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Research on Regime-Switching Between Different Stochastic Dy-
namical Systems

Tianyuan Zhou

(ABSTRACT)

Regime-Switching (RS) is an important phenomenon and modeling technique in time

series analysis that the observed process follows different patterns during different

time periods. To the best of our knowledge, there is no study on the RS phenomenon

between different dynamical systems. In this dissertation, we finished 3 projects on

this topic. In Project I, we studied the RS modeling between different stochastic

dynamical systems with known parameter forms. We proposed a heteroskedasticity-

based E-M algorithm to infer this model since it cannot be estimated under the

likelihood framework. We also proposed a hypothesis testing procedure, named as

RS testing, to test whether the RS phenomenon exists or not through testing whether

the state prediction agrees with the observation or not. We demonstrated its power

by comprehensive simulations and proved that VIX has the RS phenomenon. In

Project II, we extended this method to the Realized Variance (RV) processes of the

stock market. To calculate RV, we proposed a novel data cleaning method for the

TAQ transaction-level dataset to achieve a better trade-off between the data quality

and data size. We proved that the RS phenomenon is universal in the stock market’s

volatility. In Project III, we studied the RS phenomenon in scientific processes. The

state-of-the-art forecasting method for scientific processes is time-invariant Empirical

Dynamic Modeling (EDM). In this project, we proposed a time-dependent EDM

framework and proposed a Periodically-Regime-Switching (PRS) model to combine
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the strong periodicity and Markovian property of the latent state process. We proved

our method’s performance on the chlorophyll forecasting problem. At the end, we

made a comprehensive discussion on these 3 projects and summarized the application

scenarios.

Keywords: Regime-switching; Stochastic dynamical models; Time series analysis;

Stock volatility; Chlorophyll forecasting.
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Chapter 1

Introduction

Regime-Switching (RS) is a widespread phenomenon in time series analysis which

evolves across different time periods, and the fundamentals could also change. RS

occurs with time series during different periods that may have different properties

and a single model is insufficient. To represent this kind of time series, we should use

different models for different periods, and demonstrate the state transition between

different models. These kinds of models are called RS models.

RS modeling is typically done by state-space models. If there is a finite set of basic

models that are present during different episodes, then the true model each time

stamp is modeled by a latent state process, where at each time stamp there is a

latent state controlling which basic model dominates. For example, Hidden Markov

Models (HMM) (Baum and Petrie, 1966; Baum and Eagon, 1967; Baum, Petrie, et

al., 1970) assume the observed time series is independent conditioned on the latent

states which evolves as a Markov chain.

One important kind of time series is present in dynamical systems. Dynamical systems

focus on modeling the evolution of time series by modeling the relationship between

neighboring observations. For example, AutoRegressive-Moving-Average (ARMA)

(Box et al., 2015) models the observations through a linear statistical model of lagged

observations and noise errors. More complicated models are modeled by Stochas-

tic Differential Equations (SDE) or Partial Differential Equations (PDE). There are
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methods combining the dynamical systems and RS models, such as Markov-Switching

AR (Adejumo, Albert, and Asemota, 2020).

In this dissertation, I studied the RS between different dynamical systems as this class

of models handle the scenario better than a single model that is insufficient to model

the time series across the whole observed time period. RS between dynamical systems

assumes there exists a set of dynamical systems and a latent state process specifying

the dominant system at each time stamp. These models are useful particularly for

financial and scientific processes which will be further explained in this thesis. In

these areas, evolution modeled by SDEs or PDEs change across different time periods

because of the changing environment, such as the market factors in the financial

models and the environmental variables in the water system.

Before discussing our proposed RS methods, we briefly discuss the application sce-

nario for RS models. Theoretically RS models assume the existence of a latent state

process controlling the evolution of the observations of each time period. That is to

say, in the state transition view, when the underlying state transits, the observations

will have a staggered jump characterized by rough and discrete. On the other hand,

RS should be viewed as an approximation of a complicated system where each state or

regime is modeling one dominant pattern of a time period. With the approximation

view, even though the true process is not RS and transition is stable characterized

by continuous and smooth, we can still use RS models and model the jumps as stag-

gered, as stated in the famous aphorism by George Box, “All models are wrong, some

are useful”. If the true data is not RS but too complicated to be modeled sufficiently

by basic models, we can use RS models so that during different time periods the

dominant patterns can be modeled accurately.

In the financial market, my research focuses on the volatility process, including the im-
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plied volatility and realized variance processes. These volatility processes are typically

represented by some well-studied models, including a class of models called stochastic

volatility models, such as Heston model (S. L. Heston, 1993) and 3/2 model (S. L.

Heston, 1997; Platen, 1998). Different models are needed to characterize different

patterns for different financial assets during different time periods. In this disserta-

tion, we proposed the RS model between different stochastic volatility models. This

class of models cannot be inferred by the Maximal Likelihood Estimation (MLE) by

Expectation-Maximization (E-M) algorithm, which is the standard inference method

for RS models, due to the indistinguishability of the likelihood. So we propose an

algorithm that uses the Bayes factor of the heteroskedasticity test as the emission

probability, which we call the heteroskedasticity-based E-M algorithm. Along with

this method, we proposed a hypothesis testing procedure named as the RS test to

test whether the RS phenomenon exists, by testing Kendall’s rank correlation test

between the emission and prediction probabilities. We prove the performance of our

heteroskedasticity-based E-M algorithm and RS test on simulated datasets and real-

world applications including a half-year VIX process and realized volatility processes

of SPDR S&P 500 ETF Trust (SPY) and 30 Dow Jones Industrial average (DJI) com-

ponent stocks during a 7-year period, and prove that the RS phenomenon is universe

in volatility processes in the stock market.

In scientific process studies, we conduct research on the chlorophyll forecast, which

is important for predicting toxic algal bloom. The chlorophyll process is a part of a

complicated water dynamical system involving a small set of observed cross predictors

and a large set of unobserved variables. These kinds of problems are usually modeled

by Empirical Dynamic Modeling (EDM), which guarantees the existence of an AR

type forecasting function, but it suffers from the curse-of-dimensionality problem
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when the underlying dynamical system is too complicated. To solve this problem, we

proposed a RS-EDM framework, which allows EDM to have a RS structure, so it helps

reduce the lag we need. Further we proposed a Periodically-Regime-Switching (PRS)

model which assigns a periodical property to Markov switching. The Markovian

and periodical properties are contradicting but we resolved it by using a conditional

Markov structure. We proved its performance on simulated datasets and real-world

applications of chlorophyll forecast.

The outline of the rest of this dissertation is as follows. We will cover 3 separate

projects. Chapter 2 is on Project I, in which we propose the RS model between

different classes of dynamical models, and we will apply it on implied volatility pro-

cesses. Chapter 3 is on Project II, in which we proposed a data cleaning method

for TAQ data set, that takes a better trade-off between data quality and data size

and enables us to calculate the minute-level realized volatility. We prove that the RS

phenomenon is universal for stocks’ realized variance. Chapter 4 is on Project III, in

which we proposed the RS-EDM and PRS models, and applied it to the chlorophyll

forecast. A discussion is provided at the end in Chapter 5.
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Chapter 2

Project I

2.1 Summary

In this project, we first propose a Regime-Switching (RS) model that switches between

different classes of dynamical systems or models. The motivation is that different dy-

namical models work better under different time periods, so it is natural to model

it by a RS model between different dynamical systems. Then we address the infer-

ence problem and hypothesis testing problem on whether the RS phenomenon exists.

In this project, we mainly discussed the RS models for implied volatility, and the

generalizations to other applications are straightforward.

It is a widely spread practice to model implied volatility by RS models. However,

unlike conventional RS models between the same class of models with different pa-

rameters, our research focuses on the RS models switching between different classes

of models. This kind of model cannot be inferred by Maximum Likelihood Esti-

mation (MLE) obtained by Expectation-Maximization (E-M) algorithm (Dempster,

Laird, and Rubin, 1977), which is the standard inference approach for conventional

RS models. So we proposed a novel inference method, heteroskedasticity-based E-M

algorithm, that is an extension of E-M algorithm but relies on the Bayes factor of

heteroskedasticity test as the emission probabilities. Along with model estimation,

we propose a novel hypothesis testing that tests the rank correlation between the
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prediction and emission probabilities to prove the predictability of the future regimes

by our RS models. We name this testing procedure as the RS test and view it as a

testing on the existence of RS phenomenon.

To prove the effectiveness of our method, we apply our method on both the simulated

and real-world VIX data. We proved by simulations that our RS test has the power

to detect the RS phenomenon for both in-sample and out-of-sample data, and also

proved the RS phenomenon exists in VIX data by RS test.

The outline of the rest of this chapter is as follows. In Section 2.2 we provided a

comprehensive but not exhaustive review on implied volatility modeling. In Section

2.3 we described how to infer the RS models between different classes of models and

how to perform the RS test. Then we demonstrated its usage and effectiveness in

Section 2.4 and provided the discussion in Section 2.5.

In this project and next project, we will use the episode to denote the time a state

or basic model lasts which contains a sub-process with multiple timestamps with

observations.

2.2 Background and Literature Reviews

Implied Volatility is in general calculated from option markets. Options are forms

of financial derivative contracts giving the option holders the right to buy or sell a

specific quantity of underlying assets at a specific price on an exercise date without

assigning the obligation to the holders. The exercise date could be a fixed maturity

date, which we call an European option, or before some maturity date, which we

call an American option. The option assigning the holders the right to buy/sell the
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underlying asset is called call/put option. A European call or put option is called

a vanilla option, which is the most liquid option in the market. Besides vanilla or

American options, there could be complicated contracts for the maturity structure,

such as Bermudan options, or for the payout structure, such as clique options. The

underlying asset could be stock, commodity, foreign exchange, or other financial in-

struments. Option pricing is to find the theoretical value of an option, which relies

on mathematical assumptions of the price process for underlying assets, which are

called the option pricing model (see Shreve et al., 2004, for more on option pricing).

A typical option pricing model for the underlying asset’s price process can be written

in the Stochastic Differential Equation (SDE) form dSt = µtStdt+
√
VtStdW

(S)
t , where

µt and Vt are the mean return and volatility parts. Different option pricing models

typically differ in the volatility part Vt. The most commonly used model is Black-

Scholes (B-S) model (Black and Scholes, 1973) which assumes dSt = µStdt+σStdWt,

a constant mean and volatility term, and under the B-S model, the pricing for vanilla

options has closed forms. In reality, we cannot observe the volatility but can observe

the option prices in the option market, so we could infer the volatility based on the

vanilla option price by finding the volatility reversely from the B-S model, which is

called implied volatility (see Orlando and Taglialatela, 2017, for a review).

The aggregated implied volatility of the stock market is called VIX, which is the

popular name for the Chicago Board Options Exchange’s Volatility Index1. It can be

viewed as the expected implied volatility of the S&P-500 index, which is calculated

based on the implied volatility from the S&P-500 index options with different matu-

rities and strike prices. It is first introduced by Whaley (1993), is important because

investors usually interpret as the fear index (Whaley, 2000), and has its own options

1Refer to https://www.cboe.com/tradable_products/vix/faqs for detailed calculations

https://www.cboe.com/tradable_products/vix/faqs
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(Goard and Mazur, 2013a) (see Whaley, 2009, for a detailed discussion). VIX is an

important index. In Section 2.4, we will use the VIX as our application.

Options of the same underlying asset but different strike prices and maturities in

general have different implied volatilities, whose relationship is called volatility sur-

face. It contradicts the B-S model’s constant volatility assumption, and there are

different ways to solve this contradiction. One approach is to model the volatility

surface explicitly, such as stochastic volatility inspired (Gatheral, 2004). Another

approach is to use models other than B-S that allows randomness in the volatility

process Vt and further model it by some SDEs, which can be further divided into two

main categories, the stochastic volatility models that assumes Vt follows some SDE

not explicitly dependent on the price process St, and the local volatility models that

assumes Vt explicitly depends on St (Dupire et al., 1994). In this research, we mainly

study stochastic volatility models.

Stochastic volatility models in general assume Vt = µ(Vt; Θ)dt + σ(Vt; Θ)dWt, where

µ(·; Θ) and σ(·; Θ) are the drift and diffusion function with model parameters Θ,

which can be inferred by two categories of inference methods. One is model calibra-

tion, which is based on the option prices observed at one time stamp, and the other is

model estimation, which is based on the underlying asset’s historic price or volatility

processes. The conceptual difference of these two categories lies in that the option

market is forward-looking and the historic processes are backward-looking, but in

general these two should agree with each other (Bates, 1996). Technically the model

calibration is based on finding the theoretical values of options as a function of pa-

rameters, maturities and strike prices, and fitting them by the observed option prices

with different maturities and strike prices through MLE or ordinary least squares to

find the best parameters. The model estimation is based on the underlying asset’s
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downsampled historic price or volatility processes and discretized SDEs of stochastic

volatility models. Since a stochastic volatility model involves a price process and a

volatility process, there are different choices of which process to use. For example,

we could use only the price process (Atiya and Wall, 2009), only the observed volatil-

ity process such as VIX (Goard and Mazur, 2013b), both the price and option price

processes (Aı̈t-Sahalia and Kimmel, 2007), or both the price and volatility processes

(Fouque and Saporito, 2018). In this study, we will focus on the model estimation

only based on the observed volatility process.

Stochastic volatility models are typically based on some basic models. Some widely

used basic stochastic volatility models are as follows:

• Heston (S. L. Heston, 1993): dVt = κ(η − Vt)dt+ ξ
√
VtdWt;

• Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) (S. L.

Heston and Nandi, 2000): dVt = κ(η − Vt)dt+ ξVtdWt;

• 3/2 (S. L. Heston, 1997; Platen, 1998): dVt = κVt(η − Vt)dt+ ξV
3
2
t dWt.

The estimation of these models are based on Euler discretization in the following form

• Heston: Vt+1 ∼ Vt + κ(η − Vt)dt+ ξ
√
Vt · N (0,∆t);

• GARCH: Vt+1 ∼ Vt + κ(η − Vt)dt+ ξVt · N (0,∆t);

• 3/2: Vt+1 ∼ Vt + κVt(η − Vt)dt+ ξV
3
2
t · N (0,∆t);

where the volatility process is discretized into {Vt}Tt=1 with interval ∆t. Here the

GARCH model is also called the Heston-Nandi model in some literature because it is
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different from the discrete time GARCH model (Bollerslev, 1986a). After discretiz-

ing, we could estimate a basic single stochastic volatility models by maximizing the

likelihood function

L(Θ) =
T−1∏
t=1

[
fN (0,σ2(Vt;Θ)∆t) ((Vt+1 − Vt)− µ(Vt; Θ)∆t)

]
,

or with weight wt for each time stamp,

L(Θ) =
T−1∏
t=1

[
fN (0,σ2(Vt;Θ)∆t) ((Vt+1 − Vt)− µ(Vt; Θ)∆t)

]wt+1 . (2.1)

For stochastic volatility models mentioned above, this MLE could be written as a

linear regression (see Goard and Mazur, 2013b, for details), and we use this method

for estimating basic models without RS.

We could extend the aforementioned basic models by assigning them additional struc-

tures. For example, we could add jumps, such as the B-S model with jump (Merton,

1976) or asymmetric jump (Kou, 2002). We could add the multi-factor property to

make it satisfy the option market’s term-structure (Christoffersen, S. Heston, and

Jacobs, 2009). We could add two models together, such as the 4/2 model, which is

the summation of the Heston model and the 3/2 model (Grasselli, 2017). Also we

could add the RS structure.

In this study, we will mainly focus on the RS property. Researchers have already

studied this phenomenon extensively and proposed different models with RS struc-

tures. For example, the RS B-S model inferred by Baum-Welch algorithm (Mitra

and Date, 2010), the RS B-S models with a large number of hidden states (Rossi

and Gallo, 2006), the RS B-S model with jumps (Costabile et al., 2014), RS local

volatility model (He and Zhu, 2017), RS Heston models with application on VIX
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(Goutte, Ismail, and Pham, 2017), RS Heston model with joint modeling of S&P-500

and VIX (Papanicolaou and Sircar, 2014), RS rough Heston model (Alfeus, Overbeck,

and Schlögl, 2019), etc. RS models can be inferred by model estimation or model

calibration. Note that all existing RS models are switching between different models

within the same model class, for example, two Heston models with different parame-

ters. In this study, we proposed the RS models between different classes of models.

To the best of our knowledge, this is the first time this problem is studied.

2.3 Methodology

In this section, we first defined the mathematical model for RS. Then we showed why

the standard E-M algorithm for MLE fails for our models, and how to modify it to

our proposed heteroskedasticity-based E-M algorithm. Then we proposed RS testing

that could test whether the RS model is predictive or not. As an ending we provided

the formal framework for heteroskedasticity-based E-M algorithm.

2.3.1 Model assumption

We define a model that switches between two different regimes, which is controlled

by a process following a 2-state Markov chain. RS models with more than 2 states

can be easily generalized from the 2-state RS model.

We defined the basic models first. Assume we have two different stochastic dynamical

models M1 = M1(Θ1) and M2 = M2(Θ2), where M1(·) and M2(·) are different
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classes of models and Θ1 and Θ2 are associated model parameters that

(M1) dVu = µ1(Vu; Θ1)dt+ σ1(Vu; Θ1)dWu;

(M2) dVu = µ2(Vu; Θ2)dt+ σ2(Vu; Θ2)dWu.

For example, we can choose M1(·) to be Heston model with Θ1 = (κ1, η1, ξ1) and

M2(·) to be 3/2 model with Θ2 = (κ2, η2, ξ2), which can be written into the following

form

(M1) dVu = κ1(η1 − Vu)dt+ ξ1
√
VudWu;

(M2) dVu = κ2Vu(η2 − Vu)dt+ ξ2V
3
2
u dWu.

Particularly, we call this model the RS-Heston-3/2 model, and will use it extensively

in the simulations and applications.

Then we could define the RS by a state-space model. We divided the whole time

period into T episodes that the t-th episode is controlled by the latent state ht. In

the following, we will use t for denoting episodes and (t,m) for denoting time stamps.

We assume that {ht}Tt=1 follows a 2-state Markov chain with parameters (π0,T ),

where π0 = [π0(1), π0(2)]
⊤ is the initial probabilities that P(h1 = i) = π0(i) and T

is the transition matrix whose elements Tij = P(ht+1 = j|ht = i) is the probability

of transiting from state i to state j. {ht}Tt=1 are not observable, but each of them

controls an episode during which the observed {Vu}u∈t-th episode follows Ms if ht = s.

We discretize the time into {Vt,l}t=1,··· ,T
l=1,··· ,L that during each episode t, we could observe

Vt = Vt,· = {Vt,l}Ll=1. The basic models for the Heston and 3/2 models under this
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discretization could be written into

(M1) Vt,l+1 ∼ Vt,l + κ(η − Vt,l)∆t+ ξ
√

Vt,l · N (0,∆t);

(M2) Vt,l+1 ∼ Vt,l + κ2Vt,l(η2 − Vt,l)∆t+ ξ2V
3
2
t,l · N (0,∆t), (2.2)

where ∆t is the time interval between Vt,l and Vt,l+1. Other basic models could be

written similarly. In summary, the RS-Heston-3/2 model can be written as

{ht}Tt=1 ∼ Markov Chain(T , π0);

Vt,·
∣∣ht = s ∼ Ms t = 1, · · · , T,

where M1 and M2 are defined in Eq 2.2.

2.3.2 MLE, E-M algorithm, and why it fails

Algorithm 1: E-M algorithm
Data: {Xt}Tt=1

Result: {π̂0, T̂ , Ê}
Initialize {π̂0, T̂ , Ê};
while not converged do

E-step: update {γt(j)}j=1:S
t=1:T and {ξt(i, j)}i,j=1:S

t=1:T conditioned on {π̂0, T̂ , Ê} by
Alg 2;

M-step: update {π̂0, T̂ , Ê} conditioned on {γt(j)} and {ξt(i, j)} by Alg 3;
end

The standard inference method for RS models, such as HMM, is MLE obtained by

the E-M algorithm. However, the likelihood-based E-M algorithm doesn’t work here

and we proposed a variant, which we call heteroskedasticity-based E-M algorithm.

I will first briefly introduce the E-M algorithm for standard RS models and discuss
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Algorithm 2: E-step of E-M algorithm
Data: {Xt}Tt=1, {π0,T , E}
Result: {γt(j)}j=1:S

t=1:T , {ξt(i, j)}i,j=1:S
t=1:T

Find {bj(Xt)}j=1:S
t=1:T ;

// Forward probabilities
for t← 1 to T do

αt(j)←−

{
π0(j)bj(X1), if t = 1∑S

i=1 αt−1(i)Tijbj(Xt), otherwise
∀j = 1, · · · , S;

end
// Backward probabilities
for t← T to 1 do

βt(j)←−

{
1, if t = T∑S

j=1 Tijβt+1(j)bj(Xt+1), otherwise
∀j = 1, · · · , S;

end
// State occupancy probabilities
P(ht = j) = γt(j)←− αt(j)βt(j)∑S

i=1 αt(i)βt(i)
∀t, j;

P(ht = i, ht+1 = j) = ξt(i, j)←− αt(i)Tijbj(Xt+1)βt+1(j)∑S
i=1 αt(i)βt(i)

∀t, i, j;

Algorithm 3: M-step of E-M algorithm
Data: {Xt}Tt=1, {γt(j)}

j=1:S
t=1:T , {ξt(i, j)}i,j=1:S

t=1:T

Result: {π̂0, T̂ , Ê}
π̂0(j)←− γ1(j) ∀j = 1, · · · , S;
T̂ij ←−

∑T−1
t=1 ξt(i,j)∑T−1

t=1

∑S
k=1 ξt(i,k)

∀i, j = 1, · · · , S;
Estimate Êj based on weighted samples {Xt}Tt=1 with weights {γt(j)}Tt=1

why the MLE doesn’t work.

A RS model contains two processes, a latent state process {ht}t following a S-state

time-homogeneous Markov chain and an observed process {Xt}t. The Markov chain

could be specified by 2 parameters,

• the initial probability π0 = [π0(1), · · · , π0(S)]
⊤;

• the transition matrix T = [Tij]
j=1:S
i=1:S ,
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and the relationship between the observations and the latent states is characterized

by

• emission distribution E = {Es}s=1:S

where for each time t, the observed Xt|ht = s ∼ Es. If observing Xt = x at time t, we

could find the emission probability for each hidden state s, bs(x) = P(Xt = x|ht = s).

In our study, the observed time series during an episode is a sub-process that Xt =

Vt = {Vt,m}m controlled by ht.

The standard inference framework is the MLE by the E-M algorithm, as shown in

Alg 1. In short, it is an iterative method iterating over E-steps and M-steps until

convergence, where the E-step is to update the belief of latent states given the current

parameters, and the M-step is to update parameters conditioned on the belief of latent

states. We could see that the E-M algorithm for different RS models only differs in

the emission probability part while all other steps are identical.

Conceptually, the E-M algorithm relies on the distinguishable assumption, that under

different hidden states, the emission probabilities for the same observation should be

distinguishable. For example, if a data point Xt is generated from Es, then bs(Xt),

the emission probability if ht = s, should be much larger than br(Xt) for r ̸= s with a

high probability. Otherwise the belief of latent states can hardly be inferred correctly.

However, the E-M algorithm for MLE doesn’t work on our problem, because the

likelihood cannot distinguish different models. As a motivation example, we show

two illustrative experiments. One experiment is to distinguish Heston and GARCH

models, and the other is to distinguish Heston and 3/2 models. In the first example,

we generate multiple data sets from both the Heston and GARCH models, and for

each data set, its maximal likelihood L(H) assuming it follows a Heston model by
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Eq 2.1, L(G) assuming it follows a GARCH model, and its likelihood ratio between

Heston and GARCH L(H)

L(G)
are found. If the true model is Heston, then the likelihood

ratio should be large, otherwise if the true model is GARCH, then the likelihood ratio

should be small, so we expect the likelihood ratio when the true model is the Heston

model is different from when the true model is the 3/2 model. The simulation settings

are as follows. For both Heston and GARCH, we set κH = κG = 5, ηH = ηG = 0.16,

initial values as 0.25, length as 1000 timestamps and time interval as ∆t = 10−4.

We set the diffusion terms ξH
√
ηH = ξGηG = 0.25. 1000 data sets following the

Heston model and 1000 data sets following the GARCH model are generated, so we

can estimate the distribution of likelihood ratios L(H)

L(G)
if the true model is the Heston

model and the GARCH model. The second experiment is similar, in that we want

to distinguish Heston and 3/2 models. All settings are the same except that the

diffusion terms are set to be ξH
√
ηH = ξ3/2η

3
2

3/2 = 0.25.

Figure 2.1: The density plot of log(likelihood ratio) between Heston and GARCH
(left panel) and between Heston and 3/2 models (right panel), when the true model is
Heston or GARCH / Heston or 3/2 models. We could see they are not distinguishable
in both 2 experiments when Eq 2.3 is satisfied.

Fig 2.1 shows the density plot of likelihood ratios from kernel density estimation

for both 2 experiments. In its left panel, we could see that whether the data is
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generated from Heston and GARCH, the likelihood ratio doesn’t differ in location.

Similarly, in the right panel, we could see the likelihood ratio doesn’t differ between

the Heston and 3/2 models. That is to say, the likelihood ratios are similar and not

distinguishable even if the true models are different. From more analysis, I found the

following indistinguishable condition:

ξH ×
√
ηH ≈ ξG × ηG ≈ ξ3/2 × η

3
2

3/2, (2.3)

whose interpretation is natural. The SDE of stochastic volatility models have the

drift and diffusion parts. The drift part is mean-reverting which guarantees Vt to

oscillate around η. So the diffusion term has standard deviation also oscillated from

ξH×
√
ηH for Heston, ξG×ηG for GARCH and ξ3/2×η

3
2

3/2 for 3/2 model. This variance

term is determining the likelihood, and if the variance of two models are similar then

the likelihood will also be similar. Or from another aspect, if we have a dataset and

fit different models, then different models won’t differ significantly in likelihood and

their estimated parameters will satisfy Eq 2.3.

2.3.3 Heteroskedasticity-based E-M algorithm

MLE doesn’t work because the likelihood is not distinguishable, so we need another

approach to distinguish different models. Also we need to convert it into emission

probabilities to implement them into the E-M algorithm. In practice we use different

stochastic volatility models not due to the likelihood, but whether the model is suffi-

cient or not. The idea comes from the Box-Jenkins algorithm (Box et al., 2015), where

we find the smallest orders for AutoRegressive-Moving-Average (ARMA) models that

the residuals don’t have any significant autocorrelation or partial autocorrelation.
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Algorithm 4: Emission probability from heteroskedasticity regression.
Data: {Vt = {Vt,m}n+1

m=1}Tt=1, {γt(M1), γt(M2)}Tt=1, M1, M2, g, π(M1), π(M2),
π(O)

Result: {b1(Vt), b2(Vt)}Tt=1

for i← 1 to 2 do
Estimate the model Mi by weighted data {Vt,m}m=1:n+1

t=1:T with weights γt(Mi)
for Vt,m by MLE of Eq 2.1;

for t← 1 to T do
Get residuals {Ŵt,m+1}nm=1;
Regress Ŵ 2

t,m+1 against Vt,m, V
1
2
t,m, V

− 1
2

t,m , V −1
t,m and get R2

het;
Find BF

(t)
i from Eq 2.4;

end
end
for t← 1 to T do

Solve P(M1|Vt), P(M2|Vt) and P(O|Vt) from
P(M1|Vt)

P(M2|Vt)+P(O|Vt)
= 1

BF
(t)
1

× π(M1)
π(M2)+π(O)

P(M2|Vt)
P(M1|Vt)+P(O|Vt)

= 1

BF
(t)
2

× π(M2)
π(M1)+π(O)

P(M1|Vt) + P(M2|Vt) + P(O|Vt) = 1

;

b1(Vt)← P(M1|Vt)
P(M1|Vt)+P(M2|Vt)

;
b2(Vt)← P(M2|Vt)

P(M1|Vt)+P(M2|Vt)
;

end

Similarly, for AutoRegressive Conditional Heteroskedasticity / Generalized AutoRe-

gressive Conditional Heteroskedasticity (ARCH/GARCH) (Engle, 1982; Bollerslev,

1986b), we find its smallest orders that the squared residuals don’t have any signifi-

cant autocorrelation or partial autocorrelation. We propose to use a similar idea to

distinguish different models, that the sufficient model should not observe any het-

eroskedasticity and there should not be any significant correlations between squared

residuals and the observed process.

To quantify heteroskedasticity, we could do a hypothesis test to test whether the

squared residuals are correlated with the process or not. Ideally, when we are using

the correct models, the residuals should pass this test because the residuals’ variance
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cannot be explained by the process. Otherwise we should reject this test because still

some information of the white noise could be modeled by the process. The testing

procedure is as follows. We first estimate the residuals {Ŵt,m+1}mt . Then we regress

the squared residuals {Ŵ 2
t,m+1 = (Vt,m+1 − V̂t,m+1)

2}m against the previous obser-

vations with different polynomials {Vt,m, V
1
2
t,m, V

− 1
2

t,m , V −1
t,m}m. If this linear regression

is significant, then the residuals could be explained by the process and there exists

heteroskedasticity. Otherwise there doesn’t exist heteroskedasticity and the model

is sufficient. We name this regression as heteroskedasticity regression and name the

hypothesis testing procedure whether heteroskedasticity regression is significant or

not as heteroskedasticity test.

The E-M algorithms for different RS models with Markov switching differ only in the

emission parts. To implement our heteroskedasticity test into the E-M algorithm, we

need to convert it into emission probabilities. We borrow the idea of Bayes factor.

Here we use the Bayes factor for practical usage and we are not to classify our method

into Bayesian or frequentist. The heteroskedasticity test is based on linear regression,

so we could use the Bayes factor of linear regression. There are different choices for

linear regression’s Bayes factors, such as the g-prior Bayes factor (Zellner, 1986) and

the minimal Bayes factor (Chen, Ye, and M. Wang, 2021), and we use the widely used

g-prior Bayes factor. To calculate the Bayes factor, we first find R2
het, the R-squared

for the heteroskedasticity regression, and the Bayes factor is a function of R2
het that

BF =
(1 + g)(n−p−1)/2

(1 + g(1−R2
het))

(n−1)/2
=

P(data|homoskedasticity)

P(data|heteroskedasticity) =
P(data|M ∁)

P(data|M)
, (2.4)

where g is a hyperparameter we need to choose to better distinguish different models,

n is the sample size for regression, p = 4 is the number of features, and M and M ∁

denote the condition where M is and isn’t the correct model. Also this method could
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be generalized to weighted samples, so that the regression and R2
het are calculated

based on the weighted samples.

Algorithm 5: Heteroskedasticity-based E-M algorithm
Data: {Vt = {Vt,m}n+1

m=1}Tt=1

Result: {π̂0, T̂ , {Θ̂i}i}
Initialize {π̂0, T̂ , {Θ̂i}i};
while not converged do

E-step: update {γt(j)}j=1:S
t=1:T and {ξt(i, j)}i,j=1:S

t=1:T conditioned on {π̂0, T̂ , {Θ̂i}i}
by Alg 2 with emission probabilities computed from Alg 4;

M-step: update {π̂0, T̂ , {Θ̂i}i} conditioned on {γt(j)} and {ξt(i, j)} by Alg 6;
end

Algorithm 6: M-step of heteroskedasticity-based E-M algorithm
Data: {Vt}Tt=1, {γt(j)}

j=1:2
t=1:T , {ξt(i, j)}i,j=1:2

t=1:T

Result: {π̂0, T̂ , {Θ̂i}i}
π̂0(j)←− γ1(j) ∀j = 1, 2;
T̂ij ←−

∑T−1
t=1 ξt(i,j)∑T−1

t=1

∑S
k=1 ξt(i,k)

∀i, j = 1, 2;
for i← 1 to 2 do

Estimate Θ̂i by Eq 2.1 with data {Vt,m}mt and weight γt(i) for each Vt,m;
end

The above heteroskedasticity regression and Bayes factor are for testing one model.

In RS, we have multiple candidate models, so we have multiple heteroskedasticity

regressions and Bayes factors, and we compute the emission probabilities from them.

Assume the data is switching between 2 models M1 and M2, for example M1 is Heston

and M2 is 3/2. We also set a third model O to accommodate cases where the data is

not generated from M1 or M2. For model M1, we have BF1. Note M ∁
1 is M2 or O.
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We have

P(M1|data)
P(M2|data) + P(O|data) =

P(M1|data)
P(M ∁

1 |data)
=

P(data|M1)× π(M1)

P(data|M ∁
1 )× π(M ∁

1 )

=
1

BF1

× π(M1)

π(M ∁
1 )

=
1

BF1

× π(M1)

π(M2) + π(O)
.

If we calculate BF1 and BF2 from data, and determine the hyperparameter for pri-

ors π(M1), π(M2) and π(O), when we can calculate P(M1|data)
P(M2|data)+P(O|data) and similarly

P(M2|data)
P(M1|data)+P(O|data) . Also we have P(M1|data) + P(M2|data) + P(O|data) = 1. From

these 3 equations, we could calculate P(M1|data), P(M2|data) and P(O|data). Then

we could normalize out O, and the emission probabilities for model M1 and M2 are

b1(data) = P(M1|data,M1 ∪M2) =
P(M1|data)

P(M1|data) + P(M2|data)
;

b2(data) = P(M2|data,M1 ∪M2) =
P(M2|data)

P(M1|data) + P(M2|data)
.

These are the emission probabilities we used, and the algorithm is summarized in

Alg 4. Another choice is to use b1(data) = P(M1|data) and b2(data) = P(M2|data)

if we do not condition out O, but we recommend conditioning out O because it is

in line with our model assumption. We name the E-M algorithm with this emission

probability as heteroskedasticity-based E-M algorithm, and its pseudocode is shown

in Alg 5.

2.3.4 Regime-Switching testing: prediction and emission

Besides inferring the RS model, an important question is whether the RS phenomenon

exists, or how to statistically test it. This task is not trivial since we don’t know the
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underlying truth. In this project, we convert this task to testing whether the RS

model is predictive for future regimes or not. See Section 2.5 for discussion.

We propose a hypothesis testing procedure for this specific task and we name it as

RS test. Though we don’t know the underlying true class labels, we could use the

emission probability as an approximation of the underlying true labels. We could set

a threshold on the emission probability to determine whether each state belongs to

M1 or M2. After inferring the RS model, we can forecast the future probability of each

episode belonging to each model, and similarly, we can set a threshold to determine

the predicted label for each episode t. Then we could test whether these two match

with each other with a high accuracy. We can marginalize out the effect of threshold

if we don’t want to specify it. If we marginalize out the threshold for predicted

probabilities, we can use the Area Under the Receiver Operating Characteristic Curve

(ROC-AUC). If we want to marginalize out both the thresholds for emission and

prediction probabilities, we can perform Kendall’s τ rank correlation test between the

emission and predicted probabilities on whether it is greater than 0 or not (Kendall,

1938), which is recommended.

The mathematical formulation is as follows. First we fit the model by heteroskedasticity-

based E-M algorithm. For each episode t, we have the observation Vt = {Vt,m}nm=1,

and the emission probability b1(Vt) = P(ht = M1|Vt,M1 ∪M2), and denote it as et.

The predicted probability is the probability of observing M1 conditioned on all infor-

mation till time t− 1 that P(ht = M1|V1, · · · , Vt−1;M1 ∪M2), and denote it as pt. It

can be calculated by the standard forward algorithm. Then we could have a set of

pairs of emission and prediction probabilities {(et, pt)}t=1:T . To test whether the pre-

diction and emission probabilities match with each other, or whether the prediction

probabilities have predictive power for emission probabilities, we use Kendall’s rank
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correlation coefficient τ as defined below:

τ =
C −D

C +D
, (2.5)

where C and D are the number of concordant and discordant pairs between et and pt,

defined that for any pair (et, pt) and (es, ps) that 1 ≤ t < s ≤ T , if et > pt, es > ps or

et < pt, es < ps, then this pair is concordant, otherwise it is discordant. In the cases

without ties, which is basically true in our cases, we have C +D =
(
T
2

)
pairs that are

either concordant or discordant. The hypothesis to test is

H0 : pt and et are independent;

HA : pt can predict et.

Under the null hypothesis that there is no rank-correlation between et and pt, the

τ defined in Eq 2.5 asymptotically follows N
(
0, 2(2T+5)

9T (T−1)

)
where T is the number of

pairs or episodes. If pt can predict et, then the rank correlation τ should be positive,

in which case we can conclude that the RS phenomenon exists. So this test can be

converted to a one-sided z-test with p-value calculated by

p− value = 1− F

(
τ ;N

(
0,

2(2T + 5)

9T (T − 1)

))

where F
(
·;N

(
0, 2(2T+5)

9T (T−1)

))
is the cumulative distribution function ofN

(
0, 2(2T+5)

9T (T−1)

)
.

This is the RS test we proposed.

The RS test could be performed in-sample or out-of-sample. For in-sample hypoth-

esis testing, the parameters (π0,T , E) are estimated from the same dataset as for

testing rank correlation. For out-of-sample hypothesis testing, these parameters are
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estimated from one observed process and the hypothesis testing is performed on a

different observed process. The ‘in-sample’ only means the parameters are estimated

in the same dataset for hypothesis testing, and other than that we are not using

any future information for prediction. In both two settings, the hypothesis testing

procedures are the same and valid. Its pseudocode is shown in Alg 7.

Algorithm 7: RS test
Data: {V (train)

t }T (train)

t=1 , {Vt}Tt=1

Result: τ , p-value.
// Training series {V (train)

t }T (train)

t=1 and testing series {Vt}Tt=1 could be
the same, for in-sample testing, or different, for out-of-sample
testing.

Estimate {π̂0, T̂ , {Θ̂i}i} by Alg 5 with data {V (train)
t }T (train)

t=1 ;
for t← 1 to T do

Calculate et = b1(Vt) by Alg 4;
if t = 1 then

for j ← 1 to 2 do
αt(j)←− π̂0(j);

end
else

for j ← 1 to 2 do
αt(j)←−

∑2
i=1 αt−1(i)Tij;

end
pt ←− αt(1)

αt(1)+αt(2)
;

for j ← 1 to 2 do
αt(j)←− αt(j)bj(Vt);

end
end
Calculate τ by Eq 2.5 from {(et, pt)}t;
p− value = 1− F

(
τ ;N

(
0, 2(2T+5)

9T (T−1)

))
;
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2.3.5 Choosing hyperparameters

In this algorithm, we need to pre-specify hyperparameters including g, π(M1), π(M2)

and length of episode each state lasts for.

The choice of length of each episode depends on our prior knowledge. For example, if

we are studying the RS phenomenon for stock market volatility, and the volatility is

calculated from the market, so each episode could last one trading day as the trading

hours are not consecutive overnight. In some other cases where the time process is

consecutive, such as the crypto-currency market, we could break it down by hours or

days. If we don’t have high frequency records, we could use one week, one month or

one year as an episode, which can be used for macroeconomics research. There are two

requirements for each episode we should try to satisfy. First, each episode should be

long enough to have sufficient data points, such as hundreds, for heteroskedasticity

regression and test. Second, each episode should be short enough so it could be

modeled by a single basic model. In our applications, we use minute-level data and

each episode is set to be one trading day and has 390 data points each episode. If we

only have hourly or daily data, we cannot let each episode be one day as we cannot

have enough data points per episode.

The choice of π(M1), π(M2) and π(O) depends on our prior belief. In general we

want π(O) to be small, such as π(O) = 0.2. For M1 and M2, we could allocate the

prior weights according to our prior belief. If we had no prior belief, we could equally

allocate the weight, such as π(M1) = π(M2) = 0.4.

The choice of g is a little bit tricky. g is for calculating the emission probabilities from

heteroskedasticity tests, and we want the emission probabilities to be distinguishable.

For the Bayes factor of linear regression, researchers have suggested various methods
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to select g such as empirical Bayes (Liang et al., 2008). However, these methods

work in the static setting that the dataset remains unchanged. In our E-M iterations,

though the observed process is not changing, the weights for each episode are the state

occupancy probabilities and remain changing. Thus we suggest tuning g according

to the training set that makes the models as distinguishable as possible. We could

choose g that makes the hypothesis testing on the training set to be significant, so

that the power of this testing procedure could be high. See Section 2.5 for more on

discussion on its relationship to signal-noise-ratio.

2.3.6 Formal framework and convergence criteria

The two-step heteroskedasticity test can be written in a unified formula. This frame-

work is not limited in this problem, so we chose to write the data into {Xi, Yi, Zi}Ni=1

form, where Y is the response, X is the features to predict Y , and Z is the part to

explain conditional variance of residuals for heteroskedasticity test. Without loss of

generality we assume X ⊂ Z. Then the heteroskedasticity test can be written into

the following form that

Y = Xβ + U

(Y −Xβ)2 = γ0 + Zγ1 + V

where U is the error term for regressing Y against X and V is the error term for

heteroskedasticity regression. In two-step regression, we first estimate β and then
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estimate γ0, γ1. We could write the two-step regression into one-step that

β̂ = arg min
β

R2
het(β;X,Y, Z) = arg min

β

min
γ0,γ1

[(Y −Xβ)2 − (γ0 + Zγ1)]
2

min
γ0

[(Y −Xβ)2 − γ0]
2

 .

Or to estimate all parameters simultaneously in a min-max form that

β̂, γ̂0, γ̂1 = arg min
β

max
γ0,γ1

 [(Y −Xβ)2 − (γ0 + Zγ1)]
2[

(Y −Xβ)2 − (Y −Xβ)2
]2
 .

In this framework, we are to find β that minimize the above term which is similar to

the R2 of the heteroskedasticity regression. The two-step regression is an approximate

solution of the above optimization, because if β is different from its ordinary least

squares estimation, then the residual term will have leakage of X and increase the

R2 of the heteroskedasticity regression.

Under this framework, we effectively minimize the R2 for the heteroskedasticity re-

gression. For each episode t and each model Mi, we have an R2
t,Mi

. We suggest

to construct the convergence criteria by aggregating these {R2
t,Mi
}i=1,2
t=1,··· ,T . One rec-

ommendation is to use weighted average, that the weight is the state occupancy

probability γt(Mi) calculated from the E-step in Alg 2, which can be written as

R2
het =

1

T

T∑
t=1

2∑
i=1

γt(Mi)R
2
t,Mi

. (2.6)

R2
het is in general decreasing each iteration, and we could use it as the convergence

criteria that when it is decreasing slowly, we stop iterations. In practice, we suggest

to stop if it is decreasing less than a percentage, such as 1%. If R2
het

(r)
is the R2

het
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after r E-M iterations, we will stop when

R2
het

(r−1)
−R2

het

(r)

R2
het

(r−1)
< 0.01

where 0.01 is the criteria we choose. Also we could choose other stopping criteria.

For example, the most straightforward way is to choose a fixed number of iterations.

2.4 Results

In this section, we first prove the performance of our RS models and its testing

procedure by simulation. Then we tested whether VIX has the RS phenomenon by

RS test. We mainly focus on the RS-Heston-3/2 model.

2.4.1 Simulations

In the simulation, we want to see whether our RS test can identify the RS phe-

nomenon. Also we want to see how our testing procedure would perform when there

is no RS phenomenon. We generate data from 6 different dynamical models, one RS

model and the other time-invariant models:

• RS-Heston-3/2: RS models between Heston and 3/2 with the initial probability

[0.5, 0.5] and the transition matrix [[0.9, 0.1], [0.1, 0.9]]⊤;

• Heston: Heston model without RS;

• 3/2: 3/2 model without RS;

• GARCH: GARCH model without RS;
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Figure 2.2: The histograms of estimated Kendall’s rank correlation τ (top row) and
of the p-values (bottom row, in the log10 scales) of repeated simulations. The left
column are the in-sample results and the right column are the out-of-sample results.
There are 6 kinds of true models: RS, Heston, 3/2, GARCH, 4/2 and mixture models.
We could see the RS and time-invariant models’ rank correlations are separated, and
the hypothesis testing has a large power.

• 4/2: 4/2 model without RS, which is of the form aVt +
b
Vt

where Vt follows a

Heston model;

• Mixture: a mixture model of Heston and 3/2 models, that at each episode it is

equally likely to be a Heston model or a 3/2 model, and the modes of different

episodes are independent.

For each model, the model parameters are κH = κ3/2 = κG = 5, ηH = η3/2 = ηG =

0.25, ξH ×
√
ηH = ξ3/2 × η

3
2

3/2 = ξG ×
√
ηG = 0.25 and initial value 0.16. The 4/2
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model is Vt = V
(H)
t + ηH

V
(H)
t

where V
(H)
t is generated from Heston model. For each

dynamic, I generated 2 independent time series with the same model parameters, one

of which is for training and the other is for out-of-sample testing. Both series contain

250 episodes, close to 252 trading days per year, and each episode lasts 400 time

points, close to 390 trading minutes per trading day. We trained the RS-Heston-3/2

model on one series and performed the testing procedure on both two series to get

the in-sample and out-of-sample testing results, including the testing statistics τ and

p-values.

The results are shown in Fig 2.2. It contains 4 sub-figures that are the histogram of

rank correlation τ ’s / p-values of in-sample / out-of-sample test. The in-sample and

out-of-sample results are similar. We could see that if the true model is a basic model

without RS, the rank correlations are centered close to 0 and in general smaller than

0.1, and the p-values are typically larger than 0.01. When the true models are RS,

the rank correlations are in general larger than 0.1 and centered around 0.15, and the

p-values are much smaller than 0.01, that is to say, this hypothesis test has a large

power.

When the true model is time-invariant, it is still slightly biased towards positive rank

correlations because even the basic model could be approximated by the RS model,

though this phenomenon is not strong. This bias is different for different models. If

the true model is GARCH, then the bias is nearly 0. If the true model is Heston, 3/2

model or their mixtures, the bias is slight. If the true model is 4/2 model, the bias is

slightly larger though it is still much smaller than the true RS models. The reason is

that the 4/2 model is the summation of a Heston model and a 3/2 model, so it has

both patterns of Heston and 3/2 models, which can be modeled by RS. See Section

2.5 for more discussions.



31

2.4.2 Applications on VIX

We applied the in-sample RS test on VIX data2. The data is from 2021-07-29 to 2022-

02-08 as shown in Fig 2.3. We regard each trading day as an episode, and within each

episode, we use the minute-level squared VIX data as the observed volatility process.

We only used the trading hour (09:30-16:00) data so each episode has 390 data points.

We estimated the RS-Heston-3/2 model and we inferred the rank correlation and p-

value of the in-sample RS test.

Figure 2.3: VIX data (minute-level; 2021-07-29 to 2022-02-08; squared).

The RS testing results are shown in Table 2.1. These statistics are in-sample. We

could see that the rank correlation τ = 0.12 is large, and the p-value is 0.018, signifi-

cant. So we could conclude that the VIX has the RS phenomenon during 2021-07-29

to 2022-02-08.

Statistics (in-sample) Values
rank correlation τ 0.12

p-value 0.018

Table 2.1: RS test (in-sample) results of VIX. From the τ and p-value, we could see
it is significant and VIX has the RS phenomenon.

2Source: Bloomberg Finance L.P.
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2.5 Discussion

First of all, we want to discuss what RS is and why the RS phenomenon exists. There

are different views on why the RS phenomenon exist, for example some researchers

believe it is related to business cycles (e.g. Hamilton, 1989), and some researchers

think the regimes switch due to changing fundamentals (see Ang and Timmermann,

2012, for a review). In practice, we would like to view RS as a modeling approach,

that RS is a simplified approximation of a complicated model. This view corresponds

to the business cycles or changing fundamentals arguments but is more general. For

example, we could think there is a complicated model that involves the economic

fundamentals as unobserved external parameters, which is changing slowly and impact

the observations largely, so we can approximate the process conditioned on different

regimes of these latent fundamentals by different basic models, and RS is caused by

the changing fundamentals. From this approximation view, we could also illustrate

why the RS test is slightly biased. When the true model is a basic model without

RS, still we can infer it by a RS model, because even for the basic models, there

are some phases having the pattern of other models, or in another word, models are

indistinguishable during these phases. That’s why the simulation results in Section

2.4.1, the RS testing results are slightly biased. But this bias is moderate and we

don’t need to worry about false positiveness here. To be conservative, we could use

τ > 0.1 or p-value < 0.001 to decide whether it is significant or not.

The above approximation view is inherited from the usage of stochastic volatility mod-

els. For example, when the Heston model is proposed, the main advantage lies in its

closed-form solution for option pricing. Later other researchers found the square-root

diffusion term cannot model all processes sufficiently, so other stochastic volatility

candidates are proposed, such as the 3/2 model. But whatever model is proposed, it is
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not aiming at fully modeling how data is generated but to mostly capture important

patterns by simple models. Our RS model is in line with this view.

Besides, we propose a trick for estimating the RS model, called the third-state trick.

This trick is designed for the RS model between different dynamical systems and is a

patch for E-M algorithm on separated model spaces. Conventional RS models, such

as HMM, have a common model space for different states. However, our RS models

have different model spaces for different states, and topologically they are separated

and unconnected. So if the true model falls in between these two classes, the emission

probability will be indistinguishable and there will be difficulties in inference. This

kind of difficulty is only for our RS models, due to the aforementioned connectedness

issue. To accommodate it, we proposed the third-state trick. This trick creates the

third state outside of M1 and M2 for accommodating the indistinguishable cases. We

need to make the following modifications:

• Add the third state M3;

• After getting emission probabilities b1(Vt) and b2(Vt) for each episode t, we

reassign the emission probabilities to 3 states [b̃1(Vt), b̃2(Vt), b̃3(Vt)] that b̃3(Vt) =

min(b1(Vt), b2(Vt)), b̃1(Vt) = b1(Vt)− b̃3(Vt)/2 and b̃2(Vt) = b2(Vt)− b̃3(Vt)/2;

• After fitting the transition matrix T̂ , we reassign the transition matrix from

the third state that T̂2· = [1
3
, 1
3
, 1
3
];

• The predicted probabilities of the third state should be conditioned out.

In Section 2.3, we discussed the choice of g that we need to make the emission prob-

abilities as distinguishable as possible. If we cannot find a suitable g, we can use this

third-state trick. Also we could alter the strength of the third state by changing the
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emission probability assigned to the third state by choosing an α ∈ [0, 1] and setting

b̃3(Vt) = αmin(b1(Vt), b2(Vt)). If α = 1, then it is the third-state trick described

above. If α = 0, it is equivalent to not using the third-state trick.

The heteroskedasticity test works better under a suitable signal-noise-ratio. A set

of distinguishable emission probabilities appears when the heteroskedasticity tests

for different models are different, that one test is insignificant and all others are

significant. This requires a suitable signal-noise-ratio, because a too large noise will

make all tests insignificant, and a too small noise will make all tests significant, both of

which are not ideal. That’s why we need to tune the hyperparameter g for emission

probabilities to make them distinguishable since tuning g is effectively tuning the

signal-noise-ratio in the Bayes factor.

For volatility process, we mainly study the RS-Heston-3/2 model, because the Heston

and 3/2 models are inherently connected that if Vt follows a Heston model, then 1
Vt

follows a 3/2 model. Also researchers have already proposed the 4/2 model, which

assumes the true volatility is a summation of a Heston and 3/2 process because

different models can capture different patterns. If we view the 4/2 model as a mixture

of the Heston and 3/2 models, our RS-Heston-3/2 model can be viewed as a temporal

mixture of these two basic models. From the simulation results in Section 2.4.1, we

can see the 4/2 model has the largest τ and smallest p-value in RS test among all

time-invariant models we tried, though not as significant as the true RS model. So

we could think the 4/2 model is to capture the RS phenomenon, but not as powerful

as the RS-Heston-3/2 model. Note that the true volatility processes in Project I and

II show the universe and very significant RS phenomenon, which is more significant

than the simulated 4/2 models.

The distinguishability issue of likelihood discussed in Section 2.3.2 is slightly differ-
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ent from the commonly discussed identifiability issue of likelihood of mixture models,

which refers to the phenomenon that we can switch the clusters’ or states’ labels with-

out affecting the likelihood. For example, in HMM with Gaussian emissions, the label

switching will yield an equivalent HMM model only with different state interpreta-

tion. For our RS models, if we switch the states in our RS models, we will have a very

different model though the likelihood will remain similar. For example, if we switch

the labels in our RS-Heston-3/2 model, then a Heston episode will become a 3/2

episode and vice versa, which will fundamentally change the model assumption and

is essentially very different. That’s why we name this issue as the distinguishability

issue instead of the common identifiability issue of likelihood.

The RS test is testing whether the RS model has predictive power for future regimes,

which is a sufficient condition of the existence of the RS phenomenon. In a special

case where the RS is not predictable when the latent state process has the transition

matrix T = [[0.5, 0.5]⊤, [0.5, 0.5]⊤], then still it is a RS model but the RS test will not

give a significant p-value. In contrast, if the RS test is significant, we should regard

the RS phenomenon as strong enough. Again we want to emphasize that we are not

arguing the true process as time-varying; instead we approximate it by RS between

different basic models to capture different dominant patterns during different time

periods. So we should interpret the significant RS testing results as follows: the

dominant patterns for each episode is predictable from the dominant patterns of its

previous episode, where the dominant patterns are captured by various basic models.

For example, if the RS testing for the RS-Heston-3/2 model is significant, then its

interpretation is whether the Heston or 3/2 model is better to capture next episode’s

pattern can be determined by whether the Heston or 3/2 model is better for capturing

this episode’s pattern. This is the interpretation for RS testing.
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We can further improve the method in several ways. One way is to better define

the E-M algorithm by finding a simple specific target loss function for it. In this

project, we view the E-M algorithm as a computational and heuristic method, and

we don’t have a meaningful and tractable loss function. Another future direction is to

study our method’s prediction power for the volatility level. Currently our prediction

target is the state of the next episode and our hypothesis testing is based on it.

We can further study how to add the predictive power for the volatility process by

our RS structure. Besides, we can study the model calibration approach of our RS

models. In this project, we used the model estimation approach that is based on

historic observed volatility processes. The model calibration approach is based on

the option prices observed at a single time stamp, where we typically first find the

closed-form solution of option prices of our RS models and fit it by the option prices

observed in the market at one time stamp. By this approach we can directly prove

the performance of our RS models from the option market.
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Chapter 3

Project II

3.1 Summary

In Project I, we proposed the RS modeling framework, including the model assump-

tion, heteroskedasticity-based E-M algorithm and RS test. In this project, we continue

on this framework and apply it on a large scale dataset. We apply on the minute-level

Realized Variance (RV) for 31 assets, including SPDR S&P 500 ETF Trust (SPY)

and 30 Dow Jones Industrial average (DJI) component stocks, from 2016 to 2022,

and demonstrate that the RS phenomenon is universe across different assets and

time periods for RV processes.

To calculate minute-level RV, we use the transaction-level high frequency stock trad-

ing data from Trade And Quote (TAQ) dataset. TAQ dataset is a rich dataset

containing a lot of noisy transactions that need to be cleaned first. There is a well-

established data cleaning method but we find it is not suitable for minute-level RV

calculation, since it removes too many transaction records that a lot of minutes don’t

have any valid record so we cannot calculate RV for these minutes. To avoid this,

we propose a novel data cleaning method which keeps twice as many records as the

well-established rule-based method and is still highly correlated with its output in

the daily RV.
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To the best of our knowledge, there is no large-scale research on minute-level RV. Few

researches are on the calculation or modeling of minute-level RV, and in general they

only focus on specific patterns (see e.g. Mu and Zhou, 2008). In this project, we first

proposed the TAQ data cleaning method for RV calculation, and proved that RS is

a universal phenomenon for RV across different assets and time periods.

3.2 Background and Literature Reviews

Similar to the implied volatility studied in Project I, RV is very important in finance.

Except its index1, one could predict RV as a forecast of future volatility (Andersen

and Bollerslev, 1998). Also RV is related to the profit and loss for gamma trading

(Carr and Madan, 2005) and variance swap.

RV is defined on a duration of time. It could be calculated from the quadratic

variation of a downsampled log-price process. For a duration of time, suppose we could

observe a downsampled log-price process logSt1 , logSt2 , · · · , logStN where t1, · · · , tN

is a equidistant or unequidistant partition of this duration, then the RV is

RV =
∑
i

(logSti+1
− logSti)

2. (3.1)

Note that (logSti+1
− logSti) is the log-return from ti to ti+1. Also some researchers

use
∑

i(
Sti+1−Sti

Sti
)2 to calculate RV, which will give very similar results as logSti+1

−

logSti ≈
Sti+1−Sti

Sti
by Taylor expansion. Suppose the log-price process follows the

SDE d logSt = µtdt + σtdWt, then the integrated variance of a time duration is∫
σ2
t dt, and RV is its consistent estimation that plim

∑
i(logSti+1

−logSti)
2 =

∫ T

0
σ2
t dt

1Refer to https://www.cboe.com/us/indices/dashboard/gamma for details.

https://www.cboe.com/us/indices/dashboard/gamma
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(Zhang, Mykland, and Aı̈t-Sahalia, 2005). In reality, we cannot observe the exact

price process, but a noisy price process from the market, which is the true price plus

a market microstructure noise (Zhang, Mykland, and Aı̈t-Sahalia, 2005; Bandi and

Russell, 2008; Hansen and Lunde, 2006). In this study, we will not focus on the market

microstructure noise because we are focusing on the dynamical systems of RV instead

of its estimation. But we will talk about the data cleaning and downsampling later.

Also we will only study RV during trading hours and will not discuss the overnight

RV which is typically modeled separately (Andersen, Bollerslev, and Huang, 2011).

RV is calculated from high-frequency price data, and we use the executed stock trade

data in TAQ dataset from Wharton Research Data Services2 (Wharton Research Data

Services, 2023). The TAQ high-frequency data is highly noisy, and there are different

ways to clean. The most well-established way is rule-based (Barndorff-Nielsen et al.,

2009; Boudt, Cornelissen, and Payseur, 2013) with the following filtering rules:

1. Delete transactions outside of trading hours;

2. Delete transactions with 0 size or price;

3. Delete corrected trades;

4. Delete transactions with sale conditions other than E (automatic execution), F

(intermarket sweep order) or I (odd lot trade);

5. Delete transactions not originating from NYSE, NASDAQ or AMEX.

Another common cleaning method is data-based (Brownlees and Gallo, 2006). It

filters out transactions based on the price St. Brownlees and Gallo (2006) suggested
2Refer to TAQ 3 User’s Guide https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_

Client_Spec_v3.0.pdf for more details

https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_Client_Spec_v3.0.pdf
https://www.nyse.com/publicdocs/nyse/data/Daily_TAQ_Client_Spec_v3.0.pdf
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to only keep transactions satisfying the condition (|St − St| < 3st + 0.02) where St

and si are the 10%-trimmed mean and standard variance of its 40-nearest neighbor

(NN) transactions’ prices in the same trading day. Brownlees and Gallo (2006) also

suggested to tune the number of NN transactions to use and the largest deviation

from the trimmed mean.

The modeling approaches of RV could be categorized depending on whether it is

based on SDEs or not. The models without SDEs are commonly used for prediction,

such as Heterogeneous AutoRegressive (HAR) (Corsi, 2009), High-Frequency-Based

VolatilitY (HEAVY) models (Shephard and Sheppard, 2010; Noureldin, Shephard,

and Sheppard, 2012) and Rough Fractional Stochastic Volatility (RFSV) models

(Gatheral, Jaisson, and Rosenbaum, 2018). This category of methods are widely

used when we focus on forecasting. For example, HAR assumes the future RV is a

linear combination of the daily, weekly and monthly RV. HAR has a rich class of

variants, such as HAR-Q (Bollerslev, Patton, and Quaedvlieg, 2016; Clements and

Preve, 2021), HAR-J (Andersen, Bollerslev, and Diebold, 2007), HAR-SJ (Patton

and Sheppard, 2015) and RS-HAR (X. Wang, Shrestha, and Sun, 2019). HEAVY

is a variant of GARCH that uses high-frequency RV to replace the lagged squared

return in GARCH. RFSV is based on the long-term correlation assumption with the

estimated Hurst parameter. However, the class without SDE cannot reveal how RV

evolves. To model how RV evolves, we need to model it by SDEs, such as the Heston

model (Christoffersen, Jacobs, and Mimouni, 2010). We will focus on the SDE-based

approaches, especially those based on stochastic volatility models.

In this section, we slightly abuse the names of the stochastic volatility models. We use

the same terminology, such as the Heston model, for both the implied volatility and

realized volatility processes. Some researchers has named the corresponding stochastic
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volatility models for realized volatility process. For example, in Christoffersen, Jacobs,

and Mimouni (2010), the Heston-type model for RV is called the affine square root

stochastic volatility model and is short as SQR, the GARCH-type model is called the

model with linear rather than square root diffusion for variance and is short as VAR,

and the 3/2-type model is called the stochastic volatility model whose power in the

diffusion term is 3/2 and whose variance drift is nonlinear in the level of the variance

and is short as 3/2N. For consistency, we will stick on the Heston, GARCH and 3/2

models for both two kinds of processes.

3.3 Methodology: Data Cleaning on TAQ Data

In this section, we propose a novel data cleaning method for TAQ dataset that takes a

better trade-off between the data quality and data size. It is important not to remove

too many data points for high-frequency applications because we need to calculate

minute-level RV.

The motivation is to combine the rule-based and data-based cleaning. We used rule-

based cleaning for preliminary filtration and used data-based cleaning for fine filtra-

tion. For rule-based preliminary filtration, we used all rules mentioned in the previous

section except the last rule that filters out transactions not originating from NYSE,

NASDAQ or AMEX. Instead we only filter out transactions originating from the Fi-

nancial Industry Regulatory Authority which contains a lot of darkpool transactions.

That is to say, we used the following rules:

1. Delete transactions outside of trading hours;

2. Delete transactions with 0 size or price;
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3. Delete corrected trades;

4. Delete transactions with sale conditions other than E (automatic execution), F

(intermarket sweep order) or I (odd lot trade);

5. Delete transactions originated from Financial Industry Regulatory Authority.

The remaining data are divided into two parts, (1) the transactions from NYSE,

NASDAQ or AMEX, and (2) the transactions from other exchanges, and then we

perform the data-based cleaning. We use the first part to calculate the trimmed

mean and trimmed variance based on which we filter both two parts of data. That

is to say, suppose we have a series of price St, then for each transaction, we keep it

only when its price St satisfies

(|St − St| < 2si),

where St and si are the 10%-trimmed mean and 10%-trimmed standard variance of

the 20-NN of St that are originated from NYSE, NASDAQ or AMEX. The data-based

cleaning method has 2 hyperparameters, the number of NN and the largest deviation

from the trimmed mean. We chose to use the 20-NN and 2si, denoted as 2std, instead

of 40-NN and (3si+0.02), denoted as 3std+0.02, as suggested by Brownlees and Gallo

(2006) to remove the bias in the data, and more results on different data cleaning

hyperparameters are shown in Section 3.4. We name this method as Rule aNd Data

(RnD)-based cleaning method.
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3.4 Results: RS on RV

In this section, we study 31 assets, SPY and the 30 DJI component stocks from 2016

to 2022. We showed the results for two parts, including the performance of our new

data cleaning method and the out-of-sample RS test.

3.4.1 Data cleaning results

In this part, we want to verify our new data cleaning methods, RnD-based method,

works well, that our method performs similarly to the well-established rule-based

method and at the same time it keeps a much larger proportion of transactions than

the rule-based method.

First, we show the performance of RnD-based methods with different hyperparam-

eters. There are 2 hyperparameters, the number of NN and the largest deviation

from the trimmed-mean. In Section 3.3, we suggest to using 20-NN and the largest

deviation to be 2std. It is tuned to be different from the original data-based method

(Brownlees and Gallo, 2006) that uses 40-NN and 3std+0.02. To show the reason we

conduct the following experiments. For each set of hyperparameters, after RnD-based

data cleaning, we calculate the RV for the m-th minute of trading day t by Eq 3.1,

RVt,m, then we aggregate the RV of the whole day by RVt =
∑

m RVt,m. So for each

day t, we have RVt under different data cleaning methods, including the RnD-based

method RV RnD
t and rule-based method RV r

t . We particularly compare the RnD-

based cleaning method under different parameters, including 20/40-NN and 2std /

(3std+0.02), with the rule-based method. For each configuration, we regress RV RnD
t

against RV r
t without intercept to study their correlations, and we want RV RnD

t to be

close to RV r
t with a high correlation and low bias.
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Figure 3.1: The correlation plot of daily RV for rule-based (x-axis) and RnD-based
methods (y-axis). For each subfigure, the title shows the parameters of the RnD-
based method, whether outliers are excluded, and the bias of the slope of regression.
The scatters are each day’s RV , The blue dashed line is the regression line, and the
red dashed line is the unbiased y = x line.
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The scatter plots and regression lines are shown in Fig 3.1, and the slopes and R2’s are

shown in Table 3.1. For each setting, we regressed RV RnD
t = kRV r

t with or without

outlier. For each regression, we mainly looked at 2 quantities. One is the R2, that we

want the R2 to be as close to 1 as possible, which means the RVt of the RnD-based

method and of the rule-based method are highly correlated. The second quantity is

the regression coefficient k that we want it to be as close to 1 as possible. If k = 1,

then there is no bias of our RnD-based method from the well-established rule-based

method. From these subfigures, we could see that no matter with or without outliers,

R2 ≈ 1. That is to say, our new method is highly correlated with the well-established

method whatever parameters are chosen. But different parameters yield different

regression coefficients k, which means different levels of bias. If we choose 20-NN and

2std as we recommended, k is about 1.15 that the bias is about 15%. If we choose

40-NN and 3std+0.02 as recommended by Brownlees and Gallo (2006), we will have

k > 1.5 that the bias is more than 50%. That’s why we recommend 20-NN and 2std.

with outlier without outlier
largest deviation NN slope R2 slope R2

2std 20 1.19 0.993 1.12 0.985
2std 40 1.30 0.971 1.19 0.988

3std+ 0.02 20 1.49 0.992 1.54 0.985
3std+ 0.02 40 1.61 0.978 1.56 0.983

Table 3.1: The regression results of daily RV for RnD-based methods against the
well-established rule-based method. The slope and R2 are reported. The slope can
be viewed as 1 + bias. Different parameters for RnD-based cleaning methods all have
very high R2 but different biases. The 20-NN and 2std are yielding least bias among
other parameters.

Second, we could look at the proportion of data kept after filtering by the rule-based

and RnD-based methods. The results are shown in Table 3.2. We could see that

rule-based method keeps about 33% of records and about 20% of trading volumes. In

contrast, our proposed RnD-based method keeps about 66% of records and 38% trad-
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ing volumes. Basically our method keeps two times the well-established rule-based

method. The trading volumes are kept less than the records, because many records

with very large trading volumes are reported to the Financial Industry Regulatory

Authority, which are deleted in both two methods because they are more likely to

be darkpool transactions or delayed reports. Note that the calculation of RV doesn’t

depend on the trading volume, but the number of trading records.

3.4.2 Applications on RV

In this part, we study the out-of-sample RS test on SPY and DJI component stocks

during 2016 and 2022. We clean data by the RnD-based cleaning method as proposed

in Section 3.3, use the transaction level data to aggregate the RV for each minute

during trading hours, and set each trading day as an episode. We break the whole

sequence into two relatively independent parts, one is from 2016 to 2018 and the

other is from 2019 to 2022. We view these two sequences for the same asset as two

independent sequences generated from the same distribution, so we use one sequence

for training and the other for the out-of-sample RS testing. We mainly focus on the

RS-Heston-3/2 model.

The out-of-sample RS testing results, including the estimated out-of-sample rank

correlation τ and p-value on both 2016-2018 and 2019-2022, are shown in Table 3.3.

First of all, we could see that the majority of these RS tests are significant with p-

values less than 0.001, and the estimated τ ’s are large that in general greater than 0.1.

So we could conclude that the RS phenomenon is universal among different assets

and different time periods in the stock market.

Also we can find that if we test on 2016-2018, most assets have significant out-of-
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Rule-based RnD-based
asset % records % volumes % records % volumes
SPY 23% 14% 73% 47%

AAPL 24% 16% 55% 36%
AMGN 37% 22% 68% 40%
AXP 39% 24% 71% 41%
BA 26% 18% 54% 35%

CAT 37% 23% 69% 41%
CRM 35% 21% 65% 39%
CSCO 25% 18% 65% 40%
CVX 35% 20% 68% 36%
DIS 29% 20% 57% 36%

DOW 35% 21% 69% 37%
GS 36% 20% 65% 37%
HD 34% 20% 64% 37%

HON 37% 22% 67% 38%
IBM 34% 20% 66% 36%
INTC 26% 18% 65% 40%
JNJ 33% 18% 65% 33%
JPM 32% 21% 67% 37%
KO 25% 18% 62% 33%

MCD 35% 21% 65% 38%
MMM 37% 20% 66% 34%
MRK 32% 20% 68% 35%
MSFT 30% 19% 63% 40%
NKE 35% 21% 67% 38%
PG 36% 19% 69% 33%

TRV 43% 23% 73% 39%
UNH 37% 21% 67% 36%

V 35% 19% 67% 34%
VZ 24% 18% 62% 34%

WBA 33% 21% 70% 43%
WMT 32% 22% 64% 40%

average 33% 20% 66% 38%

Table 3.2: The proportion of records and volumes kept under rule-based and RnD-
based methods (20-NN and 2std). We could see the majorities are very significant,
and if we train in 2019-2022 and test in 2016-2018, RS tests are nearly all significant.
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sample RS testing results with p-value less than 0.001 except HON, which has a

less-than-0.01 p-value 0.0027. The reason for the universal significance could be that

though 2016-2018 is a highly volatile period, it is not as volatile as 2019-2022, in the

sense that its ‘evolution of the changing dynamical system’ is relatively stable and

predictable. So it is more significant than the test in 2019-2022, during which period,

the fundamentals are changing across different time periods, that the ‘evolution of

the changing dynamical system’ is not stable. But even under this scenario, the RS

test is still significant on more than half of the assets.

3.5 Discussion and Conclusion

In Project II, we first proposed a data cleaning method for TAQ data, that has a

better trade-off between the data quality and data size. This method combines the

well-established rule-based cleaning method and a data-based cleaning method. This

new method keeps about one times more data than the well-established rule-based

method, and the output RV of the new method is highly correlated with the rule-

based method with only a moderate bias. This cleaning method can be used in a

larger scope where the data size is an important consideration.

Second, we applied out-of-sample RS tests on stocks’ RV processes and demonstrated

that RS is a universal phenomenon across different assets and time periods. These

results are stronger than the results for VIX in Project I which is an in-sample RS

test on a single volatility process over a half-year time period. In this project, we did

out-of-sample RS tests for a wide variety of assets over a 7-year period.

One future direction of this project is to study why the regime-switching phenomenon

is universal among the assets we studied. The findings in this project are empirical
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Test: 2019-2022 Test: 2016-2018
asset τ p-value τ p-value
SPY 0.046 5.7e-02 0.306 3.2e-36

AAPL 0.049 4.2e-02 0.211 3.7e-18
AMGN 0.030 2.2e-01 0.081 8.3e-04
AXP 0.166 7.4e-12 0.160 4.8e-11
BA 0.039 1.1e-01 0.155 1.9e-10

CAT 0.104 1.7e-05 0.136 2.1e-08
CRM 0.086 4.2e-04 0.194 1.3e-15
CSCO 0.183 4.8e-14 0.221 9.2e-20
CVX 0.174 7.7e-13 0.119 1.1e-06
DIS 0.103 2.0e-05 0.212 3.1e-18

DOW 0.092 3.1e-04 0.212 8.8e-11
GS 0.036 1.3e-01 0.114 2.8e-06
HD 0.079 1.2e-03 0.093 1.4e-04

HON 0.066 6.8e-03 0.073 2.7e-03
IBM 0.027 2.7e-01 0.129 1.0e-07
INTC 0.255 8.2e-26 0.273 4.1e-29
JNJ 0.107 1.2e-05 0.180 1.5e-13
JPM 0.154 2.6e-10 0.191 3.9e-15
KO 0.191 3.4e-15 0.238 1.4e-22

MCD 0.104 1.8e-05 0.105 1.7e-05
MMM 0.075 2.1e-03 0.206 2.9e-17
MRK 0.125 2.9e-07 0.175 6.2e-13
MSFT 0.132 5.7e-08 0.272 5.7e-29
NKE 0.139 1.1e-08 0.234 8.0e-22
PG 0.162 2.7e-11 0.183 5.4e-14

TRV 0.098 5.7e-05 0.101 3.0e-05
UNH 0.106 1.4e-05 0.113 3.6e-06

V 0.107 1.0e-05 0.145 2.8e-09
VZ 0.320 1.2e-39 0.214 1.6e-18

WBA 0.122 5.6e-07 0.151 5.2e-10
WMT 0.190 5.6e-15 0.165 1.3e-11

# 22 / 31 30 / 31

Table 3.3: RS test results of SPY and DJI components. The highlighted cells are
τ > 0.1 or p-value less than 0.001. The last row is the count of significant assets for
each period with p-value less than 0.001.
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without specifying the underlying economic model that governs the asset pricing.

Actually we view our RS model as an approximation of a very sophisticated model

that can be time-varying or time-invariant. So an important future direction is to find

the economic reason behind the regime-switching phenomenon. One possible solution

is to find a time-invariant SDE model that exhibits the RS phenomenon. For example,

we can find a slight RS phenomenon in 4/2 models, but it is far weaker than the RS

phenomenon we observed in our empirical studies. Also it is possible that the SDE

model we want is too complicated for practical usage. So another solution is to

provide a qualitative explanation, which could be behavioral and be out of the scope

of statistics. Besides finding the reasons behind the regime-switching phenomenon,

another future direction is to better calculate RV. In this study we used transaction-

level data to calculate minute-level RV. However, the transactions suffer from market

microstructure noise. There is a rich literature on avoiding market microstructure

noise, but they are usually only applicable for daily RV calculation because they

downsample the price process with a large time interval such as 5 minutes. There are

two ways to solve this issue. One way is to denoise the price process in a way that

allows minute-level RV calculation, but it can be too hard a problem. Another way is

to prove that the RS structure is persistent. One test can be finding whether we can

embed the RS structure into RV forecasting, because the predicted RV is persistent

and not impacted by transient market microstructure noise. So if the RS structure

helps RV forecasting, then the RS structure should be persistent and is not a pure

market microstructure noise.
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Chapter 4

Project III

4.1 Summary

In this project, we study the Regime-Switching (RS) phenomenon for scientific pro-

cess forecasting. A RS model assumes that at different time periods the observed

process follows different dynamical systems. It is an important phenomenon because

the unobserved external environment could largely impact the system and change

fundamentally and slowly. So we could represent it by the RS model switching be-

tween a set of simplified dynamical systems, each of which is conditioned on those

unobserved external factors.

Beyond the RS phenomenon, the evolution of many systems, such as those environ-

mental dynamical systems, is changing periodically. A period could be a day, that

during the noon and night the evolution will follow different patterns. A period could

also be a year, in which the summer and winter dynamical systems are different. So

we need a RS model that could model this strong periodicity.

The general framework for modeling RS is by assuming a latent state process con-

trolling the regimes, which needs to be modeled further. The most common way is

to assume it follows a time-homogeneous Markov chain, so the state transition prob-

abilities are time-invariant and memoryless, which is the RS assumption we used in
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Project I and II.

The property we want to add to the latent state process is strong periodicity. One

way to model the strong periodicity is by harmonic functions. Harmonic functions

are widely used to represent strong periodicity, such as in periodic ARMA (Dudek,

Hurd, and Wójtowicz, 2016). Harmonic functions can guarantee the patterns of

extreme phases during each period, such as the summer or winter phases for a yearly

trend. However, it has difficulties in modeling the intermediate phases, for example,

for yearly periods, during the spring and fall we could observe the summer or winter

dynamical systems because of the highly volatile external environment during these

phases. These intermediate phases are oscillating randomly and we should not impose

a deterministic periodicity for them. As a result, harmonic functions are not suitable

because they are deterministic. We still need random components.

Our motivation is to combine the periodicity and Markov chain for modeling the

latent transitions to make the latent state process simultaneously have the periodic

and Markovian property. But these two properties are contradicting essentially. A

time-homogeneous Markovian process in general doesn’t have a strong periodicity,

and a periodic process in general cannot be Markovian. In this project, we propose a

Periodically-Regime-Switching (PRS) model. This model resolves the contradiction of

Markov and periodically switching, by assuming the transition probabilities changing

periodically. This model lies in between the spectrum from the deterministic strong

periodicity to the purely random Markov chain. Note that the periodicity we discussed

in this project is not the periodicity of the Markov chain, which is not a suitable model

for our problems.

To show its performance, we apply our proposed method on chlorophyll forecast un-

der the Empirical Dynamic Modeling (EDM) framework (Sugihara and May, 1990;
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Sugihara, 1994). EDM framework is an important tool for forecasting a dynamical

system that could be described by a set of PDEs or SDEs. It is similar to an AutoRe-

gressive (AR) model (Box et al., 2015). We proposed the RS version of EDM that

assumes there is a set of prediction functions each of which dominates different time

stamps. Then we proposed PRS-EDM. In this application, we mainly work on PRS

with Linear Regression (PRS-LR) model. This modeling technique that extends the

RS to PRS can be straightforwardly generalized to other RS models, such as HMM.

The contribution of this project is two-folded. The first fold is to propose the PRS

model that lies in between the strong periodic process and the purely random Markov

process. The second fold is to propose the RS and PRS versions of the EDM frame-

work.

4.2 Background and Literature Reviews

Algal bloom is the phenomenon that the population of algae grows rapidly in a water

system. It is a global problem (Pick, 2016; Ho, Michalak, and Pahlevan, 2019; Ndlela

et al., 2016) related to the climate change (Paerl and Huisman, 2008; Paerl and

Huisman, 2009; Paerl and Paul, 2012; Paerl, Gardner, et al., 2016; Ho and Michalak,

2020). A toxic algal bloom is directly harmful to humans (Ciaccio et al., 2015;

Chorus and Bartram, 1999), and every year, it costs the government 4 billion dollars

(Kudela, Berdalet, and Urban, 2015). To mitigate its effect, researchers are trying

to react earlier by finding early warnings (Pace et al., 2017; Wilkinson et al., 2018).

Measuring the toxic algal bloom is costly and cannot be done automatically, so it

is hard to collect a large data set. An accessible approximation for algae is the

chlorophyll in the water system, which is an indicator of algal blooms (Fennel et al.,
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2022) and can be measured automatically.

The accumulation and decrease of algae is a part of a complicated water dynami-

cal system. It involves many variables and is typically represented by PDEs (Glover,

Jenkins, and Doney, 2011). One example is the Nutrients-Phytoplankton-Zooplankton-

Detritus (NPZD) model that is over-simplified. A slightly larger model involves

different kinds of phytoplankton, zooplankton, nutrients and detritus, such as a 9-

component NPZD model to model the spring algal bloom proposed by Ji et al. (2006).

Modeling across different seasons needs to involve more factors such as temperature

(refer to Fennel et al., 2022, for more on this topic).

To collect data involved in this complicated system, we need a lot of lab work and

cannot be measured automatically, which leads to the difficulties in high-frequency

data collection. To forecast a time series better, we need to take the trade-off between

larger data size and better data quality. The lab experiments give us comprehensive

measurements of the water quality in a low frequency, such as daily or weekly. If

we have enough data of this kind, we can model and estimate the full system of

PDEs (Møller, Madsen, and Carstensen, 2011), but in general it is too costly and the

data is limited. Another kind of data is collected from the automatic shore stations

which measure the water quality in a high frequency, such as every 15-minute, but

only measures a limited part of variables. We focus on this kind of datasets and

study how to better forecast based on the high-frequency measurements with limited

variables.

The data set we are using is from Virginia Institute of Marine Science’s automatic

shore station at Willis Wharf site. It automatically measures the water quality (Ross

and Snyder, 2020) including chlorophyll, along with cross predictors including water
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temperature, salinity, pH, optical dissolved oxygen, turbidity and wind speed1.

The state-of-the-art method to solve this problem is under the EDM framework (Sug-

ihara and May, 1990; Sugihara, 1994; Dietze et al., 2018; Bailey, Doney, and Lima,

2004; Yu et al., 2021). EDM guarantees that we can predict a time series by its lagged

observations if this time series can be represented by a dynamical system of PDEs.

Mathematically, if we have a dynamical system involving some variables, and we can

observed a subset of them {Yt}Tt=1 with a fixed time interval, then there exist a pre-

diction function f(·) that Yt+h = f(Yt, · · · , Yt−k), where h is the forecast horizon and

k is the lag to use and is mathematically proved to be finite. EDM is proposed if the

data follows a deterministic dynamical system of PDEs without randomness. Later

researchers have used it for systems with random noise (Cenci, Sugihara, and Saave-

dra, 2019), and the prediction function could be written as Ŷt+h = f(Yt, · · · , Yt−k).

EDM framework doesn’t tell how to find the prediction function f(·), and we can

use different regression methods to find it, such as linear regression, support vector

machine (Cortes and Vapnik, 1995) and random forest (Breiman, 2001). If EDM is

nested with linear regression, then the model has the same mathematical form as

AR(k) though their model assumptions are different. We can view the AR model as

a specific case of linear regression because the inference of AR is equivalent to a lin-

ear regression if AR is fitted by ordinary least squares. A specific regression method

widely used in EDM is S-map (Sugihara, 1994), which uses locally exponentially

weighted linear regression for prediction.

EDM’s prediction function f(·) is time-invariant and suffers from model complexity

issues. We propose RS and PRS prediction functions f(·; t) to relax the time invari-

ance assumption. Here I briefly introduced the studies on RS for linear regression or
1Refer to https://www.vims.edu/esl/research/water_quality/williswharf.php for the

dataset.

https://www.vims.edu/esl/research/water_quality/williswharf.php
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AR. RS-AR, commonly called Markov-switching AR, is a special case of RS-Linear

Regression (RS-LR), commonly called Markov-modulated linear regression. It is first

introduced for studying gross national income (Hamilton, 1989) and then widely used

in economics (Adejumo, Albert, and Asemota, 2020; Tuaneh, Essi, and Etuk, 2021;

Deschamps, 2008) and environmental science, such as for wind prediction (Pinson and

Madsen, 2012; Ailliot and Monbet, 2012). These methods don’t assume any season-

ality so some researchers have proposed variants including the seasonal components.

For example, Aliat and Hamdi (2018) proposed to use periodic Markov-switching AR

whose parameters of each state are strictly periodic; Spezia, Paroli, and Dellapor-

tas (2004) proposed to use Markov-switching AR with additive harmonic processes

with applications on air pollution prediction. To the best of our knowledge, there

is no work that assumes the latent state process is changing both periodically and

randomly.

4.3 Methodology

4.3.1 PRS models

We propose the PRS model for the latent state process. The motivation is to model

the latent state process by a conditional Markov process, that the state transition

probabilities are periodic, and conditioned on the state transition probabilities it is

Markovian. This process is in between the deterministic harmonic functions and the

purely random time-homogeneous Markov chain. Formally, suppose we have a state

process {ht}t that is transiting among S states, and we want the transition probability

to have a period L. Then at time t, the conditional transition probabilities from
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Algorithm 8: Algorithm to infer T (·) (Form I).
Data: {ξt(i, j)}i,j=1:S

t=1:(T−1), L
Result: {(λ(c)

ij , λ
(s)
ij ), λ

(intercept)
ij )}j=1:S

i=1:S

for i← 1 to S do
X,Y,W ←− [], [], [];
for t← 1 to T − 1 do

for j ← 1 to S do
Append [cos(2πt

L
), sin(2πt

L
)] on X;

Append j on Y ;
Append ξt(i, j) on W ;

end
end
Fit a weighted multinomial-logistic regression with a nearly 0 regularization
based on predictors X, responses Y and weight W , and
{(λ(c)

ij , λ
(s)
ij ), λ

(intercept)
ij )}Sj=1 is the regression coefficients and intercepts.

end

ht = i to ht+1 = j is a function of cos(2πt
L

+ ϕ) or a function of cos(2πt
L
) and sin(2πt

L
).

Mathematically, we have some function gij(·) that

Tij(t) = P(ht+1 = j|ht = i) = gij

(
cos(2πt

L
+ ϕij)

)
= gij

(
cos(2πt

L
), sin(2πt

L
)

)
.

We could use either the phase lag form or the sine-cosine form. In general they are

equivalent when the sine and cosine functions are linearly added, where the phase

lag form is better for scientific understanding and the sine-cosine form is better for

inference.

We proposed the following parametric form of this gij(·):

• Form I: to use multinomial logistic regression type on harmonic terms that

Tij(
2πt

L
) =

exp
(
λ
(c)
ij cos(2πt

L
) + λ

(s)
ij sin(2πt

L
) + λ

(intercept)
ij

)
∑S

s=1 exp
(
λ
(c)
is cos(2πt

L
) + λ

(s)
is sin(2πt

L
) + λ

(intercept)
is

) (4.1)
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or in phase lag form

Tij(
2πt

L
) =

exp
(
λij cos(2πt

L
+ ϕij) + λ

(intercept)
ij

)
∑S

s=1 exp
(
λis cos(2πt

L
+ ϕis) + λ

(intercept)
is

) ;

• Form II: to use truncated linear type on harmonic terms that

Tij(
2πt

L
) =

(
λ
(c)
ij cos(2πt

L
) + λ

(s)
ij sin(2πt

L
) + λ

(intercept)
ij

)+

∑S
s=1

(
λ
(c)
is cos(2πt

L
) + λ

(s)
is sin(2πt

L
) + λ

(intercept)
is

)+ (4.2)

or in phase lag form

Tij(
2πt

L
) =

(
λij cos(2πt

L
+ ϕij) + λ

(intercept)
ij

)+

∑S
s=1

(
λis cos(2πt

L
+ ϕis) + λ

(intercept)
is

)+

where (·)+ is the positive part function that (·)+ = max(·, 0).

Besides these two forms, we could use any function of cos(2πt
L
) and sin(2πt

L
) as long

as it is a valid transition matrix that all elements are non-negative and rows sum

up 1. The proposed Form I and II are easier to infer, especially Form I since it is

second-order differentiable so can be inferred by Newton-Raphson algorithm. Form II

is similar to Form I because we could view exp(·) as a soft approximation of (·)+. The

inference of these two forms can be done by Maximum Likelihood Estimation (MLE)

based on the intermediate results {ξt(i, j)}i,j=1:S
t=1:(T−1) from the E-step in E-M algorithm.

The pseudocode for inferring Form I is shown in Alg 8, which converts the problem

into a multinomial-logistic regression. It requires a nearly 0 regularization or set

λ
(c)
ij = λ

(s)
ij = λ

(intercept)
ij = 0 for all j = 1 to avoid the identifiability problem. Inferring

Form II is similar but not as standard as using the Newton-Raphson algorithm for
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Form I, so it will be slower and more vulnerable than Form I. The advantage of Form

II is that it is linear to the harmonic functions unless truncated, while Form I is linear

to the harmonic terms only when it is close to 0. In practice, we recommend trying

both 2 forms and finding the better one for prediction, but if you are unsure which

one to use, Form I is recommended because it is standard and robust.

Any RS model can be extended to this PRS model if we believe the latent state

processes are strongly-periodic and Markovian processes. In this section, we mainly

focus on the PRS model with linear regression, which is the PRS version of Markov-

modulated linear regression (Andronov and Spiridovska, 2019). The adoption of

PRS for any other RS models, such as HMM, is straightforward. If we apply PRS

on HMM, then it is similar to the HMM with exogenous input (Bengio and Frasconi,

1994) that uses cos(2πt
L
) and sin(2πt

L
) as exogenous input, and Form I parametrization

by multinomial-logistic functions is widely used in this scenario (Filardo, 1994; Shirley

et al., 2010).

4.3.2 RS-EDM and PRS-EDM

Algorithm 9: E-M algorithm for inferring PRS-LR model
Data: {(t,Xt, Yt)}Tt=1, L
Result: {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S}
Initialize {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S} ;
while not converged do

E-step: update {γt(j)}j=1:S
t=1:T and {ξt(i, j)}i,j=1:S

t=1:(T−1) conditioned on
{π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S} by Alg 10;
M-step: update {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S} conditioned on {γt(j)} and
{ξt(i, j)} by Alg 11;

end

EDM (Sugihara and May, 1990; Sugihara, 1994) is a powerful framework to fore-
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Algorithm 10: E-step of the E-M algorithm for inferring PRS-LR model
Data: {(t,Xt, Yt)}Tt=1, L, {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S}
Result: {γt(j)}j=1:S

t=1:T , {ξt(i, j)}i,j=1:S
t=1:(T−1)

// Emission probabilities
for t← 1 to T do

for j ← 1 to S do
bj(t)←− pdf(Yt −Xtβ̂j;N (0, σ̂2

j ));
end

end
// Forward probabilities
for t← 1 to T do

αt(j)←−

{
π0(j)bj(1), if t = 1∑S

i=1 αt−1(i)Tij(
2πt
L
)bj(t), otherwise

∀j = 1, · · · , S;

end
// Backward probabilities
for t← T to 1 do

βt(j)←−

{
1, if t = T∑S

j=1 Tij(
2πt
L
)βt+1(j)bj(t+ 1), otherwise

∀j = 1, · · · , S;

end
// State occupancy probabilities
P(ht = j) = γt(j)←− αt(j)βt(j)∑S

i=1 αt(i)βt(i)
∀t, j;

P(ht = i, ht+1 = j) = ξt(i, j)←−
αt(i)Tij(

2πt
L

)bj(Xt+1)βt+1(j)∑S
i=1 αt(i)βt(i)

∀t, i, j;

Algorithm 11: M-step of the E-M algorithm for inferring PRS-LR model
Data: {(t,Xt, Yt)}Tt=1, {γt(j)}

j=1:S
t=1:T , {ξt(i, j)}i,j=1:S

t=1:(T−1)

Result: {π̂0, T̂ (·), {(β̂s, σ̂2
s)}s=1:S}

π̂0(j)←− γ1(j) ∀j = 1, · · · , S;
Find T̂ij(·) by MLE according to the dataset {ξt(i, j)}t=1:T

i,j=1:S;
for j ← 1 to S do

Find β̂j and σ̂2
j by weighted least square with predictors {Xt}t, responses

{Yt}t and weights {γt(j)}t;
end

cast variables governed by a PDE-based or SDE-based dynamical system. In our

application, the oscillation of the chlorophyll process is typically described by a set
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Algorithm 12: Fitting and h-step-forward prediction based on PRS-LR model
Data: {(t,Xt, Yt)}Tt=1, L, h, Xt+h

Result: Ŷt+h

// Fitting
Fit {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S} by Alg 9;
Find state occupancy probability γt(j) for j = 1, · · · , S by Alg 10;
// Prediction
T(T |T+h) ←−

∏h−1
r=0 T (2π(T+r)

L
);

for s← 1 to S do
γt+h(s)←−

∑
i

[
T(T |T+h)

]
is
γt(i);

end
Ŷt+h ←−

∑
s γt+h(s)Xt+hβs;

of unknown PDEs, so we use the EDM framework to forecast it. Mathematically,

suppose we have observed some equidistant processes {(Ut, Vt)}t governed by some

PDEs or SDEs, that Vt is the target response to predict and Ut are some cross pre-

dictors. If we want to predict h-forward response Vt+h based on information up to

t, then EDM framework guarantees that there exist a prediction function f(·) whose

input is lagged observations V(t−k):t and U(t−m):t and whose output is the predicted

V̂t+h, i.e.

V̂t+h = f(U(t−m):t, V(t−k):t). (4.3)

If the underlying system is PDE-based and deterministic, then V̂t+h = Vt+h. If we

cannot observe any cross predictors, the prediction function could be simplified as

V̂t+h = f(V(t−k):t). In short, EDM guarantees the existence of this AR-type pre-

diction function with finite lags. But EDM doesn’t tell us how to find this predic-

tion function, and we can find it by any suitable machine learning methods, such

as linear regression, support vector machines (Cortes and Vapnik, 1995; Drucker

et al., 1996) or random forest (Breiman, 2001), and fit it from observed train-

ing processes. If we use linear regression, we can write the prediction function as
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V̂t+h = β0 +
∑k

i=0 β
(U)
i Ut−i +

∑m
j=0 β

(V )
j Vt−j. We could view it as a linear regression

problem that predictors are Xt = [U(t−m):t, V(t−k):t] and the response Yt = Vt+h. We

will use the (Xt, Yt) parametrization instead of (Ut, Vt) parameterization when possi-

ble as it is a more general framework not restricted to EDM. Particularly, a dedicated

method S-map (Sugihara, 1994) is proposed along with EDM.

However, standard EDM has the model complexity issue when the underlying dynam-

ical system is very complicated and involves a lot of variables. Though EDM doesn’t

require all variables in the system to be observable, it will use a large lag to accom-

modate it, which will make the input of the prediction function high-dimensional and

suffer from the curse of dimensionality (Keogh and Mueen, 2017). This issue is not

solvable under the standard EDM framework because it is too flexible a framework

that the prediction function is universe and time-invariant without restrictions. So

this prediction function has a high complexity and requires a large training set.

Our motivation to solve this problem is to relax the universe and time-invariant

prediction function assumption. Mathematically in the standard EDM framework,

the prediction function f(·) in Eq 4.3 is time-invariant, that the prediction function at

time t f(·; t) ≡ f(·). We relax this assumption by allowing f(·; t) to be time-dependent

to accommodate the changing external environment. The intuition is that we believe

there exist many unobserved variables that are time-dependent. There are multiple

ways to assume its time-dependent structure, and in this project we propose to use

the RS structure. That is to say, we simplified the prediction function conditioned on
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different external environments into several categories. Mathematically, we assume

ht ∈ {1, · · · , S} for t = 1, · · · , T ;

f(·; t) = fs(·) if ht = s;

Ŷt = fs(Xt), (4.4)

where {ht}t is the latent state process that controls which prediction function is in

place at each time stamp.

{ht}t could be modeled in different ways. The most common choice is to model

the latent state process by a Markov chain, and we name this model as the RS-

EDM model. Another way to model the latent state process {ht}t in Eq 4.4 is by

a PRS model we proposed in Section 4.3.1. We name this method as PRS-EDM.

Mathematically, it assumes

{ht}Tt=1 ∼ PRS;

f(·; t) = fs(·) if ht = s;

Ŷt = fs(Xt).

PRS-EDM guarantees the model switching has a strong periodic trend. The period

could be 1 day if we want to make hour-level prediction, or could be 1 year if we want

to make day-level prediction. If the period length is one year, then we could think

there is a summer mode dominating the summer period and a winter mode dominating

the winter period. During spring and autumn, the model is switching in between

these two modes randomly. The scientific motivation behind is that many unobserved

variables involved in the underlying dynamical system are changing periodically. They
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have the summer mode and winter mode, making the prediction function also have

these modes.

A technical detail using RS-EDM and PRS-EDM for h-step forward forecasting is

that at time T , Yt = Vt+h is not observed if t > T −h. For example, if h = 1, then we

can observe {(Xt, Yt)}T−1
t=1 and XT , and we first find the state occupancy probabilities

for T − 1, perform a one-step forward propagation, and predict ŶT . If h ≥ 2, then

we can observe a truncated training set {(Xt, Yt)}T−h
t=1 and the cross predictor XT to

predict, so we first find the state occupancy probabilities for T − h, perform a h-step

forward propagation, and predict ŶT .

4.3.3 RS-LR and PRS-LR

Though RS-EDM and PRS-EDM are motivated from EDM, they are not restricted in

the EDM context. In EDM, we could write the data into the {(Xt, Yt)}t form where Xt

is the lagged cross predictors and observations and Yt is the h-step forward forecasting

target. That is to say, EDM only tells us how to construct the predictors and responses

and the following inference procedure doesn’t rely on EDM. Particularly, when we use

linear regression for estimating the prediction function for EDM, the EDM reduces

to a linear regression, and similarly RS-EDM reduces to a Markov-modulated linear

regression, which we name as RS-LR for consistent terminology in this section, and

PRS-EDM reduces to PRS-LR. Note that just as linear regression is not necessarily

from the EDM framework, RS-LR and PRS-LR have a wider application than EDM.

RS-LR and PRS-LR can be inferred by MLE with the E-M algorithm. The pseu-

docode of PRS-LR inference is shown in Alg 9. The predictions for PRS-LR are

straightforward by forward algorithm, and the pseudocode of its fitting and pre-
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diction procedure is shown in Alg 12. For PRS with other regression methods or

distributions, the generalization is straightforward. Also the inference of RS-LR is

a special case of PRS-LR. If we estimate T (·) in the M-step, shown in Alg 11, by

the time-invariant transition matrix that T̂ij ←−
∑T−1

t=1 ξt(i,j)∑T−1
t=1

∑S
k=1 ξt(i,k)

∀i, j = 1, · · · , S, then

this PRS model reduces to RS model.

4.3.4 Feature importance

Algorithm 13: In-sample feature selection of PRS-LR model
Data: {(t, Zt, Xt, Yt)}Tt=1, L
Result: p-value
Fit {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S} based on full data {([Zt, Xt], Yt)}Tt=1 by Alg 9;
Find the last forward probability αT (j) for j = 1, · · · , S by Alg 10;
L(full) ←−

∑S
j=1 αT (j);

Fit {π̂0, T̂ (·), {(β̂s, σ̂2
s)}s=1:S} based on reduced data {(Zt, Yt)}Tt=1 by Alg 9;

Find the last forward probability αT (j) for j = 1, · · · , S by Alg 10;
L(reduced) ←−

∑S
j=1 αT (j);

P-value ←− 1− F
(
−2[log(L(reduced))− log(L(full))];χ2

dim(Xt)×dim(Yt)×S

)
where

F (·;χ2
df ) is the cumulative probability function of χ2

df ;

Algorithm 14: In-sample comparsion between PRS-LR and RS-LR models
Data: {(t,Xt, Yt)}Tt=1, L
Result: p-value
Fit {π̂0, T̂ (·), {(β̂s, σ̂2

s)}s=1:S} by Alg 9;
Find the last forward probability αT (j) for j = 1, · · · , S by Alg 10;
L(PRS) ←−

∑S
j=1 αT (j);

Fit {π̂0, T̂ (·), {(β̂s, σ̂2
s)}s=1:S} by Alg 9 that the transition matrix is

time-invariant;
Find the last forward probability αT (j) for j = 1, · · · , S by Alg 10;
L(RS) ←−

∑S
j=1 αT (j);

P-value ←− 1− F
(
−2[log(L(RS))− log(L(PRS))];χ2

2S(S−1)

)
where F (·;χ2

df ) is the
cumulative probability function of χ2

df ;



66

Feature importance or feature selection problem is important. In the EDM frame-

work, if we want to make a better prediction, which feature should be included in

the model needs to be decided. Also studying the impact from each feature helps us

scientifically understand the underlying dynamical system. In PRS models, we want

to find whether the periodicity exists or not. Even outside the EDM framework, we

still need to find which feature is important and should be included in the prediction

model. We propose two approaches to solve it for RS-LR and PRS-LR.

The first approach is the Likelihood Ratio Testing (LRT) feature importance. It is

based on a standard LRT to test whether a feature or a set of features has a significant

impact on the model. This approach requires the RS or PRS models to be estimated

by MLE and have a known degree of freedom. RS-LR and PRS-LR satisfy these

requirements and the testing procedure is as follows. Suppose we have the dataset

{(Zt, Xt, Yt)}t, where Xt is a set of q-dimensional cross predictors that we want to

test whether it has any impact or not, Zt is a set of cross predictors conditioned on,

and Yt is a set of p-dimensional response. To perform LRT, we fit 2 nested S-state

RS-LR or PRS-LR and get their maximized likelihood. One model is fitted based on

the reduced dataset {(Zt, Yt)}t and we can have its maximum likelihood L(reduced),

and the other model is fitted based on the full dataset {([Zt, Xt], Yt)}t and we can

have its maximum likelihood L(full). The difference of their degrees of freedoms is

pqS, so under null hypothesis that Yt doesn’t depend on Xt conditioned on Zt, we

have

−2[log(L(reduced))− log(L(full))] ∼ χ2
pqS.

The feature importance is the p-value of LRT that

LRT feature importance = 1−F
(
−2[log(L(reduced))− log(L(full))];χ2

dim(Xt)×dim(Yt)×S

)
,



67

where F (·;χ2
df ) is the cumulative probability function of χ2

df . The pseudocode is

shown in Alg 13. Similarly, we can test the periodicity by comparing PRS-LR with

RS-LR because they are also nested. Based on the same set of cross predictors, we

could fit a RS-LR model to get its likelihood L(RS) and a PRS-LR model to get its

likelihood L(PRS). The difference of their degrees of freedoms is 2S(S − 1), if we use

the parametric form in Eq 4.1 or Eq 4.2. Under the null hypothesis that RS-LR is

the true model, we have

−2[log(L(RS))− log(L(PRS))] ∼ χ2
2S(S−1).

The LRT feature importance of periodicity is

LRT feature importance = 1− F
(
−2[log(L(RS))− log(L(PRS))];χ2

2S(S−1)

)
.

Its pseudocode is shown in Alg 14.

The second approach is the predictive feature importance. The procedure is stan-

dard, that we compare the prediction performance with and without the features we

want to test by time series cross-validation or any out-of-sample prediction evaluation

methods (see e.g. Hyndman and Athanasopoulos, 2018). Then we compare whether

the metrics, such as R2, have been improved or not if they involve the features we

want to test. With a similar idea, we can compare RS-LR and PRS-LR to see whether

PRS-LR has a better prediction performance than RS-LR. That is to say, if we use

R2 as the prediction metric, then the predictive feature importance is

predictive feature importance = R2
(full) −R2

(reduced)
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where R2
(full) is of the full model and R2

(reduced) is of the reduced model without some

features or periodicity.

These two feature selection or importance approaches are standard. We want to

briefly compare these two methods. The LRT feature importance is based on rigorous

statistical testing whether the testing features could explain any part of the data or

not, but cannot provide the extent of impact. It is not on whether these features could

help prediction and is not forward-looking. The predictive feature importance is based

on whether the testing features could help prediction. This method is heuristic and

not rigorous statistically because the prediction performance is impacted by the data

size due to overfitting. This method is forward-looking. Ideally these two methods

should agree with each other if the process is stationary, but when the dynamical

system is changing, the predictive feature importance might lose its power and LRT

feature importance is still sensitive in general, but the in-sample method might include

features that will undermine the prediction performance if these features have a time-

varying impact.

4.4 Results

In this section, we test the performance of our proposed methods on simulated

datasets and chlorophyll forecasting. In both simulation and real-world application

settings, we prove that RS-LR and PRS-LR outperform the time-invariant models

without the RS phenomenon, and that PRS-LR outperforms RS-LR when there is

periodicity. For PRS-LR, we show the performance with both Form I and II for

transition matrix as shown in Eq 4.1 and 4.2. We denote the PRS-LR with Form I

as PRS-LR-I and with Form II as PRS-LR-II in this section.
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4.4.1 Simulation Results

σ oracle LR RS-LR PRS-LR-I PRS-LR-II
0.1 0.83 0.51 0.60 0.82 0.72
1 0.55 0.34 0.37 0.48 0.45

Table 4.1: The simulation results from PRS-LR’s prediction for different σ, compared
with linear regression (LR) and RS-LR. The oracle is also provided. The reported
metrics are R2, and the best two methods for each setting are highlighted.

We generate data following PRS-LR models and test the prediction performance of

different methods on it. We perform 4 experiments. In the first two experiments, we

test the prediction accuracy with data generated from different models, where in the

first experiment all Xt’s are generated independently and in the second experiment

the data is generated from an AR(1) model. The second experiment is still under the

EDM framework but the first experiment is not. In the third experiment we test the

predictive feature importance and in the fourth experiment we test the LRT feature

importance.

The first experiment’s procedure is as follows. We set dim(X) = 5, dim(Y ) = 1,

T = 550, L = 50, S = 2. We generated 50 sequences of length 550 independently.

For the sequence l, we first generate model parameters. We set the initial proba-

bility [ 1
S
, · · · , 1

S
]⊤, sample the the PRS transition matrix of Form I in Eq 4.1 that

λ
(l)(c)
ij , λ

(l)(s)
ij ∼ Unif [10, 20] and λ

(l)(intercept)
ij ∼ Unif [0, 1] for i, j = 1, · · · , S in-

dependently, and sample the linear regression coefficients β
(l)(s)
j ∼ Unif [−1, 1] for

j = 0, · · · , dim(X) independently. Then we generate {h(l)
t }1:T following the PRS

model first, and conditioned on each h
(l)
t , we generate X

(l)
t and Y

(l)
t , by sampling

X
(l)
t,j ∼ N (0, 1) independently and sampling independently Y

(l)
t ∼

∑dim(X)
j=1 β

(l)(s)
j X

(l)
t,j+

β
(l)(s)
0 + N (0, σ2) conditioned on h

(l)
t = s with different signal-noise-ratio that σ =

0.1, 1. After generating a sequence, we set the last 50 time stamps as the test period,
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and for each time stamp t in this test period, we predict Ŷ
(l)
t by refitting the model

with all data up to time stamp t− 1, i.e. {(X(l)
u , Y

(l)
u )}t−1

u=1, and predict one-step for-

ward to find Ŷ
(l)
t . After predicting all these sequences, we evaluated the prediction

performance by R2 of the prediction {Ŷ (l)
t }lt and {Y (l)

t }lt for all t in testing period and

all these sequences l = 1, · · · , 50.

We compare both PRS-LR-I and PRS-LR-II with benchmark forecasting methods

linear regression and RS-LR. Also we show the oracle R2 that if we know all underlying

model parameters. The resulting R2 are shown in Table 4.1. First, for all signal-

noise-ratios, PRS-LR is pretty close to oracle and outperforms all other methods.

Among other methods, RS-LR is better than LR because LR cannot model the RS

phenomenon. Though RS-LR could model the RS phenomenon, it cannot model

the periodic transition probabilities so it is not as competitive as PRS-LR. Within

PRS-LR, we could see that PRS-LR-I is better than PRS-LR-II. In other results, PRS-

LR-II occasionally outperforms PRS-LR-I but PRS-LR-I is better in the majority of

cases. In most cases, the robustness of the multinomial-logistic form of PRS-LR-I is

important.

R2 persistent LR RS-LR PRS-LR-I PRS-LR-II
1-step -0.14 0.07 0.06 0.20 0.20
3-step -0.42 0.07 0.06 0.11 0.12
7-step -0.99 0.07 0.06 0.11 0.11

Table 4.2: The simulation results of PRS-LR’s prediction for different forecast hori-
zons, including 1/3/7-step forwarding, for AR(1) data generation under PRS transi-
tions, compared with persistent forecasting, linear regression (LR) and RS-LR. The
reported metrics are R2, and the best two methods for each setting are highlighted.

The second experiment’s procedure is similar to the first experiment, except we gen-

erate data as an AR(1), by setting Xt = Yt−1. Particularly, we set dim(X) =
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dim(Y ) = 1, T = 550, Yt =


0.8×Xt + ϵt ht = 1,

−0.8×Xt + ϵt ht = 2,

where ϵt ∼ N (0, 1), {ht}t

follows PRS transition in Form I with λ
(c)
11 = 11, λ

(s)
11 = 20, λ

(intercept)
11 = 0.1, λ

(c)
12 =

18, λ
(s)
12 = 12, λ

(intercept)
12 = 0.5, λ

(c)
21 = 14, λ

(s)
21 = 16, λ

(intercept)
21 = 0.5, λ

(c)
22 = 15, λ

(s)
22 =

16, λ
(intercept)
22 = 0.1. We test the last 50 time stamp with the forecast horizon 1-step,

3-step and 7-step forward forecasting and measured their R2. The result are shown in

Table 4.2. We could see PRS-LR outperforms RS-LR, linear regression and persistent

prediction in both the short-term and long-term prediction.

σ feature removed noise feature PRS-LR-I PRS-LR-II RS-LR
1 X·,1 Yes -3.9e-02 -2.5e-02 -2.6e-02
1 X·,2 Yes -3.9e-02 -2.5e-02 -2.6e-02
1 X·,3 No 0.25 0.28 0.27
1 X·,4 No 0.23 0.25 0.25
1 X·,5 No 0.21 0.23 0.23
1 periodicity No 0.012 0.010 -

0.1 X·,1 Yes -1.3e-02 -1.6e-03 -2.7e-03
0.1 X·,2 Yes -1.3e-02 -1.6e-03 -3.6e-03
0.1 X·,3 No 0.32 0.34 0.34
0.1 X·,4 No 0.29 0.31 0.30
0.1 X·,5 No 0.29 0.30 0.30
0.1 periodicity No 0.018 0.012 -

Table 4.3: The simulation results of PRS-LR and RS-LR predictive feature impor-
tance for different σ. The feature importance is the decrease of R2 if we remove
each feature and periodicity. Important features are highlighted. We could see when
removing a noisy feature, the R2 remains nearly unchanged. If we remove a strong
feature or periodicity, then the R2 largely decreases.

The third experiment’s procedure is similar to the first experiment, except we set

β
(l)(s)
1 , β

(l)(s)
2 ≡ 0 and β

(l)(s)
3 , β

(l)(s)
4 , β

(l)(s)
5 ∼ Unif [1, 2], i.e. the predictors are 5-

dimensional and the first 2 dimensions are noisy features. Then we measure the

prediction performance of PRS-LR with the same experiment procedure as the first

experiment, and measure the decrease of R2 if removing each feature as the predic-
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tive feature importance. The results are shown in Table 4.3. We can see that in both

two signal-noise-ratio settings, the predictive feature importance is consistent with

our model setting. When deleting a noise feature, the R2 remains nearly unchanged

and is sometimes even slightly positive, which means the R2 increases if we remove

a feature, because removing a noisy feature reduces the model complexity. When re-

moving a strong feature, the prediction R2 largely decreases. Similarly, if we remove

the periodicity by using RS-LR instead of PRS-LR, the prediction R2 also decreases.

feature removed noise feature PRS-LR-I PRS-LR-II RS-LR
X·,1 Yes 0.11 0.12 0.14
X·,2 Yes 0.29 0.29 0.12
X·,3 No <1e-16 <1e-16 <1e-16
X·,4 No <1e-16 <1e-16 <1e-16
X·,5 No <1e-16 <1e-16 <1e-16

periodicity No 6.8e-07 7.1e-07 -

Table 4.4: The simulation results of PRS-LR and RS-LR’s LRT feature importance
of each feature and periodicity. We could see that the p-values of noisy features are
insignificant. The p-values of strong features and periodicity are significant with p-
values all close to 0. Significant features are highlighted.

The fourth experiment has the same setting as the second experiment except that

we generate one sequence of T = 1000 and σ = 1.0, and we measure the LRT

feature importance on it. The results are shown in Table 4.4. We can see the p-value

approach is very sensitive and specific, that if we test on a noisy feature, the p-value

is insignificant, while if we test on a strong feature or the periodicity, the p-value is

very significant and close to 0.

From these 4 experiments, we can see that first PRS-LR can largely improve the per-

formance if the underlying true model is PRS-LR, whether under the EDM framework

or not. Also we can see both the LRT and predictive feature importance approaches

for PRS-LR can select the strong features and periodicity and rule out noisy features.
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4.4.2 Application on chlorophyll forecast

Figure 4.1: The original chlorophyll process to forecast along with different extreme
value calculations (top-1, top-2, 90-Q).

In this application, our target is to forecast the chlorophyll. We will forecast the

chlorophyll, especially its peak values, and evaluate the prediction accuracy of dif-

ferent methods, with or without cross-predictors to demonstrate the performance of

PRS-LR and RS-LR. Also we will show the LRT feature importance because it is

important in this scientific setting.

The dataset is high-resolution and has a record every 15 minutes from 2018 to 2022,

except some gap periods without any records. The prediction target is the maximal

chlorophyll level every day. Since the prediction target is day-level and every day we

have approximately 100 records, we aggregated the dataset by day first. We used

the maximal chlorophyll amount as the prediction target and used the following cross
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predictors: max salinity (the maximal salinity), min salinity (the minimal salinity),

min ODO (the minimal optical dissolved oxygen), turbidity (the average turbidity),

pH (the average pH value), temperature (the average temperature) and wind (the

average wind speed). After aggregation, each day has a set of cross predictors and a

target observation except those gap days.

Here the maximum or minimum values for the response and cross predictors are

calculated in 3 different ways: top-1 (the largest/smallest), top-2 (the second largest

/ second smallest) and 90-Q (the 90%-quantile / 10%-quantile) on all records each

day, because the data has outliers. The choice of how to calculate valid extreme values

is a scientific question as our prediction target is the heavy tails. Here we are not to

address which method is better, but to show how RS-LR and PRS-LR perform under

different settings by treating each of them as a separate dataset. We want to point

out that whatever calculation we use, especially those methods removing values, we

need solid scientific reasons. For example, if we remove the largest value, then we

need a solid reason why this largest value is abnormal. Later we could see even top-1

and top-2 have different dynamical patterns and statistically speaking, top-1 has the

heaviest tail and 90-Q has the least heavy tail. The data are shown in Fig 4.1, and

the histogram and the zoomed-in process over 2022 are shown in Appendix A.

The forecasting target is the chlorophyll amount, which is non-negative and heavy-

tailed. It is a common practice to take the logarithm transformation of the maximum

chlorophyll as the prediction target. As our prediction focus is the heavy tails, we

evaluate the prediction performance on the untransformed chlorophyll which is more

sensitive to heavy tails than the log-transformed chlorophyll. So we transform the

chlorophyll by logarithm before fitting and after predicting, and then we transform

both the response and predicted values back to the original scale and evaluate the
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with X horizon persistent AR S-map PRS-LR-I PRS-LR-II RS-LR

top-1
1-day 0.15 0.31 0.31 0.32 0.33 0.30
3-day -0.19 0.23 0.24 0.25 0.25 0.25
7-day -0.48 0.13 0.14 0.14 0.15 0.12

top-2
1-day 0.62 0.68 0.69 0.66 0.66 0.68
3-day 0.35 0.46 0.46 0.46 0.45 0.47
7-day -0.05 0.27 0.28 0.29 0.29 0.24

90-Q
1-day 0.89 0.89 0.89 0.89 0.89 0.89
3-day 0.61 0.65 0.66 0.66 0.66 0.65
7-day 0.21 0.33 0.34 0.20 0.30 0.36

without X horizon persistent AR S-map PRS-LR-I PRS-LR-II RS-LR

top-1
1-day 0.15 0.30 0.30 0.33 0.33 0.30
3-day -0.19 0.21 0.22 0.23 0.23 0.22
7-day -0.48 0.10 0.11 0.10 0.10 0.11

top-2
1-day 0.62 0.68 0.67 0.69 0.69 0.68
3-day 0.35 0.47 0.46 0.47 0.47 0.46
7-day -0.05 0.27 0.27 0.24 0.24 0.25

90-Q
1-day 0.89 0.89 0.88 0.88 0.88 0.89
3-day 0.61 0.65 0.64 0.60 0.60 0.61
7-day 0.21 0.19 0.20 0.10 0.13 0.19

Table 4.5: Prediction accuracy for chlorophyll (top-1, top-2 and 90-Q) of 1-day, 3-day
and 7-day forward with/without cross predictors, measured by R2. For each scenario,
the optimal and sub-optimal method with highest and the second highest R2 are
highlighted. We could see PRS-LR and RS-LR outperforms time-invariant methods
in most cases.
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prediction accuracy by R2. We predict under the EDM framework. We forecast 3

different horizons: 1-day forward, 3-day forward and 7-day forward. We used lag-2 for

chlorophyll and lag-1 for cross predictors, because the lag-2 could model a second order

PDE and the lag-1 could model a first order PDE. Mathematically, denote the cross

predictors as Ut, the chlorophyll process as Vt, then we set Xt = [Ut, log(Vt), log(Vt−1)]

and Yt = [log(Vt+h)]. After prediction, we have the predicted Ŷt = log(V̂t+h). Then

we evaluate (1) the predictions performance and (2) LRT feature selection based

on {exp(Ŷt)}t and {exp(Yt)}t for t in the testing period. For each test day t to

predict, we assume that we could observe all pairs of observations before t − h + 1,

{(Xu, Yu)}u<t−h+1, and Xt. We train the model on all observed pairs and use h-step

forward prediction. This setting is restricted in the EDM framework and the same

as real-world application since there is no information leakage and all Xu and Yu are

observable at time t.

We set the testing period in the following day to accommodate the missing data

during gap periods. There is no record in those gap days so no cross predictors and

target observations. The missing value imputation should be in line with scientific

facts and it is out of the scope of this project, so we use the following way to handle

it. First, we break the processes into sub-processes by gap days, so that all sub-

processes only contain consecutive days of cross predictors and target observations

without missing values. We removed sub-processes shorter than 22 days. Second, we

choose a warm-up length and a number of warm-up sub-processes, that guarantees

the sufficient training of all methods. Note that a larger number of warm-up length

means a delay in prediction if we have some gap days in practice, and a larger number

of warm-up sub-processes means a smaller testing set, so we choose them as small

as possible. For this dataset, we choose to use 3 sub-processes for warm-up, and for
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remaining sub-processes we let its first 7 days for warm-up. The testing period is

approximately from June 2019 to December 2022.

To demonstrate the performance of RS-LR and PRS-LR, we compare them with

the benchmark time-invariant EDM methods including persistent, AR and S-map

(Sugihara, 1994). Persistent forecasting, also called naive forecasting, is to use the

latest target observation as the prediction of the future, regardless of the forecast

horizon. AR uses the lagged cross-predictors and target observations and we fitted

it by linear regression. S-map is similar to AR but with an exponential local kernel.

Here we briefly introduced S-map. Suppose that we have a training set {(Xt, Yt)}t

and want to predict Y ∗ corresponding to a query point X∗, we assign a weight to each

data point in the training set that the weight for Xt is exp(−θ(smap)||Xt −X∗||2
/
d),

where ||·||2 is the Euclidean distance, d is the average of ||Xt−X∗||2 among all training

samples and θ(smap) is a hyperparameter to control the locality. If θ(smap) = 0, then

S-map reduces to AR. We set θ(smap) = 0.5 in our experiment, and normalized {Xt}t

to remove the mean and variance.

The results of the prediction accuracy are shown in Table 4.5. We can see that the

prediction performance with cross predictors is better than without cross predictors.

And also we can see that our methods perform well, especially for 1-day and 3-day

prediction. For 7-day prediction, our method is still very competitive. Here, since

for 7-day prediction, we need to do a 7-step forward propagation, so there might be

some decay and averaging effect. We need to take this into consideration, but not

necessarily it will give us a bad prediction. For example, in the results with cross

predictors, our methods are best for 7-day prediction for top-1 and top-2. In general,

our method is a competitive candidate. In Section 4.5 we provide a guideline of when

to choose our RS-EDM and PRS-EDM and when to choose S-map.
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top-1
H

orizon
Predictor

PR
S-LR

-I
PR

S-LR
-II

R
S-LR

1-day

m
ax

salinity
1.00

1.00
0.67

m
in

salinity
0.43

0.41
0.13

m
in

O
D

O
0.0009

0.0009
0.0021

turbidity
2.4e-75

3.6e-75
1.8e-46

pH
0.70

0.70
0.76

tem
perature

5.1e-06
5.3e-06

5.7e-05
w

ind
0.0047

0.0049
0.0292

3-day

m
ax

salinity
1.00

1.00
1.00

m
in

salinity
1.00

1.00
1.00

m
in

O
D

O
4.1e-14

5.1e-14
2.2e-08

turbidity
8.1e-20

5.9e-20
2.5e-15

pH
0.017837

0.031484
0.001226

tem
perature

2.62e-12
5.38e-13

2.75e-14
w

ind
0.035246

0.043675
0.031598

7-day

m
ax

salinity
0.025

0.025
0.028

m
in

salinity
0.46

0.44
0.51

m
in

O
D

O
8.0e-06

7.8e-06
3.4e-06

turbidity
1.2e-04

9.2e-05
1.9e-04

pH
0.0033

0.0029
0.0031

tem
perature

4.8e-07
3.0e-06

1.1e-09
w

ind
0.23

0.24
0.24

top-2
PR

S-LR
-I

PR
S-LR

-II
R

S-LR
0.66

0.97
0.07

0.93
0.97

0.57
1.8e-05

1.1e-05
1.6e-05

2.2e-06
3.6e-06

3.3e-04
0.60

0.56
0.68

2.2e-05
2.0e-05

6.3e-06
0.0072

0.0074
0.0095

0.15
0.10

0.07
0.35

0.25
0.14

1.3e-07
2.8e-07

3.4e-05
1.2e-12

1.7e-12
5.3e-12

0.33
0.28

0.24
1.8e-06

2.0e-06
1.5e-06

0.015
0.015

0.015
0.32

0.31
0.33

0.80
0.79

0.76
1.1e-04

8.0e-05
3.9e-05

2.8e-05
2.9e-05

4.4e-05
0.011

0.009
0.008

9.6e-06
5.8e-06

4.1e-07
0.41

0.43
0.44

90-Q
PR

S-LR
-I

PR
S-LR

-II
R

S-LR
0.08

0.04
0.04

0.24
0.13

0.08
0.19

0.22
1.00

1.00
1.00

1.00
1.00

1.00
1.00

0.24
0.25

0.31
0.015

0.015
0.002

3.8e-07
6.6e-06

1.3e-04
0.001

0.009
0.042

0.07
0.15

0.02
0.04

0.03
0.02

0.59
1.00

1.00
0.32

0.45
0.19

0.009
0.018

0.005
3.2e-08

1.5e-10
5.1e-07

0.0004
4.2e-70

0.0005
0.0026

0.0002
0.0103

0.001
1.3e-08

0.004
0.06

0.0006
0.27

0.08
0.19

0.09
0.22

7.5e-29
0.28

Table
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horizon method p-value for PRS

top-1

1-day PRS-LR-I 1.0
PRS-LR-II 1.0

3-day PRS-LR-I 2.0e-06
PRS-LR-II 2.6e-06

7-day PRS-LR-I 0.014
PRS-LR-II 0.012

top-2

1-day PRS-LR-I 2.5e-09
PRS-LR-II 3.2e-09

3-day PRS-LR-I 0.00013
PRS-LR-II 0.00020

7-day PRS-LR-I 0.008
PRS-LR-II 0.019

90-Q

1-day PRS-LR-I 2.8e-17
PRS-LR-II 1.4e-16

3-day PRS-LR-I 7.5e-7
PRS-LR-II 1.5e-5

7-day PRS-LR-I 0.00019
PRS-LR-II 0.0014

Table 4.7: LRT p-value for periodicity for chlorophyll prediction. All p-values smaller
than 0.05 are highlighted. We could see periodicity is very significant, which further
supports the proposed PRS models.

The results of LRT feature importance are shown in Table 4.6. These are the LRT

feature importance, i.e. p-values, given by each of PRS-LR-I, PRS-LR-II and RS-LR.

We highlight significant p-values smaller than 0.05. We can see that RS-LR or PRS-

LR methods are providing similar results that which feature has significant impact for

the same data set and the same forecasting horizon. For example, we can see that the

cross predictor temperature is very significant if we want to forecast 1-day forward

chlorophyll, so it means that temperature has a strong impact on the next day’s

chlorophyll. Also we can see the significant features for different forecast horizons are

different. For example, for top-1, the pH is insignificant for 1-day, but significant for 3-

day and 7-day. The wind is significant for 1-day and 3-day, but insignificant for 7-day.

That means the pH value has a long-term and delayed impact on chlorophyll, and the



80

wind has a short-term but transient impact. They have different response behavior

in the time domain, and our LRT feature importance can tell this information and

help us better understand the underlying scientific process. For the same forecast

horizon, across different maximizations, the significant features are different, that

top-1 and top-2 are similar but 90-Q is very different. It is indicating that different

maximizations will provide different data sets following different dynamical systems.

In Fig 4.1, we can see that they differ a lot in those peaks. From LRT feature

importance, we can see these peaks are not necessarily incorrect records, because

they have consistent patterns but different from 90-Q. One possible reason is that the

90-Q is more sensitive to to the slower evolving biological processes with timescales of

days, and top-1 and top-2 might be capturing short-term and transient disturbance

of physical processes such as wind, which is similar to Hawkes processes (Hawkes,

1971). The differences between these two categories could be a further direction to

study. In conclusion, our model can tell which predictors are significantly impacting

the time series, while S-map cannot provide this information.

Table 4.7 shows the LRT feature importance for periodicity. In general it is signifi-

cant with a small p-value. That’s also supporting why we need to propose this PRS

modeling, because for regime-switching models, the models with periodicity are signif-

icantly different from those without periodicity. This periodicity cannot be detected

and explicitly modeled by S-map or other time-invariant EDM methods.

In summary, PRS-EDM works well for chlorophyll modeling in both the prediction

aspect and feature importance aspect.



81

4.5 Discussion

In this project, we have 2 folds of contributions. One fold is PRS models, which have

the capability to represent the partially periodic partially random state transition.

It can be applied on any RS models such as HMM to substitute the latent Markov

chain. The other fold is RS-EDM and PRS-EDM, which extend the standard EDM

by relaxing its time-invariance assumption.

The PRS model we proposed has a wide application scenario. PRS can substitute

any Markovian RS process, including HMM and Markov-modulated linear regression.

We could find that in a lot of RS cases, we are to use the Markov process as an

approximation of potential periodic processes. For example, in the classic toy example

for illustrating HMM which uses HMM to model weather (see e.g. Nguyen, 2017;

Khiatani and Ghose, 2017), the weather has a strong yearly periodic phenomenon.

If using HMM only, we will ignore this periodicity and model it by a latent Markov

chain. In this case, we could use the PRS version of HMM instead of standard

HMM. This periodicity cannot be modeled by deterministic harmonic terms, but a

partially periodic and partially random process. Similarly in finance, there are PRS

phenomena, such as the energy-related financial products. The PRS model has a

much wider application.

The motivation behind proposing RS-EDM and PRS-EDM is from analogy. EDM

suggests using the AR type prediction function. So it is natural to make an analogy

between EDM and AR, and to extend EDM by combining it with the RS structure,

because AR has the RS variant.

The EDM framework is widely used in scientific settings, and along with the pre-

diction, it is important to understand which features have scientific impacts or not.
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This problem is solved by the feature selection or feature importance approaches. We

proposed two approaches to select features or evaluate feature importance, the LRT

approach and predictive approach. Here we briefly compare these two approaches.

The LRT approach has a better p-value interpretation. It is more rigorous and sensi-

tive because it is an LRT. It doesn’t suffer from the instationary changing of dynamical

systems. It has a low computational cost because it only needs to fit the data once.

The predictive approach is better for forward looking. It is suffering from instationary

changing of dynamical systems as it is out-of-sample. It doesn’t have a nice p-value

interpretation and it is hard to interpret which level of R2 decreases is large or small.

But it has a nice prediction interpretation of how much we could gain for predic-

tion if this feature is involved. This quantitative interpretation cannot be achieved

by LRT feature importance which can only provide a binary decision, in-model or

out-of-model, because it is essentially a p-value. One important scenario that LRT

and predictive feature importance will give different results is when the underlying

dynamical is non-stationary and changing and some feature has very different impact

during different periods. In these cases the predictive feature importance will rule

this feature out for prediction, which doesn’t mean this feature is not involved in the

dynamical system, while LRT will include this feature which doesn’t mean it could

help prediction. In short, if we consider more about prediction performance, then we

should use the predictive approach; if we care more about scientific interpretation,

we should use the LRT approach. The comparison between the LRT and predictive

feature importance is summarized in Table 4.8.

If we want to use EDM, whether to choose time-varying or time-invariant EDM

depends on the sample size and the underlying assumption we believe. If the sample

size is large enough and we can endure a long computational time, then we can always
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Feature importance LRT Predictive
Purpose Scientific understanding Prediction
Output Whether any impact How much impact

Sensitivity Sensitive Insensitive
To nonstationarity Robust Vulnerable

Computational cost Low High
Interpretability Good (p-value) Limited (for prediction)

In/out-of sample In-sample Out-of-sample
Theory Rigorous theoretically Practical and heuristic

Table 4.8: Summary of comparison between the LRT and predictive feature impor-
tance.

choose the PRS-EDM because time-invariant EDM is a special case of RS-EDM, which

further is a special case of PRS-EDM. But in most scenarios using EDM, the sample

size is not sufficient, since for scientific processes, the collection of data is costly and

limited in frequency, time span or both. In these cases, the model complexity needs

to be chosen carefully. If we believe there exists an RS phenomenon that a single

prediction function cannot model the whole process, we should use RS-EDM. But

note that the degrees of freedom of RS-EDM is at least S times of the time-invariant

EDM, since each state of RS-EDM is a single EDM, and we need extra degrees of

freedom to model the latent process. If we need to use RS-EDM, we could consider

using PRS-EDM, because PRS-EDM only has 2S(S − 1) more degrees of freedom

than RS-EDM. So when the latent state process has periodicity, PRS-EDM works

better than RS-EDM; even if there is no periodicity, PRS-EDM should not work too

worse than RS-EDM.

We also want to compare for time-invariant EDM and RS/PRS-EDM and provide

a guideline of which method to use in practice. First, if we have limited data, we

should use time-invariant EDM with simple parametric form such as linear regression.

If we have more data, we can choose between the time-dependent EDM and the
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time-invariant EDM. S-map is the state-of-the-art method under the time-invariant

EDM framework. It is a kernel regression method that can be either global or local

depending on the hyperparameter we choose. If we use a global S-map, such as a

linear regression, we might lose the power because the model is too simple. If we

use a local S-map, we need a large data size to fit it as it is non-parametric, and

the more local the prediction function, the larger training size needed. But the data

size is limited in general. That’s why we propose RS-EDM and PRS-EDM. Both

RS-EDM and PRS-EDM allows us to use a simple model such as linear regression,

because we no longer use the same time-invariant prediction function for all time

stamps and we have the flexibility that different time periods could have different

prediction functions. Whether to use local S-map or RS/PRS-EDM depends on which

assumption we want to break. If we want to break the time-invariant assumption, we

can use RS-EDM or PRS-EDM, otherwise we can use local S-map.

There are several future directions for this project. One direction is to accommodate

the cases where the data has a bandwidth of periods instead of a single or several

discrete periods. The PRS modeling studied in this project relies on the assumption

of a small set of known periods which is from the expertise knowledge. But in reality,

we might get the periods from Fourier analysis when the expertise knowledge is not

available, and we will have a continuous spectrum which can hardly be modeled by

the current PRS modeling. One possible solution is to involve a big set of periods

and at the same time add regularization, including the penalty for the scale of impact

from each period and the penalty of the roughness of these scales for neighboring

periods. Another direction is for the application on chlorophyll forecast. In Section

4.4, we found that three different maximizations provide different outputs and have

different patterns. So we can think the process could be a summation of a slowly
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evolving biological process and a transient disturbance process. We can further study

how to filter out one process and focus on the other.
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Chapter 5

Discussion

In this dissertation, we studied the RS phenomenon on dynamical systems. To

the best of our knowledge, there is no research on this topic. This topic has its

own difficulties as we are modeling the change of how the process is changing, and

this two-folded changing structure makes the inference much harder. In Project I

and II, the MLE doesn’t work on the second-order changing so we proposed the

heteroskedasticity-based E-M algorithm to infer the model parameters, and in Project

III, we used EDM to avoid this problem.

Noise

PDEs

Signal

Financial
time series

Scientific
time series

Figure 5.1: Illustrative figure of signal-noise-ratio spectrum and where financial and
scientific processes are locate.

Though both financial and scientific processes are modeled by SDE, they are funda-

mentally different and lie on two ends of the signal-noise-ratio spectrum as illustrated

in Fig 5.1. Financial process is dominated by randomness and models can only par-

tially capture its properties, so the model in general has a simple parametric form

because it is robust against noise, relatively easy to estimate, and even though the

simple parametric form cannot capture all information, the bias is covered by the ran-

dom noise. For example, for modeling the volatility, all the Heston model, GARCH
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model and 3/2 model have a relatively simple parametric form and a considerable

random component. That’s why we propose the heteroskedasticity-based E-M algo-

rithm where different simple parametric forms capture different aspects of a process.

In this model, we determine whether a model is sufficient or not by heteroskedas-

ticity test, which can be regarded as a comparison between the systematic bias and

random noise. This test works best under a suitable signal-noise-ratio because if the

noise is too weak, all models cannot pass the heteroskedasticity test and the emission

probabilities will become indistinguishable.

In contrast, scientific processes are in general more deterministic but more compli-

cated and involve a lot of variables. In practice it could be too complicated to infer

the exact PDEs or SDEs, so its forecasting problem is solved by the end-to-end mod-

els which ignore the exact underlying system, such as EDM which does not depend on

the specific parametric form of underlying PDEs or SDEs. If we assign a simple para-

metric form for EDM such as linear regression, it will lose the capability, unlike the

low signal-noise-ratio financial process. If we assign a local non-parametric form such

as the S-map, it requires a high quality data set to fit whose signal-noise-ratio should

be high and data size should be large. RS-EDM and PRS-EDM provide another

modeling angle, in that we use a simple but time-varying parametric form. Again,

we want to emphasize that the methods under RS-EDM and PRS-EDM discussed

here are not restricted to EDM. It can be extended to any regression problems with

temporal information. Also the PRS model can be applied to any model involving a

latent state process.

In these two ends of the signal-noise-ratio spectrum, we can see why we need RS. RS

is a modeling technique which approximates a complicated system by assuming that

different simple patterns will dominate different time periods, even if the underlying
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true system is not dynamically changing. This approximation view largely broadens

the application scenario of RS models, because we are not necessarily targeting on

fully modeling the process by RS models but to capture important patterns. The

famous aphorism by George Box perfectly describes the usage of RS modeling: “All

models are wrong, some are useful. ”
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Appendix A

More Visualizations for Project III

The histograms of the chlorophyll process are shown in Fig A.1. The zoomed-in

process of 2022 is shown in Fig A.2

Figure A.1: Histograms of the chlorophyll process of top-1/top-2/90-Q.

Figure A.2: The chlorophyll process during 2022 of top-1/top-2/90-Q.
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