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Abstract ² Smartphones can collect millions of data 
points from each of its users daily, contributing to a 
significant change in how the healthcare community 
approaches health monitoring.  This paper provides a 
framework for how smartphone sensor data can be 
collected, cleaned, stored, and modeled to effectively 
predict human states as a step towards health monitoring. 
To develop robust contextual models, a three-week study 
was conducted to collect data through a mobile 
crowdsensing application named Sensus.  In this study, 
participants used multiple sensing strategies, ranging 
from infrequent sampling to continuous sampling, to 
determine the effect each has on data integrity and 
battery life.  For a future study, a dynamic data collection 
strategy was developed that uses a machine learning 
model trained on existing data collected from 220 
participants to forecast when a smartphone will be active 
and trigger sensor sampling accordingly. Results of this 
study include 1) extraction of model features that deliver 
maximized data quality with minimized battery 
consumption as compared to pre-existing baseline 
models, 2) implementation of context-driven modeling of 
XVeU VmaUWphone daWa on XVeU¶V conWe[WXal enYiUonmenW, 
and 3) customization of a time-series database for 
optimized data queries used in metadata visualizations. 
The adaptive sensing models produced could be used in 
future large population studies that efficiently examine 
patterns of behavior in multiple individuals over 
extended periods to identify disease indicators present in 
an aYeUage XVeU¶V dail\ life. 
 
Keywords — mobile sensing, adaptive sensing, machine 
learning 
 

INTRODUCTION 
 

Development of mobile sensing technologies in personal 
devices, such as smartphones and wearable technology, has 
the potential to understand human behaviors and their 
embedded context.  One implication of these advancements 
would enable users to detect a disease earlier than traditional 
health monitoring methods, resulting in faster treatment of 
symptoms while preventing the spread of illness.  In order to 
develop models to predict the presence of diseases, 

smartphones need to efficiently collect millions of data points 
through mobile sensing. This study investigated three mobile 
sensing strategies to determine a balance between data 
quality and battery usage. 

Continuous, high-sampling smartphone data collection 
would maximize data utility, but could severely increase 
smartphone battery consumption.  Sparse, intermittent 
smartphone data collection would likely lead to very limited 
predictive performance.  This brings about the need for a 
sensing strategy that adapts data collection based on 
smartphone sensor activity. 

In this study, a crowdsensing application was used to 
collect mobile sensing data and administer context surveys in 
three different sensing strategy protocols: background, 
foreground, and static adaptive sensing.  Predictive models 
from the newly collected data sets were developed. 
Additionally, a dynamic adaptive sensing strategy was built.  
Future data collection could provide a larger sample set 
which could further enhance predictive models, and analysis 
of updated models could provide further insight on the 
implications of this research. 

 
RELATED WORK 

 
In recent years, smartphone use has drastically 

increased as technology becomes more integrated into 
APHULcaQV¶ OLYHV. A PHZ RHVHaUcK CHQWHU (2019) VXUYH\ 
found that 81% of Americans own smartphones [1]. These 
devices are capable of collecting millions of data points 
through sensors such as GPS, accelerometer, gyroscope, 
microphone, camera and Bluetooth [2]. This has led to an 
increase in the popularity of health-related applications that 
use these sensors to diagnose and predict health outcomes. 
About 58% of smartphone users have downloaded a health-
related application [3]. Many studies have been dedicated to 
recognizing user context and activities to understand the 
XVHU¶V VWaWXV, ZKLcK caQ XOWLPately be used to predict their 
health outcomes.  One study used a system of wearables to 
collect sensor data and extract features to classify human 
activities with 94% accuracy [4].    
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While many mobile phone apps can connect to 
wearables to track and predict health outcomes, recent 
studies have focused on using smartphone sensors instead as 
a passive way to collect data. One study used raw GPS data 
WR GHWHUPLQH XVHUV¶ WUaQVSRUWaWLRQ PRGH, VXcK aV ZaONLQJ 
and driving [5]. Another study used solely accelerometer 
data to develop a predictive model to recognize ambulatory 
activities such as walking, jogging, climbing stairs, sitting 
and standing [6]. Additionally, Dernbach et. al. analyzed 
smartphone sensor data to recognize complex user activities 
not specifically tied to explicit data points, such as cooking 
and cleaning. While the researchers found that complex 
activities are much harder to recognize than simple 
activities, the performance recognizing complex activities 
had an accuracy of over 50% [7]. Otebolaku and Andrade 
found that incorporating additional data points such as 
orientation and rotation in their study of accelerometer data 
LPSURYHG WKH SHUIRUPaQcH RI cOaVVLI\LQJ XVHUV¶ cRQWH[W [8]. 
Additional studies have investigated different mobile 
sensing strategies in order to efficiently collect the data 
while minimizing the use of the battery life. This includes a 
study conducted with a static adaptive mobile sensing 
strategy and a duty cycling mobile sensing strategy [9,10]. 

Some studies use these sensors to obtain health-
related results by using different algorithms and 
cOaVVLILcaWLRQ PRGHOV WR XQGHUVWaQG a XVHU¶V acWLYLW\. FRU 
example, one paper proposed a smartphone application that 
would be able to detect sound-related respiratory symptoms 
(sneezes, coughs, sniffles, and throat clearing) that could 
RccXU LQ a XVHU¶V HYHU\Ga\ OLIH [11].  MHQWaO KHaOWK 
monitoring and prediction from smartphone sensors has also 
been explored [12, 13].  Such studies have shown the vast 
benefits of mobile health applications that use these context 
detection methods. These benefits include early detection, 
reduced healthcare costs, and no additional purchases of 
GHYLcHV VLQcH WKHVH aSSOLcaWLRQV caQ UXQ VPRRWKO\ RQ XVHUV¶ 
smartphones [14, 15].  This paper builds upon previous 
mobile sensing studies to investigate the impact of sensing 
VWUaWHJLHV RQ GaWa TXaOLW\ aQG XWLOLW\ aW SUHGLcWLQJ XVHUV¶ 
context.   
 

METHODOLOGY 
 
I. Data Collection 
 
Data were collected using the Sensus crowdsensing 
application, a mobile sensing system available on both iOS 
and Android [16].  Sensus can collect data from multiple 
smartphone sensors, including accelerometer, altitude, 
attitude, battery, compass, gyroscope, image metadata, and 
location.  Sensus allows for customization of sensing 

protocols such that sensor activity and sampling frequency 
can be configured. 

Three separate protocols were used during the 
study.  Seven participants ran each protocol for one week 
each.  The first protocol employed a static adaptive sensing 
(SAS) strategy with the accelerometer probe.  Fig. I 
illustrates how a general adaptive sensing strategy operates.  
In the static adaptive sensing strategy, the active observation 
duration was 10 seconds, and the action interval (idle period) 
between active observations was 5 minutes.  If the 
acceleration in the horizontal direction was greater than 0.2 g 
or less than -0.2 g, continuous, high-rate sensing was 
triggered for all enabled sensors. These time periods and 
thresholds were held static. 

 

 
Figure I.  Adaptive sensing flow [16] 

 
Participants were required to keep Sensus open in the 
VPaUWSKRQH¶V bacNJURXQG (L.H. WKH aSSOLcaWLRQ cRXOG QRW bH 
³VZLSHG´ RXW RI) IRU WKH SURWRcRO WR SaVVLYHO\ RSHUaWH.  AQ 
example segment of the process is detailed by Fig. II.   
 

 
Figure II.  Possible sequence of adaptive sensing states [16] 

 
 The second protocol only collected data when 
Sensus was opened (i.e. app in the foreground).  No data were 
sampled passively when the application was in the 
background.  Continuous, high-rate sensing was triggered for 
all enabled sensors when Sensus was open in the foreground. 
 The third protocol employed a GPS sensor listening 
strategy.  By continuously listening to changes in GPS 
coordinates, Sensus was able to stay alive in the background 
and collect continuous data for all enabled sensors.  
Participants were required to keep Sensus open in the 
VPaUWSKRQH¶V bacNJURXQG IRU WKH SURWRcRO WR SaVVLYHO\ 
operate. 
 Each of the aforementioned protocols included a 
survey element via the Sensus app. The surveys served two 
purposes in the study: 1) collecting context information to 
allow tracking of the quality of data, and 2) collecting ground 
WUXWK OabHOV IRU XVHUV¶ acWLYLWLHV WR aOORZ bXLOGLQJ cRQWH[W 
recognition algorithms using smartphone sensor data. The 
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surveys collected GaWa RQ WKH XVHU¶V SUHYLRXV acWLYLW\, WKH 
activity length, phone position, and more. Further 
information on the three surveys is included in Table I.  Users 
were notified by a push notification when a survey arrived 
based on its scheduled time. Screens of an example survey 
are displayed in Fig. III. 
 

TABLE I.  SURVEY DESCRIPTIONS 

Survey Set Time Pushed Question Types  

Daily 
Random 

Random,  
8:00 AM - 
8:00 PM 

Prior phone position, 
prior body position, 
prior activity 

Daily 
Morning 

8:00 AM Sleep duration, sleep 
quality, prior phone 
position, prior body 
position, prior activity 

Daily 
Evening 

8:00 PM Phone interaction, prior 
phone position, prior 
body position, prior 
activity 

 
II. Data Storage and Cleaning 
 

After data collection, data preprocessing was 
conducted in order to utilize them for metadata queries, and 
real-time visualizations. The collected raw data were 
originally stored in zipped JSON form in an AWS S3 bucket. 
The queries and visualizations to be used would be primarily 
involving time as a variable, so it was determined that a time 
series database was the best approach for storing and 
querying the data. After researching different time series 
databases, InfluxDB was chosen over a database built on a 
traditional SQL architecture due to its increased performance 
in insertion, selection, and metadata queries. At this point, the 
rest of the process was developed as shown in Fig. IV.  As a 
full set of data is collected, this process can be used by future 
researchers to store and visualize data. 

 
FLJXUH III.  ³PULRU bRG\ SRVLWLRQ´ aQG ³LRcaWLRQ´ VXUYH\ VcUHHQV 

 
 

 
Figure IV.  Data storage process 

 
RESULTS 

 
I. Comparing Data Quantity and Battery Performance 
 
Quantity of data collected by each sensor varied between 
each sensing strategy.  The number of data points collected 
per hour on average across all seven participants is 
summarized in Fig. V for the following sensors: 
accelerometer, altitude (not foreground protocol), attitude, 
compass (not foreground protocol), gyroscope, and location 
(not foreground protocol).  As anticipated, the GPS listening 
protocol collected the most data on average, indicating 
Sensus was active more frequently in the background for the 
protocol.  The foreground protocol collected significantly 
less data on average, as Sensus was not active in the 
background. Finally, the static adaptive sensing protocol fell 
in between the background and foreground strategies. 
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Figure V.  Average data counts per hour by protocol 

 
Sensus collects smartphone power connect plug-in 

and unplug events if the app is active.  To assess the relative 
effect the protocols have on battery life, average time 
between plug-in events and average time plugged in were 
calculated and compared.  Because it was expected that the 
foreground sensing strategy is only active for short periods of 
time, that protocol was excluded from the comparison.  
Periods of time less than 15 minutes and greater than 1,440 
minutes (24 hours) were removed. 
 Time between power (charging) plug-in events was  
very similar between the GPS listening protocol and static 
adaptive sensing protocol on average.  Time plugged in was 
11% longer for the GPS listening protocol versus the static 
adaptive sensing protocol.  Fig. VI summarizes these results. 
 

 
Figure VI.  Time between distinct plug-in events and time plugged in by 

protocol   
 
II. Comparing the Impact of Sensing Strategies on the 
Performance of Context Detection Models 
 
Impact on data utility was assessed by producing and testing 
predictive models for four contextual features: phone 
location, user location, user activity, and user physical state. 
These features, their subsequent classes, as well as frequency 
within each collection method are shown in Figure VII. 
 

 
Figure VII.  Frequency of features by class for each protocol  

 
Phone location describes where the phone was in 

relation to the user at the time of the survey. User activity 
describes what the user was doing before the survey. User 
location describes where the user was before the survey. User 
physical state describes what the user was physically doing 
before the survey. Predictors used on these features are as 
follows, each recorded at time of survey response: 

Ɣ Magnitude of linear acceleration in X, Y, and Z 
directions  

Ɣ Magnitude of gyroscope in X, Y, and Z directions 
Ɣ Latitude & longitude  
Ɣ Hour of the day 
Ɣ Day of the week 

Random forest was used to create models for each 
feature and cross-validation was used to test model 
performance in predicting the contextual labels. This was 
done for each collection method, with F1 scoring used as 
metrics to compare effects on model performance as a result 
of the different data collection methods. Hypothetically, 
contextual detection models made from data from the GPS 
protocol should yield the highest F1 score as compared to 
models produced by data from the other two collection 
methods. The desire was for data from the SAS protocol to 
be able to produce predictive models whose F1 score was 
similar or equal to that of the models produced from GPS 
protocol data. This would mean the utility of the data 
collected by the SAS protocol was similar to that produced 
by the GPS protocol. 

Leave one out cross-validation was used to assess 
the ability to produce quality predictive models depending on 
the data collection method. Results are shown in Table II for 
each collection method and feature/predictand across both 
metrics. 
 

TABLE II.  F1 SCORES 
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Feature SAS Foreground GPS 

Phone Location 0.648 0.590 0.605 

User Location 0.896 0.838 - 

User Activity 0.625 0.594 0.618 

User Physical State 0.378 0.353 0.618 

 
Results from the F1 scores suggest that data from 

SAS collection can generate detection models which 
outperform any produced by foreground or GPS collection, 
save for the user's physical state feature. This suggests that 
data utility from the SAS protocol is equal to that of data 
collected through the GPS protocol. 

The largest limitation for context detection model 
assessment regards the data collection periods being run in 
series rather than parallel in time, leading to varying 
distribution of classes for each data collection method. This 
is especially apparent in GPS, where the collection period 
overlapped with the 2020 Coronavirus Pandemic, and the 
subsequent quarantine orders reduced the variety of classes 
within each feature. 
 
III. Investigating a Dynamic Adaptive Sensing Strategy  
 
Using smartphone data previously collected from  220 users 
running Sensus for two weeks each, a dynamic adaptive 
VHQVLQJ PRGHO  WKaW SUHGLcWV ZKHQ a XVHU¶V SKRQH LV LQ XVH 
was investigated. The ultimate aim of this model is to reduce 
SHQVXV¶ baWWHU\ cRQVXPSWLRQ b\ WXUQLQJ OLVWHQHUV RQ 
smartphone sensors on/off based on whether the phone is 
currently in use [17].  The models were generated as follows: 
1) the data were segmented into repeating intervals for 
prediction, 2) the data were transformed from time series 
accelerometer data into machine learning readable feature,; 
aQG 3) bRWK LQGLYLGXaO PRGHOV IRU HacK XVHU¶V GaWa aQG a 
global model using all user data were trained and evaluated. 
In practice, this model would be running constantly, 
collecting accelerometer data at short intervals and then 
making predictions based on those intervals. This process 
was simulated using previously collected data. 
 The original data consisted of linear (corrected for 
gravity) acceleration on the x-, y- and z-axes, collected from 
a smartphone accelerometer at a rate of once per second. Note 
that the data transformation and model generation processes 
were the same for the individual and global models. For the 
global model, all user data were combined into a single data 
source, and the global model was trained and tested on that 
data. 

That data were first transformed into a single 3-
dimensional acceleration column and then segmented into 
repeating intervals for testing. Those intervals were then 
segmented into two sub-windows: a listening window and a 
prediction window. The listening window is the small time 
slice at the beginning of the interval where the smartphone 

accelerometer would be switched on, while the prediction 
window is the rest of the interval for which the state of the 
phone would be predicted. The algorithm transforms data in 
the listening window into a single row of features and the data 
in the prediction window into a single value representing the 
SKRQH¶V VWaWH: acWLYH/LQ-use and inactive/not in-use. The 
features generated are shown in Table III. 

 
TABLE III.  FEATURES OF TIME SERIES MACHINE 

LEARNING MODEL 

Name Description 

Hour Hour of day (in 24-hour time) 

Day of Week Day of Week 

Weekend True/false based on whether interval 
was recorded on a Friday/Saturday 

Mean Average acceleration in listening 
window 

Median Median acceleration in listening 
window 

Standard 
Deviation 

Standard deviation of acceleration in 
listening window 

Range Range of acceleration in listening 
window 

Mean Lag 1, 
2, and 3 

Mean value from the first, second, and 
third previous listening windows 

 
TKH SKRQH¶V VWaWH GXULQJ WKH SUHGLcWLRQ ZLQGRZ ZaV 

determined using mean acceleration in the prediction 
window. Based on live gathered smartphone accelerometer 
data, the median 3-dimensional linear acceleration of a phone 
resting on a flat, stationary surface is 0.1 m/s. Therefore, if 
the mean acceleration in the prediction window is greater 
WKaQ 0.1, WKHQ WKH SKRQH¶V VWaWH LV acWLYH. 

After testing interval lengths of 1, 2 and 5 minutes 
and listening window lengths of 5, 10, 20 and 30 seconds, an 
interval of 5 minutes with a listening sub-window of 20 
seconds was chosen for the model. The final data consisted 
of rows of features extracted from 20 second listening 
windows as described above with a column of state values (0 
or 1) representing the state for the 4 minutes and 40 seconds 
after the listening windows. Thus, each row of transformed 
data represented five minutes of time-series data. 

Once this data were transformed, logistic regression 
models were trained both on data from individual users, and 
on the global data from all users. These models underwent 
hyperparameter tuning using a grid-search strategy. The 
models were then evaluated using k-fold cross-validation 
with the optimal hyperparameters.  The model coefficients, 
and the model itself were all stored after the model was 



6 

trained and evaluated.  The evaluation results for the global 
logistic regression model are shown in Table IV.. 
 

TABLE IV.  GLOBAL AND INDIVIDUAL LOGISTIC 
REGRESSION RESULTS 

Metric Global Individual 

Accuracy 89.6% 89.1% 

Precision 88.5% 78.9% 

Recall 76.6% 69.4% 

F1 Score 0.821 0.737 

 
Employing a logistic regression algorithm, the 

model has an F1 score of 0.821 which suggests the validity 
and usefulness of this model. The model has an accuracy 
level of 89.6%, a precision of 88.5%, and a recall of 76.6%. 
The model used the following parameters: {'C': 5, 'max_iter': 
100, 'tol': 0.0001}. 

This logistic regression was also compared against 
two other model algorithms: XGBoost and Random Forest. 
Both models were built using data collected from the 220 
users as well. The XGBoost model has an F1 score of 0.835 
which suggests this model is valid and useful. Additionally, 
the XGBoost model has an accuracy level of 86.3%, a 
precision of 85.5%, and recall of 81.6%. The model used the 
following parameters: {'gamma': 0.4, 'learning_rate': 0.05, 
'min_child_weight': 1, 'colsample_bytree': 0.4, 'max_depth': 
10}. The Random Forest model achieved an F1 score of 
0.833. It has similar results to the results of the XGBoost 
model: an accuracy level of 86.2%, a precision of 85.4%, and 
recall of 81.3%. 
 

CONCLUSION 
 
This study presents an assessment of the relative efficiency 
aQG XWLOLW\ RI PXOWLSOH VPaUWSKRQH VHQVLQJ VWUaWHJLHV¶ aQG 
proposes a dynamic adaptive sensing strategy to effectively 
balance efficiency and utility.  Implementation and further 
development of the suggested dynamic adaptive sensing 
VWUaWHJ\ caQ KHOS bHWWHU GHWHcW VPaUWSKRQH XVHUV¶ VWaWHV aQG 
actions while reasonably preserving device battery life.  
Future applications could empower more significant 
smartphone integration in healthcare systems. 
 The amount and quality of predictors for context 
detection models depends primarily, but not solely, on data 
quantity. Data quantity from the GPS listening protocol and 
static adaptive sensing protocol far exceeded that of the 
foreground protocol, and the former two protocols 
outperformed the latter protocol in context detection.  
Notably, the data from static adaptive sensing strategy 
generated better performing models for the phone location, 
user location, and user activity features than data from the 
GPS listening sensing strategy, which outperformed for user 

physical state. This indicates the importance of timely data 
collection, which is a primary purpose of adaptive sensing.  
Though battery consumption was very similar between the 
two protocols, the large quantity of data generated from the 
GPS listening protocol suggests that smartphone battery life 
would be more adversely affected over time.   

A limitation of the comparison of data from the 
protocols is that the study spanned a period prior to and 
during a heightened period of the 2020 Coronavirus 
Pandemic.  Another limitation is that because of the small 
participant pool, numerous survey response instances were 
not large enough to create context detection models for.  
Furthermore, certain sensors were active for some protocols 
or one protocol but not for others.  Future studies should 
PaNH VHQVRUV ³WXUQHG RQ´ XQLIRUP acURVV SURWRcROV aQG HQOLVW 
larger participant pools with more consistent environments. 

The recommended dynamic adaptive sensing 
strategy performed well on all metrics and can be 
implemented in Sensus for data collection and analysis.  
Additional research could improve clarity in the efficiency 
and utility of multiple dynamic adaptive sensing strategies 
that use different and/or additional features, prediction 
intervals, and other input variables.  Ultimate deployment of 
an optimized dynamic adaptive sensing protocol could allow 
for the generation of highly accurate and personalized 
context detection models, the widespread adoption of which 
would transform predictive health. 
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