

Git Integration for Legacy Software

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Harrison Li

Spring, 2022

Technical Project Team Members

Harrison Li

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harrison Li

Technical advisor: Daniel Graham PhD, Department of Computer Science

Technical Writing Advisor: Rosanne Vrugtman PhD, Department of Computer Science

Git Integration for Legacy Software Li

Git Integration for Legacy Software

CS4991 Capstone Report, Fall 2021

Harrison Li

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

HL5NE@virginia.edu

Abstract:

As a software engineering intern at a private

defense contractor, I was assigned the task of

improving the old file system for a warship

simulator with versioning history. The features I

implemented allow the customer to retrieve and

restore any past version of any configuration file.

With a full-fledged version history feature, the

software improves in both recoverability and user-

intuition. I utilized a Java Git API to create a utility

class which handles all file tracking. The feature is

integrated but extensive system testing is required

due to potentially mission critical software.

1 Introduction

Over Summer 2021, my goals as an intern were

simple: learn from mentors and create valuable

software. The opportunity to create valuable

software arose when I was to redesign the old

filesystem for a warship simulator so the client can

view the history of their simulation files and revert

to any older version of any file. Such a feature

serves two purposes: it introduces system recovery

and provides peace of mind to the user.

Background:

Old Filesystem:

The old file system was stateless much like the

default Microsoft Windows File Explorer. The

system would not remember the files that were

uploaded. Accidentally deleting a file on the user

side meant the file would be gone forever. This

statelessness can be dangerous in software

because humans make mistakes and often change

their minds. I felt responsibility as a software

engineer considering the consequences of losing a

simulation file.

Project Motivation:

The data recording software that I was to improve

was written before my time at the company. The

lead developer for this project quickly put together

a barebones file input/output system for the

simulator that is not up to professional standards.

Improving the simulator file system was feature

work saved for a later time. I got assigned to

design and implement improvements to the file

system.

2 Related Work

A valuable resource that aided my design and

coding is the JGit-Cookbook by GitHub user

Centic9: Dominik Stadler [1]. The JGit-

Git Integration for Legacy Software Li

Cookbook is a public GitHub repository that

serves as a JGit tutorial for developers who are

looking to integrate Git into their own applications

using Java [1]. The README file provides clear

examples showing readers how to clone and test

drive the functionalities of the JGit-Cookbook

[1].

The JGit-Cookbook README also links to

common examples of JGit Porcelain and

Plumbing commands. Git Porcelain is the high-

level functionalities [2]. Plumbing in Git can be

seen as the low-level functionalities that power the

Porcelain [2]. Porcelain commands in JGit provide

the developer convenience while the Plumbing

commands provide customizability. The JGit-

Cookbook provided me invaluable examples of

JGit code snippets: enough for me to start

implementation.

3 System Design Process

I spent two weeks brainstorming and designing a

new file system for the simulation tool. Much of

the design process was learning how to format

documentation effectively for future developers to

reference. All design was documented in a master

document. I refined the problem statement so that

it was clear what parts of the software needed to

be addressed by the design.

Requirements:

Next came creating the technical requirements of

the new system. Requirements must be succinct

and describe a single function of the

system. Example requirement: The system shall

show the version history of an uploaded file.

Use Cases:

Each requirement is broken into procedural use

cases. The use cases describe how the user will

interact with the respective system

requirement. Use cases for the above requirement:

click simulation tab, select file, click view history,

etc.

Flow Diagrams:

Flow diagrams serve to organize the use cases in a

digestible manner. Following a standard

convention, a flow diagram is created for each

requirement to organize data/logic movement. Use

cases are ordered and used to build the flow

diagram. Flow diagram paths may split at a

decision point and merge at a common use case.

Document Refinements:

After defining requirements, use cases, and

creating flow diagrams. I reviewed my design

portfolio with my senior mentor. The greatest

piece of advice I received from my mentor is to

waste no words and to not reinvent the wheel. I

revised my design documentation to be clear and

concise and made the effort to include original

functionality in the design.

Design Review:

After addressing my mentor’s feedback, I

scheduled a design review meeting with the

project lead. The review consisted of a

presentation of the design documentation and an

honest critique. Once given the green light, I was

clear to proceed with implementation.

3.1 Git and Online Repositories

Git is a technology that optimizes project file

management workflow. It is currently the standard

project management version control system used

by software engineering teams. Web services like

GitHub and GitLab are businesses that utilize Git

to store and serve project files for projects of all

calibers.

Git Internals:

The fundamental data structure of Git is a directed

acyclic graph [3]. Graphs are used in Git because

of the complex parent-sibling relationships that

arise from branching and merging. The internal

objects of Git are Blobs, Trees, Commits, and

Branches [3]. A blob stores the encrypted contents

of a file [3]. Trees represent file directories

because they point to multiple blobs [3]. Commit

objects represent a snapshot of the project file

Git Integration for Legacy Software Li

system [3]. Commit objects point to tree objects

[3]. Branches represent a version of the whole

filesystem and point to the most recent commit

within the branch [3].

A common misconception is that Git is

synonymous with GitHub and GitLab. To

reiterate, Git is the underlying theory and logic

behind keeping project files organized and easily

maintainable. GitHub and Gitlab are web services

that are powered by Git to host project files in their

databases. Because Git and Git services are

separate entities, Git may be integrated with

personal and professional projects.

4 Results

New File System:

Using an open-source Java Git API called JGit, I

introduced versioning to the simulator’s file

system. I worked directly from the design

documentation and implemented the file system

requirement by requirement. The application’s

front-end is written in pure HTML, CSS, and

JavaScript. The application’s back-end is written

in Java. I created a utility class called

SimGitUtility.java that handled the versioning

logic involving Git. I also created API endpoints

for the software to interface with the SimGitUtility

functionalities.

If a user were to upload an untracked file,

SimGitUtility would check if the local repository

contains the file and see no such file.

SimGitUtility would then perform a Git Add and

Git Commit to make note of the newly uploaded

file.

By the end of the summer internship, the system

user can add and retrieve files, view the entire

history of every added file, restore past versions of

a file, and compare differences between two

versions of the same file.

I encountered a number of barriers while

developing the JGit Integration feature. First, the

codebase I worked on had tech debt. Tech debt is

accrued when a developer does not thoroughly

implement a feature in the interest of time/energy

savings. I spent valuable time debugging errors

that previously existed in the system.

Second, answers to JGit questions online were

limited, so learning how to use JGit took trial and

error. Working with JGit was difficult due to it

being a black box plugin. The source code was not

accessible from my IDE, so I looked online for the

source code.

During implementation, the JGit GitHub

repository that hosted the source code (not to be

confused with JGit-Cookbook) was removed from

the site along with its useful README file.

Fortunately, a backup JGit repository is hosted on

the Eclipse webserver, and I was able to pull the

files from that server.

5 Conclusions

Revamping the simulator’s file system with JGit

was a rewarding experience. I worked closely with

experienced developers to design and create a

useful feature for a software in use. If the feature

is fully tested and integrated into the end product,

the client would have peace of mind using the

simulation functionality because of the addition of

file recovery.

6 Future Work

I did not get the time to thoroughly test the new

file system with coverage criteria. Should the

feature be used in future versions of the

application, extensive system and regression

testing must be done. This is largely due to the

mission critical nature of the software the file

system is written for.

7 UVA Program Evaluation

Of the course offerings from the UVA CS

Department, Advanced Software Development

Git Integration for Legacy Software Li

(CS 3240) and Human Computer Interaction (CS

3205) stand out as being applicable on the job.

Advanced Software Development UVA CS3240:

In my experience, Advanced Software

Development at the University of Virginia is the

most beneficial class for workforce development.

The course teaches project management, design,

Agile coding in a team, DevOps, Full stack

development, frameworks, REST, and testing.

Students are put into teams of four for a

semester-long project, in which they play a role.

The roles include Scrum Master, DevOps

Manager, Testing Manager, and Requirements

Manager. Everything I learned in CS3240 has

been directly applied at my internship.

Human Computer Interaction UVA CS3205:

Human Computer Interaction teaches the

psychology aspect of software design. The focus

of the course is the design process for an elegant

application. CS3205 takes students through a

semester-long project emphasizing the user

experience process. Students work in groups and

create an application for a client. Artifact

gathering, requirements drawing, requirement

analysis, and client interviews all are important

skills that come from CS3205. The course instills

user-centric design.

Suggested Improvements to UVA CS:

It would be beneficial for UVA CS undergraduates

to have predefined paths within the CS curriculum

for desired specializations. If a student knows they

want to pursue a career in software engineering,

then a set of CS electives that are more geared

towards development should be available.

References:

[1] Dominik Stadler. 2021. jgit-cookbook. In

Proceedings of Dominik Stadler

https://github.com/centic9/jgit-cookbook

[2] Scott Chacon, Ben Straub. 2014. Pro Git:

Everything you need to know about Git. In

Proceedings of Apress. 1 page.

https://git-scm.com/book/en/v2/Git-Internals-

Plumbing-and-Porcelain

[3] Omer Rosenbaum. 2020. A Visual Guide to Git

Internals: Objects, Branches, and How to Create a

Repo From Scratch. In Proceedings of

FreeCodeCamp.

https://www.freecodecamp.org/news/git-

internals-objects-branches-create-repo/

https://www.freecodecamp.org/news/git-internals-objects-branches-create-repo/
https://www.freecodecamp.org/news/git-internals-objects-branches-create-repo/

