
Autonomous Chess Robot

A Technical Report submitted to the Charles L. Brown Department of

Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Gabriela E. Portillo

Spring, 2022

Technical Project Team Members

Keenan Alchaar

Nick Cooney

Eli Jelesko

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harry C. Powell Jr., Electrical and Computer Engineering

Page 2 of 54

The Great Gambit

Autonomous Chess Robot

Keenan Alchaar, Nick Cooney, Eli Jelesko, Gabriela Portillo

December 13, 2022

Capstone Design ECE 4440 / ECE4991

Signatures

Page 3 of 54

Statement of work:
Keenan Alchaar

 My primary roles for this project were developing the custom serial communication

protocol and integrating the chess engine into the system. Developing the communication protocol

involved defining a custom UART instruction set and writing the code to parse data using these

instructions on both the MSP432 and Raspberry Pi. This also involved implementing transmission

error handling with Fletcher-16 checksums on both platforms. Integrating the chess engine

Stockfish involved developing a Python script on the Raspberry Pi. I developed the Python script

which the Raspberry Pi uses to communicate with MSP432 and carry out all its primary functions:

move legality checking, game state checking, and move generation. Additionally, I completed

some smaller software modules, including the chessboard and PWM modules.

Nick Cooney

I was responsible for the hardware interface. I designed the schematics for the stepper

driver, sensor network, switches, buttons, limit switches, debugging LED, and MSP432 pinout. I

helped Eli with the PCB layout by resolving the design review errors we had prior to our board

sendouts. I also drove the PCBs to and from WWW Electronics for assembly. I wrote the

embedded software to read the switches, read the sensor network, and engaged the electromagnet.

I also wrote the initial stepper control code, which Eli came back to later to add motion profiling.

At the end of the project, I refactored our entire codebase to meet our coding standards. I also

wrote nearly all of gantry module, which orchestrates how the robot interprets board readings and

messages form the Raspberry Pi to move the motors and play chess.

Eli Jelesko

I designed all the mechanical systems, the circuitry for the power supply, electromagnet,

UART, and the signal light in addition to most of the PCB layout. I also designed and implemented

the command queue software architecture, much of the stepper motor control and UART on the

MSP432 and worked closely with Nick on the rest of the embedded software. The mechanical

work involved creating a full robot CAD (Computer Aided Design) assembly. This integrated

COTS (Commercial Off The Shelf) parts and custom designed components. From this CAD, I

manufactured and assembled the robot’s frame, gantry system, supports for sensors, and the sensor

board. I also soldered most of the components on both PCBs that WWW Electronics did not.

Gabriela Portillo

I mainly worked on preliminary electrical design work. I started out by designing the

general format of how our PCB and microcontroller would connect. When the schematics were

complete, I designed a PCB layout and sensor board design. Though these designs were not used

as the final design. I later helped with electrical debugging and manufacturing of the sensor

network. I soldered the reed switches to the board and made all the connections on the board. I

made sure that the PCB documentation for assembly for WWW Electronics was correct including

Bill of Materials and some assembly graphics. Later on, I helped with the debugging of the sensor

network.

Page 4 of 54

Table of Contents

Capstone Design ECE 4440 / ECE4991 ... 2

Signatures .. 2

Statement of work: .. 3

Table of Contents .. 4

Table of Figures .. 6

Abstract ... 7

Background ... 7

Physical Constraints .. 9

Design Constraints .. 9

Cost Constraints .. 10

Tools Employed .. 10

Societal Impact Constraints .. 11

Environmental Impact ... 11

Sustainability... 11

Health and Safety .. 11

Ethical, Social, and Economic Concerns .. 12

External Considerations .. 12

External Standards .. 12

Intellectual Property Issues ... 13

Detailed Technical Description of Project .. 14

Software .. 15

Mechanical Design.. 25

Electrical Design ... 28

Project Time Line ... 35

Test Plan.. 38

Mechanical .. 38

PCB Testing .. 38

Sensor Board ... 41

Software .. 43

Page 5 of 54

Final Results.. 44

Costs .. 46

Future Work .. 46

References ... 47

Appendix ... 50

Appendix A - UCI Notation .. 50

Appendix B – Schematics ... 50

Appendix C – Budget.. 51

Page 6 of 54

Table of Figures
Figure 1: High-level system block diagram .. 15

Figure 2: A high-level FSM of the software from the MSP432’s perspective 16

Figure 3: A visual example of one of the custom UART instructions, “Human Move” 18

Figure 4: FSM of the Raspberry Pi’s Python script .. 20

Figure 5: The command_t struct and its fields.. 21

Figure 6: The flow of the command queue as it runs in an infinite loop in the main method 22

Figure 7: Essential UART and Raspberry Pi module functions ... 23

Figure 8: Final Robot CAD... 26

Figure 9: Final Robot Assembly ... 26

Figure 10: Piece Lifting Mechanism... 27

Figure 11: Assembled Sensor Board... 28

Figure 12: Top Level Schematic ... 29

Figure 13: PCB Layout ... 29

Figure 14: Power Subsystem Schematic ... 30

Figure 15: Stepper Motor Driver Subsystem Schematic .. 31

Figure 16: Sensor Network Subsystem Schematic ... 32

Figure 17: Sensor Chess Board Array Schematic ... 33

Figure 18: Switch Subsystem Schematic .. 34

Figure 19: Debugging LED Schematic ... 35

Figure 20: Status LED schematic ... 35

Figure 21: Original (Top) and Final (Bottom) Gantt Charts .. 37

Figure 22: Mechanical System Test Plan.. 38

Figure 23: 3.3V Rail Measurement ... 39

Figure 24: 5V Rail Measurement .. 39

Figure 25: Electrical Test Plan .. 41

Figure 26: Problem in Row Multiplexer ... 42

Figure 27: Erroneous Current Flow .. 42

Figure 28: Corrected Sensor Board Layout .. 43

Figure 29: Software Test Plan... 44

Figure 30: Evaluation Rubric .. 45

Figure 31: Heatsink schematic .. 50

Figure 32: Original Budget ... 51

Table of Tables

Table 1: All MSP432 pins in use for this project.. 17

Table 2: Custom UART instruction set; does not include 2 check bytes 19

Table 3: Possible fifth bytes for “Robot Move” instruction ... 20

Table 4: Possible sixth bytes for “Robot Move” instruction .. 20

Table 5: Final Budget Calculations... 46

Table 6: Explanation of UCI Notation .. 50

Table 7: Final Budget.. 52

https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867076
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867077
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867078
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867080
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867081
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867082
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867096
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867105
https://myuva-my.sharepoint.com/personal/ka5nt_virginia_edu/Documents/The%20Great%20Gambit%20-%20Final%20Report.docx#_Toc121867106

Page 7 of 54

Abstract

This project is a robotic system capable of autonomously playing chess against a human

opponent. The key components of the system are a gantry-based structure for retrieving and

moving chess pieces around the board, a Raspberry Pi 3 Model A+ (Raspberry Pi) [1] on which

runs an open-source chess engine, an MSP432E401Y (MSP432) [2] microcontroller that

orchestrates the system, and a custom-designed printed circuit board (PCB) for routing power/data

and providing a hardware interface to the player. The system uses a network of reed switches,

electromechanical devices that close in the presence of a magnet, (henceforth called the “sensor

network”) embedded below each tile on the chess board to detect the presence of pieces. In

conjunction with a memory-managed record of the board state, kept since the beginning of the

game, this allows the robot to identify which pieces are located in which tiles at any point in time,

the “board state”. Each time the human makes a move, the system scans the sensor network to

determine the current board state. This is compared to the previous board state to determine the

move that was made, which is then transmitted to our chess engine of choice, Stockfish [3], over

a Universal Asynchronous Receiver/Transmitter (UART) data bus. Stockfish responds with a

move for the robot to make, which is then performed as a series of motor commands on the

MSP432. The notion of this chess robot extends the human condition in that it puts a technological

spin on a game traditionally focused on human interaction and competition. That is, it lays a

framework of possibilities for the design of autonomous systems that can be expanded upon for

generations to come.

Background

Chess is a two-player strategy game dating back to the 7th century A.D [4]. Originating in

India, many groups over its long history have become fascinated with its gameplay, leading to the

development of variations of the game through time and place. Chess as we know it today was

largely shaped during the medieval period, when the game’s introduction to Europe resulted in

several changes to piece names and movement patterns [4]. One of the first documented references

to a “chess robot,” a machine capable of playing a human in a game of chess, was a device called

the Mechanical Turk in the late 18th century [5]. This feat proved to be a scam, with the device

being controlled by a human chess master inside the machine. Nonetheless, the Mechanical Turk

marked the first milestone on the road to a fully autonomous chess robot. Since then, numerous

advancements in computational complexity, software development techniques, and mechanical

design have led to the advent of chess engines, systems capable of engaging in a complete game

of chess. While a chess robot might use a chess engine for move generation, the engine itself need

not be capable of physically moving the pieces. Much like the Mechanical Turk, we propose a

robot capable of engaging in a physical game of chess, as directed by a chess master; however, our

master of choice will be a digital chess engine.

In conceiving this project, we were originally focused on the development of a general-

purpose articulated robot arm, i.e., a robot arm capable of a 360o range of motion. Over time, we

narrowed down our scope to a robot that could physically interact with its environment and its

observers. While the articulated design, with its several ball joints allowing for a full range of

Page 8 of 54

motion, would have a more “human” feel to it, we found ourselves limited by the torque capacity

of motors within our price range. As we discussed specific applications of the robot arm, we chose

the game of chess, and thus adopted a gantry-based approach for simplicity and structural integrity.

This gives rise to the final product: an autonomous robotic arm that will use a series of carts on a

gantry system to pick up and put down chess pieces and play a full game of chess against a human

opponent.

One design consideration for our chess robot was how to handle piece recognition. For the

system to be truly autonomous, there must be some mechanism of detecting which pieces are in

what location on the board at any point in time. We considered several approaches to this issue,

such as an array of reed switches, Hall effect sensors, or near-field communication (NFC) tags

embedded in the physical board and chess pieces. There has already been significant work done in

detecting chess pieces for robotic applications. One group at Gunadarma University used a

computer vision framework to detect piece locations; however, while their system was effective at

determining the location of a piece, it required additional information and context clues to

differentiate pieces [6]. Another group combined several image processing algorithms to create a

robot that could correctly interpret the board and play full-length games [7]. Similarly, their vision

system was only able to detect that a piece occupied a square and had to rely on memory to identify

which piece it was. While these approaches are potentially more modular (i.e., not necessarily

dependent on a specific board/piece set), we felt that similar, if not more robust, functionality could

be achieved with an array of sensors embedded in the board. Moreover, we expected that

developing a complex image processing or computer vision model, in addition to constructing the

robot, would be beyond the scope of a single semester project.

One source of inspiration we pulled from was a robotic art piece, Can’t Help Myself by

Sun Yan [8]. This robotic art piece is a breathtaking intersection of science and art that asks the

question “what is the meaning of life itself?” Our original design resembled the robotic art piece

until we shifted to the more stable gantry approach after we decided to design the robot to play

chess. Other groups who have developed chess-related robots, and from whom we have pulled

inspiration, include: Andrew Jakab’s group, who made a chess board capable of piece recognition

using NFC technology [9], and Josh Eckels from Rose-Hulman Institute of Technology, who built

a gantry-based chess robot that required the user manually enter moves [10]. Each of these

examples has guided our vision for our autonomous chess robot in terms of their positive and

negative features. For instance, we were concerned that an NFC-based sensor network, like that of

Jakab’s group, would require us to balance the impedances across an antenna array to maintain a

clear signal between the chips and the readers. Additionally, since large radio frequency

multiplexers do not seem to be common order, we would likely have needed 64 NFC chips and

antennae to make such a solution work. Based on preliminary calculations, this would consume

too large of a proportion of our budget to make such an approach feasible. Therefore, we decided

against the NFC approach. In contrast, Josh Eckels’ robot largely resembled our system’s design

in terms of form; he used a gantry system with an electromagnet-based arm for piece movement,

similar to what we had envisioned. However, his approach required the manual entry of moves,

and due to the lack of a rigid arm support, led to excessive shaking during movement in the vertical

Page 9 of 54

direction. One goal of our robot was to maintain clean motions, so this research gave use

inspiration on how to improve upon previous work.

What makes our robot unique from other projects and previous designs is that our design

includes both sensing capabilities for piece detection and recognition, and physical movement of

the robotic arm, the goal being a fully autonomous robot. It is worth mentioning that most chess

engines can only be run on a device with a fully-fledged operating system and require

computational power proportional to the level of performance that is expected of them. For this

reason, we chose to use a Raspberry Pi to run our chess engine, as well as to interface with our

MSP432 microcontroller and sensor network. The Raspberry Pi’s small form factor and access to

well-documented chess libraries in Python make it ideal for this application.

This project made heavy use of our knowledge of circuitry and PCB design from the

Electrical Fundamentals sequence (ECE 2630, 2660, and 3750), where in each course we designed,

printed, wired, and tested a PCB as the final project. These final projects helped us develop the

ability to think like engineers as we worked through the designs and debugging processes.

Embedded programming from the Embedded Computing and Robotics I and II (ECE 3501 and

3502) and Introduction to Embedded Computer Systems (ECE 3430) courses was also critical to

the design of this project, as the entire system was orchestrated through embedded code running

on the MSP432. The mechanical design of the project drew from Computer Aided Design (CAD)

(MAE 2040) in which members of our group were introduced to and improved upon their CAD

skills. Networking protocols from Computer Networks (CS 4457) were also relevant for this

project, as we remotely interacted with our Raspberry Pi to prepare the chess engine’s environment.

Physical Constraints

Design Constraints

We balanced several constraints to realize the design of our final product. On the PCB side,

the manufacturer enforced a limit of 50 vias per square inch. We discovered after contacting the

manufacturer that this was imposed as a one inch by one inch moving window, in which no section

of the board could contain more than 50 vias, but also no two vias could be less than 0.01 inches

apart. Due to the compact nature of our PCB, we had to pay close attention to this limitation in

several areas, specifically near integrated circuit (IC) chips and thermal dissipation pads. On the

computational side, our MSP432 came equipped with 256 kB of ram. While this is sufficient for

our embedded code, it would have been incapable of running the chess engine. This was why we

have the separate Raspberry Pi for move generation. Several times during development, the

MSP432’s default stack and heap size constraints led us to hard-fault our program due to memory

collisions. Our approach to modifying these settings was dependent of the development

environment we used (see below). Finally, parts availability was a recurring issue throughout this

project. In particular, the limited supply of certain IC’s like stepper motor and electromagnet driver

chips all but forced our hand on which components to use.

Page 10 of 54

Cost Constraints

The original budget of $500 was the cost constraint for this project. Budgeting required

preliminary research into mechanical and electrical parts, as well as an assessment of materials

already owned. Shipping was not a concern for this project and was not factored into the budget.

When designing the PCB, the main design consideration was minimizing size, which in theory

would also minimize cost. Therefore, we chose to use predominantly surface mount components

to obfuscate the minimum board area necessary. What we failed to account for was the magnitude

of cost for PCB assembly. Each component that was to be assembled cost 50 cents, but with over

200 components on our board, assembly cost much more than we expected. Cost was also a major

consideration when choosing the board’s components, as we aimed to use the cheapest components

that would be sufficient for the job at hand. Cost, in tandem with ease of use, was also a

consideration when designing the sensor network. There were multiple options that we could have

gone with, such as NFC tags, Hall effect sensors, or reed switches. Each chessboard square needed

some sort of sensor device, so the notion of purchasing 64 sensors (at minimum) lead us to choose

reed switches (of which we could obtain 100 at a unit price of $0.4772 each) over the other options.

Hall effect sensors generally had a high unit price and would have required more magnets for piece

recognition. NFC tags would have required up to 64 readers as well, which would have been too

expensive for our overall budget.

Tools Employed

Completion of this project relied on several useful tools for software development,

mechanical CAD, and electrical CAD. Each of the tools are described below, grouped by function.

General

GitHub [11] was used as version control during development for all software, electrical,

and mechanical files. There were four primary repositories: electrical designs, mechanical designs,

MSP432 software, and Raspberry Pi software. The developers were already familiar with GitHub,

so its integration and use were quite straightforward.

Electrical

The main tool used for the electrical design was KiCad [12]. KiCad was used to design the

electrical schematics and the PCB layout. To better view the electrical files on GitHub, CADLab

[13] was used and integrated with GitHub. KiCad was a new tool for the electrical designers. The

main reason KiCad was used was that it is open source, and therefore does not require purchase of

a license. KiCad is also well developed and integrated with electrical part distribution sites like

Digi-Key and Mouser for easy importing of part-specific footprints. KiCad’s calculator tool was

also used in aiding the design of the PCB. In particular, the trace width calculator helped us

determine the minimum trace width that could handle our current and power projections without

overheating.

Mechanical

All mechanical designs were made using Solidworks CAD (Computer Aided Design)

software [14]. The aluminum frame was cut to shape using a horizontal band saw and the sensor

board was cut using a water jet. Many of the specialty parts were made using a 3D printer in

Polyactic Acid (PLA) plastic using a Prusa i3 MK3S+ [15] or an Ultimaker S3 [16]. All parts for

Page 11 of 54

the Prusa were sliced with PrusaSlicer 2.5.0 [17] while those on the Ultimaker were sliced with

Ultimaker Cura 5.1.1 [18].

Software

Code Composer Studio (CCS) [19] and Visual Studio Code (VS Code) [20] were the two

editors of choice for developing code for the MSP432. CCS was particularly useful for flashing

code onto the MSP432 and debugging via its access to the MSP432’s registers. The developers

were familiar with both of these tools and encountered no problems during their use.

Societal Impact Constraints

Environmental Impact

The largest environmental impact of this project comes from producing raw materials,

especially the aluminum and the silicon wafer of the PCB. Aluminum is extremely energy

expensive to produce. Once the bauxite ore has been mined, it must be refined and then smelted,

which requires about 68 MJ/kg of energy, usually in the form of electricity. Depending on the

source of that electrical energy, this produces around 0.45 Gt of CO2 [21]. Since aluminum is so

costly to produce, it is often recycled, or in our case reused. Since we largely built our frame from

parts off of previous years’ capstone projects, our particular impact here is minimal. As for the

PCB, both its manufacturing and recycling involve some rather toxic processes. When a PCB is

made, it is subjected to several rounds of chemical baths, both acidic and alkaline. The waste

products of these baths contain fluorides, phosphorus, cyanide, and heavy metals. These are

usually treated on site, but some are released as sewage or put into landfills [22]. Not only are

PCBs environmentally costly to manufacture, but they are also costly to recycle. Since most PCBs

are single use, they will eventually become e-waste. When this happens, they are shredded,

smashed, and then what metals can be reused are chemically separated from the dust. This dust

contains mercury, cadmium, lead, and arsenic alongside the valuable copper and nickel. These

toxic metals need to be appropriately disposed of to prevent poisoning the local ecology, but in

lesser regulated countries like China this is not always the case. This process also releases several

toxic gasses, such as dioxin and lead fumes, which are harmful to human health [23].

Sustainability

Defining sustainability to mean “the ability to reproduce for years to come,” this project’s

design is dependent on several products to remain in production in order to feasibly manufacture

without significant design changes. The PCB was designed for the general purpose input/ouput

(GPIO) header on our specific MSP432. Therefore, if another microcontroller were to be used, a

redesign of the PCB would be necessary. Other components of this project, like the Raspberry Pi,

could be replaced with little to no effect on the design.

Health and Safety

Safety was, and still is, a primary concern. As our project involved large moving machinery,

great care was taken to avoid hitting, crushing, pinching, or otherwise damaging human limbs.

This involved designing the piece grabbing mechanism such that it could not forcibly drive into

the playing surface and crush someone’s fingers and ensuring the “arm” of the robot is out of the

Page 12 of 54

way when the human player is making their moves. Potential pinch points are denoted by stickers

on the frame, and nearby limit switches ensure the robot will stop moving if it hits an unexpected

object, like a human limb. An emergency stop (e-stop) button can be pressed to immediately halt

the robot’s movement until a manual power cycle of the system has been performed. This is

accomplished by purposely triggering a hard-fault in software so nothing is able to run unless

manually restarted.

Ethical, Social, and Economic Concerns

With the target audience of this project being people who do not have a companion with

whom to engage in a game of chess, the high price tag of mass manufacturability makes this robot

a high-end product. This realistically only puts the machine in the hands of those with large

disposable incomes, despite the envisioned audience of everyday consumers that wish to play

chess in real life without a human opponent. Chess purists may have some concerns that turning

the game robotic removes the beauty of the sport, but we argue that our design introduces a novel

spin that can garner interest in the game. Another concern with our design could be cheating.

Fortunately, the sheer size of our robot makes it impractical to cheat in tournaments, and online

chess engines can already be used to cheat elsewhere.

A more general social concern would be the rise of automation. Historically, with the rise

of automation, there could also be a risk of job loss for sectors of industry in which manual labor

is no longer required to perform most tasks. Examples of this include the rise of automation in the

automobile manufacturing industry, and store cashiers being replaced by self-checkout stations.

Though with this specific application, it is unlikely that chess grandmasters would be out of a job

due to this robot, as the chess engine software is freely available online. Instead, this robot is

intended solely to serve as a fun and exciting spin on a classic game.

External Considerations

External Standards

Chess

The Universal Chess Interface (UCI) [24] standard is an open-source protocol for

communication between a chess engine and chess interface. One benefit of the UCI standard is

that any UCI-compliant chess engine can be interchanged with any UCI-compliant chess interface.

In our case, we used Stockfish as the UCI-compliant chess engine, making our system itself a a

UCI-compliant (robotic) chess interface.

Electrical

The main electrical external standards this project had to deal with were the Institute for

Interconnecting and Packaging Electronic Circuits (IPC) PCB design standards [25]. IPC is an

organization that collects and votes on standards for PCB development and manufacturing. IPC

standards apply at each step of the development process, from determining trace widths to laying

solder on the board. For instance, IPC has standards for file formatting, use cases of various

electronic components, PCb assembly, etc. Specific to this project, adhering to PCB manufacturing

standards was critical to ensuring a physical realizable board. We used FreeDFM [26] to ensure

our prototypes passed a design for manufacturing check, which checks that designs follow the IPC

Page 13 of 54

standards and are feasible. To meet our manufacturer’s design constraints, the PCB had limitations

on the maximum via density, number of layers, and total area of the board.

For communication between our MSP432 and Raspberry Pi, we rely on a UART serial

connection. Formally speaking, a UART is a hardware device for asynchronous serial

communication between two chips based on a unidirectional two wire bus. Implementation

specifics for UART devices vary on a per-chip basis, but the protocol itself is based on Electronic

Industries Association-232 (EIA-232), formerly known as Recommended Standard-232 (RS-232)

[27]. UART devices perform first-in, first-out (FIFO) transmission, with speeds of up to 1 Mbit/s

on the MSP432 family of microcontrollers.

Mechanical

The Underwriter’s Laboratory (UL) has released specification UL 4600 on the evaluation

of autonomous products [28]. This specification applies to any autonomous system capable of

movement, as is the case for our chess robot. Specifically, it is aimed at safety concerns for

autonomous systems related to the reliability of their dependent hardware and software, and the

integrity of data contained within the system. UL 4600 makes a point of not prescribing specific

requirements for autonomous systems; instead, it asks the systems’ designers to answer a series of

questions such as whether maintenance is required and how the system will interact with people.

To this end, we have installed limit switches to prevent the robotic arm from extending beyond the

sides of the gantry, and an emergency stop button that can completely disable the system. This

helps protect users against potentially hazardous components. All major circuitry (e.g., the PCB,

MSP432, Raspberry Pi, etc.) is also secured to the frame in locations that limit potential collisions

and interference.

Section 106 of the Consumer Product Safety Improvement Act (CPSIA) [29] codifies the

ASTM International Standard Consumer Safety Specification for Toy Safety (ASTM F963-07)

[30]. This specification requires that any device sold as a children’s toy must sufficiently label

potential hazards that may not be commonly recognized by an average user of the system. While

our intent is not to produce a children’s product, the nature of chess as a household game

necessitated our attention to this standard. As such, we have placed warning stickers at all major

pinch points that we identified along the gantry’s frame

Software

Embedded code written for the MSP432 microcontroller was written using the “BARR-C”

coding standard written by Michael Barr [31]. Its purpose is to enforce good coding practices that

reduce programming defects in embedded software. It describes every aspect of development from

the naming of files and variables to use cases for various data types.

Intellectual Property Issues

Following a search of prior art, we believe the current iteration of our project likely would

not be patentable. Patent number 4,398,720, Robot Computer Chess Game, describes a chess robot

with a rotational arm that uses magnetic pieces [32]. However, this patent claims the robot goes a

step further in that it possesses “emotional characteristics.” It can engage in a physical game of

chess against a human player, sense where pieces are on the board, return pieces to the board after

Page 14 of 54

a game has ended, and respond with special actions/emotions when certain moves are played. The

two main differences between this design and ours are the arm mechanism and the way pieces are

detected. This patent describes a rotational arm, similar to our preliminary design, in place of our

gantry system. The Robot Computer Chess Game also uses magnets on the bases of the chess

pieces much like we do, but the sensing mechanism is distinct. The patent describes their sensing

mechanism having two sets of magnets, one for the bottom of the piece and one that raises from

below the board to close a circuit and enable detecting. In comparison, our design uses one set of

magnets that close reed switches embedded in the board. While this patent resembled our project

in terms of purpose, it is distinct in terms of mechanics. Patent number 6,446,966, Chess Game

and Method [33], describes a methodology for chess gameplay, rather than specific physical

system. This patent requires a chessboard with additional tiles, which are used by an orchestrator

device that oversees and referees the game. Patent number 56,340, Robot Arm With A Shearing

Drive, And A Gantry Robot, describes a more general robotic gantry system used for industrial

shearing [34]. The design in this patent is realized as a gantry capable of moving along three axes.

However, the grabbing mechanism employed is not an electromagnet as we use. Furthermore,

while our gantry uses a stepper-driven rack and pinion for motion along the vertical axis, this

patent uses a retractable grabber mechanism.

Detailed Technical Description of Project
The goal of this project was to produce an autonomous robot that is capable of competently

playing chess against a human opponent. Due to the complex nature of our design, the detailed

technical description of this project has been organized into the following sections:

❖ Software

a. Communication

b. Raspberry Pi Software

c. Microcontroller Software Architecture

d. UART and Raspberry Pi Modules

e. Stepper Motor Module

f. Gantry Module

❖ Mechanical

a. Gantry System

b. Sensor Board

❖ Electrical

a. Overall Design

b. Power Subsystem

c. Motor Subsystem

d. Sensor Network

e. Switches and Buttons

f. LEDs

A high-level block diagram of the system is shown in Figure 1.

Page 15 of 54

Software

The software for the device is divided between two subsystems: the MSP432

microcontroller, where all embedded code lives, and the Raspberry Pi, where the chess engine

lives. The MSP432 and Raspberry Pi communicate via UART to relay moves and advance the

game. The MSP432 is responsible for reading moves from the sensor network, reading user input

from the PCB, and performing motor functions. The Raspberry Pi is responsible for determining

move legality, game state (ongoing, checkmate, stalemate), and generating the robot’s moves via

Stockfish. A high-level finite state machine of the software from the MSP432’s perspective is

shown in Figure 2.

Figure 1: High-level system block diagram

Page 16 of 54

Figure 2: A high-level FSM of the software from the MSP432’s perspective

Page 17 of 54

Many of the 80 GPIO pins available on our MSP432 were mapped to specific components on our

PCB. The specific mappings for pins we used are described in Table 1.

Table 1: All MSP432 pins in use for this project

Function Module MSP Port.Pin In/Out

LED Red GPIO PC.4 In

LED Green GPIO PE.4 In

LED Blue GPIO PC.5 In

LED Out GPIO PC.6 Out

Next Turn GPIO PE.5 In

Stepper X Fault GPIO PD.3 In

Stepper X Step GPIO PC.7 Out

Stepper X Enable GPIO PB.2 Out

Stepper X Direction GPIO PB.3 Out

Stepper X Home GPIO PD.2 In

Stepper Y Fault GPIO PG.0 In

Stepper Y Step GPIO PD.7 Out

Stepper Y Enable GPIO PE.3 Out

Stepper Y Direction GPIO PE.2 Out

Stepper Y Home GPIO PF.3 In

Stepper Z Fault GPIO PB.4 In

Stepper Z Step GPIO PN.4 Out

Stepper Z Enable GPIO PN.5 Out

Stepper Z Direction GPIO PP.4 Out

Stepper Z Home GPIO PB.5 In

Stepper XY Microstep_0 GPIO PA.6 Out

Stepper XY Microstep_1 GPIO PM.4 Out

Stepper XY Microstep_2 GPIO PM.5 Out

Stepper Z Microstep_0 GPIO PK.7 Out

Stepper Z Microstep_1 GPIO PK.6 Out

Stepper Z Microstep_2 GPIO PH.1 Out

Limit Switch X GPIO PK.2 In

Limit Switch Y GPIO PK.1 In

Limit Switch Z GPIO PK.0 In

Capture Tile GPIO PP.1 In

Start Button GPIO PF.2 In

Reset Button GPIO PF.1 In

Home Button GPIO PM.3 In

Signal Light Unused Unused

Demux Select_0 GPIO PD.1 Out

Demux Select_1 GPIO PD.0 Out

Demux Select_2 GPIO PN.2 Out

Mux Select_0 GPIO PA.7 Out

Mux Select_1 GPIO PP.5 Out

Mux Select_2 GPIO PM.7 Out

Page 18 of 54

Row Select_1 GPIO PH.2 Out

Row Select_2 GPIO PL.3 Out

Row Select_3 GPIO PL.2 Out

Row Select_4 GPIO PH.3 Out

Row Select_5 GPIO PL.4 Out

Row Select_6 GPIO PL.1 Out

Row Select_7 GPIO PL.0 Out

Row Select_8 GPIO PL.5 Out

Electromagnet_1 PWM0 PK.4 Out

Electromagnet_2 PWM0 PK.5 Out

UART3 TX (Transmit) UART3 PA.5 Out

UART3 RX (Receive) UART3 PA.4 In

Communication

Since the Raspberry Pi and MSP432 share responsibility in moderating and advancing the

game, they had to have a mechanism for communication. As mentioned before, our system handles

this communication via the UART serial communication protocol, which was chosen primarily for

its simplicity. In a relatively simple application like this one, any serial communication protocol

could have worked, and UART was the one with which the developers were most familiar.

A custom UART instruction set has been developed for this system. All instructions except

the acknowledgement (ACK) instruction include the following, in order:

❖ 1 byte, the start byte (0x0A)

❖ 1 byte, the instruction ID and operand length byte

o The upper 4 bits represent the instruction ID (one of: {0,...,5})

o The lower 4 bits represent the operand length (one of: {0, 5, 6})

❖ 0, 5, or 6 bytes for the operand

❖ 2 bytes, a pair of check bytes calculated with the Fletcher-16 algorithm [35]

Hence, instructions can be 4, 9, or 10 bytes long. An example of an instruction and its structure

are shown in Figure 3. The full instruction set is shown in Table 2.

Figure 3: A visual example of one of the custom UART instructions, “Human Move”

Page 19 of 54

Table 2: Custom UART instruction set; does not include 2 check bytes

To make the protocol more robust, every instruction except ACK has two check bytes

appended to the end. The purpose of these check bytes is to detect transmission errors, and they

are calculated by applying the Fletcher-16 algorithm [35] on the rest of the instruction. When a

device receives a message, it will manually calculate the expected check bytes using the same

Fletcher-16 algorithm the sender used. Then, two outcomes are possible:

1. If the manually calculated check bytes are equal to the check bytes sent (the last two bytes

in the message), the receiver sends back an ACK.

2. If the manually calculated check bytes are not equal to the check bytes sent, the receiver

does not send an ACK.

In the second case where an ACK is not sent, the sender will, after 5 seconds of not receiving an

ACK, resend the previous message. The sender will continue doing this until an ACK is received.

The “Human Move” instruction is one of the core instructions for advancing the game. Of

particular importance are the 5 operand bytes used for the human’s move in UCI notation (see

Appendix: Appendix A - UCI Notation). Moves in UCI notation can be 4 – 5 characters, so the

protocol accounts for the maximum of 5 bytes. If the UCI move is only 4 characters, a ‘_’ is

substituted to maintain consistent operand lengths.

The “Robot Move” instruction is the other core instruction for advancing the game. It is

similar to the “Human Move” instruction, but its fifth and sixth operand bytes contain additional

functionality. The fifth byte contains a different character depending on the nature of the robot’s

move. This is to help the robot perform the move properly since different types of moves require

different motor commands from the robot. Additionally, the sixth byte includes information about

the game state (ongoing, checkmate, stalemate) after the human’s move and the robot’s move. The

upper 4 bits are reserved for the game status after the human’s move, and the lower 4 bits are

reserved for the game status after the robot’s move. The MSP432 uses this information to

determine who won when the game has ended. The possible values for the fifth and sixth bytes in

the “Robot Move” instruction and their meanings are summarized in Table 3 and Table 4.

Instruction Description Operand Description

0x0A00 Reset Game N/A

0x0A10 Start Game (Human White) N/A

0x0A20 Start Game (Human Black) N/A

0x0A35XXXXXXXXXX Human Move X = Human’s move in UCI

notation (5 bytes)

0x0A46YYYYYYYYYYZZ Robot Move + Game

Status

Y = Robot’s move in UCI

notation (5 bytes)

Z = Game status (1 byte)

0x0A50 Illegal Move N/A

0x0F ACK N/A

Page 20 of 54

Table 3: Possible fifth bytes for “Robot Move” instruction

Character Meaning

_ Non-special move

C Capture

c Castle

Q Promotion

q Promotion capture

E En passant

Table 4: Possible sixth bytes for “Robot Move” instruction

Number Meaning

1 Ongoing

2 Checkmate

3 Stalemate

Raspberry Pi Software

As previously stated, the Raspberry Pi is responsible for determining move legality, game

state (ongoing, checkmate, stalemate), and generating the robot’s moves via Stockfish. It does this

via a single Python script which runs automatically via a Linux cron job on every boot. The finite

state machine for the software is shown in Table 4.

Figure 4: FSM of the Raspberry Pi’s Python script

Page 21 of 54

To simplify the FSM, only the flow following a “Human Move” instruction is shown in detail. The

other 3 instructions (“Reset” and “Start Game” for either color) do reset the board, but “Start Game

(Human Black)” behaves differently. For this instruction, since the robot is playing white, it must

make the first move. So, the script will reset the board and send an opening move for the robot to

make. Then it will go through the same process of waiting for an ACK from the MSP432 and

resending its message every 5 seconds if it does not receive one. “Reset” and “Start Game (Human

White)” only reset the board. They are functionally the same but exist separately to keep code more

meaningful.

Microcontroller Software Architecture

The software on the MSP432 operates via a command queue. The queue holds pointers to

command structs, each of which contains four function pointers (see Figure 5Figure 5Figure 5).

Each module extends the base command struct by adding any data necessary for the command to

execute. This architecture allows for loose coupling between modules and flexible development

where the programmer can add new modules by creating a new command type with any data it

needs. All other logic is handled by the queue.

The main function contains a while() loop that pops commands off the queue. When a command

is popped from the queue, it will run the entry function exactly once. It will then check to see if

the command is done via the is_done() function. If the command has not completed, it will call the

action function in a loop. Once the done condition is satisfied, it will run that command exit

function exactly once, then pop the next command from the queue. In the event some sort of system

fault occurs while a command is executing, for example the emergency stop button is pressed,

there is a check for a “system fault” or “system reset” flag before an action is run. If the system

encountered a fault, it intentionally triggers a hard fault on the MSP432 that can only be cleared

by power cycling the device. If a reset occurs, it breaks the action loop and runs exit, to stop the

current command. The queue is then cleared, and a reset command gets added that clears the reset

flag and reinitializes the system so functionality can continue as before. The flow of this command

queue architecture is shown in Figure 6Figure 6Figure 6.

Figure 5: The command_t struct and its fields

Page 22 of 54

UART and Raspberry Pi Modules

The MSP432E401Y has 8 UART channels (UART0 – UART7). For this project, up to two

channels are used at a time. In the “standard” mode, only the UART3 channel is used to establish

communication between the MSP432 and the Raspberry Pi. In another mode called “three-party”

mode, the human may manually supply their moves, in UCI notation (see Appendix: Appendix A

- UCI Notation), through a Python emulator running on a laptop with a COM port. The UART0

channel is then used to send the move from the laptop to the MSP432, which sends the move to

the Raspberry Pi. This was mainly used for debugging purposes, and not intended as the final

functionality.

The UART module works by maintaining a queue in software for received bytes and bytes

to be transferred (RX and TX queues) for each channel. When bytes are transferred out, they are

put into a channel’s TX queue and then copied into the MSP432’s data register to be transferred

out. Bytes are received via a periodic interrupt which copies them from the data register on the

MSP432 to the software RX queue. The bytes can then be read by popping them off the RX queue.

The “Raspberry Pi” module wraps many of the functions defined in the UART module to easily

Figure 6: The flow of the command queue as it runs in

an infinite loop in the main method

Page 23 of 54

interact with the Raspberry Pi in particular. The most essential functions present in both modules

are shown in Figure 7.

Stepper Motor Module

The X, Y, and Z stepper motors are all controlled via the same logic. Once a stepper

command is run by the command queue, it takes the distance it needs to move each motor in

millimeters and converts that to the number of step transitions it will take to move that distance,

with two step transitions performing one step on the motor. It will then calculate the points in the

motion where it needs to accelerate and decelerate to create a trapezoidal motion profile. The exact

type of profile is determined by a preselected maximum velocity and maximum acceleration.

Using these, the point where the motor needs to stop accelerating and then start decelerating are

calculated ahead of time using Equations 1 and 2.

𝑥accel =
1

2
⋅

𝑣max
2

𝑎max

(1)

𝑥decel = Distance Traveled − 𝑥accel (2)

Once these calculations are complete, a clock configured to step the motors at a predefined initial

velocity is started for each motor. This clock runs as a periodic count-down timer and triggers an

interrupt upon reaching zero. When that interrupt fires, the interrupt handler toggles the STEP pin

on the appropriate motor driver and decrements the number of step transitions remaining for that

motor. The period of the clock is adjusted each time the interrupt fires to modify the velocity of

the motors. Once a given motor reaches zero step transitions remaining, it is disabled to prevent

Figure 7: Essential UART and Raspberry Pi module functions

Page 24 of 54

unnecessary current flow. When all three motors reach zero step transitions remaining, the system

will have arrived at its destination, and the stepper command exits.

As mentioned before, two step transitions result in one step being performed on the motor. More

generally, the motors support microstepping whereby two step transitions cause one microstep.

We can then perform simple arithmetic to translate the desired distance in millimeters to a number

of step transitions. Suppose the motors perform 𝑀 microsteps per step. Each motor performs 200

full steps per revolution, so 200𝑀 microsteps per revolution. For the X and Y motors, the belt

pitch is 2 millimeters, and the rotor on each stepper has 20 teeth, so the belt moves 40 millimeters

per revolution. There are two transitions per microstep, so the number of transitions per millimeter

traveled is 10𝑀 transitions per millimeter, as shown in Equation 3.

(2
𝑡𝑟𝑎𝑛𝑠

𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝
) ∗ (200𝑀

𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝

𝑟𝑒𝑣
) / (40

𝑚𝑚

𝑟𝑒𝑣
) = 10𝑀

𝑡𝑟𝑎𝑛𝑠

𝑚𝑚
(3)

For the Z motor, the belt pitch is 2.5 millimeters, and the rotor on each stepper has 20 teeth, so the

belt moves 50 millimeters per revolution. There are still two transitions per microstep, so the

number of transitions per millimeter traveled is 8𝑀 transitions per millimeter, as shown in

Equation 4.

(2
𝑡𝑟𝑎𝑛𝑠

𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝
) ∗ (200𝑀

𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝

𝑟𝑒𝑣
) / (50

𝑚𝑚

𝑟𝑒𝑣
) = 8𝑀

𝑡𝑟𝑎𝑛𝑠

𝑚𝑚
(4)

For our use case, we set the microstepping level to 𝑴 = 𝟖, as this allowed us to perform an integer

number of microsteps to reach the center of each tile. Hence, the X and Y motors perform 80

transitions per millimeter, and the Z motor performs 64 transitions per millimeter.

Gantry Module

The gantry module performs the main chess logic and is the interface between all of the

other modules, with the exception of some utility functions. It is responsible for choreographing

the robot’s movement after receiving a move from either Stockfish or the sensor network. The

gantry module also handles fault detection. This module has two primary command types: one

where the robot is making a move, dubbed “robot move command,” and one where a human is

making a move, dubbed “human move command.” Whenever the system is reset (e.g., to start a

new game), gantry will clear the command queue and reset all its submodules. It then checks

whether the human is playing black or white via a toggle switch on the PCB, and lets Stockfish

know that a new game has begun and who is playing each side. If the human is playing as white,

it will put a human move command on the queue; if the human is playing as black, it puts a robot

move command on the queue. Human move commands place robot move commands on the queue

as part of their exit() function, and vice versa. This is how the game continues between robot move

and human move. If either command finds the game has ended, it blinks an indicator LED on the

PCB to designate who won and empties the queue until the reset button is pressed.

Page 25 of 54

Mechanical Design

The physical design of the robot consists of two principal components: a cantilevered

gantry system, and a chessboard with embedded reed switches. The gantry system is responsible

for moving the robot’s pieces, while the chessboard is responsible for determining the position of

each piece.

Gantry System

The frame of the gantry consists entirely of 20x20mm and 20x40mm aluminum V-Slot rail.

A cantilevered arm runs along a 20x40mm rail forming the X-axis while a “cart” runs along a

20x40mm beam to form the Y-Axis. The X-axis is intentionally longer than the size of the board

to allow the robot’s arm to rest off the board and away from any user’s hands. Both the X and Y

axes are powered by a belt and pulley system driven by two NEMA 17 stepper motors, while the

Z-axis consists of another NEMA 17 stepper motor driving a rack and pinon mechanism that raises

and lowers an electromagnet. The electromagnet “grabs” pieces from the board by attracting

screws in the top of their heads when engaged. Likewise, cutting power to the magnet allows the

pieces to return to the chessboard. To prevent overruns, each axis has a limit switch at the far end

of its range of movement. This allows the software to find a fixed point of reference by driving

each axis in one direction until the limit switch is triggered. Since the switches are fixed, that point

is consistent between power cycles. The PCB, MSP432, and Raspberry Pi attach to the backside

of the robot on custom mounts. The PCB and MSP432 are positioned such that when the X-axis

moves, the cables for the gantry can remain short without getting caught on any obstructions. The

Raspberry Pi is positioned near the PCB and MSP432 to limit the length of the power and data

lines that connect the devices. The robot’s CAD model is shown in Figure 8, while the final product

is shown in Figure 9.

Page 26 of 54

Figure 8: Final Robot CAD

Figure 9: Final Robot Assembly

Page 27 of 54

The lifting mechanism consists of a 3D printed mount attached to a cart running along the

Y-axis as shown in Figure 10. The mount supports the NEMA 17 stepper motor, a limit switch, a

channel for the rack to travel on, and various cable tie mounts. Attached to the mount is another

platform that supports a 70.4 cm long cable carrier (not shown in Figure 8) that connects the X-

axis cart and the Z-axis mount. This protects all of the wires needed to drive the Z-axis motor, read

the limit switch, and utilize the electromagnet, while neatly keeping them away from the belts.

Figure 10: Piece Lifting Mechanism

The sensor board is supported by six 3D printed supports. The two closest to the back of

the robot are bolted to the sensor board, the middle two are attached to the robot’s frame but are

not bolted to the board. The final two rest at the far end of the board and serve to prevent buckling

in the event someone rests their weight against the board. The main structure consists of one 1/8”

layer of polycarbonate upon which the reed switches rest, glued to another 1/4” layer of

polycarbonate with slots to correctly orient the switches. Beneath the polycarbonate are four large

PCBs which are bolted onto the bottom layer. These boards serve mostly to provide a strong

connection to the reed switches and a neat method of handling the crosspoint array formed by the

rows and columns. On top of everything is a 17” by 17” chess mat that is held in place by four

corner bolts. Holes were made in the mat to support the heads of the bolts holding the PCBs so the

mat lays flat against the polycarbonate. The final board is shown in Figure 11.

Page 28 of 54

Figure 11: Assembled Sensor Board

Electrical Design

Overall Design

The electronic design was broken into a series of subsystems that handle different

functionalities. The power supply subsystem steps the input voltage down to the operating voltages

of our Raspberry Pi and MSP432. The MSP432 subsystem is a placeholder for the GPIO pinout

on the actual MSP432 microcontroller. The Raspberry Pi subsystem connects the Raspberry Pi

UART lines for serial communication. The button, switch, and limit switch subsystems are used

for hardware peripherals, and each feature transient voltage suppression diodes on their

input/output lines to prevent electrostatic discharge. The light emitting diode (LED) and signal

light subsystems are used for lights on the system. The electromagnet and stepper subsystems are

used to drive the electromagnet and stepper devices, respectively. The sensor network subsystem

interfaces with the sensor network in our chessboard. The heatsink subsystem is used for thermal

dissipation, whereby two large heatsinks on the PCB are connected by thermal vias to a large

ground plan spanning the bottom of the board. Several “future proofing” subsystems were included

that mirror the limit switch subsystem to leave free terminal connections on the PCB in the event

that we decided to add a component (e.g., the emergency stop which was added later). Figure 12

shows the top level schematic for this design while Figure 13 shows the layout of the components.

Page 29 of 54

Figure 12: Top Level Schematic

Figure 13: PCB Layout

Page 30 of 54

Power Subsystem

The power for the entire system is supplied by a 24V, 160 W power supply [36] that

connects to our PCB through a barrel jack. The barrel jack selected is rated for 24V at 8A to

accommodate this load [37]. That supply is routed through a 10A fuse, which serves as a line of

defense against short circuits and to disconnect the 24V input from the rest of the system when

powering the MSP432 from a computer. The 24V line is then stepped down to 3.3V and a 5V rails

using two fixed voltage LM2576 switching regulators from Texas Instruments [38]. These were

chosen for their high efficiency and ease of use. Schottky diodes were selected based on the

manufacturer’s recommendations. Inductors for both circuits were selected according to the

expected maximum current draw on both lines: ~400 mA on the 3.3V line, and 2.8A on the 5V

line. Both circuits used the same 0.06 Ω low Equivalent Series Resistance (ESR) capacitors to

reduce the ripple voltage as determined by Equation 5. This gives us an expected ripple voltage of

0.7 mV on the 3.3V line and 50mV on the 5V line.

𝑉ripple = 0.3 ⋅ 𝐼max ⋅ ESRCap (5)

A 0.1uF and a 100uF capacitor were placed in parallel at the input of the regulators to stabilize the

incoming voltage. The 100uF capacitor was from the datasheet’s recommendations while the

0.1uF was merely used as a bypass capacitor placed near the chip. Finally, to give some indication

that the supplies are live, two LEDs with accompanying resistors were put at the output of the 3.3V

and 5V lines. The power subsystem schematic can be found in Figure 14.

Figure 14: Power Subsystem Schematic

Page 31 of 54

Motor Subsystem

Each of the X, Y, and Z stepper motors share a subsystem architecture. The driver used is

a DRV8824 from Texas Instruments [X]. Due to the limited stock of driver chips available at this

time of this project, use of this chip was required of us. Each driver contains two H-bridges, which

switch the polarity applied to the four output lines that run to corresponding motor. Three

microstep select lines set an indexer inside the driver chip that allows the motors to perform full

steps, 1/2 steps, 1/4 steps, 1/8 steps, 1/16 steps, or 1/32 steps. A fault output indicates if the motor

encounters an error due to thermal regulation, undervoltage, or overcurrent. A home output

indicates when the motor thinks it has reached the position it was in when enabled, but our

application did not end up using this functionality. A charge pump capacitor allows for quick start

times after the chip has been disabled for an extended period. The driver contains an internal

regulator that steps its 24V input down to a 3.3V line. This 3.3V line is used for the stepper

subsystem alone, as it the rest of the system draws too much current to route all devices through

these drivers. The enable, reset, and sleep lines are all active-low. We use the reset line to initialize

the motor, and the enable line to turn the motor “on” or “off.” A pullup resistor on the active-low

enable ensures that the motor starts up in an “off” state until the system is ready to move. A thermal

pad on the back of the chip connects to the ground on the bottom of the board through a series of

thermal vias. The motor being driven by a given chip is turned by toggling the step input the driver,

with the direction input determining if the motor will turn clockwise or counterclockwise. The

stepper motor subsystem schematic can be found in Figure 15.

Figure 15: Stepper Motor Driver Subsystem Schematic

Sensor Network

The sensor network schematic in Figure 16 is the connection to the sensor that appears on

the main PCB. The sensor board schematic in Figure 17 is the implementation of the network that

is used on a series of secondary PCBs below the physical chessboard. The sensor board is arranged

as a cross point array of the ranks and files on the chessboard, resulting in 16 output lines for the

sensor network subsystem. Each of these lines are the output of an analog

multiplexer/demultiplexer that reduces the number of GPIO pins needed down to seven. There are

also 16 input lines for the rows and columns that connect to ground via pulldown resistors.

Page 32 of 54

Unfortunately, this subsystem caused some issues in practice. First, the power (VCC) and data

(COM) lines on the row selection multiplexer were shorted. This was fine on the column selection

demultiplexer, where 3.3V was always applied to the data line, but not for the demultiplexer that

was meant to output its data line. This was resolved by removing the multiplexer from our final

PCB and introducing eight additional GPIO lines directly to the row inputs. The second issue was

that pulldown resistors were fine on the row lines, but not the column lines. In fact, they caused

all rows to constantly read as ground. This was an easy fix, as we simply unplugged the column

pulldown terminal connectors.

Figure 16: Sensor Network Subsystem Schematic

The sensor board layout is shown in Figure 17. This schematic was implemented across four

secondary PCB’s (each containing two columns of sensors) that were jumped together below the

chessboard. There are 64 reed switches, each connected to one row and one column, and lined up

below a tile on the chessboard. This portion of the sensor network also featured an issue, in that

the diodes were initially overlooked. This was an easy correction after-the-fact, as the reed

switches selected were through-hole components. Realistically, testing should have been

conducted sooner to ensure that reed switches were the proper sensors for our device. We

discovered that the switches can be incredibly inconsistent with their detection consistency; in

particular, certain orientations of magnet did not trigger some switches. We initially chose not to

use Hall effect sensors to avoid additional cost for the components and corresponding PCBs. Were

we to do this project again, we would use Hall effect sensors in place of the reed switches, due to

their increased consistency.

Page 33 of 54

Figure 17: Sensor Chess Board Array Schematic

Switches and Buttons

All switches, button, limit switches, toggles, future proofing, etc. followed the same base

pattern. A transient voltage suppression diode prevents electrostatic discharge from leaking into

the system’s main lines. This is important on inputs that connect directly to GPIO and may be

accidentally shorted by human hands. A simple lowpass circuit acts as a preliminary debounce for

the switches, which generally had bounce times of 50 ms. A pullup resistor drives the line high

until the switch is activated, when it then becomes low. The only difference in the subsystem for

switches, buttons, etc. was the device connected as the “switch.” The switch subsystem schematic

can be found in Figure 18.

Page 34 of 54

Figure 18: Switch Subsystem Schematic

LEDs

There are two LED types included in our design. One is a red/green/blue LED used for

debugging and game state information. The other is a single, large, red status LED to indicate the

robot is in operation. The debugging LED had 3 pins, one for red, blue, and green, each driven by

a GPIO pin on the MSP through a 270Ω resistor. Its cathode is grounded through a jumper as

demonstrated in Figure 19. The status light is controlled through an N-Channel MOSFET. The

gate is connected to a GPIO pin on the microcontroller, while the LED is connected to the source

pin and the drain is grounded. A 1.2kΩ resistor makes sure the current from the 24V supply stayed

within the 20mA limits of the LED. The status LED is not soldered directly onto the PCB like the

debugging LED. Instead, it connected through a 2-pin terminal block as shown in Figure 20. This

status LED configuration did not end up working as expected and is detailed more in

Page 35 of 54

Test Plan.

Figure 19: Debugging LED Schematic

Figure 20: Status LED schematic

Project Time Line
Our initial schedule sought to have a working version of the project by the start of

Thanksgiving break, which turned out to be a very optimistic assessment (see Figure 21). The PCB

design took far longer, and was far more involved, than we had initially expected. As a result, we

missed the first board send out deadline and thus had to use send outs two and three. This

significantly compressed our timeline, as we were unable to fully assemble and test our first board

before the final version was sent out for manufacture. This meant we could not test our circuitry

until early November as opposed to early October that we had hoped. Additionally, the timing of

the last board send out meant that, despite sending it off to be assembled as fast as possible, we

did not get the assembled board until after Thanksgiving break. The combination of these two

delays resulted in us only being able to do a full system test the week before the final deadline.

Thus, our fixes were with limited resources, and we did not have time to remove all the bugs and

corner cases.

The mechanical design of the robot, the design of the PCB, and much of the software was

done largely in parallel. How many motors, sensors, and the grabbing mechanism were determined

very early, so the circuity and code to control them could be created at the same time as their exact

placement and configuration were determined. What could not be done in parallel was the sensor

board and the final system integration. The sensor board was done after the robot assembly and

PCB design as that was what determined both its size and what type of sensors it would contain.

The final system integration required all the physical and electronic components to be completed,

Page 36 of 54

as without them we could not create movement without motors or detect pieces without sensors.

The software to control and interpret all of our hardware was written well beforehand but could

not be thoroughly debugged until everything was complete.

Page 37 of 54

Figure 21: Original (Top) and Final (Bottom) Gantt Charts

Page 38 of 54

Test Plan

Mechanical

Our mechanical testing mainly served to confirm the physical frame was both the correct

size and as ridged as possible. Size was easy to determine, as if the chessboard fitted within the

confines of the gantry and the electromagnet could both reach a pawn at its maximum extension

and be higher than two kings when fully retracted, we were of an acceptable size. Structural rigidity

was tested by applying force along each major axis. If the axis moved, then extra brackets were

added to help hold it in place. The was repeated until twisting any of the beams resulted in no

movement with one exception. The Y-axis beam drooped slightly under its own weight as its

connection to the X-axis consists of 4 roller bearings. These were tightened as much as possible,

and the Y-axis’s beam moved back to reduce the deflection, but we were not able to completely

remove it. To compensate, the software adjusted the vertical height it moved to grab each piece

according to its position on the board. We also found that when the motors started moving the

robot would slide around on the table. To stop this, we added four rubber feet which provided

sufficient friction to hold the frame in place.

Figure 22: Mechanical System Test Plan

PCB Testing

Once the PCB was assembled, the first step in our testing regimen (see Figure 25) was to

check that all the components were connected to the correct power net, and not to any others. This

was done by using a digital multimeter in continuity mode to check between each pin and the

power test points (GND, 24V, 3.3V, and 5V). Once it was determined that there were no obvious

shorts, we proceeded to test the power supply. This proceeded as follows: first the external power

supply was connected to the barrel jack while the 10A fuse was removed and the voltage from

ground to the fuse holder was measured. This confirmed that the voltage level was correct and

with the correct polarity. Next, the shunts connecting the 3.3V and 5V rails to the rest of the board

were removed and the 10A fuse replaced. The 3.3V and 5V rails were then measured to determine

if they were correct, first with a multimeter and then with an oscilloscope, the results of which are

Page 39 of 54

in Figure 23 and Figure 24. Both showed themselves to be within acceptable limits, although the

ripple voltage was a little higher than expected. However, the 2 LEDs that should indicate the

supplies are live were not lit up when the voltages were present. Examining them under the

microscope showed that they had been installed backwards, and so were reattached in the opposite

direction. In doing so, the 3.3V light was damaged and thus showed very dimly, but the 5V LED

worked as expected.

Figure 23: 3.3V Rail Measurement

Figure 24: 5V Rail Measurement

Page 40 of 54

After the supplies had been proven acceptable, the button subsystems were tested. This

involved connecting the MSP432 to the board, placing each button’s shunt into place, and reading

the value. This showed that every button was reading as closed, i.e., the voltage at the pin was low.

By measuring the voltage over the resistor going to the microcontroller we determined that current

was flowing through the resistor regardless of the button’s state. This meant that the transient

voltage suppression diodes had been installed backwards and were being grounded. Fortunately,

this was discovered early enough that we could have the diodes installed backwards of that in the

schematic for the final board. Checking the button system again with the diodes reversed showed

no voltage across the resistor and a correct reading from the MSP432. However, this was not the

case for all buttons. The X-axis limit switch circuit would read an open button regardless of the

state of the switch, so one of the future proof circuits was used instead.

During the testing of the buttons, we also determined that some of the GPIO pins on the

MSP432 board were faulty. This was determined by shorting the intended pins to different GPIO

pins and reading both. The other pin showed a correct reading while the original was always low.

To fix this, a replacement board was used.

Next, the stepper motor drivers were tested to see if they were correctly driving the motors.

This was done by connecting each driver’s shunt and using the MSP to set the appropriate select,

enable, direction, and step lines. Initially, the drivers were dormant. We soon realized that we had

been testing the stepper motors with a different driver chip that did not have a reset pin. Once this

was accounted for, the drivers performed as expected and we could successfully move the motors

to a desired position.

The final subsystem tested was the electromagnet. This was done by applying a 10kHz

PWM signal with a 30% duty cycle to the electromagnet’s controller chip. This had been calculated

to drive about at 300mA current through the magnet which was the manufacturers rated max

current. We then placed the top of the pieces, to which a zinc screw was attached, to the

electromagnet and felt for any attraction. At 30% duty cycle we observed no field. We then

attached an ammeter in series with the electromagnet to determine the current flowing through the

wire. This read at about 1mA. The duty cycle was then increased in increments of 10% until at 70%

we found that the magnet would now strongly grab the pieces. The measured current however,

never seemed to grow beyond 2mA, so we abandoned the ammeter and just assumed that the

current was sufficient. However, when the magnet grabbed a piece, we noticed a high-pitched

whine. It is our belief that the screw is changing the resistance of the magnets core and thus

allowing more current to flow after it has grabbed a piece. Since we could not take an accurate

current measurement, we could not prove this, but the magnet is never driven for long periods, and

we never observed it to grow hot during use. Therefore, we determined this state of affairs to be

acceptable.

Page 41 of 54

Figure 25: Electrical Test Plan

Sensor Board

Before the entire board could be tested, we first tested several magnets of different sizes

and strengths to determine which would consistently trigger a switch within its square, but not

trigger its neighbors and in what orientations. This was done by putting two neighboring switches

into their slots and connecting them in series with a resistor and LED on a breadboard. The magnets

were then placed over and around both switches and we observed where one or both LEDs lit up

which indicated that the switch had closed. Eventually we decided upon 1/8” x 1/8” x ½” N42 bar

magnets as the most consistent [39].

Once the magnet was determined and the board assembled, we plugged the board into the

PCB and tried to read the different positions by placing a magnet over the switch and examining

what the MSP432 was reading for each position. This revealed several problems. Firstly, we

discovered that we had erroneously connected the power pin and the data pin on the row

multiplexor as shown in Figure 26: Problem in Row Multiplexer. This meant the chip was

unpowered, and thus was giving very unreliable data. To solve this problem, we removed the chip

from the board and connected jumper wires to eight unused GPIO pins. We also discovered that

we should not have connected the return path on the columns (where the power is delivered) to

ground, as we were effectively shorting our signal to ground. Simply disconnecting the return path

on the columns solved this issue.

Page 42 of 54

Figure 26: Problem in Row Multiplexer

Once we were reliably reading the board, we discovered that if a row had multiple magnets

over them, and a neighboring row had but one switch closed, the entirety of the second row was

erroneously reading high. To determine if this was a hardware problem or a software problem, we

used a multimeter to check for continuity on opposite ends of open switches and discovered that

there was a connection. Eventually, we determined that this was due to voltage “leaking” from the

a given row through a closed switch on another row, so that no matter which column was selected,

so long as there was a closed switch somewhere in both, both would always read high. An example

of this is shown in Figure 27. To correct this, we added a 1N4001 diode in series with each reed

switch (Figure 28). This prevents anything from one row going into another row through an

unselected switch. We likely should have used a 1N4148 switching diode instead, but we could

only acquire the 1N4001 in sufficient supply on short notice. This meant that we had to scan the

board at a slower rate, but it ended up still being fast enough that there was no noticeable delay.

This solved the problem, and after slowing down the speed at which we scanned through the

columns, the board could accurately and consistently detect magnets at each switch.

Figure 27: Erroneous Current Flow

Page 43 of 54

Figure 28: Corrected Sensor Board Layout

Software

 Software was tested continuously to reach the final product. The earlier stages of software

testing mostly involved testing the UART module on the MSP432 to ensure it could communicate

reliably with the Raspberry Pi. The Python script running on the Raspberry Pi included printing

and logging of the messages it received to support this process. When unexpected errors occurred

that involved the Raspberry Pi, the logs could be accessed via Secure Shell (SSH) to see what went

wrong. On the MSP432, Code Composer’s debugger was used to access register and variable

values or set breakpoints when unexpected behavior occurred.

The software test plan in Figure 29 tests the software for, among other things, proper LED

indicators, UART communication, input handling, and motor control. It does this by simulating a

power-on of the system followed by a turn made by the human. Further testing extended this to a

power-on followed by many turns from both the player and robot, testing for behavior like

recognizing captures and illegal moves throughout. This scenario was repeated many times, and

when unexpected behavior like system faults, incorrect LEDs, or failed communication occurred,

the software was debugged using either of the tools previously mentioned: Code Composer’s

debugging tools or the Raspberry Pi’s script logs.

 In addition to testing the software for functionality, some values in the MSP432’s code

that controlled motor movement needed to be tested for accuracy. This meant ensuring the

motors could accurately go to any tile on the X and Y axes and pick up any piece without

missing nor crushing them on the Z-axis. This involved placing a particular piece on a tile and

ensuring the gantry system electromagnet would move directly over the piece without crushing

it. If the electromagnet was not centered above the piece, then the X and Y offset for the rank or

file the piece was on was adjusted. If the electromagnet did not reach the piece or pressed down

too hard on it, the height offset for that piece was adjusted. This process was repeated until the

X

Page 44 of 54

software had offsets that would accurately pick up any piece on any tile without crushing them.

Figure 29: Software Test Plan

Final Results
Overall, the robot functioned well and met our initial goal: to create an autonomous robot

that could play chess competently against a human. In the original proposal for this project, the

team created a rubric by which to assess the success of the project. It is shown in Figure 30.

Assessing these criteria, the motors always functioned well and moved reasonably swiftly, and the

system was well-calibrated to account for different piece heights and moving to any square

accurately. As a result, the robot consistently took less than 20 seconds per movement (defined as

time taken to pick up, move, and place a piece from one tile on another) and very rarely missed

picking up pieces. In a sample taken on demo day, the robot only missed pieces 2 times across

many games (61 moves, 3.3% miss). When it did miss pieces, this was more due to inconsistency

in the height of the protruding screw on certain pieces and not poor Z-axis calibration. Over time,

the screws would work themselves deeper into the piece thus lowering the total height. In these

situations, the missed piece’s screws would need to be adjusted slightly with a screwdriver. The

chess robot never moved the wrong piece; the X and Y axes were calibrated very well to avoid

this. The robot could handle all special moves appropriately, including capturing, castling, en

passant, and queen promotion. The sensor network usually detects all pieces, but occasionally they

would need to be adjusted for the robot to recognize their presence. By this assessment, this project

earned 3 points for speed, 3 points for accuracy, 3 points for correctness, 3 points for level of play,

and 2 points for sensor accuracy. So, this project scored a 14/15, which is an A by the evaluation

rubric above.

Page 45 of 54

Although this project met the criteria for an A, it was not without flaws. While the Z-axis

motor was well-calibrated to avoid overdriving into pieces with the electromagnet, it would

sometimes, albeit rarely, miss a piece by not moving the electromagnet sufficiently close to the

protruding screw. This occurred more frequently the longer we played, as the metal screws were

driven into the heads of the plastic pieces when the electromagnet moved them. If we were to do

this project again, we would 3D print custom pieces that would remove the need for magnetic

screws or use metallic pieces.

Additionally, the sensor network sometimes failed to read pieces which were present, often

ones recently moved by the robot. This is because the reed switches depend on the orientation of

the magnet above them. While pieces could be set up with the optimal orientation relative to the

reed switch, the electromagnet could sometimes move the piece while rotating it from its initial

position. If the piece was rotated into a poor orientation and placed back down, then a legal move

would manifest itself as an illegal move since the robot could not detect the piece. Then, the

suspected piece would need to be reoriented to be recognized by the robot and proceed with the

game.

Figure 30: Evaluation Rubric

Page 46 of 54

Costs
Original Budget and final spending can be seen in Budget. Our original budget

underestimated the amount needed for electrical assembly. Since our PCB was mainly surface

mounted parts, it was unfeasible for the team to solder all the components on by hand. The

company that the class uses for PCB assembly, WWW Electronics [40], charges 50 cents per

component to assemble, so with more than 200 components on the board, it would cost a bit more

than $100 for full assembly. This means that only one board was able to be fully assembled. The

chess mat board and the chess pieces never came in, so we had to purchase another set for $20.

OpenBuilds was the main distributor for mechanical parts such as aluminum, screws, nuts, gantry

kits, mounting plates and more. The original budget also accounts for supplies that we already had,

like stepper motors, belts, pullies, cable drivers and stepper drivers. When mass manufacturing, it

would be simpler to have one large 17x17 PCB for the sensor network rather than 4 individual

PCBs that we ended up going with. The 3D printed parts did not factor into the budget, but for

mass manufacturing, these parts would need to be made of something more sturdy and easier to

make. Molds could be made for the parts, and then those parts could be made of aluminum. Our

original budget also did not include having to buy a new MSP432. This purchase was made of a

need for more working GPIO pins. Table 5 shows the total costs for this project if we had to buy

everything from scratch, the total expected for a mass manufacturing setting, and the actual total

amount spent. Ideally, the project would have stayed under the $500 original budget, but to obtain

full functionality in a timely manner, extra expenses had to be made.

Table 5: Final Budget Calculations

Total Theoretical Total Bulk Total Actual

1035.08400 952.56471 765.198

Future Work
 In terms of revisions to the project, we would want to replace the reed switches with hall

effect sensors. The field for the switches is parallel to the switch, whereas with hall effect sensors

the field is normal to the sensor. This means that a piece could be placed in any orientation

without issue. We also had three buttons on the PCB that ended up doing the same thing. We

would want to move one of them for reset to in front of the board where the player is and reduce

their number. Additionally, the PCB is exposed, which presents a possible electrical safety risk.

We would need to move the indicator light next to the signal light, then put the board within a

proper enclosure. This removes any safety concerns. Lastly, having two separate computers, the

MSP432 and the Raspberry Pi is a bit redundant. We could try to modify the Stockfish chess

engine to run on the MSP432 and eliminate the Raspberry Pi to reduce complexity.

In terms of adding new features, an extension to this project could support “chess variants.”

Chess variants are games derived from standard chess, but with slightly different rules. For

example, “Fischer random chess” randomizes the back ranks of both players to the same

arrangement, and “3-check” changes the goal from placing the king in checkmate to placing the

king in check 3 times. With some additional UART instructions and motor instructions, one could

set up the software to support both variants, among many others.

Page 47 of 54

References
[1] “Raspberry Pi 3 Model A+,” Raspberry Pi. https://www.raspberrypi.com/products/raspberry-

pi-3-model-a-plus/ (accessed Sep. 26, 2022).

[2] “MSP432E401Y,” Texas Instruments. https://www.ti.com/product/MSP432E401Y (accessed

Sep. 26, 2022).

[3] “Stockfish.” official-stockfish, Sep. 25, 2022. Accessed: Sep. 24, 2022. [Online]. Available:

https://github.com/official-stockfish/Stockfish

[4] H. J. R. Murray, A History of Chess: The Original 1913 Edition. Oxford, England: Oxford

University Press, 2015.

[5] “No. 2765: The Mechanical Turk.” https://www.uh.edu/engines/epi2765.htm (accessed Sep.

26, 2022).

[6] D. A. Christie, T. M. Kusuma, and P. Musa, “Chess piece movement detection and tracking,

a vision system framework for autonomous chess playing robot,” in 2017 Second

International Conference on Informatics and Computing (ICIC), Nov. 2017, pp. 1–6. doi:

10.1109/IAC.2017.8280621.

[7] P. K. Rath, N. Mahapatro, P. Nath, and R. Dash, “Autonomous Chess Playing Robot,” in

2019 28th IEEE International Conference on Robot and Human Interactive Communication

(RO-MAN), Oct. 2019, pp. 1–6. doi: 10.1109/RO-MAN46459.2019.8956389.

[8] “Can’t Help Myself | The Guggenheim Museums and Foundation.”

https://www.guggenheim.org/artwork/34812 (accessed Sep. 27, 2022).

[9] How We Made an NFC Chess Board, (Dec. 18, 2018). Accessed: Sep. 27, 2022. [Online

Video]. Available: https://www.youtube.com/watch?v=ZltkZSNX_d4

[10] “Student Creates Robot That’s One Move Ahead on Chess Board,” YouTube.

https://www.rose-hulman.edu/news/2021/student-creates-robot-that-is-one-move-ahead-on-

chess-board.html (accessed Sep. 27, 2022).

[11] “GitHub: Where the world builds software,” GitHub. https://github.com/ (accessed Sep.

26, 2022).

[12] “KiCad EDA.” https://www.kicad.org/ (accessed Sep. 26, 2022).

[13] “CADLAB.io | Visual collaboration and version control platform for your PCB.”

https://cadlab.io/ (accessed Sep. 27, 2022).

[14] “3D CAD Design Software | SOLIDWORKS.” https://www.solidworks.com/home-page-

2021 (accessed Sep. 26, 2022).

[15] “Original Prusa i3 MK3S+ | Original Prusa 3D printers directly from Josef Prusa,”

Prusa3D by Josef Prusa. https://www.prusa3d.com/category/original-prusa-i3-mk3s/

(accessed Dec. 13, 2022).

[16] “Ultimaker S3: Easy-to-use 3D printing starts here,” https://ultimaker.com.

https://ultimaker.com/3d-printers/ultimaker-s3 (accessed Dec. 13, 2022).

[17] “PrusaSlicer | Original Prusa 3D printers directly from Josef Prusa.”

https://www.prusa3d.com/page/prusaslicer_424/ (accessed Dec. 13, 2022).

[18] “Ultimaker Cura: Powerful, easy-to-use 3D printing software,” https://ultimaker.com.

https://ultimaker.com/software/ultimaker-cura (accessed Dec. 13, 2022).

[19] “CCSTUDIO IDE, configuration, compiler or debugger | TI.com.”

https://www.ti.com/tool/CCSTUDIO (accessed Sep. 26, 2022).

[20] “Visual Studio Code.” Microsoft. Accessed: Sep. 26, 2022. [Online]. Available:

https://code.visualstudio.com/

Page 48 of 54

[21] D. Paraskevas, K. Kellens, A. Voorde, W. Dewulf, and J. Duflou, “Environmental Impact

Analysis of Primary Aluminium Production at Country Level,” Procedia CIRP, vol. 40, pp.

209–213, Dec. 2016, doi: 10.1016/j.procir.2016.01.104.

[22] “Guides to Pollution Prevention: The Printed Circuit Board Manufacturing Industry,” p.

83.

[23] D. Xiang, P. MOU, J. Wang, G. Duan, and H.-C. Zhang, “Printed circuit board recycling

process and its environmental impact assessment,” Int. J. Adv. Manuf. Technol., vol. 34, Oct.

2006, doi: 10.1007/s00170-006-0656-6.

[24] “UCI protocol,” WBEC Ridderkerk, 2004. http://wbec-

ridderkerk.nl/html/UCIProtocol.html (accessed Sep. 26, 2022).

[25] Millennium Circuits Limited, “GUIDE TO IPC STANDARDS FOR PCBS.” [Online].

Available: https://www.mclpcb.com/blog/ipc-standards-for-

pcbs/#:~:text=What%20are%20the%20IPC%20standards,%2C%20assembly%2C%20packa

ging%20and%20more.

[26] “FreeDFM.” [Online]. Available: https://www.4pcb.com/free-pcb-file-check/index.html

[27] Telecommunications Industry Association, “Interface Between Data Terminal Equipment

and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange,” TIA-

232-F, 1997. [Online]. Available: https://www.tc.faa.gov/its/worldpac/Standards/eia-

tia/tia%20232f.pdf

[28] “UL Standard | UL 4600.”

https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600 (accessed Sep. 27,

2022).

[29] “Consumer Product Safety Improvement Act,” Public Law 110–314, 2008. [Online].

Available: https://www.cpsc.gov/s3fs-public/cpsia.pdf

[30] “ASTM International - ASTM F963-07 - Standard Consumer Safety Specification for

Toy Safety | Engineering360.”

https://standards.globalspec.com/std/3828113/ASTM%20F963-07 (accessed Sep. 27, 2022).

[31] M. Barr, “Embedded C Coding Standard.” Barr Group, 2018. Accessed: Dec. 12, 2022.

[Online]. Available:

https://barrgroup.com/sites/default/files/barr_c_coding_standard_2018.pdf

[32] L. T. Jones, A. Howden, M. S. Knighton, A. Sims, D. L. Kittinger, and R. E. Hollander,

“Robot Computer Chess Game,” 4,398,720 Accessed: Dec. 10, 2022. [Online]. Available:

https://patentimages.storage.googleapis.com/32/ae/42/c43a9d7aac8229/US4398720.pdf

[33] H. Crozier, “Chess Game and Method,” 6,446,966 [Online]. Available:

https://patentimages.storage.googleapis.com/3d/fd/b7/60ace1484a1996/US6446966.pdf

[34] M. KAUFMANN and H. THUT, “Robot Arm with a Shearing Drive, and a Gantry

Robot” [Online]. Available: https://www.quickcompany.in/patents/robot-arm-with-a-

shearing-drive-and-a-gantry-robot#documents

[35] J. Fletcher, “An Arithmetic Checksum for Serial Transmissions,” IEEE Trans. Commun.,

vol. 30, no. 1, 1982, Accessed: Dec. 01, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/1095369

[36] “24V Power Supply.” [Online]. Available: https://en.globtek.com/model/ict-ite-power-

supply/desktop-external/gt-46240-24vv-x-x-t2/w71120#output_connectors

[37] Kycon, “Thru-hole DC Power Jack, High Current: 8A for 2.0 and 2.5 mm plugs, RoHS

Compliant.” [Online]. Available:

https://media.digikey.com/pdf/Data%20Sheets/Kycon%20PDFs/KLDHCX-8-0202-x.pdf

Page 49 of 54

[38] Texas Instruments, “LM2576xx Series SIMPLE SWITCHER 3-A Step-Down Voltage

Regulator.” Texas Instruments. [Online]. Available:

https://www.ti.com/lit/ds/symlink/lm2576hv.pdf?HQS=dis-mous-null-mousermode-dsf-pf-

null-wwe&ts=1670925206237&ref_url=https%253A%252F%252Fwww.mouser.com%252F

[39] K&J Magnetics, Inc., “B228.” [Online]. Available:

https://www.kjmagnetics.com/proddetail.asp?prod=B228

[40] “Three W - WWW Electronics Incorporated.” [Online]. Available: https://3welec.com/

Page 50 of 54

Appendix

Appendix A - UCI Notation

“Universal Chess Interface” (UCI) is a communication protocol that allows chess engines

to communicate with user interfaces. In this project, the most important aspect of UCI is the way

it represents moves. Moves in UCI notation are represented by 4-5 characters, explained below:

Table 6: Explanation of UCI Notation

Character # Character Description

0 a, b, c, d, e, f, g Initial File

1 1, 2, 3, 4, 5, 6, 7, 8 Initial Rank

2 a, b, c, d, e, f, g Final File

3 1, 2, 3, 4, 5, 6, 7, 8 Final Rank

4 q Promotion (if applicable)

So, a move like “e2e4” would translate to “move the piece on tile e2 to e4; if there is a

piece present at the final tile, capture it.” For promotions (the only type of move which can be 5

characters long), a move like “c7c8q” would translate to “move the pawn on tile c7 to c8, then

promote it to a queen.”

Appendix B – Schematics

Figure 31: Heatsink schematic

Page 51 of 54

Appendix C – Budget

Figure 32: Original Budget

Page 52 of 54

Table 7: Final Budget

Item Quantity
Per Unit
Price

Unit Price
Per 10k

Total Cost
Per Item

Total Cost
Per Item -
bulk

Bought
(y/n)

chess board 1 18.99000 18.99000 18.99000 18.99000 y

SKU: 621 1 11.99000 11.99000 11.99000 11.99000 y

SKU: 575 2 6.99000 6.99000 13.98000 13.98000 y

SKU: 570 2 6.99000 6.99000 13.98000 13.98000 y

SKU: 550 2 5.99000 5.99000 11.98000 11.98000 y

SKU: 946-pack 1 0.99000 0.99000 0.99000 0.99000 y

SKU: 20-pack 1 1.39000 1.39000 1.39000 1.39000 y

SKU: 130-pack 1 1.59000 1.59000 1.59000 1.59000 y

SKU: 10-Pack 1 0.99000 0.99000 0.99000 0.99000 y

20 Degree Pressure Angle
Plastic Gear 1 3.00000 3.00000 3.00000 3.00000 y

20 Degree Pressure Angle
Gear Rack, 0.8 Module 2 4.40000 4.40000 8.80000 8.80000 y

Rubber bumper 4 4.81000 4.81000 19.24000 19.24000 y

M5 8mm screws 1 0.99000 0.99000 0.99000 0.99000 y

M5 10mm screws 1 1.09000 1.09000 1.09000 1.09000 y

M5 Tee nuts 2 2.99000 2.99000 5.98000 5.98000 y

PCB Board 1 66.00000 66.00000 66.00000 66.00000 y

PCB Assembly 1 163.00000 163.00000 163.00000 163.00000 y

C1812X474K2RACAUTO 3 1.15000 0.39259 3.45000 1.17777 y

C1210C822K2RACAUTO 12 0.65000 0.18585 7.80000 2.23020 y

GRM033R61A103KA01D 9 0.10000 0.00279 0.90000 0.02511 y

860020573008 1 0.15000 0.08100 0.15000 0.08100 y

SEK331M050ST 1 1.75000 0.62100 1.75000 0.62100 y

31DQ04 1 0.38000 0.10084 0.38000 0.10084 y

PPTC102LFBN-RC 4 1.30000 0.64870 5.20000 2.59480 y

OQ0432500000G 11 0.76000 0.14589 8.36000 1.60479 y

OQ0212500000G 10 0.46000 0.07469 4.60000 0.74690 y

KLDHCX-8-0202-A 1 2.14000 1.12130 2.14000 1.12130 y

SRR1210-681M 1 1.41000 0.60354 1.41000 0.60354 y

HV-5RGB25 1 0.41000 0.32703 0.41000 0.32703 y

TNPV08051M00BEEA 3 0.83000 0.24708 2.49000 0.74124 y

WSL2010R4000FEA 6 0.93000 0.31416 5.58000 1.88496 y

ERJ-PB6B3002V 3 0.40000 0.04305 1.20000 0.12915 y

RMCF1206FT10K0 37 0.10000 0.00365 3.70000 0.13505 y

SDR03EZPF2201 2 0.16000 0.02225 0.32000 0.04450 y

CR0402-FX-5620GLF 12 0.10000 0.00170 1.20000 0.02040 y

Page 53 of 54

RCV2512100KFKEGAT 6 1.39000 0.41922 8.34000 2.51532 y

SDR10EZPJ271 5 0.23000 0.02451 1.15000 0.12255 y

PTS636 SL43 LFS 3 0.10000 0.05650 0.30000 0.16950 y

5010 2 0.42000 0.17044 0.84000 0.34088 y

5126 21 0.42000 0.17044 8.82000 3.57924 y

5011 3 0.42000 0.17044 1.26000 0.51132 y

5012 2 0.42000 0.17044 0.84000 0.34088 y

LM2576SX-3.3/NOPB 3 4.06000 2.16720 12.18000 6.50160 y

3873 1 9.95000 9.95000 9.95000 9.95000 y

LM2576HVS-5.0/NOPB 1 9.24000 5.49150 9.24000 5.49150 y

CD74HC4051PWT 2 1.24000 0.52500 2.48000 1.05000 y

RCV2512100KFKEGAT 6 1.39000 0.41922 8.34000 2.51532 y

CL10B104KB8NNNC 8 0.10000 0.00513 0.80000 0.04104 y

EEE-FP1E471AP 5 1.16000 0.37228 5.80000 1.86140 y

EAST2012RA2 2 0.27000 0.04202 0.54000 0.08404 y

CDBA540-HF 4 0.44000 0.13500 1.76000 0.54000 y

3588 1 1.33000 0.64309 1.33000 0.64309 y

ATS-52150P-C1-R0 2 10.96000 7.61288 21.92000 15.22576 y

DRV8210DRLR 1 0.89000 0.33750 0.89000 0.33750 y

USB1130-15-A 1 0.54000 0.38037 0.54000 0.38037 y

PH1-02-UA 20 0.10000 0.01400 2.00000 0.28000 y

PA4344.104NLT 1 4.44000 2.17933 4.44000 2.17933 y

CHP2512AFX-47R0ELF 1 1.00000 0.36407 1.00000 0.36407 y

SDR03EZPF1500 1 0.16000 0.01730 0.16000 0.01730 y

UCLAMP3301H.TCT 16 0.64000 0.22950 10.24000 3.67200 y

JS102011SCQN 1 0.85000 0.42069 0.85000 0.42069 y

UCLAMP3301HCT-ND 20 0.56100 0.22950 11.22000 4.59000 y

350-4316-ND 1 5.14000 2.20495 5.14000 2.20495 y

WSLE-.40CT-ND 10 0.80500 0.31416 8.05000 3.14160 y

2057-PH1-02-UA-ND 20 0.03700 0.01400 0.74000 0.28000 y

2073-USB1130-15-ACT-ND 1 0.79000 0.38037 0.79000 0.38037 y

2092-KLDHCX-8-0202-B-ND 1 2.16000 1.12130 2.16000 1.12130 y

732-8942-1-ND 6 0.15000 0.08100 0.90000 0.48600 y

609-3799-ND 20 1.09500 0.53308 21.90000 10.66160 y

399-
C1210C822K2RACAUTOCT-ND 1 0.65000 0.18585 0.65000 0.18585 y

1276-1000-1-ND 8 0.10000 0.00513 0.80000 0.04104 y

399-
C1812X474K2RACAUTOCT-ND 1 1.15000 0.39259 1.15000 0.39259 y

17x17 board 1 0.00000 15.74210 0.00000 15.74210 n

2x8 board 5 7.46000 0.00000 37.30000 0.00000 y

Page 54 of 54

Reed Switches 65 0.47720 0.31603 31.01800 20.54195 y

Diodes 64 0.18900 0.02877 12.09600 1.84128 n

polycarbonate - 18x24 2 0.00000 47.98000 0.00000 95.96000 n

pinch point stickers - pack of
10 1 11.55000 11.55000 11.55000 11.55000 y

E-Stop 1 38.24000 25.78980 38.24000 25.78980 y

Magnets - B228 34 0.52000 0.52000 17.68000 17.68000 y

Next Turn Button 1 11.69000 11.69000 11.69000 11.69000 y

MSP432 1 53.19000 53.19000 53.19000 53.19000 y

Raspberry Pi 1 34.99000 34.99000 34.99000 34.99000 n

Stepper Motors 2 17.99000 17.99000 35.98000 35.98000 n

Servo Motor 1 43.99000 43.99000 43.99000 43.99000 n

Aluminum 80/20 20x20 6 5.49000 5.49000 32.94000 32.94000 n

Aluminum 80/20 20x40 1 6.99000 6.99000 6.99000 6.99000 n

Cable Carrier 1 13.50000 13.50000 13.50000 13.50000 n

Stepper Driver 2 15.49000 15.49000 30.98000 30.98000 n

Belts 5 2.49000 2.49000 12.45000 12.45000 n

Pulley 2 6.99000 6.99000 13.98000 13.98000 n

V-Slot Gantry Cart Kit (Small) 1 31.99000 31.99000 31.99000 31.99000 n

Totals

Total
Theoretical Total Bulk

Total
Actual

 1035.08400 952.56471 765.198

