.

Others [8, 10, 72] have also tried to detect performance-related interactions to

improve model accuracy. Zhang et al. [12] assumes all options are independent

and are boolean variables. They then formulate the problem of performance

prediction as learning Fourier coefficients of a boolean function. While most of

work focus on building accurate performance models, some other work is more

final-purpose-driven. Venkataraman et al. [73] aim to predict performance for

jobs running on a shared cloud infrastructure. They learn a performance model

from previous runs of small instances to predict performance for larger instances.

The fundamental assumption in all the work is that to find high-performing

configurations one needs a good generalized predictive model. Nair et al. [11]

5.6 Related Work 142

argued that inaccurate models can also help find better configurations as long

as they can preserve the relative ordering of configurations by performance. Our

work addresses this problem without trying to learn generalized performance

models at all. Our approach addresses far larger configuration spaces (estimated

to be greater than 1025 states) than considered in these earlier efforts.

Metaheuristic search. Our approach traverses the configuration space directly

with sampling algorithms to find high-performing configurations. Another body

of work leverages meta-heuristic methods to solve complex problems in different

domains. Zhang et al. [19] used such algorithms to find better settings for single-

level configurable cache to avoid power-consuming cache flushing. They optimized

in a space of four parameters including one boolean and three numeric parameters.

For robot motion planning, Jaillet et al. [122] used stochastic sampling to find

globally low-cost paths for robotics with arbitrary user-given cost functions.

Burns et al. [123] used heuristic sampling to solve the connectivity problem in

robotic motion planing. Baltz et al. [21] presented their Optometrist algorithm,

which includes a human in the loop, to find configurations for a plasma fusion

reactor. Unique characteristics of our work include use of validated scale-up and

scale-out methods to reduce the cost of sampling/search.

Search-based software engineering. In software engineering, many works

have utilized heuristic algorithms with promising results. Jia and Harman [59]

used automated search to find valuable test cases. McMinn [60] surveyed the

application of search techniques for automated test data generation. Weimer

et al. [124] reported that they can fix bugs for only $8 each, where they used

genetic programming to mutate code statements to produce new code variants

as candidate repairs, with test-suite-passing as an objective function. Le [97]

used Markov Chain Monte Carlo (MCMC) techniques to generate program

variants with different control- and data-flows. They successfully found some

bugs in popular compilers like GCC and LLVM. Whittaker and Thomason [125]

presented an approach to statistically test software against failures. They used

a Markov Chain model to generate test inputs, to study under what usage

cases software could fail. Oh et al. [92] worked to find good configurations for

software product lines. In this context, the parameters are boolean variables

5.6 Related Work 143

which correspond to whether a component will be included in a product or not.

Vizier [126] is a tool developed at Google for optimizing various systems like

machine learning models. It constructs a stack of GP models where each layer

refines the model provided by prior layers. This feature allows it runs trails in

parallel on distributed system and thus scale well.

Auto-tuning big data framework. A significant amount of work has been

done to auto-tune different types of big data frameworks, e.g. MapReduce, Spark,

etc.. Starfish [127] is one of the initial works on Hadoop auto-tuning. It tunes

parameters by the predicted results of a cost model, which is built based on

average CPU and I/O costs collected by profiling a job with single configuration.

As we discussed, accurate performance models are hard to build. If the accuracy

of a model is low, it could introduce large errors. Actually, this work [128] has

shown that the predicted results of Starfish’s cost model could be very different

with the actual running time under different reduce tasks settings. Therefore,

it could introduce errors that produce bad configurations. Starfish specifically

targets the MapReduce framework, because the decision it makes depend on

data collected in runtime of mapreduce jobs. Our tool is general and can be

easily targeted to work on other systems (as we did for Spark). Babu et al. [63]

tune mapreduce parameters by dynamically evaluating a smaller set of sampled

data from actual production data that a mapreduce job will process ultimately.

It optimizes a job given a cluster and a dataset. Our assumption is much looser,

where we do not assume that we are given a dataset. The configurations that we

find for a job will work on other datasets. For example, we explore with a smaller

dataset A, but validated with another large dataset B, where A has nothing to do

with B. Gunther [128] uses vanilla GA plus memoization to identify high-value

configurations. But they selected only six important parameters to tune, which

greatly reduce the problem size. In contrast, we work on all parameters that

related to our objective of performance, which is CPU time in our case. Without

knowing how parameters interact with each other to influence results, we cannot

exclude any relevant parameter. Jiang et al. [129] conducted a white-box study

on Hadoop system to assess how its performance can be affected by different

factors. For example, they found that mapreduce jobs often suffer from a lack

5.7 Conclusions 144

of data indexes. Instead, we took a black-box approach to automatically find

better values for parameters.

5.7 Conclusions

In this chapter, we proposed to use straightforward heuristic sampling methods

like EMCMC in combination with scale-up and scale-out tactics to finding high-

performing configurations for complex software systems. We conducted and here

report results from a rigorous set of experiments that took about three months

of continuous computation on a 5-node Hadoop and Spark clusters. The data

that emerged from these experiments provides reasonably strong support for the

hypotheses we formulated: configuration space exploration with heuristic search

can find high-performing systems. The scale-up and scale-out hypotheses justify

the use of small scale jobs to find good configurations for much larger inputs and

for other jobs. These results suggest that our approach has significant potential

to improve the runtime performance of large and complex software systems in

practice.

Chapter 6

Discussion

This dissertation presented three main approaches to improve system perfor-

mance through design space analysis, performance modeling, and configuration

space exploration. We obtained significant improvements in critical engineering

domains like ORM and big-data systems. The design and results our evalua-

tions for each of these component efforts are described in the corresponding

chapters.

The first set of experimental results make it clear that techniques relying on

the single-point strategy, such as conventional ORM tools, produce solutions

with strictly and significantly sub-optimal performance relative to actual Pareto

fronts, and that our approach is capable of producing strictly and significantly

superior designs. Our framework makes the shared architectural and computa-

tional structure of a family of similar tools explicit, including its MapReduce

computational structure and the filtering of results that are strictly dominated

by other results. We captured the generalized structure of this whole tool fam-

ily using Coq typeclass. Parameters of Coq typeclasses allow variation in the

stated dimensions, with propositional laws capturing some of the critical required

semantics of the components that one “plugs in” to our framework.

There is a growing need for technologies that can support systematic tradeoff

studies to reveal, among others, how system properties in multiple dimensions

145

6.1 Limitation 146

vary across implementations, how stakeholders might be impacted, and what

implementations might best serve the needs of a given project. We argue this is

the holy grail of software design research. Our work takes an important step

towards this overarching objective by helping engineers understand important

tradeoffs among dynamically measurable properties for important classes of soft-

ware designs, at meaningful scales within reach of existing synthesis technologies.

We envision the ideas set forth in this research to find a broader application in

other computing domains as well.

6.1 Limitation

There are limitations in these approaches. Some of them are from the techniques

we used, like the model solver in the design space analysis work.

A comment on scalability is in order in our design space analysis work. Relational-

logic tradeoff analysis involves exhaustive enumeration of models of bounded

relational logic models. This is a #P-complete problem: harder than NP-complete

and equivalent to counting the number of satisfying solutions to an SAT problem.

It is intractable in general, and will not scale to complex, integral systems. Yet,

model checking tools have clearly demonstrated the potential value in exploring

practical uses of solutions to theoretically intractable problems. Relational-logic

tradeoff analysis is no panacea. In this work, we observed its potential utility

for problems at the scale of individual modules, such as database schemas for

ordinary web applications. While the modular architecture of Astronaut supports

variation in logic and solvers thus enumeration strategies, we leave the exploration

of such variations on our theme to future work. Using Alloy as a constraint

solver entails scalability constraints. We can handle object models with tens of

classes. Industrial databases often involve thousands of classes. It is unlikely

that our current implementation technology will work at that scale. For now, it

does have real potential as an aid to smaller-scale system development. That

we can present an object model for a realistic web service, synthesize a broad

space of ORM strategies, select one based on tradeoff analysis, automatically

6.2 Threats to Validity 147

obtain a SQL-database setup script, provide it Java EE, and have much of an

enterprise-type application up and running with little effort is exciting, even if it

does not address (yet) the most demanding needs of industry.

In the performance prediction work, we build prediction models for jobs running

on a specific cluster. Such models are not generalized enough to predict the

performance of jobs running on different clusters. The reason is that Hadoop

logs do not cover features from the hardware layer, but only those from the

Hadoop and Hive systems.

In the configuration space exploration work, we had a scalar objective function:

CPU time for Hadoop and wall-clock time for Spark. Other applications may

have multi-dimensional objectives, with tradeoffs among multiple dimensions

of performance. Evolutionary algorithms are known to perform less well in

multi-attribute settings. In the general case of system design, one may have

dozens of interacting quality attributes that contribute to the system value.

Whether techniques such as ours can be adapted to work in or such situations

remains a question for further study. Even though, we found configurations that

produced massive speed-ups for key classes of MapReduce jobs as represented in

an objective benchmark suite. We showed that there is real potential for search

using small inputs to produce results that work for much larger problems.

6.2 Threats to Validity

In our performance prediction work, the cluster we collect data from runs different

kinds of jobs every day. Some jobs are running periodically. We collected the

training data randomly in three months. We expect this method can increase the

diversity of the collected data as much as possible. However, it is still possible

that the collected data is not diverse enough. It is possible that some jobs run in

multiple days during the days that we collected data in, and/or there are some

jobs that we never saw. In total, we collected more than thirteen thousands of

data samples. There could be some features do not appear enough times to be

captured by our algorithm. We could, in theory, be in the situation of “curse

6.3 Future Work 148

of dimensionality” [130]. The method we used to approximate the complexity

of Hive queries is relatively simple. We choose about twenty kinds of tokens

extracted from a Hive query based on our understanding. It’s possible that

we missed some tokens which are also important. A systematic study of the

logic complexity of Hive queries can probably produce more accurate complexity,

which will be more helpful in our project. How to estimate the job complexity

more accurately without much cost would be good future work.

Due to the nature of dynamic evaluation, it is possible that the experimental

results are affected by uncontrolled factors on hardware platforms. In our

experiments, we adopted some strategies to mitigate such unseen factors. For

example, we make sure that no other programs are running on the experimental

platform while we are running experiments. We also run each dynamic evaluation

three times to get average performance as a final result. In this work, we choose

a subset of all parameters to study with domain knowledge. It is possible that

we missed some important ones. To mitigate this threat, we referred to many

previous works [18] on Hadoop, and have included all parameters studied by

other researchers in our parameter set.

6.3 Future Work

Our design space analysis framework, Astronaut, is designed as a generalized

suite that can be easily applied in other domains. This could be done by

plugging in different components into the framework. In the empirical study

section, we plugged in two different DBMSs, namely MySQL and PostgreSQL,

to initially show the generalization of Astronaut. As part of the future work,

one could develop different specifications and/or model solvers to apply it in

other domains.

The sensitivity analysis results in our configuration space exploration strongly

suggest that there are non-negligible interactions among parameter values in

determining the outputs of our objective functions. In future work, we hope

to learn how to infer modularity properties of such objective functions, to

6.3 Future Work 149

enable parallel optimization of coupled parameter clusters, so as to significantly

reduce the sizes of the state spaces to be sampled. For example, we can try

to group parameters by which computation phase they are involved with, e.g.,

parameters that only involve the map step might form a mostly independent

cluster (module).

Chapter 7

Conclusion

This dissertation developed and evaluated a set of propositions about how to

improve the performance of large-scale and complex big data software systems

using design and configuration space exploration techniques and statistical

learning-based prediction models where prediction is based to a considerable

extent on configuration.

In Chapter 3, we talked about how to synthesize and evaluate the whole design

spaces exhaustively. Starting from a given system specification, we synthesize

all designs and common test suites which will be used to assess the designs

later. Since a design space is typically large, meaning there are a vast number of

designs, we developed an automated general framework for conducting design

space analysis. We applied this technique in the ORM domain for finding Pareto-

optimal database schemas. The evaluation results on seven subject systems and

two common DBMSs show that our technology is promising in finding Pareto-

optimal system designs in both time and space performance for modest-scale

problems. The key to scaling up is to determine how to decompose complex

systems in modest-scale subsystems that can be handled by our methods (when

possible).

Chapter 4 presents a novel approach to improve the accuracy of performance

prediction models using the semantic meanings of configuration parameters to

150

Chapter 7 Conclusion 151

clean the training data. We applied this approach in predicting CPU time and

physical memory consumption for MapReduce jobs. We built models using

different data sets that are cleaned with and without our approach. The results

show that our approach can significantly improve model accuracy.

In Chapter 5, we proposed to use meta-heuristic algorithms to search the

configuration space of a software system to find configurations to improve its

performance. This approach samples configurations and guides the search

procedure with the evaluated performance information. We evaluated three

different sampling strategies, namely random sampling as the baseline, genetic

algorithm, and EMCMC. We applied this approach in Hadoop and found that

EMCMC performs best out of these three algorithms. It can find configurations

that significantly improve the time performance of regular MapReduce jobs. To

save the search cost, our approach explores a configuration space with a small size

of input data and verify found candidates with larger datasets. We also found

that similar jobs can obtain performance gain from the same configuration.

Overall, then, the results of experimental evaluation presented in previous

chapters tend to support the thesis of this dissertation. Our approaches to

performance predication and optimization of big data systems focused on the

role and impact of configuration appears to have real potential to improve real-

world performance in critical and costly big data infrastructure systems.

Bibliography

[1] Apache hadoop. http://hadoop.apache.org/, 2017. Accessed: 2016-08-
06.

[2] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill Howe.
Hadoop’s adolescence: an analysis of hadoop usage in scientific work-
loads. Proceedings of the VLDB Endowment, 6(10):853–864, 2013.

[3] D.-I. Kang, R. Gerber, L. Golubchik, J. K. Hollingsworth, and M. Sak-
sena. A software synthesis tool for distributed embedded system design.
SIGPLAN Not., 34(7), May 1999.

[4] Vu Le and Sumit Gulwani. Flashextract: A framework for data extrac-
tion by examples. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, New
York, NY, USA. ACM.

[5] I. Assayad, V. Bertin, F x. Defaut, Ph. Gerner, O. Quévreux, and
S. Yovine. Jahuel: A formal framework for software synthesis. In in
ICFEM’05, 2005.

[6] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program
verification to program synthesis. In Proceedings of the 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’10, pages 313–326, New York, NY, USA, January
2010. ACM.

[7] Armando Solar-Lezama. Program sketching. International Journal on
Software Tools for Technology Transfer, 15(5-6), Aug 2012.

[8] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and
Andrzej Wasowski. Variability-aware performance prediction: A statisti-
cal learning approach. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages 301–311. IEEE,
2013.

[9] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof
Czarnecki. Cost-efficient sampling for performance prediction of config-
urable systems (t). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 342–352. IEEE, 2015.

[10] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel,
Don Batory, Marko Rosenmüller, and Gunter Saake. Predicting perfor-
mance via automated feature-interaction detection. In Software Engi-

152

http://hadoop.apache.org/

Bibliography 153

neering (ICSE), 2012 34th International Conference on, ICSE ’12, pages
167–177, Piscataway, NJ, USA, 2012. IEEE, IEEE Press.

[11] V. Nair, T. Menzies, N. Siegmund, and S. Apel. Using bad learners to
find good configurations. ArXiv e-prints, February 2017.

[12] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. Perfor-
mance prediction of configurable software systems by fourier learning (t).
In Proceedings of the 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE ’15, pages 365–373,
Washington, DC, USA, 2015. IEEE, IEEE Computer Society.

[13] Ge Song, Zide Meng, Fabrice Huet, Frederic Magoules, Lei Yu, and
Xuelian Lin. A hadoop mapreduce performance prediction method.
In High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing
(HPCC EUC), 2013 IEEE 10th International Conference on, pages
820–825. IEEE, 2013.

[14] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kästner. Performance-influence models for highly configurable systems. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 284–294. ACM, 2015.

[15] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM),
11(2):256–290, 2002.

[16] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: a high-level
synthesis framework for applying parallelizing compiler transformations.
In 16th International Conference on VLSI Design, 2003. Proceedings.
Institute of Electrical & Electronics Engineers (IEEE), 2003.

[17] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An analysis of the variability in forty preprocessor-
based software product lines. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 105–
114. ACM, 2010.

[18] Ailton S Bonifacio, Andre Menolli, and Fabiano Silva. Hadoop mapre-
duce configuration parameters and system performance: a systematic
review. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), page 1.
The Steering Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), 2014.

[19] Chuanjun Zhang, Frank Vahid, and Roman Lysecky. A self-tuning cache
architecture for embedded systems. ACM Transactions on Embedded
Computing Systems (TECS), 3(2):407–425, 2004.

[20] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
Proceedings of the 31st International Conference on Software Engineer-
ing. IEEE Computer Society, 2009.

Bibliography 154

[21] EA Baltz, E Trask, M Binderbauer, M Dikovsky, H Gota, R Mendoza,
JC Platt, and PF Riley. Achievement of sustained net plasma heating in
a fusion experiment with the optometrist algorithm. Scientific Reports,
7, 2017.

[22] Tripti Saxena and Gabor Karsai. Mde-based approach for generalizing
design space exploration. In International Conference on Model Driven
Engineering Languages and Systems, pages 46–60. Springer, 2010.

[23] Hamid Bagheri and Kevin Sullivan. Spacemaker: Practical formal synthe-
sis of tradeoff spaces for object-relational mapping. In Proceedings of the
24th International Conference on Software Engineering and Knowledge
Engineering, San Francisco Bay, USA, 2012.

[24] Aline Lúcia Baroni, Coral Calero, Mario Piattini, and O Brito E Abreu.
A formal definition for ObjectRelational database metrics. In Proceedings
of the 7th International Conference on Enterprise Information System,
2005.

[25] Stefan Holder, Jim Buchan, and Stephen G. MacDonell. Towards a
metrics suite for Object-Relational mappings. Model-Based Software and
Data Integration, CCIC 8:43–54, 2008.

[26] Cristian Cadar, Peter Pietzuch, and Alexander L. Wolf. Multiplicity
computing: a vision of software engineering for next-generation comput-
ing platform applications. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, FoSER ’10, pages 81–86, New
York, NY, USA, 2010. ACM.

[27] Luca Cabibbo and Antonio Carosi. Managing inheritance hierarchies in
Object/Relational mapping tools. In Proceedings of the 17th International
Conference on Advanced Information Systems Engineering (CAiSE’05),
pages 135–150, 2005.

[28] Wolfgang Keller. Mapping objects to tables - a pattern language. In Proc.
of the European Pattern Languages of Programming Conference, 1997.

[29] Stephan Philippi. Model driven generation and testing of object-relational
mappings. Journal of Systems and Software, 77(2):193–207, 2005.

[30] Sean Quan Lau. Domain Analysis of E-Commerce Systems Using Feature-
Based Model Templates. Master’s thesis, University of Waterloo, Canada,
2006.

[31] Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and
Thomas Santen. Components, platforms and possibilities: Towards
generic automation for MDA. In Proceedings of International Conference
on Embedded Software, 2010.

[32] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid. Query-
aware test generation using a relational constraint solver. In Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, pages 238–247. IEEE Computer Society, 2008.

Bibliography 155

[33] S. E. Stemler. A comparison of consensus, consistency, and measurement
approaches to estimating interrater reliability. Practical Assessment,
Research and Evaluation, 9(4), 2004.

[34] Hamid Bagheri, Chong Tang, and Kevin Sullivan. Trademaker: Auto-
mated dynamic analysis of synthesized tradespaces. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
pages 106–116, New York, NY, USA, 2014. ACM, ACM.

[35] Yves Bertot and Pierre Castéran. Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media, 2013.

[36] Bas Spitters and Eelis Van der Weegen. Type classes for mathematics in
type theory. Mathematical Structures in Computer Science, 21(04), 2011.

[37] Álvaro Pelayo, Michael A Warren, and To Vladimir Voevodsky. Homo-
topy type theory. Gazette des Mathematiciens, (142), 2014.

[38] Adam Chlipala. Certified programming with dependent types: a pragmatic
introduction to the coq proof assistant. MIT Press, 2013.

[39] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[40] Flagship docs 4. Accessed: 2015-10-22.

[41] Erik Andersen, Sumit Gulwani, and Zoran Popovic. A trace-based
framework for analyzing and synthesizing educational progressions. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, New York, NY, USA. ACM.

[42] Shriram Krishnamurthi, Kathi Fisler, Daniel J. Dougherty, and Daniel
Yoo. Alchemy: transmuting base alloy specifications into implementations.
In Proceedings of FSE’08, pages 158–169, 2008.

[43] Alcino Cunha and Hugo Pacheco. Mapping between alloy specifica-
tions and database implementations. In Proceedings of the Seventh
International Conference on Software Engineering and Formal Methods
(SEFM’09), pages 285–294, 2009.

[44] Christopher Ireland, David Bowers, Mike Newton, and Kevin Waugh.
Understanding object-relational mapping: A framework based approach.
International Journal on Advances in software, 2:202–216, 2009.

[45] Mauro Luigi Drago, Carlo Ghezzi, and Raffaela Mirandola. A quality
driven extension to the QVT-relations transformation language. Com-
puter Science - Research and Development, 2011.

[46] Florian Heidenreich, Christian Wende, and Birgit Demuth. A framework
for generating query language code from OCL invariants. Electronic
Communications of the EASST, 9, November 2007.

Bibliography 156

[47] Mohammad Badawy and Karel Richta. Deriving triggers from UML/OCL
specification. In Information Systems Development, pages 305–315.
Springer US, 2002.

[48] Harith T. Al-Jumaily, Dolores Cuadra, and Paloma Martínez. Software
architecture: Ocl2trigger: Deriving active mechanisms for relational
databases using model-driven architecture. J. Syst. Softw., 81(12), Decem-
ber 2008.

[49] Birgit Demuth, Heinrich Hussmann, and Sten Loecher. OCL as a specifi-
cation language for business rules in database applications. In Proceedings
of the UML 2001–The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, pages 104–117, 2001.

[50] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. QAGen:
generating query-aware test databases. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, SIGMOD
’07, pages 341––352, New York, NY, USA, 2007. ACM.

[51] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. Generating queries
with cardinality constraints for DBMS testing. IEEE Transactions on
Knowledge and Data Engineering, 18(12):1721–1725, 2006.

[52] Claudio de la Riva, María José Suárez-Cabal, and Javier Tuya.
Constraint-based test database generation for SQL queries. In Pro-
ceedings of the 5th Workshop on Automation of Software Test, pages
67–74, Cape Town, South Africa, 2010. ACM.

[53] TPC benchmarks. http://www.tpc.org.

[54] Justyna Petke, Mark Harman, William B. Langdon, and Westley
Weimer. Using genetic improvement and code transplants to specialise
a c++ program to a problem class. In Genetic Programming. Springer
Science + Business Media, 2014.

[55] Egor Bondarev, Michel RV Chaudron, and Erwin A de Kock. Exploring
performance trade-offs of a jpeg decoder using the deepcompass frame-
work. In Proceedings of the 6th international workshop on Software and
performance, pages 153–163. ACM, 2007.

[56] Aldeida Aleti, Stefan Bjornander, Lars Grunske, and Indika Meedeniya.
Archeopterix: An extendable tool for architecture optimization of aadl
models. In Model-Based Methodologies for Pervasive and Embedded
Software, 2009. MOMPES’09. ICSE Workshop on, pages 61–71. IEEE,
February 2009.

[57] Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. Au-
tomatically improve software architecture models for performance, relia-
bility, and cost using evolutionary algorithms. In Proceedings of the 1st
Int. Conf. on Performance Engineering, pages 105–116. ACM, February
2010.

[58] Mark Harman. The current state and future of search based software
engineering. In 2007 Future of Software Engineering, FOSE ’07, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

Bibliography 157

[59] Yue Jia and Mark Harman. Higher order mutation testing. Information
and Software Technology, 51(10), 2009.

[60] Phil McMinn. Search-based software test data generation: a survey.
Software Testing, Verification and Reliability, 14(2), 2004.

[61] Jim Manzi. Uncontrolled: The surprising payoff of trial-and-error for
business, politics, and society. Basic Books (AZ), 2012.

[62] Mike Moran. Do it wrong quickly: how the web changes the old marketing
rules. IBM Press, 2007.

[63] Shivnath Babu. Towards automatic optimization of mapreduce programs.
In Proceedings of the 1st ACM symposium on Cloud computing, pages
137–142. ACM, 2010.

[64] Zhenhua Guo, Geoffrey Fox, Mo Zhou, and Yang Ruan. Improving
resource utilization in mapreduce. In 2012 IEEE International Conference
on Cluster Computing, pages 402–410. IEEE, 2012.

[65] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009.

[66] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela H. Byers. Big data: The next
frontier for innovation, competition, and productivity, May 2011.

[67] Rajkumar Buyya et al. High performance cluster computing: Architec-
tures and systems (volume 1). Prentice Hall, Upper SaddleRiver, NJ,
USA, 1:999, 1999.

[68] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST), pages
1–10. IEEE, 2010.

[69] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099–1110. ACM, 2008.

[70] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX Annual Technical Conference, volume 8, page 9, 2010.

[71] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and
Gunter Saake. On essential configuration complexity: measuring interac-
tions in highly-configurable systems. In Automated Software Engineering
(ASE), 2016 31st IEEE/ACM International Conference on, pages 483–
494. IEEE, 2016.

[72] Sven Apel, Alexander von Rhein, Thomas Thüm, and Christian Käst-
ner. Feature-interaction detection based on feature-based specifications.
Computer Networks, 57(12):2399–2409, 8 2013.

Bibliography 158

[73] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. Ernest: efficient performance prediction for large-
scale advanced analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 363–378, 2016.

[74] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Modeling apache
hive based applications in big data architectures. In Proceedings of the
7th International Conference on Performance Evaluation Methodologies
and Tools, ValueTools ’13, pages 30–38, ICST, Brussels, Belgium, Bel-
gium, 2013. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[75] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Performance
modeling of mapreduce jobs in heterogeneous cloud environments. In
2013 IEEE Sixth International Conference on Cloud Computing, pages
839–846. IEEE, 2013.

[76] Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang, and Changjun
Jiang. Hadoop performance modeling for job estimation and resource
provisioning. IEEE Transactions on Parallel and Distributed Systems,
27(2):441–454, 2016.

[77] Mapr control system. https://www.mapr.com/products/
product-overview/mapr-control-system. Accessed: 2016-08-15.

[78] Beautiful soup. https://www.crummy.com/software/BeautifulSoup/.
Accessed: 2016-08-15.

[79] Malik Yousef, Müşerref Duygu Saçar Demirci, Waleed Khalifa, and Jens
Allmer. Feature selection has a large impact on one-class classification
accuracy for micrornas in plants. Advances in bioinformatics, 2016, 2016.

[80] Andreas Janecek, Wilfried Gansterer, Michael Demel, and Gerhard
Ecker. On the relationship between feature selection and classification
accuracy. In New Challenges for Feature Selection in Data Mining and
Knowledge Discovery, pages 90–105, 2008.

[81] Esra Mahsereci Karabulut, Selma Ayşe Özel, and Turgay Ibrikci. A
comparative study on the effect of feature selection on classification
accuracy. Procedia Technology, 1:323–327, 2012.

[82] Hive parser api. https://hive.apache.org/javadocs/r0.10.0/api/
org/apache/hadoop/hive/ql/parse/HiveParser.html. Accessed: 2016-
08-15.

[83] Numpy. http://www.numpy.org/. Accessed: 2016-08-15.

[84] scikit-learn. http://scikit-learn.org//. Accessed: 2016-08-15.

[85] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupa-
thy, and Rukma Talwadker. Hey, you have given me too many knobs!:
understanding and dealing with over-designed configuration in system
software. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 307–319. ACM, 2015.

https://www.mapr.com/products/product-overview/mapr-control-system
https://www.mapr.com/products/product-overview/mapr-control-system
https://www.crummy.com/software/BeautifulSoup/
https://hive.apache.org/javadocs/r0.10.0/api/org/apache/hadoop/hive/ql/parse/HiveParser.html
https://hive.apache.org/javadocs/r0.10.0/api/org/apache/hadoop/hive/ql/parse/HiveParser.html
http://www.numpy.org/
http://scikit-learn.org//

Bibliography 159

[86] Zhen Jia, Chao Xue, Guancheng Chen, Jianfeng Zhan, Lixin Zhang,
Yonghua Lin, and Peter Hofstee. Auto-tuning spark big data work-
loads on power8: Prediction-based dynamic smt threading. In Parallel
Architecture and Compilation Techniques (PACT), 2016 International
Conference on, pages 387–400. IEEE, 2016.

[87] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[88] Jordan J Louviere, David Pihlens, and Richard Carson. Design of discrete
choice experiments: a discussion of issues that matter in future applied
research. Journal of Choice Modelling, 4(1):1–8, 2011.

[89] Shrinivas B. Joshi. Apache hadoop performance-tuning methodologies
and best practices. In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, ICPE ’12, pages 241–242, New
York, NY, USA, 2012. ACM.

[90] Gary M Weiss and Ye Tian. Maximizing classifier utility when there
are data acquisition and modeling costs. Data Mining and Knowledge
Discovery, 17(2):253–282, 2008.

[91] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J
DeWitt, Samuel Madden, and Michael Stonebraker. A comparison of
approaches to large-scale data analysis. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages 165–
178. ACM, 2009.

[92] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding
near-optimal configurations in product lines by random sampling. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 61–71. ACM, 2017.

[93] Adrian A Canutescu and Roland L Dunbrack. Cyclic coordinate descent:
A robotics algorithm for protein loop closure. Protein science, 12(5):963–
972, 2003.

[94] Po-Ling Loh and Martin J Wainwright. Regularized m-estimators with
nonconvexity: Statistical and algorithmic theory for local optima. In
Advances in Neural Information Processing Systems, pages 476–484,
2013.

[95] Mădălina M Drugan and Dirk Thierens. Evolutionary markov chain
monte carlo. In International Conference on Artificial Evolution (Evolu-
tion Artificielle), pages 63–76. Springer, 2003.

[96] W Keith Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 57(1):97–109, 1970.

[97] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs
via guided stochastic program mutation. In ACM SIGPLAN Notices,
volume 50, pages 386–399. ACM, 2015.

[98] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I
Jordan. An introduction to mcmc for machine learning. Machine learning,
50(1-2):5–43, 2003.

Bibliography 160

[99] John Henry Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[100] Reza Akbari and Koorush Ziarati. A multilevel evolutionary algorithm
for optimizing numerical functions. International Journal of Industrial
Engineering Computations, 2(2):419–430, 2011.

[101] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65–85, 1994.

[102] Chong Tang, Kevin Sullivan, Jian Xiang, Trent Weiss, and Baishakhi
Ray. Interpreted formalisms for configurations. arXiv preprint
arXiv:1712.04982, 2017.

[103] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,
Cesar Munoz, Chetan Murthy, et al. The Coq proof assistant reference
manual: Version 6.1. PhD thesis, Inria, 1997.

[104] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar.
Scalable product line configuration: A straw to break the camel’s back.
In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th In-
ternational Conference on, pages 465–474. IEEE, 2013.

[105] Jian Xiang, John Knight, and Kevin Sullivan. Synthesis of logic interpre-
tations. In High Assurance Systems Engineering (HASE), 2016 IEEE
17th International Symposium on, pages 114–121. IEEE, 2016.

[106] Jian Xiang, John Knight, and Kevin Sullivan. Is my software consistent
with the real world? In High Assurance Systems Engineering (HASE),
2017 IEEE 18th International Symposium on, pages 1–4. IEEE, 2017.

[107] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[108] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
The hibench benchmark suite: Characterization of the mapreduce-based
data analysis. In Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on, pages 41–51. IEEE, 2010.

[109] Nikhil Khadke, Michael P Kasick, Soila Kavulya, Jiaqi Tan, and Priya
Narasimhan. Transparent system call based performance debugging for
cloud computing. In MAD, 2012.

[110] Eunjung Yoon and Anna Squicciarini. Toward detecting compromised
mapreduce workers through log analysis. In Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, pages 41–50. IEEE, 2014.

[111] Michael P Kasick, Keith A Bare, Eugene E Marinelli III, Jiaqi Tan, Ra-
jeev Gandhi, and Priya Narasimhan. System-call based problem diagnosis
for pvfs. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH
PA DEPT OF ELECTRICAL AND COMPUTER ENGINEERING,
2009.

Bibliography 161

[112] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Faster dis-
covery of faster system configurations with spectral learning. Automated
Software Engineering, pages 1–31, 2017.

[113] Jian Xiang. Interpreted Formalism: Towards System Assurance and the
Real-World Semantics of Software. PhD thesis, University of Virginia,
2016.

[114] Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and
Todd W Schiller. Building and using pluggable type-checkers. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
pages 681–690. ACM, 2011.

[115] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long
Jin, and Shankar Pasupathy. Early detection of configuration errors to
reduce failure damage. In OSDI, pages 619–634, 2016.

[116] Xiangyang Xu, Shanshan Li, Yong Guo, Wei Dong, Wang Li, and Xi-
angke Liao. Automatic type inference for proactive misconfiguration
prevention. In Proceedings of the 29th International Conference on Soft-
ware Engineering and Knowledge Engineering, 2017.

[117] Mark Santolucito, Ennan Zhai, and Ruzica Piskac. Probabilistic auto-
mated language learning for configuration files. In International Confer-
ence on Computer Aided Verification, pages 80–87. Springer, 2016.

[118] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Ver-
bowski, and Arunvijay Kumar. Context-based online configuration-error
detection. In Proceedings of the 2011 USENIX conference on USENIX
annual technical conference, pages 28–28. USENIX Association, 2011.

[119] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting
system environment and correlation information for misconfiguration
detection. ACM SIGPLAN Notices, 49(4):687–700, 2014.

[120] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning
database configuration parameters with ituned. Proceedings of the VLDB
Endowment, 2(1):1246–1257, 2009.

[121] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Multi-
objective design space exploration of embedded systems. Journal of
Embedded Computing, 1(3):305–316, 2005.

[122] Léonard Jaillet, Juan Cortés, and Thierry Siméon. Sampling-based
path planning on configuration-space costmaps. IEEE Transactions on
Robotics, 26(4):635–646, 2010.

[123] Brendan Burns and Oliver Brock. Toward optimal configuration space
sampling. In Robotics: Science and Systems, pages 105–112. Citeseer,
2005.

[124] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In Software Engineering (ICSE), 2012 34th
International Conference on, pages 3–13. IEEE, 2012.

Bibliography 162

[125] James A Whittaker and Michael G Thomason. A markov chain model for
statistical software testing. IEEE Transactions on Software engineering,
20(10):812–824, 1994.

[126] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and D Sculley. Google vizier: A service for black-box op-
timization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1487–1495.
ACM, 2017.

[127] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning
system for big data analytics. In CIDR, volume 11, pages 261–272, 2011.

[128] Guangdeng Liao, Kushal Datta, and Theodore L Willke. Gunther:
Search-based auto-tuning of mapreduce. In European Conference on
Parallel Processing, pages 406–419. Springer, 2013.

[129] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of
mapreduce: an in-depth study. Proceedings of the VLDB Endowment,
3(1-2):472–483, 2010.

[130] David L Donoho et al. High-dimensional data analysis: The curses and
blessings of dimensionality. AMS Math Challenges Lecture, pages 1–32,
2000.

[131] Ruby on rails. http://rubyonrails.org. Accessed: 2015-10-22.

[132] Django. https://www.djangoproject.com. Accessed: 2015-10-22.

[133] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable data storage sys-
tems. ACM Transactions on Storage (TOS), 9(1):3, 2013.

[134] Adam Michael Ross. Managing unarticulated value: changeability in
multi-attribute tradespace exploration. Engineering Systems Division,
361, 2006.

[135] Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma
Dandashi, Anhtuan Dinh, Gary Kincaid, Glen Ledeboer, Patricia
Reynolds, Pradip Sitaram, et al. Identifying and measuring quality
in a software requirements specification. In Software Metrics Symposium,
1993. Proceedings., First International, pages 141–152. IEEE, 1993.

[136] Barry W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, 1988.

[137] Adam M Ross, Daniel E Hastings, Joyce M Warmkessel, and Nathan P
Diller. Multi-attribute tradespace exploration as front end for effective
space system design. Journal of Spacecraft and Rockets, 41(1):20–28,
2004.

[138] Murray Woodside, Greg Franks, and Dorina C Petriu. The future of soft-
ware performance engineering. In 2007 Future of Software Engineering,
pages 171–187. IEEE Computer Society, 2007.

http://rubyonrails.org
https://www.djangoproject.com

Bibliography 163

[139] Charles J Geyer. Practical markov chain monte carlo. Statistical science,
pages 473–483, 1992.

[140] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[141] Zong Woo Geem, Joong Hoon Kim, and GV Loganathan. A new heuris-
tic optimization algorithm: harmony search. Simulation, 76(2):60–68,
2001.

[142] Melanie Mitchell, John H Holland, and Stephanie Forrest. When will a
genetic algorithm outperform hill climbing? Ann Arbor, 1001:48109, 1993.

[143] Abhinav Kamra, Vishal Misra, and Erich M Nahum. Yaksha: A self-
tuning controller for managing the performance of 3-tiered web sites.
In Quality of Service, 2004. IWQOS 2004. Twelfth IEEE International
Workshop on, pages 47–56. IEEE, 2004.

[144] Pradeep Padala, Kai-Yuan Hou, Kang G Shin, Xiaoyun Zhu, Mustafa
Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated
control of multiple virtualized resources. In Proceedings of the 4th ACM
European conference on Computer systems, pages 13–26. ACM, 2009.

[145] Harold C Lim, Shivnath Babu, and Jeffrey S Chase. Automated control
for elastic storage. In Proceedings of the 7th international conference on
Autonomic computing, pages 1–10. ACM, 2010.

[146] Cemal Yilmaz, Myra B Cohen, and Adam A Porter. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE
Transactions on Software Engineering, 32(1):20–34, 2006.

[147] Matteo Dell’Amico, Damiano Carra, Mario Pastorelli, and Pietro
Michiardi. Revisiting size-based scheduling with estimated job sizes.
In 2014 IEEE 22nd International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems, pages 411–420.
IEEE, 2014.

[148] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and
David Patterson. Statistics-driven workload modeling for the cloud. In
Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on, pages 87–92. IEEE, 2010.

[149] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener,
Armando Fox, Michael Jordan, and David Patterson. Predicting multiple
metrics for queries: Better decisions enabled by machine learning. In
2009 IEEE 25th International Conference on Data Engineering, pages
592–603. IEEE, 2009.

[150] Changlong Li, Hang Zhuang, Kun Lu, Mingming Sun, Jinhong Zhou,
Dong Dai, and Xuehai Zhou. An adaptive auto-configuration tool for
hadoop. In Engineering of Complex Computer Systems (ICECCS), 2014
19th International Conference on, pages 69–72. IEEE, 2014.

Bibliography 164

[151] Ivanilton Polato, Reginaldo Ré, Alfredo Goldman, and Fabio Kon. A
comprehensive view of hadoop research—a systematic literature review.
Journal of Network and Computer Applications, 46:1–25, 2014.

[152] Seyed Reza Pakize. A comprehensive view of hadoop mapreduce schedul-
ing algorithms. International Journal of Computer Networks & Commu-
nications Security, 2(9):308–317, 2014.

[153] Ibrahim Abaker Targio Hashem, Nor Badrul Anuar, Abdullah Gani,
Ibrar Yaqoob, Feng Xia, and Samee Ullah Khan. Mapreduce: Review and
open challenges. Scientometrics, pages 1–34, 2016.

[154] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Aria:
automatic resource inference and allocation for mapreduce environments.
In Proceedings of the 8th ACM international conference on Autonomic
computing, pages 235–244. ACM, 2011.

[155] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Parame-
terizable benchmarking framework for designing a mapreduce perfor-
mance model. Concurrency and Computation: Practice and Experience,
26(12):2005–2026, 2014.

[156] Nikzad Babaii Rizvandi, Javid Taheri, Reza Moraveji, and Albert Y
Zomaya. On modelling and prediction of total cpu usage for applications
in mapreduce environments. In International Conference on Algorithms
and Architectures for Parallel Processing, pages 414–427. Springer, 2012.

[157] Guanying Wang, Ali Raza Butt, Prashant Pandey, and Karan Gupta. A
simulation approach to evaluating design decisions in mapreduce setups.
In MASCOTS, volume 9, pages 1–11, 2009.

[158] Mingyuan An, Yang Wang, and Weiping Wang. Using index in the
mapreduce framework. In Web Conference (APWEB), 2010 12th Inter-
national Asia-Pacific, pages 52–58. IEEE, 2010.

[159] Suhel Hammoud, Maozhen Li, Yang Liu, Nasullah Khalid Alham, and
Zelong Liu. Mrsim: A discrete event based mapreduce simulator. In Fuzzy
Systems and Knowledge Discovery (FSKD), 2010 Seventh International
Conference on, volume 6, pages 2993–2997. IEEE, 2010.

[160] Hailong Yang, Zhongzhi Luan, Wenjun Li, Depei Qian, and Gang Guan.
Statistics-based workload modeling for mapreduce. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International, pages 2043–2051. IEEE, 2012.

[161] Nikzad Babaii Rizvandi, Javid Taheri, Reza Moraveji, and Albert Y
Zomaya. Network load analysis and provisioning of mapreduce applica-
tions. In 2012 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies, pages 161–166. IEEE, 2012.

[162] Di Xie, Y Charlie Hu, and Ramana Rao Kompella. On the performance
projectability of mapreduce. In Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on, pages 301–
308. IEEE, 2012.

Bibliography 165

[163] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster)
size fits all: automatic cluster sizing for data-intensive analytics. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, page 18.
ACM, 2011.

[164] Hailong Yang, Zhongzhi Luan, Wenjun Li, and Depei Qian. Mapreduce
workload modeling with statistical approach. Journal of grid computing,
10(2):279–310, 2012.

[165] Jinquan Dai, Jie Huang, Shengsheng Huang, Bo Huang, and Yan Liu.
Hitune: dataflow-based performance analysis for big data cloud. Proc. of
the 2011 USENIX ATC, pages 87–100, 2011.

[166] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and
Randy H Katz. Towards understanding cloud performance tradeoffs
using statistical workload analysis and replay. University of California at
Berkeley, Technical Report No. UCB/EECS-2010-81, 2010.

[167] Palden Lama and Xiaobo Zhou. Aroma: Automated resource allocation
and configuration of mapreduce environment in the cloud. In Proceedings
of the 9th international conference on Autonomic computing, pages 63–
72. ACM, 2012.

[168] Yingjie Shi, Xiaofeng Meng, Jing Zhao, Xiangmei Hu, Bingbing Liu,
and Haiping Wang. Benchmarking cloud-based data management sys-
tems. In Proceedings of the second international workshop on Cloud data
management, pages 47–54. ACM, 2010.

[169] Guanying Wang, Ali R Butt, Prashant Pandey, and Karan Gupta. Using
realistic simulation for performance analysis of mapreduce setups. In Pro-
ceedings of the 1st ACM workshop on Large-Scale system and application
performance, pages 19–26. ACM, 2009.

[170] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Benchmark-
ing approach for designing a mapreduce performance model. In Proceed-
ings of the 4th ACM/SPEC International Conference on Performance
Engineering, pages 253–258. ACM, 2013.

[171] Herodotos Herodotou, Fei Dong, and Shivnath Babu. Mapreduce
programming and cost-based optimization? crossing this chasm with
starfish. Proceedings of the VLDB Endowment, 4(12):1446–1449, 2011.

[172] Hadoop fair scheduler. https://hadoop.apache.org/docs/r1.2.1/
fair_scheduler.html. Accessed: 2016-08-20.

[173] Hadoop capacity scheduler. https://hadoop.apache.org/docs/r1.2.
1/capacity_scheduler.html. Accessed: 2016-08-20.

[174] Pandas. http://pandas.pydata.org/. Accessed: 2016-08-15.

[175] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An
analysis of traces from a production mapreduce cluster. In Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, CCGRID ’10, pages 94–103, Washington, DC,
USA, 2010. IEEE Computer Society.

https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
http://pandas.pydata.org/

Bibliography 166

[176] Shouvik Bardhan and D Menasce. Queuing network models to predict
the completion time of the map phase of mapreduce jobs. In Proceedings
of the Computer Measurement Group International Conference. Citeseer,
2012.

[177] Gunho Lee, Byung-Gon Chun, and H. Katz. Heterogeneity-aware re-
source allocation and scheduling in the cloud. In Proceedings of the 3rd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’11,
pages 4–4, Berkeley, CA, USA, 2011. USENIX Association.

[178] Nam P Suh. The principles of design. Number 6. Oxford University Press
on Demand, 1990.

[179] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058, 1972.

[180] Carliss Young Baldwin and Kim B Clark. Design rules: The power of
modularity, volume 1. MIT press, 2000.

[181] Kevin J Sullivan, William G Griswold, Yuanfang Cai, and Ben Hallen.
The structure and value of modularity in software design. In ACM
SIGSOFT Software Engineering Notes, volume 26, pages 99–108. ACM,
2001.

[182] Steven D Eppinger and Tyson R Browning. Design structure matrix
methods and applications. MIT press, 2012.

[183] Tyson R Browning. Applying the design structure matrix to system
decomposition and integration problems: a review and new directions.
IEEE Transactions on Engineering management, 48(3):292–306, 2001.

[184] Terasort. http://sortbenchmark.org/. (Accessed on 08/19/2017).

[185] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values?
an empirical investigation in search-based software engineering. Empirical
Software Engineering, 18(3):594–623, 2013.

[186] Tony Givargis and Frank Vahid. Platune: a tuning framework for system-
on-a-chip platforms. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21(11):1317–1327, 2002.

[187] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance
tuning of word-based software transactional memory. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 237–246. ACM, 2008.

[188] Hamid Bagheri, Chong Tang, and Kevin Sullivan. Automated synthesis
and dynamic analysis of tradeoff spaces for object-relational mapping.
IEEE Transactions on Software Engineering, 43(2):145–163, 2017.

[189] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-
hastings algorithm. The american statistician, 49(4):327–335, 1995.

[190] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth,
Augusta H Teller, and Edward Teller. Equation of state calculations by

Bibliography 167

fast computing machines. The journal of chemical physics, 21(6):1087–
1092, 1953.

[191] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimiza-
tion. In ACM SIGARCH Computer Architecture News, volume 41, pages
305–316. ACM, 2013.

[192] Faming Liang and Wing Hung Wong. Evolutionary monte carlo: Applica-
tions to c p model sampling and change point problem. Statistica sinica,
pages 317–342, 2000.

[193] Ariel Rabkin and Randy Katz. Static extraction of program configuration
options. In Proceedings of the 33rd International Conference on Software
Engineering, pages 131–140. ACM, 2011.

[194] Jian Xiang, John Knight, and Kevin Sullivan. Real-world types and their
application. In International Conference on Computer Safety, Reliability,
and Security, pages 471–484. Springer, 2014.

[195] Carl A Gunter, Elsa L Gunter, Michael Jackson, and Pamela Zave. A
reference model for requirements and specifications. IEEE Software,
17(3):37–43, 2000.

[196] Mike Nahas. A tutorial by mike nahas. https://coq.inria.fr/tutorial-nahas.
Accessed on 08/19/2018.

[197] Ariel Shemaiah Rabkin. Using program analysis to reduce misconfigura-
tion in open source systems software. University of California, Berkeley,
2012.

[198] Xavier Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In ACM SIGPLAN Notices,
volume 41, pages 42–54. ACM, 2006.

[199] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and
Westley Weimer. Post-compiler software optimization for reducing
energy. In ACM SIGARCH Computer Architecture News, volume 42 of
ASPLOS ’14, pages 639–652, New York, NY, USA, 2014. ACM, ACM.

	Contents
	List of Tables
	List of Figures

	Introduction
	Problems
	State-of-the-art
	Goal
	Insights and Approaches
	Thesis Statement
	Evaluation Experiments
	Results and Interpretation

	Background
	Software Synthesis
	Performance Modeling
	Searching for Better Configurations
	Missing Gaps and Fixes

	Design Space Exploration to Improve System Performance
	Motivation
	Incompleteness in Specification
	Running Example

	Algebraic Model
	Model Implementation
	Design Space Synthesis
	Abstract Load Synthesis
	Abstract Load Concretization

	Dynamic Analysis Experiment
	Static Metrics Suite
	Static Analysis of Synthesized Designs
	Subject Systems
	Planning and Execution
	Results for Hypothesis H1 (Order)
	Results for Hypothesis H2 (Magnitudes)
	Results for H3 (Small vs. Large Loads)

	Evaluation of Trademaker
	Astronaut: An Automated tradeoff Analysis Framework
	Astronaut Design
	A Constructive Logic Based Framework
	Framework Instantiation
	Parallelization Reasoning

	Empirical Study
	Related Work
	Conclusion

	System Performance Prediction with Semantic Meanings
	Background of MapReduce
	Related Work
	Methodology
	Approach Overview
	Data Collection and Parsing
	Data Pre-processing with Domain Knowledge
	Approximating Job Complexity
	Standard data pre-processing.
	Model Selection and Training
	Semi-auto dependent relation discovery

	Results
	Conclusion

	Improving System Performance via Configuration Space Exploration
	Background
	Heuristic Optimization
	Markov Chain Monte Carlo (MCMC)
	Evolutionary MCMC (EMCMC)

	Technical Approach
	Configuration Validity Checking
	Type Checker Design
	Initialize and Check Configuration
	Checker Evaluation

	Experimental Design
	Study Subject
	Job Classification
	Comparing with Baselines

	Experimental Results
	Related Work
	Conclusions

	Discussion
	Limitation
	Threats to Validity
	Future Work

	Conclusion
	Bibliography

