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ABSTRACT 

A California-based technology company’s 

enterprise platform needed a new automatic 

and generic way to reconcile data 

discrepancies that would replace its old 

manual process. In order to solve this 

problem, I designed a generic and scalable 

data reconciliation pipeline to process data 

based on use case to identify data 

discrepancies and notify online services to 

reconcile the discrepancies. I implemented 

this using gradle, spark, Hadoop, scala, 

kafka, and java. I successfully designed the 

data pipeline to be generic so it could be 

used for multiple different use cases and 

developed and tested the first part of the 

pipeline. In the future, the rest of the 

pipeline will need to be implemented and 

tested as well. 

 

1. INTRODUCTION 

The increasing amount of data collected by 

companies means that there is also an 

increased chance of data becoming 

inconsistent, which impacts business. For 

example, if a client is getting outdated 

information, this could severely impact 

decisions made and cost the company a lot 

of money. One reason this happens is 

because of the difference between online, 

nearline, and offline storage. Online data is 

immediately available, while nearline and 

offline is not. There is a time fetch 

difference between online and nearline, as 

well as between nearline and offline. Thus, 

online data is the most up-to-date, while 

nearline contains the second most recent, 

and offline the most outdated data. The 

syncing between the three causes 

inconsistencies.  

 

Another common reason for inconsistent 

data is business logic. Due to these 

inconsistencies, there must be some way to 

compare and verify data. The brute force 

way is to manually verify by going through 

the databases and checking each condition 

by hand and then fixing the inconsistency by 

making the entries in the database match 

what should be stored. However, this is 

extremely time consuming, so I devised a 

process to replace these manual checks.   

 

2. RELATED WORKS 

The work that was most relevant and that 

heavily shaped the solution was a pipeline 

already built to check for out-of-sync 

instances between two different platforms in 

the company. It was an automated pipeline 

that would check between two databases 

because the services were in the process of 

migrating from one platform to another. The 

pipeline caught inconsistencies during the 

migration and then fixed it so that the 

databases stayed in sync. The difference 

between the migration scenario and this 

problem is that the definition of out-of-sync 

for the migration is well defined and has a 

set number of types. This makes it easy to 

hard-code the logic to catch the different 



instances. However, for the new scenario, 

the pipeline had to be generic and scalable 

because it will be expanded upon and used 

for verification in the future and use cases 

are unknown. In order to generalize the 

pipeline, I conducted research into data 

types that would be generic and selected an 

AnyRecord defined within the company to 

achieve the desired generalizability.   

 

Kafka was also chosen to be a crucial part of 

the pipeline after investigation of related 

works. In Auradkar, et al, (2012), kafka is 

defined as a scalable and efficient messaging 

system for collecting various user activity 

events and log data. It adopts a messaging 

API to support both real time and offline 

consumption of event data.  

 

In Haseeb, et al (2017), kafka is used as the 

message queue. The paper recommends the 

use of Hadoop and Spark which will vastly 

improve the performance of data stream 

processing pipelines. Review of this 

literature strongly influenced my own 

project design.  

 

3. PROJECT DESIGN 

The project had very specific requirements 

in order to serve the enterprise platform 

team. These specifications shaped the 

project design and were at the forefront of 

the all the design decisions made.  

 

The pipeline was designed in three parts: 

offline data processing, kafka push job, and 

data validation and reconciliation.  

The first part, offline data processing, 

consisted of a gradle file that contained a 

Hadoop Spark job that calls a scala file 

which defines data inconsistencies for that 

particular use case. It goes through the 

specified database tables and cross-

references the data entries using the logic 

defined to see what data entries violate the 

definition. It writes all the data entries that 

violate the logic to another table. The gradle 

file then sends a kafka message using the 

kafka push.  

 

The second part of the pipeline, the kafka 

push job, has the gradle file push out a kafka 

message which is designed to be generic 

using the AnyRecord field. The AnyRecord 

field is filled out by the sender to contain the 

information needed to identify what type of 

data inconsistencies were just caught. As 

this pipeline gets scaled up to catch more 

use cases, the kafka push job receiver needs 

to know which one in order to be able to call 

the right reconciliation logic. The kafka 

message gets sent by the kafka push.  

 

The third part of the pipeline starts by 

receiving the kafka push message. This file 

then reads the message to find where the use 

case is defined and calls the corresponding 

reconciliation file. This reconciliation file is 

written in java and is made up of two parts. 

The first part is the validation portion. 

Validation is crucial in this project because 

since the data processing is done offline, by 

the time the validation process is called, the 

data could have been changed. To ensure 

that this data entry is still inconsistent and 

should be reconciled, the data first goes 

through validation. After validation, the 

logic that reconciles the data is called.  

 

4. RESULTS 

This project was selected to be completed 

that quarter because of how significant the 

impact would be on the enterprise team. 

Before the creation of this pipeline, different 

projects on the team would need to be 

verified manually. For example, the first use 

case that the pipeline was built from is a 

validation case between the roles and the 

seats for a certain type of role.  

 

There were instances where the role was 

defined but the corresponding seat did not 



exist. This would be a case where the role 

and seat were out of sync. The brute force 

way of validating and reconciling this 

problem would be as follows:  

 

1) The engineer that was working on 

this project would perform a routine 

maintenance check of the databases 

using a script that was written that 

defined the inconsistencies.  

a. This would be run by hand 

weekly and the data entries 

that were out of sync would 

be identified.  

2) Then, the engineer would go in 

manually and reconcile the 

difference by adding in the seat for 

the role.  

 

Now, with the creation of this pipeline, this 

weekly manual check and reconciliation are 

no longer needed. The pipeline runs 

automatically and depending on the 

specification of how frequently this use case 

would be run, it would do all of this 

automatically.  

 

5. CONCLUSIONS  

This data reconciliation pipeline was marked 

as a project of high importance and was to 

be completed by the end of the quarter. 

Since this pipeline is designed to be 

scalable, it will have a significant impact on 

the entire enterprise platform team by 

automating work that was otherwise being 

done by hand. All of these manual checks 

were done frequently, causing the company 

valuable working time. With the creation of 

this generic pipeline that can be customized 

for each specific use case, a lot of time, 

effort, and money can be saved and used for 

other more useful projects.  

 

6. FUTURE WORK 

There is one additional phase of the pipeline 

left to be completed in the future: a reporting 

feature. This will be added throughout the 

pipeline in two different parts. The first part 

will be in the first section of the pipeline, 

offline processing. An email report will go 

out after the data inconsistencies are 

identified. The email will report metrics 

such as how many instances of each use case 

were found.  

 

The second part of reporting will be in the 

last part of the pipeline, data validation and 

reconciliation. Similarly, an email report 

will go out after the reconciliation is 

performed. This email will also contain 

metrics similar to the first email such as how 

many instances of each use case was 

successfully reconciled and fixed. The email 

report can be used by the enterprise platform 

to monitor the health of the reconciliation 

pipeline.  
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