
Software Engineering: A Generic and Scalable Data Reconciliation Pipeline

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Emily Huo

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rich Nguyen, Department of Computer Science

Software Engineering: A Generic and Scalable Data Reconciliation Pipeline

CS4991 Capstone Report, 2022

Emily Huo

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

esh2nne@virginia.edu

ABSTRACT

A California-based technology company’s

enterprise platform needed a new automatic

and generic way to reconcile data

discrepancies that would replace its old

manual process. In order to solve this

problem, I designed a generic and scalable

data reconciliation pipeline to process data

based on use case to identify data

discrepancies and notify online services to

reconcile the discrepancies. I implemented

this using gradle, spark, Hadoop, scala,

kafka, and java. I successfully designed the

data pipeline to be generic so it could be

used for multiple different use cases and

developed and tested the first part of the

pipeline. In the future, the rest of the

pipeline will need to be implemented and

tested as well.

1. INTRODUCTION

The increasing amount of data collected by

companies means that there is also an

increased chance of data becoming

inconsistent, which impacts business. For

example, if a client is getting outdated

information, this could severely impact

decisions made and cost the company a lot

of money. One reason this happens is

because of the difference between online,

nearline, and offline storage. Online data is

immediately available, while nearline and

offline is not. There is a time fetch

difference between online and nearline, as

well as between nearline and offline. Thus,

online data is the most up-to-date, while

nearline contains the second most recent,

and offline the most outdated data. The

syncing between the three causes

inconsistencies.

Another common reason for inconsistent

data is business logic. Due to these

inconsistencies, there must be some way to

compare and verify data. The brute force

way is to manually verify by going through

the databases and checking each condition

by hand and then fixing the inconsistency by

making the entries in the database match

what should be stored. However, this is

extremely time consuming, so I devised a

process to replace these manual checks.

2. RELATED WORKS

The work that was most relevant and that

heavily shaped the solution was a pipeline

already built to check for out-of-sync

instances between two different platforms in

the company. It was an automated pipeline

that would check between two databases

because the services were in the process of

migrating from one platform to another. The

pipeline caught inconsistencies during the

migration and then fixed it so that the

databases stayed in sync. The difference

between the migration scenario and this

problem is that the definition of out-of-sync

for the migration is well defined and has a

set number of types. This makes it easy to

hard-code the logic to catch the different

instances. However, for the new scenario,

the pipeline had to be generic and scalable

because it will be expanded upon and used

for verification in the future and use cases

are unknown. In order to generalize the

pipeline, I conducted research into data

types that would be generic and selected an

AnyRecord defined within the company to

achieve the desired generalizability.

Kafka was also chosen to be a crucial part of

the pipeline after investigation of related

works. In Auradkar, et al, (2012), kafka is

defined as a scalable and efficient messaging

system for collecting various user activity

events and log data. It adopts a messaging

API to support both real time and offline

consumption of event data.

In Haseeb, et al (2017), kafka is used as the

message queue. The paper recommends the

use of Hadoop and Spark which will vastly

improve the performance of data stream

processing pipelines. Review of this

literature strongly influenced my own

project design.

3. PROJECT DESIGN

The project had very specific requirements

in order to serve the enterprise platform

team. These specifications shaped the

project design and were at the forefront of

the all the design decisions made.

The pipeline was designed in three parts:

offline data processing, kafka push job, and

data validation and reconciliation.

The first part, offline data processing,

consisted of a gradle file that contained a

Hadoop Spark job that calls a scala file

which defines data inconsistencies for that

particular use case. It goes through the

specified database tables and cross-

references the data entries using the logic

defined to see what data entries violate the

definition. It writes all the data entries that

violate the logic to another table. The gradle

file then sends a kafka message using the

kafka push.

The second part of the pipeline, the kafka

push job, has the gradle file push out a kafka

message which is designed to be generic

using the AnyRecord field. The AnyRecord

field is filled out by the sender to contain the

information needed to identify what type of

data inconsistencies were just caught. As

this pipeline gets scaled up to catch more

use cases, the kafka push job receiver needs

to know which one in order to be able to call

the right reconciliation logic. The kafka

message gets sent by the kafka push.

The third part of the pipeline starts by

receiving the kafka push message. This file

then reads the message to find where the use

case is defined and calls the corresponding

reconciliation file. This reconciliation file is

written in java and is made up of two parts.

The first part is the validation portion.

Validation is crucial in this project because

since the data processing is done offline, by

the time the validation process is called, the

data could have been changed. To ensure

that this data entry is still inconsistent and

should be reconciled, the data first goes

through validation. After validation, the

logic that reconciles the data is called.

4. RESULTS

This project was selected to be completed

that quarter because of how significant the

impact would be on the enterprise team.

Before the creation of this pipeline, different

projects on the team would need to be

verified manually. For example, the first use

case that the pipeline was built from is a

validation case between the roles and the

seats for a certain type of role.

There were instances where the role was

defined but the corresponding seat did not

exist. This would be a case where the role

and seat were out of sync. The brute force

way of validating and reconciling this

problem would be as follows:

1) The engineer that was working on

this project would perform a routine

maintenance check of the databases

using a script that was written that

defined the inconsistencies.

a. This would be run by hand

weekly and the data entries

that were out of sync would

be identified.

2) Then, the engineer would go in

manually and reconcile the

difference by adding in the seat for

the role.

Now, with the creation of this pipeline, this

weekly manual check and reconciliation are

no longer needed. The pipeline runs

automatically and depending on the

specification of how frequently this use case

would be run, it would do all of this

automatically.

5. CONCLUSIONS

This data reconciliation pipeline was marked

as a project of high importance and was to

be completed by the end of the quarter.

Since this pipeline is designed to be

scalable, it will have a significant impact on

the entire enterprise platform team by

automating work that was otherwise being

done by hand. All of these manual checks

were done frequently, causing the company

valuable working time. With the creation of

this generic pipeline that can be customized

for each specific use case, a lot of time,

effort, and money can be saved and used for

other more useful projects.

6. FUTURE WORK

There is one additional phase of the pipeline

left to be completed in the future: a reporting

feature. This will be added throughout the

pipeline in two different parts. The first part

will be in the first section of the pipeline,

offline processing. An email report will go

out after the data inconsistencies are

identified. The email will report metrics

such as how many instances of each use case

were found.

The second part of reporting will be in the

last part of the pipeline, data validation and

reconciliation. Similarly, an email report

will go out after the reconciliation is

performed. This email will also contain

metrics similar to the first email such as how

many instances of each use case was

successfully reconciled and fixed. The email

report can be used by the enterprise platform

to monitor the health of the reconciliation

pipeline.

REFERENCES

Auradkar, A. Botev, C. Das, S. Maagd, D.

Feinberg, A. Ganti, P. Gao, L. Ghosh,

B. Gopalakrishna, K. Harris, B.

Koshy, J. Krawexz, K. Kreps, J. Lu, S.

Nagaraj, S. Narkhede, N. Pachev, S.

Perisic, I. Qiao, L. Quiggle, T. Rao, J.

Schulman, B. Sebastian, A. Seeliger,

A. Shkolnik, B. Soman, C. Sumbaly,

R. Surlaker, K. Topiwala, S. Tran, C.

Varadarajan, B. Westerman, J. White,

Z. Zhang, D. Zhang, J. 2012. "Data

Infrastructure at LinkedIn," 2012

IEEE 28th International Conference

on Data Engineering, 2012, pp. 1370-

1381, doi: 10.1109/ICDE.2012.147.

Javed, M. Lu, X. Panda, D. 2017.

Characterization of Big Data Stream

Processing Pipeline: A Case Study

using Flink and Kafka. In Proceedings

of the Fourth IEEE/ACM International

Conference on Big Data Computing,

Applications and Technologies

(BDCAT '17). Association for

Computing Machinery, New York,

NY, USA, 1–10. Retrieved November

27, 2022, from

https://doi.org/10.1145/3148055.3148

068

