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Abstract

Diarrhea effects on children health have been a popular topic in biomedical

research. Previous studies have focused on short term effect on mortality and mor-

bidity. Recent evidence has raised interests on the long term effect on childhood

growth. Instead of treating diarrhea effect as constant as what previous studies do,

we propose a dynamic nonparametric model to estimate diarrhea effect as a function,

studying how long the diarrhea effect lasts and its changes over time. Simulation

study shows that our model can capture the length of diarrhea effect and quantify

the effect curve simultaneously. In addition to the original proposed model, we also

develop four extended models to estimate curves leveling off to a nonzero constant,

to take into account additional covariates, to estimate multiple curves, and to model

curves with more than one dimension. The proposed models are applied to the data

from NIH cohort study collected from children in Bangladesh. Results of the orig-

inal model show that the diarrhea effect on children’s HAZ score starts to show

up at 3 months, becomes most significant at around 9 months with a decrease of

HAZ -0.013, and levels off to zero after 15 months. Overall, our models provide new

statistical tools to quantify the relationship between diarrhea and childhood growth

in a dynamic fashion, which gives us insights on the changing pattern and the effect

window of diarrhea effect.
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Chapter 1

Introduction

1.1 Background

1.1.1 Childhood growth

Childhood is a critical time for both physical and cognitive development. A poor

growth outcome during this period of time is not only an indicator of malnutri-

tion and recurrent infection, but also a linkage to mortality and morbidity (WHO

database). Two forms of growth failure, stunting, defined as height-for-age Z-score

(or HAZ, indicating how many standard deviations the height of the child is above

the average of the children of the same age based on WHO standard) being below

-2, and wasting, defined as weight-for-age Z-score (WAZ) being below -2, have been

associated with poor physical and cognitive development, higher risk of mortality,

and reduced economic development and productivity (Derso et al., 2017). There-

fore, with the estimates of 155 million children under 5 years of age worldwide being

stunted and of 52 million being wasted (UNICEF, WHO, World Bank Group joint

malnutrition estimates, 2017), growth faltering, a slower rate of growth, has been
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identified as a priority in global health, especially in low-income countries (Prender-

gast and Humphrey, 2014).

The causes of growth faltering have been well studied. Pre-lacteal feeding,

non-exclusive breastfeeding, low meal frequency, dietary diversity, as well as socio-

demographic and environmental factors (household wealth, sanitary practice, etc.),

are associated with stunting and wasting. Recurrent infections such as diarrhea, as

a likely result of poor sanitation conditions, have also been linked to poor growth.

These infections could affect the absorption of nutritions and therefore lead to

growth faltering (Derso et al., 2017).

Infection control and nutritional intervention are common practices to prevent

stunting and wasting. Many intervention methods were studied and used in prac-

tice such as breastfeeding support, dietary advice and supplementation and non-

nutritional interventions. However, the timing and intervention window haven’t

been studied extensively. There have been studies suggesting -9 (9 months be-

fore birth) to 24 months is the best window for nutritional interventions based on

growth data, while Prentice et al. (2013) suggests other window like adolescence

is also critical based on their longitudinal analysis of growth data. It is important

to understand the dynamic pattern of childhood growth and quantify how different

factors affect the growth outcome to make better health policy and conduct more

efficient interventions.

1.1.2 Diarrhea

Diarrhea has been one of the leading causes of death and illness for children under 5

years old, especially for children in the developing countries. There are many causes

of diarrhea, one of which is infections. There are 3 types of infections that causes
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diarrhea: viral infections caused by viruses such as rotavirus and norovirus, bac-

terial infections due to the bacteria in contaminated water or food such as E.coli,

Shigella, and parasitic infections caused by parasites from food or water such as

Cryptosporidium. Those causes are closely related to the sanitary conditions es-

pecially in the developing countries where there is limited access to clean water.

However, in many cases, diarrhea is preventable and treatable. Study has shown

that common preventions like rotavirus vaccination, breastfeeding, safe water and

improved sanitation are possible and also cost effective (Tindyebwa, 2004). There-

fore it is important to have a better understanding of diarrhea effect to make better

policies, optimize interventions and allocate resources.

Previous studies have focused on the mortality and morbidity of diarrhea. A

study in 2015 (Troeger et al., 2017) shows that diarrheal diseases were responsible

for half million deaths among children under 5 years old. Three most common

pathogens associated with diarrhea mortality are rotavirus, Cryptosporidium spp,

and Shigella spp, contributing to over half of deaths caused by diarrhea. In addition

to mortality, diarrhea can also lead to increased risk of other infectious diseases

due to diarrhea induced undernutrition. Childhood diarrhea can even continue to

have impact into adulthood, with studies showing adult chronic diseases such as

cardiovascular disease, diabetes, obesity and hypertension being linked to diarrhea

in childhood (Wierzba and Muhib, 2018).

1.1.3 Diarrhea effect on growth curve

Despite these serious effects of diarrhea on morbidity and mortality, recent stud-

ies have suggested diarrhea could also have long term effect on population health

(Bowen et al., 2012). Some of the complications of diarrhea including dehydration
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and malabsorption may not necessarily lead to death but could still have long-term

effect on children’s growth.

Bowen et al. (2012) shows that less burden of diarrhea leads to better growth

and cognitive development for children. Other studies have also shown the negative

effect of diarrhea on children’s growth outcome. Troeger et al. (2018) shows each

day of diarrhea leads to -0.0033 HAZ score, a z-score that measures height for age

based on WHO’s standard. Schnee et al. (2018) also studies the effect of different

types of diarrhea on LAZ (length-for-age z-score) score at 12 months. These studies

try to quantify the diarrhea effect on children’s growth scores. However, all of the

above studies treat diarrhea effect as constant over time, instead of modeling it as

a dynamic effect.

It is our goal in this thesis to study the diarrhea effect pattern over time, which

could give us valuable information on when the effect is most significant and when

it would level off to a certain level. In order to achieve our goal, we first need to

treat growth outcome as a dynamic responses, instead of focusing on the growth at

a certain time point alone. By doing that, we would be able to characterize how the

effect of a certain diarrhea episode on growth changes over time. Figure 1.1 is an

example of growth curves, showing the growth patterns of children from different

percentiles based on WHO’s standard on a population level. On an individual level,

similarly, a smooth curve can also be obtained from growth outcomes measured at

discrete time points, which are the responses we are interested in. In our study, the

goal is to study the association between diarrhea and growth curves, and how each

episode of diarrhea affect the growth curves in a dynamic manner.



5

Figure 1.1: An example of growth curves
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1.1.4 NIH study cohort

The data we use in this thesis comes from the NIH study. During 2008-2012, a

cohort of total 629 infants (332 boys and 297 girls) were enrolled into the study

after birth - in Dhaka, Bangladesh. The growth outcomes of each child were recorded

every 3 months until the end of the study, resulting in 6831 observations. Measures

of growth include weight, height, WHZ (weight-for-height z-score), HAZ (height-

for-age z-score), WAZ (weight-for-age z-score), BAZ (BMI-for-age z-score), which

are scores set by WHO based on children’s growth worldwide. Children’s health

condition was monitored every two weeks by visits of a research staff. During the

visits, questionnaire and follow-ups were given to record children’s health condition.

If there was an acute illness, the child would be sent to the study clinic for further

evaluation. When a child had diarrhea symptoms, stool samples were taken to

further decide if it was diarrhea or not and if there are any pathogens present in the

stool sample. The information of the starting date of each diarrhea episode was also

provided by the questionnaire. In our study, 521 out of 629 children had diarrhea

of totally 2605 episodes. Most of the episodes we observed happened during first

3 years of life as shown in Figure 1.2. For each episodes of diarrhea, we tested the

presence of Crypto, EH and Giardia, which are 3 common pathogens that could

cause diarrhea. Out of all 2605 diarrhea episode samples, 197 of them contain

Crypto, 243 of them contain EH, and 731 contain Giardia. Overall, majority of the

samples (1601 samples) don’t contain any of the three pathogens.

In the data from the NIH study cohort described above, we have both the diar-

rhea observations and growth outcomes which enables us to study the relationship

between diarrhea and growth. Meanwhile, there exist 3 challenges to carry out the

statistical analysis to achieve our study goal. First, our goal is to study growth as a
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Figure 1.2: histogram of diarrhea onset time (in days)

continuous curve but the growth outcomes in the data are measured at discrete time

points. Secondly, those growth outcomes are longitudinal data, which means they

are correlated on the subject level. Ignoring the within-subject correlation leads to

inefficient, and even biased, statistical estimation. Thirdly, for the diarrhea effect

curve over time, we aim to obtain an estimated curve not only smooth, but with

some interpretable features such as a curve being flat after a certain period of time

indicating that the effect would level off after a period of time.

To address those three challenges, smoothing techniques shall be adopted to

estimate the growth curve from discrete growth outcomes, longitudinal models are

used to account for within subject correlations, and penalties are incorporated to

control the shape of the curve. In the following section, literature on smoothing,

longitudinal data analysis and penalized method are reviewed.
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1.2 Introduction to smoothing

In our study, the growth outcome was measured repeatedly over discrete time

points. To study the underlying smooth trajectory of growth and the diarrhea

effect, smoothing is a necessary step. In other words, we want to fit a continuous

function of age to estimate the underlying smooth trajectory of children growth,

on which the discrete growth outcomes are observed. To fit into the nonparametric

framework, we model the response Yi = f(Xi) + εi, where Xi represents the predic-

tor such as age, Yi is the corresponding response such as observed growth outcomes,

and εi is the random error.

Nonparametric regression is to model the relationship between Y and X when

we do not make any parametric assumptions of the function f . Two commonly used

methods for the model fitting are kernel methods and basis function approximation.

1.2.1 Kernel smoothing

For the kernel methods, the value of the function f at each x is estimated based on

the nearby observations with certain weights assigned by the kernel function K(t).

The fitted curve can be expressed as:


µ(x) =

∑n
i=1 li(x)Yi

li(x) =
K(

X−Xi
h

)∑n
j=1K(

X−Xj
h

)
.

An extension of this idea is to use local polynomial regression to approximate

f based on the kernel. The idea is to find the coefficients α of the polynomial
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approximation that minimize the weighted least squares:

n∑
i=1

{
Yi − α0 −

p∑
j=1

αj(Xi − x)j

}2

Kh(Xi − x).

Let Y =



Y1

Y2

...

Yn


,X =



1 X1 − x . . . (X1 − x)p

1 X2 − x . . . (X2 − x)p

...
... . . .

...

1 Xn − x . . . (Xn − x)p


,α =



α1

α2

...

αn


, e =



1

0

...

0


,

and

Kh =



Kh(X1 − x) 0 . . . 0

0 Kh(X2 − x) . . . 0

...
... . . .

...

0 0
... Kh(Xn − x)


.

Estimators can be calculated as follows:

α̂ = (XTKhX)−1XTKhY ,

µ̂(x) = eT (XTKhX)−1XTKhY .

One of the strengths of kernel smoothing is that the asymptotic properties have

been well studied (Fan et al., 1996). However, the computational cost can be ex-

pansive. In addition, it is not very flexible for estimating curves of different shapes

and features. Since in this thesis, our goal is to estimate a curve with flat regions,

we use the following spline smoothing technique instead.
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1.2.2 Spline methods

The other method is to use basis functions to approximate the function f(x), where a

set of basis functions are pre-specified and the target function f(x) is approximated

by a linear combination of basis functions, µ(x) ≈ BT (x)γ. By projecting observa-

tions onto the basis functions, it turns into a linear regression problem: Y = Xγ+ε,

where

B(x) = {B1(x), . . . , BJ+p(x)}T , X = {B(X1), . . . ,B(Xn)}T .

The estimator of µ can be found by a least squares estimator:

µ̂(x) = BT (x)γ̂, γ̂ = (XTX)−1XTY .

B-spline is a common choice of basis functions. They are piecewise polynomials

with order h jointed at a set of pre-specified knots as shown in Figure 1.3. One

of the properties is that the target function between two knots is approximated by

only h functions, which gives us flexibility to estimate curves with different pattern

on different regions. Some asymptotic properties of polynomial regression splines

are also developed in Stone (1994) and Zhou et al. (1998).

However, different choices of knots and order can lead to overfitting and unstable

results. Ruppert et al. (2003) introduces a formulation of penalized spline, where a

smoothness penalty is incorporated in the nonparametric regression. Coefficients of

the basis functions γ̂ is the minimizer of

1

n

n∑
i=1

{Yi −BT (ti)γ}2 + λγTΩγ,
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Figure 1.3: plots of B-splines (taken from Ruppert et al. (2003))

where B(t) = (B1, . . . , BK)T (t), f̂λ(t) = BT (t)γ̂. The term Ω is a matrix with (j,

j′)’s entry being
∫
B

(m)
j (t)B

(m)
j′ (t)dt, penalizing the intergal of the derivative of the

spline function, which would result in the fitted curve to be smooth. Tuning param-

eter λ can be selected based on model selection criterion such as cross-validation,

generalized cross validation, Akaike information criterion (AIC), Bayesian informa-

tion criterion (BIC), etc.

For some practical problems, we would like the fitted curve to have a certain

shape or some properties other than smoothness for interpretability. Constraints

need to be incorporated in the smoothing such as monotone smoothing (Ramsay,

1988; Gaylord and Ramirez, 1991) and smoothing for convex functions (Dierckx,

1980). In some applications, we hope to study the sparsity on the curve, which

means we aim to identify some sub-regions on which the function is zero. By using

B-spline basis functions to represent the target curve, this problem transforms to a

variable selection problem where we investigate the sparsity among basis coefficients.
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Zhou et al. (2013) proposes a two-step procedure using group penalties to identify

the sub-regions on which the function has zero values in a functional linear regression

model.

Besides univariate smoothing, bivariate smoothing and multivariate smoothing

have also been studied. Bivariate P-splines (Marx and Eilers, 2005; Eilers and

Marx, 2003) and thin plate splines (Wood, 2003) have been commonly used for

bivariate case. Xiao et al. (2013) also proposed a sandwich smoother and developed

asymptotic theories for bivariate P-splines. For estimating functions with more

than two dimensions, tensor product splines (Huang, 2003) and multivariate form

of P-splines (Currie et al., 2006) are also studied.

1.3 Introduction to longitudinal data

Growth outcomes are repeated measurements, also known as longitudinal data or

clustered data. To model the growth curve, we have to take into consideration of

the within-subject correlation among repeated measurements on the same subject.

Measurements from different subjects are assumed independent. This type of data

has been well studied over recent decades. There are mainly two ways of incor-

porating the within-subject correlation in the longitudinal structure: specifying a

working correlation structure as in marginal models or employing random effects as

in the mixed effects models.

The first method is used for marginal models. For normally distributed longi-

tudinal responses, estimation and inference methods have been well developed for

linear models (Ware, 1985). For generalized linear models, Liang and Zeger (1986)

proposes Generalized Estimating Equations (GEE) approach where a working cor-

relation matrix needs to be specified. An advantage of GEE approach is that the
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estimator of regression coefficients is consistent even when the correlation structure

is mis-specified. For mixed effects models, Laird and Ware (1982) studies random

effect models for longitudinal data. Lindstrom and Bates (1990) proposes a non-

linear mixed effects model. Mixed effect models have also been used in the context

of analysis of variance (ANOVA) (Hedges and Vevea, 1998), and have been extended

to the case of multi-level data (Hedeker and Gibbons, 2006), which are widely used

in medicine and social sciences.

Variable selection plays an important role for high dimensional longitudinal data

analysis to help reduce dimension and improve estimation accuracy. A variety of

methods have been developed in the literature to select informative variables for high

dimensional longitudinal data. Wang et al. (2012) proposes the Penalized Estimat-

ing Equation for variable selection by incorporating penalties in GEE framework and

develops the asymptotic theories for the proposed penalized estimator. Fan and Li

(2012) studies variable selection for mixed effect models with continuous response.

Dziak et al. (2009) proposes to use SCAD-penalized quadratic inference function

for variable selection; Xue et al. (2011) proposes a variable selection method for

generalized additive model for longitudinal data.

Semi-parametric and nonparametric regression techniques can also be extended

to both mixed effects model and marginal models with correlated errors for longi-

tudinal data. Moyeed and Diggle (1994) incorporates random intercept in a semi-

parametric model with smooth functions. Hoover et al. (1998) extends this model

by allowing the random coefficient to be a random curve changing with time. Guo

(2002) generalizes this model as a functional mixed effect model. For marginal

models, Wang (2003) and Lin and Carroll (2000) use kernel methods for marginal

models accounting for correlated errors. Wang et al. (2005) proposes kernel GEE

for a semi-parametric model. Qu and Li (2006) uses quadratic inference functions
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for estimation and inference for varying coefficient models with longitudinal data. In

application, these semi-parametric models are often used by biomedical researchers

to study growth curves because of the nature of the data.

However, those methods reviewed above cannot be applied to our NIH data

directly due to the following reasons. First, none of these studies has considered

the target curve to have the zero-value sub-regions. We aim to search for some

sub-regions on which the diarrhea effect curve/surface levels off. This motivates us

to incorporate penalties on sparsity in our longitudinal model. Zhou et al. (2013)

considers this particular shape constraints in a functional linear model, but the

method is not for longitudinal data. Secondly, none of those methods focuses on

smoothing two curves with different features at the same time. For our study, we are

interested in estimating the natural growth curve and diarrhea effect curve/surface

simultaneously. The former should be monotone for some growth outcomes such as

height growth, while the latter should be sparse in some regions, which requires us

to estimate those two curves separately. Furthermore, the estimation methods and

asymptotic theories for longitudinal models based on smoothing with group penalty

on sparsity need to be developed. In our study, we propose a dynamic model based

on Group Penalized Generalized Estimating Equations to estimate baseline growth

curve and diarrhea effect curve simultaneously and identify the non-zero region of

the diarrhea effect curve. We investigate the asymptotic properties of our developed

estimator.

1.4 Introduction to penalized methods

Penalized methods have been widely used in both functional data and longitudinal

data to regulate the smoothness of the estimates or to conduct variable selection.
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The idea of imposing a penalty term to shrink estimator to zero or to control bias-

variance trade-off is first used in linear regression models. Instead of finding β that

minimizes the least squares, a penalty term is incorporated in the loss function:

minβ
1

2n
||y −Xβ||22 + Pλ(β),

where Pλ(β) is the penalty function, and λ is the tuning parameter.

Different penalty functions are proposed and studied in literature, such as Least

Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996), Smoothly

Clipped Absolute Deviation (SCAD) (Fan and Li, 2001), Elastic Net (Zou and

Hastie, 2005) and Adaptive LASSO (Zou, 2006). The SCAD penalty is defined

through its derivative:

qλ(θ) = λ{I(θ < λ) +
(aλ− θ)+

(a− 1)λ
I(θ > λ)},

for θ ≥ 0 and some a > 2. Usually we let a = 3.7 (Fan and Li 2001). Asymp-

totic results show that SCAD has Oracle property which includes model selection

consistency and parameter estimator normality. An algorithm using iterative ridge

regression is proposed to obtain SCAD estimator using local quadratic approximaton

in Fan and Li (2001).

Another type of penalty method to achieve shrinkage is the Dantzig Selection,

proposed in Candes and Tao (2007). Dantzig Selector is to minimize ||β||l1 subject

to ||Xr||l∞ ≤ (1+ t−1)
√

2log(p)σ, where r = y−Xβ. Estimator can be obtained by

linear programming. The large sample properties of Dantzig selector are also devel-

oped. Under irrepresentable conditions, model selection consistency is guaranteed

(Gai et al., 2013).
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For some variable selection problems, predictors are grouped and the goal is to

select variables in groups. Yuan and Lin (2006) proposes a group LASSO penalty

which is defined as Pλ(β) = λ
∑J

j=1 ||βj||Kj
, where J is number of groups and Kj is

the number of predictors for jth group. Group SCAD has also been adopted and

studied in Zhou and Qu (2012).

In general, when penalty function is smooth, we can solve the equation of the

derivative of the objective function to be 0 numerically by using Newton-Raphson

algorithm. For non-convex penalty functions, Hunter and Li (2005) proposed a

minorization-maximization (MM) algorithm, by introducing a small perturbation

to render it differentiable.
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Chapter 2

Methodology

2.1 Model setup

Our goal is to estimate diarrhea effect curve on growth in the NIH study cohort. As

described in section 1.1.4, our dataset consists of two parts as shown in Table 2.1:

the growth responses measured every 3 months for each subject, and the diarrhea

onset times for all the episodes of diarrhea for each subject. The challenge is that

most of the children develops multiple episodes of diarrhea. Since our assumption

is that each episodes of diarrhea may have long lasting effect, we are not able to

observe the effect of one single diarrhea directly from the data when the growth

outcomes we measure include overlapping effects from multiple episodes of diarrhea.

In addition, the cumulative effect we observe is hard to separate into individual effect

curves because their starting points (diarrhea onset times) are different. To address

those challenges, we propose the following model in order to separate individual

effect curve that we are interested in from the cumulative effect we observe from the

data.

We assume that once there is a diarrhea, the diarrhea will start to have an
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Table 2.1: Data summary

NIH Cohort

Data Variables Summary

Growth data

subject id 629 subjects
gender 297 female, 332 male
age the length of enrollment ranges from 1 day to 1560 days
biomarkers weight, height, WHZ, HAZ, WAZ, BAZ scores.

Diarrhea data
subject id 521 subjects
diarrhea episodes 2605 episodes, up to 1623 days since birth
infection type include EH CTRT, GIA CTRT, CRY CTRT infections

effect β(t) on the growth outcome. The effect β(t) is the diarrhea effect curve

which measures the effect of a single diarrhea on children’s growth changing with

elapsed time t. Let α(t) be the natural growth curve without diarrhea for a cohort

of children. The growth outcomes Y (t) we observe are modeled as the natural

growth curve plus the effects of all the past diarrheas with random error. For model

identifiability, we assume that the effect of each episode of diarrhea is the same

regardless of the onset time, and the effects of different episode on growth outcomes

are additive.

For kth subject, assuming diarrhea happened at time Tki : Tk1, Tk2, ..., we model

the response outcomes as

Yk(t) = α(t) +
∑
i

β(t− Tki) + εk(t),

where εk(t) is the random error.

We observe longitudinal growth outcomes at time tkj : tk1, tk2, ...,

Yk(tkj) = α(tkj) +
∑
i

β(tkj − Tki) + εkj,
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Figure 2.1: cumulative diarrhea effects

εk ∼ N(0,Σk).

As shown above, we model the observed growth curve from the data actually as

a summation of the natural growth curve α(t) and all the individual effect curves

starting from different time points (shown in Figure 2.1). In other words, the model

indicates that in order to estimate the growth outcome at time t, we need to look

back to see how long it has been since each episode of diarrhea occurs and add all

those effects on top of the growth outcome the child should have with no diarrhea

α(t).

We use B-spline basis functions with evenly spaced knots and order h: v1(t), v2(t), ..., vDn(t)

and w1(t), w2(t), ..., wdn(t). Those curves can be approximated as

α(t) =
Dn∑
m=1

amvm(t) + ea(t),
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β(t) =
dn∑
m=1

bmwm(t) + eb(t).

The model then becomes

Yk(tkj) =
Dn∑
m=1

amvm(tkj) +
∑
i

dn∑
m=1

bmwm(tkj − Tki) + ε̃kj

=
Dn∑
m=1

amvm(tkj) +
dn∑
m=1

bm
∑
i

wm(tkj − Tki) + ε̃kj,

where ε̃kj = εkj+ekj, εkj is the random error and the approximation error ekj = eakj+∑
i e
b
kji is the summation of all the approximation errors from each curve. The term

eakj is the approximation error from α(t) at tkj and ebkji is the approximation error

from β(t) at tkj−Tki. The model can be written as Y = (Xa,Xb)Tc+ ε̃ = XTc+ ε̃,

c = (a1, ..., aDn , b1, ..., bdn) = (a, b), where Xa and Xb are the covariates generated

from B-spline functions for α(t) and β(t) respectively, a is a Dn dimensional vector,

b is a dn dimensional vector and c’s dimension is pn = Dn + dn.

It is straight forward to obtain an estimated β(t) in the above approximated

model. However, the actual estimated β(t) by simply using spline approximation

can be problematic, as shown in Figure 2.2. Even though we can see some patterns in

this figure, for example, the effect is negative and levels off after around 2 years, the

curve doesn’t make sense at the beginning where it is positive suggesting diarrhea is

good for the growth and at the end when the magnitude of effect starts to increasing.

There are two reasons to cause the interoperability problem in practice. First, B-

spline approximation has boundary effect, which means the fitted curve may not

be accurate at the beginning and at the end of the smoothing interval where fewer

observed observations are available and they are all on one side. Secondly, to obtain

a reliable estimate for β(t), we need observed values evenly spaced in the range of
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t. However, the observations for β(t) are concentrated at the beginning of age and

become less and less as t increases, as shown in Figure 2.3. For instance, in order

to observe the diarrhea effect on growth nearly four years after the diarrhea, there

has to be a diarrhea right after birth, and at the same time, the child has to be

enrolled in the study for whole four years, which is less likely to happen in reality.

Therefore as t increases, we have less information available to estimate the value of

β(t), which would lead to an estimate of β(t) with larger variation towards the end

of the study.

Another reason that the above method can not be directly applied in our case

is that we would like to study the pattern of the diarrhea effect on the growth, and

our estimation method should be able to facilitate this pattern recognization goal.

Specifically, in this thesis, we are interested to see if the effect of diarrhea on the

body should only last for a certain period of time like other changing processes in

nature triggered by a certain intervention. If so, it is reasonable to assume that the

effect curve β(t) would become flat after a certain period of time and level off to 0

(no permanent effect) or a constant level (permanent effect).

All the above motivates us to impose penalties in our model to achieve an inter-

pretable pattern estimation of the diarrhea effect on growth. Penalized method is a

statistical way to handle overfitting as well, which can deal with the unstable esti-

mation near the boundary as shown in Figure 2.2. Certain penalties can ensure the

fitted curve to be flat and allow us to identify the window of the effect. To identify

the null region and estimate the coefficient function on the non-zero region in func-

tional linear model, Zhou et al. (2013) proposed a two-step approach with B-splines

approximation. However, their model is for functional linear regression and assumes

independent random errors. Penalized models with structured functional estimation

for longitudinal data have not been studied in the literature. To assume sparsity
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Figure 2.2: estimated effect curve without penalty

in longitudinal models for covariates, variable selection techniques have been well

studied. Fan and Li (2012) studies variable selection for mixed effect models with

continuous response. Dziak et al. (2009) proposes to use SCAD-penalized quadratic

inference function. Wang et al. (2012) proposes the Penalized Estimating Equation

for variable selection by incorporating penalties in GEE framework and the asymp-

totic theories are developed. However, the above methods are to select covariates,

not non-zero regions of a function. In this work, we extend the two-step approach

in Zhou et al. (2013) in PGEE framework of Wang et al. (2012) and develop a

group penalties to select non-zero regions for our dynamic diarrhea effect model as

follows.

In our study, we are interested in identifying the zero-value region of the diarrhea

effect curve and estimating the effect curve on the non-zero region, we penalize on

the magnitudes of the B-spline coefficients, after spline approximation, to promote
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Figure 2.3: observed values on beta

group sparsity. The problem thus transforms into variable selection, in a group

fashion, for the non-zero B-splines coefficients for longitudinal data.

2.2 Estimation procedure

The challenge in our study is that the boundary between non-zero region and zero

region is unknown and to be identified. Without knowing where the boundary is,

we will not be able to place the knots adaptively, which may result in inefficient

functional estimation of the dynamic diarrhea effect. For instance, if the boundary

is between two knots, even though the estimated B-spline coefficients can be shrunk

to zero, the estimated zero region will not be accurate and the obtained estimated

effect curve will be biased. Therefore our goal is to develop a procedure to place

knots data-adaptively and adopt the appropriate penalties to obtain the estimation.
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Ideally, to identify the true boundary T0 (or the true null region T = [T0,+∞)),

we need to place more knots so that the estimated zero-value region is more accurate.

However, too many knots will lead to overfitting. Therefore, to identify to null

region and obtain a reliable estimate of the curve simultaneously, we propose a

two-step estimating procedure, which is similar in Zhou et al. (2013), for the more

complicated longitudinal data. We split the whole estimating process into two steps:

the first step to identify the null region, and the second step to estimate the curves.

2.2.1 Step 1: Dantzig step

During this step, the goal is to obtain an initial estimate of the null region T̂ (0) =

[T̂ (0),+∞), where T̂ (0) is the initial estimate of the boundary. We place as many

knots as we can so that the estimated null region is more accurate. Since the

number of B-spline coefficients to estimate is large, the penalty we adopt in this

step should not only ensure sparsity, but also allow fast computation. Therefore we

use Dantzig selector to screen for non-zero bis in this step. Studies have shown the

numerical advantages of Dantzig selector over Lasso (James et al., 2009) and also

the computational advantage when tuning parameter selection is not necessary for

Dantzig selector.

In the Dantzig step, we place k0,n knots over the whole study window in order to

identify non-zero region more accurately and to estimate the corresponding B-spline

coefficients c0. To estimate c0, we find argminc0||c0||l1 subject to |XT
k (Ŷ −Xc0)| ≤

λ, with XT
k being the kth column of X, λ = n

1+(d2−d1)k0
2 for some k0, d1, d2 satisfying

the regularity conditions in Section 2.3 and Chapter 5, where k0,n is the number of

inner knots and h is the order. Based on the selected model, we refit the linear model

using only the selected basis functions and shrink all coefficients whose absolute
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Figure 2.4: observed values on beta

value is less than a pre-specified threshold d to be exact 0. This way we obtain an

initial estimate of the null region T̂ (0) = [T̂ (0),+∞), which should cover the true

null region T = [T0,+∞) with probability tending to 1 as n goes to infinity, which

is ensured in our Theorem 1 in Section 2.3.

The goal of this step is mainly to identify the boundary T0, not to fit the curve,

because many knots we place during this step would lead to overfitting of the curve.

Figure 2.4 shows an example of the fitted curve in this step. Even though the

boundary is clearly identified, the fitted curve on the non-zero region is overfitted,

which is the reason we need to refine the estimate in the next step.
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2.2.2 Step 2: SCAD step

During step 2, we refine the null region based on the one identified in step 1 and

focus on estimating β(t) on the non-null region T̂ (0),c = [0, T̂ (0)). Starting with T̂ (0)

from step 1, we keep refining the boundary to the right with step size ∆, placing

k1,n knots on [0, T̂ (0) + ∆i], for i = 1, 2, .... As for [T̂ (0) + ∆i,+∞), it is treated as

the working null region Tw with zero value and no knots is placed in it. To estimate

the B-spline coefficients c1 for a given i, we use Group Penalized GEE with SCAD

to select basis functions with none-zero coefficients. Then we select the optimal

i that gives us the optimal working null region based on model selection criterion

such as AIC, BIC, QIC, etc. Comparing to the Dantzig step, we place less knots on

[0, T̂ (0) + ∆i] to avoid over-fitting.

The resulting estimating equations are

U(c1) = S(c1)− nqGλ (c1)sign(c1),

where

S(c1) =
n∑
i=1

XT
i A

1/2
i R̂−1

i A
−1/2
i (Yi − µi(c1)),

where R̂i is the estimated working correlation matrix for jth subject, Σi = A
1/2
i R̂iA

1/2
i ,

and µi is the identity link function in our model.

The term qGλ (c1)sign(c1) denotes the component-wise product, where

sign(c1) = (sign(c1), ..., sign(cp))

and

qGλ (c1) = (qλ(||cG1 ||1), ..., qλ(||cGp ||1)).
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The term qλ(θ) is the derivative of the SCAD penalty,

qλ(θ) = λ{I(θ < λ) +
(aλ− θ)+

(a− 1)λ
I(θ > λ)},

for θ ≥ 0 and some a > 2. Usually we let a = 3.7 (Fan and Li 2001).

The term qλ(||cGi ||1) denotes the group penalty for the ith covariate and qλ(θ) is

given by the SCAD penalty based on the L1 norm of the group vector cGi which is

the vector of the group ci (the ith covariates) belongs to. For example, if X1, X3, X4

belong to the same group, then cG1 = cG3 = cG4 = (c1, c3, c4).

In our case, we divide c1 = (a1, b1,S,w, b1,N,w) into 3 groups based on working

null regions Tw = [T̂ (0) + ∆i,+∞) for a given i.

The algorithm for estimation is Newton-Raphson combined with minorization-

maximization (MM) algorithm, similar to Wang et al. (2012),

ck1,n = ck−1
1,n + [Hn(ck−1

1,n ) + nEn(ck−1
1,n )]−1[Sn(ck−1

1,n )− nEn(ck−1
1,n )ck−1

1,n ],

where

Hn(ck−1
1,n ) =

n∑
i=1

XT
i A

1/2
i (ck−1

1,n )R̂−1
i A

1/2
i (ck−1

1,n )Xi,

En(ck−1
1,n ) = diag{qλn( ˆcGn1)

ε+ | ˆcn1|
, ...,

qλn( ˆcGnp)

ε+ | ˆcnp|
}.

Following the above iterative algorithm, we are able to obtain the estimator ĉ1(i)

for a given working null region Tw = [T̂ (0) + ∆i,+∞) after the tuning parameter
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selection. The fitted curves can be constructed as:

α̂(t) =
Dn∑
m=1

â(i)mvm(t),

β̂(t) =
dn∑
m=1

b̂(i)mwm(t),

and the criterion C(Tw, ĉ1(i)) for model selection can be calculated, such as AIC

and BIC.

We repeat this process for each working null region Tw = [T̂ (0) + ∆i,+∞) for

i = 1, 2, ..., and select the best working null region T̂ = [T̂ (0) + ∆î,+∞), where

î = argminiC(Tw, ĉ1(i)) based on the model selection criterion. With ĉ1 = ĉ1(̂i),

the refined fitted curves are

α̂(t) =
Dn∑
m=1

â(̂i)mvm(t),

β̂(t) =
dn∑
m=1

b̂(̂i)mwm(t).

2.3 Asymptotics

In this section, we show that our proposed estimator of the diarrhea effect func-

tion is consistent. Since the fitted curves are approximated by b-spline functions,

the consistency of fitted curves depends on the asymptotic behaviors of the esti-

mated b-spline coefficients, which is closely related to the asymptotic properties of

Dantzig selector and SCAD in a regression setting. Since the asymptotic properties

of Dantzig selector and SCAD in GEE have been studied (Gai et al., 2013; Zhou

et al., 2013), we can extend those results for our model. There are two major dif-
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ferences when we extend their results to our case. First, our data is longitudinal

data with correlated responses on the subject level, whereas the previous proof of

Dantzig selector is for independent cases. Secondly, there are approximation errors

due to b-splines approximation as shown below:

Yk(tkj) =
Dn∑
m=1

amvm(tkj) +
∑
i

dn∑
m=1

bmwm(tkj − Tki) + ε̃kj

=
Dn∑
m=1

amvm(tkj) +
dn∑
m=1

bm
∑
i

wm(tkj − Tki) + ε̃kj,

where ε̃kj = εkj + ekj, and ekj is the approximation error for B-splines. Due to

the B-spline approximation properties, ε̃kj doesn’t follow a normal distribution with

0 mean and constant variance as in the linear regression settings. Our goal is to

extend the established asymptotic results to incorporate approximation errors and

with-subject correlation for longitudinal data.

We need the following conditions in Gai et al. (2013) for the proof of the con-

sistency of the Dantzig estimate. Let C = k0,n
n

(X)TX, where X is the covariates

generated from B-spline basis functions with k0,n inner knots and order h in the

Dantzig step. For any subset T ⊂ {1, 2, ..., k0,n + h}, |T | denotes the number of ele-

ments in T , T̄ is the complement of T in the set {1, 2, .., (k0,n+h)}. Let bT = (bj)j∈T

be the |T | by 1 vector whose entries are those of b indexed by T . Similarly, XT is

defined as the n by |T | matrix whose columns are those of X indexed by T . Given

a (k0,n + h) by (k0,n + h) matrix C and subsets T1, T2 ⊂ {1, 2, ..., (k0,n + h)}, let

CT1,T2 be the |T1| by |T2| sub-matrix from C with rows corresponding to T1 and

columns corresponding to T2. We also denote T ∗ = {j : βj 6= 0} and q = |T ∗|. For

longitudinal data, since ε follows N(0,W ), on the subject level εi follows N(0,Wi)

and we define M := 1
n
XTWX = 1

n

∑
XT
i WiXi.
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Let κn1 be the largest eigenvalue of B, B = k0,nC
−1
E,T ∗ME,EC

−1
T ∗,E, with E satis-

fying the Irrepresentable Conditions proposed in Gai et al. (2013), and let τn1 be

the largest eigenvalue of the semi-positive definite matrix (I − K)(I − K)T with

idempotent K = XT ∗(X
T
EXT ∗)

−1XT
EW , where W is the true covariance matrix.

Assume that there exist 0 ≤ d1 < d2 ≤ 1 such that

(C1) k0,n = O(nd1)

(C2) n(1−d2)/2mini∈T ∗ |b0,i| ≥M1 > 0,

(C3) ||CE,T ∗α||22 ≥ M2 > 0 for any unit vector α, with E satisfying Irrepre-

sentable Conditions,

(C4) 0 < κn1 ≤ κ1 <∞,

(C5) τn1 ≤ τ1 <∞.

C1-C5 are necessary to prove the consistency of Dantzig estimator.

We also need the conditions from Zhou et al. (2013).

(AA1) β(t) has rth (r ≥ 3) bounded derivative on [0, T ]

(AA2) For k0,n, n−1k2r
0,n → 0 and n−1k2r+2

0,n →∞ .

(AA3) For threshold value dn, dnn
1/2k−1

0,n → 0 and dnk
r−2
0,n → 0.

In addition, the following conditions in Wang et al. (2012) are necessary for

Theorem 2.

(A1) There exist two positive constants b3 and b4 such that

b3 ≤ λmin(
k1,n

n

n∑
i=1

XT
i Xi) ≤ λmax(

k1,n

n

n∑
i=1

XT
i Xi) ≤ b4.

(A2) The common true correlation matrix R0 has eigenvalues bounded away

from zero and +∞. The estimated working correlation matrix R̂ satisfies ||R̂−1 −

R̄−1|| = O(
√
k1,n/n), where R̄ is a constant positive-definite matrix with eigenvalues

bounded away from zero to +∞. We do not require R̄ to be the true correlation
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matrix R0.

(A3) The pdfs for tkj and tkj − Tki are bounded away from 0 and +∞.

(A4)
k21,n
n
→ 0, n

kr+1
1,n

→ 0, λn → 0, k1,n
nλ2n
→ 0 and k1,nlog(n)

nλn
→ 0.

A1-A2 are the assumptions from Wang (2011), which are needed to prove the

consistency of the GEE estimator without the approximation error. A3 and A4 are

additional assumptions to complete the proof when there are approximation errors.

A5 suggests the approximation error goes to 0 as k1,n, the number of knots, goes

to infinity. A4 describes the convergence rates among the sample size, number of

knots and the tuning parameter, suggesting that as n goes to infinity, k1,n and 1/λ

also go to infinity but with a rate not too fast or too slow.

Theorem 1. Let b̃0(n) = (b̃0,1(n), ..., b̃0,k0,n+h(n))T be the post-selection estimate of

b0(n) from the Dantzig step, with εk ∼ N(0,Σk). If C1-C5 in Gai et al. (2013)

hold, AA1-AA3 hold, k0,n = o(n(d2−d1)k0) for some d2 > d1, and λ satisfies λ/
√
n =

o(n(d2−d1)k0), and (λ/
√
n)2k0/k0,n →∞, we have

(1) ||b̃0(n)− b0(n)||l2 = Op(n
−1/2k0,n).

(2) sup|b̃0,j(n)| = Op(n
−1/2k0,n) for b0,j(n) associated with true null region de-

noted as T .

(3) With probability tending to 1,

T ⊆ T̂ (0) and T̂ (0) ∩ T c ⊆ Ω(k0,n),

where, with r ≥ 3 as in the condition AA1, Ω(k0,n) = {t ∈ [0, T ] : 0 < |β(t)| <

k−r+2
0,n } is a sub-region of [0, T ], converging to the empty set as n→∞

Theorem 2. Assuming the conditions A1 − A4 and an initial estimator with the

rate ||b̃1(n)− b1(n)||l2 = Op(n
−1/2k1,n), with ei ∼ N(0, 1) and µ = 0.

(1) For t ∈ T , we have β̂(t) = 0, with probability tending to 1.
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(2) For t ∈ T c, we have |β̂(t)− β(t)| = O(n−1/2k
3/2
1,n ).

Theorem 1 shows that the estimator from step 1 is consistent and that the

estimated null region covers the true null region. The proof of Theorem 1 is based

on Theorem 1 in Zhou et al. (2013), combined with our modified proof of the

consistency of Dantzig selector for longitudinal data based on Gai et al. (2013)

in Chapter 5. Theorem 2 shows the consistency for the estimated curve in the

refinement step. The proof in Chapter 5 is an extension of the consistency for

PGEE estimator (Wang et al., 2012).

2.4 Simulations

In this section, we evaluate the numerical performance of our proposed method in

simulation studies. The sample sizes are set to be 100 and 500. For each subject,

growth measures are collected around every 3 months. The number of total growth

measures collected after birth ranges from 2 to 17 with equal probabilities. The

histogram of the number of diarrhea episodes for each subject is shown in Figure

2.5, with diarrhea date uniformly distribution over the 4 years after birth. The

growth outcome for the kth subject with diarrhea effect is modeled as follows:

Yk(tkj) = α(tkj) +
∑
i

β(tkj − Tki) + εkj,

where Yk(tkj) is the growth outcome observed at time tkj. The curve α(t) is the

natural growth curve without diarrhea effect, which we set as the estimated natural

growth curve from the real data (Figure 2.6). Diarrhea happens at time Tki :

Tk1, Tk2, ...,. The diarrhea effect curve β(t) (Figure 2.7) is set as follows:
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Figure 2.5: Histogram of number of diarrhea episodes for each child.
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Figure 2.6: Natural growth curve α(t)

β(t) =



0.2(x/200 + 0.423)(x/200− 0.577)(x/200− 1.577)− 0.077 0 ≤ x < 230.8

0.2((461.6− x)/200 + 0.423)((461.6− x)/200− 0.577)

×((461.6− x)/200− 1.577)− 0.077 230.8 ≤ x < 461.6

0 461.6 ≤ x.

(2.1)

We specify that εk ∼ N(0,Σk) has a compound symmetry covariance structure

with ρ = 0.3 and the marginal standard deviation σ.

For each generated dataset, we adopt the proposed two-step approach for the

analysis. For the Dantzig step, we use 7 B-spline basis functions (4 inner knots

with order 3) for the estimation of α(t) and 51 basis functions (48 inner knots with
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Figure 2.7: Diarrhea effect curve β(t)

order 3) for β(t). The threshold d is set to be 0.05, according to the suggested

order O(n−0.25) in Zhou et al. (2013). Since Dantzig step is only to have an initial

estimate of the non-zero region which would later be refined, a larger number of

knots and larger threshold could be used and wouldn’t affect the final results much

after refinement.

During the PGEE step, we start with the boundary T from Dantzig step and

refine the null region iteratively with step size equals to 3 weeks for computational

efficiency. For each working boundary, different number of inner knots (2, 3, 4

respectively) are placed onto the working non-zero region to capture the trend while

avoid overfitting and PGEE is applied for the estimation. AIC and BIC criterion

for longitudinal data (Jones, 2011) are used for selection of best model with optimal

working boundary and for the selection of tuning parameter and number of inner

knots.
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Table 2.2: Simulation results

Setting Sample size Criterion σ Boundary: Bias (SE) MISE (SE) failure rate
Setting 1 100 AIC 0.1 36.53 (26.55) 3.06 (1.16) 1%
Setting 2 100 BIC 0.1 38.55 (25.07) 3.03 (1.18) 1%
Setting 3 500 AIC 0.1 35.04 (9.29) 1.85 (0.51) 0%
Setting 4 100 AIC 0.3 62.71 (119.09) 7.51 (3.10) 18%

We try 4 simulation settings to evaluate the performance of our proposed esti-

mator with different sample sizes, standard deviations of random error and model

selection criteria. We repeat the simulation 200 times and obtain the fitted diar-

rhea effect curves and the boundaries between non-null region and null region. To

evaluate the performance, we report the bias and standard error of the estimated

boundary, and the mean and standard error of the Integrated Standard Error (ISE)

of the estimated effect function β(t), which is defined as E
∫

(β̂(t) − β(t))2dt. We

also report the percentage, out of the 200 generated data sets, we fail to identify

the null region during the Dantzig step.

The simulation results are shown in Table 2.2. The true non-null region is

[0, 461.6] days. The results from setting 1 suggest that our method is able to identify

the boundary (462 days) with a bias of roughly a month. Given that our step size

is 3 weeks, this estimated boundary is rather close to the true value. Some of the

fitted curves are shown in Figure 2.8, suggesting the estimated curves are close to

the true curve and can capture the pattern of the diarrhea effect. If we use BIC

instead of AIC for model selection as shown in setting 2, the results are very close,

suggesting the robustness of our developed estimator to model selection criteria.

We use AIC for other settings. Settings 3 and 4 show that larger sample size or

smaller random error lead to better estimation with smaller bias and SE for both

the estimated boundary and ISE, and smaller failure rate during the Dantzig step.



37

Figure 2.8: β̂(t) vs. β(t)
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Chapter 3

Extended models

The model we propose in section 2 assume that the growth curve of each child is

only affected by diarrhea and that those diarrhea episodes have the same pattern

of effect. In reality, many other factors could affect growth or the diarrhea process.

Even though it is reasonable to assume those other factors can be averaged out

when there are enough samples and to model the effect of diarrhea marginally, we

can easily extend the proposed model in Chapter 2 to take into account other factors

of our interests. In this section, we present four extended models to show how our

model can be applied in different scenarios.

3.1 With additional covariates

The model proposed in Chapter 2, Yk(tkj) = α(tkj)+
∑

i β(tkj−Tki)+εkj, has several

assumptions. One of the assumptions is that every child has the same α(t) which

is the baseline growth curve without diarrhea, and other covariates associated with

growth outcome such as social economic status, nutritional biomarkers, etc, are not

considered in the modeling process. Based on the available data we have, we can
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improve the efficiency of the estimation by including these additional covariates in

the model as shown below:

Yk(tkj) = Xk(tkj)u+ α(tkj) +
∑
i

β(tkj − Tki) + εkj,

where Xk(t) is time-varying (or time independent) covariate and u is the coefficient

of the corresponding effect. The proposed methods and estimation procedure still

applies in this scenario. We can approximate the curves of interest in the same way:

α(t) =
Dn∑
m=1

amvm(t) + ea(t),

β(t) =
dn∑
m=1

bmwm(t) + eb(t).

The model then becomes

Yk(tkj) =
Dn∑
m=1

amvm(tkj) +
∑
i

dn∑
m=1

bmwm(tkj − Tki) + ε̃kj

=
Dn∑
m=1

amvm(tkj) +
dn∑
m=1

bm
∑
i

wm(tkj − Tki) + ε̃kj,

where ε̃kj = εkj+ekj, εkj is the random error and the approximation error ekj = eakj+∑
i e
b
kji is the summation of all the approximation errors from each curve. It can be

written as Y = (Xa,Xb,X)Tc+ε̃ = XTc+ε̃, c = (a1, ..., aDn , b1, ..., bdn , u1, ..., up) =

(a, b,u), where a is a Dn dimensional vector, b is a dn dimensional vector and u’s

dimension is p which is the number of additional covariates.

Since we have control over whether to impose penalty on a specific coefficient or

not, there are two options to estimate the additional parameters u. If our goal is

to estimate the curves with those additional covariates accounted for, we can only
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penalize on b with no penalty imposed on u. Or if our goal is to estimate the curves

and identify the covariates that have significant impact on childhood growth, we

can add penalty on both b and u. Either way, the estimating procedure remain the

same.

3.2 Leveling off to a constant

Besides including more covariates, we can also relax some of the assumptions we

made about the effect curve β(t) in Chapter 2. In the data analysis using the

original model, we manage to identify the window of the diarrhea effect, after which

the effect levels off to 0 suggesting there’s no permanent effect. However, for other

types of effect which could have a permanent effect, in stead of assuming it would

level off the 0, we assume in general that it could level off to a constant. Our model

can also be extended in this scenarios to identify the constant region (to estimate

the window of temporary effect) and fit the curve on non-constant region at the

same time.

The model remains the same:

Yk(tkj) = α(tkj)+
∑
i

β(tkj−Tki)+εkj =
Dn∑
m=1

amvm(tkj)+
∑
i

dn∑
m=1

bmwm(tkj−Tki)+ε̃kj

=
Dn∑
m=1

amvm(tkj) +
dn∑
m=1

bm
∑
i

wm(tkj − Tki) + ε̃kj,

where ε̃kj = εkj + ekj, and ekj is the approximation error for B-splines.

The difference is that instead of estimating bis with penalty to promote bl =

bl+1 = ... = bdn = 0 for some l which would leads to a zero-value region at the end,

we impose a different penalty to promote bl = bl+1 = ... = bdn , which would lead to
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a constant-value region. To achieve the goal, penalties cannot be imposed on those

bis directly. Instead, noticing that
∑dn

m=1 wm(t) = 1 for any t, which is the property

of B-spline basis functions, we have

β(t) =
dn∑
m=1

bmwm(t) + e(t) = bdn +
dn−1∑
m=1

(bm − bdn)wm(t) + e(t).

Letting h0 = bdn , hi = bi − bdn for i = 1, ..., dn − 1, we have

β(t) = h0 +
dn−1∑
m=1

hmwm(t) + eb(t)

which becomes a linear model with intercept.

After the change of variables, identifying constant value region is equivalent to

finding hl = hl+1 = ... = hdn−1 = 0 for some l, which becomes a variable selection

problem that is essential the same as the original model. Traditionally, B-spline

approximation requires the use of all dn basis functions. In this case, by using

only dn − 1 basis functions with an intercept, we are able to make sure the fitted

curve levels off the a constant if there’s a permanent impact and the fitted h0 (the

intercept) is the constant level it levels off to.

3.3 Different types of effect curves

The original model also assumes that all the diarrhea episodes have the same effect

function β(t), which can also be relaxed in our framework. In practice, we are

interested in modeling more than one type of effect curves at the same time, either

because they are of different diseases, or because, in this case, they are different

types of diarrhea. Our model can be easily extended for multiple curve estimation

so that we can not only differentiate different types of effect but also estimate them
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simultaneously.

In addition to the single effect curve β1(t), we can add more effect curves

β2(t), β3(t), ... in the same way, shown as below:

Yk(tkj) = α(tkj) +
D∑
d=1

∑
i

βd(tkj − Tkid) + εkj,

where Tkd1, Tkd2, ..., Tkdi are the onsite dates of type d for subject k. The estimation

for this model is the same as our proposed model, after we use additional sets of

basis functions to estimate different types of βd(t) as shown below,

α(t) =
Dn∑
m=1

amvm(t) + ea(t),

βd(t) =
dn∑
m=1

bdmw
d
m(t) + ebd(t), d = 1, ..., D

Accordingly, instead of estimating the coefficient vector c = (a, b) in the orig-

inal model, we estimate the coefficients of different set of basis functions c =

(a, b1, b2, ..., bD). Since we approximate different types of curve separately, we can

address different question of interests for different curves. This extended model is

useful when multiple biological processes are involved, with each effect being a curve

starting at different time points.

3.4 Two dimensional effect

Another assumption we made about the diarrhea effect curve β(t) is that it is one

dimensional, which means it only depends on time t. It is possible that the curve of

our interests depends on more than 1 variable, for example, in the form of β(t, s),

where t could be the diarrhea onset time, and s could be the time elapsed after
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the onset time. In this case, it is reasonable to believe that as children grow older,

their ability to recover from the diarrhea can become stronger, which is the reason

that researchers have been focusing on growth shortfall especially in early childhood.

Therefore the age of the children should also be included in modeling the diarrhea

effects.

We use a 2-dimensional function β(t, s), t > 0 and s > 0, to model the effect

of the diarrhea lasting s time after the onset time t. This matrix denoting the

dynamic diarrhea effects is proposed to be estimated in the model yi(tij) = α(tij) +∑J
k=1 β(Tik, tij −Tik) + εij, where yi(tij) is the growth measurement, such as height,

on child i taken at age tij, α(tij) is the mean growth function of the study cohort, Tik

with k = 1, 2, ..., K are the onset times of diarrhea episodes happened before time

tij on child i, and εij are random errors. Here, we assume that episodes of diarrhea

have additive effects on the growth shortfalls. The estimation of this model will

not only show us the pattern of diarrhea effect on childhood growth but also tell us

how this pattern varies based on the age of the children when they develop diarrhea.

Understanding the age range in which diarrhea affects children’s growth most would

further help us make better health policies, conduct more timely interventions, and

improve the health of children globally.

The function β(t, s) is a general form indicating that the effect curve depends

on both the age and the length of time since diarrhea. However, in application, we

can assume the function to have specific form to facilitate the estimation and to

incorporate our prior understanding of the diarrhea process. We illustrate how to

incorporate both time variables in the following example.

We assume β(t, s) = b(t) ∗ β̃(s), where β̃(s) is the diarrhea effect s days after

the onset of diarrhea, the shape of which remains the same for any age. However,

the scale of the effect depends on the age of the subject when the diarrhea is onset.
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Theoretically, we don’t have to assume β(t, s) to have any specific form by using

two-dimensional splines for approximation, which certainly can be a future research

direction. Here, we would start from a simpler model by assuming β(t, s) = b(t)∗β̃(s)

to reduce the model complexity and increase the interpretability. By separating the

scale function b(t) and the shape function β̃(s), we are able to study the pattern of

the diarrhea effect, and investigate how the age factor fit into our study goals, for

example, if as children grow older, their body responds better to the diarrhea and

experience less effect.

The estimating procedure remains the same with the only difference being using

additional set of b-spline functions to approximate b(t).

To summarize, our original model is essentially a regression model for curve

estimation, which can be extended the same way other regression model or curve

estimation methods have been extended. We demonstrate four directions that are

closely related to our question of interests in the NIH cohort study. Other extensions

such as generalized linear model, mixed effects model and monotone function esti-

mation can all be easily incorporated in our framework for other types of datasets

or other question of interests.
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Chapter 4

Real data analysis

The data we use in this thesis comes from the NIH study. During 2008-2012, a

cohort of total 629 infants (332 boys and 297 girls) were enrolled into the study

after birth - in Dhaka, Bangladesh. The growth outcomes of each child were recorded

every 3 months until the end of the study, resulting in 6831 observations. Measures

of growth include weight, height, WHZ (weight-for-height z-score), HAZ (height-

for-age z-score), WAZ (weight-for-age z-score), BAZ (BMI-for-age z-score), which

are scores set by WHO based on children’s growth worldwide. Children’s health

condition was monitored every two weeks by visits of a research staff. During the

visits, questionnaire and follow-ups were given to record children’s health condition.

If there was an acute illness, the child would be sent to the study clinic for further

evaluation. When a child had diarrhea symptoms, stool samples were taken to

further decide if it was diarrhea or not and if there are any pathogens present in

the stool sample. The information of the starting date of each diarrhea episode

was also provided by the questionnaire. In our study, 521 out of 629 children had

diarrhea of totally 2605 episodes. For each episodes of diarrhea, we tested the

presence of Crypto, EH and Giardia, which are 3 common pathogens that could
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cause diarrhea. Out of all 2605 diarrhea episode samples, 197 of them contain

Crypto, 243 of them contain EH, and 731 contain Giardia. Overall, majority of the

samples (1601 samples) don’t contain any of the three pathogens.

4.1 Original model fitting

To study the diarrhea effect on childhood growth, we choose HAZ as a better mea-

sure for overall growth because weight-associated score is highly sensible to diarrhea

in short term. The reason we use HAZ instead of height (cm) is because as chil-

dren grow older, their heights will increase and therefore leads to an increase of

the variance of random errors. By using HAZ, we can adopt the constant variance

assumption for the random errors. To apply the proposed model, we need to first

specify the number of knots and the location of them. For estimating α(t), since

this is mainly a baseline rather than the effect curve that we are mainly interests in,

only 4 inner quantile knots are placed in both step 1 and 2. For estimating β(t) in

the Dantzig step, we place 49 evenly spaced inner knots over 4 years and obtain an

estimate of the boundary around day 450. As explained before, the goal is to place

as many knots as we can so we can narrow down the initial estimate of null region

to begin with in the following step. Since the total length of the study is about 4

years, by breaking it down into 50 intervals with roughly 1 month each, we believe

the number is a good balance between model complexity and estimation accuracy

for the initial estimate of null region. We have tried increasing the number of knots

and the results are consistent. Next, for the PGEE step, starting from the initial

boundary we obtain in step 1, we move the boundary to the right every time with

7 days to refine the null region. For each fixed boundary, different number of knots

are placed in the non-null region. We select the number of knots and the tuning
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Figure 4.1: Fitted diarrhea effect curve β(t)

parameter at the same time based on AIC. The best model with 3 inner knots and

a boundary of 464 (66.3 weeks) is selected with AIC=12560.31. The fitted α(t) and

β(t) are shown in Figure 2.6 and Figure 4.1.

The fitted natural growth curve shows that the growth of children in Bangladesh

is below average in WHO standard. In addition, HAZ score keeps dropping over

first two years after birth and then remain roughly the same level. The diarrhea

effect curve shows that the HAZ score is not affected shortly after the diarrhea, but

due the lack of nutrition, this diarrhea effect will start to show after 3 months and

remain the negative effect until 15 months. The valley of the diarrhea effect is -0.013

around 9 months. After the catch-up growth starting from 9th month, children will

return to the original level 15 months after the diarrhea. The above results provide

a better understanding of the dynamic diarrhea effect on childhood growth along

with the overall natural childhood growth in the study cohort.
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These results confirm the association between diarrhea and childhood growth.

Even though the effect will level off eventually due to the catch up growth, children

can still experience growth shortfall for up to 15 months after a single episode of

diarrhea. These can serve as the evidence to support the necessity of intervention

for the welfare of children especially in the developing countries. Furthermore, the

pattern estimated from our model could also give us a better understanding of how

and when to intervene in order to prevent or reduce the negative effect of childhood

growth due to diarrhea.

4.2 Extended model 1: additional covariates

The original model assumes the baseline (α(t)) of growth for every child is the

same. However, many factors can affect the childhood growth and certain groups of

children do generally have better growth outcomes than other groups. For instance,

we are all aware of the clear difference in growth patterns between boys and girls,

which has been confirmed in some studies (Tumilowicz et al., 2015). Therefore, to

illustrate how our model can incorporate additional covariates, we use gender as

covariate in the following analysis.

The extended model can be expressed as

Yk(tkj) = gender ∗ u+ α(tkj) +
∑
i

β(tkj − Tki) + εkj,

where u is the coefficient for gender (male=1, female=0).

Since our goal is to estimate the effect curves with the gender factor accounted

for, we adopt the same estimating procedure with no penalty imposed on gender.

The resulting estimated curves are shown in Figure 4.2 and Figure 4.3 and û =
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Figure 4.2: Fitted natural growth curves with extended model 1

−0.046. The fitted effect curves are very close, which suggests that incorporating

gender doesn’t affect the estimation of β(t). However, boys have lower baseline

growth than girls with a difference of 0.046 in HAZ, which can be seen in Figure

4.2 where the red curve (for girls) is slightly higher than the one from our original

model where the estimated curve represent the average growth curve of all boys and

girls.

4.3 Extended model 2: leveling off to a constant

In some cases, the curve to be estimated levels off to a constant that is different

from 0. When estimating β(t) with this property in the model Yk(tkj) = α(tkj) +∑
i β(tkj − Tki) + εkj, we include the intercept term for b-spline approximation.

Since as shown above, there’s no permanent effect of diarrhea based on the data.
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Figure 4.3: Fitted diarrhea effect curve with extended model 1

To illustrate how this extended model can be applied to identify nonzero constant-

value region, we generate data based on a β(t) with a permanent effect of -0.05. As

shown in Figure 4.4, our fitted curve is flat after 300 days. In addition, the level it

remains at is not 0, which suggests our extended model can shrink the curve to be

flat, and detect a nonzero long term permanent effect. This model can be viewed as

a generalization of our original model to estimate a long term constant effect.

4.4 Extended model 3: multiple curves

For our dataset, the question of interest here is whether the infection type of the

diarrhea can be linked to the level of diarrhea effect. Crypto, EH and Giardia,

which are 3 common pathogens that could cause diarrhea, were tested for the stool

samples for each episode of diarrhea recored. We found one of the 3 pathogens in
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Figure 4.4: Fitted curve vs. true curve



52

1004 diarrhea episodes out of the total 2605 episodes of diarrhea recorded. To study

whether the diarrhea with presence of one of those pathogens has greater impact on

children’s growth, we apply the above model with 2 types of effect curves: type 1,

Crypto, EH and Giardia related; type 2, the rest,

Yk(tk,j) = α(tk,j) +
∑
i

β1(tk,j − Tk,i,1) +
∑
i

β2(tk,j − Tk,i,2) + εk,j.

The effect of Crypto, EH and Giardia is denoted as β1(t) and β2(t) denotes the

effect of diarrhea with no pathogen detected. Applying our estimation procedure, no

signal can be detected for β2(t) (β̂2(t) = 0), which suggests that most of the growth

shortfall is related to the diarrhea caused by pathogens (Crypto, EH or Giardia)

and no growth shortfall is linked to the rest. Figure 4.5 and Figure 4.6 show the

estimated baseline growth curve and the diarrhea effect curve for pathogen-related

diarrhea. The shape is similar to that of the general diarrhea effect curve from our

analysis above, but with a greater effect level (-0.023) and a shorter effect window

(12 months). By differentiating different infection types, we are able to identify the

pathogens associated with growth shortfall and estimate the corresponding effect

curve more accurately, which could help to make better policies and conduct more

efficient interventions.

4.5 Extended model 4: Two dimensional curves

Our next goal is to estimate the diarrhea effect curve by assuming the diarrhea

effect curve is also dependent on the onset time of diarrhea. For example, diarrhea

happens during first few months of life would have different effect from those in later

years of life.
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Figure 4.5: Fitted natural growth curves with extended model 3
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Figure 4.6: Fitted diarrhea effect curve with extended model 3

We use a 2-dimensional functional matrix β(t, s), t > 0 and s > 0, to model the

effect of the diarrhea lasting s time after the onset time t. We assume β(t, s) =

b(t) ∗ β̃(s), where β̃(s) is the diarrhea effect s days after the onset of diarrhea,

the shape of which remains the same for any age. However, the scale of the effect

depends on the age of the subject when having diarrhea, and is denoted by b(t)

where t refers to the onset age.

The estimated shape of the diarrhea effect and the scale function with onset

time are shown in Figure 4.7 and Figure 4.8. The estimated shape function shows

that the pattern of the diarrhea is similar to the one estimated from the marginal

model in Chapter 2. However, the scale function provides additional information

for understanding the impact of diarrhea on early childhood. The effect levels off

after roughly the age of 700 days, suggesting that diarrhea mainly affect the growth
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Figure 4.7: Estimated shape curve

of children under the age of 2. In addition, the effect is most significant to children

around 8 months old. These preliminary results not only provide evidence on the

association between diarrhea and growth shortfall in early childhood, but also give

us a better understanding of the pattern of the effect and its change with age.
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Chapter 5

Detailed proofs

5.1 Proof of Theorem 1

To prove Theorem 1, it is sufficient to prove the consistency of Dantzig selector in

our case (with approximation errors for longitudinal data). We modify the proves

in Gai et al. (2013) to incorporate approximation errors and covariance matrix. As

follows, Lemma 1 proves the sign consistency and Lemma 2 proves the post-selection

consistency based on Lemma 1.

Lemma 1. (Sign consistency). Assume the ε̃ij are random variables with

E(ε̃ij)
2k0 < ∞ for some interger k0 > 0. If (C1)-(C3) in Gai et al. (2013)

hold, k0,n = o(n(d2−d1)k0) for d2 > d1, and λ satisfies λ/
√
n = o(n(d2−d1)/2), and

(λ/
√
n)2k0/k0,n →∞, then the Irrepresentable Conditions imply that

P (b̃0(λ) =s b0) ≥ 1−O(
k0,nn

k0

λ2k0
)→ 1, n→∞.

To prove Lemma 1, we need to following lemmas.

Lemma A.1. For longitudinal data of m subjects, di repeated measurements
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for the ith subject (di < D). Total number of observations n =
∑m

i=1 di. Let

θ = (θT1 , ...,θ
T
m) = (θ11, ..., θ1d1 , ..., θmdm) be a vector of random variables with same

marginal normal distribution (mean=0) and such that E(θ11)2k0 < ∞ for some

integer k0 > 0. Then, for constant vector α,

E(αT θ)2k0 ≤ D2k0(2k0 − 1)!!||α||2k02 E(θ11)2k0 .

Proof:

We know for normal distribution with zero mean, E(αT θ)2k0 = (2k0−1)!!var(αT θ)k0 .

We also have var(αT θ) = ||α||22E(θ11)2 +
∑
cov(αiθi, αjθj). Since different subjects

θi are independent to each other, we only need to account for within subject cor-

relation, which will lead to var(αT θ) ≤ D2||α||22E(θ11)2. Therefore E(αT θ)2k0 ≤

D2k0(2k0 − 1)!!||α||2k02 E(θ11)2k0 .

Lemma A.2. In addition to Lemma A.1, with the approximation error e =

(eT1 , ..., e
T
m) = (e11, ..., e1d1 , ..., emdm) where |eij| = O(k−r0,n) and k0,n, n→ 0,

E(αT (θ + e))2k0 ≤ CD2k0(2k0 − 1)!!||α||2k02 E(θ11)2k0 .

Proof : E(αT (θ + e))2k0 = E(αT θ)2k0 +
∑2k0

i=1(αT e)iE(αT θ)2k0−i. We know

|αT e| → 0 as n, p→ 0 and that E(αT θ)2k0−i = O(||α||2k02 ).

Proof for Lemma 1: The proof is similar to the proof of theorem 3 in Gai et

al. (2013) using Lemma A.1 to substitute the original Lemma A.1.

Let ζ = (ζ1, ..., ζp−q)
T = CĒ,T ∗C

−1
E,T ∗ZE − ZĒ, ξ = (ξ1, ..., ξq)

T = DC−1
E,T ∗ZE, and

h = (h1, ..., hn)T = DC−1
E,T ∗sign(µ̃E), where D = k0,ndiag(sign(βT ∗)).

Follow the proof in (Gai et al.), 1 − P (β̂D =s β) ≤
∑p−q

i=1 P (|ζi| ≥ λ√
n
ηi) +∑q

j=1 P (|ξj| ≥
√
n(|βj| − λ

n
hj))
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Since ε follows N(0,W ), on the subject level εi follows N(0,Wi) and we can

prove M := 1
n
XTWX = 1

n

∑
XT
i WiXi →M∗ converges to a matrix M∗.

Therefore ζ = GT ε̃ = GT (ε+e). GTG = 1
n
(CĒ,T̄ ∗C

−1
E,T ∗X

T
E−XT

E)W (XEC
−1
T ∗,ECT̄ ∗,Ē−

XĒ) = C∗
Ē,T̄ ∗

(C∗)−1
E,T ∗ME,E(C∗)−1

T ∗,EC
∗
T ∗,Ē
−C∗

Ē,T̄ ∗
(C∗)−1

E,T ∗ME,Ē−MĒ,E(C∗)−1
T ∗,EC

∗
T ∗,Ē

+

MĒ,Ē = 1
n
XT

Ē
(I −K)(I −K)TXĒ, where K = XT ∗(X

T
EXT ∗)X

T
EW .

Therefore, by (C5), we have ||Gi||22 ≤ τ1 <∞. Lemma A.1 implies

E(ζi)
2k0 <∞

. Similarly, we can show E(ξj)
2k0 < ∞, which is the results of A.20 in Gai et al.

(2013). Therefore the rests of the proof are the same as Theorem 3 in Gai et al.

(2013).

Next, we further prove the post-selection consistency.

Let X denotes the design matrix after using B-splines and C = 1
n
XTX. Write

the n × |T̂ | design matrix as XT̂ = (X1T̂ , ..., XnT̂ )T , where T̂ is the set of selected

column indexes. The post-selection least squares estimator b̃0 of b0 is

b̃T̂ = C−1

T̂ ,T̂
{ 1

n
XT
T̂
Y } = C−1

T̂ ,T̂
{ 1

n

n∑
i

XT
iT̂
Yi}, and b̃ ¯̂

T
= 0.

Lemma 2 (Post-selection consistency of Dantzig selector). Assume that the

Dantzig selector estimator is strongly sign consistent, and themax1≤i≤n,1≤j≤qx
2
iT ∗,j <

∞ holds, whereXT
iT ∗ = (xiT ∗,1, ..., xiT ∗,q) corresponding to the ith row of matrixXT ∗ .

Then

||b̃0 − b0||2 = Op(

√
q2

n
).

Proof of Lemma 2: We modify the proof given in Gai et al. (2013). Take
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∆n = {sign(b̃0) = sign(b0)}. On ∆n, T̂ = T ∗ is fixed. For any τ > 0,

P (|b̃0 − b0| > τ) = P (|b̃T̂ − bT ∗| > τ) ≤ P (|b̃T̂ − bT ∗| > τ,∆n) + P (∆c
n)

= P (|b̃T̂ − bT ∗| > τ |∆n) ∗ P (∆n) + P (∆c
n).

Under sign consestency, we know that P (∆c
n) goes to zero as n tends to infinity.

Thus it is sufficient to prove P (|b̃T̂ −bT ∗| > τ |∆n) tends to zero. For this, it suffices

to prove that, on ∆n,

||k0,nC
−1
T ∗,T ∗{

1

n

n∑
i=1

XiT ∗ ε̃i}||2 = Op(

√
q2

n
).

Since max1≤i≤n,1≤j≤qx
2
iT ∗,j <∞, we have

E||{ 1

n

n∑
i=1

XiT ∗ ε̃i}||22 =
1

n2
{

n∑
i=1

||XiT ∗||22E(ε̃2i ) +
∑

u,v∈same subject

XT
uT ∗XvT ∗cov(ε̃u, ε̃v)}

(5.1)

≤ D2

n2

n∑
i=1

||XiT ∗ ||22E(ε̃2i ) = O(
q

n
) (5.2)

By the Markov inequality, we get that

|| 1
n

n∑
i=1

XiT ∗ ε̃i||22 = Op(
q

n
).

And it follows that
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||k0,nC
−1
T ∗,T ∗{

1

n

n∑
i=1

XiT ∗ ε̃i}||22 = trace((
1

n

n∑
i=1

XiT ∗ ε̃i)
TC−1

T ∗,T ∗C
−1
T ∗,T ∗(

1

n

n∑
i=1

XiT ∗ ε̃i))

(5.3)

= k0,nO(|| 1
n

n∑
i=1

XiT ∗ ε̃i||22) = Op(
q2

n
). (5.4)

Therefore, Theorem 1 part (1) is proved. Part (2) & (3) can be proved based on

part (1) following the proof of Theorem 1 in Zhou et al. (2013).

5.2 Proof of Theorem 2

To prove Theorem 2, it is sufficient to prove the consistency of the estimator b̂1(n)

(Theorem 3).

Theorem. 3.

For the estimated b-splines coefficients from step 2, we have

(1) b̂1,j(n) = 0, with probability tending to 1, for any b̂1,j(n) associated with T̂ (0).

(2) |b̂1,j(n)− b1,j(n)| = O(n−1/2k
1/2
1,n ) for any b̂1,j(n) associated with T̂ (0),c.

Theorem 2.1 can be proved based on the consistency of PGEE estimator estab-

lished by Wang et al. (2012). The only difference in our case is that there are

approximation errors from B-splines approximation. Our goal is to show that as n

goes to infinity, the PGEE estimator with approximation errors is very close to the

PGEE estimator which is consistent. The following theorems complete the proof of

theorem 3.
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5.3 Proof of Theorem 3

Our estimator ĉn is the root of the following equations:

U(c) = S(c)− nqGλ (c)sign(c) = 0,

where

S(c) =
n∑
i=1

XT
i A

1/2
i (c)R̂−1A

−1/2
i (c)(Yi − µi(c)).

However, S(c) is not a GEE because the existence of approximation errors. If

the response is subtracted by the approximation error, then Ỹ = Y −e can be used

as the response in regular GEE.

We define

Ũ(c) = S̃(c)− nqGλ (c)sign(c),

where

S̃(c) =
n∑
i=1

XT
i Ã

1/2
i (c)R̃−1Ã

−1/2
i (c)(Ỹi − µi(c)).

Now we have our estimator ĉn from U(c) = 0 and c̃n from Ũ(c) = 0 after

adjusting for approximation error.

Based on Wang et al.(2012), c̃n is consistent and converges to the true parameter

cn0 in our model. Our goal is to extend the results to ĉn with approximation error.

Theorem. 3.1

There exists an approximate penalized GEE solution c̃n = (c̃Tn1, c̃
T
n2)T which sat-

isfies the following properties:

(1)

P (|Ũnj(c̃n)| = 0, j = 1, ..., sn)→ 1,
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P (|Ũnj(c̃n)| ≤ λn
log n

, j = sn + 1, ..., k1,n + h)→ 1.

(2)

P (c̃n2 = 0)→ 1,

c̃n1
p→ c10.

Theorem 3.1 is the asymptotic theories for c̃ already established in Wang et al.

(2012), which suggests that the oracle estimator is an approximation solution for

Ũ(c) = 0.

Theorem. 3.2

There exists an approximate penalized GEE solution ĉn = (ĉTn1, ĉ
T
n2)T which sat-

isfies the following properties:

(1.1) P (|Unj(ĉn)| = 0, j = 1, ..., sn)→ 1.

(1.2) P (|Unj(ĉn)| ≤ λn
logn

, j = sn + 1, ..., k1,n + h)→ 1.

(2) P (ĉn2 = 0)→ 1.

(3) ĉn1 → c10.

Theorem 3.2 is the main results of this section. Properties (2) and (3) together

suggest our proposed estimator is an oracle estimator, which means asymptotically,

those truly zero coefficients are estimated as zero by our methods and those non-zero

coefficients are estimated as efficiently as if the true model is known in advance.

Theorem. 3.3

For a regular GEE with no penalty or approximation error, we have the GEE

estimator c̃n from S̃n(c). And with the approximation error but no penalty, we have

estimator ĉn from Ŝn(c). We have the following results (cn0 is the true parameter):

(1) ||c̃n − cn0|| = O(
√
k1,n/n).
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(2) ||ĉn − cn0|| = O(
√
k1,n/n).

(3) ||c̃n − ĉn0|| = O(
√
k1,n/n).

Theorem 3.3 establishs the convergence rates among true parameters, estimated

parameters from GEE and estimated parameters from GEE with approximation

error. The results are needed to complete the proof of Theorem 3.2 where penalty

is incorporated.

5.4 Proofs of Theorem 3.1, 3.2 and 3.3

Theorem 3.1: There exists an approximate penalized GEE solution c̃n = (c̃Tn1, c̃
T
n2)T

which satisfy the following properties:

(1)

P (|Ũnj(c̃n)| = 0, j = 1, ..., sn)→ 1

P (|Ũnj(c̃n)| ≤ λn
log n

, j = sn + 1, ..., k1,n + h)→ 1

(2)

P (c̃n2 = 0)→ 1

c̃n1 → c10

Proof by construction: (Wang et al., 2012) Let c̃n = (c̃Tn1, 0
T )T be the oracle es-

timator. (c̃n1 is the solution to S̃n1(cn1) = 0). And they shows that the constructed

estimator satisfy both (1) and (2).

Theorem 3.2: There exists an approximate penalized GEE solution ĉn = (ĉTn1, ĉ
T
n2)T

which satisfy the following properties:

(1.1)

P (|Unj(ĉn)| = 0, j = 1, ..., sn)→ 1
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(1.2)

P (|Unj(ĉn)| ≤ λn
log n

, j = sn + 1, ..., k1,n + h)→ 1

(2)

P (ĉn2 = 0)→ 1

(3)

ĉn1 → c10

Proof by construction: Let ĉn = (ĉTn1, 0
T )T be the oracle estimator. (ĉn1 is the

solution to Sn1(cn1) = 0)

We will show ĉn satisfy (1.1) and (1.2). And (2) is always true. (3) can be

proved by a lemma in Theorem 3.3. (GEE estimator with approximation error is

still consistent)

(1.1) can be proved based on assumption 4 and the proof of theorem 1 in Wang

et al. (2012) which shows that the GEE estimator we constructed above as c̃n1

satisfies P (|c̃nj| ≥ aλn, j = 1, ..., sn) → 1, which is sufficient to prove the rest of

(1.1). Based on theorem 3, both c̃n1 and ĉn1 converges to the true parameter cn1

O(
√
k1,n/n) with a rate of O(

√
k1,n/n). Combined with assumption 4, we have

P (| ˆcnj| ≥ aλn, j = 1, ..., sn)→ 1 which completes the proof of (1.1).

Proof of (1.2):

Same as in Wang (2011), we only need to prove

P ( max
sn+1≤k≤k1,n

1

n
|Snk(ĉn)| ≤ λn

log(n)
)→ 1
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Without approximation error, it is already been proven that

P ( max
sn+1≤k≤k1,n

1

n
|S̃nk(c̃n)| ≤ λn

log(n)
)→ 1.

Next, we will show ||S(ĉn) − S̃(c̃n)|| = O(k1,n) dominated by nλn
log(n)

which will

complete the proof.

Using the decomposition similar in Theorem 3.6 and Lemma 3.3, 3.4, 3.5 in Wang

(2011), we can easily show that ||S(ĉn) − S(cn0)|| = O(k1,n), ||S(cn0) − S̄(cn0)|| =

O(k1,n) (our Lemma 3.1 as shown later). Similar results can be derived for GEE with

no approximation error: ||S̃(ĉn)− S̃(cn0)|| = O(k1,n), ||S̃(cn0)− ˜̄S(cn0)|| = O(k1,n)

(See the definition in the following Lemma 3.1)

We can also prove that ||S̄(cn0)− ˜̄S(cn0)|| = O(nk−r1,n), which completes the proof.

Theorem 3.3: The two constructed estimators are asymptotically equal. In an-

other word, for a regular GEE with no penalty or approximation error, we have the

GEE estimator c̃n from S̃n(c). And with the approximation error but no penalty,

we have estimator ĉn from Ŝn(c). We have the following results (cn0 is the true

parameter):

(1) ||c̃n − c0|| = O(
√
k1,n/n)

(2) ||ĉn − c0|| = O(
√
k1,n/n)

(3) ||c̃n − ĉ0|| = O(
√
k1,n/n)

Proof: (1) is the Theorem 3.6 in Wang (2011). (3) is a direct result from (1)

and (2). So we only need to prove (2). In what follows, we prove (2) by similarly

following the proof of Theorem 3.6 in Wang (2011).

Lemma 1 (Similar to (3.3) in Wang (2011)): The initial estimator from working

independence correlation structure c̄n satisfies ||c̄n − cn0|| = O(
√
k1,n/n).

Proof: We modify the proof given in Wang (2011) and only need to show that
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E[||S̄n(cn0)||2] = O(nk1,n), where S̄n(cn0) =
∑n

i=1X
T
i (Yi−πi(cn0)) with the approx-

imation errors included. Since E[||S̄n(cn0)||2] ≤ E[
∑
λmax(XiX

T
i )||Yi−πi(cn0)||2] ≤

Ctr(
∑

XiX
T
i ) = O(nk1,n)

Lemma 2 (Similar to (3.4) in Wang (2011)): If we use R̂ = 1
n

∑n
i=1 A

−1/2
i (c̄n)(Yi−

πi(c̄n))(Yi − πi(c̄n))TA
−1/2
i (c̄n), we can prove that

||R̂−1 −R−1
0 || = O(

√
k1,n/n),

where R0 denotes the true common correlation matrix.

Proof: Wang (2011) has proved this results for regular GEE without approxi-

mation errors:

S̃(c) =
n∑
i=1

XT
i Ã

1/2
i (c)R̃−1Ã

−1/2
i (c)(Ỹi − µi(c))

where Ỹi = Yi−ei, R̃ = 1
n

∑n
i=1 A

−1/2
i (c̄0

n)(Ỹi−πi(c̄0
n))(Ỹi−πi(c̄0

n))TA
−1/2
i (c̄0

n) and

c̄0
n is the estimator assuming working independence.

They defines

R∗∗ =
1

n

n∑
i=1

A
−1/2
i (cn0)(Ỹi − πi(cn0))(Ỹi − πi(cn0))TA

−1/2
i (cn0),

and shows that ||R̃−R∗∗|| = O(1/
√
n) and ||R∗∗ −R0|| = O(

√
k1,n/n). Therefore

||R̃ −R0|| = O(
√
k1,n/n), which is sufficient to prove (3.4) in Wang (2011), which

is ||R̃−1 −R−1
0 || = O(

√
k1,n/n).

With the approximation errors, to prove Lemma 2, we modify the proof above
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and define

R∗ =
1

n

n∑
i=1

A
−1/2
i (cn0)(Yi − πi(cn0))(Yi − πi(cn0))TA

−1/2
i (cn0).

First, we show ||R∗ − R0|| = O(
√
k1,n/n). That is because ||R∗ − R∗∗|| ≤

2|| 1
n

∑
A
−1/2
i ei(Yi − πi(cn0))A

−1/2
i )|| + || 1

n

∑
A
−1/2
i eie

T
i A
−1/2
i || = O(k−r1,n), which

is dominated by O(
√
k1,n/n). Given that ||R∗∗ − R0|| = O(

√
k1,n/n), we have

||R∗ −R0|| = O(
√
k1,n/n).

Next, we show ||R̂−R∗|| = O(
√
k1,n/n).

|R̂kj −R∗kj| ≤|
1

n

∑ (Yik − π̂ik)(Yij − π̂ij)− (Yik − π0
ik)(Yij − π0

ij)√
A0
ik

√
A0
ij

|

+ | 1
n

∑ (Yik − π̂ik)(Yij − π̂ij)√
A0
ik

√
A0
ij

δ̂ijk|

≤| 1
n

∑ (Ỹik − p̃iik)(Ỹij − π̃ij)− (Ỹik − π0
ik)(Ỹij − π0

ij)√
A0
ik

√
A0
ij

|

+ | 1
n

∑ (Ỹik − π̃ik)(Ỹij − π̃ij)√
A0
ik

√
A0
ij

δ̃ijk|+O(k−r1,n)

where π0
ik = πik(cn0), π̃ik = πik(c̃n0), π̂ik = πik(ĉn0), A0

ik = π0
ik(1 − π0

ik), Ãik =

π̃ik(1 − π̃ik), and Âik = π̂ik(1 − π̂ik). δ̃ijk = [A0
ikA

0
ij]

1/2[ÃikÃij]
−1/2 − 1 and δ̂ijk =

[A0
ikA

0
ij]

1/2[ÂikÂij]
−1/2 − 1.

Sine the first two terms are calculated in Wang (2011), we have ||R̂ − R∗|| ≤

O(k1,n/n) +O(k−r1,n) = O(k1,n/n), which complete the proof for Lemma 2.
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Lemma 3.1. Define

S̃n(cn0) =
∑

XiA
1/2
i R̃−1A

−1/2
i (Ỹi − πi)

˜̄Sn(cn0) =
∑

XiA
1/2
i R̄−1A

−1/2
i (Ỹi − πi)

Sn(cn0) =
∑

XiA
1/2
i R̂−1A

−1/2
i (Yi − πi)

S̄n(cn0) =
∑

XiA
1/2
i R̄−1A

−1/2
i (Yi − πi)

Then we have ||Sn(cn0)− S̄n(cn0)|| = O(k1,n).

Proof: Following the proof of Lemma 3.1 in Wang (2011) which proves ||S̃n(cn0)−˜̄Sn(cn0)|| = O(k1,n), we incorporate the approximation error and modify the proof

accordingly.

Let Q = R̂−1 − R̄−1, it is already been proven that qij = O(
√
k1,n/n).

Sn(cn0)− S̄n(cn0) =
∑
i

∑
j1

∑
j2

qj1,j2A
1/2
ij1
A
−1/2
ij2

(Yij2 − πij2)Xij1

=
m∑
j1

m∑
j2

qj1j2 [
n∑
i

A
1/2
ij1
ηij2Xij1 ]

where ηij2 = A
−1/2
ij2

(Yij2 − πij2). Note that
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E[||
n∑
i

A
1/2
ij1
ηij2Xij1||2] =

n∑
i

Aij1E[η̃ij2 +O(p−r)]2XT
ij1
Xij1

≤
n∑
i

XT
ij1
Xij1 = O(nk1,n)

where η̃ij2 = A
−1/2
ij2

(Ỹij2 − πij2), and the rest of the proof is same as in Wang

(2011).

Lemma 3.2, 3.3, 3.4, 3.5 in Wang (2011) can also be extended to GEE with

approximation error as follows, and the proof is the same as in Wang (2011).

Lemma 3.2.

D̄(cn) = H̄(cn) + Ē(cn) + Ḡ(cn)

where

D̄(cn) = −∂S̄(cn)

∂cTn

H̄(cn) =
n∑
i

XT
i A

1/2
i (cn)R̄−1A

1/2
i (cn)Xi

Ē(cn) =
1

2

n∑
i

m∑
j

(1− 2πij(cn))ηij(cn)XT
i A

1/2
i (cn)R̄−1êj ê

T
j Xi

Ḡ(cn) = −1

2

n∑
i

m∑
j

(1− 2πij(cn))A
1/2
i (cn)XijX

T
ij ê

T
j R̄−1ηi(cn)

where êi denotes a unit vector of length m whose jth entry is one and all the

other entries are zero.

Lemma 3.3. For any ∆ > 0, for bn ∈ Rk1,n+h, we have

sup
||cn−cn0||≤∆

√
k21,n/n

sup
||bn||=1

|bTn [D(cn)− D̄(cn)]bn| = O(
√
nk1,n)



71

Lemma 3.4. For any ∆ > 0, for bn ∈ Rk1,n+h, we have

sup
||cn−cn0||≤∆

√
k21,n/n

sup
||bn||=1

|bTn [D̄(cn)− H̄(cn)]bn| = O(
√
nk1,n)

Lemma 3.5. For any ∆ > 0, for bn ∈ Rk1,n+h, we have

sup
||cn−cn0||≤∆

√
k21,n/n

sup
||bn||=1

|bTn [H̄(cn)− H̄(cn0)]bn| = O(
√
nk1,n)

Theroem 3.6. The root ĉn of Sn(cn) = 0 satisfies

||ĉn − cn0|| = O(
√
k1,n/n)

Proof: Similar to the proof of Theroem 3.6 in Wang (2011), we only need to prove

that for any ε > 0, there exists a constant ∆ > 0 such that for all n sufficiently

large,

P ( sup
||ĉn−cn0||=∆

√
k21,n/n

(ĉn − cn0)TSn(ĉn) < 0) ≥ 1− ε

We have

(ĉn − cn0)TSn(ĉn) = (ĉn − cn0)TSn(cn0)− (ĉn − cn0)TDn(ĉ∗n)(ĉn − cn0) = In1 − In2

where ĉ∗n is between ĉn and cn0.

And In1 = (ĉn − cn0)T S̄n(cn0) + (ĉn − cn0)T [Sn(cn0)− S̄n(cn0)] = In11 + In12

In2 = −(ĉn−cn0)T D̄n(ĉ∗n)(ĉn−cn0)− (ĉn−cn0)T [Dn(ĉ∗n)− D̄n(ĉ∗n)](ĉn−cn0) =

In21 + In22
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And

In21 =− (ĉn − cn0)T H̄n(ĉn0)(ĉn − cn0)

− (ĉn − cn0)T [H̄n(ĉ∗n)− H̄n(ĉn0)](ĉn − cn0)

− (ĉn − cn0)T [D̄n(ĉ∗n)− H̄n(ĉ∗n)](ĉn − cn0)

=Ian21 + Ibn21 + Icn21

Based on the proof in Wang (2011), we can show that In11 = ∆O(k1,n), In12 =

∆o(k1,n), In22 = ∆2O(k1,n), Ibn21 = ∆2O(k1,n), Icn21 = ∆2O(k1,n) and Ian21 ≤

−C∆2k1,n. Therefore (ĉn− cn0)TSn(ĉn) is negative for ∆ large enough, which com-

pletes the proof of Theroem 3.6.
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Chapter 6

Discussion

Literature on the dynamic effect of diarrhea on children growth is limited. In this

study, we propose a non-parametric model to study the pattern of diarrhea effect

over time. A two-step estimation approach is developed to identify the null region

of the effect and estimate the effect on non-null region. The approach is devel-

oped by imposing group penalty on estimating equations for longitudinal data and

the asymptotic properties of the developed estimators are investigated. Simulation

studies show that the proposed method is capable of identifying null region and

obtain a reliable estimate of the functional effect of diarrhea on the non-null region.

Based on the data from NIH study in Bangladesh, our data analysis results show

that the diarrhea effect on children growth becomes significant 3 months after di-

arrhea onsets and vanishes after 15 months. Besides the original model, 4 of the

extended model are developed to estimate curves leveling off to a constant, to take

into account additional covariates, to estimate multiple curves and to model curves

with more than one dimension. Overall, our models provide new statistical tools

to quantify the relationship between diarrhea and childhood growth in a dynamic

fashion, which gives us insights on the pattern and the effect window of diarrhea
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effect.

There are limitations of modeling the effect of a complicated biological process,

such as diarrhea, in a statistical model with underlying model assumptions. For

example, in our model, we assume that, even though different diarrhea episodes

may have different effect curves in our extended models, the effects are additive.

However, it is possible that when children have diarrhea frequently, they might

experience more growth shortfall than the simple addition of each individual episode

effect. Also, in addition to the diarrhea onset time that we include as additional

factor affecting the diarrhea effect curve, many other factors may play a role as well.

For instance, it is reasonable to believe that the severity of the diarrhea also affects

the effect curve. Those variables measuring the severity may include the duration

of the episodes, the symptoms developed during the episodes, etc. Therefore, a

more complex statistical model is preferred to include more relevant covariates in

the future studies when those variable are available.

On the other hand, some of the limitations of the estimating process can also

be improved. Noted that in the simulation study, even though the fitted curve is

very close to the true curve, the estimated null region is not exactly same as the

true null region. In addition, due to the boundary effect, the fitted curve may not

be reliable right after diarrhea onsets. The reason of causing both issues is that

we place only a few knots to avoid overfitting. The penalty imposed in our model

promotes the sparsity of the curve, but does not guarantee the smoothness of the

estimated function. It is possible to impose two penalties at the same time, one for

sparsity and one for smoothness, which can be another future research direction.
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