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Abstract

High-rate large-sized (α) flows have adverse effects on delay-sensitive flows. Research-and-

education network providers are interested in identifying such flows within their networks, and

directing these flows to virtual circuits. To achieve this goal, a design was proposed for a hybrid

network traffic engineering system (HNTES) that would run on an external server, gather NetFlow

records from routers, analyze these records to identify α-flow source/destination address prefixes,

configure firewall filter rules at ingress routers to extract future α flows and redirect them to pro-

visioned virtual circuits. This thesis presents an evaluation of this HNTES design using NetFlow

records collected over a 7-month period from four ESnet routers. The results show that the HNTES

effectiveness was above 90% for NetFlow records collected at edge routers, which corresponded to

file downloads from Department of Energy (DOE) laboratories, while the effectiveness was lower

for peering routers whose NetFlow records corresponded to file uploads. With further investiga-

tion, we found that uploads were less frequent and involved fewer source/destination pairs than

downloads.

The thesis also describes an algorithm for characterizing the size, duration, average rate, and

frequency of α flows, from NetFlow records. The algorithm was validated using independently col-

lected usage logs from application servers. This algorithm can be used in a network management

system for providers interested in these types of flows, such as research-and-education network

providers whose customers move large scientific datasets. We executed the algorithm on the same

NetFlow records used in the HNTES evaluation. Flows moving datasets as large as 811 GB and

at rates as high as 5.7 Gbps were observed. Some source-destination pairs were found to repeat-

edly create α flows. An analysis of the rates of the 1596 repeated α flows created by one pair
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showed considerable variance, with minimum rate of 100 Mbps, maximum rate of 536 Mbps, and

a coefficient of variation of 30%.
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Chapter 1

Introduction

Research-and-eduation (REN) network providers have observed that high-rate large-sized flows

(henceforth referred to as α flows [25]) have adverse effects on delay-sensitive flows. Therefore,

there is an interest in identifying these α flows, directing them to separate virtual queues from

general-purpose flows, and forwarding them onto virtual circuits.

As IP routers do not offer built-in capabilities to identify α flows, Z. Yan et al. proposed a

network management software system called hybrid network traffic-engineering system (HNTES)

to be run on an external server [30, 31]. HNTES conducts a posteriori analysis of NetFlow [16]

records, which are exported by routers on a periodic basis. NetFlow is a technology that is built

into IP routers to sample packets (e.g., 1-in-1000) and store packet-header fields such as source and

destination IP addresses, port numbers, and protocol type, along with packet-arrival timestamps.

Routers create NetFlow records by aggregating information about multiple sampled packets of the

same flow that arrived within a preconfigured duration. HNTES extracts the source and destination

addresses/prefixes of α flows, and uses these in a request to a virtual-circuit management system

to enable isolation of future α flows from general-purpose flows. The virtual-circuit management

system has the authority to configure virtual circuits, configure packet schedulers to support mul-

tiple virtual queues in router buffers, and to set firewall filter rules at ingress routers using the

source/destination addresses/prefixes provided by HNTES. Future α flows whose addresses/prefixes

match those of the firewall filter rules will be automatically directed to a separate virtual queue from

general-purpose flows, and will be forwarded on to the established virtual circuits.

1



Chapter 1. Introduction 2

The first part of this thesis describes a detailed evaluation of HNTES using NetFlow records

from four ESnet [4] routers.

In the second part of this thesis, we describe an algorithm for combining information from

multiple NetFlow records to determine the size, duration, and average rate of α flows. The algorithm

can be used in a network mangement system that helps network providers to characterize α flows,

pinpoint routing misconfigurations, and assist their customers by improving performance.

Given the low NetFlow packet sampling rates used in ESnet [4] (specifically, 1-in-1000)1, our

algorithm needed to be validated. We conducted a validation exercise by procuring GridFTP usage

logs [6] from a supercomputing center that is directly connected to ESnet, and NetFlow records

from the corresponding ESnet router. The GridFTP usage logs provide file transfer sizes/durations.

These values were matched with the flow characteristics determined by executing the algorithm on

the ESnet NetFlow records. The algorithm was then applied to characterize α flows observed at

four ESnet routers.

The following sections provide background information, describe the problem statement and

motivation for the work, state our hypotheses, and list key contributions of this work.

1.1 Background

1.1.1 NetFlow

NetFlow [16] is a feature that enables IP routers to collect packet samples, and save information on

a per-flow basis. The defining attributes of a flow can be configured, e.g., the five tuples {source

IP address, destination IP address, source port number, destination port number, protocol type}.

For each newly observed flow F, NetFlow opens a flow record and stores the arrival time instant

of the first observed packet. For every new packet corresponding to flow F that is captured by the

sampling process, NetFlow adds one to the flow-record packet count and increases the total size

(bytes) by the packet-payload size. It also updates the last-packet timestamp field. At the end of the

active timeout interval (time since first-packet arrival), inactive timeout interval (time since last-

1On high-speed core-network links, higher sampling rates are impractical.



Chapter 1. Introduction 3

packet arrival), or upon observing a TCP FIN or RST segment for flow F, the corresponding open

NetFlow record is closed. The two timeout intervals are configurable. The closed NetFlow records

are sent by the IP router’s NetFlow exporter to a NetFlow collector (a process running on

an external host). In ESnet, the packet sampling rate is 1-in-1000, the active and inactive timeout

intervals are 60 sec each, and NetFlow records are exported every 5 mins.

1.1.2 ESnet

ESnet is a US-wide core (backbone) high-speed REN that offers IP-routed and dynamic virtual

circuit services to DOE national laboratories, such as Argonne National Laboratory, Brookhaven

National Laboratory, and several others [4]. As the DOE national laboratories conduct scientific

research in many disciplines such as high-energy physics, α flows created by the movement of

scientific datasets are observed on ESnet router interfaces.

In 2011, when the NetFlow records used in this thesis were collected, there were 75 routers in

total, with 42 routers located in customer premises as provider edge (PE) routers, and the remaining

routers were used in the core backbone (routers are located in cities such as Houston, Atlanta, etc.)

and in three metro-area rings in Chicago, Northern California, and New York. All backbone links,

and links from major PE routers to core routers were 10 Gbps Ethernet. ESnet peers with other US

backbone RENs such as Internet2, and international RENs such as GEANT2, and with commercial

peers and provider networks.

1.2 Problem Statement

The objectives of this work are to evaluate HNTES and to characterize α flows.

1.2.1 Evaluation of HNTES

The primary goal is to compare HNTES performance when using NetFlow records from different

types of ESnet routers. Two of the selected routers whose NetFlow records were analyzed were

edge routers, one was a core router with REN-peering, and one was a commercial-peering router.
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Two performance metrics were used: (i) effectiveness, and (ii) afflicted-flow packets percentage

(AFPP). Effectiveness is the percentage of bytes from α flows that would have been isolated from

other flows had HNTES been deployed. The AFPP metric characterizes the percentage of packets

from non-α delay-sensitive flows (afflicted-flows) that share address prefixes with α flows. The

afflicted flows could suffer potential packet delays because HNTES operation requires IP routers to

be configured to direct packets of flows with α prefix IDs to separate virtual queues.

1.2.2 α flow characterization

The goal of this work is to develop methods for characterizing α flows (on their size and duration

dimensions) from NetFlow records, and to use these methods to characterize α flows observed at

the four ESnet routers.

1.3 Motivation

1.3.1 Evaluation of HNTES

The prior work [30,31] was supported by a University of Virginia (UVA) US Department of Energy

(DOE) grant. As a follow-on to this UVA grant, the US DOE funded a second HNTES project

in which ESnet is a collaborator. ESnet is interested in enhancing HNTES capabilities and per-

formance for eventual deployment. Further, from a research perspective, it was important to test

whether the conclusions about HNTES performance based on the analysis of NetFlow records from

a single router [30] are valid when NetFlow records collected from other routers are analyzed.

1.3.2 α flow characterization

Network operators are also interested in characterizing α flows traversing their network for various

applications. Two examples are as follows. First, while REN peerings are usually the preferred

routes for inter-domain traffic within the scientific community, sometimes these α flows moving

large scientific datasets appear on the commercial peering links. Such events occur due to Border

Gateway Protocol (BGP) misconfigurations. Characterizations of these α flows can assist providers
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in finding such misconfigurations. A second provider application of a system that characterizes

α flows is to to assist customers in determining causes of poor performance. For example, if a

user experiences high throughput variance determined by the α flow characterization system, Perf-

SONAR [22] can be used to help pinpoint the source of the problem.

1.4 Hypotheses

1.4.1 Evaluation of HNTES

Our hypothesis was “the effectiveness and AFPP metric values of HNTES computed using NetFlow

records collected from different routers may not be the same.”

1.4.2 α flow characterization

Our hypothesis was “larger α flows are likely to be observed at edge routers than at core/REN-

peering and commercial-peering routers because downloads from national laboratories were ob-

served at the two edge routers while the observation points at the peering routers captured uploads.”

DOE national laboratories support high-performance computing systems used by the scientific com-

munity. Large datasets are created on these systems through the execution of complex models, such

as climate simulations, which are then downloaded by scientists to their own storage clusters.

1.5 Key contributions

1.5.1 Evaluation of HNTES

The main contributions of the HNTES evaluation work are: (i) definitions of HNTES performance

metrics and relevant traffic measures, (ii) cross-sectional and longitudinal data analysis methods

for quantifying these metrics, and (iii) interpreting the values obtained for these metrics toward

explaining HNTES behavior. If HNTES is deployed, our software can be used for continuous

monitoring of HNTES performance to make improvements if necessary.
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These contributions matter because traffic spikes caused by large scientific dataset movement

have been observed on research-and-education networks (RENs). Since users at the DOE labora-

tories use ESnet for both scientific data transfers and general-purpose applications, the ability to

identify α flows and isolate them from general-purpose flows will improve user-perceived perfor-

mance.

Key findings: (i) We found that HNTES effectiveness was higher than 90% if the NetFlow records

used were from the edge routers. The samples were collected from the incoming side of externally

facing interfaces. Each edge router was connected to only a single customer router, which means

that observed α flows were mostly downloads from high-performance data transfer nodes (DTNs)

located in the customer networks (ESnet’s customers are mostly DOE national laboratories).

(ii) The HNTES metrics depend on two parameters: aging parameter and address prefix length.

The aging parameter is used to age out address prefix entries from the firewall filter to limit its size.

The larger the aging parameter, the longer the lifetime of firewall-filter rules, which implies a higher

probability of matching newly arriving α flows’ source and destination addresses with entries in the

firewall filter. This will result in higher effectiveness. The shorter the address prefix length, the

greater the number of distinct α flow identifiers that will match each source-destination address

prefix in the firewall filter, leading to a larger number of afflicted-flow packets being directed to

the same virtual queue as the α-flow packets. On the other hand, if the address prefix length is

short, a larger number of newly arriving α flows’ source and destination addresses will match

prefixes in the firewall filter, which will result in higher effectiveness. Data transfer nodes (DTNs),

deployed in server clusters, are typically assigned addresses from the same IP subnet; if an α flow is

observed from one DTN and its /24 subnet ID is used in the firewall filter, then a subsequent α flow

created from another DTN will have addresses that match the previously created /24 prefix based

firewall filter rule, and the flow will hence be isolated. Prior work [31] already observed the tradeoff

between effectiveness and AFPP, but in this work, the differences in the extent of this tradeoff at

the additional three routers were compared.

For the edge routers, for the particular data sets analyzed, the best combination of high effec-

tiveness and low AFPP was observed to be an aging parameter of 30 days and an address prefix
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length of /24. In general, an operational HNTES can be configured to continuously monitor its per-

formance, and adjust parameter values to improve performance as network traffic patterns change.

(iii) For the core/REN-peering router and commercial-peering router, the HNTES effectiveness

metric was lower than for the edge routers. The obtained NetFlow records were also from the in-

coming side of externally facing interfaces, which means that the flows corresponded to file uploads

to DOE national laboratory data transfer nodes. Through further analysis of other variables, such

as the number of α NetFlow records, we concluded that uploads were fewer than downloads, which

is consistent with our understanding of how the scientific community uses the high-performance

computing systems housed in the DOE national laboratories.

Our findings have shown that our hypothesis is valid.

1.5.2 α flow characterization

While size/rate characterization for all flow types is challenging because of the low packet sampling

rates offered by built-in router features such as NetFlow, our work offers a solution for characteriz-

ing size and average rate for α flows. Our validation approach of using operational data from two

disparate sources (GridFTP usage logs from file-transfer application servers, and NetFlow records

from ESnet routers) was challenging to execute because of privacy considerations, but it demon-

strates the feasibility of validating proposed solutions in an operational context rather than on an

experimental testbed.

Key findings: (i) In spite of low packet sampling rates, the size, duration, and rate of α flows can

be accurately estimated from NetFlow records.

(ii) By executing the size-duration computation procedure on NetFlow records gathered from

four ESnet routers over a 7-month period, we found flow sizes as large as 811 GB and average rates

as high as 5.7 Gbps (backbone link rate in ESnet4 was 10 Gbps).

(iii) A comparison of flow characteristics at different types of routers showed that there were

more α flows in the download direction from DOE labs than in the upload direction to DOE labs.

(iv) To study persistency, we determined the number of flows created by each source-destination

IP address pair. The maximum number of flows that exceeded 5 GB in size and 100 Mbps in rate,
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for a single source-destination pair was 1596, of which 75% experienced less than 167 Mbps while

the highest rate was 536 Mbps. Such information is useful for initiating diagnostics to improve

performance.

Our findings have shown that our hypothesis is valid.

1.6 Thesis Organization

The rest of the thesis is organized into four chapters.

Chapter 2 describes related work, which is addressed in two parts. First, an overview of HNTES

is provided along with terminology that is reused in our evaluation of HNTES. Next, publications

by other researchers related to our work are reviewed.

Chapter 3 presents our detailed evaluation of HNTES based on NetFlow records collected from

four ESnet routers. Explanations are provided for the observed differences in the effectiveness and

AFPP metrics corresponding to the four routers.

Chapter 4 presents our algorithm for flow reconstruction from NetFlow records. The algorithm

was validated using a set of GridFTP logs collected from operational data transfer nodes. The

results of applying the algorithm to the 7-month NetFlow records collected from four ESnet routers

are presented, and causes for the observed differences are discussed.

Chapter 5 concludes the thesis and identifies future work items.



Chapter 2

Related Work

In Section 2.1, we provide an overview of the HNTES architecture after defining the terminology.

In Section 2.2, related work by other researchers is reviewed.

2.1 HNTES Overview

2.1.1 Terminology

A NetFlow record r is represented as

{ωr, fr, lr,vr,or} (2.1)

where ωr is the (5-tuple) flow identifier, fr is the Coordinated Universal Time (UTC) timestamp

of the first packet in the record, lr is the UTC timestamp of the last packet in the record, vr is the

number of packets in the record, and or is the cumulative number of octets (bytes) in the record.

The flow identifier ωr is defined as

ωr , {sr,dr, pr,qr,yr} (2.2)

where sr: source IP address, dr: destination IP address, pr: source port number, qr: destination port

number, yr: protocol type.

9
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If the active timeout interval is configured to be τmax, for all NetFlow records

0≤ lr− fr ≤ τmax (2.3)

α NetFlow record: A NetFlow record r is said to be an α NetFlow record if:

or ≥ H (2.4)

where H is a size threshold.

α flow: Any flow that has at least one α NetFlow record is classified as an α flow.

2.1.2 HNTES Overview

In prior work [30], Z. Yan et al. proposed a hybrid network traffic-engineering system (HNTES) for

α-flow identification and isolation of future α flows from general-purpose flows. Since the setup

phase in virtual-circuit (VC) networking allows for path selection, REN providers, such as ESnet,

Internet2, JGN-X, GEANT2, and others, have deployed a dynamic VC service to complement

their basic IP-routed service [4]. As α flows require high rates, the use of VCs would allow the

circuit scheduler (called an Inter-Domain Controller (IDC) [12]) to choose a less-utilized path. The

term “hybrid network” in the name HNTES thus denotes a network with both virtual-circuit and

IP-routed services.

HNTES is a network management software system that is deployed on an external server. It

communicates with the routers, IDC, and NetFlow collector within its own network (as illustrated

in Fig. 2.1 [29, 31]). Its functions are described below.

α-flow address prefix identification: Periodically HNTES obtains NetFlow records from the Net-

Flow collector, and analyzes these records to identify the source and destination IP address prefixes

of α flows.

For each α NetFlow record r, the tuple consisting of source and destination IP address prefixes

{s′r,d′r} corresponding to {sr,dr} (see definition (2.2)) is referred to as the flow’s α prefix ID. As-
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Figure 2.1: Illustration of the role of Hybrid Network Traffic Engineering System (HNTES) [29,31]

suming that HNTES runs on a nightly basis, it creates a list of α prefix IDs to store in a set Fi, where

i is a per-day index.

Configuring routers for future α-flow redirection: The source-destination IP address prefix pairs

{s′,d′} in Fi are used to set firewall filter rules at each ingress router to separate out packets from

future α flows and redirect them to traffic-engineered, QoS (Quality of Service)-controlled vir-

tual circuits. While the REN virtual-circuit services are being developed for inter-domain usage,

adoption by providers is proceeding slowly. Therefore, HNTES is currently designed to use only

intra-domain circuits. The technological solution of carrying IP packets over Multiprotocol Label

Switching (MPLS) label switched paths (LSPs) for segments of an end-to-end path is leveraged by

HNTES. On each day i, HNTES determines the egress router E corresponding to each new desti-

nation d′ in Fi, and sends requests to the IDC for an LSP, if one does not already exist. The IDC

executes three steps: (i) sets up the LSP between ingress router I and egress router E, (ii) configures

QoS mechanisms such as weighted fair queuing (WFQ) scheduling [32], and (iii) configures a rule

in the firewall filter at router I to identify packets corresponding to {s′,d′} and direct them to the

virtual queue served by the MPLS LSP. If an LSP already exists between I and E corresponding to

a new {s′,d′} entry in Fi, HNTES communicates directly with the routers to accomplish the actions
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of steps (ii) and (iii).

Incoming flows on day i whose source and destination addresses match one of the α prefix IDs

in the firewall filter Fi will be automatically classified as α flows by the router and directed to the

virtual queue for the corresponding MPLS LSP. Thus if α flows are repeatedly created between the

same source-destination hosts/subnets, then the HNTES solution will be highly effective in isolating

α flows from other flows. To prevent the firewall filter from growing too large, an aging parameter

A (e.g., 30 days) is used to delete rules corresponding to which no flows have been observed. Thus,

HNTES changes the set Fi on a daily basis.

In summary, the HNTES design uses an offline approach, in which α prefix IDs are determined

through a posteriori analysis, in contrast to an online approach in which α flows would be identified

from a live analysis of ongoing traffic.

2.2 Related Work

Terms such as “elephant” flows have been used to characterize large-sized flows by other re-

searchers [1, 11, 19, 28], while the term “α flows” was introduced by Sarvotham et al. [25]. Defini-

tions of elephant or α flows differ in these papers based on their objectives. Papagiannaki et al. [19]

discussed the potential use of their techniques for identifying elephant flows in traffic engineering

applications.

General methods for traffic classification include port and payload based techniques, both of

which have limitations (port numbers are ephemeral and payload based techniques are hindered by

encryption) [17]. General machine learning techniques for traffic classification are of interest in the

research community [20, 23, 24]. These techniques are more complex but have broad applicability.

In contrast, our proposed technique for HNTES works for large scientific data transfers as the

servers/clusters used for such transfers have static public IP addresses.

There are several papers proposing methods for identifying large flows or high-rate flows with

new router hardware. These include ElephantTrap [14], RATE [10], CATE [7], an FPGA-based

cache solution [33], and a Grid flow real-time detector for 1 Gbps links [18]. Also Hohn and
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Veitch [8] proposed a scheme for finding the spectral density, distribution of the number of packets

per flow, and showed why alternate sampling techniques were need to obtain this second-order

statistic about flows. Given our focus on designing network management systems and not new

router hardware, our scheme relies on the built-in NetFlow system supported in most deployed

provider routers.

Kamiyama and Mori propose a short-timeout method to identify high-rate flows [9] and ele-

phant (large) flows [15] with low false-positive and false-negative rates, but not to determine the

flow rates or sizes. Zhang, Fang and Zhang [34] proposed a Bayesian single sampling method to

identify high-rate flows, but again not to characterize their sizes/rates.

Duffield, Lund and Thorup [3] had a goal of finding information about flows in unsampled

packets using information in sampled packets.

In contrast, our goal is more specific to characterizing α flows. Given the higher rate of sampling

of these flows, our method of characterizing α flows will result in higher accuracy but is not as

general in its scope [3].

The impact of packet sampling on traffic classification and characterization was studied in [2,

26].



Chapter 3

Evaluation of HNTES

3.1 Introduction

This chapter extends the prior [30, 31] evaluation of HNTES in the following ways:

1. The prior work [30,31] evaluated HNTES performance using NetFlow records collected from

only one router, which was an edge router, while our work evaluated HNTES performance

using NetFlow records collected from three other routers. We did not modify the method

developed in prior work [30,31] for determining the set of source-destination address prefixes

to include in the router firewall filters.

2. The prior work [30, 31] defined effectiveness as a per-month metric, which we replaced with

two new metrics: (i) daily effectiveness (we expect HNTES to be configured to execute its

analysis programs once per day), and (ii) cumulative effectiveness. For afflicted-flows, in

addition to AFPP, we computed a second metric, daily total number of afflicted-flow packets.

Further, we characterized several traffic-related variables such as daily number of α NetFlow

records, total number of α prefix IDs, and total number of days when no α flow appeared.

These characterizations were used to explain the differences in the effectiveness and AFPP

metrics corresponding to the four routers.

3. To compute the new metrics, we implemented new analysis programs in Java (prior work was

coded in R), and parallelized the programs to run them on UVA’s research computing cluster

14
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(fir [5]) (while the R program took 3 days to analyze one month’s data our Java program

took just a few hours).

4. We provided explanations for the results obtained from the analysis. First, we recognized

that the NetFlow records collected at the core/REN-peering and commercial-peering routers

were for file uploads to DOE laboratories, while the NetFlow records collected at the two

edge routers were for file downloads from DOE laboratories. Second, the daily number of α

NetFlow records showed that there were fewer uploads than downloads. Also, the number

of source/destination pairs that engaged in high-rate large-sized uploads to DOE laboratories

were fewer than the number engaged in downloads. These findings offered an explanation

for why the history-based HNTES approach was less successful (the effectiveness metric was

lower) for routers at which uploads were observed than for routers at which downloads were

observed.

The following sections provide a description of the routers from which NetFlow records were

collected, define HNTES performance metrics, and present results.

3.2 Obtaining NetFlow records for evaluation

To evaluate HNTES, we obtained NetFlow records from four ESnet routers for a 7-month period

(May-Nov. 2011, a period of 214 days), and analyzed these records. The four routers were carefully

selected to represent different roles as shown in Fig. 3.1. Router-1 and router-2 are provider-

edge (PE) routers located in ESnet customers’ sites, and hence connected to a single customer

(DOE national laboratory) network each. Router-3 is a core router connected to multiple ESnet PE

routers, and multiple national and international REN peers, such as Internet2 and AARnet. While

the REN peers connect to ESnet at some of its other core routers, the ESnet PE routers connected

to router-3 are not connected to any other ESnet routers. Thus, all packets from/to the set of

customer networks connected to router-3 that are not destined to/sourced from networks within

that set pass through router-3. Router-4 is one of several ESnet routers used for commercial

peering.
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Figure 3.1: NetFlow records were obtained from Observation Points (OP) for four ESnet routers,
router-1, router-2, router-3, router-4

Our NetFlow observation points (OP), as shown in Fig. 3.1, include only the input side of

external-facing (inter-domain) interfaces to avoid double counting flows. For example, α flows

in which files are being transferred from the customer network connected to router-1 will be

identified from NetFlow records collected at router-1, while α flows in which files are being

transferred to the customer network connected to router-1 will be identified from NetFlow records

collected on the input-side of inter-domain links at other routers (e.g., OPs at the other three routers

in Fig. 3.1).

The values of τmax (see definition (2.3)) and H (see definition (2.4)) from this collected NetFlow

records set are 60 sec and 1 GB, respectively. NetFlow is configured for 1-in-1000 packet sampling

in ESnet routers.

3.3 Effectiveness Analysis

3.3.1 Methodology

Let Ai be the set of α NetFlow records on day i (1≤ i≤ 214), and Oi be the total number of bytes

reported in α NetFlow records (α bytes) on day i:
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Oi = ∑
∀r∈Ai

or. (3.1)

Flows whose source and destination addresses have corresponding entries in the firewall filter Fi on

day i will be automatically isolated by the routers as described in Section 2.1. Therefore, the total

number of bytes that would have been redirected on day i, denoted by Õi, is given by:

Õi = ∑
∀r∈Ai∧{s′r,d′r}∈Fi

or. (3.2)

Two types of effectiveness are evaluated:

Cumulative effectiveness Ci =
∑

i
k=1 Õk

∑
i
k=1 Ok

, (3.3)

Daily effectiveness Ei =
Õi

Oi
, (3.4)

when Oi 6= 0; if Oi = 0, Ei is said to be “not applicable.” The goal of HNTES is to achieve high

effectiveness so that few, if any, α flows will get routed to the same virtual queue as general-purpose

flows.

3.3.2 Results − Impact of aging parameter

Both effectiveness and the size of the firewall filter are dependent on the value of aging parameter

A. Therefore, we first characterize the effect of different values of A on these measures. Fig. 3.2

shows the growth in the size of the firewall filter at router-1 for four values of the aging parameter

(in the ∞ setting, firewall filter rules would not be aged out). Firewall filters should be kept small for

operational reasons, and also because some routers have small size limits for such filters. Graphs

for the other 3 routers are similar in that past day 100, the size of the firewall filter is almost stable
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Figure 3.2: Growth of firewall filter in router-1 for four values of the aging parameter in days

when the aging parameter is 30 or smaller (see the low coefficient-of-variation (cv) values in the

first three rows of Table 3.1).

Fig. 3.3 compares the cumulative effectiveness for router-1 under the same four aging pa-

rameter values for the /24 address prefix case as in Fig. 3.2. With an aging parameter of 30 days,

cumulative effectiveness values are close to the best-case values when rules are never aged out.

Similar results are observed for the other 3 routers. As a value of A = 30 days offers a good tradeoff

between high effectiveness and firewall filter size, this value is assumed in the analysis presented in

the following sections.

3.3.3 Results − Effectiveness comparison

Row 4 of Table 3.1 shows the cumulative effectiveness for each router for /24 and /32 address

prefixes. For all routers, this measure is higher for /24 address prefixes. This is because clusters in

the same /24 subnet are often used for data transfers, which means that an α flow from a new host

(i.e., one from which there were no previously observed α flows) will be redirected with /24 prefix
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Figure 3.3: Cumulative effectiveness for the /24 prefix case at router-1 for four values of the aging
parameter in days

based firewall filter rules, but not with /32 based rules.

Table 3.1: Rows 1 − 3: across values from day 100 to day 214; Rows 4 − 8: across the whole
214-day period; The aging parameter A value is assumed to be 30 days (rows 7 and 8 are unaffected
by the aging parameter)

Row Statistics router-1 router-2 router-3 router-4
/24 /32 /24 /32 /24 /32 /24 /32

1
Size of firewall filter

max 63 572 120 969 34 63 41 74
2 mean 53.41 406.77 91.63 384.32 24.63 48.82 29.36 8.4
3 cv 0.08 0.18 0.18 0.77 0.18 0.18 0.18 1.29
4 Cumulative effectiveness, C214 91% 82% 92% 83% 83% 76% 67% 50%
5 # of days when Ei = 1 90 3 49 21 104 72 86 60
6 # of days when Ei = 0 1 5 2 4 12 23 25 51
7 # of days when no α flow appeared 1 1 0 0 21 21 35 35
8 total # of α prefix IDs 125 1548 281 1639 104 228 117 239

Row 4 of Table 3.1 also shows that the effectiveness values are lower for router-3 and

router-4 when compared to the PE routers, router-1 and router-2. For an explanation, consider

the following observations made from the results in Rows 4-8 of Table 3.1, Table 3.2, Table 3.3,
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Fig. 3.4, and Fig. 3.5:

Table 3.2: Results when firewall filter entries are not aged out

router-3 router-4
/24 /32 /24 /32

Cumulative Effectiveness, C214 87% 80% 72% 53%
# of days when Ei = 1 117 80 99 64
# of days when Ei = 0 8 15 22 42

Table 3.3: Number of per-day α NetFlow records

router
1 2 3 4

Min 0 2 0 0
1st Qu. 27 140.2 8 1
Median 68.5 371.5 23.5 3
Mean 188.2 619.7 97.7 4.5
3rd Qu. 195 823.8 106 5.75
Max 2337 7345 1411 62

1. The high cumulative effectiveness for the PE routers, router-1 and router-2, for the /24

prefix, shown in Row 4 of Table 3.1 is supported by Fig. 3.4, Fig. 3.5, and Row 5 of Table 3.1.

Fig. 3.4 shows that the router-1 daily effectiveness value is 1 on many days (quantified

as 90 days in Row 5), which means that a significant fraction of α flows would have been

identified and directed to the appropriate virtual circuits because of firewall filter entries. This

is consistent with Fig. 3.5, which shows that daily effectiveness, Ei > 90% for more than 150

days for router-1 and more than 130 days even for router-3.

2. The lower cumulativeness effectiveness for router-3 and router-4 in Row 4 of Table 3.1

is supported by the higher number of days when Ei = 0 for these routers as seen in Row 6

of Table 3.1, and the larger (0,0.1) bar for router-3 in Fig. 3.5. The numbers presented in

Table 3.2 suggest that a larger aging parameter at router-3 and router-4 can be used to

improve effectiveness. Given the fairly small firewall-filter sizes for these routers seen in
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Row 1 of Table 3.1, higher number of days in which α flows were not observed at router-3

and router-4 (see Row 7 of Table 3.1), and the lower number of α NetFlow records as seen

in Table 3.3 (a maximum value of only 62 at router-4), the firewall filter size should be

acceptable even at higher values of the aging parameter.

3. There are fewer α prefix IDs (Row 8 of Table 3.1) but larger number of days when Ei = 1 at

router-3 and router-4 than at the PE routers for /32 addresses.

4. For /24 addresses, the number of α prefix IDs is lower for router-3 than for router-2 (see

Row 8 of Table 3.1), even though the latter is one of the PE routers connected to the former.

3.3.4 Explanations for observations

Observation 1: The PE routers are connected to ESnet customer sites that house supercomputing

facilities on which scientists run their applications and generate datasets. As scientists repeatedly

use these facilities, α flows occur between the same source-destination pairs. A firewall filter rule

created with an address prefix pair observed on one day is repeatedly able to redirect packets from

future α flows.

Observation 2: The lower number of α NetFlow records at router-3 and router-4 are because

there are fewer uploads of large datasets than downloads from ESnet customer sites. Since these

sites are DOE national laboratories with the supercomputing centers, more α flows are likely to

be downloads from ESnet customer site servers rather than uploads. Recall the observation points

shown in Fig. 3.1 from which the NetFlow records are collected for each router. As NetFlow records

are collected for the input-side of the interface connecting each PE router to its customer network,

α flows generated by downloads from ESnet customer sites will be identified in the router-1 and

router-2 records. In contrast, since the observation points for router-3 and router-4 are on the

input-side of interfaces from RENs and commercial peers, only uploads made to ESnet customer

sites will appear as α flows in these NetFlow records, and as there are likely to be fewer of these

uploads, we see fewer α NetFlow records at router-3 and router-4.
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Given the lower frequency of uploads, HNTES effectiveness is lower since repeated α flows are

not observed between the same source-destination pairs. Table 3.2 shows that there were 22 days

when α flows appeared between two new /24 subnets at router-4. There is one other possible

explanation for the lower effectiveness at router-3 and router-4. As these routers have higher

loads than the PE routers, 1-in-1000 NetFlow packet sampling rate may have led to missed α-flow

packets.

Observation 3: It appears that fewer servers are used in uploads to DOE laboratories than in

downloads, which explains the higher number of days when Ei = 1 for /32 addresses at router-3

and router-4 than at the PE routers.

Observation 4: Given the connectivity of router-2 to router-3, as shown in Fig. 3.1, we ex-

pected a larger number of α prefix IDs at router-3 than at router-2. However, the numbers are

reversed, with 281 α prefix IDs observed at router-2 for the /24 case, which is more than double

the number (104) observed at router-3. Our explanation for observation 2 that the number of

downloads are greater than the number of uploads is likely the reason for this observation too.

A conclusion from this analysis is that given the higher effectiveness rates of HNTES for Net-

Flow records collected at PE routers, NetFlow records could be obtained for both directions of

external-facing interfaces at PE routers. Since ESnet does not offer transit service, all α flows are

sourced from or destined to ESnet customer sites, and therefore locating observation points at just

these routers is sufficient for complete coverage. Given the lower traffic loads at the PE routers

when compared to core routers, it is more likely that packets from a majority of α flows will be

sampled at these routers than at core routers through which α flows from/to multiple sites traverse.

3.4 Afflicted-flow Characterization

Section 3.3 illustrated that the effectiveness metric is higher with /24 address prefixes. However,

the negative aspect of this choice is that β (non-α) flows whose source and destination addresses

are within the address ranges of the prefixes stored in the firewall filter Fi will be directed to the

α-flow virtual queues. Packets from these β flows could then be subject to increased delays and
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jitter. Since flows from interactive applications are sensitive to delay/jitter, the subset of β flows

generated by non-file-transfer applications are referred to as “afflicted flows.” The /24 and /32

choices are compared on measures related to afflicted-flow packets.

In this section, we determine the percentage of afflicted-flow packets in samples of β-flow

packets.

3.4.1 Methodology

On any given day i, set Ai represents the set of α NetFlow records as defined in Section 3.3. A set

Pi of α prefix IDs for day i is defined to include address prefixes of all α flows observed in set Ai.

Then a set Bi of non-α NetFlow records (denoted by all NetFlow records that do not cross the H-

bytes threshold in (2.4)) is extracted for day i such that ∀r ∈ Bi,or < H,{s′r,d′r} ∈ Pi. Packets from

flows represented by NetFlow records in set Bi form a sample of packets that would be directed

to the α-flow virtual queue because they unfortunately share α prefix IDs. As assumption is made

here that all prefix IDs in set Pi are in the firewall filter (a fair assumption for most days as seen in

Fig. 3.4).

Towards identifying the percentage of non-file-transfer (non-FT) flow packets within set Bi,

we apply three steps in sequence. First, we extract out NetFlow records corresponding to α flows

identified by set Ai. Next, we find the set of NetFlow records from file transfers using a heuristic.

Third, we separate out NetFlow records from connections with well-known port numbers. These

steps are applied in sequence to distinguish flows from scp, a file transfer application that uses the

ssh well-known port number (some of these flows could fall in the first α-flow category or second

non-α flow file transfer category) from interactive ssh flows, such as those from a remote terminal

application such as SecureCRT (third category). Flows from the third category and the leftover

NetFlow records are the ones considered to be “afflicted.”

NetFlow records in sets Bi, 1≤ i≤ 214, are classified into four groups:

• Ci, set of records from α flows: r ∈ Ci iff there is a record r′ ∈ Ai such that sr = sr′ , dr = dr′ ,

pr = pr′ , qr = qr′ , and yr = yr′ (see Section 2.1 for notation).
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• Di, set of records from other file transfers: r ∈ Di iff r ∈ Bi−Ci, or/vr > 1000 bytes, or > G

where G < H, and there exists another record r′ ∈Bi−Ci such that sr = sr′ , dr = dr′ , pr = pr′ ,

qr = qr′ , yr = yr′ , or′/vr′ > 1000 and or′ > G. Observations have shown that flow records that

meet these criteria are typically from file-transfer applications.

• Wi, set of non-FT NetFlow records with well-known port numbers: r ∈ Bi−Ci−Di, iff pr

or qr is one of several well-known port numbers (ssh, http, imap, smtp, ssmtp, https, nntp,

imaps, imap4ssl, unidata, rtsp, rsync, sftp, bftp, ftps, pop3 and sslpop)

• Li, set of leftover NetFlow records, which is Bi−Ci−Di−Wi

Let B, C, D, W, and L be the aggregate set of the corresponding per-day sets, e.g., B =
⋃

1≤i≤214 Bi.

Flows corresponding to the NetFlow records in set W+L are considered to be afflicted flows.

The two metrics for afflicted-flow analysis are as follows: the daily number of packets in Net-

Flow records in set W+L, and afflicted-flow packets percentage, which is given by

AFPPi =
∑

i
k=1 ∑∀r∈(Wk∪Lk) vr

∑
i
k=1 ∑∀r∈(Dk∪Wk∪Lk) vr

,1≤ i≤ 214. (3.5)

Unlike in the effectiveness analysis where bytes were used, here packets are used because the es-

timation of bytes with the multiplier factor of 1000 is less accurate with non-α flows (recall the

1-in-1000 NetFlow packet sampling rate).

3.4.2 Results

Fig. 3.6 shows the daily number of afflicted-flow packets in W+L in router-1, when G is set to

10MB. Similar graphs are observed for the three other routers. On this measure, /32 address prefixes

in firewall filters enjoys an advantage over /24 address prefixes because of the former’s higher

specificity. This contrasts with the advantage enjoyed by /24 address prefixes over /32 prefixes in

the effectiveness measure.

Table 3.4 shows the second metric, afflicted-flow packets percentage, over the 214-day period.

These percentages are not significantly high even for /24 address prefixes. Furthermore, considering
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Table 3.4: Percentage of afflicted-flow packets, AFPP214

router
1 2 3 4

/24 10.39% 23.84% 6.22% 25.37%
/32 11.22% 13.18% 3.43% 25.51%
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Figure 3.6: Number of packets in W+L from router-1’s records

that the number of non-α flows that do not share α prefix IDs is much higher than that of α flows,

when the afflicted-flow packets are considered as a percentage of the total number of non-α-flow

packets, the relative negative effect of using /24 prefixes is even lower.

We conclude therefore that the choice of /24 address prefixes for the firewall filter is better than

/32. If /32 prefixes are used, then there is a higher probability that an α flow is sent to the virtual

queue served by IP-routed service where it can negatively impact the delay/jitter of many more

non-α flows. On the other hand, if /24 prefixes are used, then a small percentage of non-α flows are

subject to the adverse effects of α flows by being directed to the α-flow virtual queue.
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3.5 Conclusions

The key findings of the evaluation of HNTES are: (i) We found that HNTES effectiveness was

higher than 90% if the NetFlow records used were from the edge routers. The samples were col-

lected from the incoming side of externally facing interfaces. Each edge router was connected to

only a single customer router, which means that observed α flows were mostly downloads from

high-performance data transfer nodes (DTNs) located in the customer networks.

(ii) The HNTES metrics depend on two parameters: aging parameter and address prefix length.

For the edge routers, for the particular data sets analyzed, the best combination of high effectiveness

and low AFPP was observed to be an aging parameter of 30 days and an address prefix length of

/24. In general, an operational HNTES can be configured to continuously monitor its performance,

and adjust parameter values to improve performance as network traffic patterns change.

(iii) For the core/REN-peering router and commercial-peering router, the HNTES effectiveness

metric was lower than for the edge routers. The obtained NetFlow records were also from the in-

coming side of externally facing interfaces, which means that the flows corresponded to file uploads

to DOE national laboratory data transfer nodes. Through further analysis of other variables, such

as the number of α NetFlow records, we concluded that uploads were fewer than downloads, which

is consistent with our understanding of how the scientific community uses the high-performance

computing systems housed in the DOE national laboratories.
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Characterization of α flows

4.1 Introduction

In this chapter, we describe an algorithm for characterizing the size, duration, average rate, and

frequency of α flows from NetFlow records. The algorithm was validated using independently

collected usage logs (GridFTP usage logs [6]) from application servers. We executed the algorithm

on NetFlow records from 4 ESnet routers collected over a 7-month period. Flows moving datasets

as large as 811 GB and at rates as high as 5.7 Gbps were observed. Some source-destination pairs

were found to repeatedly create α flows. An analysis of the rates of the 1596 repeated α flows

created by one pair showed considerable variance, with minimum rate of 100 Mbps, maximum rate

of 536 Mbps, and a coefficient of variation of 30%.

4.2 Terminology

4.2.1 Flow

A flow is defined to consist of all packets arriving with the same 5-tuple values (see definition (2.2))

{source IP address, destination IP address, source port number, destination port number, protocol

type} with no consecutive inter-packet gaps greater than some fixed time threshold τ. Inter-packet

gaps within the period of a NetFlow record, which are not recorded, are necessarily smaller than

the active timeout interval. Therefore, in order to reconstruct flows from NetFlow records, the fixed

28
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time threshold τ is set to be at least as large as the NetFlow active timeout interval. The five tuples

constitute the flow IDentifier (flow ID).

The fixed time threshold phrase is required because a TCP connection can be held open for a

long duration, but only carry packets in intermittent bursts. For example, with HTTP1.1, a TCP

connection is held open while a Web client accesses a Web server. If the first downloaded Web

page has multiple images located on the same Web server, then each of those images will be down-

loaded on the same TCP connection. Since the Web client software parses the HTML page and

automatically sends out GET requests for the images, these inter-GET time gaps will be short. On

the other hand, when human user input (e.g., a mouse click) is required to generate GET requests,

there could be large “think-time” gaps.

Multiple sets of GET request bursts (consisting of GET requests generated automatically by

the Web client), and their responses, could thus occur on the same TCP connection, and will hence

share a flow ID. But packets related to each such set is likely be parsed out as a separate flow given

the time threshold in our definition of a flow. Effectively, if the time gap between the last-packet

timestamp in one NetFlow record r, and the first-packet timestamp in the next NetFlow record with

the same flow ID exceeds the threshold τ, then a flow is said to have terminated with NetFlow record

r, and a new flow started with the next NetFlow record.

4.2.2 α NetFlow records and β NetFlow records

As described in section 2.1, a NetFlow record r is said to be an α NetFlow record if or ≥ H, where

H is a size threshold. We define β NetFlow records as non-α NetFlow records.

4.2.3 α flow and γ flow

In Chapter 3, we used the term “α flow” to represent any flow that had at least one α NetFlow

record (as defined in Section 2.1). In this chapter, we use the term γ flow to characterize any flow

that has at least one α NetFlow record. We redefine the α flow term to be a γ flow whose size and

rate exceed specified thresholds. This change was made because the new algorithm, presented in

this chapter, allows us to compute the total size and total duration (from which average rate can be
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determined) of each α flow. Since α flows were defined informally in Chapter 1 to be large-sized,

high-rate flows, this new algorithm allows us to provide a more formal definition of “α flow” with

specified thresholds for size and rate. Therefore, we coined the new term γ flow to characterize

flows that have at least one α NetFlow record, and redefined the term α flow.

4.2.4 Other notation

Other notation used in this chapter is presented in Table 4.1.

Table 4.1: Notation

i per-day index
j flow-identifier (ID) index
k γ-flow index
r NetFlow-record index
Fi set of NetFlow records
Ai set of α NetFlow records (size > H)
Wi set of unique flow IDs ωr for records r ∈ Ai

Bi set of β NetFlow records r whose flow IDs ωr ∈Wi

Ci j set of NetFlow records r, s.t. ωr = j, for j ∈Wi

Ei jk Subset of Ci j: records of a single γ flow
Ni j Number of γ flows
Si jk Size of γ flow
Di jk Duration of γ flow
ρ packet sampling rate (e.g., 1/1000)

4.3 Algorithm of reconstructing flows from NetFlow records

We developed an algorithm for combining information from multiple NetFlow records to determine

the size, duration, and average rate of α flows. Using the notation in Table 4.1, the main steps of

the algorithm are listed below:

1. From each day’s set of NetFlow records, Fi, determine sets Ai, Wi, and Bi using the size

threshold H.

2. For each day i, the set Ai
⋃

Bi is divided into disjoint subsets, Ci j, 1≤ j ≤ |Wi|.
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3. Order the records in each set Ci j by sorting on the first-packet timestamp (earliest-to-latest).

The ordered set of records are r1,r2, · · · ,r|Ci j|.

4. Divide each set Ci j into disjoint subsets Ei jk, 1 ≤ k ≤ Ni j such that a consecutive set of

NetFlow records {rn,rn+1, · · · ,rn+u} ∈ Ei jk iff

frm+1− lrm ≤ τ n≤ m < n+u

frn− lrn−1 > τ for n 6= 1

frn+u+1− lrn+u > τ for n+u 6=
∣∣Ci j

∣∣ (4.1)

5. A γ flow k,1≤ k≤ Ni j, appearing on day i with flow-ID ω j ∈Wi, and consisting of NetFlow

records {rn · · · ,rn+u} ∈ Ei jk, is characterized by

Size Si jk = (
1
ρ
) ∑

m∈Ei jk

om

Duration Di jk = lrn+u− frn

Av. rate Ri jk =
Si jk

Di jk
(4.2)

Starting with each day’s set of NetFlow records (Fi), the first step is to find the subset of α

NetFlow records (Ai), from which the set of unique flow IDs (Wi) is extracted. Using these flow

IDs, a second pass through set Fi is executed to find all β NetFlow records (set Bi) for the γ flows

observed on day i. The goal of this first step is to reduce the number of NetFlow records from which

to extract α flows.

The second step creates sets Ci j consisting of all the α and β NetFlow records corresponding

to each γ flow ID j. Since these Ci j sets are extracted from the disjoint sets of α (Ai) and β (Bi)

NetFlow records, the records in each Ci j need to be sorted by the first-packet timestamp before

flows can be reconstructed. This is the third step.

The fourth step is to divide the NetFlow records in each set Ci j into multiple subsets, each of

which consists of a set of consecutive records belonging to a single γ flow. Recall from Section 4.2,
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that if a time gap threshold is exceeded between the last-packet timestamp lr of one NetFlow record

r and the first-packet timestamp fr+1 of the next NetFlow record (r+1), the flow is considered to

have terminated with record r, and a new flow begun with the next record. There is potential for a

small gap between lr and fr+1 for two consecutive records r and (r+1) because of packet sampling.

Therefore, as long as this gap is less than a time-threshold τ, the consecutive NetFlow records are

considered to belong to the same flow. Using k as the index for γ flows, the subsets of Ci j are

denoted Ei jk, all of which share the same flow ID j in their appearance on day i (see Table 4.1).

The final step is to add up the bytes in the NetFlow records of each γ flow to determine the size

of the flow and multiply by the reciprocal of the packet sampling rate ρ.

Duration is computed by finding the time difference between the last-packet timestamp of the

last NetFlow record and the first-packet timestamp of the first NetFlow record in each set Ei jk.

Average rate is computed by dividing flow size by flow duration.

As an example, consider the NetFlow records shown in Table 4.2. The first two columns

show the number of packets, and cumulative number of bytes, in the sampled packets of the Net-

Flow record. The next five columns, source and destination IP addresses, source and destination

transport-layer port numbers, and protocol type field, constitute the flow ID ω (see 2.1). The source

and destination IP addresses were anonymized and hence the numbers shown in Table 4.2 are not in

the expected 4-byte format. The timestamps (TS) are in UTC format. For example, the first-packet

TS of the first NetFlow record is 1304269790.137; UTC time 1304269790 corresponds to Sun, 01

May 2011 17:09:50 GMT [27]. The last three digits 137 corresponds to milliseconds. In this ex-

ample, τ was set to 60 sec. The gap between the last-packet TS of the first NetFlow record and the

first-packet TS of the next NetFlow record is 889.798 sec; as this gap is greater than τ (1 min), the

second NetFlow record of Table 4.2 represents the start of a new flow. This flow had (95+6 = 101)

sequential NetFlow records with inter-record gaps less than τ. For example, the gap between the

first two records of the 101-record flow is only 180 ms. Similarly, the gap between the last-packet

TS of the last record of the 101-record flow and the first-packet TS of the last record in Table 4.2 is

40665.873 sec, which is well above τ.



Chapter 4. Characterization of α flows 33

Table 4.2: Example NetFlow records observed for one γ flow ID in one day; TS: Timestamp; dur:
duration (sec)

pkts bytes src IP dst IP src port dst port prot. first-pkt TS last-pkt TS dur (sec)
Previous flow’s last NetFlow record

481 683020 6853 6840 20886 62362 6 1304269790.137 1304269820.122 29.98
Next flow (has 101 NetFlow records)

173 245660 6853 6840 20886 62362 6 1304270709.920 1304270749.856 39.93
251 356420 6853 6840 20886 62362 6 1304270750.036 1304270809.975 59.93
247 350740 6853 6840 20886 62362 6 1304270810.282 1304270869.675 59.39

There were 95 other NetFlow records with inter-record gaps less than τ

230 326600 6853 6840 20886 62362 6 1304276573.971 1304276633.668 59.69
234 332280 6853 6840 20886 62362 6 1304276634.016 1304276693.903 59.88
61 86620 6853 6840 20886 62362 6 1304276694.116 1304276704.044 9.92

Next flow’s first NetFlow record
57 80940 6853 6840 20886 62362 6 1304317369.174 1304317391.838 22.66

4.4 Validation of the algorithm

4.4.1 Method

To validate the algorithm presented in Section 4.3, we devised the following method using opera-

tional, not experimental, datasets.

Step 1: Obtain GridFTP usage logs [6] from an operational data transfer node: GridFTP usage

logs were obtained from dedicated data transfer nodes at the National Energy Research Scientific

Computing (NERSC) center for the period, Apr. 22 to June 30, 2012. The usage logs include the

following information for each transfer: remote end’s IP address, size in bytes, start time of the

transfer, and transfer duration.

Step 2: Find corresponding NetFlow records from an ESnet router: Next, since NERSC is

a customer of ESnet, and ESnet has located one of its routers at NERSC, i.e., a provider-edge

(PE) router, we obtained NetFlow records from this PE router for the same time period. For each

GridFTP usage log entry, using the source and destination IP addresses and the start and end time

of the corresponding transfer, our software finds matching NetFlow records.

Step 3: Find additional NetFlow records with the same flow IDs: Using the unique 5-tuple flow

IDs from the per-day set of matched NetFlow records obtained in Step 2, a second pass was executed

to find all NetFlow records corresponding to these 5-tuple flow IDs even if the time intervals of
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these records (first-packet TS, last-packet TS) were outside any GridFTP-transfer time intervals.

These NetFlow records were required to determine whether our size/rate estimation algorithm could

correctly identify the GridFTP transfers as single flows.

Step 4: Characterize flows: From the sets of NetFlow records found in steps 2 and 3, we executed

the algorithm described in Section 4.3 to characterize γ flows.

Step 5: Recreate “sessions” from GridFTP transfer logs: The prior analysis [13] showed that

most GridFTP transfers occur in sessions, i.e., multiple file transfers on the same TCP connection.

The -fast option of GridFTP when invoked to move files in a directory will result in all files

being transferred on the same TCP connection. The GridFTP sending process sends multiple files

concurrently. All transfers to the same destination with overlapping durations are included in a

single session. A gap value of up to 10 ms was allowed when grouping transfers into sessions.

Also, the log entry shows the number of parallel TCP streams used for a transfer (which is set by

users with the -p option). Since large datasets are typically moved using the -p option, we included

only those transfers that used more than 1 parallel TCP stream. All transfers within each session

had the same number of parallel TCP streams.

Step 6: Accuracy computation: For each GridFTP session that exceeded size and rate thresholds

(5 GB and 667 Mbps), we found multiple γ flows whose start and end times fell within the GridFTP

session duration. There were multiple γ flows because of the use of parallel TCP streams. The

γ-flow sizes were added to find the total size before comparing with the GridFTP session size. The

average duration across all the γ flows corresponding to a GridFTP session was determined and

compared with the GridFTP session duration. Size (duration) accuracy is defined as the ratio of the

size (duration) estimated by our algorithm from the NetFlow records to the size (duration) reported

in the GridFTP usage logs.

4.4.2 Results

Table 4.3 shows the results of our validation procedure. Both duration accuracy and size accu-

racy for these high-rate large-sized flows were close to 100%. Size accuracy can be greater than
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Table 4.3: Results of algorithm validation using GriFTP logs

No. Log dur. Est. dur. D-acc Log size Est. size S-acc
(s) (s) (%) (GB) (GB) (%)

1 195.3 194.2 99.4 52.4 51.9 99.0
2 158.9 156.2 98.3 34.4 33.2 96.7
3 190.2 187.7 98.7 34.4 34.3 99.9
4 157.8 155.4 98.5 34.4 35 101.7
5 6516 6466.3 99.2 6.2 6.6 105.5
6 7696.8 7695.8 99.9 6.2 6.3 101.3
7 73.94 72 97.4 5.8 6.1 105.5

100% because the NetFlow packet sampling process could have caught more packets of a particular

transfer than 1-in-1000.

4.5 Characterization of α flows observed in ESnet Traffic

The set of NetFlow records from four ESnet routers collected over a 7-month time period, May-Nov.

2011 used for the HNTES evaluation was reused in this work to characterize γ and α flows. After

presenting the results generated by applying our algorithm to the NetFlow data in Section 4.5.1, the

implications of these findings are discussed in Section 4.5.2.

4.5.1 Results

Four sets of results are presented:

1. aggregate characteristics of γ flows and α flows

2. statistics about three characteristics: size, rate, and duration, of γ flows and α flows

3. number of α flows as a function of the size and rate thresholds, and

4. persistency measure: number of γ flows and α flows created between the same source and

destination.
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Table 4.4: Aggregate data on γ and α flows; across 214 days

Router-1 Router-2 Router-3 Router-4
No. of γ flows 28685 27963 2516 212
No. of unique γ flow
IDs

19365 26939 2455 212

No. of unique /32 src-
dst pairs gen. γ flows

1479 1611 193 158

Max. no. of per-day γ

flows corr. to a single γ

flow ID

33 56 6 1

No. of α flows 916 9538 986 16
No. of unique α flow
IDs

834 9043 943 16

No. of unique /32 src-
dst pairs gen. α flows

95 419 89 14

Table 4.5: Size in MB of γ flows; across 214 days

Router-1 Router-2 Router-3 Router-4
Min 1001 1001 1005 1010

1st Qu. 1149 1540 4050 1203
Median 1275 2869 4360 1532
Mean 2513 9046 17540 3612

3rd Qu 1701 8768 21380 3772
90% 2761 16600 54115 5774
99% 12909 92012 104356 26389

99.9% 229727 288797 180138 100460
Max 633300 811600 233600 112800
CV 5.20 2.56 1.40 2.43

skewness 25.35 12.56 2.37 10.09

Aggregate characteristics of γ flows (H was set to 1 GB) and α flows (using a size threshold

of 5 GB and rate threshold of 100 Mbps) at each of the routers across the observation period of

214 days are listed in Table 4.4. The second row shows the number of unique γ flow IDs observed,

while the third row lists the number of unique source-destination pairs that generated γ flows, in the

214-day period. The fourth row represents the maximum number of per-day γ flows corresponding

to a single γ flow ID. Multiple γ flows could have resulted from a TCP connection being held open
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Table 4.6: Rate in Mbps of γ flows; across 214 days

Router-1 Router-2 Router-3 Router-4
Min 11.7 3.6 34.6 49.2

1st Qu. 160.9 147 117.6 130.9
Median 199.3 181.9 132.6 156.4
Mean 245.2 230.9 159 182.7

3rd Qu. 258.9 252.1 159.2 195.8
90% 403 363 264 275
99% 881 944 503 649

99.9% 1711 993 953 755
Max 5154 5757 979 776
CV 0.71 0.72 0.56 0.61

skewness 7.36 3.95 3.82 2.86

Table 4.7: Duration in sec of γ flows; across 214 days

Router-1 Router-2 Router-3 Router-4
Min 4.2 8.0 9.5 12

1st Qu. 41.8 60.9 190.9 54.9
Median 54.2 121.1 272 94.3
Mean 122.8 414.2 1098 235.6

3rd Qu. 73.6 398.9 1169 227.6
90% 118.5 977.2 3655.7 349.3
99% 639.9 3942.1 6183.3 1460.3

99.9% 17055.9 11751.4 12854.4 8697.6
Max 32460 31910 13940 9978
CV 7.39 2.34 1.50 3.18

skewness 23.76 10.33 2.32 10.99

for a long duration with gaps between flows as explained in Section 4.2. The last three rows present

aggregate information about α flows.

Statistics for three characteristics of γ flows: size, rate, and duration, are presented in Tables 4.5,

4.6, and 4.7. These tables are independent, e.g., the largest-sized flow is not the same as the highest-

rate flow.

Table 4.8 presents results from a sensitivity analysis of the number of α flows to the size and

rate thresholds.
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Table 4.8: Sensitivity to size-rate threshold: No. of α flows

size rate Router-1 Router-2 Router-3 Router-4
5GB 200Mbps 496 4475 201 3
10GB 100Mbps 526 5460 726 3
10GB 150Mbps 399 4121 297 1
10GB 180Mbps 375 3037 124 0
10GB 200Mbps 357 2443 92 0
50GB 200Mbps 19 505 28 0
80GB 500Mbps 0 20 0 0

Finally, we characterized the persistency with which source-destination pairs generated γ flows

and α flows. Figs. 4.1 and 4.2 plot the cumulative distribution function (CDF) of the numbers of γ

flows and α flows per source/destination pair for router-2, router-3 and router-4. The plots

for router-1 have been omitted because they overlapped significantly with those of router-2.

Recall that router-1 and router-2 are PE routers that capture flows corresponding to downloads

from DOE labs, and hence have similar numbers of flows.

4.5.2 Discussion of the results

The results presented in the previous section are discussed below in three groupings. First, we

discuss the numerical values themselves to understand the range of sizes, rates, durations, and

frequencies, of γ flows and α flows. Next, we compare the characteristics of flows observed at

the different routers. Finally, an example application is described to demonstrate usage of this

characterization of α flows.

Numerical values:

The difference between the number of γ flows, and number of unique γ flow IDs (rows 1 and

2 in Table 4.4) occurs because of two possibilities: the same 5-tuple values were used on two

different days, or a given flow ID was reused in multiple flows within the same day. The latter is

characterized in the fourth row. Most γ flow IDs have only single γ flows in a given day, but there

are a few occasions when multiple γ flows have been observed on the same day for a given γ flow
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Figure 4.1: CDF of number of γ flows per src/dst pair across 214 days for router-2, router-3,
router-4 (router-1 plot overlaps closely with the router-2 plot and is hence omitted)
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Figure 4.2: CDF of number of α flows (> 5 GB, > 100 Mbps) per src/dst pair across 214 days for
router-2, router-3, router-4
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ID. As many as 56 γ flows were observed for a single five-tuple ID in one day (at router-2) as

shown in Table 4.4.

Across the 214-day period, of all the flows observed at the four routers, the largest-sized flow

was 811.6 GB (max row of Table 4.5) and the highest-rate flow enjoyed an aggregate rate of 5.76

Gbps (max row of Table 4.6), both of which were downloads passing through PE router router-2.

The largest-sized flow had a rate of 301 Mbps, and the fastest flow size was 7.14 GB. The longest

flow lasted 32460 sec (more than 9 hours) passing through router-1, during which time 370 GB

was moved (max row of Table 4.7).

At the lower end, rates as low as 3.6 Mbps were observed, also at router-2. This particular γ

flow moved 1.9 GB, which means it lasted about 4181 sec (more than an hour).

Since there is a significant gap between the 3rd quartile values, and the maximum values, Ta-

bles 4.5 and 4.6 show a few more quantiles in the fourth quarter. Using the number of γ flows

provided in Table 4.4, we see that the 99.9% value of 229.73 GB implies that only 28 flows in the

size range (229.73 GB, 633.3 GB) entered router-1 from its connected DOE lab. Similarly, the

99.9% rate value for γ flows passing through router-2 was still less than 1 Gbps (even though the

maximum rate for this router was 5.76 Gbps). This implies that only 27 flows out of the 27963

observed γ flows (flows larger than 1 GB with a rate > 133 Mbps) enjoyed (average) rates higher

than 1 Gbps during the 7-month period.

Skewness is defined as µ3/σ3, where µ3 is the third moment and σ is the standard deviation.

The coefficient of variation (CV) and skewness values were lower for rates than for sizes, as seen

in Tables 4.5 and 4.6. This was expected since file sizes have heavy-tailed distributions [21].

Table 4.8 shows that the number of α flows falls quickly as the size-rate threshold is increased,

which is to be expected. Nevertheless, the absolute numbers are interesting to note. Router

router-2 connects ESnet to a supercomputing center, which explains that even at the high per-

flow thresholds of 80 GB and 500 Mbps, 20 α flows were observed.

Comparison between flows observed at different routers:

As seen in Table 4.4, there were many more γ flows in downloads from DOE labs than uploads

to DOE labs (since downloads were observed at router-1 and router-2, while uploads were
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observed at router-3 and router-4). Also, more source-destination pairs engaged in transfers

larger than 1 GB for downloads than uploads.

As seen in Tables 4.5 and 4.6, γ flows for downloads from DOE labs were larger in size and

higher in rate. Uploads to DOE labs, observed at router-3 and router-4 were considerably

slower, with the maximum rate reaching only 776 Mbps at the commercial peering router router-4

and only 979 Mbps at the REN-peering router router-3. Maximum flow sizes were also smaller.

Table 4.7 shows that the longest downloads were longer than the longest uploads, but most γ flows

are short in duration.

A comparison of the number of α flows across the 4 routers from Table 4.8 shows a difference

between the two PE routers. While router-1 is a PE router connected to large national DOE lab,

the significant research projects at this lab are in a single science discipline. In contrast, PE router

router-2 connects to a national scientific supercomputing center that is used by scientists from

many disciplines. This explains the larger numbers of α flows for router-2 when compared to

router-1 as seen in Table 4.8.

Finally, Figs. 4.1 and 4.2 show that uploads through the commercial peering router router-4

were considerably fewer (maximum values of 10 γ flows and 2 α flows) than through the other

routers. A comparison of the red (router-3) and black (router-2) plots shows the former plots

ending before the latter plots. The maximum number of γ-flow and α-flow uploads per source-

destination pair for router-3 were 1229 and 325, respectively, while at router-2, the numbers

for γ-flow and α-flow downloads per source-destination pair were 2913 and 1596, respectively. The

maximum γ-flow and α-flow downloads per source-destination pair at router-1 were 2860 and

445, respectively. The ninety percentile numbers for γ flows per source-destination pair were 39, 7,

7.8 and 2 for the four routers in sequence, and the numbers for α flows per source-destination pair

were 11.6, 19, 18 and 1.7. Therefore, less than 10% of the source-destination pairs generated large

numbers of repeated γ flows and α flows, which makes it somewhat easier for operators to provide

better services (higher rates, lower variance) for these particular source-destination pairs.

Example application:

Consider the source-destination pair that generated the largest numbers of γ flows and also
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the largest number of α flows across the 214-day period. The particular source-destination IP

address pair that generated these maximum number of flows was (2888,7128) using the anonymized

addresses1. Since all these flows were between the same source and destination, and there were no

network upgrades during the data-collection period, the bottleneck link rate and round-trip time

were approximately the same, and all flow sizes are greater than 1 GB, which means TCP’s Slow

Start period could not have had a major influence on the average rate. Nevertheless, in the 2913

γ-flow set, 75% of the flows experienced less than 161.2 Mbps while the highest rate experienced

was 1.1 Gbps (size: 3.5 GB). Similarly, in the 1596 α-flow set, 75% of the flows experienced less

than 167 Mbps, while the highest rate experienced was 536 Mbps (size: 11 GB). Such information

would allow the provider to initiate diagnostics to determine the causes of lower rates.

4.6 Conclusions

This work demonstrated that it is feasible to determine the size, duration, and rate, of high-rate,

large-sized (α) flows from NetFlow records in spite of low packet sampling rates, e.g., 1-in-1000.

The algorithm proposed here can form the basis of a network management system for characterizing

α flows. Example applications include special traffic-engineering of α flows (since they have the

potential to degrade service quality of real-time flows), offering users who generate α flows diag-

nostic support to determine causes of low throughput or high throughput variance, and identifying

BGP misconfigurations that cause α flows to enter a provider’s network on a less-preferred route.

The algorithm was validated using independently collected usage logs from application servers. We

executed our algorithm on actual NetFlow records from 4 ESnet routers collected over a 7-month

period. Individual flows moving datasets as large as 811 GB and at rates as high as 5.7 Gbps were

observed. Some source-destination pairs were found to repeatedly create α flows. An analysis

of the rates of the 1596 repeated α flows created by one pair showed considerable variance, with

minimum rate of 100 Mbps, maximum rate of 536 Mbps, and a coefficient of variation of 30%.

1For privacy reasons, the actual addresses are not published, but are stored in our data archives for retrieval if needed.
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Conclusions and Future Work

This thesis presented an evaluation of Hybrid Network Traffic Engineering System (HNTES): we

compared HNTES performance when using NetFlow records collected at four ESnet routers, and

offered explanations for observed differences. The results showed that HNTES effectiveness was

above 90% for NetFlow records collected at edge routers, which corresponded to file downloads

from DOE laboratories, while the effectiveness was lower for the peering routers whose NetFlow

records corresponded to file uploads. With further investigation, we found that uploads were less

frequent and involved fewer source/destination pairs than downloads.

The thesis also described an algorithm for characterizing the size, duration, average rate, and

frequency of α flows from NetFlow records. The algorithm was validated using independently

collected usage logs from application servers. We executed the algorithm on actual NetFlow records

from 4 ESnet routers collected over a 7-month period. Individual flows moving datasets as large as

811 GB and at rates as high as 5.7 Gbps were observed. Some source-destination pairs were found

to repeatedly create α flows. An analysis of the rates of the 1596 repeated α flows created by one

pair showed considerable variance, with minimum rate of 100 Mbps, maximum rate of 536 Mbps,

and a coefficient of variation of 30%.

The findings of the research work have shown that our hypotheses are valid.

Future work items on HNTES evaluation include finding explanations for why HNTES effec-

tiveness was lower for peering routers than for edge routers, and using size instead of α bytes in

evaluating HNTES. The lower effectiveness could have been caused because of higher loads at the

43
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peering routers (which would influence effectiveness because of the 1-in-1000 NetFlow packet sam-

pling rate), or it could be because uploads were less frequent than downloads. This work requires

new data collection/procurement from ESnet. Future work items on α flow characterization include

the extension of the algorithm to aggregate information from NetFlow records corresponding to

parallel TCP flows since GridFTP users often use this feature (a group of parallel flows may cause

the same adverse effects as a single high-rate α flow, and hence need to be identified) and applica-

tion of these algorithms to NetFlow records collected at other ESnet routers and other providers’

routers.
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