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ABSTRACT

The Internet-of-Things holds the promise of realizing ubiquitous computing in its full

potential. Sensors that work as the fundamental building blocks of the IoT have become

an integral part of our everyday lives. They sense, compute, and communicate to monitor

humans, pets, wildlife, marine life, plants, crops, buildings, factories, city infrastructures,

and many others. As the network of computing devices continues to grow rampantly, in

one or two decades, there will be a hundred sensors per person on earth. At this scale,

sensors must be long-lived to curtail the intractable cost of maintenance and the negative

environmental impact caused by short-lived batteries and outdated electronics.

This dissertation argues and establishes that perpetually-powered energy-harvesting

devices, instead of battery-powered ones, are the key to enforcing a sustainable Internet-

of-Things. Self-powered devices are perpetual, zero-maintenance, eco-friendly, and per-

vasively deployable. Together with sustainable power, we emphasize utilizing devices

that are already installed in place to enable long-lasting design points through retrofitting

and repurposing. However, the energy intermittency inherent in batteryless power sup-

plies imposes two major challenges that limit the adoptability of energy-harvesting sen-

sors: complexity in application design and highly unreliable service quality. To overcome

these challenges, we introduce an energy supervisor architecture named ALTAIR, which

abstracts the details of energy management from application software to simplify bat-

teryless designs. Moreover, we propose PreFarad, a system architecture that isolates and

prioritizes the sensor’s energy requirement from the rest of the system components to

improve the event detection accuracy of intermittent sensors. Additionally, we extend

the functionality of an energy-harvesting power supply to enable two sustainable de-

sign points by incorporating new sensing capabilities on existing devices. RETROIOT
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upgrades existing IoT devices with additional sensing features as well as an energy-

harvesting power supply. Lastly, we demonstrate SolarWalk design point that transforms a

photovoltaic energy-harvester to an accurate sensor. These systems significantly enhance

the capabilities of today’s energy-harvesting batteryless IoT sensors.



6

ACKNOWLEDGEMENTS

The last six years of my life have been perhaps, the most meaningful yet, the most
challenging to navigate. But, the ending of this journey made it all worth it. Being a
scientist was one of the few things I was fascinated by as a young kid, but, never had I
imagined my path would lead to being one. I am forever thankful to the people who made
it possible through their unwavering support.

If I had to mention only one person in this section of my dissertation, that would have
been my supervisor, Brad Campbell. Brad is not only my PhD mentor but also an inspi-
ration, a role model, and a magician scientist who happens to have the power to make
impossible problems easier. I am grateful to have him as my mentor throughout the times
when I was clueless to research from being an independent thinker. Thank you for believ-
ing in me when I was not able to see myself going far. Thank you for teaching me things
as low-level as soldering a PCB to finding problems that are important to solve. Thanks
for the conversations about silly things as well as the whiteboard dialogue and timeless
brainstorming sessions. I always learnt valuable things from our conversations whether
it be about technical or non-technical matters. It’s rare to get to work with someone who
is not only a uniquely brilliant researcher but also the most dedicated and patient to their
students and I am fortunate that I was one of Brad’s students.

I would like to greatly thank my committee members— John Stankovic, Ben Calhoun,
Steven Bowers, and Josiah Hester, who provided genuine and invaluable thoughts, sug-
gestions, and feedback to improve this thesis. Your insights and implications shaped this
dissertation and I deeply thank you for your time. Ben and Josiah’s work kept me inspired
and motivated to pursue research in energy-harvesting systems. Their questions helped
me think deeper about the broader implications and directions going forward. Jack’s
thought-inducing discussions and Steve’s critical thinking helped me identify limitations
and potential research directions to explore.

During these years, I was also fortunate to make some true friends who started as
colleagues in the beginning and I am indebted to each one of them. Alex, I still have
the veroboard that we made together when you first showed me hand-soldering and you
suggested that I keep it to look back to remind me that progress starts with small things.
Thanks for all the hardware hacking tricks and spending long hours in the lab with me



7

trying to fix each other’s boards. Wenpeng, you have been my go-to person for random
conversations as well as thinking out loud to understand a new problem. Thank you
for being the person I could trust for a 3am editing on a late-night submission. You
made those nights doable and less stressful. Victor, you are an asset to a team and our
conversations helped me see problems from different angles. Thank you for being so
generous with time and being available no matter what. Nabeel, I found peace in our
conversations and I am thankful for the surge of positive energy I absorbed from our
interactions which sometimes was very much needed. Thank you for all the time you
took to provide genuine feedback on a practice talk or a paper. Marhsall, thank you for
being the person I could always turn to for help whether it’s a quick feedback or a last
minute practice talk. Giechao, thank you for making things funny whether it was about
a federated learning discussion or a failed experiment, or a hopeless job search mission.
Vish, thank you for making my last few days less stressful than they could have been
with your thoughts and questions. Fateme, thanks for all your words of assurance and
encouragement during the seemingly never-ending weeks. Tushar, Samy, Kai, It was a
great pleasure to have you as teammates and thank you for whatever amount of time we
had together. Lastly, Masum, you are my biggest motivation to keep going. Thank you
for being there both inside and outside the lab when I needed the most. You are a rare
scientist who goes beyond their way for the team. Thank you for everything from the first
day till the day I defended.

I owe this dissertation to the amazing lady my mother and a great teacher, Farida Yas-
min. We made it, Mom! I am indebted to my genius sisters, the other two Nuranis, who
crafted my wings to fly high. Borpu, you are my ignition and rejuvenation and Prascovia,
you are my incentive to make a difference through my work. I am also blessed to have
some wonderful friends by my side who never hesitated to do their best for my survival.
Kona and Naz, thank you for listening to my unreasonably long late night rantings. Thank
you for not being disappointed when I struggled to make time for a phone call or a much-
needed trip. Thanks to my friend, Israt, for being the most supportive roommate and not
getting pissed off when my silly experiments broke down our apartment door or when I
came home devastated after locking myself out of my laptop the night before my proposal
exam.



8

Dedicated to ...

My Mom, Farida Yasmin



9

Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Architectures for Batteryless Computing . . . . . . . . . . . . . . . . . . 22

1.2 Sustainable Designs with EH Power Supply . . . . . . . . . . . . . . . . 24

1.3 Supports for Sustainable IoT . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 2: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Energy-harvesting Systems for IoT . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Hardware-Software Approaches for Batteryless Design . . . . . . 30

2.1.2 Techniques for Energy Management . . . . . . . . . . . . . . . . 32

2.1.3 Event Detection with Intermittent Sensors . . . . . . . . . . . . . 32
2.2 Reconfigurable Design Space . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Exploiting Device Side Channels . . . . . . . . . . . . . . . . . . 34

2.3 Repurposable Energy-harvesting Sensors . . . . . . . . . . . . . . . . . . 34

2.3.1 Harvester-enabled Sensing . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Indoor Occupant Identification . . . . . . . . . . . . . . . . . . . 35

Chapter 3: ALTAIR: Energy Supervisor for Energy-harvesting Systems . . . . 37

3.1 System Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Overview of ALTAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



10

3.2.1 Enabled Properties . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 ALTAIR System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Design Space Trade-off . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 The Energy Supervisor . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Energy-Application Interface . . . . . . . . . . . . . . . . . . . . 46

3.3.4 The Main Application . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Energy Supervisor Implementation . . . . . . . . . . . . . . . . . 49

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Energy Supervisor Performance . . . . . . . . . . . . . . . . . . 54

3.5.3 RL Supervisor Robustness . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Energy Supervisor Responsiveness . . . . . . . . . . . . . . . . . 62

3.5.5 Energy Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4: PreFarad: Event Detection with Intermittent Sensors . . . . . . . . 65

4.1 Event Detection with Intermittent Energy . . . . . . . . . . . . . . . . . 66

4.1.1 Unpredictable Energy Demand . . . . . . . . . . . . . . . . . . . 67

4.1.2 Task Energy Requirement . . . . . . . . . . . . . . . . . . . . . 68

4.1.3 Capacitor Transient Response . . . . . . . . . . . . . . . . . . . 69

4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Event Detection Accuracy . . . . . . . . . . . . . . . . . . . . . 75



11

4.4.3 Activation Frequency . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.4 Detection Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Discussions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5: RETROIOT: Retrofitting IoT Deployments . . . . . . . . . . . . . . 79

5.1 RETROIOT System Overview . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Minimal Modifications . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Power Supply Constraints . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Battery Reading Resolution . . . . . . . . . . . . . . . . . . . . . 82

5.2.4 Data Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.5 Recovering Transmitted Data . . . . . . . . . . . . . . . . . . . . 83

5.3 RETROIOT Encoder Design . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Voltage Encoding Feasibility . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Analog Encoder Design . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Digital Encoder Design . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 Decoding Error Mitigation . . . . . . . . . . . . . . . . . . . . . 87

5.4 Energy-Harvesting Retrofitting . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.2 Battery Voltage Channel Characteristics . . . . . . . . . . . . . . 93

5.6.3 Hardware Variation Effect . . . . . . . . . . . . . . . . . . . . . 95
5.6.4 Real World Applications . . . . . . . . . . . . . . . . . . . . . . 97

5.6.5 Energy Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 6: SolarWalk: Sensing with Photovoltaic Harvesters . . . . . . . . . . 104

6.1 Occupant Identification using Photovoltaics . . . . . . . . . . . . . . . . 105

6.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



12

6.2.1 Overview of SolarWalk . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 SolarWalk Hardware . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.3 SolarWalk Identification Module . . . . . . . . . . . . . . . . . . 110

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 Overall System Performance . . . . . . . . . . . . . . . . . . . . 115

6.4.3 Environmental Effect . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.4 Sensitivity to Physical Attributes . . . . . . . . . . . . . . . . . . 119

6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 7: Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . 123

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



13

List of Figures

1.1 Platforms developed by this dissertation to support sustainable IoT sys-
tems. ALTAIR is an energy supervisor architecture that reduces battery-
less design overhead, while learning to adapt to unseen energy conditions.
PreFarad sensors are highly accurate event-driven intermittent batteryless
sensors even under low energy condition. RETROIOT and SolarWalk are
two repurposable design points that equip energy-harvesting sensors with
new applications. These platforms enable a class of green batteryless de-
vices for smart indoor sensing. . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Two energy-harvesting sensors in room a) transmit at a rate shown in b).
Performance varies significantly indicating high energy variability of in-
door solar energy. Different duty cycles in c) result in different event
detection percentage in d). . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Overview of ALTAIR energy supervisor architecture. . . . . . . . . . . . 41

3.3 Example workflow diagram between the application and energy supervi-
sor. The direction of the arrow specifies the direction of API calls. . . . . 45

3.4 The ALTAIR hardware platform consists of a power supply module that
implements the energy supervisor and a discrete power supply application
interface that can be plugged in directly with an external application. . . . 48

3.5 Spectrum of IoT sensors on a scale of hardware and software flexibility.
The left-most category has maximum flexibility, whereas to the right-most
has fixed hardware and software. We evaluate the ALTAIR platform with
different points on this scale to demonstrate generality. . . . . . . . . . . 52



14

3.6 ALTAIR device deployments. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Performance of different sensors when optimized by different variants of
the energy supervisor and their default power supply. The ALTAIR energy
supervisor implements reinforcement learning to choose between a set
of transmission intervals. BLEES, LPCSB, and Thingy:52 sensors using
ALTAIR produce a similar distribution of packet frequencies as the con-
tinuously powered version. For intermittently-powered Herald beacons
however, ALTAIR produces denser packet distribution. . . . . . . . . . . 55

3.8 The percentage data yield of each sensor normalized to their default power
supply. The ALTAIR energy supervisor produces better data yield than the
Altair-max variant that always selects the high sampling rate. . . . . . . . 56

3.9 Percentage active time comparison across different energy supervisors.
Active time denotes the percentage of time within an interval the sensor
was continuously transmitting data. Altair outperforms the other variants. 56

3.10 Packet distribution with ALTAIR. Sensors with ALTAIR opportunistically
choose between five allowable rates, prioritizing the higher rate. . . . . . 57

3.11 Packet distribution with the default power source. . . . . . . . . . . . . . 58

3.12 Event detection accuracy for time critical applications. . . . . . . . . . . 58

3.13 Event detection using ALTAIR. . . . . . . . . . . . . . . . . . . . . . . . 60

3.14 When moved to a new environment, the system increases its activity as it
learns the new harvesting conditions. . . . . . . . . . . . . . . . . . . . 61

3.15 With time, the energy supervisor learns to avoid power failure by adjust-
ing the time between samples, though experiences a few power failures at
the beginning. The blue trace plots the instantaneous capacitor voltage,
and the orange corresponds to the to the time between packets. . . . . . . 61

3.16 The histogram of the delay in servicing the message request by the energy
supervisor in clock cycles. . . . . . . . . . . . . . . . . . . . . . . . . . 62



15

4.1 Intermittent energy-harvesting devices harvest and store energy in a ca-
pacitor to sustain their operation. Once the buffered energy reaches the
turn on threshold, the device activates and performs operation. Since the
average power of the harvester is significantly lower the device power
draw, the buffer depletes quickly, effectively turning off the device and
allowing the buffer to recharge. . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Uncertainty in successfully detecting an event in intermittently-powered
systems. Intermittently-powered devices turn on once its capacitor reaches
a minimum threshold and performs a routine task. Events that happen dur-
ing recharging is missed compromising reliability of service. (a) depicts a
series of missed and captured events throughout capacitor life cycles. t1,
t2 denote the start and end time of an event and tp indicates the period of
capacitor life-cycle. If energy availability and the event of interest does
not coincide, the likelihood of detecting the event decreases as shown in (b). 67

4.3 Traditional energy-harvesting based sensor devices need to reach an en-
ergy level of Eon to able to sense because of the tight coupling between
the sensor and MCU+Radio energy distribution, as such the energy barrier
is too high (denoted by red dotted lines). However, if the sensing element
had its energy requirement decoupled from the MCU+Radio unit, the en-
ergy barrier for just sensing goes down (denoted by the green dotted lines). 68

4.4 Real-time event detection on intermittent batteryless sensors is challeng-
ing due to their unique nature of operation. PreFarad proposes an archi-
tecture that prioritizes and separates the sensing peripheral dedicated for
event detection from the rest of the component by allowing it to power
from a smaller energy buffer. This decoupling in the energy buffer from
the main capacitor enables the event subsystem to be more available and
accurate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 System design of PreFarad. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 4.5cm x 3.1cm PreFarad custom hardware platform. . . . . . . . . . . . . 72

4.7 PreFarad outperforms the common capacitor approach and achieves a de-
tection accuracy of 92% and 88% for two different event-based sensors.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



16

4.8 This figure plots the timing statistics of door sensors deployed to detect
real door opening events. a) shows the distribution of the number of events
corresponding to the duration the door was open while someone entered
or exited the room. b) plots the histogram of time in between the door
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 The figure plots the distribution of packet counts in terms of interval be-
tween two packets. PreFarad generates more frequent transmissions than
the common-cap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 We plot the cumulative distribution function of the time between an event
occurred and it was reported by PreFarad sensors. . . . . . . . . . . . . . 77

5.1 Overview of RETROIOT. Many IoT devices sample and report their bat-
tery voltage, and by simply swapping the battery these devices can be re-
purposed to encode additional useful information. This retrofitting gives
users new control to capture new data, upgrade to energy-harvesting, or
strategically deactivate sensitive sensors. . . . . . . . . . . . . . . . . . . 80

5.2 Battery voltage readings sent by a LoRa IoT device to the cloud via a
LoRa gateway. This demonstrates the feasibility of encoding data in the
battery voltage readings. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Analog encoder hardware design. . . . . . . . . . . . . . . . . . . . . . 83

5.4 Transfer functions of the encoder. . . . . . . . . . . . . . . . . . . . . . . 84

5.5 This diagram shows how the digital data is encoded (top) and decoded
(bottom). The encoder converts the 7-bit digital symbol into a battery
voltage value within vmin and vmax. The decoder function translates the
encoded battery voltage back to a digital symbol. . . . . . . . . . . . . . 85

5.6 Current draw profile of a LoRa sensor [89] showing a distinct radio trans-
mission spike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Block diagram of the digital encoder hardware design. . . . . . . . . . . 86

5.8 Energy-harvesting power supply module interfacing with the digital encoder. 88



17

5.9 The retrofitting energy-harvesting power supply runs a dynamic power
management algorithm locally and encodes the updated sensor sampling
rate in the battery voltage. The sensor is then re-configured by the cloud
control message to adjust device behavior. . . . . . . . . . . . . . . . . . 89

5.10 Prototype voltage encoder circuit boards and energy-harvesting power
supply board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.11 We deploy RETROIOT with a door sensor in different locations. Picture
corresponds to two of the deployment scenario. . . . . . . . . . . . . . . 92

5.12 CDF of the error in received battery voltage. The channel error is sig-
nificantly reduced after calibration using the proposed error correction
technique. The dash lines correspond to 95th percentile error values. . . . 93

5.13 The efficacy of the error correction technique on the battery voltage read-
ings. After applying the error correction, the received voltage values
match better with the actual encoded voltage. . . . . . . . . . . . . . . . 94

5.14 a) shows how the percentage bit error improves as we increase the step
resolution of the voltage encoder. With step resolution, 5∗vrs = 11.81 mV,
we can correctly decode 99% of the sent symbols. . . . . . . . . . . . . . 94

5.15 Understanding the effect of different sources of error due to hardware lim-
itations of the design. a) captures the difference in encoder output voltage
of three different boards. b) shows that with lower ADC resolution, the
number of distinguished voltage levels is reduced, which compromises
the bandwidth of the channel. c) and d) characterize the distribution of
end-to-end channel error. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.16 Results from the door sensor metadata application. We can successfully
decode all 12 unique metadata after error mitigation. . . . . . . . . . . . 97

5.17 Example of door sensor tag metadata in a). Figure b) shows how the 7-bit
digital symbol can encode location and category information. . . . . . . . 98



18

5.18 Detected voltage levels of the multi-symbol metadata transmission. Two
reserved symbols equivalent of the maximum and minimum encoded volt-
ages are used to mitigate decoding errors and as a flag for message start
and end. The following encoded voltages represent the 32-bit unix times-
tamp for “2022-03-22 16:22:49”. . . . . . . . . . . . . . . . . . . . . . 99

5.19 The dynamic sampling rate controlled by the energy-harvesting power
supply with changing capacitor voltage over time. . . . . . . . . . . . . 99

6.1 a) A PV cell’s open circuit voltage drops to different levels as someone
walks at different distance from the solar cell’s surface. b) Experimental
setup with PV cell mounted on a office doorframe. . . . . . . . . . . . . . 105

6.2 This figure shows how the output voltage of the solar cell mounted on
a doorframe ripples as different occupants pass through the door. The
maximum voltage drop and the duration of voltage fluctuations vary dif-
ferently for occupant A and B . On the other hand, these characteristics
remain consistent over multiple trials by the same person. . . . . . . . . . 106

6.3 From a) and b), we see that occupant A’s entry and exit patterns are distin-
guishable. The patterns associated with the same type of event is similar.
Since during entry and exit, the light is obstructed in similar but reverse
direction, the entry and exit patterns tend to mirror each other. c) and d)
show that occupant B’s entry and exit patterns are distinguishable. It is
significantly different from occupant A’s pattern. . . . . . . . . . . . . . . 107

6.4 Overview of SolarWalk design. The photovoltaic harvester’s output volt-
age attached to an indoor light energy-harvesting sensor fluctuates differ-
ently as different occupants of a home passes by. SolarWalk leverages this
voltage fluctuations as an unique attribute to differentiate occupants. . . . 108

6.5 State machine representation of SolarWalk device’s workflow . . . . . . . 109

6.6 Block diagram of SolarWalk identification module . . . . . . . . . . . . . 110

6.7 SolarWalk prototype implementation . . . . . . . . . . . . . . . . . . . . 112

6.8 Floor plan showing the installed sensors on two doors of two different
rooms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



19

6.9 Voltage trace of a participant during day and night time. Open circuit
voltage of solar cell changes throughout the day and can have impact on
model performance. SolarWalk dataset includes traces from both day and
night. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.10 Data collection step of SolarWalk involves each participant walking through
the door every 10 seconds. However, a noticeable change in solar cell
voltage pattern is observed in the first six seconds, which contains 300
voltage samples. Thus, the dimension of the input feature of our machine
learning model is 1× 300. . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.11 The figure shows that the occupant identification accuracy continues to
drop as we increase the number of occupants. With five occupants Solar-
Walk’s KKN classifier achieves 88% accuracy. . . . . . . . . . . . . . . 116

6.12 Here, we show how the type of event detection accuracy changes with
increasing number of occupants. SolarWalk classifier can on average ac-
curately identify between door entry and exit events 77% of time. . . . . . 116

6.13 These plots show the effect of different times in a day on the system’s ac-
curacy. Since the steady state voltage of the solar cell undergoes variation
due to different illuminance levels throughout the day, the voltage pat-
tern’s DC component shifts. Yet, system performance stays similar with
a slightly higher accuracy for night events. . . . . . . . . . . . . . . . . 117

6.14 a) SolarWalk’s identification accuracy remains similar for multiple occu-
pants over two deployment locations. b) Event detection accuracy achieved
at different doors. The accuracy of Door 2 is at least 15% lower for en-
try and exit events than Door 1. For the direction of movement, location
seems to play an important role. . . . . . . . . . . . . . . . . . . . . . . 118

6.15 This figure plots the identification accuracy of the model with increasing
occupant height. Occupant’s height plays as an important factor for the
system’s identification accuracy. The taller height produces more distin-
guishable shadow pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.16 Event detection accuracy of an individual participant. Entry events are
likely to be detected more accurately than exit events. . . . . . . . . . . . 120



20

List of Tables

3.1 List of ALTAIR APIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Specifications of test applications. . . . . . . . . . . . . . . . . . . . . . 53

3.3 Power draw overhead of ALTAIR. . . . . . . . . . . . . . . . . . . . . . . 63



21

Chapter 1

Introduction

Ubiquitous computing remarkably extends the reach of sensing by pushing computation
into everyday physical objects. One key enabling factor is the growth of Internet-of-
Things that envisions every thing to have something “smart” embedded into them. The re-
sult is computing at a tremendous scale extending from applications in industrial control,
building management, citywide environmental monitoring, mass inhabitant (i.e. wildlife
and marine life) tracking to implantables and wearables. Industry reports project that the
Internet-of-Things (IoT) will have a trillion connected devices by the year 2035 [1], [2].
This scale of computing presents an inevitable challenge of sustainability. The energy and
resource demands of IoT sensors are continuous, lifelong, and dynamic, however, sensors
primarily rely on batteries to power them. Batteries are short-lived and hazardous [3]–[5].
These properties of a power source adversely impact the earth’s sustainability as they fail
to provide long-term operation and, once depleted, contributes to the enormous volume of
harmful landfills. Moreover, battery chemicals like lithium, cobalt, and nickel are finite
in reserve and are on the decline [6]. Another major source of IoT e-waste is obsolete
electronics, which are hard to recycle and require pressing attention from the computing
research community [7], [8].

Devices that harvest energy from the environment to support computation hold the
promise to overcome the shortcomings of batteries and are a key to sustainable comput-
ing. In basic terms, a batteryless energy-harvesting power supply converts energy from
external sources like light, thermal, kinetic, acoustic, chemical, and [9]–[14] to electrical
form and stores the harvested energy temporarily in an energy storage like a capacitor.
In this dissertation, I redesign and extend the role of an energy-harvesting power sup-
ply to introduce several sustainable design points that allow re-usability, retrofitting, and
repurposability to support long-term sensing that resists device obsolescence.
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1.1 Architectures for Batteryless Computing

Unlike battery-powered sensors, energy-harvesting devices do not have a steady supply of
power as the amount of harvestable energy fluctuates with time, location, and type of en-
ergy sources. These devices operate under very limited, highly variable, and intermittent
(occasionally present) power source, which is hard to model pre-deployment and difficult
to predict during runtime [15]. For example, the output power of a AM1454 solar cell
varies from 10 µW at 50 lx while fluorescent light (FL) to 50 µW at 200 lx FL [16],
whereas, the illuminance level at indoors may vary from tens of lx to tens of klx. With
a wrist-worn µTEG, harvested power varies from 50-400 µW at indoors and harvested
power from RF sources range from a few µWs to tens of µWs[9], [17]. This is mostly
insufficient to directly power the components of an IoT sensor: a microcontroller, radio,
and a few peripherals. Instead, energy is buffered to a capacitor to drive the load. De-
pending on the operating principle, energy-harvesting device operation can be broadly
categorized into two types: intermittent and energy-neutral operation. An intermittent
batteryless sensor accumulates sufficient energy in a small capacitor, turns on once the
voltage of the capacitor reaches a safe threshold, performs a chain of sense-compute-
transmit tasks until the capacitor depletes, and turns off to recharge and repeat the power
cycle. In the energy-neutral operation, the device buffers energy for long energy-draughts
and duty-cycles its operation to ensure energy consumption does not exceed reserved en-
ergy. In both principles, the system experiences challenges due to limited and intermittent
energy.

With an unsteady supply of energy, application operation becomes critically depen-
dent on the current energy state and software becomes tightly energy-coupled. This de-
pendency leads to designs that are monolithic, unscalable, and hard to implement. For
example, IoT devices perform several application tasks (for example, sensing, comput-
ing, and transmitting) and task-specific decisions (for example, execution, postponement,
and sequencing) that are directly dependent on the recent status of energy. This direct
integration between energy states and application operation exacerbates the design com-
plexity of energy-harvesting systems. Application developers now have to be an expert in
both complex power management and IoT application development. Developers are not
only burdened with low-level hardware complexity that comes with an energy-harvesting
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power supply, but also have to be aware of how the power supply hardware-level decisions
may impact the application code. Furthermore, applications become highly platform-
dependent, leaving little room for independent development and platform reusability.
These limitations impede fast, parallel, and efficient development of energy-harvesting
systems. To solve this challenge, I designed ALTAIR that relieves an application from
implementing energy monitoring, prediction, and optimization by offloading these tasks
to an energy supervisor. The supervisor communicates with the application through a set
of APIs, accepts application task requirements, and implements an online reinforcement
learning-based optimization algorithm to react to changing energy availability conditions
in the post-deployment scenarios. Since the energy supervisor and the main application
are separate modules of code, the application’s task flow is not directly logically depen-
dent on the outcomes of the supervisor, allowing ALTAIR to be modular, application-
independent, and scalable. Additionally, energy supervisor can be modified (for example,
adding new APIs or updating the energy management algorithm) without changing appli-
cation code. Further, ALTAIR offloads the computation run by the energy-supervisor in a
dedicated processing unit running in the power supply itself, which eliminates direct in-
tegration between the underlying energy-harvesting frontend. This provides a distinct
physical interface between the energy-harvesting power supply hardware and the IoT
sensor. ALTAIR architecture supports integration between a variety of sensors without
re-designing the harvesting circuity, enabling reusable and sustainable design points.

Intermittent energy-harvesting sensors turn on momentarily in between power cycles,
spending most of the time recharging their small energy buffer. Many IoT applications are
event-based, where interesting events occur in stochastic manner. Therefore, batteryless
intermittent sensors are highly unreliable to react to such events. On the contrary, battery-
powered devices achieve high accuracy, as they typically remain waiting in sleep mode.
For example, a displacement sensor attached to a window to detect intrusions needs to
detect and transmit the event instantaneously. An intermittent displacement sensor will
fail to report the intrusion event, severely compromising the reliability of the sensor. In
low energy-harvesting situations, the sensor spends more time in recharging, rendering
the service completely infeasible. To improve the reliability and responsiveness of inter-
mittent sensing systems, I propose a new sensor architecture, PreFarad, that separates the
sensing peripheral unit from the rest of device. This separation allows PreFarad to allocate
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a dedicated small capacitor that can be quickly recharged to power the decoupled sensing
peripheral and store any event that may happen before a larger buffer can recharge and
transmit the event. Since the average energy required to only detect an event is several
times lower than energy-expensive tasks like transmitting a radio packet, the capacitor
powering only the sensor is also significantly smaller and can recharge more quickly.

1.2 Sustainable Designs with EH Power Supply

The recent advancements in IoT have the potential to deliver long-term and massive-
scale services demanded from the future of smart sensing. Sensors deployed on the trees
planted on urban motorways can improve the tree health and city air quality by monitor-
ing the mineral content and moisture level of the soil [18], IoT systems can be installed in
remote agricultural farms to enable sustainable crop production [19], and sensors can con-
trol the ambient lighting of specific aisles or items in large infrastructures like museums
or shopping malls. These sensors monitor infrastructures that last decades and so should
the lifespan of the sensors. When devices expire prematurely at a massive scale, they con-
tribute to an uncontrollable amount of e-waste. According to a 2020 UN report, the world
produced 17.4 million metric ton e-waste from small IT equipment, the majority of which
were discarded in waste bins before eventually thrown into landfills or incinerated [7].
Moreover, the heavy metals found in printed circuit boards including copper (Cu), tin
(Sn), and lead (Pb) are toxic to human health and even with proper recycling only 30% of
materials can be properly extracted [20]. To reduce the generation of e-waste, US General
Services Administration (GSA) and Environmental Protection Agency (EPA) emphasize
on the prevention of e-waste by encouraging continued use of electronic products [21],
[22].

In reality, sensors lose their full utility way before the silicon wears out. Newer soft-
ware and hardware keep forcing older devices to face untimely obsolescence. Sensors
must adapt to accommodate new use cases to future-proof their service and improve oper-
ational longevity. In this dissertation, we argue that retrofitting existing installed devices
with additional functionalities and repurposing existing device resources to incorporate
new sensing can future-proof IoT installations. For example, sensors monitoring machine
vibration in industries can be upgraded with a temperature sensor to alert for likely cor-
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rosion and grocery stores can upgrade the humidity sensors installed in shelves with a
smart label reporting product expiration date. In another example, an occupancy sensor
can also perform person identification. Empowering already deployed sensors with new
functionalities and features will prevent untimely discontinuation of the sensor and elim-
inate the tremendous maintenance cost and labor of complete replacements. Moreover,
upgraded services can benefit from the available system support without having to design
everything from scratch. This motivated the design of RETROIOT that retrofits IoT de-
ployments by encoding additional new data using the battery terminals of a device in a
minimally invasive and low overhead method. The key insight is that some traditional
open channels can be manipulated to send arbitrary data without any visibility into the
device’s hardware and software. One such data channel is the battery port which is sim-
ple, universal, and easily accessible and many devices sample their battery voltage and
include the readings in their data packets. RETROIOT adds a simple encoder hardware to
send new sensor data, metadata, or custom commands by modulating the battery voltage.
The modulated data is later decoded at the cloud application. RETROIOT’s encoder adds
on to the ALTAIR’s power supply supervisor to store any pre-programmed metadata and
replace the sensor’s battery with energy-harvesting upgrade.

Additionally, we propose a technique, SolarWalk that extends and repurposes the role
of a photovoltaic (PV) energy harvester to perform occupant identification by embracing
the noisy power supply jitters originated from human shadow. The key insight is that a
person walking past a PV-powered sensor impacts the output voltage of the harvester and
the resulting voltage pattern is a unique identifier of the person due to height, body shape,
and gait differences in individuals. SolarWalk demonstrates a design point to utilize ex-
isting resources like the PV cell available on energy-harvesting sensors to learn about en-
vironmental context, without requiring completely new devices and hardware overhead.
The concept of such PV-enabled sensing unlocks many applications beyond person iden-
tification including activity monitoring, occupant tracking, occupancy sensing, avoiding
the bulky and invasive installations required of existing solutions [23]–[25].
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Figure 1.1: Platforms developed by this dissertation to support sustainable IoT sys-
tems. ALTAIR is an energy supervisor architecture that reduces batteryless design
overhead, while learning to adapt to unseen energy conditions. PreFarad sensors are
highly accurate event-driven intermittent batteryless sensors even under low energy con-
dition. RETROIOT and SolarWalk are two repurposable design points that equip energy-
harvesting sensors with new applications. These platforms enable a class of green bat-
teryless devices for smart indoor sensing.

1.3 Supports for Sustainable IoT

To significantly improve their lifespan, IoT devices must accommodate two key proper-
ties: renewable source of power and capability to adapt to changing demands in future.
To simplify batteryless application design and improve service reliability under energy
intermittency, we introduce two design architectures, prototype the systems in custom
hardware, and evaluate the performance in real world deployments. We focus on indoor
light energy-harvesting and enable a genre of smart sensors with applications in smart
indoor spaces like office, home, and labs. Additionally, we explore two new design points
to upgrade deployed IoT systems with additional sensing capabilities from their origi-
nal designs. The outcome is a class of self-powered green edge computers that support
perpetual sustainable sensing ( Figure 1.1).
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1.4 Thesis Statement

Energy-harvesting sensors are powered from an intermittent and unpredictable energy

source resulting in complex application design and unreliable sensing services. A de-

sign architecture that abstracts energy management decisions from an application’s rou-

tine workload, yet exposes critical energy-related parameters at runtime, enables effi-

cient energy-utilization and increases service availability in multi-sensor environments.

Such a design method enables composability, provides re-usability, and introduces novel

retrofitting applications with energy-harvesting functionality.

1.5 Summary of Contributions

We make the following contributions in this dissertation:

• We propose ALTAIR, a novel energy supervisor architecture for energy-harvesting ap-
plications that decouples energy optimization from an embedded application’s task ex-
ecution. Current energy-harvesting systems adopt a monolithic structure with tight
interdependency between energy management and application, which increases com-
plexity of application programming and limits portability to new applications. Instead,
ALTAIR’s energy supervisor allows independent, modular, and faster development. AL-
TAIR hides the low-level complexity of energy measurement and management from an
application developer, yet offers critical energy parameters through the ALTAIR en-
ergy API. Instead of imposing additional resource overhead associated with the energy
supervisor, the proposed system offloads computation to a separate processor. We de-
velop ALTAIR hardware platform in a custom PCB, design six different IoT applications
ranging from custom-made to COTS devices, and deploy the sensors in various indoor
settings to analyze the performance of an online energy manager algorithm that learns
to adjust application’s dutycycle post-deployment. We discuss the approach in detail in
Chapter 3.

• Intermittent batteryless sensors are extremely unreliable for event-driven IoT applica-
tions. The turn on rate of an intermittent sensors is controlled by the harvestable energy
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the sensor experiences in their installation point. In a low energy environment, the de-
vice spends most of its power cycle recharging before turning on for a very short period
of time, which results in poor event detection accuracy. To improve the detection ac-
curacy of intermittent batteryless systems, we design PreFarad that separates sensing
from processing and transmission. The key insight is that the energy required to detect
an event is significantly lower than combined energy requirement of processing and
transmission. PreFarad adopts a small capacitor to mimic an “always-on” low-power
subsystem that powers only the sensor. Since, a smaller capacitor can recharge faster,
PreFarad’s sensor subsystem becomes instantly available. This improves event detec-
tion accuracy over a common capacitor intermittent system. We develop PreFarad in
a custom hardware platform and incorporate two event-based IoT applications: move-
ment detection using PIR sensors and contact sensing with magnetic field sensors. We
evaluate the performance of the proposed approach by deploying the sensors in two
different indoor locations. Chapter 4 describes the overall approach and limitations of
the system.

• We design, RETROIOT, a technique that retrofits deployed IoT devices with new func-
tional features by modulating additional data through open data channels of the de-
vice. Commercial IoT devices are difficult to upgrade due to lack of transparency into
their hardware and software, forcing them to become obsolete and get replaced as new
demands arise. Through RETROIOT, we demonstrate that even a closed-source IoT
system can be retrofitted to allow new sensing and data with simple add-ons without
replacing existing installations. RETROIOT is motivated from the key observations that
batteries have accessible ports in battery-powered IoT sensors and battery readings are
periodically reported by the sensor as an indication to future replacements. We extend
the upgrade to accommodate an energy-harvesting power supply which then completely
replaces the battery and manages the limited available energy by dutycycling the de-
vice. We design two prototype encoder to implement RETROIOT and upgrade three
COTS IoT sensors with new applications. We describe the technique in Chapter 5.

• We introduce, SolarWalk, a sustainable design point that performs accurate sensing us-
ing photovoltaic harvesters. SolarWalk light energy-harvesting sensors can distinguish
occupants and their movement direction in a smart home by analyzing the noise in-
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troduced on the output voltage of the harvester as they walk past installation points.
Current smart home occupant identification systems either require dedicated hardware
resources or multiple devices, which limits flexible deployment. SolarWalk systems
builds on PV cells that are widely used a power source in energy-harvesting sensors.
We build a prototype hardware of SolarWalk and evaluate the identification accuracy
on the data collected from five participants in two different setups. We elaborate the
design in Chapter 6.
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Chapter 2

Related Work

From smart buildings to wearable health, from massive-scale industry applications to
academic research, energy-harvesting devices have shown promising results in sensing,
monitoring, and re-configuring, replacing batteries and tethered power supplies. Battery-
less sensing holds the key to future IoT which will eliminate cost and labor associated
with limited lifetime batteries [26]–[28]. Looking back on the progress made in energy-
harvesting systems over the last ten years, one can safely assume the trend will be only
upward from now on. This progress has been enforced by the recent advancement in
ultra-low power ultra-small microcontrollers, radios, MEMS sensors, and better operat-
ing systems informed by careful power management, efficient programming, and debug
support. In this section, we discuss the landscape of energy-harvesting sensor design in
terms of different hardware-software approaches, applications, and energy management
and highlight research motivated by post-design reconfigurability.

2.1 Energy-harvesting Systems for IoT

2.1.1 Hardware-Software Approaches for Batteryless Design

Existing works for energy harvesting systems can be broadly categorized into two di-
rections: Intermittent systems which perform operations whenever there is enough en-
ergy; Non-intermittent systems which store the harvested energy and implements a dy-
namic power management-based duty-cycling to maximize energy utilization. Intermit-
tent systems incorporate small energy buffers to store energy temporarily and perform
simple tasks when the stored energy reaches certain threshold until the buffer depletes.
Gecko [29] and Monjolo [30] are such intermittent system that proposed the idea of mea-
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suring different phenomena like energy metering, water metering, door state sensing, oc-
cupancy by analyzing the activation frequency of the device. UFoP [31] presented the first
federated energy storage approach for intermittently powered sensors. UFoP adopts static
federated energy with static capacitor sizes and charging thresholds to achieve higher
availability and energy efficiency than a centralized energy system. Flicker [32] improves
the flexibility and efficiency of UFoP design and enables rapid prototyping for batteryless
Internet of Things by modularizing multiple applications. Capybara [33] goes a step fur-
ther, by dynamically resizing a bank of capacitosr to match the energy requirement by a
task, which reduces cold start time as well as capacitor recharge time to support a given
operation. In [34], authors proposed a new architecture and toolkit for energy harvesting
systems, which masks the inevitable intermittency with a variety of trigger abstractions
that activates the device for certain conditions. Signpost platform [35] is proposed as a
generalized energy-harvesting platform for city-scale sensing using a shared backplane
to interconnect and isolate each module, allowing energy to be used for particular mod-
ule. Software based techniques introduce intermittent-aware programming models and
compilers to resiliency in between power cycles by checkpointing program states [36]–
[38].

Analyzing the existing works in battery-less systems and from our own experience
with developing energy-harvesting applications, we identify a polarizing gap between the
extremities of two common design strategies. In one group of these design strategies [27],
[30], [31], [34], systems are designed with a specific application goal in mind with a high
degree of co-design in the software and hardware layers. Hardwares are fine-tuned and
codes are optimized to work for a known use case. While these design points are simpler
to build and achieve good performance, they fail to work in other application scenarios
for which it has not been optimized for. On the other hand, another group of work [32],
[39], [40] emphasize on developing more general platforms that hides the complexity of
co-design from novice developers while at the same time, letting them chose their own
peripherals. These systems make application development easier and provides flexibility,
but now the developers have very limited access and control over the energy side. We
identify that achieving a design point that balances between these two extreme points
would further widen the boundary of today’s battery-less application.
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2.1.2 Techniques for Energy Management

Reinforcement learning (RL) has already been adopted in providing a dynamic energy
management for energy harvesting nodes. Hsu et al. [41] introduced a dynamic power
manager for energy harvesting networks, where they use Q-learning algorithm on an agent
to select within four different level of duty-cycles. Another paper provides dynamic power
management in ensuring the requirement of throughput along with the battery’s energy
level [42], they also added penalties considering the condition of energy storage, which
includes overcharging, deep-discharge, and depletion. Different from other approaches,
Rioual et al. [43] focus on refining the reward function and discussed the choice of rewards
in energy-harvesting IoT nodes. RL algorithms are also used to solve energy allocation
problems in energy-harvesting systems. SARSA algorithm was introduced by Ortiz et
al [44] to learn a power allocation policy in two-hop communications and maximize the
throughput of a communication system. SARSA(λ) was also introduced to develop an
adaptive power management algorithm for solar-energy-harvesting nodes [45]. Their re-
ward function was designed based on the distance of energy neutrality, and trained the
agent in an episode of 24 hours.

2.1.3 Event Detection with Intermittent Sensors

The stochastic nature of intermittent energy makes intermittent energy-harvesting sensors
a poor choice for event-based IoT applications. Many sensor-based automation systems
requires reacting to an asynchronous event accurately and in real-time. However, since
intermittent sensors are momentarily on and usually spends a large fraction of their power
cycle recharging the energy buffer, there success rate of event detection suffers

The SmartON platform in [46] uses on-device reinforcement learning and Ember plat-
form in [47] uses off-device reinforcement learning to train the sensor to predict the oc-
currence of an event to wake up timely. These system rely on supercapacitors to buffer
energy for several hours to several days. These approaches require computation heavy
learning technique offline on large amount of historic data and frequent communication
with the device itself which adds overhead. [31] partitions the energy buffer for each
components of a sensor which improves the availability of the MCU and radio. However,
the radio is powered by a relatively larger capacitor which may fail to detect an event
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on-demand.
[34] adopts event-based activation of sensors by powering from the side channel of

energy associated with the event itself. Similarly, Empire [27] designed a platform to
monitor structural vibration only activating the the sensor when the specific event of in-
terest occurs. Both approaches rely on coupling between side channel of energy and the
sensed quantity, making them highly application-specific.

2.2 Reconfigurable Design Space

Commercial IoT systems have been retrofitting legacy systems in condition monitor-
ing, predictive maintenance, transparency in supply chain, etc. [48]–[51] over the past
decades. In this section, we briefly discuss work related to enhancing existing systems or
interfaces with new techniques.

One of the possible ways of retrofitting the IoT network is adding sensing capabilities
by attaching extra sensors or exploiting the wireless medium. Penichet et al. presents
passive sensor tags [52], where the IoT network can be augmented with a new sensor by
placing a passive back-scatter sensor tag with the desired capability next to the already
deployed devices. Since the proposed method lacks the media access control capabilities,
it only demonstrates the prototype in low-density networks. LoRaBee [53] is presented as
a LoRa to ZigBee cross-technology communication approach, which leverages the energy
emission in the sub-1 GHz bands as the carrier to deliver information. LoRaBee tunes the
LoRa’s central carrier frequency and packet payload, so that a ZigBee device can decode
the information carried by LoRa by sampling the RSS. This demonstrate a technique of
backwards compatibility between existing devices and newer additions. RetroFab was in-
troduced to provide an end-to-end design and fabrication environment to retrofit the hard-
ware interface of legacy devices [54]. Another direction of retrofitting existing networks
is to replace existing gateway with an generic gateway, whereas the devices itself remain
unchanged, but the gateway would intercept their data stream at the next hop. Adding
new sensors on generic gateways can add new sensing capabilities to the network-wide
operation. iGateLink introduces a pluggable design to allow data from different sources
that can be easily reused on edge without sending everything to the cloud [55]. This
also speeds up the development of gateway applications. In real deployments, these ap-
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proaches are not ideal for existing commercial IoT systems, due to a few reasons. The
cost and complexity of recreating each layer is high. It is likely that existing devices
cannot be changed since it requires specific software. Also, existing IoT platforms might
be very rigid in the devices and the type of devices they support. Deploying an entirely
new embedded-gateway-cloud system is another option. However, this approach is costly
and does not leverage legacy systems, thus are not favorable for the end users. More
traditional approaches of updating IoT sensors are over-the-programming, which mostly
require a wired connection while reprogramming and a network-wide update assumes all
the sensors in a deployment are same. Reconfigurable hardware platforms like FPGAs
are emerging to accommodate evolvable computing. However, such platforms are yet to
widely adopted like microcontrollers due to high energy requirement, cost, and lack of
community support.

2.2.1 Exploiting Device Side Channels

The idea of augmenting versatile user interfaces of ubiquitous mobile devices have been
explored in prior works. Kuo et al. designed HiJack [56] that exploits the exposed audio
ports of mobile phone to encode additional data as well as harvest energy for operation.
Nirjon et al. presented MusicalHeart [57] a wearable hardware platform to monitor the
heart rate and activity level of the user which communicates the sensed data to the user
mobile device using the audio jack of earphone. In our work, we focus on exploiting the
battery voltage channel of smart IoT devices not only with the goal of adding sensor data,
but also to eventually make the original device energy-harvesting and perpetual.

2.3 Repurposable Energy-harvesting Sensors

2.3.1 Harvester-enabled Sensing

Instrumenting the power sources of energy-harvesting devices to generate more expres-
sive and meaningful data have been explored in several prior works. Monjolo presents
an energy-harvesting power meter where the rate of harvesting energy by power source
is leveraged to calculate how much current is consumed by the attached load. It demon-
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strates a case of redefining the harvester to produce more expressive data. While Mon-
jolo exploits the recharge rate of an intermittent energy-harvesting node to infer energy-
metering information, we demonstrate that even noisy solar cell voltage data can have
context-rich data. In [34], authors infers the occupancy status of a room by simply in-
specting if the node was able to harvest, wake up, and transmit a beacon. Since the node
was able to harvest signifies, the room was lit and someone could be present. These
works attempt to infer intuitive information exploiting the energy-harvester that comes as
an inevitable design choice of self-powered systems.

2.3.2 Indoor Occupant Identification

Scalable and cost-efficient unobtrusive occupancy detection setups for smart buildings
have been attempted previously in several works. Various types of sensors have been
exploited for satisfying the myriad requirements of identification at diversified smart en-
vironments, which include RF-based [58]–[60], Ultrasonic-based [61] techniques or also
collecting information from on-object sensors [62].

Utilizing cellular frequencies, BlueSentinel [58] has been proposed that can detect
the number of users in a room and track them inside the building. Including iBeacon’s lo-
cation information and KNN as the classifier, BlueSentinel achieves accuracy near 83%.
A similar methodology was deployed on a large scale in [59], encompassing diversified
surroundings like office buildings and dormitories on a university campus. However, elec-
tricity and water consumption information was added to WiFi data over 4 weeks duration
with occupancy varying from 0 to 550. Mean absolute percentage error exhibits that in-
corporation of multi-modal data to estimate the occupancy escalates detection accuracy.
As height and weight combination is a unique feature for personalizing, non-intrusive oc-
cupant identification has been proposed by utilizing those features in [60]. This system
takes into account 7 distinct features of a human being (including hand weight distance,
bouncing pattern during walking etc.) for identification. After evaluating in multiple test
beds, it has been demonstrated this system can detect a person with accuracy varying from
90%-100%. In [61], authors present MODES, which utilizes thermal and vibration infor-
mation with an accuracy of 73% and 84% in high and low occupancy scenarios. However,
all these techniques require heavy infrastructure, multiple device installations or carried
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devices which fails to achieve scalability.
In another branch of work, researchers have focused on utilizing on-object sensors

to infer occupancy. For example, SenseTribute [62] collects personalized features from
different on-object sensors such as accelerometers and gyroscopes installed on domestic
utility products (refrigerator, towel dispenser etc.) to classify occupants. Since, different
occupants interact with an object in different manners such as the pattern of knocking on
a door, or opening a fridge, the vibration data collected from the attached sensors can be
a unique personal attribute. SenseTribute achieves an identification accuracy of 74% and
96% for known and unknown training labels. MotionSync [63] proposes an approach
to determine personalized energy consumption by occupants by finding the correlation
between motion data from users’ wearables and appliances. It classifies the appliances in
five categories based on their interfaces to learn the interaction between user-appliance.
We share similar motivations of these work to eliminate the need for infrastructure-heavy
methods, rather exploit already existing sensors and augment them with richer capabili-
ties.
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Chapter 3

ALTAIR: Energy Supervisor for Energy-harvesting Sys-

tems

Converting a battery-powered application to energy-harvesting is not as straightforward
as replacing the battery with a harvester. Harvestable energy is usually very limited, in-
termittent, and unpredictable which requires special hardware and software support to
achieve useful operation [13], [36], [64], [65]. The operating principle of battery-less
energy-harvesting applications can be broadly categorized into two approaches: intermittently-
powered and energy-neutral. The first category of sensors harvest energy from the envi-
ronment through solar, RF, thermal, and kinetic sources, store the energy momentarily
in a capacitor, operate until the capacitor is depleted, and repeat this cycle continuously,
while the latter store energy for future use and regulate the operational frequency of the
sensor to ensure that the outgoing energy roughly matches the combined incoming and
stored energy.

Various designs implement these techniques to realize energy-harvesting systems, in-
cluding hardware-based [14], [31], [33], [66] and software-based solutions [36], [37],
[67], [68]. In both cases, however, energy-harvesting systems typically consist of a single
processor along with an energy-harvesting front-end and application peripherals, where
the processor is responsible for both energy management tasks (i.e. tracking the amount
of energy stored, controlling the wake-up time interval, turning on peripherals at specific
voltage levels, etc.), and application-specific tasks (i.e. sampling, computation, and trans-
mitting radio packets). While this monolithic architecture can be simple and efficient for
the intended application, adopting these platforms to build new applications can be quite
difficult due to tightly-coupled implementations of energy-management code and applica-
tion code. The intertwined application and energy management requires the developer to
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be responsible for understanding not only how to manage energy and correctly implement
the application, but also how the two halves might interact.

The coupled implementation of application tasks and energy-management in energy-
harvesting limits scalability, increases complexity, and impedes efficient energy-harvesting
system development. To address these limitations, in this work, we propose ALTAIR, a
modular architecture for energy-harvesting system design that decouples energy man-
agement from application execution. ALTAIR offloads energy forecasting, allocation,
measurement, and management to the power supply itself, therefore, the applications
no longer have to integrate these tasks. With ALTAIR, application platforms can focus
on the IoT task (as they would with a battery-based power supply), and the new “smart”
power supply can make intelligent decisions about when the application should wake up,
what operating mode it should be in, and how long it should stay active, based on its
careful knowledge of the energy states. Since the energy-optimization algorithms and
power supply are tightly coupled, they can be highly optimized, and must only be im-
plemented once. Many application-level platforms can leverage the same power supply.
Further, the energy supervisor can handle the uncertainty in energy-harvesting system
deployment, relieving each application from needing to consider the range of potential
deployment conditions it might face, and instead allowing the power supply to adapt to
the local conditions post deployment.

By eliminating the tight coupling between energy state and application task ALTAIR

reduces the high-degree of co-design between hardware-software for energy-harvesting
applications, and achieves modularity for independent application development. We also
propose a standard interface between the power supply and the sensor that can be re-used
across multiple application platforms without requiring any significant changes. The re-
usability and modularity are two crucial parameters for a platform to be general across
different types of applications including both periodic and event-driven. We envision that
ALTAIR is a step towards general platform for a wide range of battery-less applications.

3.1 System Design Challenges

Energy-harvesting devices must balance an unreliable source of energy with application-
level goals. Coupling an application’s task flow to an unreliable source of energy makes
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Figure 3.1: Two energy-harvesting sensors in room a) transmit at a rate shown in b).
Performance varies significantly indicating high energy variability of indoor solar energy.
Different duty cycles in c) result in different event detection percentage in d).

energy-harvesting systems difficult to develop and debug, and can result in poor perfor-
mance. Often, the application’s task i.e., sensing, computing, or transmitting, is carefully
mapped to the recent energy state of the energy storage. This tight integration between
an application’s task flow and energy availability significantly limits today’s battery-less
systems in several ways.

Suboptimal performance. With a high degree of energy-application coupling, an ap-
plication’s execution becomes highly energy-dependent. With unreliable energy, the ap-
plication needs to perform complex software checkpointing techniques to ensure forward
progress, which is not always guaranteed. Application programs can enter an endless in-
active loop [37], [69], producing suboptimal performance. The complexity, uncertainty,



40

and software overhead induced in intermittent computing indicate a need for alternative
approaches to design energy-harvesting systems.

Runtime energy optimization. When an application’s task execution is directly
mapped to its energy status, this mapping is often performed at design time and is not
optimized or re-evaluated during runtime. Decisions made at design time fail to scale
post deployment. Since the nature of harvestable energy is time, space, and source de-
pendent, modeling accurate energy states for all possible scenarios apriori is non-trivial.
Figure 3.1 shows two co-located intermittently-powered solar energy-harvesting nodes
that both transmit a radio packet each time their capacitor reaches a certain voltage.
Though deployed in relatively similar environments, the harvesting rate of the sensors
varies quite significantly resulting in different throughput and availability, which is hard
to model at design time. Non-linear device parameters are another source of stochasticity
in energy-harvesting design. For example, two sensors deployed nearby and powered by
the same type of PV cell could operate at different points on its PV curve at a given time
and therefore, produce different output power. Different output power results in different
capacitor recharge times. Both of these two relations are stochastic and non-linear and
fixed design time decisions produce suboptimal performance in post-deployment phases
indicating the importance of runtime energy modeling.

Impedes development. Developing applications with unstable power requires more
expertise, development time, and rigorous testing and debugging than with reliable power.
With the application’s behavior being energy-coupled, developers have to carefully im-
plement everything from the low-level energy-harvesting hardware circuitry to writing
optimized code within the system’s limited energy budget. This creates a large burden on
an IoT application developer. Moreover, finding the optimal design strategy often takes
multiple design-test-deployment cycles. Successful and smooth battery-less development
requires a well-balance between providing enough abstraction as well as control into the
underlying energy optimization mechanism [70].

This combination of challenges suggests that a different design architecture for energy-
harvesting is required.
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Figure 3.2: Overview of ALTAIR energy supervisor architecture.

3.2 Overview of ALTAIR

We propose ALTAIR, a new energy-management architecture for energy-harvesting appli-
cations that decouples energy related decisions from an embedded application’s task exe-
cution. This separation introduces an abstraction layer between the application and power
management which enables independent, modular, and faster design of both subsystems.
ALTAIR hides the low-level complexity of energy measurement and management from
an application developer, while exposing critical energy parameters through the ALTAIR

energy API.
Figure 4.4 depicts the high-level overview of the ALTAIR energy supervisor architec-

ture. The design consists of three core components: the energy supervisor, the energy-
application interface, and the main application. The energy supervisor monitors the en-
ergy states of the storage along with load energy consumption and determines the op-
timal duty-cycle to achieve energy-neutral operation within the limited energy budget.
The supervisor works as a wrapper function that implements power supply functionality
and an interface to facilitate calls between the supervisor functions and main application.
The main application implements the application specific tasks of an IoT sensor such as
sampling, computation, and data communication, and makes call into the energy supervi-
sor using the interface. The energy-application interface handles requests from the main
application, defines the function-specific input/output parameters, and ensures reliable
data communication. Algorithm 1 outlines how the application and the supervisor can
interact. The function MAIN invokes ENERGY SUPERVISOR specifying application
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requirements (p1, p2, ..) to receive the rate at which a task is performed. Instead of ty-
ing an application’s task with the specific energy status of the storage as done in many
battery-less applications, the main application offloads the decision to determine an op-
timal wake-up rate of the sensor to the energy supervisor. This way, the dependence
between the energy supervisor and the application is reduced.

3.2.1 Enabled Properties

ALTAIR enables several desired properties of energy-harvesting system design that tra-
ditional implementations often cannot. It introduces a general, reusable, and reliable
application-power supply interface for energy-harvesting applications and achieves in-
dependent and modular design. Since the energy supervisor and the main application
are separate modules of code and the application’s task flow is not directly logically de-
pendent on the outcomes of the supervisor, development can be performed in a parallel
fashion. This decoupling also simplifies adding new APIs to the energy-supervisor and
new functionality in the application. A standard interface between the energy-harvesting
power supply hardware and the IoT sensor enables integrating a variety of sensors with a
single power supply without re-designing the harvesting circuity or energy management
logic, enabling reusability and scalability of the platform. Also, since the application
does not interact with the underlying energy-harvesting power supply hardware, the IoT
application developer does not need to implement power-supply specific drivers in the ap-
plication code. Moreover, though we propose ALTAIR for energy-harvesting applications,
the general architecture can be adopted in battery-powered IoT and mobile applications
as well as for advanced power optimization.

3.3 ALTAIR System Design

An IoT application interfaces with the energy supervisor of ALTAIR to maximize its en-
ergy utilization. In this section, we discuss the core components of the architecture and
how they interact. We also investigate the design choices to understand the trade-offs in
the design space.
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Algorithm 1
function ENERGY SUPERVISOR (p1, p2, .., pn)

return action rate
function APP ROUTINE (rate) // application task code

return
function MAIN

After each tperiod {
rate = ENERGY SUPERVISOR (p1, p2, .., pn)
APP ROUTINE (rate) }

3.3.1 Design Space Trade-off

We note that the isolation between the energy management and application sub-blocks
proposed by ALTAIR can be implemented in both software and hardware. In software,
this isolation would be possible by delegating the energy management portion in a sep-
arate module with the implementation of appropriate interface functions accessed by the
main application. In the hardware version, the energy management functionality could be
executed in a separate core or a processor with dedicated hardware resources. We identify
some crucial factors when choosing between these various design points. While imple-
menting ALTAIR as a software component would provide the desired logic detanglement
and independent code development, we advocate for the hardware version of ALTAIR

design to take advantage of several benefits.
Minimal resource conflict. Today’s IoT devices are extremely resource-constrained

due to their size and power restrictions, yet, they are expected to perform a diverse range
of processing-intensive applications. Such applications include critical real-time process-
ing, multi-radio wireless communications, and even running machine learning inferences.
Typically these computation-intensive tasks are handled in real-time by a low-end micro-
controller causing significant burden on the shared memory and CPU bandwidth. Adding
an online energy management algorithm would exacerbate these concerns. Instead, we
leverage an ultra-low power microcontroller with dedicated clock, memory, and I/O band-
width to execute the energy supervisor in parallel with the application.

Decoupling in the power domain. Using hardware isolation and adding additional
hardware components to the system might impose an additional energy cost in an energy-
harvesting application. However, we argue that the average energy overhead can actually
be reduced by leveraging a lower power core than the main application. As these two
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Table 3.1: List of ALTAIR APIs.

Energy Supervisor Main Application
c param t
get critical parameters()

dc t get optimal dutycycle()

list param t get app list() double
get current energy status()

mode param t
get power modes()

int get update period()

model array t
get energy model()

cores are decoupled in the power domain and they can be turned on/off independently,
one can reduce the overall energy cost. This architecture has been implemented by silicon
vendors in many low power dual-core processors [71], [72]. Furthermore, the energy-
management core can be further power-optimized with the recent growth of ultra-low
power chip technology.

Reusability and generality A hardware implementation of ALTAIR accelerates the
development phase and reduces developer effort by providing modularity and reusability
across multiple applications. To promote reusability, we adopt the hardware-accelerated
software energy management of ALTAIR and implement the energy supervisor in a lower
power microcontroller taking inspiration from the ARM’s big.LITTLE technology [73]
that leverages a smaller lower power core to enable power optimization. In the evaluation,
we test the performance with a variety of IoT sensors and demonstrate the composability
and generality of the platform. This enables future embedded designers to rapidly develop
their own applications while adopting energy-harvesting functionality.

3.3.2 The Energy Supervisor

The energy supervisor of ALTAIR handles the tasks of energy management, prediction,
and allocation, and makes decisions independently from the application logic. To accom-
plish this, the energy supervisor has two key components. First, the supervisor interacts
with an energy-harvesting front-end to collect useful information about the harvesting
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int main (){
…..
   configure_supervisor();
….
   
   
   get_current_energy_status();
   get_optimal_duty_cycle();
…..
}

int main (){
…..

wait_for_cmd_from_app ();
get_critical_parameters();
get_ app_list();
get_ power_modes();

…..
}

Energy supervisor code App code

Figure 3.3: Example workflow diagram between the application and energy supervisor.
The direction of the arrow specifies the direction of API calls.

conditions. This information includes the average input power, the charging rate of the
storage, and instantaneous and average stored energy. The energy-harvesting front-end
typically accommodates an energy-harvester (e.g. solar, RF, thermal, or piezoelectricity),
a charge controller, and an energy storage (e.g. capacitor). Second, the supervisor imple-
ments the dynamic power management scheme and the interface presented to the main
application. For dynamic energy management, the application can specify the parame-
ters (i.e., duty-cycle) to be optimized and an optimization algorithm among the supported
ones. The supervisor can also inform the application about which operating mode the
application peripherals should be running in, or the recommended order of priorities for
multiple applications.

The supervisor makes power management decisions by keeping track of system’s past
experience and predicting future expected energy incomes. Learning and adapting the
optimization parameters at runtime, as opposed to fixed design time or datasheet parame-
ters, makes the energy supervisor more robust to real-world deployment conditions. The
supervisor attempts to support any type of application workload. However, as the under-
lying hardware can only buffer a finite amount of energy, the average energy consumption
of the application must be below the maximum buffered energy.
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3.3.3 Energy-Application Interface

The energy-application interface enables the abstraction layer between the main applica-
tion and the energy supervisor module. It facilitates communication between the energy
supervisor and the main application by implementing a set of useful APIs. This standard
interface enables updates and improvements to the energy supervisor and any optimiza-
tion algorithms without requiring direct changes in the application.

ALTAIR Energy API. Table 3.1 shows the list of available APIs provided by ALTAIR.
The energy supervisor calls get critical parameters, get app list, and get power modes to
acquire application or device specific information. These are fixed configuration parame-
ters of the application that are not expected to change at runtime. get critical parameters

returns an array of permitted duty-cycles of the running application, according to which
the energy supervisor optimizes for long term energy neutrality, and which energy opti-
mization algorithm from the supported ones to use. Currently, the platform implements
three duty-cycling mechanisms (described in Section 3.5.2). To understand how energy is
being spent, get app list provides the list of energy-atomic operations performed by the
application. Energy-atomic operations are categorized into sampling a sensor, computing
and analysing the sampled data, transmitting data, or receiving data. Each of these op-
erations is associated with a unique operation ID. The application specifies the required
operating power modes using get power modes. ALTAIR saves this information into the
non-volatile memory of the energy supervisor to eliminate the need to repeat the APIs
calls after a power failure.

On the application side, ALTAIR provides another four API, namely get current energy-

status, get optimal dutycycle, get update period, and get energy model. get optimal dutycycle

returns the calculated optimal duty-cycle which is one of the values specified by get critical-

parameters and the power modes of each operation. The application performs sensor
sampling, computation, and communication at this optimal rate and enters sleep mode
in between operations. The get update period returns at what interval the application
should check for the updated duty-cycle. This depends on how variable the incoming en-
ergy profile of the device is (defaults to 15 minutes). The get current energy status and
get energy model offer finer insight into the system’s energy status. By calling these, the
application receives the current stored energy on the capacitor and the current numeric
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input values used by the duty-cycle algorithm to calculate the duty-cycle, respectively.
Hardware Energy Interface. The hardware energy interface consists of the hard-

ware abstraction layer that configures the hardware interface between the supervisor and
the application. Each API call is executed by a set of hardware signals and a data com-
munication channel. The interface consists of voltage, control, and data channel as shown
in Figure 4.4. The data channel enables a synchronous communication channel between
two processors where the application processor provides the clock signal. When the ap-
plication processor makes a call into the API functions, it sends an interrupt signal to the
energy processor. The energy processor uses the interrupt to configure the communica-
tion hardware and initiate data transfer. The energy API calls described in the previous
section are translated into data packets. The first byte of energy API packet encapsulates
header information specifying the intended API call and a read/write bit, and the next
two bytes specify the message length. To invoke the energy supervisor to call an API,
the main application sends a write request and an API call from the application is sent
as a read request. Both processors avoid sending a new request if there is any previous
unresolved or pending request. We also keep a timeout timer to avoid a communication
deadlock.

Figure 3.3 shows a flow diagram between the energy supervisor and the applica-
tion code using ALTAIR energy API. Upon startup, the main application uses the con-

figure supervisor to send write requests and prompt the energy supervisor to call the
next three functions for configuration. get current energy status and get energy model

is called at any time application, while, the get optimal dutycycle is invoked according to
get update period.

3.3.4 The Main Application

The main application is a piece of software that performs the typical workload of an IoT
sensor, i.e. sampling, computing, processing, and transmitting.

3.4 Implementation

We implement the ALTAIR energy-harvesting power supply module in a custom PCB.
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Figure 3.4: The ALTAIR hardware platform consists of a power supply module that im-
plements the energy supervisor and a discrete power supply application interface that can
be plugged in directly with an external application.

3.4.1 Hardware Components

The ALTAIR hardware consists of two primary modules: a power system module and an
external application module. The power system module implements the energy supervi-
sor, low level energy-harvesting hardware, and the hardware interface between the energy
supervisor and the main application. The main application is representative of a typical
IoT sensing application that is powered through the power supply interface.

Power supply module. The power supply module of ALTAIR hardware accommo-
dates an energy-harvesting front-end and a companion microcontroller that implements
the energy supervisor software. Figure 3.4 shows the power supply module and the block
diagram of the core components.

An ultra-low power battery charger IC SPV1050 charges the supercapacitor from a
solar or TEG harvester until it reaches 3.1V. A nano-power boost regulator MAX17222
with >70% efficiency at 10 µA of input current regulates the supercapacitor voltage after
its voltage reaches 2 V. The platform currently uses a monocrystalline IXYS solar cell
as the harvester and a 470 mF supercapacitor with an ESR value of 25Ω as electrical
storage. We size the capacitor empirically to ensure that it can supply the highest system
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peak current.
The energy supervisor uses an ultra-low power 32-bit ARM Cortex-M0+ with a 8 kB

of SRAM and 64 kB of flash with different low power modes. The power supply consists
of a current-sense amplifier MAX9634 to keep track of the load energy consumption.
A nano-power power gating IC TPL5110 with reconfigurable time interval allows the
MCU to duty cycle the application in hardware with minimal calibration. The MCU
leverages a digital potentiometer to dynamically reconfigure the time interval according
to the calculated duty cycle.

The interface. The interface of the power supply module provides two voltage rails
of 3.3V and 1.8V, one duty-cycled voltage rail, capacitor voltage output. We use SPI to
exchange information between the two microcontrollers and one GPIO to trigger inter-
rupts. For debugging and evaluation, the interface exposes a UART channel that can be
used to log the instantaneous capacitor voltage state and current measurement channel.

Application module. The application module of ALTAIR platform is an externally
attached sensor. We implement an air quality and pressure sensor board as a part of the
platform.

3.4.2 Energy Supervisor Implementation

We implement an example energy supervisor to show how the architecture can be lever-
aged to optimize the duty-cycle of the connected application. With the dedicated hard-
ware resources of the energy supervisor microcontroller, processing-intensive on-device
energy optimization can be implemented without imposing significant resource conflict
on the application microcontroller. One of the useful properties of the energy supervisor
is its capability to learn to behave optimally post deployment without explicitly model-
ing the harvesting environment pre-deployment. To demonstrate this, we implement an
on-device energy supervisor using reinforcement learning. Reinforcement learning has
shown promising results as a power management technique since it can enable the sensor
node to learn to adjust its duty cycle in a completely unknown environment [45], [74],
[75]. The RL-based energy supervisor reacts to changes in available energy to update
an application’s operation, in this implementation, the rate of sending packets to report
an event. The goal of the algorithm is to maximize the application sensing rate while
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Algorithm 2 RL Algorithm for Energy Management

Initialize S, A, Q(s, a) = 0, α, γ, ϵ , δ
while true do

for each episode do
s← Sample current states
a← Choose current action from s using ϵ-greedy policy
wait for a duration of twait
for each step of the episode do

Perform action a for the duration of tstep
wait for a duration of twait
s′ ← Sample next states
r ← reward (s′, a) according to equation (3)
a′ ← Choose next action using ϵ-greedy policy
Q(s, a)← Q(s, a) + α ∗ [r + γ ∗ (Q(s′), a′)−Q(s, a)]
ϵ← ϵ− δ
s← s′
a← a′

avoiding critical energy depletion.
At a given time, the energy-harvesting node acts as an agent in different states (st ∈ S)

corresponding to the available stored energy, incoming energy, and energy consumed by
the load. The environment in this scenario consists of the stochastic harvestable energy
source and the randomness inherent in the sensor hardware. The node interacts with the
environment in time-slotted episodes by selecting a sensing rate (at ∈ A), and receives
feedback in the form of reward (R : S × A → R). Through a series of such interactions
with the environment, the agent finds its optimal policy (π∗) to select future actions.

RL algorithm. We define the state space for the algorithm to capture the energy
profile of the system. At a given time-step tk of an episode, the energy supervisor collects
all the following state information,

S = {est(tk), ein(tk), eload(tk)} (3.1)

where est(tk), ein(tk), and eload(tk) denotes the supercapacitor voltage at tk, average input
energy, and the load energy consumption during tk. These parameters are indicative of
the system’s overall energy dynamics for which the supervisor finds an optimal action for
the sensor. We consider a 24-hour long episode with a time step of 20 minutes.
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The action space consists of a set of discrete sensing rate,

A = [rmin, ..., rmax] (3.2)

where rmin and rmax are the minimum and maximum rate for the application. At each
time step tk, the agent selects an action a(tk) ∈ A according to the underlying policy. The
goal of the reward function is to inspire the agent to choose the actions that maximize the
sensing rate of the application and maintains minimum required energy on the energy
storage. To model the reward function we adapt the reward function proposed by Aoudia,
et al. [74] as follows:

R = (est − emin)/(emax − emin) ∗ a(tk) (3.3)

We assign a negative reward of -400 if capacitor voltage falls below the minimum
required voltage level of 2.0V. We choose this number so that the maximum cumulative
reward over an episode does not exceed the negative reward. Algorithm 2 lists the pseu-
docode showing how we implement the SARSA reinforcement learning technique [76] to
calculate the optimum duty cycle of an application.

Parameter setup. Though states and actions are continuous functions, we discretize
those to restrict the size of Q-matrix. The discrete action space is A = [1,2,3,4,5] s, which
denotes the time between two consecutive tasks. We set λ = .99, γ = .8, λmin = .1, δ =

.001, α = .1 after explicit testing. To enable faster convergence, we ensure that the
learned Q-table is saved before a power failure happens by polling the capacitor voltage
in the background.

3.5 Evaluation

To evaluate the ALTAIR design, we investigate the usability of the energy supervisor ar-
chitecture and develop a set of different IoT applications. To demonstrate the versatility
of the architecture, we run the applications using different energy supervisor algorithms
and compare their performance. We tested the platforms across four categories of IoT
hardware and evaluated how well these applications perform in terms of event genera-
tion frequency for periodic sensing and percentage of accurate detection for event-based
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Figure 3.5: Spectrum of IoT sensors on a scale of hardware and software flexibility. The
left-most category has maximum flexibility, whereas to the right-most has fixed hardware
and software. We evaluate the ALTAIR platform with different points on this scale to
demonstrate generality.

applications. We integrated six sensors with the ALTAIR hardware platform. We also
explore the performance of the reinforcement learning based energy supervisor to under-
stand how well the system adapts in terms of cumulative active time and reactivity—an
inherent feature of the energy supervisor that shows the online adaptability of the system
in post deployment situations.

3.5.1 Methodology

Categorizing existing IoT devices. ALTAIR uses its standard hardware and software
interface to enable different applications. To test the usability of the ALTAIR power supply
interface, we broadly categorize existing IoT devices into four groups based on the hard-
ware and software interface exposed by the device: 1) sensors that are custom built specif-
ically to use with ALTAIR platform ensuring ideal interfacing, 2) sensors with open source
hardware and optimized applications, 3) sensors that have available hardware design with
somewhat modifiable software stacks, 4) off-the-shelf sensors with non-modifiable hard-
ware and software. This spectrum is shown in Figure 3.5. Of these four groups, the
first group of sensors is best suited for use with ALTAIR. However, embedded software
developers typically use the second and third categories of sensors.

We select six IoT sensors from these four categories to perform our experiments.
These sensors are 1) a Pascal sensor board that monitors ambient air quality and pres-
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Test platforms Processor Peak current (mA) Default power supply Available interface
Pascal Cortex-M4 nRF52840 13.6 flexible power supply, SPI

BLEES Cortex-M0 nRF51822 15 Non-rechargable battery power supply
Herald Cortex-M0 nRF51822 14.8 Intermittently powered power supply
LPCSB Cortex-M0 nRF51822 14.6 USB-powered power supply, I2C

Nordic Thingy:52 Cortex-M0 nRF52832 10 Rechargable battery
power supply, I2C,

SPI, MOSFET drivers, IO
SensorBug BR-LE4.0-S3A 17 Non-rechargable battery power supply

Table 3.2: Specifications of test applications.

sure (category 1), 2) the BLEES platform [77] that senses temperature, humidity, light,
pressure, and movement, (category 2), 3) the LPCSB [78], an ambient light sensor that
categorizes natural light from sunlight, (category 2), 4) Herald, an intermittently-powered
energy harvesting Bluetooth Low Energy (BLE) beacon [79] (category 2), 5) the Nordic
Thingy:52 [80], a multi-sensor prototyping platform (category 3), and 6) the Sensor-
Bug [81], a BLE beacon for smart home monitoring with temperature, light, and ac-
celeration sensors (category 4). While BLEES, LPCSB, Herald hardware have limited
hardware interfaces, the Pascal and Thingy platform includes a relatively richer interface
with ports for communication including I2C and SPI. For the devices that do not have
a data channel or open software that we can reprogram, we use the duty-cycled voltage
terminal of the power supply interface to turn on/off the sensor according to the calcu-
lated duty-cycle. This exhibits the benefit of using the hardware version of the energy
supervisor as discussed in Section 3.3.1.

The selected devices are designed to work on different powering options including
rechargeable/non-rechargeable batteries, constant power, and intermittent source of en-
ergy. Also, these sensors use different application microcontrollers and their energy
consumption varies. Section 3.5.1 lists the characteristics of these hardware platforms.
ALTAIR’s strength lies in its ability to take a battery-powered sensor and convert it to a
self-powered energy-harvesting device. We envision that this will pave the way to many
future battery-less applications.

Interfacing with ALTAIR. To interface with ALTAIR, we simply deactivate the de-
fault power supply of the sensor and jumper the power rails and SPI channel to the AL-
TAIR power supply. In the Thingy:52 board, we connect the voltage rails bypassing the
battery monitoring circuitry. The application uses the energy API library at runtime to
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Figure 3.6: ALTAIR device deployments.

interface with the energy supervisor. The application developer implements the mapping
between the API and their corresponding request id as an initial configuration for both the
application and energy supervisor.

Sensing applications. We consider periodic and event-based sensing tasks from the
above four categories to understand how well the adaptive power management algorithm
captures useful events. The sensors use Bluetooth Low Energy (BLE) radio to report
events. An always-on BLE receiver scans for advertisement packets and advertisements
are sent with short intervals in between, in the range of milliseconds to a few seconds.

Deployment. Our deployment scenario consists of four different indoor locations in
a building space that are exposed to variable light levels across different times of a day:
on three walls, on a desk, a door, and a window. Figure 5.11 shows some of the deployed
devices. A gateway device collects the BLE packets sent by the deployed sensors and
logs them for post-processing. We train the energy supervisor reinforcement learning
agent before beginning the data collection unless specified otherwise.

3.5.2 Energy Supervisor Performance

Event frequency. In this section, we compare the performance of the six test sensors
in terms of the captured event frequency with respect to their default power source and
different variants of the energy supervisor running on the power supply. The different
variants of the energy supervisors are: Altair that runs the energy supervisor as discussed
in Section 3.4.2, Altair-Min which always chooses the minimum duty cycle, hence max-
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Figure 3.7: Performance of different sensors when optimized by different variants of
the energy supervisor and their default power supply. The ALTAIR energy supervisor
implements reinforcement learning to choose between a set of transmission intervals.
BLEES, LPCSB, and Thingy:52 sensors using ALTAIR produce a similar distribution
of packet frequencies as the continuously powered version. For intermittently-powered
Herald beacons however, ALTAIR produces denser packet distribution.

imum delay between packets (5s), and Altair-Max which chooses the minimum delay
between packets (1s). We evaluate the cumulative distribution function (CDF) of the time
between packets received by the receiver. Figure 3.7 compares the results. The time
between two consecutive samples is a helpful parameter to understand overall how re-
sponsive the system is to an external event. The denser the samples, the more likely is the
system to report critical events.

The sensor workload consists of taking a sample and reporting the data in BLE packet.
When powered with the default supply, we program the BLEES, LPCSB, Thingy:52 sen-
sor to send a BLE packet with the sensor data every second and SensorBug has a pre-
programmed advertising interval of 1636 ms. For the herald beacon, however, the rate at
which a packet is sent is proportional to its rate of harvesting energy. When connected to
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Figure 3.8: The percentage data yield of each sensor normalized to their default power
supply. The ALTAIR energy supervisor produces better data yield than the Altair-max
variant that always selects the high sampling rate.
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Figure 3.9: Percentage active time comparison across different energy supervisors. Ac-
tive time denotes the percentage of time within an interval the sensor was continuously
transmitting data. Altair outperforms the other variants.

the ALTAIR power supply, the sensors dynamically change the packet sent rate reacting
to the changes in available energy.

We observe from the distributions of packet intervals in Figure 3.7 that for BLEES,
LPCSB, and Thingy:52 sensors, the distribution curve of ALTAIR and the default power
supply follow closely, and the 95th percentile of the inter-packet times are within ten sec-
onds. The SensorBug, in contrast, achieves 111 s. The packet interval distribution of Sen-
sorBug with ALTAIR follows similar pattern as the default power, however, it undergoes
longer occasional power outages due to its relatively high peak current (Section 3.5.1).
ALTAIR achieves overall higher captured event frequency than Altair-Min, the intermit-
tent power supply, but worse than Altair-Max. For the intermittently-powered herald
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Figure 3.10: Packet distribution with ALTAIR. Sensors with ALTAIR opportunistically
choose between five allowable rates, prioritizing the higher rate.

beacons, the time between consecutive samples is directly affected by the availability of
harvestable energy and charge time of the storage capacitors resulting in larger delays.
ALTAIR system however masks the irregularity of energy by storing it in a sufficiently
sized capacitor and ensures samples are collected evenly at the desired rate. According to
Figure 3.7, Herald achieves 10× higher captured event frequency with ALTAIR than with
its intermittent power supply.

ALTAIR produces better percentage data yield and active time than both baselines
as shown in Figure 3.8 and Figure 3.9, as ALTAIR optimizes for better sensing rate and
fewer power failures. The percentage data yield signifies the amount of produced data
normalized with respect to constant power sources and the percentage active time denotes
the time in a fixed time interval for how long the sensor was active.

Figure 3.10 compares the distribution of inter-sample times of the sent packets. AL-
TAIR distributes the sample rate among the allowable rates reactively based on the deci-
sion of the energy supervisor. The RL agent chooses more and more actions that sample
packets at a high rate when there is an energy surplus and relaxes the rate when the system
is likely to see a power outage. The distribution shows that for all the sensors more than
35% of the total samples have a rate of one sample per second. Figure 3.11 shows the
distribution for the default power supply. In the case of intermittently-powered systems,
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Figure 3.12: Event detection accuracy for time critical applications.

the samples are more sporadic and the sensor is spending majority of the time in charging
the energy storage. Such systems are likely to miss events than ALTAIR that prioritizes
higher sample rates when possible.

Event detection accuracy. To investigate how well applications can detect external
events with ALTAIR, we classify event-based applications into two categories: time crit-
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ical and non-time critical. For the time critical scenario, detecting an event should be
instantaneous (i.e., less than a few seconds) since some external agent might need to react
that event, for example, door sensors and motion-based light switch. For the non-time
critical applications, detecting an event in a reasonable time interval is sufficient, for ex-
ample, temperature sensors for HVAC systems. We deployed one BLEES sensor to detect
door events, one to detect motion in two different locations and one Thingy:52 to detect
temperature events.

We connected one BLEES board with the ALTAIR power supply and deployed it on
a door to detect each time the door has been opened or closed, and two of them in a
hallway and on a desk to detect movements for one week. With the default power supply,
when the sensor gets an interrupt due to an event, BLEES wakes up to report the event.
When connected with ALTAIR, the power supply processor fully controls the turn on/off
the BLEES application processor. For the Thingy:52 board, the sensor is configured to
go to the sleep mode and wake up when an event happens and report that event only if
the capacitor has sufficient voltage. We chose to detect motions in two different locations
to emulate two real-life scenarios: spaces that are usually lit most of the time of a day
like a hallway, and spaces that have sporadic light exposure and sensing and harvesting
is likely to happen simultaneously such as at a desk. To ensure we have enough data
for statistical reasoning, we expedited the data collection process at the end by manually
generating events as capturing organic events takes significant time. We used a constantly
powered version of the sensors to collect the ground truth for events. We compared the
performance of ALTAIR with two variants: ALTAIR-Min that always chooses minimum
duty-cycle and ALTAIR-Max that selects maximum duty-cycle.

Figure 3.12 shows the percentage of correctly detected events and compares the result
across three power management algorithms in three of the deployment scenarios. We
find that sensors with ALTAIR achieves 70% and 80% detection accuracy in the hallway
and on the door respectively, higher than the other two variants. This happens since
ALTAIR spreads out the system active time by optimally choosing the duty-cycle and
is likely to capture events correctly, whereas, ALTAIR-Max sees frequent power failure
events and ALTAIR-Min misses events for spending much time in time between wake-
ups. However, in the work-desk space ALTAIR-min detects more events than ALTAIR as
it aggressively selects higher sampling rate. This signifies that careful decisions should
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Figure 3.13: Event detection using ALTAIR.

be made for applications where the event of interest can happen before the device can
harvest enough energy. In such scenarios, predicting such events beforehand can improve
detection accuracy. We plan to investigate such cases for future study.

As a candidate of non-time critical event detection, we deployed one Thingy:52 to
monitor the temperature of a home in two different locations: on a window and on an
indoor wall. We analyze how many times the sensor can correctly report when the tem-
perature falls below 76°F or exceeds 79°F (selected according to the comfort level of the
occupants). Figure 3.13(a) shows that with ALTAIR the device reports 79% and 83% of
the events accurately. To determine the latency between the event has occurred and suc-
cessfully reported, we show the CDF of detection latency in Figure 3.13(b). We find that
the 95th percentile latency remains within 12 s.

3.5.3 RL Supervisor Robustness

System active time. ALTAIR uses a 470mF supercapacitor as an energy-reservoir of
the system. The larger the size of the capacitor, the more time it takes to recharge after
a power failure. In this section, we aim to analyze the active time of a sensor connected
to ALTAIR. We define the duration of the time a sensor samples continuously before
exhausting its energy buffer as the active time.

To evaluate how much time the system spends in recharging the capacitor in a dynamic



61

1 2 3 4 5 6 7 8 9 10 11 12
Sensor wake up index

0

20

40

60

80

100

120
S

en
so

r
ac

ti
ve

ti
m

e
(m

in
)

(a)

0 2 4 6 8 10 12 14

Time (hr)

0

2

4

6

8

C
u

m
u

la
ti

ve
ac

ti
ve

ti
m

e
(h

r)

(b)

Figure 3.14: When moved to a new environment, the system increases its activity as it
learns the new harvesting conditions.

Figure 3.15: With time, the energy supervisor learns to avoid power failure by adjusting
the time between samples, though experiences a few power failures at the beginning. The
blue trace plots the instantaneous capacitor voltage, and the orange corresponds to the to
the time between packets.

energy environment, we moved the Thingy:52 sensor from its original window position to
a wall. Figure 3.14(a) shows the active time of the sensor during each progressive power
cycle. After being exposed to a new environment with a different harvesting scenario, at
first the system explores to find the optimal set of actions that avoids power failure. The
system active time progressively increases as it sees less power failures with occasional
dips. Figure 3.14(b) shows the cumulative active time of the sensor.

Reactivity. In this section, we analyze how the energy supervisor reactively changes
the rate responding to the available energy. A sensor that runs at a constant duty-cycle



62

53 54 55 56 57

Clock cycle

0

10

20

30

C
ou

n
t

(a) Wake-up delay

69 70 71 72 73 74 75

Clock cycle

0

10

20

30

40

C
ou

n
t

(b) Interrupt service delay

Figure 3.16: The histogram of the delay in servicing the message request by the energy
supervisor in clock cycles.

suffers from multiple consequences: 1) in case of an energy surplus, the system under-
performs by not sampling more, and 2) in case of an energy drought, the system runs
the risk of frequent power failures by not backing off. Figure 5.19 shows how ALTAIR

adjusts the time between samples reacting to the capacitor voltage. We set the episode
interval as 2 min for this experiment. In the beginning, the system experiences frequent
power failures around 8, 15, 22 and 25 minutes, spends significant time in power failure,
but learns to adjust the time between samples allowing the sensor to sleep. A falling ca-
pacitor voltage results in an increase in the time between samples and a steady or rising
capacitor voltage encourages frequent samples. Throughout this experiment, the harvester
was kept under a stable harvesting environment which ensures that the capacitor voltage
was only the system variable. By vary its rate of operation, the system incurs 50% fewer
power failures with an increased availability of 44%.

3.5.4 Energy Supervisor Responsiveness

As the energy supervisor processor receives the energy API request from the main proces-
sor through a hardware GPIO interrupt, we investigate the number of clock cycles needed
to serve the interrupt. We characterize the delay to wake up the energy supervisor from a
low power sleep and the delay to respond to an interrupt while performing its routine task.
We show the histogram of delays of 100 interrupts in Figure 3.16(a) and Figure 3.16(b),
respectively. Though the delay in terms of clock cycle varies, the distribution shows the
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Table 3.3: Power draw overhead of ALTAIR.

Component Active current Sleep current
MCU STM32L010R8 585 µA@16Mhz 4.7 µA

Charger SPV1050 2.6 µA 1nA
Current Sensor Max9634 1 µA 1nA
Power Gating TPL5110 35 nA N/A

All components 7.8mA 94.5 µA

delay can be bounded within a few clock cycles.

3.5.5 Energy Overhead

Using the ALTAIR platform does come with an energy overhead. However, while imple-
menting the platform, we chose components with low power options. Table 3.3 lists the
active and sleep current of the used components. The average active power draw of the
board is 7.8mA and the quiescent power draw is 94.5 µA. We notice that the significant
energy overhead comes from the ADC polling to observe the system energy as ADC read-
ing over one second costs 24.3 µJ. This overhead can be reduced by polling the ADC less
frequently.

3.6 Discussion

Partial decoupling. Though ALTAIR reduces the logical dependency between energy
management and application tasks, both subsystems are required to have a knowledge of
the expected information from each other. Since IoT sensors are typically small systems
with a handful of running applications, we expect the ALTAIR architecture is sufficient.
However, for large scale embedded systems full decoupling may be needed.

Vast heterogeneity of IoT applications. Though we believe that ALTAIR is a step-
ping stone in the direction of a “general-purpose” energy-harvesting power system suited
for IoT sensing applications, the spectrum of sensing is broad in terms of energy cost and
time-sensitiveness. Applications that are susceptible to occasional power failures might



64

require back-up source of energy such as rechargeable batteries [33]. In such a case, the
RL manager might reduce the negative reward, if the backup energy source is available.

Energy storage size. Though an over-provisioned energy reservoir can mask unstable
available energy and eliminate the need for complex software support, bigger capacitors
suffer from higher leakage, prolonged cold-start phase, and longer recharge times.

Limited harvester support. Current ALTAIR platform only has support for harvest-
ing energy using solar and TEG harvesters.

Enabling new techniques. We believe that faster testing and development plays an
important factor when designing novel energy-harvesting applications and ALTAIR at-
tempts to lower the barrier to entry. We recognize that there is a lack of prototyping
platform for energy-harvesting application and this work will attract researchers to build
and test new software and hardware techniques for better power management.

3.7 Conclusion

Managing energy is critical for energy-harvesting systems, and this burden has been
foisted on the IoT application software with only limited support from the energy-related
hardware. This chapter argues that ad-hoc and implementation-specific interfaces be-
tween applications and power supplies constrain the development of energy-harvesting
devices, and that a new MCU-power supply interface is critical for restoring proper lay-
ering to these systems. In this paper, we introduce such a system that isolates the en-
ergy management decisions from a sensor’s workload, and provides a simple interface
for adding new applications to the system. By strictly separating energy-management
from device operation, we believe we can lower the bar for developing energy-harvesting
systems, helping to realize a fully batteryless IoT.
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Chapter 4

PreFarad: Event Detection with Intermittent Sensors

The ability to harvest energy from environment empowers small computing devices to be
pervasively deployed in most indoor and remote outdoor spaces for long-term sensing.
However, the amount of harvestable energy can be critically low and volatile, where the
sensor is deployed, which limits the availability of the sensors [10], [12], [69], [82].

Intermittent energy-harvesting devices store energy in a sufficiently-sized capacitor.
When the capacitor is charged to the operating voltage threshold, the microcontroller turns
on and performs sense-process-transmit tasks. However, because the average input power
is typically significantly less than the average power draw of the device, the capacitor
is depleted within a few milliseconds. When the the capacitor is depleted to a critical
threshold, the MCU and peripherals completely turn off and the capacitor recharges and
repeats the power cycle ( Section 4.1). When the harvestable energy is plenty, the device
can charge quickly and when energy is low, the device spends most of the time recharging.
Our experiments with indoor light energy-harvesting BLE beacons find that the recharge
time can range from a few hundreds of milliseconds to tens of minutes for a sensor [15].
The intermittent operation of energy-harvesting devices make stochastic event detection
immensely challenging. An intermittent sensor has a higher rate of missed events than a
battery-powered sensor that is always available.

To enable reliable event detection, in this chapter we present PreFarad, an intermittent
battery-less event detection system, that partitions the energy required to sense an event
of interest from the system’s cumulative energy budget. PreFarad dedicates a decoupled
energy buffer for the sensor peripheral responsible for event monitoring and a separate
energy buffer for the rest of components to handle event data (i.e., process and transmit).
We utilize the insight that the average energy requirement to detect an event is several
times lower than transmitting a radio packet to report the information to a base station.
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Figure 4.1: Intermittent energy-harvesting devices harvest and store energy in a capacitor
to sustain their operation. Once the buffered energy reaches the turn on threshold, the
device activates and performs operation. Since the average power of the harvester is
significantly lower the device power draw, the buffer depletes quickly, effectively turning
off the device and allowing the buffer to recharge.

This enables the event capacitor to be considerably small enough to quickly recharge and
sample an event, significantly improving device responsiveness and event detection rate.
PreFarad prioritizes charging the event capacitor and as more energy becomes available,
a larger buffer activates the MCU to process and report the event. While the transmission
capacitor charges up, PreFarad must cache any event that happens during this interval.

4.1 Event Detection with Intermittent Energy

To report an event, an IoT device must instantaneously react to an event before it finishes.
To successfully report an event, the capacitor of an intermittently-powered device must
have the minimum energy to turn on the device at the time the event occurs. If that
condition is not met, the event is missed and the reliability and sensor data quality of the
system is compromised. This happens when the capacitor is recharging after a discharge
from the previous power cycle or from a fully depleted stage after a long energy drought.
Low energy-harvesting conditions worsens the reliability of these sensors.
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Figure 4.2: Uncertainty in successfully detecting an event in intermittently-powered sys-
tems. Intermittently-powered devices turn on once its capacitor reaches a minimum
threshold and performs a routine task. Events that happen during recharging is missed
compromising reliability of service. (a) depicts a series of missed and captured events
throughout capacitor life cycles. t1, t2 denote the start and end time of an event and tp
indicates the period of capacitor life-cycle. If energy availability and the event of interest
does not coincide, the likelihood of detecting the event decreases as shown in (b).

4.1.1 Unpredictable Energy Demand

Many IoT sensors are event-based, meaning, sensors respond to a particular change in
the environment and notify the user off the trigger or turn on an actuator. For example,
movement triggers from a PIR sensor control the lights of a room, contact status from
a magnetic sensor to report door open/close events , or an accelerometer attached to a
garage door opener. Reliable sensors must detect each of these events and report the data
instantaneously. Battery-powered and wire-powered devices perform well for these ap-
plications, as they have steady power supply and are always available to react. However,
intermittent sensors do not have continuous availability as they frequently recharge their
storage, which makes them highly unreliable ( Figure 4.2). For light energy at indoors,
low illuminance level and occasional unavailability in light in controlled spaces exacer-
bates the challenge. Sensors may spend a few seconds to several minutes in between
power cycles. Many IoT events are hard-to-predict, fast, and time-sensitive that are par-
ticularly challenging to detect under intermittency. The sensor must accumulate sufficient
energy to turn on before the event finishes. We particularly focus on these types of event
in this paper.
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Figure 4.3: Traditional energy-harvesting based sensor devices need to reach an en-
ergy level of Eon to able to sense because of the tight coupling between the sensor and
MCU+Radio energy distribution, as such the energy barrier is too high (denoted by red
dotted lines). However, if the sensing element had its energy requirement decoupled from
the MCU+Radio unit, the energy barrier for just sensing goes down (denoted by the green
dotted lines).

4.1.2 Task Energy Requirement

Current intermittent sensors adopt a single capacitor to drive all the components (i.e.,
MCU, peripherals, radio) and execute the software application. The capacitor is selected
to be large enough to buffer sufficient energy to complete a single chain of sense-compute-
transmit during each active period. However, sensing external event (for example, change
in the surrounding magnetic field for a contact sensor), perform computation from the
sensor data if any, and transmitting the data over a radio packet (BLE, Wifi, LoRa) have
different energy requirements. Typically radio transmissions are more energy-expensive
than collecting sensor samples. For example, a EKMC PIR motion sensors consume a
peak current of 100 µA during detection and a hall-effect magnetic contact sensor draw
a 3.2mA peak current while conversion [83], [84], which is less than half of the peak
transmission current consumption of 9.2mA by ultra-low power BLE SoC nRF523832.
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Figure 4.4: Real-time event detection on intermittent batteryless sensors is challenging
due to their unique nature of operation. PreFarad proposes an architecture that prioritizes
and separates the sensing peripheral dedicated for event detection from the rest of the
component by allowing it to power from a smaller energy buffer. This decoupling in the
energy buffer from the main capacitor enables the event subsystem to be more available
and accurate.

4.1.3 Capacitor Transient Response

A capacitor’s recharge time is proportional to input power of the energy-harvester and is
inversely proportional to the capacitance of the capacitor. When powered by two solar
cells with identical dimensions and electrical rating, a smaller capacitor will charge faster
than a larger one. Moreover, capacitor’s charge retention time is related to the leakage
current (DCL) and larger capacitor has higher DCL.

4.2 System Design

Based on the observations and limitations mentioned in the last section, we propose Pre-
Farad, a sensor architecture that improves the reliability of event-based intermittent de-
vices.

4.2.1 Overview

Instead of powering the device load from a common capacitor, PreFarad decouples the
energy bucket of the event detection unit from the total energy reserve. Figure shows
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the overview of the proposed system. A small capacitor (CEvt) powers the sensor, its pe-
ripherals, and a low power memory unit that stores and holds the event. The rest of the
component including the MCU, radio, and other peripherals is powered from a separate
energy bucket (CMain), which is larger and therefore, slower to respond. The memory com-
ponent of the detection unit saves the event until the main capacitor finishes recharging
and activates the MCU.

4.2.2 Design Principles

Section 4.1.2 draws a conceptual relation between the harvested energy (EH) and energy
demand(ER) of a typical IoT device. In the region where, EON < ER < EH device is on
and “available”. Here, EON is the total energy requirement in a power cycle. Typically,
EON = ED+EP+ET+EOFF , where ED is the energy required to detect an external event
of interest, EP is for handling the event, ET represents the energy required to transmit a
radio packet, and EOFF corresponds to quiescent power draw. In ER < EON < EH , the
device is inactive and recharging. Instead of waiting to accumulate EON on the capacitor,
if the sensing unit can turn on at ED, we would be able to move the available region to
further left, improving the responsiveness of the system. The lower the ED, the more
responsive and accurate the system becomes to detect an event, as CEvt spends less time
recharging. As ED is always smaller than EON, this decoupling is useful. By isolating
detection from the core processing component, PreFarad utilizes more energy and is more
likely to respond and detect an event. PreFarad is more effective to detect events that occur
almost randomly, hard to predict and last less than a fraction of seconds to a few seconds.
Additionally, isolating the sensing unit also allows CMain to activate processing unit faster
than a common capacitor system.

4.2.3 System Architecture

PreFarad architecture consists of three major units: the energy-harvesting unit, the detec-
tion unit, and the processing unit. Figure 4.5 denotes the block diagram of the system.

Energy-harvesting Unit. PreFarad converts light energy to electrical energy using a
photovoltaic harvester and stores it in capacitors. To prevent the capacitors to be charged
beyond their maximum rated voltage, a zener diode protects from overvoltage in high
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Figure 4.5: System design of PreFarad.

energy scenarios. The energy-harvester charges the event capacitor first before power
flows through rest of the circuit.

The Detection Unit. The detection unit is powered from the event capacitor (CEvt).
The major component of the detection units are the sensor and a memory circuit. Once
the capacitor charges to a certain level, it provides power to the sensor that detects an
event. The sensor stays activated until the capacitor discharges below a voltage level.
Once the discharge voltage level is reached, the sensor is turned off allowing the event
capacitor to recharge. While activated, the event sensor monitors external environment
and sets a digital output when an event occurs. Since the event might finish before the
main capacitor can recharge, the detection unit must cache any event the sensor detects.
Each time the output of the sensor toggles high, memory circuit sets its cache output. The
cache output is held for a certain period of time before it resets. The events in between the
cache sets and resets are ignored. The hold time of the memory allows the main capacitor
some time to recharge sufficiently to activate the MCU. PreFarad prioritizes charging the
event capacitor over the main capacitor. Instead of following a sequence of sense-process-
transmit tasks, the sensing procedure is pre-accomplished before the MCU turns on. The
detection unit also incorporates a charge controller that activates the main capacitor.

The Processing Unit. The processing unit of PreFarad consists of a microcontroller,
radio, and other optional peripherals. It is powered by a larger main capacitor (CMain) suf-
ficient enough to read the cached data, perform data processing if required, and transmit
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Figure 4.6: 4.5cm x 3.1cm PreFarad custom hardware platform.

the event to notify the user or activate an actuator. When the event capacitor is suffi-
ciently charged, the charge controller connects the main capacitor to the harvester. The
main capacitor then turns on the rest of the systems. Upon turning on, the MCU samples
the data cache line and the sensor output transmits the data periodically until the main ca-
pacitor exhausts and turns off the MCU. The MCU also resets the memory after handling
the data. The main capacitor is provisioned at design-time to support at least one radio
transmission each power cycle.

4.3 Implementation

We implement PreFarad in a custom PCB as shown in Figure 4.6. The dimension of the
board is 4.5cm x 3.1cm.

The platform uses an AM1522 amorphous silicon indoor photovoltaic cell to harvest
energy [16]. The PV cell has a rated open circuit voltage, short circuit current is 3.1 V
and 62.2 µA with a maximum power point voltage of 2.6 V. We use a 6.2 V BZT52 zener
diode as an overvoltage protection [85]. The energy is stored in MLCC capacitors. We
use a capacitance of 100 µF for the event capacitor and 400 µF main capacitor. A 2.1V S-
1009 series super-low current voltage threshold detector enables the sensor [86]. A 2.3V
MAX809 voltage supervisor along a MOSFET switch constitutes the charge controller
that starts charging the main capacitor once the event capacitor reaches 2.3V. Two nano-
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power ultra-low quiescent current low-dropout LDO TPS7A03 are used to regulate the
capacitor voltages separately. We use the TPL5110 nano-power timer reset IC in manual
MOSFET mode to hold the sensor output for 8 s.

The platform has an ultra-low power nRF52832 SoC with BLE radio as a compute
core [87]. Currently the platform has two event-based sensors: a passive infrared (PIR)
human motion sensor with 5m range [83] and a hall-effect magnetic sensor [84].

4.4 Evaluation

To evaluate PreFarad, our goal is to determine how successful the system is to detect
events of interest in event-triggered IoT applications. We design several event-based ap-
plications, deploy the sensors in real world indoor spaces, and analyze their performance.
We answer the following questions to evaluate the accuracy and robustness of the pro-
posed approach:

• What is the percentage of event detection accuracy of achieved by PreFarad? How
does the performance compare with the other approach?

• How does the detection accuracy vary within different sensing applications?

• How is the availability of PreFarad sensors compared to other approaches?

• What is the latency of reporting an event?

4.4.1 Experimental Setup

Applications. We design two indoor event-based sensing applications that represent
unpredictable and momentary events. One application is proximity sensing using mag-
netic hall-effect sensors to monitor the status of doors, shelves, or cabinets to determine
whether they are closed or opened. These type of contact sensors are normally closed in-
dicating an usual state of the attached object. When the distance between the magnet and
the sensor increases due to opening a door, the sensor switches its output from low to high
and the trigger is cached by PreFarad. The opening of a door is typically random and lasts
only for a few seconds before the sensor restores. PreFarad door sensors detect when the
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door is opened and transmits the alert to a gateway. Besides contact sensing, we design
an occupancy using PIR sensors that detects human movement. When no movement is
detected within its range, the sensor output remains low. Upon detecting a movement,
the sensor triggers to high and the event is cached for PreFarad’s processing unit to turn
on and report the movement. Human presence and movement in a room is usually ran-
dom and the duration of movements vary from very short lasting only a few seconds to
hundreds of seconds depending on the number of persons present in a space. If the move-
ment is not correctly and timely detected, the actuators activated by the movement will
fail to respond (for example, automated lighting, smart trash cans). To configure a board
as a door sensor, we only activate the respective sensor and connect the sensor output to
the memory unit by connecting and disconnecting jumper connections. Sensors transmit
BLE advertisements periodically to report the sensor readings.

Baseline and Ground truth. To collect the ground truths of the events regarding
when the event occurred and how long the event last, we use the same sensors powered
from batteries. We remove the energy-harvesting frontend and capacitors from PreFarad
board, and connect two AA batteries to supply a 3.0V to power all the components of
the board. The battery-powered boards have the same MCU and sensor peripherals as
the PreFarad ones, samples the sensor reading periodically , and transmits the reading
BLE advertisement every second. We also implement a version of the board where all
components are powered from a common capacitor to represent a traditional intermittent
sensor. We empirically provision the capacitor with a capacitance of 600 µF to support
all the computation. This version of the board do not implement the memory unit of the
PreFarad. The MCU turns on when the capacitor voltage reaches 2.6V, samples the sensor
output, transmits the data as BLE advertisements.

Data Collection. We collect the data transmitted by PreFarad sensors, common ca-
pacitor board, and the battery-powered sensors using an always-on BLE receiver [88].
We timestamp each received packet at the receiver and analyze the packets to compare
the performance of different systems. We deploy all the door sensors on our lab door and
install the occupancy sensors a lab desk.
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Figure 4.7: PreFarad outperforms the common capacitor approach and achieves a detec-
tion accuracy of 92% and 88% for two different event-based sensors.

4.4.2 Event Detection Accuracy

In this section, we evaluate and compare the percentage of correct event detection of each
systems. Here, an event denotes a deviation from the default state of the environment: for
the door sensors, when a door is opened and for the occupancy sensors, when a move-
ment occurs. An event is correctly detected if the sensor transmits a packet notifying
about the particular event. For PreFarad sensors, they will fail to report an event if it starts
and finishes before the event capacitor recharges or the event finishes and the data cache
times out before the main capacitor can charge up. The common capacitor sensors will
fail to detect an event if the event finishes before the capacitor can charge up. Since the
battery-powered sensors have continuous power, they report majority of the event unless
some packets are dropped or missed due to wireless channel interference or receiver error.
We deploy three versions of door sensors on a door and manually generate 90 door open
events by entering and exiting through the door. All sensors are triggered by the same
door movement. Figure 4.8(b) plots the histogram of duration of time the door was open
and Figure 4.8(a) plots the histogram showing the interval between each open events. As
shown is Figure 4.7, PreFarad achieves an accuracy of 92%, while the common-cap sen-
sor have 49% accuracy. Since PreFarad caches the event for eight seconds after the event
finishes, it detects event that finishes before an activation. According to Figure 4.8(b), the
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Figure 4.8: This figure plots the timing statistics of door sensors deployed to detect real
door opening events. a) shows the distribution of the number of events corresponding to
the duration the door was open while someone entered or exited the room. b) plots the
histogram of time in between the door events.
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Figure 4.9: The figure plots the distribution of packet counts in terms of interval between
two packets. PreFarad generates more frequent transmissions than the common-cap.

duration of door opening can be as short as 2-6 seconds, whereas the common-cap system
experiences recharge durations more than 6 seconds. Figure 4.9 shows the distribution
of number of packets against the time between two consecutive packets. To detect occu-
pancy, we record 133 movements and plot the accuracy in Figure 4.7. PreFarad detects
88% of the total events and common-cap detects only 54%.
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Figure 4.10: We plot the cumulative distribution function of the time between an event
occurred and it was reported by PreFarad sensors.

4.4.3 Activation Frequency

Figure 4.9 shows the distribution of number of packets versus the interval between
two consecutive packets. We see that PreFarad generates denser packets compared to
common-cap, making it more available. This happens because energy is stored in two
buckets, allowing the main capacitor to be smaller and experience quicker activations.

4.4.4 Detection Latency

To evaluate the latency between the occurrence of an event and when it was reported, we
plot the cumulative distribution function (CDF) of the detection latency in Figure 4.10.
We find that the 95th percentile of detection latency for the contact sensor and the occu-
pancy sensor are 1.2 s and 7.4 s respectively.

4.5 Discussions and Limitations

In this section, we identify several limitations of the proposed limitation has room for
improvement in the future work.

Event occurence time. In our current prototype, the data cache and hold line holds
an event trigger signal for eight seconds. When the application turns on and samples
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the cache line, it has no way of determining exactly when last event was triggered. The
application is only aware that the event happened within the last eight seconds. For simple
sense and send application, this is sufficient. However, if the event was detected after an
unacceptable amount of delay, it may be useful for the sensor to skip the transmission and
save energy for re-trial.

Back-to-back events. If two consecutive events happen before the MCU activates,
the platform currently can not distinguish between the events. We plan to incorporate this
functionality in future revisions.

Data caching. Currently the memory unit is only able to hold the sensor output
as long as the event capacitor has sufficient energy. The unit is volatile, meaning, if the
power goes off the output of the memory also resets. In our experience, this happens very
occasionally. We are currently working on a version which will store the data even is the
event capacitor is discharged. Additionally, if the MCU spends more than eight seconds
recharging due to the energy being very scarce, the sensor will fail to detect the event.
Since caching the data for a long period of time also comes with energy overhead and
may completely deplete the event capacitor, we considered the trade-off between energy
overhead and detection accuracy.

4.6 Conclusion

In this chapter, we present PreFarad to improve the reliability of intermittent batteryless
sensors in event-based IoT applications. PreFarad divides the energy storage of the sensor
in two dedicated buffer and exploit the responsiveness of a smaller capacitor to capture
more events. The system outperforms common storage intermittent sensors by a large
margin and demonstrates that energy-harvesting sensors have the promise to be adopted
for real world event detection.
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Chapter 5

RETROIOT: Retrofitting IoT Deployments

Commercial Internet of Things (IoT) deployments are mostly closed-source systems that
offer little to no flexibility to modify the hardware and software of the end devices. Once
deployed, retrofitting such systems to an upgraded functionality requires replacing all the
devices, which can be extremely time and cost prohibitive. For example, consider a sce-
nario, where a user has installed a video doorbell camera in their home that streams video
from the front gate to their app when a movement detected. The whole installation pro-
cess requires buying and installing the sensor, a device-specific gateway from the vendor,
and paying for a cloud subscription for storage and better data analytics. Later, if the user
wants to add an additional trigger besides movement to their video doorbell, for example,
responding to a loud noise at the frontyard, they would have to replace the current device
and in the worse case, completely switch to a different manufacturer. End users can-
not generally leverage deployed infrastructure to add their own sensors or custom data.
This severely limits the longevity of devices as the functionality of the devices become
obsolete.

Our key observation is that many IoT devices report their battery voltage in addition to
their sensor data. This enables notifying the user when the battery must be replaced, but
most of the battery reports are effectively unused. We claim this channel can be used to
encode completely new information beyond the device’s initial intended application. We
propose RETROIOT, an approach that replaces a standard battery with a “programmable”
battery that can control its own voltage output and encode additional information into
the battery voltage level. Later, the voltage readings can be retrieved from the cloud
and decoded, and a new data channel is introduced without modifying the existing IoT
devices beyond just replacing the batteries. As we show, the battery voltage channel of
IoT devices can be repurposed using oblivious devices, prototype new capabilities, as
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Figure 5.1: Overview of RETROIOT. Many IoT devices sample and report their battery
voltage, and by simply swapping the battery these devices can be repurposed to encode
additional useful information. This retrofitting gives users new control to capture new
data, upgrade to energy-harvesting, or strategically deactivate sensitive sensors.

well as upgraded to adopt energy-harvesting with proper duty-cycling. This technique
can enhance existing devices to improve sustainability and privacy without waiting on
manufacturers to produce battery-free or privacy-first IoT devices.

5.1 RETROIOT System Overview

We introduce RETROIOT, an approach to modulate additional information using the
battery terminals of an IoT device. RETROIOT replaces a conventional battery with a
programmable voltage controller and augments the IoT device with desired function-
ality. It interoperates with many existing systems that already have functional hard-
ware, software, and network infrastructure. Figure 6.4 shows the high-level overview
of RETROIOT. Any analog and digital input data is mapped into the acceptable input
voltage range of the attached IoT device. The main block of RETROIOT is the signal
encoder that implements the modulation of symbols on the battery voltage channel from
raw signal values. The encoder output includes the encoded voltage as well as provides
power to the IoT device as the conventional battery would.

RETROIOT enables users, hobbyists, and IoT developers to take advantage of the ex-
isting infrastructure of closed source commercial devices, without requiring them to build
the whole stack from scratch. This way, RETROIOT promotes re-usability and faster
system development, and benefits deployments that require efficient and low-impact up-
grades. It demonstrates a new design point for modifying existing IoT systems. RETROIOT
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is not a universal replacement for IoT redesign, but represents an option for applications
where the value of a new data channel with existing devices is high and the limitations of
increased power draw, power supply design effort, and limited data rate are acceptable.
This is particularly true in cases where the alternative would require hardware and soft-
ware updates in the IoT’s gateway and server infrastructure. We elaborate on this further
in Section 5.7.

5.2 Design Challenges

5.2.1 Minimal Modifications

To make retrofitting legacy IoT systems viable, integrating new capabilities into the exist-
ing IoT hardware and software infrastructure must require minimal changes. For instance,
modifying the IoT device’s software or wireless protocol is likely infeasible. We there-
fore assume a solution cannot require modifying the device’s code, tweaking hardware
settings, changing radio communication parameters, or introducing new networked de-
vices. To meet this requirement, we only require replacing the battery with a new device,
and as batteries are typically intended to be user-serviceable, this is a non-invasive option.
However, we assume the IoT device sends the raw battery voltage values to the cloud for
further processing, and the battery voltage information is retrievable by applications.

5.2.2 Power Supply Constraints

Replacing the battery with additional circuitry imposes several challenges. First, the
retrofit must not interrupt the IoT device’s normal operation. That is, the supply voltage
and current from the encoder output must be within the expected range for the device’s
original primary battery. For example, an IoT device originally operating with 2 AAA
batteries expects a voltage between 2.7 V and 3.3 V. This constraints the voltage range
available to encode information. Second, the current draw of the legacy device is con-
sidered unknown, and a device with a high dynamic range of current draw can affect the
output of the retrofit device. For example, if the expected encoded voltage is set to 3.27 V,
this should be stable whether the device’s current consumption is 1 mA or 20 mA. Further,
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as the retrofit device must replace the energy supply, it must be able to output the expected
voltage regardless of the voltage of its own underlying energy supply. In addition to these
short-term conditions, the energy consumption overhead introduced by the encoder must
be minimized to not unduly shorten the IoT device’s operating time.

5.2.3 Battery Reading Resolution

The retrofit device can optimize the resolution and accuracy of its programmable voltage
supply connected to the IoT device. However, due to the minimal modification constraint,
the retrofit is still constrained by the battery voltage monitoring circuitry and software
used on the IoT device. For example, if the IoT device expects a maximum of a 3.3 V
supply, and uses a 12 bit ADC to collect battery voltage readings, the voltage resolution
of these readings is 3.3/(212 − 1) = 0.806 mV. That results in approximately 372 dis-
tinguishable voltage levels between 3.0 V and 3.3 V. This implies we could theoretically
encode 8 bits of data by assigning voltage levels to the numbers 0-256. In practice, there
is no standard for how should IoT devices report battery level. Manufacturers choose
their own ADC resolution and the decimal precision of the battery voltage with which
it can be retrieved from the cloud. Some also use battery level percentages instead of
the actual battery voltage. According to our experience, it is common for IoT devices
to report battery voltage readings with resolutions between 1 and 10 mV [89]–[91]. In
addition to limited resolution, other battery voltage reading limitations are signal noise,
nonlinearity, and offsets. We explore some of these challenges in more depth as well as
an error mitigation strategy in Section 5.3.

5.2.4 Data Synchronization

From the analysis in Section 5.2.3, a single voltage reading can transmit a single byte
of data. Sending more information will require using multiple battery voltage readings.
However, this requires the retrofit device to loosely synchronize with the IoT device to set
the voltage every time the device samples the battery voltage. Otherwise the same voltage
value could be sent multiple times, or a value could be missed.
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5.2.5 Recovering Transmitted Data

Once data has been encoded and the IoT device has (unknowingly) transmitted the data
to its cloud backend, a processing algorithm must be able to recover the transmitted data
successfully. This includes understanding how to divide the stream of transmitted voltage
readings into the intended packets of data. We propose one possible and simple solution
where two reserved symbols are used as a flag to signal the beginning and end of a multi-
symbol message. These symbols will also be used in a decoding error mitigation step,
discussed in more detail in Section 5.3.3.

5.3 RETROIOT Encoder Design

In this section, we design an approach to use the battery voltage channel to send analog
readings and digital symbols over legacy IoT devices’ network infrastructure.
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Figure 5.4: Transfer functions of the encoder.

5.3.1 Voltage Encoding Feasibility

As a proof of concept demonstration of the proposed approach, we attach a bench top
voltage supply to the 3.3 V power rail of a LoRa IoT device and verify if we can receive
the programmed voltage levels from the cloud. The device uses an ADC resolution of
12 bits. Figure 5.2 shows the battery readings collected in the cloud via the LoRa network
against the ground truth input values. The close match suggests this approach is feasible.

5.3.2 Analog Encoder Design

The analog encoder directly translates an analog signal to a voltage suitable for the battery
monitoring circuitry. The encoder accepts an input voltage ranging from 0 V to 3.3 V
and adjusts the output of a low-dropout regulator (LDO) between 3.0 V and 3.3 V. The
block diagram of the circuit is depicted in Figure 5.3. An analog buffer connects to an
operational amplifier in a follower configuration to isolate the input signal source and
the encoder control circuit. As the control voltage increases, the current flowing through
the feedback resistor decreases, reducing the output voltage. Figure 5.4(a) represents
the relationship between the control voltage and output voltage for the analog voltage
encoder circuit. Although the usable control voltage range in this circuit is between 0.5 V
and 2.3 V, this can be adjusted by adding appropriate gains and offsets with op-amp based
analog circuits. The measured bias current for this circuit is 0.19 mA without any load
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Figure 5.5: This diagram shows how the digital data is encoded (top) and decoded (bot-
tom). The encoder converts the 7-bit digital symbol into a battery voltage value within
vmin and vmax. The decoder function translates the encoded battery voltage back to a
digital symbol.

connected to the encoder regulated output.
This simple analog voltage encoder supports directly connecting an analog input, for

example an analog sensor, creating an easy-to-use option for retrofitting using the battery
voltage monitoring channel. Section 5.6.4.

5.3.3 Digital Encoder Design

Using a purely analog input voltage reduces complexity, but limits the amount and type
of data that can be transmitted using this channel. To show how arbitrary data can be
transferred, we describe a technique to encode digital data into a range of battery voltage
values and how to decode the received battery voltage to retrieve the sent information.

Data Encoding-Decoding. First, the data to be transmitted must be converted to a se-
ries of symbols. We select 7-bit values to represent the symbols based on the capabilities
of our DAC device and the voltage range available to encode information. With a 7-bit
representation, there exist 128 unique digital symbols each translating into a distinguish-
able voltage level. We define the difference between two consecutive encoded voltage as
the resolution of the encoding vrs. For instance, the first encoded voltage can be calculated
as v1 = v0+vrs. Voltages v0 and v127 are respectively the minimum (vmin) and maximum
(vmax) encoded voltages. Therefore, the n-th encoded voltage level can be denoted as
vn = v0 + nvrs, where vn is n-th voltage level. Both the resolution of the encoding volt-
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Figure 5.6: Current draw profile of a LoRa sensor [89] showing a distinct radio transmis-
sion spike.
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Figure 5.7: Block diagram of the digital encoder hardware design.

age and the IoT’s reported battery reading resolution affects how well the symbols can be
retrieved by a cloud application. In Figure 5.4(b) we plot the relation between encoded
voltage between 3.0-3.3 V and decimal representation of the corresponding symbols.

To decode the information on the cloud application, the received battery voltage levels
must be converted to symbols and then properly interpreted. A voltage level v is decoded
as a unique symbol n if it satisfies (vn − vrs

2
< v < vn + vrs

2
). Figure 5.5 shows a block

diagram of this process.
Data Synchronization. To ensure that the symbol to be transmitted is encoded ap-

proximately right before the device transmits a radio packet, the encoder needs to learn
the device’s transmission schedule. This is essential to support packets of data spread
over multiple transmissions. We propose achieving this synchronization by measuring
the current draw of the legacy IoT device, and observing spikes in the current trace. As
battery powered devices must minimize their current draw, wireless transmissions will
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likely result in distinct spikes in the current trace as shown in Figure 5.6. The retrofit
device can then update the voltage value every time it detects a transmission event. As
a majority of the IoT sensing applications are fairly periodic, the battery voltage encoder
observes the device’s current draw and measures the time difference between two consec-
utive peaks resulting from a radio communication to determine the transmission interval.
Then, it uses this interval to determine when to encode the next symbol.

Hardware Design. Figure 5.7 depicts the block diagram of the hardware design of the
digital encoder. An I2C-controlled digital-to-analog converter (DAC) current sink/source
IC adjusts its output current across 128 values to produce a variable output voltage signal.
The variable output current of the DAC is injected into the feedback node of a voltage
divider that feeds into an adjustable output voltage low dropout regulator. The DAC
current source programs the LDO regulator to be configured at one of the 127 voltage
output levels. We use an ultra-low power MCU to send symbols through the I2C interface
of the current DAC. The MCU uses a current-sense amplifier to monitor the IoT device’s
current draw and calculates the transmission interval of the device.

5.3.4 Decoding Error Mitigation

By running encoding and decoding experiments as depicted in Figure 5.2, we identify that
the difference between the encoded power source voltage and the IoT’s battery reading
voltage can be modeled as the sum of a constant and a linear term, representing offset error
sources from the voltage encoder and the IoT device’s ADC. To mitigate these errors in the
symbol decoding process, we estimate the encoded power source voltage before decoding
the received symbol. To estimate the encoded power source voltage from the IoT device’s
battery readings, we perform a linear interpolation using the maximum and minimum
IoT device’s battery readings (vbmax and vbmin respectively), obtained from setting the
encoded power source voltage to v0 and v127, respectively. Equation (5.1) shows how
we estimate the encoded power source voltage vpwr from the IoT device’s battery voltage
reading vb.

vpwr = v0 + (vb − vbmin) ∗
(v127 − v0)

(vbmax − vbmin)
(5.1)

We assume the maximum and minimum encoded voltages (v0 and v127) are special
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Figure 5.8: Energy-harvesting power supply module interfacing with the digital encoder.

encoded voltage levels used only for calibration purposes (0 and 127 are then reserved
symbols), while also periodically reporting them so they can be later used in the vpwr

estimation and decoding process. This approach results in reduced decoded bit error at
the cost of decreased bandwidth due to the use of reserved symbols and special calibration
messages as we will evaluate in Section 5.6.2.

5.4 Energy-Harvesting Retrofitting

One of the promising applications of upgrading a deployed IoT system is to replace batter-
ies with energy-harvesting power supplies. However, successful energy-harvesting sys-
tems must adapt their execution based on available energy. A device designed with a
reliable source of energy (e.g. a battery) will not have the programming or included logic
to adjust its own operation based on the current harvesting conditions. In this section, we
show how the retrofitting approach can address this challenge.

We start by replacing the battery with an energy-harvesting power supply that con-
nects to the existing power and ground terminals, as shown in Figure 5.8. The new power
supply replaces the energy store with a supercapacitor that is recharged with a harvester.
A second stage voltage regulator regulates the capacitor voltage and supplies a constant
voltage to the rest of the system.

In ideal harvesting conditions simply doing this swap would be sufficient. However,
the available harvestable energy may not be sufficient to recharge the capacitor at the
rate the legacy IoT device requires. To address this, we integrate a small microcontroller
into the replacement power supply. The MCU observes the state of charge of the storage
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Figure 5.9: The retrofitting energy-harvesting power supply runs a dynamic power man-
agement algorithm locally and encodes the updated sensor sampling rate in the battery
voltage. The sensor is then re-configured by the cloud control message to adjust device
behavior.

element and the incoming harvested energy. If it detects a shortfall, it configures the IoT
device to reduce its operation to conserve energy. Since the new power supply is only
connected via the old battery terminals, it cannot do this directly.

Instead, we leverage the underused battery voltage channel. To adjust the device’s
duty-cycle, the MCU creates a message by encrypting the recommended duty cycle in the
battery voltage and transmits it to the cloud. An application hosted in the cloud receives
the device’s message and then tries to alter the device’s operation to match the available
energy constraints. This process is illustrated in Figure 5.9. IoT devices often times
allow some degree of re-configuration through cloud APIs, particularly related to update
rates. For example, control messages may be able to set the sampling period [90] or the
keep-alive interval [89]. The cloud application uses one of the existing methods to send a
control signal to the device to adjust the operation of the legacy IoT device.

Our proposed dynamic power management algorithm is shown in Algorithm 2. At
each interval tp, the power supply checks the gradient of storage voltage and if the gradient
is either zero or has a positive value, the cloud is instructed to increase the sampling
frequency of the sensor, and vice versa.

5.5 Implementation

We implement the RETROIOT encoder and power supply designs using prototype PCBs.
Analog Voltage Encoder. The analog voltage encoder is based on the low-dropout

(LDO) regulator TPS784 [92] to adjust the output voltage. It uses the low power opera-
tional amplifier LP358 [93] to implement the buffer circuit for the analog input voltage.
A LP2980 [94] LDO regulator with a fixed 3.3 V output voltage powers the operational



90

a)

b)
c)

(a) Analog voltage encoder (b) Digital voltage encoder

(c) Energy-harvesting power supply

Figure 5.10: Prototype voltage encoder circuit boards and energy-harvesting power sup-
ply board.

amplifier. Figure 5.10(a) shows the prototype.
Digital Voltage Encoder. The digital voltage encoder board uses a Maxim Integrated

DS4432 [95] DAC current source/sink amplifier. The current output of the IC can be
controlled by I2C commands to set a a variable output voltage of a LDO. We integrate a
Texas Instrument TPS784 [92] as the LDO with an output voltage accuracy of ±.75%.
The board also accommodates a Monolithic Power MPQ28164 [96] buck-boost switching
voltage regulator with an efficiency above 85% at input voltage of 3.3 V that supplies
voltage to the components. The assembled PCB is 4.3 cm by 2.3 cm. Figure 5.10(b)
shows the hardware.

Power Supply. We adopt the ALTAIR [97] hardware platform as the energy-harvesting
power supply. Figure 5.10(c) shows the PCB of the energy-harvesting add-on module.
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The energy-harvesting power supply board accommodates an energy-harvesting front-end
and an ultra-low power MCU to monitor the device current draw and send the appropri-
ate commands to the digital encoder circuit. An ultra-low power battery charger boost
converter SPV1050 [98] charges a supercapacitor from a solar or TEG harvester until it
reaches 3.1 V. A nano-power boost regulator MAX17222 [99] with >70% efficiency at
10 µA of input current regulates the supercapcitor voltage after its voltage reaches 2 V. We
use monocrystalline IXYS solar cell as the harvester and a 470 mF supercapacitor with an
ESR value of 25Ω as electrical storage. We adopt an ultra-low power 32-bit ARM Cortex-
M0+ STM32 [100] MCU to implement the dynamic sampling rate algorithm as explained
in Section 5.4. The MCU monitors the load current draw by sampling a MAX9634 [101]
current amplifier.

5.6 Evaluation

To evaluate our system, we explore how accurately and reliably information can be re-
trieved from the voltage encoder through the battery voltage channel. We perform an ex-
tensive study to investigate the battery voltage channel characteristics in terms of voltage
error, percentage of bit error per packet, and percentage of correctly decoded packets. We
build two applications using commercial IoT devices to encode custom digital metadata,
one application to retrofit with energy-harvesting, and one application to transmit read-
ings from an analog sensor. We demonstrate how the proposed technique can help retrofit
existing devices and how a functional end-to-end system can be built just by accessing
the battery voltage terminal of the device.

5.6.1 Methodology

Experimental Setup. To investigate the battery voltage channel characteristics (Sec-
tion 5.6.2), we connect the analog and digital encoder boards with a STMicroelectronics
LoRaWan discovery kit [102]. The LoRaWan device measures readings from an attached
MS5837-30BA [103] pressure sensor and transmits the encoded readings in the sampled
battery voltage information twice every minute. We disconnect any power source from
the discovery kit and replace it with the programmable voltage encoders by directly con-
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Figure 5.11: We deploy RETROIOT with a door sensor in different locations. Picture
corresponds to two of the deployment scenario.

necting it to the 3.3 V rail. We sample battery voltage with ADC resolutions of either 12,
10 or 8 bits and the reported voltage readings at the cloud have 1 mV resolution.

Retrofitted Devices and Applications. We retrofit two commercial LoRa sensing
devices with upgraded functionality: 1) a door event sensor [89] and 2) a soil moisture
sensor [90]. We upgrade the LoRaWan door sensor with an analog TMP37 [104] tem-
perature sensor and a location metadata tag. We upgrade the soil moisture sensor with
the solar energy-harvesting power supply. The goal of the sensor add-on experiment is to
evaluate the fire extinguisher application scenario described in ?? by using temperature
readings as an alarm to indicate unusual storage conditions. We artificially heated the
sensor to simulate changes in ambient temperatures that would trigger the alarm. The
door sensor sends a radio packet every minute with a door open/close event along with
the battery voltage reading. The soil moisture sensor, by default, sends a reading every
ten minutes. For these devices, the battery voltage is reported with 1 mV resolution. We
also upgrade one off-the-shelf BLE temperature and humidity sensor [91] with long dig-
ital metadata representing a 32-bit timestamp value. This sensor reports battery voltage
up to 10 mV resolution at approximately each hour.

Cloud Application. The LoRa IoT devices are connected to The Things Network
gateways [105] and the messages are received and stored by a TTN application with stor-
age and MQTT integration. For the door sensor applications, a Python script downloads
the messages from the storage integration of the TTN application and then decodes the
battery values. For the soil moisture sensor, a Python script running a MQTT client ap-
plication connects to the TTN application’s MQTT broker, then receives and decodes the
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Figure 5.12: CDF of the error in received battery voltage. The channel error is signifi-
cantly reduced after calibration using the proposed error correction technique. The dash
lines correspond to 95th percentile error values.

sensor’s messages to obtain the energy-harvesting retrofit commands. The Python script
then sends the appropriate downlink command to update the wake up period of the LoRa
IoT device. For the BLE sensor, the manufacturer provides a cloud API that allows sensor
data and battery voltage information to be downloaded by our Python script.

Deployments and Experiments. We deploy the door event sensor with location
metadata add-on functionality at four different locations: on a door, a cabinet, a fridge,
and a drawer. Figure 5.11 shows the deployment.

5.6.2 Battery Voltage Channel Characteristics

In this section, we evaluate the error induced in the battery voltage channel and how the
resolution of the channel affects successful decoding of information encoded in the battery
voltage readings. Understanding these metrics is essential for further developments using
such channels.

Received Voltage Error. To estimate the difference between the battery voltage sent
from the voltage encoder and the battery voltage received at the cloud, we sweep the en-
coded voltage from the minimum (3.0 V) and maximum (3.3 V) values, report the value
over a LoRa radio packet using the STMicroelectronics LoRaWan board. We collect two
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Figure 5.13: The efficacy of the error correction technique on the battery voltage readings.
After applying the error correction, the received voltage values match better with the
actual encoded voltage.
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Figure 5.14: a) shows how the percentage bit error improves as we increase the step
resolution of the voltage encoder. With step resolution, 5 ∗ vrs = 11.81 mV, we can
correctly decode 99% of the sent symbols.

samples per minute for five minutes at each voltage level. After retrieving the battery
voltages, we perform error correction on the data using Equation (5.1) as described in
Section 5.3.3. We also perform a simple offset correction using just one of the two re-
served symbols. We measure the CDF of error in the battery voltage, denoted by the
difference between encoded voltage and received voltage values and analyze the results
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with and without error correction and the offset correction technique. Figure 5.12(a) and
Figure 5.12(b) show the CDF of the errors while encoding analog and digital data, respec-
tively. Battery voltages in IoT devices usually have a limited acceptable operating range
below which the device is turned off. With more error induced in the battery voltage chan-
nel, the bandwidth of information that we can successfully decode decreases. The 95th
percentile of the error is 28.42 mV for the analog data and 13.71 mV for the digital data
without any error correction. With correction, the error can be bounded within 20.91 mV
and 3.96 mV. Figure 5.13(a) shows the shift in voltage values after the error calibration
on the digital data, which significantly reduces channel error. We further break down the
error values across the whole spectrum of the voltage levels and show the variation in
Figure 5.13(b).

Successful Decoding vs Encoder Resolution. The digital voltage encoder encodes a
7-bit data into the battery voltage. For a packet to be correctly decoded, the voltage error
should be within the voltage difference corresponding to two symbols. The bandwidth
of the channel is proportional to the number of achievable voltage levels. To evaluate
how many bits per packet are incorrectly decoded, we analyze the CDF of percentage bit
error with increasing step resolution (vrs) starting from the minimum step resolution of
the encoder at 2.36 mV. As shown in Figure 5.14(a), we observe that we can successfully
decode 99% bits with a step resolution of 5 ∗ vrs= 11.81 mV. Figure 5.14(b) shows the
percentage of symbols that are correctly decoded across different encoder resolution. For
this experiment, we perform the error calibration before the analysis.

5.6.3 Hardware Variation Effect

We quantify the errors produced as an artifact of the hardware imperfections of the en-
coder itself and the IoT device. Specifically, we consider the variation in the encoder
output voltage and variations in the reported battery voltage by the retrofitted IoT device
due to different ADC sampling resolutions. Due to component variations, we expect the
encoder output voltage to be slightly different across different boards. In Figure 5.15(a),
we show the programmed output voltage of the encoder for three different boards as we
perform a full voltage sweep. Though none of the encoder outputs violates the linearity
of the transfer curve, encoders two and three have larger shift in between their transfer
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Figure 5.15: Understanding the effect of different sources of error due to hardware limita-
tions of the design. a) captures the difference in encoder output voltage of three different
boards. b) shows that with lower ADC resolution, the number of distinguished voltage
levels is reduced, which compromises the bandwidth of the channel. c) and d) character-
ize the distribution of end-to-end channel error.

curve than encoder one and three.
Next, we quantify the variation in the battery voltage readings sampled by the Lo-

RaWAN IoT device [102] with different ADC resolution. Different MCUs in the device
can come with different resolutions among which 8, 10, and 12-bit are well-supported by
most devices. In Figure 5.15(b), we see that higher ADC resolution allows us to achieve
higher encoding resolution, while lower 8-bit resolution compromises the necessary volt-
age levels. The error distribution with different ADC resolution in Figure 5.15(c) and
Figure 5.15(d) show that the maximum error can in fact be reduced by more than two
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Figure 5.16: Results from the door sensor metadata application. We can successfully
decode all 12 unique metadata after error mitigation.

times with 12-bit resolution.

5.6.4 Real World Applications

We augment two COTS door event sensors with temperature sensing functionality and
deployment specific metadata, one COTS BLE sensor with a timestamp metadata, and
one soil monitoring sensor with a light energy-harvesting power supply. We investigate
how accurately the encoded sensor data can be retrieved and report our findings in this
section.

Temperature Monitoring. For this application we attach a TMP37 temperature sen-
sor to the analog encoder board and evaluate the sensor input voltage at normal operations.
We measure the sensor output voltage as 0.55 V (equivalent of 27.5 °C) and measured
the encoder regulator voltage output as 3.237 V, while the cloud application indicated
a battery voltage of 3.246 V. Heating the temperature sensor raised its output voltage
by about 1 V (equivalent of 50 °C), decreasing the encoder regulator voltage output to
3.1965 V, while the cloud application reported 3.198 V. This experiment demonstrated
that the analog encoder regulator is capable of translating the temperature sensor readings
into detectable alarm events at the cloud application with the threshold temperature being
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_metadata:
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location: “living_room”
} 
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Figure 5.17: Example of door sensor tag metadata in a). Figure b) shows how the 7-bit
digital symbol can encode location and category information.

around 30 °C.
Digital Metadata Transmitting. We enhance the door sensor device with a simple

digital metadata tag that informs what type of event it reports and where it is deployed.
Figure 5.11 shows two installations. The digital metadata encoded in the battery voltage
is unique for each sensor in a deployment area. Figure 5.17 shows an example of how the
information can be encoded in a symbol. We categorize the sensor into four types based
on the equipment it is monitoring: door, fridge, cabinet, and drawer and assign three
location string for each of them based on which room they are located. These types of
tags are useful for in smart home monitoring applications where the number of deployed
sensors are only a handful. In total, we encode 12 unique symbols each representing
different installed sensors.

We observe from Figure 5.16(b) that without proper error mitigation some of the meta-
data are not decoded correctly due to the high channel error shown in Figure 5.16(a). But
after calibration, we could decode the metadata correctly for all of the samples. We could
achieve this accuracy as the symbols are spread enough over the encoded voltage range.
Though we can only encode 128 unique metadata tags, one can overcome the data band-
width limitation by chaining multiple symbols together as we show in our BLE sensor
experiment.

Multi-Symbol Metadata Transmitting. We upgrade a commercial BLE tempera-
ture and humidity sensor with an encoded 32-bit metadata message representing a unix
timestamp. To transmit this message, we use ten symbols which are updated every hour.
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Figure 5.18: Detected voltage levels of the multi-symbol metadata transmission. Two
reserved symbols equivalent of the maximum and minimum encoded voltages are used to
mitigate decoding errors and as a flag for message start and end. The following encoded
voltages represent the 32-bit unix timestamp for “2022-03-22 16:22:49”.
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Figure 5.19: The dynamic sampling rate controlled by the energy-harvesting power sup-
ply with changing capacitor voltage over time.

The first two symbols of the message are the reserved maximum and minimum voltages
provided by the encoder regulator, used for decoding error mitigation as explained in
Section 5.3.3. The following eight encoded voltages are 4-bit symbols representing sub-
sections of the 32-bit unix timestamp. We show in Figure 5.18 the sequence of battery
voltage readings for the timestamp corresponding to “2022-03-22 16:22:49”.

Replacing Battery with Energy-harvesting. As a demonstration of how the bat-
tery voltage channel can be leveraged to convert a battery-powered sensor to an energy-



100

harvesting one, we replace the battery of the soil monitoring sensor and plug in our
energy-harvesting power supply. We implement Algorithm 2 in the power supply board
and report the optimized rate to the cloud in the battery voltage reading. The sensor pe-
riod is updated every ten minutes. Figure 5.19 shows the instantaneous capacitor voltage
and calculated sensor period.

5.6.5 Energy Overhead

As the encoder and power supply design result in an energy overhead, we evaluate the
overall power draw of each module.

The Analog Voltage Encoder Module. We measured a total standby current of
190 µA for our analog module prototype without any sensor load. Adding the temper-
ature sensor TMP37 resulted in a total current consumption of 212 µA.

The Digital Voltage Encoder Module. We measured a total standby current of
518 µA for our digital module prototype without any device connected to the I2C in-
terface.

Energy Harvesting Retrofit. The retrofit module consisting of a power management
IC and a low power microcontroller has a quiescent current of about 95 µA. The digital
encoder module together with the energy harvesting retrofit consumes a total of about
613 µA.

Prototype Limitations. Our proof of concept design goal is to demonstrate how the
control of the battery terminals voltage can be used as a new data channel, focusing on
data encoding and recovery steps. Our prototype is not optimized to achieve minimal
power consumption, and as such its standby power consumption can be too high for some
battery-powered applications. Achieving lower standby current is possible by replacing
the low-dropout regulator with a more efficient voltage converter and disabling unnec-
essary circuits while the sensor is in sleep mode. When retrofitting an IoT device to
use energy-harvesting, the harvester should be selected with proper consideration of the
energy consumption overhead.
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5.7 Discussion

Our prototype demonstrates the feasibility of augmenting existing IoT deployments with
new data streams, and here we discuss some limitations, remaining challenges, and po-
tential mitigations.

Increased Power Draw. Adding a controllable power supply and new sensors to an
IoT device increases its overall power draw, and if the retrofitted device retains its original
battery capacity, the IoT device will require more frequent maintenance interventions to
replace batteries. To mitigate this maintenance overhead, the designer can adopt larger
battery capacity in the retrofit power supply module or adopt an energy-harvesting solu-
tion compatible with the retrofitted IoT device energy requirements.

Data Channel Bandwidth. Our retrofit approach is constrained by the battery level
reporting choices made by IoT device manufacturers, restricting the maximum achiev-
able data bandwidth for a given application. For example, the Decentlab’s soil humidity
LoRaWAN sensor [90] reports its battery voltage with every uplink data message as a
four-digit integer value with millivolt resolution (typically 2100 to 3300 mV), while the
Seed Studio’s LoRaWAN CO2 sensor [106] reports its percentage battery level after ev-
ery 10 uplink data messages as a three-digit integer value (0 to 100%). While only very
low throughput might be achievable under some IoT platforms, it can still be of great
value to applications, for instance to enable alarm features or to support IoT deployment
management by encoding a batch number or expiration date over multiple transmission
as we demonstrated in Section 5.6.4.

Hardware Heterogeneity. Different hardware platforms may have different accept-
able voltage ranges and resolutions for their battery voltage monitors. This essentially
alters the data channel for the retrofit device. To accommodate this, a programmable
range selector can be added to change the voltage output range. Also, using fewer voltage
values could help with resilience at the expense of datarate.

Cloud API Access. We rely on the cloud API to retrieve the encoded battery voltage.
For some signals, like the on-off of a button, this is likely readily available. But the
battery voltage readings, may not be exposed through an API, either only used locally
by the application provider or exposed only through a “battery low” alert. This limits the
channels that can be used for this approach, or requires further consideration of the cloud-
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provided API when considering how the data to communicate is encoded. For example,
a battery low alert could still be used as a low data rate channel.

Lossy Channels. The retrofit data channel may be constructed on top of a lossy
underlying channel, and therefore data symbols can be lost. If the receiver is expecting to
use multiple symbols to decode a packet, the protocol must handle the potential lossiness.
Many standard data communication techniques could be used, including checksums and
packet headers with length values.

Retrofit Synchronization. To synchronize the voltage encoder with the unmodified
sensor we detect its sampling interval and only output new voltage readings before we
expect the sensor to take its next reading. However, if the sensor is event-based, it may
not follow a regular pattern when sending battery voltage state. This would hinder the
ability to send packets of data without missing or duplicating symbols. One workaround
is updating the voltage output only after a detected current spike, however, this would
lead to an unpredictable datarate and perhaps stale data if events are infrequent. Some
sensors both detect events and have a periodic transmission (such as a heartbeat packet),
and a future version of this work could attempt to identify the regularly spaced packets
and only transmit using those.

Another challenge related to our synchronization approach is that sensor devices also
increase their power draw during receive mode, what could be falsely identified as a trig-
gering event. However current peaks tend to be significantly lower for receiving modes,
so the retrofit module controller can learn the IoT operation pattern and only use the
highest current peaks as trigger events.

Another potential opportunity is the coupling between the energy harvesting rate of
the devices in Section 5.4 and the datarate of the channel. More favorable harvesting
conditions could lead to a better performing channel as the sensor is able to transmit more
often. This increased performance may enable a secondary use of the channel and change
how the energy-harvesting optimization algorithm works.

Attack Potential. The ability to send data through the battery voltage channel, and
that many devices are designed with user serviceable batteries, suggests that a possible
attack vector is surreptitiously replacing the battery in the target IoT device with a “smart
battery” that is controlling its own voltage output to exfiltrate data without any visual
signs of tampering. The attacker would still need to be able to access the data once it is
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sent to the cloud, but the end-to-end attack may be feasible in conjunction with another
vulnerability. Further analysis is required to understand the extent of this possible issue
and future safeguards.

5.8 Conclusion

As IoT deployments grow larger in scale, designs and techniques that build on the existing
device and network infrastructures can unlock many new applications and capabilities.
Such design technique can not only enhance the functionality of existing systems, but
also can significantly reduce the design time, developer overhead, maintenance cost, and
immature device obsolescence. In this chapter, we introduce one such technique that
encodes information in the battery voltage enabling end-to-end communication, which
otherwise just provides insight-less battery voltage information. We envision that this can
lead to future explorations of other interesting underused channels in IoT deployments.
Further, providing open and configurable channels can increase the solution flexibility
and usefulness of new IoT devices and infrastructure. Open analog and digital ports and
cloud API support to retrieve acquired data enable future users to customize IoT platforms
for their own need at reduced cost and design effort.
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Chapter 6

SolarWalk: Sensing with Photovoltaic Harvesters

Energy-harvesters convert other forms of energy available in the environment to electri-
cal energy to power small sensors in-situ. These sensors are flexible to be deployed in
remote and hard-to-reach spaces which also makes them more susceptible to experience
power supply fluctuations. The output voltage of an energy-harvester becomes noisy or
changes abruptly due to transient source of energy. For example, fundamentally, the out-
put voltage of a photovoltaic harvester is proportional to the level of illuminance at its
cell surface. The harvester’s voltage changes as people turn on/off light source or objects
obscure the direct path of light. One interesting observation is that human movement is
a potential cause of power supply glitches. This lead to one key insight that changes in
the illuminance level caused by a particular external activity creates an imprint on the
voltage pattern of the PV cell, which can carry information. For example, the voltage
jitters caused by a person walking past a PV-powered sensor is, in fact, a unique identify-
ing feature of that person due to height, body shape, and gait differences in individuals.
Interestingly, the pattern also has a directional property.

Based on these observations, we present SolarWalk, that distinguishes persons in a
smart home by exploiting the voltage side-channel of PV harvesters. SolarWalk takes
a crucial step to establish that a noisy harvester can actually perform as a good sensor.
Further, such sensors can potentially enable many other sensing applications where the
harvester reacts an external activity. The potential behind re-purposing the energy har-
vester of these devices to function beyond just a power source is tremendous. With So-

larWalk, an energy-harvesting PIR [107] or a door status sensor [108] is not only able to
sense the presence of a person but also can determine who the event is associated with
just by inspecting the ripples in the harvester voltage. By enabling this, SolarWalk further
augments the capabilities of energy-harvesting sensors.
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Figure 6.1: a) A PV cell’s open circuit voltage drops to different levels as someone walks
at different distance from the solar cell’s surface. b) Experimental setup with PV cell
mounted on a office doorframe.

6.1 Occupant Identification using Photovoltaics

Indoor light energy-harvesting sensors typically harvest energy using one or multiple
small photovolatic cells. These solar cells are usually optimized for a specific range of
wavelength associated with indoor lighting conditions and the open circuit output voltage
is proportional to the light intensity of its surrounding. During normal operation, the light
intensity of indoor spaces changes steadily throughout the day until the light is turned off.
The light intensity of the surrounding, however, undergoes a rapid change when someone
passes nearby and is reflected in the output voltage of the solar cell. The maximum open
circuit voltage drop induced on the solar cell decreases as the shadow of the person di-
minishes. Figure 6.1(a) shows the maximum voltage drop in three different indoor solar
cells (both amorphous and monocrystalline ) [109], [110] as someone walks by at differ-
ent distances from the solar cell surface. Maximum voltage drop occurs when the person
stands right in front of the cell completely blocking majority of the light exposure on the
surface.

To better understand the characteristics of the open circuit output voltage when some-
one walks by within a few feet, we installed an IXYS indoor PV cell [109] on a door
frame, halfway above the ground as shown in Figure 6.1(b). The solar cell surface is
placed orthogonal to the floor. Since occupants walk in a narrow passage in spaces like
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(b) Voltage fluctuations of the same occupant have similar shape.

Figure 6.2: This figure shows how the output voltage of the solar cell mounted on a
doorframe ripples as different occupants pass through the door. The maximum voltage
drop and the duration of voltage fluctuations vary differently for occupant A and B . On
the other hand, these characteristics remain consistent over multiple trials by the same
person.

doorways and hallways, such places are best suited for this study. We record the voltage
traces as we enter and exit through the door. From Figure 6.2(a), we find that, for two
different persons the voltage traces have different amplitude over time. Voltage drops as
the person obscures the surface of the cell and restores itself as the person walks away.
The amplitude of the ripple voltage is related to the height of the person and time length
of the ripple is associated with someone’s gait or walking style. However, Figure 6.2(b)
shows that the shadow pattern is similar for the same occupant. This indicates that shadow
pattern of a person as observed by a solar cell can be a characteristic feature for occupant
identification.

Moreover, the pattern for different entry and exit events are distinguishable and can
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(a) Entry events of occupant A
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(b) Exit events of occupant A
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(c) Entry events of occupant B
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(d) Exit events of occupant B

Figure 6.3: From a) and b), we see that occupant A’s entry and exit patterns are distin-
guishable. The patterns associated with the same type of event is similar. Since during
entry and exit, the light is obstructed in similar but reverse direction, the entry and exit
patterns tend to mirror each other. c) and d) show that occupant B’s entry and exit patterns
are distinguishable. It is significantly different from occupant A’s pattern.

be used to determine if occupant A entered or exited the room to turn on/off any device
in that room. Figure 6.3 show output voltage fluctuations for entry and exit events. We
observe the shape of the entry and exit events shape tend mirror to each other and have an
opposing skewed tail, indicating a sense of direction associated with the events. As the
person enters the room, they do not obscure majority of the surface area until they reach
the door frame plane which is orthogonal to the solar cell surface and continues blocking
the light as they move away. However, for the exit event, voltage begins to decrease earlier
than the person reaches the door frame. This happens mostly due to the brighter source
of the light coming from inside the room. Typically rooms are brighter than hallways
because of multiple light sources. This particular voltage pattern phenomena is a good
indicator to determine from which direction the person crossed the solar cell.
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Figure 6.4: Overview of SolarWalk design. The photovoltaic harvester’s output voltage
attached to an indoor light energy-harvesting sensor fluctuates differently as different oc-
cupants of a home passes by. SolarWalk leverages this voltage fluctuations as an unique
attribute to differentiate occupants.

Motivated by these observations, in this paper, we aim to design the proposed system
named SolarWalk, that can identify persons using tiny, non-invasive solar cells.

6.2 System Design

6.2.1 Overview of SolarWalk

SolarWalk identifies occupants in smart homes by analyzing their associated distinct volt-
age patterns, reflected on a solar energy harvester as they walk in close proximity. So-

larWalk design consists of two major components: SolarWalk hardware and SolarWalk

identification module as shown in Figure 6.4. SolarWalk hardware records voltage traces
from the PV cell as the event of interests occur and the identification module employs a
pre-trained machine learning classifier trained from the data collected in the same physi-
cal environment.

The hardware module consists of an external trigger generator that notifies a micro-
controller of a possible walking event. The microcontroller starts recording the door event
until it finishes. Once the voltage trace is recorded, the MCU communicates the data over
BLE to the SolarWalk identification module. SolarWalk identification module determines
the identity label of who the door event is associated with and what type of door event it
is (i.e., entry or exit from the room). We train the identification module with historic data
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Figure 6.5: State machine representation of SolarWalk device’s workflow

containing both walk and no-walk events. During the training phase, the identification
module relies on labeled voltage data with an occupant identifier and the type of event.

SolarWalk elevates the capability of an ordinary photovoltaic harvester by introducing
the concept of meaningful power supply fluctuation. With SolarWalk we envision that,
existing battery-less devices could be repurposed to do more than their usual sensing and
these sensors could be crowdsourced to enable zone-specific data-fusioning.

6.2.2 SolarWalk Hardware

SolarWalk relies on the mobility of an occupant to record how someone’s shadow pattern
impacts the voltage generation. However, continuous sampling of solar cell voltage at
the required frequency is energy-expensive, even when carefully duty-cycled. SolarWalk

overcomes this challenge by incorporating an external trigger sensor to initiate voltage
sampling. Since entering and exiting through a door in a home are not high-frequency
events, the average energy-overhead can be kept significantly low.

Figure 6.5 shows the state machine of the software that runs on SolarWalk devices.
The MCU waits for the trigger in low power mode with trigger enabled. Once the trigger
is set (trig = set), the MCU starts sampling the solar cell at 50 Hz. We empirically
determine the required sampling rate throughout our data collection study. The system
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needs to keep recording for the entire duration of the event and sets a timer (TIM0 = tr)
to stop sampling. The external trigger is turned off during an ongoing sampling to prevent
further triggers while the event is being recorded and turned on once sampling is finished.
Upon finishing sampling, the MCU transmits the data over BLE advertisements with tf

rate. The MCU also keeps track of how long it has been passed since the last trigger
happened and if it is greater than te (TIM1), it lowers the advertisement rate to ts to
conserve more energy.

As we discussed in Section 6.1, the shadow pattern of a person diminishes with in-
creasing distance from the solar cell surface. Though adoption of multiple solar cells
could provide us wider range, we refrain from this design choice to make SolarWalk

hardware unobtrusively fit in indoor spaces within a reasonable form factor. Moreover,
solar energy-harvesting devices usually are extremely low-power devices and a majority
of them incorporate at least one PV cell.

6.2.3 SolarWalk Identification Module

The identification module of SolarWalk system runs on a gateway receiver or an edge
device and collects data from the hardware to perform the identification process using
supervised learning techniques. We train the identification module with historic data using
KNN supervised machine learning technique.
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Figure 6.6 shows an overview of SolarWalk’s identification module’s training phase.
The training phase consists of major blocks: data generation, data pre-processor, and
classifier. The data generation block accommodates a voltage trace collection module
connected to a solar cell and sends the data over a cloud application for pre-processing.
To be able to differentiate between steady state voltage fluctuations and actual events
of interest, the system trains the classifier with data samples containing both walk and
no-walk events. The data generation block generates a robust dataset that captures the
output voltage profile of the solar cell throughout different times of the day. The data
pre-processor block receives a stream of data containing door entry and exit events for
multiple occupants. In the pre-processing phase, the system separates door walk events
from no-walks events. This process, however, is not required in the deployment phase
since the identification module only receives walk events from SolarWalk’s hardware de-
vice. It also filters and labels entry and exit traces with user-provided label. From the
time series data of door events, the pre-processor labels each occupant’s entry and exit
sequence. The entry and exit sequence of voltage samples are then fed into the classifier
along with the occupant id label. The classifier outputs the result in terms of occupant
label and the type of event.

6.3 Implementation

In this section, we discuss the implementation of SolarWalk hardware and the data col-
lection platform in the training phase of SolarWalk identification module.

SolarWalk hardware prototype. We use a PIR sensor as the trigger generator to
detect movement in the doorway. We incorporate a Panasonic AMN41121 [111] which
can detect movement within 5m range with a 50° horizontal angle field of detection. We
run SolarWalk software in the nRF52840 development kit [112]. The development kit
accommodates a Cortex M4 processor SoC with BLE 5 radio. The MCU is connected
with a IXYS SMLD121H04L monocrystalline solar cell with a 22% efficiency. The solar
cell is optimized to be used for both indoor and outdoor applications. The rate open circuit
voltage is 2.52V with a short circuit current of 50 mA. The dimension of the solar cell is
43x14 mm. Figure 6.7(a) depicts the hardware prototype implementation.

At runtime, the MCU samples the solar cell at a 50hz rate using one of the internal
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Figure 6.8: Floor plan showing the installed sensors on two doors of two different rooms.

ADC channels for tr = 6 s. We set this value to capture the whole entry or exit event. We
determine this value to be the maximum duration of any door event by analyzing the data
collected during the training phase.

Data collection module. During the training phase, we adopt a data acquisition plat-
form [113]consisting of a Raspberry Pi model 3A+. It connects a custom breakout board
containing an ADS1015 analog to digital converter and to a Sparfun breakout board con-
taining a VEML6030 illuminance sensor over I2C interface. This platform is configured
to sample open-circuit voltage of a IXYS SMLD121H04L monocrystalline solar cell at a
rate of 50 samples per second and also to record illuminance readings as a baseline for the
data acquisition conditions. The ADS1015 gain stage was configured to 8, resulting in a
full-scale resolution of ±4.096 Volts, and a 2 millivolt least significant bit size. The plat-
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form records and streams data using MQTT protocol to a cloud-hosted database, so we
can later use the recorded data to train and evaluate our classifier models. Figure 6.7(b)
shows the set up of the data collection module.

6.4 Evaluation

To evaluate SolarWalk, our goal is to answer how accurately the solar cell voltage trace
performs as an attribute to identify occupants in a 5-person household. We base our
experiments on real-world study to evaluate the performance of SolarWalk identification
system. We explore how the identification accuracy is impacted by i) different systems
parameter: the number of occupants, different classification methods, ii) environmental
parameters: doors from different rooms, different times of a day, iii) physical attributes:
different occupants and their heights. Another interesting feature of SolarWalk classifier
is the ability to distinguish between two types of door events: entry and exit and we
analyze how accurately the system can distinguish between these events.

6.4.1 Methodology

Experimental setup: We perform our data collection study by installing the SolarWalk

data collection platform on two different doors of two middle rooms in our lab building.
The width of both doorways is three feet. Figure 6.8 shows the floor plan including the
installation points. Figure 6.7(b) depicts one of the setups. We install the device halfway
above the floor on the doorframe to cover an optimal range of occupant height. The lower
the position of the solar cell, the more likely the shadow of a person is going to impact the
voltage. However, since solar energy-harvesting sensors usually should be placed as close
as possible to the light source, we chose the midway to be the optimum point for deploy-
ment. We also deploy a working SolarWalk hardware on one of the doors to demonstrate
the functionality and proof-of-concept implementation of the design( Figure 6.7(a)).

Data collection procedure: Our study involves five different occupants from different
body shape in terms of height and girth. We collected 900 door entry and exit events from
five participants as they walked through the door. Four participants walk a 100 times
through each of the doors and one participants walk 100 times through one door. We
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Figure 6.9: Voltage trace of a participant during day and night time. Open circuit voltage
of solar cell changes throughout the day and can have impact on model performance.
SolarWalk dataset includes traces from both day and night.
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(a) Solar voltage trace of 50 room entry
events of a single participant.
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(b) Solar voltage trace of 50 room exit
events of a single participant.

Figure 6.10: Data collection step of SolarWalk involves each participant walking through
the door every 10 seconds. However, a noticeable change in solar cell voltage pattern is
observed in the first six seconds, which contains 300 voltage samples. Thus, the dimen-
sion of the input feature of our machine learning model is 1× 300.

collected 50 room entry samples and 50 room exit samples. Each walk spans ten seconds.
We performed the data collection throughout different hours of the day including both
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day and night time to build a robust dataset, since the shadow pattern and the open circuit
voltage of the solar cell is expected to change throughout the day. Figure 6.9 illustrates
the solar trace of one participant’s walk event during day time and night time. Each trace
in this figure consists of 100 events (room entry or room exit) that lasts 1,000 seconds.

Data preprocessing procedure: Once we collected room entry and exit voltage
traces from participants, we analyzed each trace carefully to identify the trigger point
of the solar cell. Figure 6.10(a) illustrates 50 solar cell traces of one participant’s entry
event. We notice that, although each event spans for 10 seconds, a noticeable change in
voltage pattern happens in the first six seconds. A similar outcome can be noticed in exit
events Figure 6.10(b). As such, during training and testing our machine learning models,
we have taken traces from the first six seconds. As our prototype collects data at 50Hz
sampling rate, a single entry event or exit event contains 6×50 samples. Thus, as an input
feature our ML models take 300 voltage readings.

Machine learning models: To evaluate SolarWalk, we implemented three supervised
classifier algorithms: K-Nearest Neighbor (KNN) classifier, Random Forest, and Deci-
sion Tree. In our evaluation, the KNN classifier contains six neighbors. On the other
hand, the Random Forest classifier consists of 10 trees and uses entropy as the loss func-
tion. We performed 10-fold cross-validation while training and testing each model.

6.4.2 Overall System Performance

In this section, our goal is to evaluate how accurately the system can identify different
occupants and distinguish between two different door activity. Results show that, our
KNN-based classifier can accurately detect the identity of occupants on average 87% of
the time in a 5-person home and on average 95% of the time in a 2-person small home.
We also explore the performance of two other supervised learning method: decision tree
[114], random forest [115] for comparison. Figure 6.11 the how percentage identification
accuracy changes with an increasing number of occupants across different classification
methods. The plot shows the distribution over 10 trials. From the result, we find that
the percentage of accuracy drops from 99% for one occupant to 88% for five occupants,
denoting a 13% point decrease. This represents that the solar cell shadow feature is a
new accurate physical attribute for the occupant identification for homes with less than 5
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Figure 6.11: The figure shows that the occupant identification accuracy continues to drop
as we increase the number of occupants. With five occupants SolarWalk’s KKN classifier
achieves 88% accuracy.
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Figure 6.12: Here, we show how the type of event detection accuracy changes with in-
creasing number of occupants. SolarWalk classifier can on average accurately identify
between door entry and exit events 77% of time.

people. However, as the demographic increases, the system might fail to perform accept-
ably and more robust learning techniques i.e., reinforcement learning is needed for high
occupancy spaces such as offices or classrooms.

To determine if SolarWalk can differentiate between a door entry and exit event, we
measure the event detection accuracy as we vary the number of occupants. Figure 6.12



117

100

80

60

40

20

0
Day Night

Event occurance time

A
cc
u
ra
cy

(%
)

Occupant A Occupant B Occupant C

(a) Occupant identification accuracy

80

60

40

20

0
Day Night

Event occurance time

A
cc
u
ra
cy

(%
)

Entry Exit No Event

(b) Type of event detection accuracy

Figure 6.13: These plots show the effect of different times in a day on the system’s accu-
racy. Since the steady state voltage of the solar cell undergoes variation due to different
illuminance levels throughout the day, the voltage pattern’s DC component shifts. Yet,
system performance stays similar with a slightly higher accuracy for night events.

shows that, on average SolarWalk can correctly differentiate between entry and exit events
with a probability of .77 for five people. For two persons, it can detect events with an
accuracy of 88%.

6.4.3 Environmental Effect

Since a photovoltaic’s energy conversion efficiency is dependent on a number of factors
including the spectrum of exposed light and illuminance of the surface, its open circuit
voltage varies throughout different indoor spaces and hours of the day. Therefore, the
shadow pattern of a person is different in multiple doors. However, it should still preserve
characteristics to be distinguishable from another person. In this section, we explore how
SolarWalk performs during the day vs night and the performance among two doors.

In Figure 6.13 we show the impact of different hours of the days has on the identifica-
tion accuracy of three participants and event detection accuracy. For all three occupants,
we evaluate the results from the data collected during two different time durations of the
day. The day time voltage readings are collected within 12 pm to 4 pm and night time
readings are collected after 8 pm. From Figure 6.13(a) we find that, for all three partic-
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Figure 6.14: a) SolarWalk’s identification accuracy remains similar for multiple occupants
over two deployment locations. b) Event detection accuracy achieved at different doors.
The accuracy of Door 2 is at least 15% lower for entry and exit events than Door 1. For
the direction of movement, location seems to play an important role.

ipants, the identification accuracy at night time is higher than day time by 3.5%, 2.3%,
and 2.7%. This slight difference happens due to indoor spaces getting illuminated by nat-
ural night during day time. Therefore, someone’s shadow makes the surface of the solar
cell less illuminated during night than day and results in a larger voltage drop. We ver-
ify this observation from the attached illuminance sensor in the data collection module.
The event detection accuracy stays similar for the exit and no event scenario as shown in
Figure 6.13(b), but entry event accuracy drops by 11.4%. This could happen, since while
entering through the door, as opposed to, exiting to the hallway, the brighter illuminance
of the room light plays a role to distort the shape of the pattern. To summarize, event
detection accuracy is affected more by the brightness variation throughout the day than
occupant identification.

Figure 6.14(a) shows if the classifier performs in a similar manner in terms of oc-
cupant identification accuracy on two different doors. The identification accuracy for
different occupants stays within a difference of 3.6% between the doors. However, the
accuracy of individual occupants drops from overall single occupant identification accu-
racy because we only consider data from one location for this scenario. Figure 6.14(b)
shows the event accuracy. We find that Door 1 achieves higher accuracy than Door 2 for
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Figure 6.15: This figure plots the identification accuracy of the model with increasing
occupant height. Occupant’s height plays as an important factor for the system’s identifi-
cation accuracy. The taller height produces more distinguishable shadow pattern.

all event types, which denotes that deployment location matters more for event detection
type. Since the pattern of entry and exit events tend to change more depending on the
position of source of light.

6.4.4 Sensitivity to Physical Attributes

A individual’s body shape features plays role in the shadow formation [116], [117]. In
order to understand how SolarWalk performs across individual occupants, we analyze the
system’s occupant identification accuracy and event detection accuracy for each partici-
pants.

Figure 6.15 shows individual occupant’s identification accuracy in the increasing or-
der of height. Identification accuracy improves with increasing height, which is expected.
The maximum and minimum identification accuracy is 99% and 82% respectively. Fig-
ure 6.16 shows event detection accuracy for different occupants. We find that occupant E
achieves a maximum of 100% and 85.7% accuracy for entry and exit event detection re-
spectively. All of the participants achieve an entry accuracy of more than 80%, however,
exit events see less accuracy. This matches our findings from previous sections.
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Figure 6.16: Event detection accuracy of an individual participant. Entry events are likely
to be detected more accurately than exit events.

6.5 Discussions

In this section, we highlight some remaining challenges and potential research directions.
Larger demographic and deployment conditions. Since SolarWalk relies on the

shadow feature of a person, if two people in a home have similar body shape, the system
might fail to distinguish them. A natural following step to build upon our initial results
and make our technique more robust is to collect data representing a wider range of de-
mographic and deployment spaces. For instance, recruiting participants with different
and similar body sizes and likeness and with different gait patterns could support a more
comprehensive evaluation of the proposed approach, since it would be based on a larger
demographic. Though, we argue that SolarWalk enables accurate person identification in
an average-size smart home, a possible dimension to explore is deploying the system at
locations with a wider range of illumination conditions as to cover a larger set of possible
real-world scenarios. For instance, evaluating the system with different combinations of
natural and artificial light sources could better capture specific deployment conditions and
increase the deployability of the system more than on just doors.

Potential applications. As we demonstrated in this work, a single and brief voltage
time series recording from a solar cell can potentially carry enough information to classify
occupants with reasonable accuracy, what can be even more valuable for smart building
applications is to create ”dynamic” spaces according to the occupant’s preferences and
needs. We can imagine SolarWalk to incorporate multiple solar-powered sensors present
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in a space and the spatio-temporal correlation between these sensors’ solar cell voltage
readings can provide even richer information, not only allowing better occupant classifica-
tion but also enabling other potential applications such as activity recognition, or monitor
the zones inside a shopping complex or museum to analyze which items get more atten-
tion or track complex usage patterns of smart building spaces. These envisioned applica-
tions also come with a number of challenges, for instance, deciding optimal strategies to
process and exchange information between energy-constrained battery-less sensors, and
the development of machine learning models that provide best results given the sensors’
limited energy and computation capability.

Incorporating new occupants. Currently, SolarWalk does not incorporate any policy
to handle data from unknown users. However, a realistic scenario would be able to update
the model if the occupant situation in a home changes over time. In this case, online
learning-based techniques such as reinforcement learning can be adopted to increase the
robustness of the system.

Data labeling. An important challenge to using the supervised learning technique
as the ones used in our work is the need to label the data with ground truths. While
controlled experiments can be used to collect labeled data, they are time-consuming and
needed to be repeated for each set of conditions (e.g if the illumination source changes).
One possible alternative approach to collect labeled data is to use an user’s interaction
with another smart device in the room. For instance, if an occupant walks into a room and
their cellphone connects to a voice assistant device, the system can use the logged id to
label the data previously collected by the SolarWalk device to the respective occupant.

6.6 Conclusion

Future smart buildings will be a lot more personalized, greener, and full a of large network
of nearly-invisible devices. To enable such a vision, one crucial step is to design systems
that are aware of their contextual cues, yet simple, unobtrusive, and, installation-friendly.
As a forward step, in this chapter, we introduce SolarWalk to enable occupant-specific
personalized control by sensing the voltage perturbance of photovoltaic energy-harvester.
SolarWalk not only demonstrates a novel and accurate non-invasive, infrastructure-free
occupant identification system, but also introduces the concept of empowering the power
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sources of battery-less energy-harvesting applications with meaningful contextual data.
We believe innovation flourishes more rapidly when systems build on existing resources,
which would otherwise just be wasted. We envisage this work would enable more inter-
esting applications in the field of smart building research.



123

Chapter 7

Conclusion and Future Directions

Ubiquitous computers in the form of sensors have played a crucial role to collect impor-
tant data from their surroundings enabling many revolutionary applications in wearables,
smart health, industrial monitoring, autonomous vehicles, smart cities, smart agriculture,
wildlife preservation and many others. Sensors deployed in smart farming increase crop
production over manual farming, sensors embedded in wearables combat a global pan-
demic by predicting early onset and preventing disease spread, sensors worn by endan-
gered animals protect and preserve wildlife—all of these sensors push for sustainable lives
on the planet earth. It is quite intelligible to predict that the upward scale of computing
will continue to expand and sensors will solve more difficult problems posing humanity
as advancements in hardware and software accelerate.

However, like any other technology, the IoT has its caveats too as the massive global
scale production of devices eventually become an Internet of Trash. One major source of
these e-waste are short-lived batteries that power majority of small IoT devices in the use
today. Another impending challenge is forced device obsolescence as a result of fast tech-
nology progress, which exacerbates the e-waste problem. In this dissertation, we specifi-
cally focus on these challenges to enable long-term sensing with long-lived sensors. Our
approach ditches batteries for energy-harvesting power supplies that can support compu-
tation perpetually which leads to a net-zero carbon footprint over the sensor’s end-to-end
lifecycle. However, the adoption of energy-harvesting sensors is currently very limited
in the commercial IoT space due to two inherent challenges: design overhead due to an
unreliable power supply and unreliable sensing services due to an intermittent energy
source. ALTAIR’s energy supervisor exposes useful APIs to the application providing
enough abstraction as well as options for visibility and control over the energy optimiza-
tion. To reduce the design overhead of energy-harvesting sensors, we designed ALTAIR
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which relieves an IoT application developer off complex energy management by abstract-
ing power management and hardware-level power supply interactions. This architecture
also accommodates an online energy optimization algorithm that adapts to the changing
energy availability after deployment instead of being constrained to design-time training.
With PreFarad, we attempted to design a class of accurate intermittent sensors for IoT
event detection. PreFarad sensors achieve improved accuracy to detect stochastic events
over the baseline design approach. Stochastic events are particularly challenging to de-
tect with intermittent device availability. PreFarad solves this challenge by introducing a
new design that prioritize detection over processing and event transmission. We evaluate
the system with real indoor event monitoring applications like occupancy and door state
sensing in real locations to demonstrate the efficacy of the solution.

ALTAIR takes a step to reduce the burden associated with managing an unpredictable
and limited source of energy. However, this also brings several interesting questions: how
much abstraction is useful for developers with varying level of expertise: beginner, famil-
iar, and expert? How to find a trade-off between abstraction and visibility as applications
become more complex than what ALTAIR handled? For example, an energy-harvesting
tinyML sensor may perform training, inference, computation, and even offloading [118]–
[120]. ALTAIR’s API can be expanded to incorporate these tasks. How would the role
of energy supervisor evolve with the presence of an operating system? For instance, the
energy supervisor could perform better energy accounting per application and implement
predictive scheduling on behalf of the OS.

An intermittent sensor’s data generation capacity is limited by the rate of its power
cycles. On the other hand, many edge applications are now becoming increasingly data-
driven. PreFarad improved the availability of intermittent sensors significantly, but still
performs less accurate than a battery-powered device. While incorporating multiple inter-
mittent sensors may help further improve the availability and accuracy, and achieve con-
tinuous sensing, several trade-offs need to be carefully understood. More devices increase
network collisions resulting in high packet drops or duplicate results, eventually wasting
system energy. Furthermore, scaling deployment increases the consumption of unneces-
sary electronics. How can we achieve a target frequency of data by desynchronizing the
power cycles of a network of sensors? How do we determine the target frequency of the
sensed data to begin with, as this impacts the accuracy of the overall application? How do
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we ensure the optimal number of sensors while maximizing data frequency and minimiz-
ing simultaneous wakeups? Another future direction is exploring how data-driven edge
applications can be achieved with reasonable latency when data packets are intermittent.
Many edge-based applications collect and coordinate data from multiple devices [121],
[122] as well as multimodal sensors [123], [124] for activity monitoring, human track-
ing, occupancy prediction where the latency of inference is critical. The unpredictable
and compromised packet rate of intermittent sensor would compromise the performance
in such applications.

To mitigate the worsening impact of computing on the environment as a result of pre-
mature discontinuation of services, this dissertation emphasizes on empowering already
existing computing resources to introduce added utility to the systems though additional
sensing services. RETROIOT demonstrates how we can exploit battery replacements of
IoT devices to modulate new data steams into the channel and eventually upgrade to an
optimized energy-harvesting powers supply that dutycycles sensor operation. Simply by
replacing the battery with a smart battery or an encoder energy-harvesting power supply,
the upgrade can utilize the already existing infrastructure including the gateway, cloud,
and front-end app services simultaneously eliminating the need of complete replacement
of the old device and possibly the entire infrastructure. Taking it a step further, Solar-

Walk demonstrates how purely software methods can expand the role of a photovoltaic
harvester to perform sensing as well as energy harvesting. Instead of adding dedicated
sensors or additional peripherals, SolarWalk performs person identification by analyzing
the power supply voltage noise introduced by human shadow.

It is crucial to think about how we should design sensors today that stay up-to-date for
decades passing the test of time. However, advancement in low power and low foot-
print hardwares and efficient software features makes device obsolescence seemingly
unavoidable. One common way to future-proof devices is reprogramming new appli-
cations into the flash memory using over-the-air firmware upgrades. However, remote
firmware upgrades usually require a steady power source on the reprogrammed device to
ensure memory consistency. Establishing secure and successful firmware update is chal-
lenging as intermittent sensors may experience power outages multiple times for up to
several minutes during a long communication involving a few kilobytes to hundreds of
kilobytes. Moreover, saving program states in non-volatile memory (NVM) to resume
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operation after a power failure should be properly enforced by attack-proof hardware or
energy-efficient software encryption mechanism. States in NVM becomes vulnerable if
an attacker has physical access to the device [125]. Network-wide upgrade also becomes
more complicated if sensors in a network are more heterogeneous (for instance, different
applications, supported radios, memory budgets). How can we establish secure and reli-
able firmware upgrades with limited intermittent energy? Even with software upgrades,
hardware-enforced limitations curtails a device’s performance. For example, the SoCs
available only a few years ago are now obsolete [126] because the BLE radio and soft-
ware stack do not have the advanced features (Direction finding, range improvement,
concurrent peripherals) like the newer SoCs [112] have. If an application requires the ad-
vanced features, the complete sensor needs to be replaced with the upgraded SoCs. Newer
MCUs also have more memory, better CPU, and multiple cores to handle concurrency
with lower power consumption and reduced footprint. Moreover, as hardwares become
more integrated like SoCs, SiPs, the harder it becomes to replace a specific component.
One promising research direction is to embrace reconfigurable hardware architectures
like FPGAs and processor architectures like RISC-V for edge applications powered by
harvested energy.

While green computing has been explored in the context of large scale datacenter-
based applications, the concept is still maturing in the context of IoT application domain.
We require design principles both in hardware and software and meaningful metrics to
ensure sustainability without compromising service quality. We need to rethink materi-
als, hardware designs, network protocols, cloud services to ensure a complete stack of
Design-for-Environment (DfE). How can we design materials, components, and hard-
ware that reduces the overall carbon starting from the production throughout the lifetime
to after the end-of-life? How to ensure we achieve carbon neutrality or possibly carbon
negativity for a specific deployment? How should we write software, application inter-
faces, and gateway applications to process more data in the edge or close to the edge in-
stead of offloading to high carbon footprint cloud servers? A holistic approach combining
research effort from different domains in hardware, power electronics, software engineer-
ing, operating systems, networking, and cloud computing is essential to investigate how
we can realize the entire stack to manage devices at scale and maintain longevity.

To conclude, with the total number of IoT devices already exceeding the population
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of earth a few years ago and billions of more devices expected to market in the next
decade, we must rethink the way we design and develop applications and systems to
prevent device obsolescence for a long-lived IoT. This requires combined research effort
informed and enforced by sustainable components across a range of disciplines including
hardware design, software engineering, and network protocols. This dissertation takes
several crucial steps toward that effort.
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