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Abstract 
 

Heart disease is the leading cause of death in the United States and affects roughly one third of 
the adult population. In particular, approximately one million Americans suffer from myocardial 
infarctions (MI) each year; as a result, they may experience maladaptive cardiac growth and 
remodeling that leads to heart failure (HF). In fact, around six million Americans currently suffer 
from HF. Many of these patients also experience electrical conduction delays that cause 
ventricular dyssynchrony and worsen HF. Heart failure is progressive, with continuing dilation of 
the heart contributing to ever-worsening pump performance; predicting the course of this 
remodeling and its modification by treatments could therefore provide important insight. 
Fortunately, biophysical and statistical modeling provides a low-risk, low-cost framework that 
allows us to not only gain a better understanding of post-MI remodeling but also predict the 
progression and regression of heart failure. Therefore, the goal of this work is to develop 
computational models that can predict the changes in mechanics, composition, and geometry 
that occur in the heart following MI and the ventricular remodeling that occurs in response to 
current therapies aimed at reversing HF. We utilize two different modeling approaches to predict 
the progression and regression of cardiac growth: (1) a biophysical mechanistic model of the 
infarcted left ventricle (LV) that predicts remodeling during post-infarction healing, and (2) a 
statistical modeling framework to predict ventricular remodeling and patient outcome following 
cardiac resynchronization therapy. Overall, my work explores the prevailing concept in 
biomechanics that the long-term remodeling of mechanically active biologic tissues such as the 

myocardium can be predicted based on regional mechanics, using two complementary 
approaches: biophysical models that explicitly link mechanics to remodeling, and statistical 
models that inform how much of the observed remodeling can be explained by mechanics. 
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Chapter 1 
 

1 Introduction 
 

1.1 The Physiology of the Heart: Mechanical and Electrical Properties 
 

The human heart functions as a system of well-coordinated pumps that deliver blood to the 
body. The heart is made up of four chambers: the right atrium, the right ventricle, the left atrium, 
and the left ventricle. The right side of the heart sends deoxygenated blood to the lungs to 
become oxygenated, and the left side of the heart pumps the oxygenated blood to the tissues 
of the body. The movement of blood from the atria to the ventricles and from the ventricles to 
peripheral tissue depends on the pressure differences between the chambers along with the 
contractility and electrical activity of the cells that make up the heart – known as cardiomyocytes. 
For example, the cardiomyocytes in the left atrium contract and generate pressure within the 
chamber until it exceeds that in the left ventricle. When this pressure is reached, the mitral valve 
opens, and a certain amount of blood flows from the left atrium into the left ventricle. Shortly 
after, the cardiomyocytes within the left ventricle contract and increase the chamber pressure 
until it exceeds that in the aorta. This causes the aortic valve to open, and the ventricle pumps 
blood into the aorta and the rest of the body. 
 
 The cardiomyocytes are striated muscle cells that contract involuntarily. As they contract 
and generate pressure within the chambers, they shorten along their axes of orientation, which 
depend on the location within the walls of the atria and ventricles1–3. The timing of this contraction 
is orchestrated by an organized electrical network of specialized cells that transmits an electrical 
signal throughout the heart. In a healthy heart, this signal begins at the sinoatrial node located in 
the right atrium. It then travels to the atrioventricular node where it is split down the right and left 
bundle branches; the right bundle conducts impulses to the right side of the heart, and the left 
bundle conducts impulses to the left side. Finally, the signal reaches the lower chambers of the 
heart through the Purkinje fibers. The precise timing of this normal pattern of electrical signaling 
allows the atria to contract and pump blood into the ventricles before the ventricles contract and 
pump that blood throughout the body. As such, the function of a healthy heart relies on its 
mechanical properties (i.e. cardiomyocyte contraction, chamber pressure, and blood volume 
within the chambers) and electrical properties (i.e. the timing of cardiomyocyte contraction).  
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1.2 Diseases of the Heart 
 

1.2.1 Heart Failure & Its Causes 
 

The heart’s function can break down due to three conditions that alter normal physiology: (1) 
mechanical properties of the heart are altered as in viral myocarditis or myocardial infarction; (2) 
electrical properties are altered as in left bundle branch block; or (3) the load placed on the heart 
is too great for it to overcome as in pressure overload. An example of altered load occurs when 
aortic blood pressure is elevated in hypertension. Under this condition, the heart is unable to 
eject a normal blood volume, which triggers multiple short-term compensatory mechanisms that 
increase pressure generation to help the ventricle overcome the elevated pressure. This also 
prompts growth and remodeling over time as the extra work that the ventricle must perform 
leads to the adaptation of a thicker ventricular wall. The thicker wall results in a structurally stiffer 
heart, reducing the amount of blood that the ventricle can hold and send to the body4. On the 
other hand, an example of an altered electrical component occurs when there is a blockage of 
the electrical signaling within the left bundle branch of the heart. The blockage causes the 
ventricle to contract dyssynchronously. This too reduces the amount of blood that the ventricle 
can send to the body5. Both cases can lead to heart failure. Heart failure is defined as the inability 
of the heart to pump a sufficient amount of blood through the body and can be characterized by 
ventricular thickening (concentric hypertrophy) and/or ventricular dilation (eccentric 
hypertrophy)6.  
 
 Unfortunately, heart failure is common in the United States. According to the American 
Heart Association, approximately six million Americans suffer from heart failure each year while 
it causes nearly 400,000 deaths7. Heart failure arises from diverse causes, but the four most 
common are: (1) coronary artery disease, (2) chronic hypertension, (3) cardiac arrhythmias, and 
(4) valve disease. All of which disrupt the normal mechanical or electrical properties of the heart 
or the loads placed on it.  
 

1. Coronary artery disease occurs when there is a buildup of plaque in a coronary artery 
that supplies blood to the heart. This obstruction often leads to a myocardial infarction 
(heart attack), and the cardiomyocytes located within the obstructed region no longer 
receive blood and necrose. Depending on the size and location of the infarct, along with 
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whether the remodeling process within this region offers appropriate mechanical 
reinforcement, the ventricle may dilate with worsening pump performance, leading to 
heart failure8.  

 
2. Chronic hypertension, as mentioned previously, refers to elevated aortic (or blood) 

pressure and contributes to heart failure as the increased demand of force production 
leads to ventricular wall thickening and stiffening, which reduces the amount of blood 
filling and leaving the ventricle4.  

 
3. Cardiac arrhythmias describe improper beating of the heart due to abnormal electrical 

impulse origination or propagation. The most common arrhythmia is atrial fibrillation in 
which the atria beat out of coordination (and often very rapidly) with the ventricles. This 
decreases the amount of blood that fills the ventricle and lessens the amount of blood 
that is pumped to the body9. 

 
4. Valve disease involves conditions that affect the opening or closing of the valves within 

the heart. One of the most common valve issues is mitral valve regurgitation. In this 
condition, the mitral valve fails to close tightly and allows blood to flow back into the left 
atrium from the left ventricle. It burdens the left ventricle with a larger than normal blood 
volume and may cause the ventricle to dilate and worsen pump performance, leading to 
heart failure10. 

 

1.2.2 Myocardial Infarction 
 

Myocardial infarctions (heart attacks) are often consequences of coronary artery disease. In 
severe cases, the buildup of plaque in the coronary arteries entirely blocks blood flow to a region 
of the heart, starving the myocardium of oxygen and nutrients, and results in a myocardial 
infarction (MI). According to the American Heart Association, approximately one million 
Americans suffer heart attacks each year7. While most survive the initial infarction, the 
remodeling that occurs over the following weeks and months within the damaged infarct region 
(also known as scar) is a critical determinant of heart function and risk of a range of serious post-
MI complications such as infarct rupture and heart failure11. In the days and weeks following MI, 
the myocytes necrose, and their contents are resorbed. Myofibroblasts infiltrate the damaged 
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region and deposit collagen – a highly abundant protein with great tensile strength – which helps 
to reinforce the structure of the ventricle. Unfortunately, within the first week, if the structural 
integrity of the infarct scar is not great enough to support the mechanical loading throughout the 
cardiac cycle (the filling and pumping of blood), there is a risk of rupture and death. However, if 
the accumulation of collagen within the first week is sufficient, then the long-term structure and 
remodeling of the scar region will affect the function of the heart along with heart growth and 
progression to heart failure11. If the infarct is too compliant, the remaining myocardium wastes 
energy in stretching the infarct, which reduces the amount of blood the ventricle can pump to 
the body. On the other hand, if the infarct is too stiff, then the ventricle has difficulty filling with 
blood which again limits pump performance. An infarct also leads to elevated end-diastolic 
pressure (EDP); higher EDP increases wall stress within the ventricle, which leads to dilation. 
This dilation also increases wall stress and triggers a downward spiral into heart failure as the 
ventricle grows in chamber size to adapt to the increase in loading12. Current therapies aim to 
prevent adverse ventricular remodeling with biomaterial injections within the infarct region and 
mechanical reinforcement of the infarct region13–15. Finally, while infarcts disrupt the mechanical 
function of the heart, they also disrupt its electrical function because the infarct region is no 
longer electrically conductive. Depending on the size and location of the infarct, the electrical 
signal may be disrupted to such a degree to cause left bundle branch block and worsen heart 
failure16. 
 

1.2.3 Left Bundle Branch Block 
 

A healthy heart beats in a synchronous, coordinated manner due to normal electrical impulses 
that travel through an organized network of specialized cells. Arrhythmias and conduction 
disorders arise when abnormalities exist in the generation or conduction of these electrical 
signals. There are many factors that can interfere with normal rhythm and electrical conduction 
and include congenital abnormalities of atrioventricular structure or function, electrolyte 
abnormalities, hypoxia, hormonal imbalances, drug and toxin consumption, hypertension, 
myocarditis, cardiomyopathy, and myocardial infarction. One of the most common electrical 
conduction delays is left bundle branch block (LBBB)5. LBBB refers to the delay or blockage of 
electrical impulses to the left side of the heart. It is often present in patients with heart failure and 
a previous MI, as the non-conductive infarct scar slows or even blocks the electrical signal. This 
leads to dyssynchrony of contraction within the left ventricle. The pump function deteriorates 
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from a nearly instantaneous contraction of the entire ventricle to an inefficient, gradual sequence 
around the muscle chamber. This pattern of contraction promotes ventricular dilation and 
worsens heart failure. Current therapies aim to use pacemakers to resynchronize ventricular 
contraction and reverse heart failure16. 
 

1.3 Computational Modeling for Heart Disease 
 
Complex interactions between the various factors that contribute to ventricular remodeling and 
heart disease make it difficult to not only understand the course of disease progression but also 
design therapies to combat and reverse it. Conducting the experiments needed to elucidate such 
interactions while also testing potential therapies is costly and time-consuming. Fortunately, 
computational modeling provides a low-risk, low-cost, highly iterative framework that allows 
researchers to gain a better understanding of heart disease and test the feasibility of therapies. 
Computational modeling uses mathematics to represent and describe real-world situations. 
Models can be used to develop a better understanding of a problem by quantitatively expressing 
the current knowledge of a system, to test the effect of a change or intervention within a system, 
and to aid in decision making17. There are many types of computational models, but most can 
fall into one of two categories: (1) biophysical mechanistic modeling or (2) statistical modeling. 
The two modeling techniques differ in how they describe a system18. Biophysical mechanistic 
models represent a system using expressions that describe its underlying processes with a 
defined set of assumptions. On the other hand, statistical modeling represents a system by 
describing its generated data under a set of statistical assumptions. Overall, when appropriately 
applied, both biophysical mechanistic models and statistical models can advance the current 
state of heart disease research. 

 

1.3.1 Biophysical Mechanistic Modeling 
 

Biophysical mechanistic modeling is a subset of computational modeling that uses mathematical 
expressions to represent the processes of a system. In the case of cardiac computational 
modeling, different types of biophysical models are used to represent the actions of the heart 
across different scales from gene expression and cell growth of cardiomyocytes to the 
hemodynamics of the cardiovascular system to the deformation of the entire ventricle during a 
heartbeat. For example, cell-signaling models capture the behavior of intracellular signaling 
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pathways with differential equations and can be used to predict cardiomyocyte gene expression 
and hypertrophy when the regular signaling network is perturbed19. Another type of mechanistic 
model is compartmental modeling which uses a system of differential equations to describe the 
movement of a substance from one compartment to another. Compartmental models have been 
applied to the cardiovascular system to better understand the relationship between pressures 
and blood volumes within the different chambers of the heart and how this relationship changes 
in pathologic conditions that lead to heart growth20. A third example of a biophysical mechanistic 
model, and the one further developed in this dissertation, is finite-element analysis (FEA). FEA is 
a powerful modeling technique that uses continuum mechanics to describe how a three-
dimensional object deforms when under load. It is used often to predict the deformation of the 
heart in both physiologic and pathologic conditions21. FEA has also been used previously to 
predict ventricular growth when homeostatic conditions are disrupted and has also allowed for 
in-silico testing of certain therapies following a myocardial infarction15, 22. The process of building 

and running FE models is arduous and computationally expensive, especially for routine clinical 
use; however, FE models can be advantageous in time-insensitive applications as they can be 
customized to represent the anatomy of a specific patient and produce high resolution spatial 
information.  
 

1.3.2 Statistical Modeling and Machine Learning 
 
Statistical models and machine learning use mathematical expressions along with probability 
and statistics to uncover patterns within data generated by a physical system, which aids in 
predicting specific outcomes. These types of models have recently been recognized as 
promising approaches in cardiovascular research and can range in complexity. One of the 
simplest statistical models is linear regression. A linear regression model estimates the 
association of one or more independent, explanatory variables with a continuous, dependent 
response variable by fitting a line to the data that best captures their relationship. These models 
are common in medical research, especially with respect to heart disease, as many studies have 
used them to investigate and quantify the association of several different factors with an outcome 
of interest. For example, a linear regression model has been constructed to predict the change 
in left ventricular volume (outcome) following the implantation of a pacemaker using a set of 
clinical factors/variables that describe a patient’s left ventricular contraction and scar 
formation16. On the other hand, more complex models have been implemented to aid physicians 
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in making difficult decisions. A convolutional neural network is an example of a commonly used, 
complex model within medical research. These models usually take an image as input, assign 
importance to various aspects within the image, and produce a desired output. They have been 
used to identify cancerous cells within histological images and to segment the different 
chambers of the heart from echocardiographic and magnetic resonance images23, 24. While these 
models are powerful tools, they rely on the quantity and quality of available data and aim to make 
predictions without accounting for the underlying biophysical processes. Even though they tend 
to perform poorly with sparse data and can be difficult to interpret at times, when accurately 
trained and implemented, these models run very quickly and can provide guidance in the clinic 
in near real-time. 
 

1.4 Thesis Overview 
 
In this dissertation, I developed both biophysical mechanistic based models and statistical 
models for predicting the progression and regression of cardiac growth. Chapter 2 presents a 
biophysical mechanistic model of the infarcted left ventricle that predicts geometric remodeling 
during post-infarction healing. This model predicts changes in infarct scar dimensions over time 
along with the deformations that occur in the infarct during ventricular contraction. Chapter 3 
extends this model to predict the amount of growth that occurs in the non-infarcted (remote) 
region. Together, Chapters 2 and 3 result in the most comprehensive model to date of post-
infarction ventricular remodeling. In Chapter 4 I present a statistical modeling framework that 
predicts ventricular remodeling and patient outcomes following pacemaker therapy. We use 
several different statistical models along with various types of data to explain the regression of 
cardiac growth. Overall, the work in this dissertation explores the prevailing concept in 
biomechanics that the long-term remodeling of mechanically active biologic tissues such as the 
myocardium can be predicted based on regional mechanics, using two complementary 
approaches: biophysical models that explicitly link mechanics to remodeling, and statistical 
models that inform how much of the observed remodeling can be explained by mechanics. 
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Chapter 2 
 

2 A Finite-Element Model of Changes in Mechanics, 
Composition, and Geometry During Post-Infarction Healing 

 

2.1 Introduction 
 

2.1.1 Scar Remodeling Process: Changes in Composition and Shape 
 

According to the American Heart Association (AHA), approximately one million Americans suffer 
from heart attacks each year7. A heart attack, or myocardial infarction (MI), occurs when a 
blockage in the coronary arteries prevents oxygenated blood from reaching certain regions of 
the heart. While most patients survive the initial infarction, the long-term remodeling of both the 
damaged infarct region and the undamaged (remote) regions are critical determinants of patient 
outcome and risk of progression towards heart failure25.  
 
 There are numerous, complex physiologic processes that occur in the left ventricle (LV) 
following a myocardial infarction, which include the necrosis of myocytes and deposition of 
collagen within the scar region, changes in ventricular mechanical load, and the growth of 
myocytes within the remote region26, 27. Immediately after MI, the myocytes in the damaged 
region necrose, and their contents are resorbed. This causes tissue volume to steadily decrease 
throughout the subsequent weeks – though it is unknown whether this volume loss occurs 
isotropically or anisotropically. Myofibroblasts infiltrate the damaged region and deposit 
collagen, which causes an increase in collagen content (quantified as collagen area fraction) and 
stiffens the scar region over time28, 29. However, the state, or configuration, in which collagen is 
deposited relies on the mechanical loading of the ventricle at the time of deposition, thus these 
configurations differ throughout the infarct healing process as the loading conditions change30. 
The mechanical loading of the ventricle depends on its operating pressures and the cavity 
volume. In the weeks following MI, end-diastolic pressures (EDP) typically fluctuate, depending 
on the size of the infarct31. EDP also varies between patients and, over the course of months, 
evolves differently per patient based on whether the patient develops heart failure28, 32–35. By using 
non-invasive imaging techniques to measure the thickness of the scar along with one or more 
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in-plane scar dimensions, several studies have reported changes in scar shape33, 36–42. However, 
these measurements are typically performed in intact, mechanically loaded hearts, where 
measured dimensions reflect the combined effects of volumetric remodeling, changes in loading, 
changes in stiffness, and potential changes in unstressed configurations of deposited collagen, 
making the infarct remodeling data difficult to interpret. In fact, our group recently performed an 
exhaustive review of quantitative studies of infarct remodeling and found that some studies 
reported in-plane expansion of the healing infarct while others reported in-plane compaction 
(shrinkage) when dimensions were measured at end diastole in intact hearts43. All studies that 
measured wall thickness reported gradual thinning of the scar, which can aggravate adverse 
remodeling of the left ventricle by increasing wall stresses.  
 

2.1.2 Previous Attempts at Post-MI Modeling 
 
Previous studies of post-MI modeling have focused on how infarct dimensions or properties 
affect mechanics30, 43–45. Our lab developed finite-element (FE) models of canine and rat left 
ventricles, with prescribed thickness and stiffness, to determine the conditions that induce infarct 
compaction and expansion43. While the results of these models illustrated the concept that 
observed expansion or compaction depends on the balance between infarct thickness and 
stiffness prescribed in the unloaded state, they did not attempt to reproduce the experimentally 
observed evolution of scar dimensions, mechanics, and hemodynamics. Another group 
developed an FE model based on porcine physiology that more accurately represented the 
temporal changes in both the infarct material properties and the infarct thickness dimensions44. 
This model may allow for the serial assessment of an individual infarct over time, but it is 
incomplete without the considerations of the typical changes in mechanical load post-MI or the 
state at which collagen is deposited in the scar over time. Other studies have created post-MI 
FE models to test potential therapies such as mechanical reinforcement and biomaterial 
injections. One study simulated the injection of a biomaterial in the infarct region and concluded 
that the amount of injected material, rather than its stiffness, notably decreased fiber stress in 
the remote region46. This suggests that increasing wall thickness may be the primary mechanism 
by which biomaterial injections limit adverse remodeling with altering material properties as a 
secondary mechanism. However, if post-MI FE models do not reproduce the observed in-vivo 
scar dimensions over time, then their ability to prospectively predict potential effects of new 
interventions under consideration will remain limited. 
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 Currently, no study or model exists that focuses on what originally determines the 
changes in dimensions and properties. To better interpret the reports of scar dimensions during 
healing described in the literature and separate the contributions of volumetric growth and 
remodeling, infarct stiffening, and elevated LV end diastolic pressures (EDPs) typical after 
infarction, we developed a biophysical mechanistic computational model that addresses the 
impact of each of these factors on the post-MI remodeling process. In this chapter we build the 
most comprehensive FE model to date of post-infarction ventricular remodeling by implementing 
decreases in volume within the infarct scar, increases in scar stiffness, fluctuations in EDP, and 
changes in the unstressed configurations of newly deposited collagen within the scar region. 
This model investigates the hypothesis that volume loss within the scar is isotropic and that 
accounting for changes in reference state during collagen turnover along with changes in EDP 
is not sufficient to prospectively predict dimension changes during infarct healing. 

 

2.2 Methods 
 

2.2.1 Constructing a Finite-Element Model of the Rat LV 
 

2.2.1.1 Geometry, Loading and Boundary Conditions 
 
Finite-element models require a three-dimensional geometry, boundary and loading conditions, 

and a constitutive equation that describes the behavior of the material(s) under load. We built 
new finite-element models of the rat LV by creating an average geometry from CINE magnetic 
resonance imaging (MRI) scans of three different rats. After segmenting the endocardial (inner 
layer of the wall) and epicardial (outer layer of the wall) contours in 6-8 short axis slices obtained 
at end systole for each rat, we calculated the average geometry and defined a finite-element 
mesh using a pipeline previously developed in our lab15. We also added a ring of rigid-body 
elements adjacent to the basal-most (top) endocardial layer to simulate a valve ring and a ring 
of pentahedral rigid body elements to seal the apex. Our final mesh consisted of 9847 nodes 
and 8400 linear hexahedral elements. A physiologic myofiber structure ranging from -60° in the 

epicardium to 60° in the endocardium was assigned to the geometry. Using the open source 

finite-element solver FEBio47, we simulated loading by applying realistic pressures to the 
endocardium to inflate the LV while fixing the displacement of the basal surface nodes 
longitudinally and the valve ring in all directions. Because the MRI contours used to generate the 
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model were obtained at end systole, we scaled the fitted mesh until we obtained an unloaded 
geometry that resulted in a simulated end-diastolic volume similar to experiments. This unloaded 
geometry was taken to be stress-free in all simulations. Finally, a representative infarct geometry 
derived from late-gadolinium enhancement (LGE) MRI was mapped to the mesh. The 

construction of the FE model of the rat LV is shown in Figure 2.1. 

 

Figure 2.1 Construction of the Rat FE Model: Geometry, Loading and Boundary Conditions 

 

(A) The geometry of the FE model (right) was derived from cine-MRI scans (left), and a representative infarct geometry 
was incorporated based on LGE MRI. The endocardium is traced in red; the epicardium is traced in green; and the 
infarct scar is traced in yellow (right). (B) Realistic end-diastolic pressures were applied to the endocardial surface while 
the displacement of the basal (top) nodes was fixed longitudinally. 

 

2.2.1.2 Material Behavior: Passive Myocardium 
 

A Fung orthotropic constitutive equation was implemented to model the material behavior of the 
healthy rat LV. Fung elasticity refers to the constitutive relation proposed by Fung and colleagues 
for characterizing the behavior of biologic soft tissues undergoing finite deformation48. A frame-
invariant formulation of this relation is implemented in FEBio and is advantageous as it can 
represent the behavior of tissues with material symmetries ranging from orthotropy to isotropy. 

The strain energy density function for the Fung orthotropic material is shown in Equation 1, and 

the original orthotropic formulation of Q in terms of the Lamé constants (l and µ) and the 

Lagrangian strain components is defined in Equation 248. In the implementation of the material 

law in FEBio, eleven parameters can be defined and related to the Lamé parameters as shown 

in Equation 3. Nine of the eleven FEBio parameters (the Young’s moduli in the three orthotropic 
directions, the shear moduli in the three directions, and Poisson’s ratios in the three planes) are 
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shown on the left-hand side of Equation 3 while the two additional input parameters include 

coefficient c and bulk modulus k. 
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Equation 3 

 
The myocardium is commonly modeled as transversely isotropic with a preferred fiber 

direction in which the material behavior is different compared to that in the other two 
perpendicular directions (the cross-fiber and radial directions)49. Therefore, we simplified the 
Fung orthotropic material to assume transverse isotropy, reducing the number of material 

parameters from eleven to five. We let orthogonal vectors a2 and a3 define the transverse plane 

of isotropy T so that a1 is normal to that plane and represents the fiber direction. We re-wrote 

the Lamé parameters to reflect transverse isotropy in Equation Set 4 and substitute them back 

into Q as shown in Equation 5. This transversely isotropic form of Q can be equated to other 

widely used constitutive formulations49–51, such as the one in Equation Set 6, by relating the 

material coefficients in Equation Set 4 to those used in the other notation (Equation Set 6). 

Finally, in Equation Set 7, we relate the transversely isotropic Lamé parameters to the input 

FEBio parameters from Equation 3. 
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The parameters we chose to optimize to model the passive material behavior of the LV 

included E1, E2, G12, and c while holding k equal to 100 kPa. We ran 500 Monte Carlo simulations 

with different sets of material parameters and chose the parameter set that minimized the sum 
of the squared error between the simulated metrics corresponding to five experimental metrics 
from previously published experiments28: (1) end-diastolic volume (EDV) at an end-diastolic 
pressure of 0.69 kPa, which captured the overall compliance of the ventricle; (2) Emax, which 
refers to the high pressure slope describing the passive behavior of the ventricle at high 
pressures and calculated by taking the slope between the volumes at 11.3 kPa and 14.7 kPa; (3) 
shape index, which is the ratio of the short-axis length to the long-axis length at end-diastole 
and is influenced by the anisotropy of the myocardium; and (4) circumferential (Ecc) and (5) 
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longitudinal strain (Ecc), which describe the deformation of the ventricle in the circumferential and 
longitudinal directions at low pressures throughout inflation and were calculated from changes 

in distance between sonomicrometry crystals placed on the surface of rat LVs. Figure 2.2 shows 

that the results of the optimized model agree well with the data and that the optimal material 

parameter set is similar to those previously published by Omens52 as parameter c was 

approximately 1.1 kPa, b1 was the largest value of the b parameters (corresponding to the 

preferred fiber direction of myocardium), and b2 was the smallest of the b parameters. 

 

2.2.1.3 Material Behavior: Infarct Scar 
 
We used a Fung orthotropic material to model the material behavior of the infarct scar. We 
constructed a single element biaxial mechanical test in FEBio, prescribed equibiaxial stretches 
up to 1.06 in the X1 and X2 directions, and chose parameters to match experimental stresses 
from a piece of infarct scar subjected to the same biaxial protocol. Because the infarct scar 

exhibits in-plane isotropy, we set the E1 and E2 parameters, which govern the stress response 

in the fiber (X1) and cross-fiber (X2) direction respectively, equal and adjusted their value while 
holding the other material parameters at the levels chosen for myocardium. The results from the 

simulation with the best parameters (E1 = E2 = 94 kPa) match the experimental data as shown in 

Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

Figure 2.2 Material Behavior: Passive Myocardium 

 

The EDV, Emax, and shape index (ED SA/LA) of the optimized model all fall close to the mean of the 
experimental data. The circumferential and longitudinal strain fall within one standard deviation of the 
mean of the data during early inflation but deviate slightly from the experimental range around a 
pressure of 0.25 kPa. The optimal material parameters (highlighted) are comparable to those previously 
published. 
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Figure 2.3 Material Behavior: Infarct Scar 

 

The stretch-stress response of the single element simulation representing infarct scar matches the 
experimental behavior. 

 

2.2.2 Testing Three Different Approaches in Predicting Post-MI Scar Dimensions 
 
Successfully predicting post-MI infarct dimensions requires accurate modeling of volume 
change, changes in collagen content and the associated increase in tissue stiffness, collagen 
deposition state, and changes in mechanical loading; however, it is unknown whether volume 
loss occurs isotropically or anisotropically and how the configuration in which collagen is 
deposited influences the post-MI dimensions and mechanics. Therefore, we developed and 
implemented three different models of scar remodeling in an attempt to match experimental 
post-MI infarct dimensions at multiple time points.  

 

2.2.3 FEBio Material Plug-In 
 

Changes in volume within the infarct scar occur in each of the three proposed models. To 
properly model volume change, we developed a custom FEBio material plug-in to prescribe 
volumetric growth and atrophy within the FE framework. We modified the compressible Fung 
orthotropic material to include user-defined growth or atrophy in the fiber, cross-fiber, and radial 
directions. Growth was implemented using the multiplicative decomposition method, or 

Material Behavior: Infarct Scar

1 1.08

1

0

20

St
re

ss
 in

 X
1 

(k
Pa

) Data
Model

1 1.08

2

0

20

St
re

ss
 in

 X
2 

(k
Pa

)



 26 

kinematic framework, derived by Rodriguez et al.53 (Equation 8). This framework defines the total 

deformation of a growing material as the product of a growth deformation and an elastic 
deformation. The framework states that the stress of a material depends only on the elastic 
stretch experienced by the material rather than total stretch. We introduced this framework into 
FEBio by redefining the stress and tangent definitions within the Fung material in terms of the 
elastic stretch; all tensors and invariants in the material plug-in were calculated using the elastic 

stretch as shown in Equation Set 9. Ultimately, this new growth Fung material allows the user 

to simulate growth or atrophy by inputting the components of the diagonal growth stretch tensor 

Fg as shown in Equation 10 and then calculates stress based on the elastic tensor. We plan on 

making our plug-in available to the public by uploading it to https://febio.org/plugins/. 

 

 𝐹+,+-. = 𝐹/ ∙ 𝐹0 Equation 8 

 

 
𝜎 = 𝜎(𝐹/)	
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Equation Set 9 

 

 𝐹0 = .
𝐹0,234/5 0 0
0 𝐹0,65,77"234/5 0
0 0 𝐹0,5-83-.

2 Equation 10 

 

2.2.4 Candidate Model 1: Isotropic Kinematic Volume Loss 
 
The first candidate model of post-infarction scar remodeling hypothesizes that volume is lost 
within the region isotropically (i.e., equal amounts of volumetric loss in the fiber, cross-fiber, and 
radial directions of the ventricle), and that reported differences between in-plane vs. radial 
remodeling in the loaded LV are due to the effects of anisotropic material properties. In this 
model, we prescribed the remaining scar volume based on experimental data with the constraint 
that the components of the diagonal growth stretch tensor Fg are the same and less than 1. We 
estimated the remaining scar volume throughout the healing process by multiplying together the 
average scar area values and the average scar thickness values reported in the literature37–43. We 
also prescribed collagen area fraction (CAF), based on experimental data from our lab29, after 
first implementing a solid mixture of 15 materials within the elements representing scar. This 



 27 

allowed us to prescribe experimental CAF values by declaring the appropriate number of 
materials in the solid mixture as collagen/scar and inputting the infarct scar material parameters 
found previously. For example, at 2-weeks post-MI, the average collagen area fraction within the 
scar region is ~26%29. Therefore, we defined 4 out of the 15 materials within the solid mixture as 
collagen and assigned the appropriate material parameters. Since the stress response of a solid 
mixture within FEBio is the sum of the stress responses of each of the materials within the solid 
mixture, we divided the appropriate material parameters by 15 to ensure accurate stress 
calculations. The derivation of the stress equations and explanation of the division by 15 is 

explained in Appendix 2.6.1. Additionally, we inflated the model to experimentally measured 

end-diastolic pressures which typically fluctuate throughout the healing process28. This 
approach of prescribing physiologically relevant isotropic volume loss, collagen area fraction, 
and end-diastolic pressure was performed at 2- and 6-week post-MI time points, and the values 
of each input at these time points, along with all other times during infarct healing, are shown in 

Table 2.1 and correspond to mean values reported in experiments28, 29, 33, 36–42. In-plane scar area 

on the epicardial surface and average scar thickness were calculated at 2- and 6-weeks post-
MI and were normalized to their respective values in the non-remodeled scar at a normal end-
diastolic pressure. An example of isotropic kinematic volume loss within the FE model at 2 weeks 

post-MI, with a remaining scar volume of 92%, is shown in Figure 2.4A. 

 

2.2.5 Model 2: Anisotropic Kinematic Volume Loss 
 
In the second proposed model of post-infarction scar remodeling, we hypothesize that volume 
is lost within the scar region in an anisotropic manner, that is, volume loss occurs differently in 
the three different directions. Here, for each post-MI time point, we prescribed the anisotropic 
growth tensor that best fit the in-vivo scar dimensions through an optimization scheme that 

swept numerous combinations of the components of Fg with the constraint that the 
growth/atrophy in the cross-fiber direction was the same as that in the fiber direction. As in 

Model 1, we also prescribed the correct CAF and EDP at each post-MI time point and calculated 

the scar dimensions. The solution space for the anisotropic kinematic volume loss model is 

pictured in Figure 2.4B. The optimal growth tensor is the same for both the 2-week and 6-week 
models and is 𝐹! = diag[1.2 1.2 0.80]. 

 



 28 

Figure 2.4 Scar Remodeling Models: Isotropic & Anisotropic Kinematic Volume Loss 

 

(A) The isotropic kinematic volume loss model exhibited equal amounts of volume loss in the plane of the scar and in 
scar thickness. The 2-week post-MI model is shown with a remaining scar volume of 92%. (B) The anisotropic 
kinematic volume loss model was prescribed different patterns of growth and volume loss in the different directions 
to match in vivo scar dimensions. The solution space from the optimization scheme is shown. Anisotropic growth 
tensors with an Fg,Fiber values greater than one and Fg,Radial values less than one best match experimental data. 

 

2.2.6 Model 3: Reference Configuration Update + Isotropic Kinematic Volume 
Loss 

 

The third proposed model of post-infarction scar remodeling theorizes that – like in Model 1 – 

volume loss occurs isotropically within the scar region, but that collagen deposition at different 
unstressed (reference) lengths over time generates anisotropic changes in loaded post-MI 
dimensions. The reference length of collagen directly affects its material behavior30. For example, 
a collagen fiber with a reference length of 1 immediately exhibits a stress response upon loading. 
However, a fiber with a reference length of 1.15 shows no stress response (stress = 0) until an 
applied load causes the fiber to experience a stretch greater than 1.15. We can simulate different 
reference lengths (or reference configurations) within constituents in two different ways. First, we 

can prescribe the new reference configuration as a growth stretch, with the determinant of Fg 
equal to 1 to conserve volume, using the growth plug-in. On the other hand, we can find a new 
set of material parameters, for a fiber with no reference configuration update, that generates a 
stretch-stress response that is the same as the response in a fiber with a prescribed change in 
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reference configuration. This is shown in Figure 2.5A. Here, we constructed a single-element 

biaxial mechanical testing simulation, in which a stretch of 1.25 is applied in both the X and Y 
directions, for three different cases: (1) a material with no reference configuration update, (2) a 
material with a reference configuration update of 𝐹! = diag[1.15 1.15 0.76], and (3) a material 

without a reference configuration update but with a new set of material properties that match 
the stress-stretch behavior from case (2). These simulations show a rightward-shift of the original 
stress-stretch curve in Case 1, demonstrating that the stress response in Cases 2 and 3 is not 
triggered until a stretch greater than 1.15 is applied. We used this approach in the third model 
of post-infarction scar remodeling to capture the different reference configurations of collagen 
deposited at different times during infarct healing. 
 
 Running this third model involved an iterative process. Initially, the scar region began as 
a solid mixture of 15 materials, representing passive myocardium before any remodeling or 
deposition of collagen. In the first step of the simulation, the ventricle was loaded to the average 
acute end-diastolic pressure. At this loaded state, the configuration of the scar was computed. 
We calculated the fiber, cross-fiber, and radial stretches of the scar elements and averaged each 
of these three components, which we defined as the unstressed/reference configuration of the 
collagen to be deposited in the following step. Next, we simulated the reference configuration 
update by applying these stretches as growth, via the growth plug-in, in a single element biaxial 
mechanical test with collagen/scar material properties and calculated the stretch-stress 
response. In a separate single element simulation (with no prescribed reference configuration 

update), we optimized the E1 and E2 parameters to match the stress-stretch behavior from the 

model with the applied growth stretch. Then, to appropriately account for the deposition of 

collagen and the configuration at which it was deposited within the scar, the E1 and E2 values 

were updated for a specified number of materials within the infarct scar solid mixture in the full 
LV model. At the end of this step, the unstressed/reference configuration of this portion of 
materials was equal to the loaded configuration of the ventricle. Finally, isotropic volume loss 
was prescribed in the scar region to model the resorption of myocytes, which ended the first 
step in the series of simulations. This process was performed in iterative steps until 6 weeks of 
scar remodeling was simulated. Overall, the specific time course of healing (which includes the 
definition of unstressed configuration updates/collagen deposition and collagen content/area 
fraction along with changes in scar volume and loading) was based on data generated in our lab 

as presented in Table 2.1. The in-plane scar area and average scar thickness at 2- and 6-weeks 
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post-MI were calculated as in Models 1 and 2 and compared to experimental data. A flow chart 

of this iterative process is depicted in Figure 2.5B 

 

Figure 2.5 Scar Remodeling Model:  Reference Configuration Update + Isotropic Kinematic Volume 
Loss 

 

 

(A) The different approaches to simulating reference configurations updates are shown. First, we can prescribe the new 
reference configuration as a growth stretch (Case 2). On the other hand (Case 3), we can find a new set of material parameters, 
for a fiber with no reference configuration update, that generates a stretch-stress response that is the same as Case 2. The 
rightward-shift of the original stress-stretch curve from Case 1 demonstrates that the stress response in Cases 2 and 3 is not 
triggered until a stretch greater than the reference length is applied. (B). The flow chart for the model with reference 
configuration updates and isotropic kinematic volume loss displayed. 
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2.2.7 Sensitivity Analysis: Determining Main Driver of Scar Dimensions 
 
To determine how each of the three inputs (remaining scar volume, CAF, and EDP) affect the 

loaded dimensions of the scar, we conducted a sensitivity analysis. For Models 1 and 3, after 

running simulations with the mean values for the model inputs, we ran six different cases in which 
we either increased or decreased one input by 50% of its mean value while holding the other 

inputs at their mean values and then calculated the scar dimensions. For Model 2, we varied 

only CAF and EDP as the remaining scar volume was prescribed by design. 

 
 

 

 

 

 

 

 

 

 

 
 

Table 2.1 Average Inputs for Scar Remodeling Simulations

Days Post-MI Remaining 
Scar Volume (%)

Collagen Area
Fraction (%)

End-Diastolic 
Pressure (kPa)

0 1 0 0.69

2 0.98 0 1.18

7 0.96 0.17 1.27

14 0.92 0.26 1.27

21 0.88 0.35 1.37

28 0.84 0.40 1.18

35 0.80 0.40 1.08

42 0.76 0.46 0.98
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2.2.8 Systolic Strain: Comparing Independent Predictions of Candidate Models 
 

We computed and compared the systolic strains of 
the three different models to test how well the 
models matched independent data not used to 
build them. To properly simulate full cardiac cycles, 
we extended our Fung growth plug-in to include 
active contraction as done previously in our lab for 
a different material law54. The original Fung 
orthotropic material was designed to model only 
the passive properties of a material. Therefore, we 
reformulated the stress calculation of the material 
to be the sum of the passive stress component and 
a new active stress component formulated 
previously in our group54. The active stress 
component was derived from a length dependent 
active contraction model currently used in FEBio and a modified force velocity relationship based 
on Hunter, McCulloch, and ter Keurs55. Once we recompiled our plug-in with the active stress 
formulation, we simulated full cardiac pressure-volume loops by applying the average, acute 
experimental pressure time course as a boundary condition and optimizing the time-varying 

contractility curve in non-infarcted elements to match measured pressure-volume loops. Figure 

2.6 shows the pressure-volume loops for the experimental data and optimized model at the 

acute-MI time point. Once the time-varying contractility curve was optimized, we assumed that 
it did not change throughout remodeling, and input the average 2-week and 6-week post-MI 
pressure curves as boundary conditions to simulate full cardiac cycles at these time points. 
Finally, we calculated the longitudinal and circumferential strain from end-diastole to end-systole 
for each of the three mechanisms at the two post-MI time points and compared the predictions 
to experimental data. 
 
 
 

 

Figure 2.6 Simulating Full Pressure-
Volume Loops 

 

The pressure-volume (PV) loop of the optimized 
model matches the average acute-MI PV loop. 
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2.3 Results 
 

2.3.1 Scar Dimension Predictions 
 

At 2 weeks post-MI, the model with reference configuration updates performs the best as both 
predicted scar dimensions fall within one standard deviation of the mean of the data. The 
anisotropic kinematic volume loss predicted the scar area ratio to be within the experimental 
range and the scar thickness ratio to be closer to the data compared to that generated by the 
isotropic volume loss model. At 6 weeks post-MI the anisotropic kinematic volume loss model 
and the model reference configuration updates perform relatively the same. The anisotropic 
model produced a scar area ratio closest to the data range, but the model with reference 
configuration updates produced a scar thickness ratio closest to the data range. No model 
produced dimensions that fell within one standard deviation of the data. Based on the results of 
these simulations, the model with reference configuration updates seemed to be the best 
performing model.  
 
 However, after simulating a biaxial mechanical test in a single scar element pulled from 
the last iterative step within the model with reference configuration updates (that is, after all 

reference configuration updates were implemented via new E1 and E2 parameters), the observed 

stretch-stress behavior was significantly more compliant than the experimental data at the 
corresponding time point. Therefore, we initialized a stiffer scar and re-ran the entire process in 
order to end up with a final 6-week scar with appropriate material behavior. The results of this 
model were similar to those of the isotropic kinematic volume loss model. Consequently, we 
concluded that the model that best predicts scar dimensions while maintaining physiologically 
plausible mechanical properties was the anisotropic kinematic volume loss model. The results 

of these simulations (with mean input parameters) are shown in Figure 2.7. The original model 

with reference configuration updates that resulted in a scar more compliant than what was 
observed experimentally is shown in green with the “compliant” descriptor in the legend, and 
the reference configuration update model with scaled scar material parameters is shown in 
purple with the “stiff” descriptor in the legend. 
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Figure 2.7 Scar Dimension Predictions 

 

The scar area ratio and the scar thickness ratio as predicted by each model are shown along with the 
observed, in-vivo experimental range. The mean of the data is denoted by the solid black line, and one 
standard deviation above and below the mean is shaded in gray. The best performing model is the 
anisotropic kinematic growth model (in blue) as it predicted infarct scar dimensions closest to the observed 
experimental values. 
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2.3.2 Sensitivity Analysis Results 
 

The results of the sensitivity analysis are shown in Figure 2.8. The model most sensitive to 

variations in input parameters was the original (compliant) model with reference configuration 
updates. The input parameter that most influenced the predicted scar dimensions was EDP. This 
is to be expected as EDP directly affects the loaded configuration of the scar which is equivalent 
to the prescribed reference configuration updates. Within all other models there is little deviation 
in predicted scar dimensions when the inputs are altered, though varying scar volume exhibited 
a noticeable influence on the calculated scar dimensions for these models at 6 weeks. 
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Figure 2.8 Sensitivity Analysis: Infarct Scar Dimensions 

 

 

The scar area ratio and the scar thickness ratio as predicted by each model with a varied input parameter are shown along with 
the observed, in-vivo experimental range. The darker data points indicate that the varied parameter was 50% greater than its 
mean value, and the lighter data points indicate that the varied parameter was 50% less than its mean value. 
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2.3.3 Systolic Strain Comparison 
 

We calculated the systolic strains at 2- and 6-weeks post-MI for each of the models, and the 

results are shown in Figure 2.9. At 2 weeks post-MI the isotropic kinematic volume loss model 

performed better than all other models as both the circumferential and longitudinal systolic 
strains fell near the mean of the data. At 6 weeks post-MI, three models produced circumferential 
and longitudinal systolic strains within the data range: the isotropic and anisotropic models along 
with the (stiffer) model with reference configuration updates. However, the strains produced by 
the anisotropic kinematic volume loss model fell closer to the mean of the data compared to the 
others. Considering that, for both time points, the anisotropic model predicted loaded scar 

dimensions closest to the in-vivo range (Figure 2.7) and produced systolic strains near the data 

range (Figure 2.9), we concluded that it is the model that best captures the geometric remodeling 

that occurs during post-infarction healing. 
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Figure 2.9 Systolic Strain Predictions 

 

All models except for the one with reference configurations (compliant scar) predicted systolic strains 
well. The isotropic kinematic volume loss model produced systolic strains within the experimental range 
(and near the mean) in every case. However, because the anisotropic kinematic volume loss model 
predicted systolic strains in the data range in most cases and scar dimensions closest to the data range, 
we considered it the best model overall. 
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2.4 Discussion 
 

The goal of this chapter was to develop a finite-element model capable of predicting the 
geometric remodeling that occurs during infarct healing. We constructed three candidate models 
that accounted for the factors that influence the loaded dimensions of the scar in-vivo, which 

include the end-diastolic pressure (EDP), collagen content/area fraction (CAF), the volume loss 
due to myocyte resorption, and the reference configuration at which the collagen is deposited in 
the infarct scar. We used these models to compute scar dimensions and compared the results 
to experimental data while also calculating the systolic strains to use as independent model 
validation criteria. We concluded that the anisotropic kinematic volume loss model best captures 
the geometric remodeling that occurs during post-infarction healing after demonstrating that, for 
both the 2-week and 6-week post-MI time points, it predicted loaded scar dimensions closest 
to the in-vivo range and produced systolic strains near the data range. 
 
  Even though it may be impossible to prove a hypothesis using a model, it is possible to 
refute one, or at least render it highly unlikely. Perhaps the clearest conclusion from the 
simulations outlined here is that our original hypothesis – that scar volume loss occurs 
isotropically, while deformation due to loading creates the apparent in-plane expansion and wall 
thinning – seems very unlikely to be true. Simulated scars with a stiffness on the same order of 
magnitude as actual healed rat infarcts simply do not stretch enough when loaded to explain 
prior observations, even at the elevated diastolic pressures typical post-infarction. 
 

2.4.1 Phenomenologic Approach vs. Mechanistic Approach 
 
While other published models have successfully predicted collagen content and structure 
throughout the scar remodeling process43, 56, 57, to our knowledge no model currently exists that 
is capable of predicting scar dimension changes over time. While our anisotropic growth tensor 
results in dimensions closest to experimental data, we would not expect this phenomenologic 
approach to correctly predict infarct remodeling when the mechanics of the infarct are altered, 
which occurs with a number of therapeutic interventions such as the use of restraint devices or 
the injection of biomaterials into the infarct13–15, 46. Instead, models that consider volume loss plus 
changes in material properties and loading in combination with evolution of the scar reference 
state due to collagen turnover may perform better when the ventricular mechanics are altered. 
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Experiments that track infarct dimensions with and without mechanical interventions are needed 
to further evaluate the predictive capabilities of the models. 
 
 It is striking that some models that fail to accurately predict scar dimensions still correctly 
predict systolic strains and that the model that correctly predicts scar dimensions fails to predict 
systolic strain. We believe this finding raises interesting questions about how to model – or even 
conceptualize – the replacement of muscle by scar in three dimensions. It is not immediately 
apparent why degrading myocytes and replacing them with collagen and other extracellular 
matrix should be associated with a change in shape of a region of tissue in its stress-free state, 
or how load influences that final shape. Modeling at the level of the individual proteins and 
components may be necessary to understand the packing of these elements in the remodeling 
and loaded tissue. 

 

2.4.2 Model Limitations 
 
The models constructed within this chapter contain several limitations. First, with respect to the 
model with reference configuration updates, the unstressed/reference configurations of the scar 
constituents were updated based on the end-diastolic configuration, that is, we assumed that 
collagen is deposited only at end diastole. This may not always be the case, and collagen 
deposition at different time points during the cardiac cycle will influence the scar dimensions. 
Also, only 15 materials were used to define the solid mixture. Defining more materials within the 
solid mixture may allow for the healing process to be modeled more smoothly (with smaller steps 
in collagen content at more closely spaced time points), but computational cost would increase 
drastically.  
 
 A limitation related to the anisotropic model involved the failure of models to converge 
with anisotropic growth tensors with Fg,Fiber greater than 1.12 and Fg,Radial less than 0.8. If we were 
able to successfully implement greater in-plane growth stretches and more wall thinning, we 
believe we would be able to closely match the data. We made numerous attempts at overcoming 
this limitation: we increased the density of the FE mesh; we simplified the geometry of the scar; 
we implemented a gradient of volume change from scar to non-scar elements; we applied 
different amounts of growth per radial layer within the model; we changed the material of the 
apical elements from a rigid body to a Mooney-Rivlin material that allowed them to deform; we 
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tried different material parameters for the myocardium; we decreased the step size in our finite-
element solver while also using the Full-Newton method for updating the stiffness matrix, which 
usually results in better convergence compared to the default method in FEBio but increases 
computational time. Unfortunately, none of these attempts solved the problem. The most 
promising approach was the gradient of volume change in which we identified three rings of 
elements outside the scar and specified volume change to be more continuous from scar to 

myocardium as shown in Figure 2.10. We were able to decrease volume in the radial direction 

by 40% while no volume loss occurred in the other directions; however, once we tried to apply 
growth in the fiber and cross-fiber directions, we ran into model convergence issues. We believe 
that a combination of this volume change gradient and adaptative remeshing (a technique not 
yet available in FEBio that refines the FE mesh during the simulation) may resolve this issue.   

 

 

Figure 2.10 Gradient of Growth: Scar Border Zone 

 
When we implemented a gradient of volume change, in which we identified three rings of 
elements outside the scar and specified volume change to be more continuous from scar to 
myocardium, we were able to decrease volume in the radial direction by 40% while no volume 
loss occurred in the other directions; however, once we tried to apply growth in the fiber and 
cross-fiber directions, we ran into model convergence issues. 

 

 

FgScar = diag[1 1 0.6]
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A limitation prevalent to all models involves the way in which the scar material behavior 
was modeled. The data we used in our modeling of infarct scar was derived from a biaxial 
mechanical test that elucidated the in-plane deformation of the scar. We did not have data that 
described the deformation, especially in the radial direction, of the scar within the ventricle. Such 
information would have been valuable for modeling scar and may have improved scar thickness 
ratio predictions, though the systolic strains for three out of the four models were accurate. 
Another limitation common to each of the three models involves the use of only one 
representative infarct geometry. Infarcts of different size, location, and transmurality may exhibit 
different loaded dimension changes. Finally, in-plane area ratio is calculated in this study but is 
compared to normalized in-plane dimension changes from studies that reported a variety of 
infarct measurements, some of which may contain contributions from the infarct borderzone and 
remote remodeling. 

 

2.5 Conclusion 
 
Our FE models are the first to predict infarct scar dimension changes over time while 
incorporating the evolving physiologic processes that occur during infarct healing. Furthermore, 
our models are the first to explore the factors that originally determine the changes in dimensions 
and properties, and they help to interpret the reports of scar dimensions during healing. The 
models also provide the framework to simulate potential therapies aimed at altering the 
mechanics of the ventricle to prevent adverse remodeling. Our results show that scar volume 
loss is not isotropic and that accounting for changes in reference state during collagen turnover 
is not sufficient to prospectively predict dimension changes during healing. Instead, models that 
can account for how the replacement of necrotic myocytes by collagen and other ECM results 
in changes in stress-free shape of the infarct will be needed to understand why the scar 
dimensions change as they do and how those changes will be impacted by potential therapies.  
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2.6 Appendix 
 

2.6.1 Derivation of Stress for the Fung Orthotropic Material in FEBio 
 
𝑊 =

1
2
𝑐(𝑒" − 1) + 𝑈(𝐽) → Strain	Energy	Density	Function	(FEBio	User	Manual)	

	

𝑄 = 𝑐#$ M
(𝜆$$ + 2𝜇$)𝐸$$% + (𝜆%% + 2𝜇%)𝐸%%% + (𝜆&& + 2𝜇&)𝐸&&%

+2𝜆%&𝐸%%𝐸&& + 2𝜆&$𝐸&&𝐸$$ + 2𝜆$%𝐸$$𝐸%%
+2(𝜇% + 𝜇&)𝐸%&𝐸&% + 2(𝜇& + 𝜇$)𝐸$&𝐸&$ + 2(𝜇$ + 𝜇%)𝐸$%𝐸%$

Q → Equation	(a)	in Ex. 1
Ateshian	&		Costa

			

	

𝑈(𝐽) =
𝑘
2
(ln 𝐽)% → Equation	(FEBio	User	Manual)	

	

𝑝 = −
𝑑𝑈
𝑑𝐽

= −𝑘
ln 𝐽
𝐽
→ Equation	(In	Ateshian	&		Costa	footnote	(3)under	Equation	32)	

	

𝑇 = −𝑝𝐼 + 𝑆 = 𝑘
ln 𝐽
𝐽
+	𝐽#$𝐹 ∙ 𝑆 ∙ 𝐹' → Cauchy	Stress	(FEBio	User	Manual)		

	

𝑆 =
𝜕𝑊
𝜕𝐸

→ Second	Piola-Kirchhoff	Stress	as	shown	in	Equation	(3)	in	Ateshian	&		Costa	

	

Derive	each	component	of	stress	

	

𝑆$$ =
𝜕𝑊
𝜕𝐸$$

=
1
2
𝑐 ∙ 𝑒" ∙ 𝑐#$[2𝐸$$(𝜆$$ + 2𝜇$) + 2𝜆&$𝐸&& + 2𝜆$%𝐸%%]	

	

𝑆%% =
𝜕𝑊
𝜕𝐸%%

=
1
2
𝑐 ∙ 𝑒" ∙ 𝑐#$[2𝐸%%(𝜆%% + 2𝜇%) + 2𝜆%&𝐸&& + 2𝜆$%𝐸$$]	

	

𝑆&& =
𝜕𝑊
𝜕𝐸&&

=
1
2
𝑐 ∙ 𝑒" ∙ 𝑐#$[2𝐸&&(𝜆&& + 2𝜇&) + 2𝜆%&𝐸%% + 2𝜆&$𝐸$$]	

	

𝑆$% = 𝑆%$ =
𝜕𝑊
𝜕𝐸$%

=
1
2
𝑐 ∙ 𝑒" ∙ 𝑐#$[2(𝜇$ + 𝜇%)𝐸%$]	
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𝑆$& = 𝑆&$ =
𝜕𝑊
𝜕𝐸$&

=
1
2
𝑐 ∙ 𝑒" ∙ 𝑐#$[2(𝜇& + 𝜇$)𝐸&$]	

	

𝑆%& = 𝑆&% =
𝜕𝑊
𝜕𝐸%&

=
1
2
𝑐 ∙ 𝑒" ∙ 𝑐#$[2(𝜇% + 𝜇&)𝐸&%]	

	

Using Equation Sets 4 and 7, the FEBio input parameters can be re-written in terms of the Lamé 

parameters. All the Lamé parameters (and all FEBio parameters) and c appear in tensor S. If a 

single material with a given set of material parameters needs to be split into a solid mixture with 

N materials, then to match the material behavior of the single material, each of the material 

properties for the materials within the solid mixture must be divided by N since FEBio defines 

the stress response of the solid mixture as the sum of the stress response of each material within 
it. 
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Chapter 3 
 

3 Developing a Finite-Element Model of Remote Myocardium 
Growth Following MI 

 

3.1 Introduction 
 

3.1.1 Ventricular Growth & Remodeling in Disease 
 

Heart function is compromised when one or more conditions alter its normal physiology. These 
include the conditions in which (1) the mechanical properties of the heart are altered as in viral 
myocarditis or myocardial infarction (MI), (2) the electrical properties of the heart are altered as 
in left bundle branch block, and (3) the load placed on the heart exceeds its capabilities as in 
hypertension.  As a result of one or more of these conditions, the physical pump function of the 
ventricle suffers. At the cellular level, cardiomyocytes experience changes in mechanical stimuli 
(due to changes in hemodynamics) and receive different hormonal signals from the body. These 
changes in mechanical and hormonal stimuli interact through a complex network of intracellular 
pathways and drive the cells to respond by increasing sarcomeric protein synthesis and growing 
in size19, 54. This cellular remodeling leads to different patterns in the growth of the ventricle. 
 

There are two common patterns of ventricular growth, or hypertrophy: concentric and 
eccentric6, 58–63. Concentric hypertrophy occurs due to increased afterload, such as pressure 
overload, which causes the wall of the left ventricle (LV) to thicken because sarcomeres are 
added in parallel within the cardiomyocyte as it thickens. On the other hand, eccentric growth 
occurs due to increased preload, such as volume overload, where the ventricle dilates as 
sarcomeres are added in series and lengthen cardiomyocytes. For example, MI places a volume 
overload on the heart, which forces the heart to pump higher volumes of blood at relatively 
normal pressures. This overload elicits eccentric hypertrophy, and the circumference of the LV 
increases more rapidly than the wall thickness, which results in dilated heart failure and eventual 
death64, 65. While the mechanism that determines exactly how hypertrophic signaling results in 
either cardiomyocyte thickening (in concentric hypertrophy) or in cardiomyocyte lengthening (in 

eccentric hypertrophy) is still unknown58, 66, phenomenologic models that use mechanics (stress 
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or strain) to predict these patterns of cardiac growth have been successful20, 22, 54, 59–61, 67–76. 
Currently, numerous models exist that can correctly predict the patterns of growth due to 
different mechanical perturbations. These models have advanced the current state of 
cardiovascular research such that computational modeling can be plausibly utilized in the clinic 
to predict the time course of heart growth and remodeling in individual patients. The models’ 
predictive capabilities may also be useful in designing effective interventions and therapies for 
various types of heart disease. 
 

3.1.2 Mechanical Signals of Growth & Previous Models 
 
Numerous models have proposed different mechanical signals, such as stress or strain, that can 
drive growth and have also utilized them to successfully predict hypertrophy. These mechanical 

signals are input into “growth laws,” equations used to relate mechanical stimuli (deviations in 
mechanical signals from baseline values) to the amount and direction of growth expected from 
experimental data59, 61, 70, 77. Growth laws operate under the assumption that growth adaptations 
drive the signal back towards a homeostatic value; therefore, they prescribe larger amounts of 
growth in response to larger stimuli. In 1975, Grossman et al. theorized that the wall thickness 
of the ventricle increases in pressure overload to normalize systolic stress78. This hypothesis was 
based on the observation that patients with aortic stenosis, a form of pressure overload, 
exhibited peak systolic stresses similar to those of healthy patients; the sick patients had normal 
peak systolic stresses because the wall thickness of their ventricles offset the elevated 
ventricular pressure. Grossman concluded that concentric hypertrophy may be driven by systolic 
wall stress. Motivated by this finding, many models have been developed using stress as the 
stimulus for growth and have successfully captured growth trends during development, pressure 
overload, and even significant amounts of exercise70, 77. 
 
 On the other hand, Emery and Omens argued that diastolic strain is the main driver of 
eccentric growth79. They discovered that wall stresses in rats remained elevated during eccentric 
hypertrophy, yet diastolic strains returned to normal at the end of 6 weeks. Emery and Omens 
concluded that strain, as opposed to stress, is a more appropriate signal for eccentric growth. 
Inspired by this finding, many models have used strain as the mechanical stimulus for growth to 
predict hypertrophy during volume overload and even post-natal heart growth20, 22, 59, 61, 80. Recent 
models have used these strain-based growth laws to predict chamber dilation in response to MI 
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and ventricular dyssynchrony. Impressively, Kerckhoffs et al. developed a law that was able to 
predict growth in response to both pressure and volume overload with a single set of growth 
parameters while also predicting regional differences in growth due to simulated dyssynchrony61, 

81. Although this model agreed with experimental data qualitatively, Witzenburg and Holmes 
further implemented a version of the Kerckhoffs growth law and, using a single set of growth 
parameters, quantitatively matched canine ventricular growth data due to pressure overload, 

volume overload, and MI20. 

 

3.1.3 Factors Affecting Post-MI Remote Growth: Scar Size, Scar Stiffness, and 
End-Diastolic Pressures 

 

While eccentric hypertrophy is the typical pattern of growth that follows myocardial infarction, 
factors such as the size and stiffness of the infarct scar and the degree to which the infarction 
increases end-diastolic pressure (EDP) may contribute individually, or in combination, to 
ventricular growth as each of these factors alters diastolic strain. Pfeffer et al. previously showed 
that large infarcts significantly raised EDP31. An elevated EDP increases diastolic strain and 
results in eccentric growth, yet it is not clear whether infarct size or EDP is the more significant 
factor in driving growth. Additionally, infarct size and stiffness may have a secondary impact on 
diastolic strains as these factors can change the overall size of the LV at a given EDP, which 
alters wall stress leading to changes in end-diastolic strain. 
 
 Currently, there are no experiments or models that have clearly separated the effects of 
hemodynamics (changes in EDP), scar size, and scar stiffness on ventricular growth following 
MI. Moreover, factors such as hemodynamics and scar stiffness change throughout infarct 
healing and must be considered when predicting growth in the remote myocardium. Therefore, 
in this chapter, we build a finite-element (FE) model of volume overload in the rat. We choose a 
strain-based growth law and tune its parameters to match experimental volume overload growth 
data in the absence of MI. We then use these parameters to predict growth in a model with 
infarction while varying infarct size, stiffness, and EDP to determine the main driver of growth. 
Finally, we predict growth in the remote region in the FE model from the previous chapter in 

which EDP, scar stiffness, and scar volume vary over time and compare our results to data 
generated in our lab. This results in the most comprehensive model to date of post-MI ventricular 
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remodeling, which allows for the prediction of ventricular growth following potential therapies, 
such as biomaterial injection within the infarct region and mechanical reinforcement of the infarct. 
 

3.2 Methods 
 

3.2.1 Growth Law Selection & Parameter Fitting for Non-MI Volume Overload 
 

To predict growth in the remote myocardium of rats, we first selected a growth law that has been 
previously used to capture experimental growth patterns in the heart. Following MI, the 
cardiomyocytes primarily lengthen in their fiber direction, leading to progressive cavity dilation. 
Many growth laws define the stimulus for growth in the fiber direction as a function of the 
difference between the maximum fiber strain in the overloaded condition and the maximum fiber 
strain in the homeostatic state. In particular, the growth law implemented by Witzenburg and 
Holmes used this stimulus for fiber and cross-fiber growth, along with a function defining growth 
in the radial direction, to successfully predict the observed growth patterns in the myocardium 
due to pressure overload, volume overload, and MI20. We implemented the growth law for the 

fiber and cross-fiber direction, shown in Equation 1A and 1B, in our FE model. 

 

 Equation 1A shows that the stimulus for growth along the fiber direction of the 

cardiomyocytes (𝑠() was driven by the difference between the maximum fiber strain (𝐸))), which 

occurs at end-diastole, and the homeostatic setpoint (𝐸),+,-) at which no growth occurs. 

Equation 1B is the is the sigmoidal function for the incremental growth component in both the 

fiber (𝐹!,)./$) and cross-fiber (𝐹!,0./$) directions. The parameter 𝑓)),123 defines the maximum amount 

of growth allowed in a single step. The slope of the sigmoid is specified by 𝑓), and the parameter 

𝑠(,45 defines a small nearly quiescent region where no growth occurs. We kept 𝑓)),123 at the 

same value reported by Witzenburg and Holmes and tuned the parameters 𝑓), and 𝑠(,45 to fit 

experimental volume overload growth data in the absence of MI. We chose to not prescribe 
growth in the radial direction as volume overload results in lengthening/growth primarily in the 
fiber and cross-fiber directions of cardiomyocytes. 
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 𝑠( = maxm𝐸))n − 𝐸),+,- Equation 1A 

 

𝐹!,)./$ = 𝐹!,0./$ =

⎩
⎪
⎨

⎪
⎧𝐹!,). ∙ s

𝑓)),123
1 + exp	(−𝑓) ∙ m𝑠( − 𝑠(,45n

+ 1 𝑠( ≥ 0

𝐹!,). ∙ s
−𝑓)),123

1 + exp	(𝑓) ∙ m𝑠( + 𝑠(,45n
+ 1 𝑠( < 0

	

 
𝐹!,6 = 1 

Equation 1B 

 
 We first simulated normal inflation in our FE model of the rat LV by applying a healthy 
end-diastolic pressure of 0.69 kPa. At this loaded state, we calculated the elastic fiber stretches 
of every element, averaged these stretches, and set the resulting value as the homeostatic 
setpoint (𝐸),+,-) at which no growth occurs. Next, we simulated volume overload by passively 

inflating our FE model to an elevated end-diastolic pressure of 1.1 kPa, which is approximately 
63% greater than the control EDP. At the loaded state, we again calculated the average of the 

elastic fiber stretches of each element and used this value as maxm𝐸))n in Equation 1A to 

compute the growth stimulus to calculate the incremental growth component for both the fiber 

(𝐹!,)./$) and cross-fiber (𝐹!,0./$)  directions for a given 𝑓)),123, 𝑓), and 𝑠(,45. Then, we applied these 

incremental growth values to our FE model with the material plug-in developed in the previous 
chapter, inflated the model to the same overloaded EDP of 1.1 kPa, and simulated 8 weeks of 
growth with step sizes of one day. We used the 𝑓)),123 value reported by Witzenburg and 

Holmes, and tuned 𝑓), and 𝑠(,45 until our predicted growth matched the experimental growth 

trends82. 

 

3.2.2 Elucidating the Relative Impact of Scar Size, Scar Stiffness & End-Diastolic 
Pressure on Post-Infarction Growth in the Remote Myocardium 

 
To understand the effects of scar size, scar stiffness, and EDP on ventricular growth following 
MI, we used the growth law with the optimized parameters from the previous section to predict 
hypertrophy in the remote myocardium region while varying these factors. We constructed an 
FE model for every combination of the following input variables: small (10% of LV wall volume), 
intermediate (30%), or large (53%) infarct scar, which fell within the size ranges as described by 
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Pfeffer et al.31; collagen area fractions (CAF) of 0%, 13.3%, or 33.3% which produced different 
scar stiffnesses28, 29; and high (3.5 kPa), intermediate (1.5 kPa), or low (0.8 kPa) EDP, which were 
also observed by Pfeffer et al.31 We simulated and compared the growth rate during the first 
three days of volume overload among all the models. 
 
 For each simulation, we calculated and prescribed growth within the remote region in a 
similar manner as was done in the previous section. We first simulated normal inflation in our FE 
model by applying the healthy end-diastolic pressure of 0.69 kPa. At this loaded state, we 
calculated the average of the elastic fiber stretches of the elements within the remote region (i.e., 
not scar). Next, we simulated post-infarction diastolic mechanics by passively inflating our FE 
model to the prescribed EDP with the prescribed scar size and CAF. At the loaded state, we 
calculated the average of the elastic fiber stretches of all remote myocardium elements and 
computed and applied the incremental growth. We simulated 3 days of growth, iterating with a 
growth step of one day (i.e., re-inflating the LV and re-calculating strains at each step), and 
quantified the initial growth rate for each combination of factors. 
 

3.2.3 The Comprehensive MI Model: Scar Remodeling + Remote Growth 
 
Our final simulation integrated the FE model of scar healing from the previous chapter with the 
FE model of remote myocardium growth. This combined model accounts for the interplay 
between post-MI remodeling processes, in which the infarct scar volume and stiffness, along 
with EDP, vary over time while the remote region remodels. To simulate the effects of scar healing 
on remote growth, we prescribed the time course of infarct healing from acute MI with a scar 
size of 30% to 4 weeks post-MI in our FE model. At the acute state, we prescribed an EDP of 
1.18 kPa with neither volume loss within the infarct region nor infarct stiffening. Using the same 
method from the previous section, we calculated and applied incremental growth for 7 days. At 
the end of 7 days, we increased EDP to 1.27 kPa, decreased scar volume by 4%, and prescribed 
a collagen area fraction of 20% by updating the material parameters of 3 out of the 15 materials 
within the solid mixture as demonstrated in the previous chapter. We again calculated and 

applied incremental growth for 7 days. This process, outlined in Figure 3.1, was repeated with 

the appropriate input scar healing parameters until 4 weeks of growth was simulated. Finally, we 
compared the growth predicted by our simulation to the growth observed in the same 
experimental data set from which we calculated the scar healing parameters28. 
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Figure 3.1 Outline of the Comprehensive MI Model: Scar Remodeling + Remote Growth 

 

The input parameters of the scar remodeling FE model from the previous chapter are updated every 7 days for 28 days 
while the growth within the remote region is calculated and applied each day for 28 days.  

 

3.3 Results 
 

3.3.1 Growth Law Tuning & Predicting Growth in Non-MI Volume Overload 
 

Witzenburg and Holmes optimized their growth law parameters to match experimental growth 
in canines and determined that the optimal values for the parameters 𝑓) and 𝑠(,45 were 31 and 

0.215, respectively. Because our goal was to predict hypertrophy in rats, we re-optimized the 
parameters to match rat-specific data. We performed a parameter sweep during which we ran 
8 weeks of growth for every combination of growth parameters within the following ranges:  
𝑓) = [10, 20, 30, 40, 50, 60, 70, 80] and 𝑠(,45 = [0.1, 0.2, 0.3]. The optimal values for 𝑓) and 𝑠(,45 

were 80 and 0.1, respectively, and the resulting simulated time course of growth using these 

parameters is shown in Figure 3.2A. Our model results fell within the experimental ranges of 
growth at 1, 2, 4, and 8 weeks post-volume overload82.  
 

In Figure 3.2B the black line illustrates the sigmoidal shape of the stimulus-growth stretch 
curve specified by our growth law with the optimized rat parameters. The dots represent the 
stimuli and the incremental growth stretch for each step in the simulation with the darker dots 
representing early time points and the lighter dots representing later time points. The first growth 

step is the highest, most-purple dot on the sigmoid and depicts the largest increase in growth 
due to the largest stimulus (i.e. the largest difference between the overloaded fiber strain value 
and the homeostatic setpoint). The last growth step, represented by the lowest, most-yellow dot 
depicts the smallest increase in growth as the stimulus is the smallest due to accumulated 
growth that has slightly decreased the end-diastolic elastic fiber strain in the overloaded case. 

The end-diastolic elastic fiber strain throughout growth is shown in Figure 3.2C. Overall, fiber 
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strain slightly decreased and nearly plateaued because the incremental growth value (Fg,fiber-i) 

reached an approximate final value of 1. Finally, Figure 3.3 shows the configurations at matched 

EDP of the LV before growth (left) and after 8 weeks of growth (right). 
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Figure 3.2 Predicting Growth in Non-MI Volume Overload 

 

 

(A) With the optimal growth law parameters, the simulated growth (purple line) due to volume overload in the absence of MI fell 
within the experimental range at all time points. (B) The incremental growth stretch and stimuli for each growth step were plotted on 
the sigmoidal growth curve and demonstrated more growth at the earlier time points (darker dots) and less growth at the later time 
points (lighter dots). (C) The elastic fiber strain decreased slightly over time and nearly plateaued because the incremental growth 
value (Fg,fiber-i) reached an approximate final value of 1. 
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Figure 3.3 FE Model of Non-MI Volume Overload 

 
The configurations of the FE models at matched EDP of the LV before growth (left) and after 8 weeks of growth (right) 
are shown.  

 

3.3.2 Factors Influencing Growth Following MI 
 

With the optimized growth law parameters, we ran growth simulations in models with simulated 
infarcts. Infarcts varied in size (small, moderate, and large) and stiffness (CAF = 0, 13.3, or 33.3%) 
while EDP also varied (high, intermediate, and low). We constructed a model for every 
combination of the aforementioned factors and simulated 3 days of growth with each model to 

determine how each factor affected growth. Figure 3.4 shows the results of all 27 simulations. 

For each of the three infarct sizes simulated, rows present simulations at a given EDP (increasing 
from bottom to top) while the columns reflect simulations at a given infarct stiffness (increasing 
from left to right). The growth curves are shown in black, and the background of the plots are 
colored based on the magnitude of growth on the third/final day, with darker green representing 
more growth.  
 

We determined that the main driver of predicted growth within our models was the end-
diastolic pressure. No matter the infarct size or stiffness, the growth increased the most as EDP 
increased (bottom to top). For models inflated to the largest EDP, the amount of growth at 3 days 
was similar for each infarct stiffness except in the case of the large scar, in which the growth 
decreased slightly with stiffening. For models inflated to the intermediate EDP, scar stiffness 
played a more significant role in growth. As the infarct became stiffer, less growth occurred 
because the increase in stiffness hindered the ventricle’s ability to inflate and deform. For models 
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inflated to the lowest EDP, nearly no growth was observed no matter the size of the infarct nor 
its stiffness. This pressure resulted in stimuli values on the near-quiescent portion of the growth 
curve. 
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Figure 3.4 Drivers of Growth Following MI: Effect of Scar Size, Stiffness, and EDP 
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Across all infarct sizes, there was more change in growth (differences in the shades of green) from the top to 
bottom of the nine plots rather than from left to right, indicating that elevated EDP has a much greater effect 
on predicted growth than changes in infarct stiffness. The amount of predicted growth for a given EDP and 
infarct stiffness was also similar for all infarct sizes, suggesting that infarct size per se has little effect on growth, 
though slightly less growth occurs in larger infarcts. For models inflated to the intermediate EDP, scar stiffness 
played a more significant role in growth. 
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3.3.3 Scar Remodeling and Remote Growth Match Experimental Data 
 
In our final model, we implemented the changes that occur over time within the infarct during 
post-MI healing and computed growth within the remote myocardium. This model incorporated 
elements from both the previous and current chapters. We accounted for changes in infarct scar 
volume, stiffness, and end-diastolic pressure while we also computed and prescribed the growth 
within the remote region. The results of our simulation fell within the experimental data range as 

shown in Figure 3.5A. Most of the growth occurs within the first week post-MI as EDP is elevated 

with no increase in stiffness within the infarct region. However, even as EDP remained elevated 

(see Figure 3.1), growth was nearly halted after 1 week as the infarct scar stiffened over time. 

Figure 3.5B and Figure 3.5C explain this result in terms of the stimulus, incremental growth, 

and fiber strain. In the first 7 days following MI, the fiber strain is elevated, and the stimuli 
(represented by the dark dots) are large enough to cause growth. At 7 days post-MI, there is a 

sudden decrease in fiber strain and corresponding downward jump on the growth curve (Figure 

3.5B). The stiffening of the infarct is responsible for this decrease in fiber strain and reduction in 

growth. At this time point in the simulation, the infarct is stiffened and the EDP is increased. 
Larger EDPs increase fiber strain, yet the stiffness of the infarct prevented this. This trend 
continues throughout the remaining time points and results in stimuli on the quiescent portion of 
the growth curve. The infarct in this model fell within the ranges of EDP and stiffness in which 

stiffness affects growth as shown previously in Figure 3.4 (middle rows). 
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Figure 3.5 Predicting Growth in the Comprehensive MI Model 

 

 

(A) After accounting for the changes that occur over time during infarct healing (changes in scar volume and stiffness along 
with fluctuations in EDP) and computing growth in the remote non-infarcted region, the results of our simulation fell within 
the experimental data range. (B) There were jumps along growth curve as the infarct stiffened over time; initially, in the 
presence of no stiffening, the stimulus and resulting growth were large (darker purple-green dots). However, when the infarct 
became stiffer, there was a downward jump on the growth curve, resulting in nearly no incremental growth. (C) The fiber 
strain was large before stiffening and decreased as the infarct was stiffened.  
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3.4 Discussion 
 

3.4.1 Stability of Heart Growth 
 
Using the growth law developed by Witzenburg and Holmes, our initial simulations of cardiac 

hypertrophy following volume overload demonstrate that our model continues to grow at later 

times when the experimental data plateaus (Figure 3.2A). One way of modifying our growth law 
to better match the data involves the implementation of an evolving homeostatic setpoint. An 
evolving homeostatic setpoint allows the myocardium to gradually adjust its state at which no 

growth occurs rather than using one fixed value (𝐸),+,- in Equation 1A). These adjustments result 

in setpoints closer to the growth stimulus, thus decreasing the amount of growth.  
 

Yoshida et al. recently implemented an involving setpoint that improved predictions of 
the regression of cardiac growth following the release of pressure overload while still allowing 
appropriate predictions of the initial ‘forward’ growth due to overload22. The authors used a 
weighted moving average of the elastic strains from the previous 15 growth steps (2 weeks) to 
specify the current setpoint. This average was based on the biological observation that the half-
life of assembled actin and myosin in cardiac sarcomeres is 1 week83. The elastic strain from 8 
growth steps prior to the current time was weighted most heavily, with strains from more recent 

and more distant time points exerting less influence on the setpoint. This equation is shown in 

Equation 2. To examine the effect of an evolving setpoint on the growth predicted in our 
simulations, we implemented the same assumptions and re-ran our volume overload simulations 

from Figure 3.2. Our results are shown in Figure 3.6. The evolving setpoint blunted growth and 

allowed the LV to reach a steady size but did so prematurely. The new setpoints were larger than 
the original homeostatic setpoint and similar in value to the growth stimuli, so no growth nor 
change in fiber strain occurred after the new setpoints were engaged at day 15. Applying 

evolving setpoints in the infarct models was not necessary to match the trends in experimental 

data (Figure 3.5A), yet they warrant further investigation as they offer a more biologically-
grounded basis for the approach to a new ventricular steady state and have already proven more 
effective at simulating treatments that reduce hemodynamic overload. 
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Figure 3.6 Implementing the Evolving Setpoint 

 

The evolving setpoint blunted growth and allowed the LV to reach a steady size but did so prematurely, matching 
trends at 1 and 2 weeks post-volume overload but underestimating growth between 4 and 8 weeks post-volume 
overload. The new setpoints were larger than the original homeostatic setpoint and similar in value to the growth stimuli, 
so no growth nor change in fiber strain occurred after the new setpoints were engaged at day 15.  
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3.4.2 Effect of Infarct Stiffness on Growth Following MI 
 

The main driver of predicted growth within our models was the end-diastolic pressure. No matter 
the infarct size or stiffness, the growth increased the most as EDP increased. However, for 
models inflated to an intermediate EDP, scar stiffness played a more significant role in growth. 

In Figure 3.7, we plotted the transmural fiber strains in models at a matched EDP of 1.5 kPa with 

(A) no stiffening and (B) stiffening that represents a CAF of 33.3%. This figure shows that the 
remote myocardium in the model with the stiffer infarct (B) undergoes less fiber strain (darker 
colors) compared to the model with no stiffening, especially adjacent to the infarct and near the 
epicardium. As the infarct becomes stiffer, less growth occurs because the increase in stiffness 
impedes the ability of those regions deform in the fiber direction. Overall, the differences are not 
as large as expected after considering the differences in predicted growth. This suggests that 
the fitted growth law is sensitive to very small changes in stimulus (i.e., steep sigmoid). 
Additionally, the average elastic fiber strain of all the non-infarcted elements is input into the 
growth law. The smaller strains that occur adjacent to the infarct and around the epicardium 
drive that average down enough to result in a small stimulus with less growth. Prescribing growth 
element by element may help confirm the effect that infarct stiffness impedes growth. 
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Figure 3.7 Remote Fiber Strain in FE Models: Non-Stiff Infarct vs. Stiff Infarct 

 

This figure shows that the remote myocardium in the model with the stiffer infarct (B) undergoes less fiber strain (darker 
colors) compared to the model with no stiffening (A), especially adjacent to the infarct and near the epicardium. 
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3.4.3 Accounting for the Effects of Evolving Hemodynamics, Hormones & Drugs 
 
We determined that end-diastolic pressure, rather than scar size or stiffness, was the biggest 
driver of cardiac hypertrophy within the infarct models. However, EDP is related to infarct size 
as Pfeffer et al. demonstrated that, in a rodent model with large infarcts (>53% by LV wall 
volume), the EDP was nearly 5 times larger than the EDP for moderately sized or small infarcts. 
The hemodynamic changes that occur following a large infarct greatly affect EDP and induce 
substantial growth. Our finding highlights the importance of correctly modeling hemodynamics 
as an essential step in predicting heart growth. In fact, other groups have drawn similar 
conclusions. For example, in the case of dyssynchrony caused by left bundle branch block, 
Kerckhoffs et al. were able to match experimentally reported growth only when they accounted 
for the hemodynamic compensations that maintained a constant mean arterial pressure81. 
Additionally, a recent study from our group utilized a compartmental model that included 
complex hemodynamic changes to accurately predict the time course of heart growth20. Realistic 
models of the evolution of the hemodynamic loads placed on the heart may not only be important 
for modeling ventricular response to injury, but they may also be necessary to predict the effect 
of potential therapies that affect hemodynamics. 
 

While we somewhat accounted for changes in hemodynamics as variations in EDP, we 
did not explore the effects of hormones and drugs on growth. At the cellular level, 
cardiomyocytes grow due to perturbations within the complex intracellular signaling network. 
Hormones and drugs, as well as mechanical stimuli, can perturb this network and cause 
hypertrophy. Several hormones or drugs that stimulate key hypertrophic pathways can cause 
cardiomyocyte growth even in the absence of altered mechanical stimuli19. Ryall et al. 
constructed a computational model of the intracellular signaling pathways within 

cardiomyocytes and showed that the pathways activated by mechanical stimuli (stretch) overlap 
with those that respond to hormones and chemokines associated with hypertrophy19. 
Furthermore, experiments such as aortic banding, which is a form of pressure overload, are often 
used to calibrate growth models and alter not only heart mechanics but also the levels of many 
hypertrophy-associated hormones84–90. Our group recently constructed a multiscale model that 
connected an FE model of concentric growth to a cell-level network model of hypertrophic 
signaling pathways accounting for changes in both mechanics and hormones54. The model was 
able to match growth caused by isoproterenol infusion (i.e., a drug that alters the gene 
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expression of hypertrophy-associated genes) and transverse aortic constriction (i.e., a 
mechanical intervention that increases aortic pressure and generates pressure overload) along 
with the attenuation of growth caused by other genetic and pharmacologic interventions. The 
most striking conclusion of the model was that the hormonal inputs were responsible for most 
of the growth. These findings suggest that models relying solely on the kinematic framework for 
growth with dependence only on changes in mechanics may perform poorly when changes in 
the hormonal environment occur. Since many therapies aimed at preventing the progression of 
heart growth or reversing it alter hormones in the form of drugs, mechanical models of growth 
like the one presented in this chapter may need to be expanded to capture the hormonal 
response along with the mechanical response. 
 

3.4.4 Model Limitations 
 

The major limitation of the model presented in this chapter is that it does not account for more 
complex changes in hemodynamics or hormonal and drug activity. However, our model still fits 
the observed growth data in the case of volume overload with the absence of MI as well as the 
case of growth caused by MI. We expect that our model can predict growth trends following 
potential therapies that primarily alter mechanics, such as mechanical reinforcement or 
biomaterial injection. However, we cannot currently simulate the effects of drugs that alter the 
hormonal environment and thus cannot predict the effects of drug interventions. Another 
limitation includes our assumption that growth in the radial direction of the cardiomyocytes does 
not occur. While experimental data show that the most prominent pattern of growth following MI 
is dilation (i.e. growth in the fiber and cross-fiber directions), some data demonstrate modest 
growth in the radial direction. Also, if growth in the radial direction is sufficient, the growth in our 
model may better fit the data (i.e. simulated growth may plateau like the experimental growth). 
Therefore, it may be advantageous to implement radial growth within our models in the future. 
Finally, in the case of the comprehensive MI model, the remodeling processes that occur in the 
infarct scar region were altered only at 4 distinct points during the 4 weeks of growth. In future 
iterations, it may be advantageous to prescribe volume loss within the infarct scar, collagen 
deposition/increase in stiffness, and changes in EDP in a more continuous, gradual manner. 
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3.5 Conclusion 
 

Our FE model can capture 8 weeks of growth following volume overload in the absence of MI 
after optimizing only two parameters within a previously developed growth law. These models 
are also the first to explore the effects that infarct scar size and stiffness and end-diastolic 
pressure have on growth following MI. We conclude that for infarction, as in a number of other 
cardiac pathologies, hemodynamics is the main driver of growth and must be accounted for in 
growth models. Furthermore, our MI growth model that accounts for the interplay between post-
MI remodeling processes, in which the remaining infarct scar volume and stiffness along with 
EDP vary over time while the remote region remodels, is to our knowledge the most 
comprehensive model of post-MI ventricular remodeling to date. This model provides the 
framework to (1) capture the changes that occur in the ventricle following MI, and (2) simulate 
how potential therapies that alter the mechanics of the evolving scar will affect the growth and 
remodeling of both the infarct scar and remote myocardium regions. 
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Chapter 4 
 

4 A Statistical Modeling Framework to Predict Ventricular 
Remodeling and Patient Outcome Following Cardiac 
Resynchronization Therapy 

 

4.1 Introduction 
 

In the previous chapters we built a biophysical mechanistic model of an infarcted left ventricle 
(LV) that predicted long-term growth and remodeling following myocardial infarction (MI). Such 
models may help prioritize potential treatments, such as polymer injection or local reinforcement 
with a patch, before the onset of heart failure (HF); however, once HF occurs, a different 
approach is needed to optimize current therapies aimed at reversing HF and to predict 
responses to such therapies.  

 

4.1.1 Dyssynchronous Heart Failure 
 
According to the American Heart Association, nearly six million Americans suffer from HF each 
year7. Many of these patients with HF (and/or MI) develop ventricular dyssynchrony91. The 
chambers of their hearts no longer contract synchronously, which prevents their hearts from 
efficiently pumping oxygen-rich blood to the rest of their bodies, worsens symptoms, and 
decreases survival. One of the most common types of dyssynchrony is left bundle branch block 
(LBBB)92. LBBB refers to the delay or blockage of electrical impulses to the left side of the heart 
and is often present in patients with HF and MI, as the non-conductive infarct scar slows or even 
blocks the electrical signal. This leads to both inter and intraventricular mechanical dyssynchrony 
in which the LV free/lateral wall experiences delayed contraction and increased stretching 
compared to the septal wall93–98. Consequently, LV pump function is impaired92 while LV dilation 
and asymmetric wall thickening occur98–100. Ventricular dilation exacerbates mechanical 
dyssynchrony, which triggers a downward spiral of further pump impairment and LV dilation81. If 
left untreated, LBBB results in a 3-year mortality risk of up to 58%92, 94. 
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4.1.2 Cardiac Resynchronization Therapy 
 

Fortunately, a revolutionary procedure called cardiac resynchronization therapy (CRT) offers 
lifesaving benefits to patients by using pacemakers with electrical leads to alter the mechanics 
of the heart, resynchronize contraction, and reverse HF. CRT is offered to patients in sinus 
rhythm with moderate to severe heart failure (New York Heart Association [NYHA] Classification 
for Symptom Severity: Classes II-IV), an ejection fraction (EF) less than or equal to 35%, and a 
QRS duration greater than 150 milliseconds101, 102. A CRT pacing device is used to restore 
coordinated contraction of the heart by electrically stimulating multiple locations on the heart at 
appropriate times. Multiple clinical trials have shown that CRT can improve the health of patients 
by: reversing LV dilation (decreasing left ventricular end systolic volume [LVESV]), improving 
NYHA functional class, decreasing HF hospitalizations, improving LVEF, and improving overall 
survival103–108. Clinically, a CRT responder is defined as a patient who experiences a 15% or more 
reduction in LVESV measured at 6 months post-procedure. While approximately 50,000 patients 
undergo this procedure annually, an alarming 30-50% of patients selected to receive the 
procedure under current guidelines fail to respond to the treatment101, 102, 109. 
 

4.1.3 Important Factors of CRT Response 
 

Anticipating the success of CRT is important for guiding treatment, yet difficult due to numerous 
procedural possibilities and complex interactions between patient variables/factors. 
Theoretically, CRT can account for patient-to-patient variability as clinicians can tailor the 
therapy with specific lead locations, timing, and/or pacing protocols. However, far too many 
strategies exist to test during the implantation procedure, and the acute changes in electrical 
activity measured during implantation do not always accurately predict patient response and 
long-term remodeling.  
 

On the other hand, complex interactions between multiple clinical variables/factors of 
patients, including a patient’s genetics, comorbid conditions, medications, blood testing results, 
hemodynamics, exercise capacity, cardiac electrical function, and cardiac mechanical function 
further complicate CRT response predictions. Previous work has shown that parameters such 
as a patient’s CURE-SVD score (a measure of ventricular dyssynchrony), QLV (a measure of the 
time from QRS onset to the electrogram at the LV lead location), the presence of scar at the LV 
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lead location, and the mechanical stretch (delayed circumferential contraction) at the LV lead 
location are the four most important factors in accurately predicting binary response to CRT 
(responder versus non-responder)16. While these parameters are able to predict binary outcome 
to CRT, they do not successfully predict the degree of reverse remodeling (the reduction in 
LVESV). Additional factors not included in this study, such as exercise capacity and 
neurohormonal activity, may improve predictions of CRT outcome, ventricular remodeling, and 
long-term survival, and will be included in this chapter. 

 
Cardiac strain curves may also provide helpful information in anticipating CRT success. 

Cardiac strain curves quantify the deformation of 18 spatial sectors within a short-axis slice of 
the LV throughout the cardiac cycle. These curves are derived from DENSE-MRI110 and used to 
compute the CURE-SVD score, which is a single value between 0 and 1 that strongly predicts 

CRT response16. Reducing the dimensionality of the strain curves from 18 sectors ´ ~30 MR 

frames to one single value may result in the loss of information useful in predicting response. 
Therefore, consideration of entire strain curves may improve CRT prediction by capturing 
complete regional mechanics of the ventricle. Additionally, because previous mechanistic growth 

models have estimated cardiac growth using differences in strain between overloaded and 
homeostatic conditions59, calculating changes in strain curves from pre-CRT to post-CRT may 
allow for the prediction of reverse growth following the therapy. 

 

4.1.4 Previous Attempts at Predicting CRT Response 
 

Previous work employed logistic regression to successfully predict binary response to CRT. 
Parameters such as the CURE-SVD score, QLV, the presence of scar at the LV lead location, 
and the mechanical stretch at the LV lead location accurately predicted CRT response with an 
area under the receiver operating characteristic curve (AUC) of 0.9516. This study also 
demonstrated that patients with CURE-SVD scores less than 0.70, no scar at the left-ventricular 
lead placement site, and delayed contraction at the lead location had a 100% response rate to 
CRT. Another study used a similar approach and demonstrated that the CURE-SVD score along 
with the Seattle Heart Failure Model (SHFM), one of the most widely used risk stratification 
models for overall survival in patients with HF and implantable cardioverter-defibrillators111, 
informed survival after CRT112. In fact, patients with CURE-SVD less than 0.60 and SHFM score 
less than 0.70 had a greater 4-year survival compared to the other cohort of patients. 
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Other studies have used more complex machine learning models to stratify patients 
based on common clinical parameters, LV volumes, LV deformations, and QRS waveforms while 
predicting response and mortality. One study used baseline (pre-CRT) demographic and clinical 
information, electrocardiogram- and echo-derived parameters, laboratory values, medications, 
and longitudinal strain tracings of 1106 HF patients to identify the phenotypes of CRT 
responders113. Dimensionality reduction was applied to this matrix of parameters and k-means 
clustering was utilized to generate 4 distinct phenotypes of CRT responders. This study showed 
that some of the best responders to CRT included patients who were female, had LBBB, and 
non-ischemic cardiomyopathy (ICM) while some of the worst included ICM patients without 
LBBB. Another study performed principal component analysis (PCA) on the baseline 12-lead 
QRS waveforms to identify two groups of CRT patients with different outcomes114. 

 

Although these approaches are promising, no study has integrated all previously 
mentioned variables into one comprehensive data set and developed a framework to predict 
CRT outcomes, ventricular remodeling, and long-term survival. Furthermore, few studies include 
parameters gathered several months after implantation. Statistical models are capable of 
uncovering patterns in such complicated and comprehensive data. Successful implementation 
of these models can improve CRT delivery and identify viable CRT candidates. Accurate models 
can also help clinicians use pre-CRT parameters and post-CRT response measures to identify 
patients with the most unfavorable expected outcomes, which will allow the clinicians to refer 
these patients to more advanced HF therapies such as mechanical circulatory support or heart 
transplantation. Therefore, in this chapter we combine clinical data into a single, statistical 
analysis to (1) identify the pre-CRT information most capable of predicting post-CRT response 
measures and (2) utilize the pre- and post-CRT parameters to predict long-term survival. 

 
Furthermore, this statistical analysis is useful in testing current, physics-based theories 

of CRT response. Because the application of CRT alters the regional mechanics of the ventricle 
and it is hypothesized that changes in regional mechanics drive cardiac growth and remodeling, 
changes in mechanics from pre- to post-CRT may be helpful in predicting CRT response. Rather 
than constructing a computationally expensive biophysics-based mechanistic model that 
accounts for a patient’s ventricular geometry, regional deformation, and electrical conduction 

pathways to test this hypothesis, we will instead use a statistical modeling framework. This 
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approach will allow us to correlate the components of changes in regional ventricular strain 
derived from DENSE-MRI with ventricular remodeling. 

 

4.2 Methods 
 

4.2.1 Gathering a Clinically Relevant Data Set 
 

Before receiving CRT at the University of Virginia Health System, 198 patients completed intake 
forms which described their demographics along with comorbid conditions and medications, 
underwent laboratory studies and vital sign measurements along with exercise testing, and 
received contrast-enhanced CMR imaging, echocardiography, and electrocardiograms (ECG). 
At 6 months post-CRT, they received echocardiography or CMR imaging along with laboratory 
studies and exercise testing to quantify three response measures: fractional change in the left 

ventricular end-systolic volume index (D LVESVI), serum BNP levels, and change in peak VO2 (D 

peak VO2). The patients were then followed for survival with routine interrogations up to five years 
post-procedure. All patients were NYHA functional class II to IV and met the established 
guidelines for CRT.  All patients provided informed consent for this study, which was approved 
by the Institutional Review Board for Human Subjects Research at the University of Virginia. 
 

1. Patient Characteristics: Demographic characteristics (age, sex, and race), comorbid 

conditions in addition to HF (ischemic cardiomyopathy, hypertension, atrial fibrillation, 
chronic kidney disease, diabetes mellitus, and prior coronary artery bypass graft), and 
medications (beta-blocker, ace inhibitor/angiotensin receptor blocker, loop diuretic 
dosage, digoxin, and statin) at the time of CRT were documented from intake data during 
enrollment in the study and information accessible medical records. The SHFM score, 
which is calculated based on multiple patient covariates and characteristics, was 
recorded for each patient. 

 

2. Laboratory Studies, Vital Sign Measurements & Exercise Testing: Patients underwent 

laboratory studies, vital sign measurements, and exercise testing before the CRT 
procedure. The laboratory studies included blood tests for serum sodium, creatinine, 
hemoglobin, and B-type natriuretic peptide (BNP). Glomerular filtration rate (GFR) was 
estimated from the results of the laboratory studies. Vital sign measurements included 
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systolic blood pressure readings, and peak oxygen output was assessed through 
exercise testing. 

 

3. CMR Imaging Protocol & Echocardiography: Prior to the CRT procedure, complete 

CMR examinations were performed for all patients. The CMR protocol included cine 
imaging and cine DENSE for all patients, and those with prior infarcts also received late 
gadolinium enhancement (LGE). Circumferential strain from a mid-ventricular 2-
dimensional cine DENSE short-axis slice was calculated semiautomatically to determine 
the CURE-SVD score (with a value between 0 and 1 where 0 represents full dyssynchrony 
and 1 represents full synchrony). Standard 2D echocardiographic images with Doppler 
were obtained for all patients at baseline and 6 months after CRT. Where appropriate, 
images from either CMR or echocardiography were used to determine ventricular 
volumetric measurements such as the left and right ventricular ejection fractions (LVEF & 
RVEF), left and right ventricular end-diastolic volumes indexed for body surface area 
(LVEDVI & RVEDVI), and left and right ventricular end-systolic volume index (LVESVI & 
RVESVI). 

 

4. ECG Analysis: All patients underwent 12 lead ECG procedures to obtain electrical 

conduction parameters such as QRS duration and the QRS to left ventricular intrinsic 
activation interval (QLV). Conduction delays such as LBBB or RBBB were also recorded 
along with whether a paced rhythm was present. Further, patients who received a new 
device (De Novo) as well as those who received an upgraded device (Upgrade) from 
previous implantable cardioverter-defibrillators (ICDs) at the time of CRT were noted. 

 

5. Post-CRT Response Measures: At 6 months post-CRT, LVESVI was calculated for all 

patients with either CMR or echocardiographic images, and the fractional/percent 

change in LVESVI (D LVESVI) was calculated with Equation 1. The change in peak oxygen 

output (D peak VO2) was computed 6 months after CRT by subtracting the exercise 

testing results obtained pre-CRT from those obtained post-CRT. Serum levels of BNP 

were also quantified with blood tests 6 months post-CRT (BNPP). Favorable CRT 

response measures include: (1) a 15% or more reduction in LVESVI (D LVESVI ≤ -0.15), 

(2) an increase in peak oxygen output, and (3) low levels of BNP. Finally, determination of 
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death at 4-years post-CRT was based on clinical follow-up, reports of death from 
families, and a regional death index. 

 

 ∆LVESVI =
LVESVIPost-CRT − LVESVIPre-CRT

LVESVIPre-CRT
 Equation 1 

 

6. Missing Data: With respect to the parameters gathered before the CRT procedure, 

missing data for QLV, CURESVD, SHFM, LVEDVI, LVESVI, RVEDVI, RVESVI, LVEF, 
RVEFB, peak VO2, and BNP ranged from 1 to 11% and were imputed with each 
respective median value. Concerning the parameters gathered 6-months after CRT, 

missing data for D LVESVI and BNP ranged from 2.5 to 10% and were also imputed with 

each respective median value. D peak VO2 exhibited the largest percentage of missing 

data (20%) often due to the inability of the patients to exercise. We imputed the post-
CRT VO2 values as those at baseline, under the assumption there was no improvement 

in exercise capacity and calculated D peak VO2 accordingly. 

 

4.2.2 Assessing Baseline Characteristics & Identifying Pre-CRT Parameters that 
Strongly Associate with Post-CRT Response Measures 

 

39 baseline variables were identified and used as input for the analysis. These variables included 
both categorical and continuous data, and, to limit redundancy in our linear models, we 
constructed a correlation matrix with the continuous variables to identify collinearity and 
eliminate unnecessary variables. Stepwise linear regression models were implemented for each 

of the three post-CRT response parameters (D LVESVI, BNPP, and D peak VO2) to identify the 

pre-CRT clinical parameters that are strongly associated with the response measures. The 
stepwise linear regressions determined the necessary parameters to remain in each of the three 
models based on the Akaike information criterion (AIC) while also identifying parameters strongly 
associated with each response measure. The parameters associated with at least one of the 
three response measures were then included in a multivariate multiple regression (MANOVA) in 
which the dependent variable was the linear combination of the three response parameters. Pillai 
trace values and F-statistics were calculated for each of the inputs. 
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4.2.3 Predicting Long-Term Survival of Patients with Gaussian Mixture Modeling 
and Logistic Regression 

 

A Gaussian mixture model (GMM) was optimized to cluster patients using the three post-CRT 
response parameters as inputs. A GMM is a probabilistic model that assumes all data points are 
generated from a mixture of a finite number of Gaussian distributions. This model assigns data 
points to a specific Gaussian-shaped cluster described by a mean and variance/covariance. 
More specifically, a Gaussian mixture model is parameterized by two types of values: (1) the 
mixture component/cluster weights and (2) the component means and variances/covariances. 

For a Gaussian mixture model with K components, the kth component has a mean of 𝜇⃗7 and 
covariance matrix of ∑7 for the multivariate case. The mixture component weights are defined 

as ∅7 for component Ck, with the constraint that ∑ ∅. = 18
.9$  so the total probability distribution 

normalizes to 1.  
 

Expectation maximization (EM) is the technique most commonly used to estimate the 
parameters of the GMM and consists of two steps. The first step is the expectation (E) step and 
involves calculating the expectation component assignment Ck for each data point with given 
the model parameters ∅7, 𝜇⃗7, and ∑7; in other words, for each data point, the probability of it 

belonging to each component (cluster) is computed. The second step is the maximization (M) 
step in which the expectations in the previous step are maximized by updating ∅7, 𝜇7, and ∑7 
and weighted using the probabilities. This is an iterative process that repeats until the algorithm 
converges and gives a maximum likelihood estimate for the parameters of each distribution. A 
more detailed explanation is as follows: 
 

1. Initialization Step: Assign initial values for ∅7, 𝜇⃗7, and ∑7. 

 
a. Randomly assign samples without replacement from the given dataset 

𝑋 = {𝑥⃗$, … , 𝑥:} (where 𝑥⃗ is a length d row vector) to the component mean 
estimates 𝜇⃗$, … 𝜇8. For example, for 3 components (clusters) and 200 data 

points/observations (K = 3 and N = 200), set 𝜇$ = 𝑥;4, 𝜇⃗% = 𝑥⃗&%, and 𝜇& =
𝑥⃗$5. 
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b. Set all component covariance estimates equal to the sample variance 

∑$, …∑8 =
$
:
∑ (𝑥. − 𝑥⃗)'(𝑥⃗. − 𝑥⃗):
.9$ , where 𝑥⃗ is the mean of 𝑋. 

 
c. Set all component distribution prior estimates to the uniform distribution 

∅�$, …∅�8 = 1
𝐾� . 

 
2. Expectation (E) Step: For each data point, calculate the probability that it is 

generated by each component Ck. 
 

a. 𝛾�.8 =
∅=!∙𝒩(3⃗"|CDD⃗ !,∑!)

∑ ∅=#∙𝒩G3⃗"|CDD⃗ #,∑#H!
#$%

 and thus 𝛾�.8 = 𝑝m𝐶7|𝑥⃗. , ∅�, 𝜇⃗, ∑n 

 

where 𝒩(𝑥⃗|𝜇⃗. , ∑.) =
$

I(%J)&det(∑")
exp �− $

%
(𝑥 − 𝜇.)'(∑.)#$(𝑥⃗ − 𝜇⃗.)� is the 

probability density function of a multivariate Gaussian distribution. 
 

3. Maximization (M) Step: Using the previously calculated 𝛾�.7, update ∅�8, 𝜇8 and 
∑8. 

 

a. ∅�8 = ∑ KL"!
:

:
.9$  

 

b. 𝜇⃗8 	=
∑ K'(M)
"$% 3⃗"
∑ KL"!)
"$%

 

 

c. ∑8 =
∑ KL"!(3⃗"#CDD⃗ !)∙(3⃗"#CDD⃗ !)*)
"$%

∑ KL"!)
"$%

 

 
4. This process is repeated until the log likelihood of the data under the current 

model’s parameters does not improve by a user-specified tolerance. 
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Within these models the structure of the covariance matrix is unknown and can be 
specified as spherical, diagonal, and full. A spherical structure designates that the covariance 
matrix is diagonal with equal elements along the diagonal whereas a diagonal structure is one in 
which the covariance matrix is diagonal with different elements along the diagonal. A full 

covariance matrix allows for correlation between random variables (i.e., non-zero off diagonal 
values).  In addition to not knowing the structure of the covariance matrices, the optimal number 
of clusters (components) is unknown. Therefore, we ran multiple GMMs while varying the 
covariance structure (spherical, tied, diagonal, and full) and number of clusters (1-6). The 
covariance structure and number of clusters that minimized the Bayesian information criterion 
(BIC) were implemented in the final GMM. Once the data points were assigned to the appropriate 
clusters, chi-square tests were used to compare categorical variables between groups while an 
ANOVA was used to compare continuous variables between groups. Then, a Kaplan-Meier 
analysis was performed to construct the survival curve for each of the clusters to examine the 
model’s ability to predict long-term survival. Log-rank tests were used to measure significance 
between survival curves. 
 
 In a 5-fold cross-validation framework, multivariable logistic regression models were 
utilized to predict survival at four years post-CRT. In the first model, the input data consisted of 
three pre-CRT parameters (CURE-SVD, peak VO2, and BNP levels) which were determined to be 
the best predictors of 4-year death through a separate regression model. In the second model, 
the input data consisted of the aforementioned pre-CRT parameters plus the three response 

variables (DLVESVI, BNPP, and D peak VO2). ROC curves for each fold within the cross-validation 

were generated, and areas under the ROC curves were calculated to compare model 
performances. 
 

4.2.4 Testing if the Change in Mechanics from Pre- to Post-CRT Can Predict 
Remodeling 

 

We gathered pre- and post-CRT cardiac strain curves from a subgroup of 25 patients within the 
existing cohort. We derived different metrics from the strain data to determine if any were 
predictive of long-term remodeling. Because previous mechanistic growth models have defined 
the stimulus for growth as a difference in the maximum fiber strain in the overloaded case and 
the fiber strain under homeostatic conditions59, we calculated the difference (delta) in 
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circumferential strain (Ecc) from pre-CRT to post-CRT. The strain data was extracted from the 
mid-wall of short axis MRI slices, so the circumferential direction (Ecc) is the fiber direction and 
thus agrees with the previous mechanistic models. Delta strain curves existed for each of the 18 
spatial sectors. We calculated the peak, minimum, and average of each of these curves to help 
generalize the change in mechanics due to CRT. We then fit a linear regression model to each 
metric with the percent change in LVESV as the independent variable and examined the R2 values 
for each to elucidate the predictive power of the strain-based metrics. 
 

4.3 Results 
 

4.3.1 Baseline Characteristics 
 

Demographic characteristics, comorbid conditions, medications, laboratory findings, vital signs, 
exercise testing results, and imaging findings for the 198 patients (age 67.4 ± 11.3 years; 27.3% 

female; 13.6% African American) are shown in Table 1. The median D LVESVI was -18% 

(interquartile range -33% to 1%). A total of 58% met echocardiographic criteria for favorable 
CRT response based on at least a 15% decrease in the LVESVI 6 months after the procedure. 

The median D peak VO2 was 0 mL/kg/min (interquartile range -1.4 to 1.3 mL/kg/min), and the 

median BNPP level was 195.0 pg/mL (interquartile range 77.3 to 599.0 pg/mL). At 4 years post-
CRT, 25.3% of the total cohort had died. 
 

 The correlation matrix between all continuous variables is shown in Figure 4.1 in which 

red represents a positive Pearson standard correlation coefficient and blue represents a negative 
Pearson standard correlation coefficient. Input variables with coefficients greater than or equal 
to 0.8 included (1) weight and BMI, (2) LVEDVI and LVESVI, and (3) RVEDVI and RVESVI. To 
avoid collinearity and redundancy within the linear regression models, we removed BMI, LVESVI, 
and RVESVI from the analysis. Creatinine and GFR had a correlation coefficient of -0.77 and 
were subsequently both included in the analysis. 
 
 
 
 

 



 78 

Figure 4.1 Correlation Matrix for Continuous Pre-CRT Variables 

 

Weight and BMI, LVEDVI and LVESVI, and RVEDVI and RVESVI exhibited Pearson standard 
correlation coefficients greater than 0.8, thus BMI, LVESVI, and RVESVI were removed from the 
analysis. 
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Table 1 Patient Characteristics 

 Cohort (N = 198) Group 1 (N = 113) Group 2 (N = 51) Group 3 (N = 34) p Value 
Demographics      

Age, years 67.4 (58.0-73.6) 66.6 (57.0-72.7) 68.1 (61.3-74.6) 68.5 (60.9-74.8) 0.68 
BMI 28.7 (25.4-33.7) 30.3 (26.5-34.5) 28.3 (24.8-32.3) 26.1 (22.6-30.2) 0.007 
Wt (kg) 89.2 (74.8-102.9)     
Female 54 (27.3) 36 (32.9) 12 (23.5) 6 (17.6) 0.21 
NYHA Heart Failure Class      

II 72 (36.4) 48 (42.5) 20 (39.2) 4 (11.8)  
III 125 (63.1) 65 (57.5) 31 (60.8) 29 (85.3)  
IV 1 (0.50) 0 (0) 0 () 1 (2.9)   

SHFM Score 0.36 (-0.025-0.84) 0.2 (-0.12-0.6) 0.50 (-0.01-0.98) 0.90 (0.56-1.20) <0.0001 
Race     0.12 

African American 27 (13.6) 15 (13.3) 9 (17.6) 8 (23.5)  
White/Other 171 (86.4) 98 (86.7) 42 (82.4) 26 (76.5)  

Comorbid Conditions      
Ischemic Cardiomyopathy 87 (43.9) 41 (36.3) 32 (62.7) 14 (41.2) 0.006 
Hypertension 113 (57.1) 75 (66.4) 21 (41.2) 17 (50.0) 0.007 
Atrial Fibrillation 51 (25.8) 32 (28.3) 9 (17.6) 10 (29.4) 0.60 
Chronic Kidney Disease 62 (31.3) 32 (28.3) 14 (27.5) 16 (47.1) 0.09 
Diabetes Mellitus 70 (35.4) 36 (31.9) 19 (37.3) 15 (44.1) 0.40 
Prior CABG 33 (16.7) 16 (14.2) 13 (25.5) 4 (11.8) 0.14 

Medications      
Beta-Blocker 190 (96.0) 108 (95.6) 49 (96.1) 33 (97.1) 0.93 
ACE Inhibitor or ARB 173 (87.4) 102 (90.3) 45 (88.2) 26 (76.5) 0.10 
Loop Diuretic Dose, mg      

0 58 (29.3) 35 (31.0) 16 (31.4) 7 (20.6)  
20-40 87 (43.9) 54 (47.8) 21 (41.2) 12 (35.3)  
60-80 35 (17.7) 16 (14.2) 8 (15.7) 11 (32.4)  
> 100 18 (9.1) 8 (7.1) 6 (11.8) 4 (11.8)  

Digoxin 17 (8.6) 7 (6.2) 5 (9.8) 5 (14.7) 0.28 
Statin 120 (60.6) 69 (61.0) 31 (60.8) 20 (58.8) 0.97 

Laboratory Studies, Vital Signs & Exercise Testing      
Systolic BP, mm Hg 118.5 (104.0-130.0) 118.0 (102.0-128.0) 124.0 (109.5-135.0) 111.0 (104.0-129.3) 0.31 
Sodium, mEq/L 138.0 (137.0-140.0) 139.0 (137.0-140.0) 139.0 (137.0-141.0) 137.5 (136.0-139.8) 0.18 
Creatinine, mg/dL 1.1 (0.9-1.3) 1.0 (0.9-1.2) 1.1 (1.0-1.40) 1.3 (1.1-1.5) 0.0002 
Hemoglobin, g/dL 13.25 (12.3-14.7) 13.7 (12.5-14.8) 13.5 (12.3-15.0) 12.9 (12.1-14.0) 0.24 
GFR, mL/min/1.72m2 66.8 (54.0-84.1) 74.0 (59.4-88.2) 64.0 (51.1-72.3) 59.2 (46.5-72.6) 0.0003 
BNP, pg/mL 272.0 (135.3-637.0) 167 (88-275) 333 (247-592) 1148 (778-2533) <0.0001 
Peak VO2, mL/kg/min 14.4 (12.5-15.7) 14.4 (13.0-16.5) 13.8 (10.7-15.5) 14.2 (12.6-14.4) 0.013 

CMR & Echocardiography Assessment Parameters      
LVEF, % 24.4 (17.7-30.4) 25.6 (18.9-31.0) 24.0 (18.0-29.6) 20.4 (14.6-27.1) 0.049 
LVEDVI, mL/m2 125.8 (102.8-152.7) 117.5 (98.6-137.0) 131.9 (109.5-151.5) 163.5 (121.9-192.0) <0.0001 
LVESVI, mL/m2 93.6 (73.9-123.0) 89.1 (68.6-112.0) 96.9 (81.3-119.4) 128.0 (90.7-161.5) <0.0001 
RVEF, % 37.9 (25.3-45.6) 38.7 (32.0-49.0) 35.6 (21.2-43.8) 27.3 (18.2-38.6) 0.003 
RVEDVI, mL/m2 65.4 (52.8-82.7) 57.0 (48.1-74.2) 68.2 (58.4-81.6) 97.6 (76.0-120.6) <0.0001 
RVESVI, mL/m2 38.6 (29.7-55.1) 35.7 (25.1-45.7) 40.9 (33.7-56.3) 62.9 (47.2-90.2) <0.0001 
LGE Presence 95 (48.0) 48 (42.5) 28 (54.9) 19 (55.9) 0.20 
CURE-SVD 0.59 (0.45-0.76) 0.54 (0.40-0.69) 0.65 (0.47-0.80) 0.735 (0.57-0.84) <0.0001 

ECG Parameters      
QRS, ms 157.5 (141.3-175.0) 160.0 (147.0-178.0) 152.0 (134.5-160.0) 158.0 (137.0-180.0) 0.088 
QLV, ms 119.0 (85.5-148.0) 130.0 (98.0-150.0) 100.0 (77.5-125.0) 102.5 (72.5-150.0) 0.006 
LBBB 149 (75.3) 86 (76.1) 41 (80.4) 22 (64.7) 0.25 
RBBB 22 (11.1) 9 (8.0) 5 (9.8) 8 (23.5) 0.038 
Paced Rhythm 29 (14.6) 19 (16.8) 4 (7.8) 6 (17.6) 0.28 
Upgrade or New Device     0.17 

De Novo Device 150 (75.8) 80 (70.8) 43 (84.3) 27 (79.4)  
Upgrade Device 48 (24.2) 33 (29.2) 8 (15.7) 7 (20.6)  

Response Measures at 6-Months Post-CRT      

Fractional Change in LVESVI -0.18 (-0.33-0.01) -0.24 (-0.43 - -
0.14) 

-0.09 (-0.19-0.07) 0.005 (-0.18-0.10) <0.0001 

Change in Peak VO2, mL/kg/min 0.0 (-1.4-1.3) 0.0 (-0.8-1.9) 0.0 (-1.63-1.1) -0.35 (-2.5-0) 0.098 
BNP, pg/mL 195.0 (77.3-599.0) 95.3 (43.0-164.0) 456 (333-700) 2030 (1445-2740) <0.0001 

Survival Status at 4 Years     <0.0001 
Alive 148 (74.4) 102 (90.3) 33 (64.7) 13 (38.2)  
Dead 50 (25.3) 11 (9.7) 18 (35.3) 21 (61.8)  

Values are median (interquartile range) or n (%). 
ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; BMI = body mass index; BNP = B-type natriuretic peptide; BP = blood pressure; CABG 
= coronary artery bypass graft; CURE-SVD = circumferential uniformity ratio estimate with singular value decomposition; GFR = glomerular filtration rate; LBBB = left 
bundle branch block; LGE = late gadolinium enhancement; LVEDVI = left ventricular end-diastolic volume index; LVEF = left ventricular ejection fraction; LVESVI = 
left ventricular end-systolic volume index; MLHFQ = Minnesota Living with Heart Failure Questionnaire; NYHA = New York Heart Association; QLV = QRS-LV 
electrogram time; RBBB = right bundle branch block; RVEDVI = right ventricular end-diastolic volume index; RVEF = right ventricular ejection fraction; RVESVI = right 
ventricular end-systolic volume index; SHFM = Seattle Heart Failure Model, Wt =weight. 
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4.3.2 Stepwise Linear Regression to Identify Key Pre-CRT Parameters 
 
The stepwise linear regression analyses showed that different pre-CRT parameters were 
associated with each of the three response variables of interest, which describe cardiac function 

(D LVESVI), neurohormonal activity (BNPP), and oxygen output (D peak VO2) following CRT. The 

pre-CRT parameters most associated with each response variable are shown in Table 2.  

 
 Based on the p-values from stepwise linear regression, the pre-CRT parameters most 

significantly associated with D LVESVI are shown in Table 2A and include CURE-SVD, RVRF at 

baseline, QLV, age, and ischemic cardiomyopathy. The coefficient value for CURE-SVD was 
positive; therefore, larger CURE-SVD values result in a more positive fractional change in LVESVI 
which is unfavorable. This agrees with previously published work which demonstrated that 
patients with lower CURE-SVD scores (more dyssynchronous ventricular contractions) respond 
better to CRT as they achieve a more negative fractional change in LVESVI16.  
 

 The pre-CRT parameters most associated with BNPP levels are shown in Table 2B and 

include BNP levels at baseline, CURE-SVD, ischemic cardiomyopathy, RVEDVI at baseline, the 
presence of LGE, age, loop diuretic dosages greater than 100 mg, and the SHFM score. The 
coefficient value for the BNP level at baseline was positive. Because the favorable response in 
this case is low levels of BNP, lower levels of BNP before CRT indicate better response. 
 

 Table 2C shows the pre-CRT parameters that are strongly associated with D peak VO2, 

and they include the peak VO2 at baseline, systolic BP, the presence of LGE, NYHA Class III, 
QRS duration, the presence of an upgraded device, and hemoglobin. The coefficient for having 
an NYHA classification of III was negative; therefore, the presence of NYHA Class III results in 
less change in peak VO2 following CRT, which is unfavorable. NYHA classes are based on the 
severity of heart failure symptoms, such as a patient’s ability to climb stairs without getting out 
of breath. Patients with Class III HF struggle with such activities and may have symptoms too 
severe to experience improvement from CRT as compared to those belonging to Class II. 
 

 With respect to both D LVESVI and BNP response measures, the presence of ischemic 

cardiomyopathy was significant. This parameter was associated with less favorable LVESVI 
response as a ‘1’ for this variable drove the predicted value of the LVESVI change to be more 
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positive (due to the positive coefficient estimate). On the other hand, the presence of ischemic 
cardiomyopathy was associated with a more favorable BNP response due to the negative 
coefficient estimate that results in lower post-CRT BNP levels. 
 
 

Table 2A Multivariable Linear Regression Model for D LVESVI 

    
Model Variable Model Coefficient Standard Error p Value 

CURE-SVD 0.43 0.15 <0.0001 
RVEF at Baseline -0.0032 0.002 0.002 
QLV -0.0013 0.0008 0.005 
Age -0.0033 0.003 0.02 
Ischemic Cardiomyopathy 0.067 0.063 0.04 
    

Table 2B Multivariable Linear Regression Model for BNPP 

    
Model Variable Model Coefficient Standard Error p Value 

BNP at Baseline 0.62 0.11 <0.0001 
CURE-SVD 850 388 <0.0001 
Ischemic Cardiomyopathy -269 188 0.005 
RVEDVI at Baseline 4.3 3.2 0.008 
LGE 253 192 0.01 
Age -10.6 8.0 0.01 
Loop Diuretic Dose > 100 -341 303 0.03 
SHFMM 186 174 0.04 
    

Table 2C Multivariable Linear Regression Model for D Peak VO2 

    
Model Variable Model Coefficient Standard Error p Value 

Peak VO2 at Baseline -0.42 0.11 <0.0001 
Systolic BP -0.028 0.023 0.02 
LGE -1.2 1.06 0.03 
NYHA Class III -0.94 0.91 0.04 
QRS 0.02 0.019 0.04 
Upgraded Device -1.06 1.04 0.05 
Hemoglobin 0.27 0.27 0.05 
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 Additionally, the Pillai trace values obtained from the multivariate multiple linear 

regression are shown in Table 3 and indicate that the five variables most associated with all the 

post-CRT response measures were the BNP pre-CRT, pre-CRT peak VO2, CURE-SVD score, 
the presence of ischemic cardiomyopathy, NYHA Class, the presence of LGE, age, and RVEF 
and RVEDVI at baseline.  
 

Table 3 Multivariate Multiple Linear Regression for All Response Parameters 

    
Model Variable Pillai Trace Value F Statistic p Value 

BNP at Baseline 0.41 37.7 <0.0001 
VO2 at Baseline 0.24 16.7 <0.0001 
CURE-SVD 0.14 8.73 <0.0001 
Ischemic Cardiomyopathy 0.10 5.60 0.001 
NYHA 0.09 2.57 0.02 
LGE 0.06 3.44 0.02 
Age 0.05 2.86 0.04 
RVEF at Baseline 0.05 2.78 0.04 
RVEDVI at Baseline 0.05 2.71 0.05 
    

 

4.3.3 Gaussian Mixture Model Clustering & Survival Analysis 
 

Using the three response measures as input, the GMM that resulted in the lowest BIC included 

3 clusters with a diagonal covariance structure as demonstrated in Figure 4.2A. The three 

clusters/groups of patients are displayed in Figure 4.2B. The summary of the 6-month post-CRT 

response measures, along with the baseline characteristics for each cluster of patients, is shown 

in Table 1. 
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Figure 4.2 Gaussian Mixture Model 

 

 

(A) The BIC scores for each of the GMMs tested are shown. Except for those with the spherical covariance matrix, all models 
exhibited similar BIC scores. The minimum score occurred in the GMM with 3 clusters with a diagonal covariant structure. 
(B) The optimal GMM stratified the patients within our cohort into 3 distinct groups. 
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 The model clustered 113 patients into Group 1, and this group exhibited a median change 
in the LVESVI 6 months after CRT of -24% (interquartile range -43% to -14%). A total of 72.6% 
of patients within this group met echocardiographic criteria for favorable CRT response. The 
median change in peak VO2 was 0 mL/kg/min (-0.8 to 1.9 mL/kg/min), and the median BNP level 
was 95 pg/mL (43 to 64 pg/mL) in this group.  
 
 The model assigned 51 patients into Group 2, which exhibited a median change in the 
LVESVI 6 months after CRT of -9% (-19% – 7.0%). 45.1% of patients within this group met 
echocardiographic criteria for favorable CRT response. The median change in peak VO2 was 0 
mL/kg/min (-1.63 – 1.1 mL/kg/min), and the median BNP level was 456 pg/mL (333 – 700 pg/mL) 
in this group. 
 
 The model placed 34 patients into Group 3, and this group exhibited a median change in 
the LVESVI 6 months after CRT of 0.5% (-18% – 10%). Only 29.4% of patients within this group 
met echocardiographic criteria for favorable CRT response. The median change in peak VO2 was 
-0.35 mL/kg/min (-2.5 – 0 mL/kg/min), and the median BNP level was 2030 pg/mL (1445 – 2740 
pg/mL) in this group. 
 
 While the baseline characteristics of the cohort were not used in the cluster analysis, 
several of these variables were significantly different among the groups following stratification 
(with p-values < 0.01). These variables include BMI, SHFM score, ischemic cardiomyopathy, 
hypertension, creatinine, GFR, BNP at baseline, LVEF, LVEDVI, LVESVI, RVEF, RVEDVI, RVESVI, 
CURE-SVD, QLV, and RBBB. 
 

 The Kaplan-Meier survival analysis is displayed in Figure 4.3A and demonstrated that 

patients in Group 1 had the best survival, patients in Group 2 had intermediate survival, and 
patients in Group 3 had the worst survival. Using the log-rank test, p-values for the differences 
in survival among the clusters were significant. 
 
 Patients in Group 1 demonstrated the largest decrease in LVESVI with the smallest BNP 
values, which aids in explaining this cluster’s highest probability of survival. Group 3 showed a 

slightly positive change in LVESV and the highest BNP levels, and a decrease in peak VO2; these 
outcomes are unfavorable and explain this cluster’s poorest survival. Patients in Group 2 
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experienced a slight decrease in LVESVI with modest BNP levels, which illustrates this cluster’s 
intermediate survival. 
 
 Additionally, because it may be critical to predict the group of patients at highest risk with 
the greatest mortality after CRT, patients in Group 1 and 2 were condensed into a single group 
while Group 3 patients remained the same. The Kaplan-Meier survival analysis was re-

performed, is displayed in Figure 3B, and demonstrated significant separation between the 

survival curves. 
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Figure 4.3 Kaplan-Meier Survival Curves 

 

 

(A) Kaplan-Meier curves demonstrating the probability of survival at 5 years are presented for each of the three 
cluster groups. Patients in group 1 had a greater survival probability than patients in group 2 (p < 0.001) and in 
group 3 (p < 0.001). Patients in group 2 had a greater survival probability than patients in group 3 (p = 0.04). (B) 
Kaplan-Meier curves demonstrating the probability of survival at 5 years are presented for the condensed group 
(consisting of patients in cluster groups 1 and 2) and cluster group 3. Patients in the condensed group had a 
greater survival probability than patients in group 3 (p < 0.001) 
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4.3.4 Predictive Models of Survival 
 

The ROC curves of the logistic regression model with the CURESVD score, pre-CRT BNP levels, 

and pre-CRT peak VO2 levels as inputs are shown in Figure 4.4A. The area under the ROC curve 

for each fold within the cross-validation is displayed along with the area under the average ROC 
curve (0.78 ± 0.03). The results of the logistic regression model that incorporated the 

aforementioned variables plus the three response measures are displayed in Figure 4.4B. For 

each fold within the cross-validation, the area under the ROC curve was slightly higher in this 
model compared to the previous model. The area under the average ROC curve for this model 
(0.84 ± 0.03) is larger than that of the previous model, thus demonstrating that the CRT response 
measures add valuable information when predicting death at 4 years post-procedure. 
 

Figure 4.4 Receiver-Operating Characteristic Curves for 4-Year Survival Prediction 

 
Receiver-operating characteric curves from logistic regression are shown for 2 models: one that takes into account the 
three best pre-CRT predictors (CURE-SVD, pre-CRT BNP levels, pre-CRT peak VO2 levels) and one that takes into 
account those same three pre-CRT parameters plus the three response measures gathered 6 months post-CRT (fractional 
change in LVESVI, change in peak VO2, and post-CRT BNP levels). The model incorporating both post-CRT and pre-CRT 
information displays an average area under the ROC curve (AUC) of 0.84 and slightly outperforms the model that includes 
only pre-CRT information with an AUC of 0.78. 

 
 

A. 3 Best Pre-CRT Predictors B. 3 Best Pre-CRT Predictors
+ Response Parameters
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4.3.5 Testing if the Change in Mechanics from Pre- to Post-CRT Can Predict Long-
Term Remodeling 

 

We obtained pre- and post-CRT strain data from 25 patients. 16 of these patients responded to 

CRT and demonstrated a reduction in LVESVI of 15%. Figure 4.5A illustrates a short-axis slice 

of the LV while labeling the 18 sectors. The strain data of a healthy patient (Figure 4.5B) along 

with a patient (with ventricular dyssynchrony )selected to receive CRT (Figure 4.5C) are shown. 

In the healthy patient, with MRI frame 1 representing the reference configuration at end-diastole 
(end-filling), all sectors of the heart begin to contract as marked by a negative slope. At end-
systole (end-contraction), each sector reaches a minimum at roughly the same frame and then 
follows a positive slope to return to a value of 0 as the ventricle again fills with blood. However, 
these curves differ in patients who are selected to undergo CRT and do not change in concert. 

For example, strain data of the CRT patient in Figure 4.5C is characterized by a delay in 

contraction within the anterior-lateral region and by bulging within the posterior and posterior-
septal region.  
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Figure 4.5 Overview of Strain Data 

 

 

(A) The 18 different sectors of a short-axis slice of a ventricle are shown. Sector 1 is the posterior-septal region, sector 6 is 
the posterior sector, and so on. (B) The strain curve per sector of a healthy patient is shown, in which ED is end-diastole (end-
filling) and ES is end-systole (end-contraction), and exhibits synchronous ventricular contraction (the curves lie on one 
another). (C) The strain curves of a patient selected for CRT are shown and do not overlay on another, demonstrating 
dyssynchronous contraction. 
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 The pre- and post-CRT strain data of a responder (Figure 4.6A) and non-responder 

(Figure 4.6B) along with their respective delta strain curves are illustrated. While the pre-CRT 

strain data of the responder demonstrates a delay in contraction within the anterior-lateral region 
and bulging within the posterior and posterior-septal region, this patient’s post-CRT strain data 
exhibits less delay in contraction, larger contraction (a more negative Ecc), and less bulging. The 
pre-CRT strain data of the non-responder is characterized by a delay in contraction within the 
anterior-lateral and posterior-lateral regions and by slight bulging within the posterior region. 
This patient’s post-CRT strain data demonstrates more delay in contraction and more bulging. 
The delta strain curves show the difference in mechanics between the pre- and post-CRT strain. 
When comparing the delta strain curve of the responder to the non-responder, there are more 
negative minimums, and the average value of each curve seems to be greater. We derived 
metrics from these curves of all 25 patients, including the minimum, peak, and average of each 
curve, to characterize the changes in mechanics in each of the sectors and to relate them to 
long-term remodeling. 
 

 Figure 4.7 is a scatter plot of the minimum of each delta strain curve for every patient in 

this cohort. The line of best fit for each sector is also shown. Sectors 8 and 3 (which represent 
the posterior-lateral and posterior-septal sectors, respectively) exhibit promising trends between 
the minimum of the delta strain curves and LVESVI. Within both of these sectors, a small trend 
exists such that, as the minimum of the delta strain curve decreases, the LVESVI decreases. 
More negative minimums signify that the Ecc of the sector is more negative post-CRT than pre-
CRT, which suggests that the sector contracts to a higher degree. A larger contraction may lead 
to better pump function and subsequently smaller end-diastolic volumes (EDV) over time. Based 
on mechanistic growth models, the growth stimulus would be negative as EDV (and thus fiber 
strain) is smaller after CRT than before. This negative growth stimulus may drive reverse cardiac 
growth. Scatter plots of the peak of the delta curve and the average of the delta strain curve 

versus D LVESVI were also constructed and shown in Appendix 4.6.2. Ultimately, changes in 

regional mechanics had less than expected predictive power (with respect to cardiac growth) on 

a patient-by-patient basis. 
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Figure 4.6 Strain Data of Responder vs. Non-Responder 

 

 

The strain curves before and after CRT along with the change in strain curves (delta strain curves) for a responder are 
shown in (B) and for a non-responder in (C). The delta strain curves show the difference in mechanics between the pre- 
and post-CRT strain. When comparing the delta strain curve of the responder to the non-responder, there were more 
negative minimums, and the average value of each curve seems to be greater. 
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Figure 4.7 Scatter Plot of the Minimums of the Delta Strain Curves 

 

Scatter plots of the minimum of each delta strain curve per sector for every patient in this cohort are shown.  

 

 Finally, we compared our best strain-based predictor of D LVESVI (minimum of delta 

strain curve of sector 8) to the previously demonstrated best predictor of D LVESVI, which was 

the CURE-SVD score calculated before the procedure. CURE-SVD scores closer to 0 indicate 

more dyssynchronous ventricular contraction and are associated with greater reductions in D 

LVESVI compared to scores closer to 1. We fit a linear regression to the CURE-SVD scores of 

the 25 patients and D LVESVI, calculated its R2 value, and compared it to that of the strain-based 

predictor. Figure 4.8 shows the R2 values for both predictors; while no strong correlation exists 

between either variable and D LVESVI, a promising trend exists such that smaller minimums of 

the delta strain curves result in greater reductions (more negative values) in LVESVI. 
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Figure 4.8 Scatter Comparing Predictors of D LVESVI: Strain-based vs. CURE-SVD 

 

The R2 values for both predictors show no strong correlation between either variable and D LVESVI. 

 

4.4 Discussion 
 
The goal of this chapter was to develop a statistical modeling framework to predict ventricular 
remodeling and patient outcome following cardiac resynchronization therapy (CRT). We 
gathered 39 clinical parameters (describing patient demographics, comorbid conditions, 
medication dosages, laboratory studies, vital signs, exercise capacity, ventricular assessments, 
and cardiac electrical function) from 198 patients before receiving CRT at the University of 
Virginia Health System. We then obtained the fractional change in LVESVI, BNP levels, and the 
change in peak VO2 recorded 6 months after the procedure along with survival data from routine 
interrogations up to five years post-procedure. With this comprehensive data set, we were able 
to (1) to identify the pre-CRT information important in predicting post-CRT response measures 
and (2) utilize the pre- and post-CRT parameters to predict long-term survival. Additionally, for 
25 patients within this cohort, we acquired mid-ventricular cardiac strain curves at both pre- and 
post-CRT time points. We ultimately demonstrated that changes in regional mechanics had less 
than expected predictive power (with respect to cardiac growth) on a patient-by-patient basis. 
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4.4.1 Linear Regression Identifies Pre-CRT Parameters Most Strongly Associated 
with Response Measures 

 
The stepwise linear regressions identified the pre-CRT parameters most strongly associated with 
each of the three response measures. The best predictor of post-CRT BNP levels was pre-CRT 

BNP levels, and the best predictor of D peak VO2 was the peak VO2 measured before the 

procedure. These results show that the baseline values of the response measures greatly 
influence their change following CRT, suggesting that patients with less severe heart failure 
(lower BNP levels and higher peak VO2 values) at the time of CRT will have more favorable 
outcomes to the therapy. Early intervention may be crucial for preventing poor outcomes. 
 

 The presence of ischemic cardiomyopathy (ICM) was significant to both D LVESVI and 

BNPP response measures. This parameter resulted in less favorable LVESVI response as a ‘1’ 

for this variable drove the predicted value of D LVESVI to be more positive (due to the positive 

coefficient estimate). On the other hand, the presence of ischemic cardiomyopathy was 
associated with a more favorable BNP response due to the negative coefficient estimate that 
results in lower post-CRT BNP levels. This highlights the complicated role ischemia plays in 
ventricular dyssynchrony and CRT response. Ischemia may inhibit electrical signaling and result 
in poor remodeling especially if scar is present and the ventricular lead is placed within this 
region. Further, ischemia increases end-diastolic pressure which subsequently increases 
ventricular wall stress, and BNP is released in response to this increase in wall stress115. Thus, in 
patients with ICM, CRT may decrease wall stress to a greater degree than in patients without 
ICM and result in more favorable BNP outcomes. 
 

In our final attempt to elucidate the pre-CRT parameters most important in determining 
the 6-month response measures, we implemented a multivariate multiple linear regression in 
which the dependent variable was the linear combination of the response measures and the 
dependent/predictor variables were those from the individual linear regression models. BNP, 
pre-CRT peak VO2, and CURE-SVD were the most significant variables, agreeing with the results 
from the individual regressions. Interestingly, right ventricular assessment parameters (RVEF and 
RVEDVI) were significant in the multiple regression analysis along with the individual linear 

regressions for D LVESVI and BNPP. Few studies have examined the relationship between the 

function (and size) of the RV and dyssynchrony caused by LBBB116, 117. This is important because 
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the contraction of the LV has been shown to be responsible for about 20-40% of RV systolic 
pressure and volume load118. Therefore, since LBBB impairs LV function, it may also impair RV 
function. Thus, assessing RV function and size provides additional information on the severity of 
dyssynchronous heart failure and can aid in predicting CRT outcome, as shown in this chapter. 
Our results agree with other studies and suggests that RV function informs CRT response116, 117. 
 

4.4.2 Clustering of Post-CRT Response Measures & Long-Term Survival 
  

We utilized a clustering approach, with the three response measures (D LVESVI, BNP levels, and 

D peak VO2) gathered 6-months post-CRT as input, to predict the long-term survival of patients 

following the therapy. Initially, we implemented the common k-means clustering model and our 

results are shown in the Appendix 4.6.1. K-means clustering simply divides a data set into k 

clusters in a way that attempts to minimize the average Euclidean distance from a point to the 
center of its cluster and makes no assumption about how the data points were generated. We 
observed that the k-means model with the optimal number of clusters did not generate survival 
curves with significant separation, and consequently decided to implement the slightly more 
complex Gaussian mixture model (GMM). The GMM assumes that the clusters within a data set 
were generated by normal Gaussian distribution. These models allow for the shapes of the 
clusters to be elliptical and overlapping, as opposed to those formed by k-means in which the 
clusters are spherical. Gaussian mixture models are also probabilistic, which allows us to 
express the confidence of a point belonging to one specific cluster. While GMMs are robust, 
they are computationally more expensive and may converge to a local minimum. However, given 
the size of our data set and our results, these problems were avoided. Our optimal GMM was 
able to stratify the patient population into 3 distinct groups, and their survival curves were 
significantly separated, suggesting that there may be three inherent groups of CRT responders 
(those who improve, those who do not improve, and those who worsen). 
 

Upon examination of the clusters (and the p-value between groups), BNPP seemed to be 
a strong separator. BNP has been previously shown to reflect end-diastolic wall stress in patients 
with systolic heart failure and patients with diastolic heart failure115. This parameter has become 
more popular in clinical assessment and management of HF119, 120 and has been previously shown 
to provide important prognostic implications in patients with mildly symptomatic HF who receive 
CRT121; our results further highlight its importance. 
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Finally, because it may be critical to predict the group of patients at highest mortality risk 
following CRT, patients in Group 1 and 2 were condensed into a single group while Group 3 
patients remained the same, and their survival curves were generated. Again, significant 
separation was demonstrated; therefore, this model may serve as a helpful tool for clinicians in 
assessing long-term CRT outcome and referring patients in Group 3 to more advanced HF 
therapies such as mechanical circulatory support and heart transplantation to improve 
prognosis.  
 

4.4.3 Testing if Strain Can Predict Reverse Growth 
 
We tested the popular biomechanics hypothesis that changes in regional mechanics can predict 
changes in cardiac hypertrophy. Numerous mechanistic growth laws operate under the 
assumption that a change in mechanical signal (strain or stress) from a biological tissue’s 
homeostatic state triggers growth59. This change in mechanical stimuli can be positive and cause 
growth. For example, in the case of volume overload, the end-diastolic strain of the ventricle is 
increased, and the heart chamber dilates (grows in the fiber direction). In the case of HF patients 
who respond to CRT, the change in mechanical signal is negative and reverses growth. The 
diastolic strain within these ventricles are already large due to HF and dyssynchrony, and it is 
hypothesized that, since CRT resynchronizes contraction, it decreases fiber strain and 
subsequently triggers reverse growth. 
 
 With the available data set of cardiac strain curves measured at pre- and post-CRT, we 
were able to test this hypothesis. We computed the difference between these curves (delta strain 
curves), which is equivalently the change in mechanics caused by CRT, and attempted to 

correlate different metrics that characterize these curves with D LVESVI (ventricular size). 

Furthermore, we compared one strain-based predictor to CURE-SVD, the predictor shown 

previously to be most significantly associated with D LVESV. Ultimately, changes in regional 

mechanics had less than expected predictive power (with respect to cardiac growth) on a 
patient-by-patient basis. This suggests that considering only mechanics may not be sufficient 
when predicting the reversal of growth caused by CRT. A model that incorporates more factors, 
such as hormonal activity reflected in BNP measurements, is likely needed for successful cardiac 
growth prediction. 
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4.4.4 Model Limitations 
 

Several limitations within this chapter should be recognized. The results of the models are 
confined to the selected population of patients from a single center (UVA Health System). While 
our conclusions would most likely hold true, it would be advantageous to apply our framework 
to a cohort of patients who received CRT at another institution to ensure robustness of our 
approach. Furthermore, a common limitation of cardiac imaging studies applies to our study as 
well: the quality of the data relies on the quality of acquired images. We minimized the 
consequences of this limitation by selecting images, no matter the modality, with the best quality 
when calculating parameters of interest. For example, DENSE-MR images for approximately 4% 
of the patients were of such poor quality that we could not use them to calculate CURE-SVD 
score. Instead, we substituted DENSE-MRI with cine images and utilized strain tracking software 
to generate strain curves and ultimately calculate CURE-SVD. Another limitation involved 
information about ventricular scars. We included the presence of LGE (a binary variable) to inform 
the models of whether the patient had scar, but we lacked more detailed information such as 
scar mass and location. Finally, we neglected the pacing protocol each patient received, which 
can be either biventricular pacing (pacemaker leads are placed on both the right and left 
ventricle) or left ventricular pacing (leads are placed only on the LV), and this may influence CRT 
outcome. We plan on including these parameters in future analyses. 
 

4.5 Conclusion 
 

Our linear regression models were able to identify clinical parameters gathered before CRT that 
were strongly associated with CRT response measures calculated 6 months after the procedure. 
Some of these important parameters included the CURE-SVD score, BNP levels, peak VO2, the 
presence of ischemic cardiomyopathy, RVEF, and RVEDVI. Our results suggest that the 
consideration of these variables is crucial when evaluating the clinical benefit of patients selected 
to receive CRT. Our clustering model was able to stratify our cohort of patients into three distinct 
groups based on their 6-month response measures. This model could be used in the clinic to 
help physicians determine the patients most at risk for a cardiac event five years after CRT and 
plan for a left-ventricular assistive device or heart transplant. We were also able to accurately 
predict whether a patient would be alive four years after CRT with information gathered pre- and 
post-procedure. Finally, we tested one of the fundamental theories in biomechanics: changes in 
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mechanics leads to the growth of biological tissue. We obtained cardiac strain curves before 
and after CRT, calculated the actual change in mechanics (the delta strain curves), and 
demonstrated that changes in regional mechanics had less than expected predictive power yet 
show promising trends. 
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4.6 Appendix 
 

4.6.1 K-Means Clustering 
 
In our first attempt at clustering the cohort of patients based on the 6-month response measures, 

we implemented the k-means model. We computed the optimal number of clusters k with the 
elbow method. We ran the k-means model with k ranging from 1 to 14 and, for each model, 
calculated sum of the squared Euclidean distances (SSD) all points to the center of their clusters. 
The elbow method suggests picking the value of k at which the SSD starts to decrease in a linear 

fashion. In our case, this occurred at k = 3 as shown in Figure 4.9A. The three clusters are shown 

in Figure 4.9B, and the resulting survival curves constructed with a Kaplan-Meier analysis are 

show in Figure 4.9C. The separation between the curve for Group 1 is significant compared to 
Groups 2 and 3; however, the survival curves for Groups 2 and 3 are very similar, which is the 
reason we implemented the GMM.  
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Figure 4.9 K-Means Clustering 

 

 

The k-means model stratified patients into three clusters. However, the survival probability curves were not significanty separated. 
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4.6.2 Scatter Plots of the Peak and Average of the Delta Strain Curves VS. D 
LVESVI 

 

Figure 4.10 Scatter plots of the peak of the delta curve and the average of the delta curve 
versus D LVESVI 

 

 

Scatter plots of the average and peak of each delta strain curve per sector for every patient in this cohort are shown.  
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Chapter 5 
 

5 Conclusion & Future Directions 
 
Computational modeling is a powerful tool for simulating cardiac injury and therapy. Researchers 
build biophysical mechanistic models by assembling equations that govern a physical system, 
validating predictions against observed data, and in many cases designing new experiments to 
measure key parameters. These models are often used to develop a better understanding of a 
system and to test the effect of a change or intervention within a system. Researchers also 
employ statistical models to uncover patterns within data generated by a physical system, which 
aids in predicting the likelihood of specific outcomes given a set of inputs. These models are 
often used to investigate and quantify the association of several different factors with an outcome 
of interest.  Both modeling approaches provide a low-risk, low-cost, highly iterative framework 
that allows researchers to gain a better understanding of cardiac diseases and consider the likely 
impact of potential therapies. I advanced the current state of cardiac research in this dissertation 
by utilizing computational modeling to predict the progression and regression of heart growth 
with: (1) a biophysical mechanistic model of the infarcted left ventricle (LV) that predicted 
remodeling during post-infarction healing and (2) a statistical modeling framework that predicted 
patient outcome following CRT. While my work explored the concept that regional mechanics 
can be used to predict cardiac growth, it the future it could be extended to better capture the 
effects of hormones, intracellular signaling, and drug therapies that target relevant receptors and 
signaling pathways.  
 

In Chapter 2, we built a biophysical model of the rat LV and explored different approaches 
to predicting changes in infarct scar dimensions and composition during infarct healing. In 
Chapter 3, we extended this model to predict the amount of growth that occurs in the non-
infarcted (remote) region. Our most striking results included (1) the difficulty in predicting and 
interpreting scar dimensions over time, (2) the notable impact of hemodynamics on post-
infarction LV dilation, and (3) the importance of scar stiffening in determining predicted cardiac 
growth following myocardial infarction (MI); these results provide guidance to the direction of 
future work. 
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With respect to scar formation and dimensions, the implementation of an agent-based 
model that uses autonomous agents (i.e. fibroblasts) to simulate variations in the deposition rate, 
accumulation, and orientation of collagen within the scar region may better mimic scar 
physiology compared to our single-element FE approach. Our FE LV model could be coupled to 
a recently published ABM of collagen deposition43, 56, 57, and scar remodeling simulations could 
be re-run and scar dimensions re-calculated. However, our results suggest that a truly 
mechanistic model that can explain changes in infarct geometry during healing will also need to 
consider the three-dimensional arrangement of tissue components and how those components 
interact under cyclic mechanical loading. As a myocyte necroses and the membrane is 
disrupted, cytoplasm is no longer physically confined; the material(s) occupying that space and 
the loss of membrane integrity may influence the arrangement of the surrounding cells and 
extracellular matrix. Conceptually, it may seem reasonable that replacing relatively short and 
thick myocytes with much longer and thinner collagen fibers would result in a thinner scar with 
a larger surface area, but without a mechanistic model of the process it will be very difficult to 
predict how interventions such as polymer injection will alter remodeling. Development of a 
three-dimensional, space-filling, mechanically realistic model of healing infarct tissue would be 
a significant and worthwhile project potentially worthy of a doctoral thesis. 

 
In terms of the important role hemodynamics play in cardiac growth, connecting the FE 

model to a circulation model of systemic and pulmonary circulation122, 123 would better account 
for changes in hemodynamic loading observed over time following MI and may lead to more 
realistic growth patterns. Many circulatory models accurately describe the short-term changes 
in preload (i.e. the amount of blood in the ventricle at end-filling) and afterload (i.e. the resistance 
the ventricle must overcome to pump blood). However, models of long-term growth must include 
circulatory systems that account for the realistic regulation of the circulation over time32, 124, 125. 
Some features of circulatory regulation, like blood volume regulation by the kidney, are important 
targets of drug therapies – including ACE inhibitors and loop diuretics - often prescribed to 

patients with heart failure. Representing such mechanisms is especially important when 
attempting to make clinically relevant, long-term predictions. 

 
Finally, as for our finding that scar stiffness influences remote growth, therapies that alter 

the stiffness of the scar region can be explored. For example, Ifkovits13 demonstrated that 
injection of a stiff hydrogel into the scar region produced a smaller infarct area compared to a 
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more compliant hydrogel. Based on our conclusion from Chapter 3 that stiffer infarcts lead to 
reduced LV dilation, interesting future work includes re-performing Ifkovits’ experiments but 
focusing on the growth of the remote myocardium. These experiments would serve as 
independent validation of our model prediction, and they have the exciting potential for 
translation into the clinic. 

 
In Chapter 4, we took a different approach to predict the regression of cardiac growth. 

Rather than using biophysical mechanistic modeling, we employed statistical models to quantify 
the association of numerous patient-specific factors with ventricular remodeling and outcome 
following CRT. Our linear regression models were able to identify clinical parameters gathered 
before CRT that were strongly associated with response measures calculated 6 months post-
CRT. Our clustering model was able to stratify our cohort of patients into three groups with 
distinct survival probabilities. We also demonstrated that changes in regional mechanics had 
less than expected predictive power. The framework in this chapter could be extended in terms 
of complexity. For example, a convolutional neural network could be optimized to predict the 
degree of ventricular remodeling using DENSE-MRI as input. A high-quality model with adequate 
prediction accuracy, sensitivity, and specificity would assumably require a larger sample size126, 
so more DENSE-MRI would be needed. However, this approach can take as input the full 
dimensionality of the data and allows the model to determine the information most important in 
predicting reverse growth. It may reveal aspects of cardiac strain novel to predicting CRT 
response that CURE-SVD cannot capture due to its reduction in dimensionality110. 

 
Because computational modeling is low-risk, low-cost, and highly iterative, its application 

to cardiovascular research is endless. We could even switch up our modeling approaches, using 
statistical modeling to predict ventricular growth following MI and biophysical mechanistic 
modeling to predict regression of cardiac growth following CRT. If sufficient data describing 
ventricular growth post-MI exist in the presence of multiple scar sizes and stiffnesses and 

hemodynamic conditions, linear regression and other supervised statistical models could be 
applied to uncover the combinations of parameters that lead to specific cardiac growth patterns. 
Additionally, a biophysical mechanistic model to predict regression of cardiac growth following 
CRT may be favorable. Integrating a cell-signaling model that incorporates pathways involving 
BNP (the hormone we showed to be significant in predicting CRT response) with a mechanics-
based model that addresses the amount of dyssynchrony represented by CURE-SVD (another 
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parameter we showed to be significant in predicting CRT response) provides a promising 
approach for predicting cardiac remodeling in cases in which mechanics, hormones, and drug 
treatments interact54, 127.  

 
Overall, the work in my dissertation explored the prevailing concept in biomechanics that 

the long-term remodeling of mechanically active biologic tissues such as the myocardium can 
be predicted based on regional mechanics, using two complementary approaches: biophysical 
models that explicitly link mechanics to remodeling, and statistical models that inform how much 
of the observed remodeling can be explained by mechanics. In the finite-element model, I was 
able to accurately predict growth during volume overload and MI using only regional mechanics. 
However, in my statistical model, changes in regional mechanics had less than expected 
predictive power on a patient-by-patient basis. One explanation of these findings is that, in 
animal models where sudden changes in loading occur, mechanics-based growth laws are 
successful because the factors that affect growth, like mechanics and hormones, are 
homogenous at baseline and change in unison over time. In other words, the multiple equations 
that represent mechanics and hormones rise and fall in parallel, making growth predictions more 
straightforward. Conversely, in patients being treated at different ages and stages of disease, 
who are taking different combinations and doses of medications, mechanics and hormonal 
activity vary much more at baseline and may all change differently following treatment. Therefore, 
a model that represents more of those independent factors is likely needed for successful 
cardiac growth prediction; in other words, a more sophisticated biophysical mechanistic model 
or a statistical model trained on much larger datasets to account for a sufficient number of 
growth altering factors may be necessary to predict the long-term remodeling of biologic tissues 

in patients. 
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