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Shape-Based Methods for Motor Function Analysis

Shashwat Kumar

(ABSTRACT)

Problems in biomechanics often involve nuisance variables such as varying motion speeds, ori-

entations, and individual differences in limb sizes. In order to effectively learn from smaller,

noisy datasets, these factors must be quotiented out. This dissertation introduces new tools

from statistical shape analysis to address such issues. In the first study, motion trajecto-

ries in children with Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy

(SMA) are temporally aligned using the square root of their derivative (SRVF) and analyzed

with Functional Principal omponent analysis (FPCA). The results reveals key variations in

curl speed and asymmetry, with SMA patients showing greater activation of the asymmetry

pattern. In the second study, Kinematic and EMG data in stroke patients are analyzed

using the Transported SRVF framework in Kendall shape space, improving registration and

classification of hemiplegic gaits. This approach identifies mean temporal shapes and modes

of variation, enhancing the understanding of gait abnormalities and potentially informing

better clinical assessments. These methods improve motion analysis in children with neu-

romuscular disorders and stroke patients, and holds promise for developing objective motor

function assessments in clinical and remote settings.
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Chapter 1

Introduction

Problems in biomechanics often involve confounders. In order to efficiently learn from smaller

noisy dataset, it’s important to quotient out or remove the effect of these confounders. As

an example, consider a problem involving building a wearable technology to assess motor

function in children with Duchenne Muscular Dystrophy (DMD) and Spinal Muscular At-

rophy (SMA). As anyone who has done data collection in a pediatric setting will testify,

it’s difficult to get children to perform motion at a slow controlled speed, as possible with

an older population. Children are often nervous or unable to follow precise instructions.

Furthermore, because of the rare nature of the diseases, it’s extremely difficult to collect

data and it’s essential to build models with parameterized invariances as opposed to build-

ing models which can learn invariances by seeing a lot of training examples (eg. a neural

network learning rotational invariance by having filters at different orientations).

The problem exacerbates when working with naturalistic data. Consider another applica-

tion of building a system to identify differences in hemiplegic vs normal gait. In order to

understand a patient’s progress post rehabilitation in stroke, it’s important to focus on both

motion (kinematic) and electrical activity of muscles (emg), both form and function. Joint

analysis of both modalities can reveal abnormal muscle activity patterns or movement pat-

terns like spastic gait, which are hard to obtain from a single modality. Some recent studies

have started collecting gait data by allowing the participants to walk at their own natural

speed, to not bias their motion ([1]). Here, similar to the previous case, there is phase vari-

ability, since different patients have different preferred motion speeds. Furthermore, there
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is variability in joint sizes of participants because of height differences and distance from

camera (scale). Even if participants perform the same motion shape, participants who are

starting off at different positions (translation) and orientation (rotations) are going to have

different sensor trajectory representations. As a consequence, distances and thus machine

learning systems can be sensitive to these nuisance variables.

In this disseration, we use tools from statistical shape analysis to model such problems

in quotient spaces modulo a certain group. In the first problem, we model the problem

with the square root of it’s derivative modulo the group of reparameterizations of time. By

temporally aligning arm curl trajectories, we utilize functional principal component analysis

(FPCA) to identify two dominant variations: curl speed and asymmetry due to difficulty with

the upward motion against gravity. Similar variations are observed in knocking motions.

Both DMD and SMA patients exhibit high functional variability, with higher-functioning

individuals comparable to healthy controls. Notably, patients with SMA showed significantly

greater activation of the curl asymmetry pattern (p < 0.01). We further combined projections

of these variations with Canonical Correlation Analysis (CCA) to discover a covariation mode

with a canonical correlation of r = 0.65 with muscle fat infiltration, Brooke’s score (a motor

function score), and age-related degenerative changes. This CCA-derived mode is proposed

as a novel motor function index. In the second work, we embed biomechanical trajectories

from healthy and stroke patients in kendall shape space, which quotients out translation,

rotation, scaling as well as reparameterizations of time. Registration is performed in kendall

shape space which outperforms previous stroke registration methods (eg. based on OPA).

This allows us to extract a mean temporal shape for each cohort, as well as identify modes of

variation. A joint model is built on top of these modes of variation obtained from kinematic

and emg to obtain an F1 score of 0.92.

The novel contributions of this dissertation are the following:

1. A shape based functional index for objective assessment of motor function in patients
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with Duchenne Muscular Dystrophy and Spinal Muscular Atrophy.

2. A method for registration and joint shape analysis of kinematic and emg in order to

identify differences and idiosyncracies in healthy and hemiplegic gaits.

1.1 Organization

Problem: Studying motor function in

children with Duchenne and SMA

Data: Angular velocity from IMU

Gyroscope Sensor

Nuisance Group: Time

Reparameterizations

Problem: Build a system to identify

differences in hemiplegic and normal gait.

Data: Kinematic data from Vicon and

Emg data

Nuisance Group: Time

Reparameterizations x Translation x

Rotation x Scaling
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Chapter 2

Riemannian Geometry Tools

Equivalence Relation

An equivalence relation on a set X is a binary relation, which implies

∀a, b, c ∈ X


a ∼ a (Reflexive)

a ∼ b ⇐⇒ b ∼ a (Symmetric)

(a ∼ b and b ∼ c) =⇒ a ∼ c (Transitive)

(2.1)

The equivalence class of a under ∼ is defined as

[a] := {x ∈ X | x ∼ a}

As an example, on the set X = {a, b, c}, the relation R = {(a, a), (b, b), (c, c), (b, c), (c, b)} is

an equivalence relation. The following sets are equivalence classes of this relation:

[a] = {a},

[b] = [c] = {b, c}.

The set of all equivalence classes for R is {{a}, {b, c}}. This set is a partition of the set X

with respect to R and is also called a quotient set.
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Figure 2.1: a) Simple example of a quotient space. a) Construction of circle by ”gluing”
together end points of a line. b) Construction of a torus by defining edges to be equivalent.

Riemannian Metric

A Riemannian metric on a manifold M is a function g that assigns to each point p ∈ M

an inner product gp on the tangent space TpM . This inner product varies smoothly from

point to point. The metric g allows us to define important geometric concepts such as:

• Length of a curve: The length of a curve γ : [a, b] → M is given by

L(γ) =

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t)) dt.

Isometry

An isometry between two Riemannian manifolds (M, g) and (N, h) is a diffeomorphism

ϕ : M → N such that ϕ preserves the metric,

gp(u, u) = hϕ(p)(dϕ(u), dϕ(v))
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for all tangent vectors u, v ∈ TpM . Isometries preserve geometric properties such as distances

and angles.

As an example:

Action of Translations on R2

M = R2, N = R2, g(u, v) = uTv

ϕ(p) = c+ p, cϵR2 (Translation Group)

dϕ = I, dϕ(u) = u, dϕ(v) = v

h = g results in an isometry

(2.2)

Shape distance computations

Let M be a Riemannian Manifold. Let d be a distance metric on M . Let G be a Lie Group

which acts on M . We define the orbit of a point on the manifold

[x] := {g.x ∀gϵG} (2.3)

If the Lie group G acts vis isometries, meaning that d(x1, x2) = d(g.x1, g.x2) ∀gϵG, x1, x2ϵM ,

then,

d([x1], [x2]) = infg2ϵGd(x1, g2.x2) (2.4)
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Some Shape Spaces and their invariances:

2.0.1 SRVF: Invariance to reparameterizations of time

Let β : [0, T ] → RD be an absolutely continuous function. The srvf ([2]) of the function is

defined as:

q(β(t)) =
β̇(t)√
‖β̇(t)‖

(2.5)

The space of all such q is L2([0, 1],RD).

Given two functions u, v and their srvfs q(u) and q(v), their dot product is given by:

〈q(u), q(v)〉 =
∫ T

0

u̇(t)√
‖u̇(t)‖

v̇(t)√
‖v̇(t)‖

dt (2.6)

q(u(γ(t))) =
u̇(γ(t))γ̇(t)√
‖u̇(γ(t))γ̇(t)‖

=
u̇(γ(t))γ̇(t)√

‖u̇(γ(t))‖
√

‖γ̇(t)‖
= q(u(γ(t)))

√
γ̇(t) (2.7)

If we reparameterize time with a function γ(t), the action on this dot product is given by

〈q(u ◦ γ), q(v ◦ γ)〉 =
∫ T

0

q(u(γ(t)))
√
γ̇(t)q(v(γ(t)))

√
γ̇(t)dt =

∫ T

0

q(u(γ(t)))q(v(γ(t)))γ̇(t)dt

=

∫ T

0

q(u(s))q(v(s))ds = 〈q(u), q(v)〉

Where s = γ(t)

(2.8)
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Thus angles and distances between two srvfs are invariant to action of reparameterizations

of time. This makes it theoretically appealing in our first work where we need to calculate

distances between trajectories performed by children which are less sensitive to the rate with

which they perform the motion.

2.0.2 Kendall Shape Space TSRVF: Invariance to translation, ro-

tation, scaling and reparameterizations of time

One well-known shape space is the Kendall shape space, which is used in statistical shape

analysis. It represents the set of all possible shapes of a given configuration of points modulo

translations, rotations, and scalings. The Kendall shape space is a quotient space obtained

by factoring out these transformations, and it has a rich geometric structure that allows for

the study of shape variability and comparison.

We consider the space of m× k real matrices representing our k landmarks.

XϵRm×k (2.9)

These matrices are acted upon by the group of translations, scaling and rotations. In order

to compute shape distance between skeletons, we need to remove the action of these groups.

We mean center these matrices to remove translation as a degree of freedom. This yields a

new vector space where translation has been quotiented out.

V k
m = {XϵRm×k :

k∑
i=1

X[:, i] = 0} (2.10)

Scaling is quotiented out by imposing the unit frobenius norm constraint.

Sk
m = {XϵV k

m : ‖X‖2 = 1} (2.11)
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Figure 2.2: All these 3 skeletons form the same shape in kendall shape space

.

Because of the unit norm constraints, the preshape space has a spherical geometry.

This is easy to see with certain examples:

S2
1 : Consider two landmarks 1-dimensional landmarks x1 and x2. This is subject to the

constraints x1 + x2 = 0. This yields V 2
1 as a 1 dimensional line embedded in the 2d plane.

Intersection with x2
1 + x2

2 = 1 yields the space of landmarks as 0 dimensional sphere with

radius 1 S2
1 = {

[
1√
2

− 1√
2

]
,

[
−1√
2

− 1√
2

]
}

S3
1 : V 3

1 is a 2 dimensional vector space. Intersection with the 2 sphere yields a 1 dimensional

sphere as the solution

Sn
m: By a generalization of the previous argument ([3]), this is a m(n-1)-1 dimensional sphere.

Since translations and scalings have been quotiented out, our landmark matrices lying in Sk
m

are acted upon by a group of rotations.

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1} (2.12)

.

.
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Rotations acts by isometries in preshape space

M = Sk
m, N = Sk

m, g(u, v) = t(uTv)

ϕ(p) = R.p,RϵSO(3)(Special Orthogonal Group)

dϕ(u) = R(p+ u)−Rp = Ru, dϕ(v) = R(p+ v)−Rp = Rv

Set h=g

h(dϕ(u), dϕ(v)) = t(dϕ(u)Tdϕ(v)) = t(uTRTRv) = t(uTv) = g(u, v)

(2.13)

We define an equivalence relation between two matrices X1, X2ϵS
k
m X1 ∼ X2 if and only if

X2 = RX1

This allows us to define the shape space as a quotient space under this equivalence relation

Σk
m = Sn

m/ ∼ (2.14)

The topology and geometry of Σk
m is more involved, and thoroughly covered in [3].

For points away from singularities, the quotient map is a Riemannian Submersion. This

allows us to define geodesics and the distance between two shapes p1, p2ϵΣn
m can be defined

as

d(p1, p2) = infRd(X1, R ∗X2) (2.15)

Where d is the geodesic distance on the sphere. Orthogonal Procrustes Analysis for alignment

is used to find the solution to this problem.

2.0.3 Kendall TSRVF invariances

Given a curve lying in kendall shape space β : [0, T ] → Σm
k , the transported srvf is define as

([4])
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q(β(t)) =
β̇(t)βt→c√
‖β̇(t)βt→c‖

(2.16)

We now consider the action of transformations of the type

β̂(t) = α(t)R(t)β(t) + c(t) (2.17)

.

In this case q(β̂(t)) = q(β(t)).

This is because

1. β(t) is invariant to group action of translations and scalings because of mean centering

and normalization.

2. β̇(t) involves measuring changes in shape space Σm
k , where action of all fibers R.β(t)

has been collapsed to a single point. Thus β̇(t) and consequently q(β(t)) is invariant

to action of R.

3. Distance between two tsrvfs is invariant to reparameterizations of time.

These three properties make tsrvf-kendall an extremely powerful representation in our second

application, where skeleton sequences might have arbitrary rotations, translations, scalings

and reparameterizations acting on them.
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Chapter 3

An Interpretable Shape Based Index

For Pediatric Motor Function

3.1 Introduction

Advanced medicines, including gene and cell therapies, are rapidly emerging as transforma-

tive treatments for rare and degenerative diseases. Duchenne Muscular Dystrophy (DMD),

the most prevalent genetic cause of death in boys, and Spinal Muscular Atrophy (SMA),

a leading genetic cause of infant mortality, have witnessed groundbreaking advancements

with therapies such as Nusinersen and gene therapy [5, 6, 7]. Despite these strides, the

landscape of drug development remains hindered by significant challenges, primarily due to

the difficulty in recruiting large cohorts necessary for robust statistical analyses. This issue

is further complicated by the subjective nature and imprecision of current trial outcome

measures. These often rely on behavioral assessments, such as the Brooke Upper Extremity

Scale, which measures arm function in patients with DMD [8], and the Children’s Hospital of

Philadelphia Infant Test of Neuromuscular Disorders (CHOP-Intend), which evaluates mo-

tor function in infants with SMA [9]. Both scales, along with other observational methods,

are susceptible to clinical bias and may not capture subtle changes critical for evaluating

treatment efficacy [10].

The emergence of wearable-based motion assessments presents a promising solution to these

challenges. By embedding sensors into everyday activities, continuous, home-based monitor-
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ing becomes feasible, offering a holistic view of patient health beyond sporadic clinical visits

[11, 12, 13, 14]. This approach facilitates the collection of longitudinal data with greater

ease and frequency, enabling more accurate tracking of disease progression and treatment

effects over time. In contrast to traditional methods that rely on intermittent clinical eval-

uations, wearable sensors allow for the seamless gathering of comprehensive movement data

in a naturalistic setting, reducing the burden on patients and their families.

However, pediatric movement data is inherently complex, due to confounding factors such

as limb length variations in growing children, variability in movement speed, and differing

cognitive abilities. These issues can significantly alter movement trajectory representations,

complicating the analysis and comparison of motion trajectories, especially in a young pop-

ulation where consistent movement speeds are difficult to achieve [15, 16]. Robust methods

for temporal alignment are essential to accurately compare and analyze these trajectories

and understand variables like disease progression.

Moreover, many existing classifiers in digital medicine rely on black-box features, making

it challenging for clinicians to trust their outputs [17, 18, 19]. In contrast, our framework

utilizes Shape-based Principal Component Analysis to simultaneously temporally align move-

ment trajectories and quantify patient behavior in terms of interpretable shape-based pheno-

types [2, 20, 21, 22]. This method identifies and correlates specific movement patterns with

clinical metrics such as muscle fat infiltration and motor function scores. By providing trans-

parent and intuitive results, our approach has the potential to provide objective feedback of

treatment progress compared to existing methods.
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Figure 3.1: Overview of the study and the proposed shape analysis pipeline. Wearable
sensors capture physiological signals from participants performing activities of daily living.
This data is combined with shape analysis and external assessments to develop a canonical
index of motor function.

Figure 3.2: Results on performing curve registration and Fréchet mean calculation with
temporal matching. (a) Signals with only amplitude variability, (b) Warping functions, (c)
Signals with amplitude and phase variability, (d) Signals after registration, (e) Reconstructed
warping functions, (f) Euclidean and Shape mean. Note how the shape mean (blue) captures
the symmetric shape better than the euclidean mean (red).
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Figure 3.3: (a-d) Results on peforming phase amplitude separation on healthy and (e-h)
DMD/SMA cohorts.

3.2 Method

3.2.1 Experimental Protocol

This study, approved by the University of Virginia’s Institutional Review Board for Health

Sciences Research (protocol #12161), recruited participants through the Pediatric Neuro-

muscular Clinic at the University of Virginia Children’s Hospital [23]. Patients diagnosed

with either SMA or DMD participated, along with age and sex-matched healthy controls (±1

year) (n = 13). All participants’ demographic data are shown in Table 3.1. Participants wore

MetaMotionR+ (MbientLab, San Francisco, CA, USA) sensors on both dominant and non-

dominant hands, with accelerometer and gyroscope data collected at 200 Hz [24]. Activities

of daily living (ADLs) including rotating door knob, raising cup, arm curl, door knocking,

and moving paddle were performed by the participants. The Brooke Upper Extremity Scale

was employed to provide a standardized metric for comparison across all cohorts [8]. Fol-

lowing data processing, a subset of participants were excluded from subsequent analysis due

to sensor malfunction (n = 2), young age and refusal to cooperate (n = 2), deceased (n =
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Table 3.1: Demographics of Participants

Cohort Number Age Range Mean
Age Sex

Control 13 2-35 15.2 8M, 5F
SMA 9 2-19 7.4 2M, 7F
DMD 19 4-35 14.2 18M, 1F

1), participant withdrawal (n = 1), or lack of discernible motion (n = 4). This resulted in a

final analysis dataset of 31 participants (DMD = 15, SMA = 7, Healthy = 9). Considering

the rarity of both SMA and DMD, this sample size is considered relatively large for studies

investigating these conditions.

3.2.2 Curve Registration and Shape PCA

Let {βi : [0, T ] → R, i = 1, 2, . . . , n} be the set of curves representing motions for n subjects.

In our case, it represents the gyroscope signals of y-axis. The gyroscope was selected because

it measures angular velocity, which reduces the impact of significant variations in limb length.

Our goal is to perform temporal alignment and phase-amplitude separation of these curves.

The temporal alignment of a curve is based on a time-warping function γ : [0, T ] → [0, T ]

that has the following properties. A γ is smooth, strictly increasing (ı.e., its derivative

is strictly positive), and is invertible with a smooth inverse. Furthermore, γ(0) = 0 and

γ(T ) = T . Such functions are called positive diffeomorphisms or phases and help facilitate

temporal alignments. Let the set of all time-warping functions be Γ. For a curve βi and a

γ ∈ Γ, the composition βi(γ(t)) or (βi ◦ γ)(t) defines the time warping of βi by γ.

We begin the alignment approach using the pairwise problem. Given two curves, β1 and β2,

we seek a time warping function γ2 such that the peaks and valleys in β2 ◦ γ2 are optimally

aligned to those of β1. Historically, one would use the optimization argminγ∈Γ ‖β1−β2◦γ‖ to

solve the alignment problem, where ‖f‖ =
√∫ T

0
f(t)2 dt represents the classical L2 norm. In

practice, the L2 of a function is approximated using a finite sum from its uniformly-sampled
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points, ‖f‖ ≈
√
(T
J

∑J
j=1 f(tj)

2). However, this optimization has several mathematical and

computational shortcomings, and a modern approach utilizes the concept of Square-Root

Velocity Functions (SRVFs). The SRVF of a curve βi is given by qi(t)
.
= sign(β̇i(t))

√
|β̇i(t)|.

If we time warp a curve βi into βi ◦γ, then the SRVF of the new curve is given by (qi ◦γ)
√
γ̇.

This sets up the so-called elastic approach to curve alignment. The optimal alignment of β2

to β1 is given by solving the optimization problem:

γ2 = argmin
γ∈Γ

‖q1 − (q2 ◦ γ)
√
γ̇‖2 , (3.1)

where q1, q2 are SRVFs of β1, β2, respectively. This optimization is solved using the efficient

Dynamic Programming Algorithm (DPA) [25]. Figure 3.4 illustrates this optimization where

Figure 3.4a shows an example of arm curl β1 and Figure 3.4b shows the temporal rate or

warping function γ1 of that arm curl. Figure 3.4c shows two misaligned curves β1, β2, and

Figure 3.4d shows the aligned curves β1 and β2 ◦γ−1
1 . The minimum value in Eqn. 3.1 results

in distance between the shapes of β1 and β2:

da(β1, β2) = infγ2‖q1 − q2 ◦ γ2
√

γ̇2‖ (3.2)

An important property of this distance is that it is unchanged by arbirtary time warpings of

β1 and β2. That is,

da(β1, β2) = da(β1 ◦ γa, β2 ◦ γb), for any γa, γb ∈ Γ .

Therefore, it can be used to compare biomechanical signals without any influence of the rates

at which the activities are performed.

This pairwise alignment can now be extended to align multiple curves and to separate their
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phases and amplitudes.

µ̂n
.
= argmin

q∈L2

(
n∑

i=1

(
min
γi∈Γ

‖q − (qi ◦ γi)
√
γ̇i‖2

))
. (3.3)

This optimization is solved iteratively. Each iteration includes two steps: (1) aligning indi-

vidual SRVFs qis to the current µ̂n using Eqn. 3.1 repeatedly and (2) Updating the estimate

of µ using cross-sectional average of current aligned SRVFs according to:

µ̂n 7→ 1

n

n∑
i=1

(qi ◦ γi)
√

γ̇i .

We stop the iteration when the updates result in small changes. The FDASRSF1 [26] provides

implementations of this solution in matlab, python, and R. The outputs of this procedure are:

(1) µ̂n: the overall mean shape of the given curves, (2) {γ∗
i }: the phases that align individual

curves to the mean shape, and (3) {β̃i = βi ◦ γ∗
i }: the set of aligned curves or amplitudes of

the original curves. In summary, each individual curve βi is decomposed into its phase γ∗
i

and amplitude β̃i such that βi = β̃i ◦ γ∗
i . Figure 3.3 shows examples of this separation. In

each row, the first column shows the original data (Figure 3.3a and e), the second column

shows the phases {γ∗
i } (Figure 3.3b and f), the third column shows the mean µ̂n (Figure 3.3c

and g), and finally the last column shows the aligned amplitudes {β̃i} (Figure 3.3d and h).

The aligned functions {β̃i} represent the shapes of given curves and can be now analyzed

using Shape PCA.

Apart from the wearable metrics, several other clinical measures were collected. The descrip-

tion of these measures is given in Table 3.2.

1https://github.com/jdtuck/fdasrsf_python

https://github.com/jdtuck/fdasrsf_python
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Table 3.2: Description of clinical measures against which we correlate our wearable features

Clinical Measures Description
Brooke score The Brooke Upper Extremity Scale is a 6-point scale that allows

classification of upper extremity function and also helps docu-
ment progression. Points 1-6 are assigned based on functional
ability of the patient where higher score indicates more impair-
ment [8].

Cross Sectional Area
(CSA (cm2))

This term is used in the context of anatomy and physiology
to describe the size of a muscle. A larger cross-sectional area
generally means more muscle fibers, which translates to more
force-generating capacity [27].

Normalized El-
bow Torque (NET
(Nm/cm))

Torque normalized by forearm length.

Average Echogenicity
(Avg_Echo (gsv))

Muscle echogenicity refers to the muscle’s ability to reflect ul-
trasound waves, as measured with ultrasound imaging. In SMA,
motor neurons in the spinal cord degenerate and die, leading to
increased echogenicity of the muscles as the muscle fibers are
replaced with fibrous tissue and fat [28]. In DMD, a mutation
in the dystrophin gene leads to progressive muscle weakness, de-
generation and increased echogenicity due to fat [29].

3.2.3 Statistical Analyses

In order to get more robust results from Shape PCA and also handle multiple visits of

participants, we run Shape PCA 100 times with random visit taken for each subject. Then

we flip the sign of Singular Value Decomposition (SVD) to get the principal components to

be sign aligned with the components of first trial. Then a mean PC score is computed across

these runs. All boxplots in Figure 3.7 and correlations in Figure 3.8 are based on this mean

Figure 3.4: A simulated illustration of alignment of arm curls. (a) An example of arm curl.
(b) Temporal rate or warping function of this arm curl. (c) An example of misaligned arm
curls. (d) Functions after alignment.
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PC score.

To gauge the variability in the relationship between wearable modes and clinical variables,

we utilized bootstrapping. Figure 3.9 (first column) illustrates the distribution of canonical

correlations derived from 10000 bootstrap replicates. In each replicate, we randomly sam-

pled participants with replacement to form a new training set (70% of the data), while the

remaining 30% served as a hold-out test set. PLS was fitted on the resampled training data,

and its performance, measured by canonical correlation, was assessed on the corresponding

test set. This approach captures the uncertainty in estimated relationships due to sampling

variability. All the correlations were measured using Pearson correlation coefficient.

For the mixed linear model regression, the random effects accounted for variation in in-

tercepts across different participants (Participant ID), while the fixed effects included the

effects of age, cohort, and their interaction. In this analysis, the p-values were calculated

using two-sided Wald tests [30]. The significance level was set at α = 0.01, and significance

was achieved when the interaction effects were statistically different from zero, indicating a

significant influence of these interactions on the dependent variable. Additionally, p-values

were adjusted for multiple comparisons using the Benjamini-Hochberg method [31]. Shape

PCA, PLS, and mixed linear model regression were performed using the FDASRSF [26],

Scikit-learn [32], and statsmodels [33] packages, respectively. All other analyses were con-

ducted using Python 3.11.

3.3 Results

3.3.1 Overview of the Approach

Figure 3.1 presents a comprehensive workflow for analyzing Activities of Daily Life (ADL)

using sensor-based data and various measurement techniques. Initially, raw sensor signals
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(X) are collected during ADL tasks. These signals are then aligned or registered using phase

amplitude separation and subjected to Shape-based Principal Component Analysis (PCA) in

the shape space. The scores from this shape space are analyzed using Partial Least Squares

(PLS) analysis to explore the covariation between the sensor signals (X) and multiple outcome

measures (Y), including ultrasound measures (Cross Sectional Area, Average Echogenicity),

dynamometer measures (Normalized Elbow Torque), and Brooke scores. The aim is to

understand the relationships and potential predictive power of sensor data concerning these

outcome measures, despite the absence of a gold standard for Y.

3.3.2 Insights from Curve Registration

To illustrate phase amplitude separation with an example, we initially generate data with

a symmetric shape and purely amplitude variation (Figure 3.2a). To demonstrate phase

variability, we generate several temporal warping functions (Figure 3.2b). These warping

functions indicate the rate at which a motion is performed (slower or faster). Combining

the amplitude variation with these warping functions results in both phase and amplitude

variation (Figure 3.2c). Attempting to compute the mean of these functions yields the

red curve, which is asymmetric (Figure 3.2f), despite the original shapes being symmetric.

However, performing phase amplitude separation separates the horizontal variation from the

vertical one. This process temporally aligns the functions (Figure 3.2d), recovers the warping

functions (Figure 3.2e), and a mean shape (depicted in blue) that is symmetric (Figure 3.2f),

providing a much more accurate representation of the original shape.

In Figure 3.3, we present the results of phase-amplitude separation applied to arm curl

trajectories from two groups: healthy participants in the top left plot (Figure 3.3a) and

participants with DMD/SMA in the plot below (Figure 3.3e). The raw trajectories, partic-

ularly from the healthy cohort, exhibit significant phase variability, where similar shapes

occur at different times across different trajectories. Phase-amplitude separation is applied
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specifically to the healthy trajectories, aligning these functions temporally and deriving a

mean shape. The resulting elastic mean shape of healthy arm curls is depicted in the third

plot (Figure 3.3c), accompanied by the corresponding temporal warping functions shown in

the second plot (Figure 3.3b). These warping functions illustrate the variability in phase

alignment across different trajectories within the healthy group. From the top right plot

(Figure 3.3d), we observe that the peaks and valleys of the healthy trajectories align closely

with the healthy mean shape, indicating effective alignment.

In the second row of Figure 3.3, we depict the trajectories from participants with DMD/SMA

(Figure 3.3e). Applying phase amplitude separation within this group, we compute the

mean shape of DMD/SMA, shown in Figure 3.3g. In Figure 3.3h, we align the DMD/SMA

trajectories not to their own mean but to the mean shape derived from healthy participants.

This approach aims to highlight deviations from the healthy mean shape. Here, we observe

a notable disparity between the peaks and valleys of the DMD/SMA cohort and the healthy

mean. As depicted visually in Figure 3.3f, the DMD/SMA trajectories require substantial

warping to align them with healthy mean, indicating greater shape variability compared to

the healthy trajectories.

3.3.3 Discovering Modes of Variation in Trajectories

In Figures 3.5a-c, we conducted Shape Principal Component Analysis on arm curl trajectories

across all cohorts to identify key patterns of variation. The first principal component (VPC1,

Figure 3.5a) primarily reflects changes in angular speed while maintaining consistent curl

shape. Starting from the mean shape (µ, depicted in black), moving one standard deviation

along the positive direction of VPC1 (µ+ 1σv, shown in red) reveals a reduction in angular

velocity, as observed in the initial plot. This pattern explains 51.78% of the variance across

all participants.

The second mode of variation (VPC2, Figure 3.5b) illustrates asymmetry in the motion.
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Figure 3.5: (a-c) Vertical modes of variation obtained from Shape PCA on the curl data.
(a) The first mode represents scaling, (b) the second asymmetry in motion while (c) the last
represents noise. (d-f) Modes of variation obtained from knocking data. (d) The first mode
represents scaling. (e) The second mode represents asymmetry in motion while (f) the last
represents sensor noise.

Figure 3.6: Interpretation of Vertical Principal Component 2 of arm curl (VPC2 Curl) in
videos of 2 participants. The participants do the downward motion of the arm curl faster
than the upward motion, possibly because of some sort of compensation.
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Starting from the mean shape (µ, depicted in black), progressing one standard deviation

along the positive direction of VPC2 (µ+1σv, shown in red) reveals a decrease in the height

of the peak of the curl while the trough remains unchanged. To validate this observation,

we examine joint velocity vectors obtained from Openpose for two participants (Figure 3.6).

This analysis indicates that these participants face difficulty during the upward motion phase,

while the downward phase occurs more quickly, possibly influenced by gravitational effects.

The third mode of variation (VPC3, Figure 3.5c) captures variability in the trajectory’s tail.

This mode likely reflects sensor noise or temporal segmentation noise.

The second row (Figure 3.5d-f) displays the results of Shape PCA applied to knocking motion

curves. Similar patterns to those observed previously emerge. VPC1 appears to represent

scaling (Figure 3.5d), indicating variations in the speed of the knocking motion. On the other

hand, VPC2 seems to capture asymmetry (Figure 3.5e) between first and second knocking

motion. Finally, VPC3 reflects some form of sensor noise (Figure 3.5f). We also conducted

Shape PCA on additional activities such as moving a paddle and twisting a door knob.

However, these experiments yielded less interpretable results, with principal components

showing less structured patterns. Consequently, we focus exclusively on two actions going

forward: arm curls and knocking motion.

3.3.4 Analyzing Cohort Differences

In Figure 3.7, we analyze differences in wearable features (X) and clinical measures (Y)

among three cohorts. Boxplots are shown for several variables: Age, Brooke score, Average

Echogenicity (indicating fat infiltration into tissue), and Normalized Elbow Torque (a nor-

malized measure of strength across age ranges). Additionally, we present projections on the

four modes of variation: VPC1 and VPC2 obtained from arm curl and knocking motions.

Both DMD and SMA cohorts exhibit higher Average Echogenicity (Figure 3.7c) compared

to Healthy, indicating greater fat infiltration into tissue. Consequently, they also show lower
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Figure 3.7: Boxplots of some demographic variables along with important clinical measures
and feature dimensions. (a) Age, (b) Brooke score, (c) Average Echogenicity (Avg_Echo
(gsv)), (d) Normalized Elbow Torque (NET (Nm/cm)), (e) VPC1 Curl (Speed), (f) VPC2
Curl (Asymmetry), (g) VPC1 Knock (Speed), and (h) VPC2 Knock (Asymmetry).

Normalized Elbow Torque (Figure 3.7d), suggesting reduced strength. In the second row

(Figure 3.7e-h), we display boxplots of wearable features. VPC1 Curl (Figure 3.7e), repre-

senting angular speed in arm curl motion, does not significantly differ between cohorts. Both

DMD and SMA show large variations, with functionality ranging similar to Healthy levels.

Furthermore, both DMD and SMA cohorts demonstrate lower speed in knocking motion

compared to Healthy (Figure 3.7g). Notably, VPC2 Curl activation (Figure 3.7f), which

indicates motion asymmetry, is more pronounced in SMA compared to DMD and Healthy.

This finding is intriguing given the biological differences between DMD, which involves pro-

gressive muscle fiber deterioration due to dystrophin deficiency and SMA, which affects

spinal motor neurons. It suggests that SMA may impair subtle motion control, resulting in

asymmetries in motion patterns.

3.3.5 Insights from Cross Correlation

In Figure 3.8, we examine the correlations of modes of variation obtained from each activity

with the clinical measures described in Table 3.2. In the top row (Figure 3.8a), we observe
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Figure 3.8: Pearson Cross Correlation of different VPC modes with clinical measures for
DMD (N=15), SMA (N=7), and Healthy (N=9). (a) Cross correlations for VPC1 Curl
(Speed), and (b) VPC1 Knock (Speed).

stronger correlations between VPC1 and age for DMD and SMA compared to the Healthy

cohort. This positive correlation suggests that as age increases, VPC1 also increases, indi-

cating a reduction in angular speed. This stronger correlation in DMD and SMA may be

due to the progressive nature of these diseases affecting both patient groups. An increase in

VPC1 correlates with a decrease in dimensions of strength, as seen in the Normalized Elbow

Torque. Additionally, VPC1 for DMD shows a positive correlation with echogenicity, which

aligns with increased fat infiltration in muscle fibers, leading to tissue weakening. In both

DMD and SMA, VPC1 is positively correlated with the Brooke score, where higher scores

indicate poorer muscle function. No correlation with Healthy is shown since Brooke was only

collected for patient cohorts. In the second row, VPC1 Knock (Figure 3.8b), representing

scaling in knocking motion, displays a similar pattern of correlations, albeit weaker. Since

the direction of VPC1 Knock is reversed (moving one standard deviation to the right of the

mean implies an increase in speed), its correlations have opposite signs compared to VPC1

Curl.
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Figure 3.9: Distribution of three different principal PLS correlations (first column) and
components. For first principal component, our motor function index has median correlation
of r = 0.77 (95% CI [0.34, 0.94]) with dimensions of muscle fat infiltration (Avg_Echo),
Brooke score, and Age related degenerative changes. Speed of curl (VPC1 Curl) and knock
(VPC1 Knock) have tighter spread in distribution than the asymmetry features (VPC2 Curl
and VPC2 Knock).

3.3.6 Combining Modes of Variation

To develop a comprehensive index for assessing function in DMD and SMA cohorts (Healthy

was omitted due to missing Brooke), we employed Partial Least Squares (PLS) to combine

projections atop the principal component dimensions and correlate them with clinical vari-

ables. To gauge the variability in the relationship between wearable modes and clinical

variables, we utilized bootstrapping. Figure 3.9 (first column) illustrates the distribution of

canonical correlations derived from 10000 bootstrap replicates. As shown in the first row

of Figure 3.9, our primary canonical dimension (0.75 × speed curl − 0.61 × speed knock +

0.2× asymmetry curl+0.17× asymmetry knock) achieved a median canonical correlation of

r = 0.77, with a 95% confidence interval of [0.34, 0.94] across the 10000 bootstrapped test

sets. This indicates a robust association between this linear combination of wearable features

and dimensions such as muscle fat infiltration (Avg_Echo), Brooke score, and age-related

degenerative changes. The narrower spread of coefficients for speed of motion (VPC1 Curl

and VPC1 Knock) underscores their particular significance within this dimension. Following

them are asymmetry in curl motion (VPC2 Curl) and asymmetry in knocking motion (VPC2

Knock). Given the lower correlations and higher variance in coefficient estimates observed in
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Figure 3.10: Comparison of different decomposition methods, (a-c) Shape PCA with align-
ment leads to much more interpretable modes of variation than (d-f) NMF, and (g-i) Func-
tional PCA without alignment because of the phase variability.

the second and third modes (r = −0.04 and r = −0.06, respectively), we opted for the first

canonical dimension as our motor function index. This decision was guided by its stronger

bootstrapped correlation and more stable coefficient estimates.

3.3.7 Comparison with other Decomposition Techniques

We compared our algorithm with other low-rank decomposition techniques: specifically,

Functional PCA without phase-amplitude separation and Non-negative Matrix Factoriza-

tion (NMF). The modes of variation obtained from each technique are illustrated in Figure
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Table 3.3: Performance comparison for different algorithms reported in terms of bootstraped
canonical correlation of each component

Algorithm Component Median (50th percentile) [5-95]% Percentile
Shape PCA (Aligned) 1 0.77 [0.34, 0.94]
NMF (No alignment) 1 0.63 [0.01, 0.94]
Functional PCA (No alignment) 1 0.36 [-0.3, 0.81]
Shape PCA (Aligned) 2 -0.04 [-0.66, 0.66]
NMF (No alignment) 2 0.28 [-0.47, 0.81]
Functional PCA (No alignment) 2 0.18 [-0.60, 0.85]
Shape PCA (Aligned) 3 -0.06 [-0.72, 0.71]
NMF (No alignment) 3 0.14 [-0.59, 0.77]
Functional PCA (No alignment) 3 -0.01 [-0.67, 0.69]

3.10, and the corresponding canonical correlations are summarized in Table 4.2. Our frame-

work achieves a higher median canonical correlation and a narrower confidence interval for

the first component.

3.3.8 Mixed-Effects Regression

In Table 3.4, we examined the relationship between age and speed of movement in DMD,

SMA, and Healthy control groups. We conducted mixed-effects regression, modeling VPC1

Curl as an interaction between age and cohort. The results reveal significant associations

between VPC1 Curl and both age and cohort status. Age significantly influenced VPC1

Curl within each cohort, with older participants generally demonstrating higher values of

VPC1 Curl. Specifically, for DMD (β = 1.337, corrected p = 0.001) and SMA (β = 2.530,

corrected p = 0.002) cohorts, the positive coefficients indicate an age-related decline in

speed of curl, suggesting a loss of ability. Conversely, the Healthy cohort did not show a

significant temporal trend. The intercept term for individuals with DMD and SMA showed

negative values, suggesting initially higher motion speeds. This finding might be attributed

to the presence of higher-functioning individuals within these cohorts who initially exhibit

function comparable to or better than Healthy controls but experience a decline over time,
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Table 3.4: Mixed Linear Model Regression: VPC1 Curl ∼ Age * Cohort

Coef.(β) Std.Err. z corrected p> |z| [0.025 0.975]
Intercept:Cohort[T.Healthy] 1.937 6.205 0.312 0.90588 -10.224 14.098
Intercept:Cohort[T.DMD] -18.864 7.667 -2.461 0.03329 -33.891 -3.838
Intercept:Cohort[T.SMA] -31.125 9.341 -3.332 0.00258 -49.432 -12.817
Age:Cohort[T.Healthy] 0.047 0.336 0.141 0.95578 -0.611 0.706
Age:Cohort[T.DMD] 1.337 0.361 3.706 0.00126 0.630 2.044
Age:Cohort[T.SMA] 2.530 0.728 3.477 0.00202 1.104 3.957
Group Var 54.213

Table 3.5: Mixed Linear Model Regression: VPC2 Curl ∼ Age * Cohort

Coef.(β) Std.Err. z corrected p> |z| [0.025 0.975]
Intercept:Cohort[T.Healthy] -1.769 5.223 -0.339 0.90588 -12.005 8.468
Intercept:Cohort[T.DMD] 0.374 6.746 0.055 0.95578 -12.847 13.595
Intercept:Cohort[T.SMA] 13.064 3.053 4.279 0.00023 7.080 19.047
Age:Cohort[T.Healthy] -0.258 0.264 -0.976 0.49331 -0.776 0.260
Age:Cohort[T.DMD] 0.451 0.389 1.158 0.49331 -0.312 1.213
Age:Cohort[T.SMA] -0.442 0.446 -0.992 0.49331 -1.316 0.431
Group Var 58.170

as indicated by the slope terms.

In Table 3.5, we examined the relationship between age and asymmetry of movement in DMD,

SMA, and Healthy control groups. We conducted mixed-effects regression, modeling VPC2

Curl as an interaction between age and cohort. The regression analysis reveals a significantly

greater intercept of SMA cohort on asymmetry of movement (β = 13.064, corrected p =

0.00023), indicating a notable asymmetry among SMA patients. The corrected p-value still

indicates a significant result, reinforcing the observation of increased asymmetry in the SMA

cohort.

3.4 Discussion and Future Work

Our approach holds significant promise in clinical practice and research for several reasons.

Firstly, by leveraging shape analysis of motion trajectories captured by wearable sensors,
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we extract rich, quantitative data that traditional clinical assessments may overlook. This

provides a more comprehensive understanding of motor function in children with neuromus-

cular disorders, enabling tailored interventions and therapies. The use of Shape Principal

Component Analysis allows us to identify nuanced patterns in movement, such as scaling

and asymmetry, across various daily activities. These insights are crucial for clinicians to

assess functional limitations and track changes over time more accurately than conventional

methods permit.

Moreover, the Partial Least Squares (PLS) technique uncovers a covariation mode that cor-

relates significantly with clinical measures like muscle fat infiltration, strength assessments,

motor function indices, and age. This PLS-derived mode serves as an interpretable index of

motor function, offering transparency and clinical relevance, which contrasts with the black-

box nature of many current movement analysis tools. Practically, our method supports the

development of home-based monitoring systems. These systems can continuously collect

data over extended periods, reducing the necessity for frequent clinic visits and enhancing

patient convenience. This longitudinal data collection not only facilitates early detection

of subtle functional changes but also empowers caregivers to report on daily function more

comprehensively.

Furthermore, integrating activity recognition algorithms into these systems will enhance their

utility by providing detailed insights into how children perform activities of daily living. This

holistic approach paints a clearer picture of functional capabilities, aiding clinicians in making

informed decisions about treatment adjustments and interventions. The non-intrusive nature

of wearable sensors is particularly advantageous for monitoring disease progression, especially

in patients undergoing novel therapies such as gene therapy. By minimizing the need for

physical visits, telemedicine supported by wearable sensors extends clinical care to remote

areas and during public health emergencies, ensuring continuity of care and improving patient

outcomes.
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In conclusion, our methodological approach not only advances the field of movement analysis

in neuromuscular disorders but also promises practical applications in enhancing patient

monitoring, clinical decision-making, and therapeutic outcomes. Future research efforts will

focus on expanding participant cohorts, validating our findings across diverse populations,

and refining our approach to accommodate varying clinical contexts and needs.
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Chapter 4

Jointly Analyzing Emg and Motion

Shapes for Understanding Motor

Function Rehabilitation in Stroke

4.1 Introduction

Stroke affects more than 795,000 patients per year. To understand post rehabilitation func-

tion in stroke patients, it’s crucial to analyze both motion and muscle activity, encompassing

both ”form” and ”function”. Relying on a single modality is insufficient for a comprehen-

sive assessment. For example, consider a stroke patient with good kinematic data but poor

EMG activity. This patient might exhibit smooth and efficient walking patterns, suggesting

good functional recovery. However, the EMG data could reveal underlying neurochemical

deficiencies or abnormal muscle activation patterns that aren’t apparent through kinematic

analysis alone. Conversely, another stroke patient might have poor kinematic data but good

EMG activity. This patient could show irregular, spastic gait patterns, indicating poor func-

tional recovery. Nonetheless, the EMG data might demonstrate strong and normal muscle

activation, suggesting that the muscles themselves are functioning well but the control and

coordination aspects are impaired. Therefore, a joint analysis of both kinematic and EMG

data provides deeper insights into the patient’s condition, revealing nuances that might be

missed when focusing on only one modality.
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Several studies have focused on analyzing stroke kinematic data ([1]). A common choice of

study design is to allow participants to perform the motion naturally, to not constrain their

motion. However this can lead to phase variability in the dataset, since different patients

might perform the motion at different speeds. Furthermore, since the setup does not involve

a treadmill, there can be translation/rotation variability where same motion shapes with

different starting configurations relative to camera can have different sensor signals. Finally,

variation in participant sizes can cause kinematic patterns with same shapes to have different

norm of signals.

Similarly, emg data also suffers from phase variability depending on walking speed of the par-

ticipant. An example of this is shown in Figure 1, first column, where despite the kinematic

and emg signals being generate by a periodic walking pattern, it’s hard to see any periodic

structure in the raw data. The presence of rotation/translation/scale/phase variability in

kinematic and phase variability in emg make it challenging to see any periodic structure in

the raw data.

In our current work, we use techniques from statistical shape analysis to the problem of

identifying differences between hemiplegic vs normal gaits based on jointly registering both

kinematic and emg modalities. In particular, we focus on the following research questions:

Given we have freeform kinematic data with phase/scale/rotation/translation variability

Xkin, EMG data with phase variability Xemg.

1. How do we perform registration of such complex biomechanical data to eliminate nui-

sance variables like rotations and temporal rates of actions?

2. How do we summarize the high dimensional biomechanical data to useful and parsi-

monious modes of variation?
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4.2 Related Work

There is a rich body of literature on using Dynamic Time Warping in the context of stroke.

[34] used a real-time variant of the dynamic time warping (DTW) algorithm for motor

exercise recognition, particularly in the context of neurological rehabilitation. The algorithm

provides real-time feedback to neurological patients during motor rehabilitation sessions. [35]

investigated the effectiveness of dynamic time warping (DTW) in analyzing gait pattern

similarity, aiming to address a gap in its application within gait research. [36] used DTW

distance to objectively measure upper limb mobility post-stroke. They found a reference

signal by averaging motion samples collected from rehabilitation experts and determined

the DTW distance between this reference motion and stroke patient’s motion. Several other

works have focused on using Dynamic Time Warping [36, 37, 38, 39], removing rotation,

translation, and scaling variability has received less attention. Some approaches have focused

on combining DTW with rotations, but this approach faces challenges when performing

PCA with the data because DTW is not a proper metric distance. Rotational data lies on

non-Euclidean manifolds, where the absence of a global vector space makes it challenging

to extend the notion of PCA. A recent line of work [4, 40] has tried to address this by

performing PCA in the tangent space of manifolds. We extend this approach in our paper.

4.3 Methodology

4.3.1 Kendall Shape Space based transported srvf formulation

Given kinematic data, we represent each skeleton frame as a matrix of k landmarks storying

m = 3 xyz coordinates of each joint in the body. We consider the space of m × k matrices

representing our k landmarks.
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T M

Kinematic (Unaligned)

EMG (Unaligned) Joint Shape Space EMG (Aligned)

Kinematic (Aligned)

+

p

Figure 4.1: a) Action of nuisance groups (rotation/translation/scaling/reparameterizations)
obfuscates the latent periodic structure in the data and makes it challenging to perform
simple tasks like computing means. b) Registering raw data with our method allows us to
see this structure as well as analyze both kinematic and muscle activity shapes.

Figure 4.2: Example of kinematic registration.

Figure 4.3: Example of tsrvf construction and trajectory interpolation on a Sphere Manifold.
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Figure 4.4: Comparison of registration with [41].

Figure 4.5: Pairwise distances, block structure in healthy possibly because easier to register
healthy to another healthy. Middle is registration from [41].

Figure 4.6: 14, 10, 36 are stroke patients close to healthy, 42, 34, 2 are stroke patients far
from healthy.

Figure 4.7: Mean calculation from registered curves. Stroke mean shown in red while healthy
shown in blue. Hemiplegic show dragging.
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Figure 4.8: Pca modes 1 (short stride + stiffer limbs + head position up or down),7 (left
arm variability), 9 (elbow variation), 14 (Right Shoulder variation). 7, 9 and 14 seem to
capture differences between stroke left and right

Figure 4.9: Boxplots showing separation between healthy and stroke via pcs

Figure 4.10: Correlation of demographic with pcs
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XϵRm×k (4.1)

These matrices are acted upon by the group of translations, scaling and rotations. In order

to compute shape distance between skeletons, we need to remove the action of these nuisance

groups.

We mean center these matrices to remove translation as a degree of freedom. This yields a

new vector space where translation has been quotiented out.

V k
m = {XϵRm×k :

k∑
i=1

X[:, i] = 0} (4.2)

Scaling is quotiented out by imposing the unit frobenius norm constrain

Sk
m = {XϵV k

m : ‖X‖2 = 1} (4.3)

.

Because of the unit norm constraints, the preshape space has a spherical geometry.

Since translations and scalings have been quotiented out, our landmark matrices lying in Sk
m

are acted upon by a group of rotations.

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1} (4.4)

.

We define an equivalence relation between two skeletons X1, X2ϵS
n
m X1 ∼ X2 if and only if

X2 = RX1

This allows us to define the shape space as a quotient space under this equivalence relation
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Σk
m = Sn

m/ ∼ (4.5)

For points away from singularities, the quotient map is a Riemannian Submersion. This

allows us to define geodesics and the distance between two shapes p1, p2ϵΣn
m can be defined

as

d(p1, p2) = infRd(X1, R ∗X2) (4.6)

Where d is the geodesic distance on the sphere. Orthogonal Procrustes Analysis for alignment

is used to find the solution to this problem.

TSRVF distance Let βkin
j (t) : [0, 1] → Σ represent a collection of kinematic trajectories

lying on a manifold Σ, and βemg
j (t) : [0, 1] → Rn represent a collection of EMG trajectories

in Euclidean space. We choose a reference trajectory c ∈ Σ.

We first use numerical differentiation to calculate the covariant derivative for each kinematic

trajectory and simple differences for each EMG trajectory, followed by the computation of

the joint SRVF.

Given a joint SRVF qj, we can recover the kinematic and EMG trajectories βkin
j and βemg

j

via covariant integration with the initial condition starting from reference c.

We perform the mean calculation based on the joint SRVF.

We start by setting µβkin = βkin
1 and µβemg = βemg

1 .

4.4 Results

In Figure 4.2, first column, we show unregistered kinematic (first landmark, x coordinate)

and EMG data across all participants. Due to action of nuisance groups (rotations/trans-

lations/scaling/phase in kinematic, phase in EMG), the data shows no periodic structure
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Algorithm 1 Covariant Derivative and Transported Joint SRVF Calculation
1: Input: Collection of kinematic trajectories {βkin

j (t)}, collection of EMG trajectories
{βemg

j (t)}, reference trajectory c

2: for each trajectory βkin
j (t) and βemg

j (t) do
3: Calculate β̇kin

j (t) using numerical differentiation:

β̇kin
j (t) ≈

(
logβkin

j (t)(β
kin
j (t+∆t))

∆t

)
βkin
j (t)→c

4: Calculate β̇emg
j (t) via difference:

β̇emg
j (t) ≈

βemg
j (t+∆t)− βemg

j (t)

∆t

5: Form the joint derivative β̇joint
j (t):

β̇joint
j (t) =

(
β̇kin
j (t)

β̇emg
j (t)

)

6: Calculate the joint SRVF qj(t):

qj(t) =

 β̇joint
j (t)√

‖β̇joint
j (t)‖


7: end for
8: Output: Joint SRVF representations {qj(t)}
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Algorithm 2 Trajectory Recovery
1: Input: Joint SRVF qj(t), reference trajectory c
2: Initialize βkin

j (0) = c
3: for each time step t do
4: Calculate the joint derivative β̇joint

j (t):

β̇joint
j (t) = qj(t)‖qj(t)‖

5: Extract the kinematic and EMG components:

β̇kin
j (t) = β̇joint,kin

j (t)

β̇emg
j (t) = β̇joint,emg

j (t)

6: Update the kinematic trajectory:

βkin
j (t+∆t) = expβkin

j (t)

(
β̇kin
j (t)c→βkin

j (t)∆t
)

7: Update the EMG trajectory:

βemg
j (t+∆t) = βemg

j (t) + β̇emg
j (t)∆t

8: end for
9: Output: Recovered kinematic and EMG trajectories {βkin

j (t)} and {βemg
j (t)}
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Algorithm 3 Mean Calculation
1: Initialize µβkin = βkin

1 and µβemg = βemg
1

2: Calculate initial joint SRVF µq(t) = tsrvf(µβkin , µβemg)
3: repeat
4: for each joint trajectory βkin

j (t) and βemg
j (t) do

5: Minimize:
min
γj

∑
‖µq − qj ◦ γj

√
γ̇j‖22

6: Update β̂kin
j and β̂emg

j :
β̂kin
j = βkin

j ◦ γj

β̂emg
j = βemg

j ◦ γj
7: end for
8: Update µβkin(t) and µβemg(t):

µβkin(t) = exp

∑ ϵ logµ
βkin (t)

β̂kin
j (t)

N


µβemg(t) =

∑
β̂emg
j (t)

N

9: until convergence
10: Output: Mean trajectories µβkin(t) and µβemg(t)
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despite being generated by a periodic gait. We embed the trajectories in joint shape space

(middle column), where each trajectory is aligned to its mean shape. This results in a periodic

kinematic and EMG trajectory (right column).

In Figure 4.3, We illustrate the transported srvf by first simulate a trajectory on a sphere.

We calculate a covariant derivative as described in the methods and then parallel transport

the vector field to the tangent space of a reference point c. The reconstruction is shown

in the middle plot. The last plot shows geodesics between two random trajectories on the

sphere.

In Figure 4.4, we compare our results from one of the recent stroke recognition setups pro-

posed in [41]. The original shape is shown in red while the other shape is shown in black.

The registration algorithm has to match the black sequence with the red sequence, in order

to compare these trajectories. A good registration algorithm will align these two to each

other while not deforming the source skeleton sequence too much. We show our TSRVF

registration in blue while the registration from [41] is shown in green. As seen here, the

registration from [41] often differs in phase compared to the target sequence while our regis-

tration matches it quite accurately. This is further quantified in Table 1 where we compare

our registration algorithm with previous methods for computing distances/registering stroke

biomechanical trajectories.

In Figure 4.5, we compute pairwise distances based on DTW distance (left), distance from

[41] (middle), and Kendall shape distance (right). Numbers 0-49 indicate stroke patients

while the remaining represent healthy. It’s hard to make out any evidence of a cluster from

the Euclidean or Procrustes registered distances. However, a clear block is evident from our

registration distances. This can be further seen in Figure 4.6 where MDS identifies clear

clusters of healthy and stroke patients along with identifying patients with the most extreme

gait (14,10, and 36). Compare this to stroke patients with almost healthy gait (42,34, and

2).
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In Figure 4.7, we use our registration to compute a mean for both the stroke and healthy

cohorts individually. Some clear patterns are visible. The stroke mean has a shorter stride

length and reduced knee flexion compared to the healthy patients. They also demonstrate

lesser swaying of hands and a bent neck posture.

In order to investigate this further, in Figure 4.8, we use functional principal component

analysis on the combined stroke and healthy registered biomechanical trajectories. We plot

the mean trajectory in black while deviations of -1 std deviation and +1 std deviation are

shown in blue and red. We point out several interesting PC modes while the remaining

are shown in the appendix. The first PC mode seems to capture variation in scaling of

participants, with the red skeleton showing a shorter stride length, stiffer arm sway, and a

neck position which is bent down. As seen from 4.9, this PC mode is especially effective in

separating both left and right hemiplegic participants from healthy. As seen from Fig 4.10,

this PC mode is also correlated with two of the baseline metrics: The Functional Ambulatory

Category (FAC) and the Tinetti Performance Oriented Mobility Assessment (POMA) with

a correlation of 0.59 and 0.61 respectively.

PC mode 7 seems to be associated with variability in left arm and trunk rotation while walk-

ing. It shows some separation between left and right hemiplegia and has a weak correlation

with the Y variable LesionLeft, indicating whether the stroke is on the left or the right side

of the body. PC mode 9 is particularly interesting, it’s representing some form of elbow

variation, shows clear separation between left vs right sided hemiplegia and has a correlation

of 0.58 with LesionLeft.

Finally, PC mode 14 seems to represent variation in the right shoulder as seen from the

skeletal sequence.

Next, we focus our attention on registration of the EMG. In Figure 11, first two rows, we

show raw EMG data processed with a Butterworth filter along with a root mean square

transformation on a window of 50ms. The data appears to be really noisy without any
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Figure 4.11: EMG Registration

apparent periodic pattern which would indicate it was generated by walking. Next, we

run registration with phase variability and align each EMG function to the mean shape.

Post-registration, it’s a lot easier to see a periodic pattern in several of the muscle signals.

In Figure 12, we show the first PC eigenfunction associated with functional PCA of EMG.

This eigenfunction seems to represent a global scaling of periodic activity of all the muscles.

Further analysis reveals that this eigenfunction, similar to the first PC kinematic mode, is

especially useful in separating hemiplegic from healthy.

In Table 4.1, we show a comparison of our method with some previously published methods

in the stroke kinematic quality assessment domain. Functional PCA Kendall outperforms

other methods.

In Figure 13, we show F1 scores for classification of Healthy vs Paretic Left vs Paretic

Right for all the participants. A and B show the F1 score of kinematic, EMG, and a joint

model built on top of the first R functional coefficients from both kinematic and EMG. The

unaligned model performs much more poorly compared to the aligned one. In C and D, we

show the same plot but here we evaluate the capacity of each PC dimension individually to

perform classification. PC modes 1, 7, and 9 seem particularly interesting.

Finally, in Table 4.2, we compare our best performing method for Paretic vs Healthy classi-

fication to other models.
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Figure 4.12: First EMG Eigenfunction

Figure 4.13: Median F1 score and ROC AUC vs rank for classification performed on principal
components achieved from registered and unregistered trajectories. Registration seems to
reduce required rank for higher classification accuracy.

Algorithm Median F1 Score 95% Confidence Interval
Euclidean KNN 0.7272 (0.56, 0.8484)
DTW + KNN ([34]) 0.7619 (0.5923, 0.8888)
PCA on Joint angles ([22]) 0.8461 (0.7142, 0.9375)
Rotational registration to healthy via SVD ([41]) 0.7741 (0.6313, 0.8914)
Functional PCA Kendall 0.88 (0.75, 0.96)

Table 4.1: Performance comparison for different algorithms based on k-nearest neighbors in
order to understand effect of distances on classification performance.

Algorithm Median F1 Score 95% Confidence Interval
Functional pca kinematic (unaligned) 0.80 (0.67, 0.90)
Functional shape pca kinematic 0.88 (0.75, 0.96)
Functional pca emg (unaligned) 0.67 (0.53, 0.78)
Functional shape pca emg 0.97 (0.92, 1.00)
Functional pca kinematic+emg (unaligned) 0.71 (0.55, 0.83)
Functional shape pca kinematic+emg 0.97 (0.92, 1.00)

Table 4.2: Performance comparison for different algorithms with and without alignment.
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4.5 Discussion

This study introduces a novel method for analyzing biomechanical gait data that mitigates

the influence of nuisance parameters like rotations and translations. This approach leverages

joint shape space for alignment, enabling the extraction of the underlying periodic structure

from kinematic and EMG data, revealing valuable information about gait patterns.

The effectiveness of the method is demonstrated in two key ways. First, it achieves superior

phase matching between source and target sequences compared to existing methods, lead-

ing to more accurate comparisons. Second, the registration facilitates the identification of

distinct clusters separating healthy and stroke patients based on pairwise distance measures

and Multi-Dimensional Scaling. This clear separation is crucial for effective diagnosis and

analysis, which is often hampered by traditional registration methods.

By applying this registration method and subsequent functional PCA on the gait data, we un-

cover clinically relevant gait characteristics that differentiate healthy individuals from stroke

patients. The analysis reveals reduced knee flexion, shorter stride length, and less hand sway

in stroke patients. Further analysis using functional PCA identifies specific components that

correlate with clinical metrics, providing valuable insights into gait abnormalities. Notably,

one component exhibits a strong correlation with stroke laterality.

The method is useful to clinicians for several reasons: Joint PCA (Principal Component Anal-

ysis) applied to EMG and kinematic (motion shapes) data enables clinicians and researchers

to uncover meaningful patterns in stroke rehabilitation, particularly when analyzing natural-

istic data. This approach allows for a comprehensive assessment of motor function recovery

by integrating information about movement patterns (kinematics) and muscle activation

(EMG) simultaneously.

In naturalistic settings, stroke patients often exhibit variability in their movement speeds,

starting positions, and overall execution of tasks. Traditional analytical methods may strug-
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gle to account for these variations. However, joint PCA addresses these challenges by consol-

idating information from both kinematic and EMG datasets into a unified framework. This

integration enables the identification of coherent patterns that may not be discernible when

each modality is analyzed independently.

For instance, joint PCA can reveal clusters of patients who exhibit similar gait patterns

(kinematics) alongside consistent patterns of muscle activation (EMG). These patterns may

indicate shared underlying mechanisms of recovery or response to rehabilitation interventions.

By reducing the dimensionality of complex data while preserving the most significant sources

of variation, joint PCA facilitates the extraction of interpretable modes that are crucial for

understanding motor function dynamics post-stroke.

In conclusion, this method offers a powerful tool for analyzing biomechanical gait data.

By removing nuisance parameter variations and revealing underlying gait characteristics,

this method has the potential to significantly improve stroke diagnosis, assessment, and

rehabilitation strategies. Future work will explore the application of this registration method

to larger patient cohorts and investigate its ability to monitor treatment progress in stroke

patients.
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Chapter 5

Conclusions

In this dissertation, we explored the application of shape analysis in two distinct biomechan-

ical contexts: stroke survivors and children with Neuromuscular Disorders (NMDs). Our

primary aim was to address the limitations of existing methods, which are often subjective

and lack standardized outcome measures.

Our initial study introduces a novel, interpretable approach for assessing motor function

in children with neuromuscular disorders. We utilize shape analysis to extract meaningful

features from motion trajectories captured by wearable sensors. Functional principal compo-

nent analysis (FPCA) is employed to identify key patterns in these trajectories, highlighting

distinct scaling and asymmetry modes across various daily activities. Furthermore, canon-

ical correlation analysis (CCA) uncovers a covariation mode significantly correlated with

established clinical measures such as muscle fat infiltration, dynamometry-derived strength,

Brooke’s score (an existing motor function index), and age. This CCA-derived mode is pro-

posed as a novel, interpretable index of motor function, providing a clear advantage over the

black-box classifiers commonly used in movement analysis.

Our findings hold significant promise for the development of home-based monitoring systems

for patients with neuromuscular disorders. These systems can collect longitudinal data

over extended periods, reducing the need for frequent clinic visits. This facilitates more

comprehensive data collection and enables clinicians to track subtle changes in function

reported by caregivers. By integrating activity recognition algorithms, these systems could

provide doctors with detailed insights into a patient’s functional performance across various
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daily activities. Additionally, the non-intrusive nature of wearable sensors makes them ideal

for monitoring disease progression, particularly for patients undergoing novel therapies like

gene therapy. Telemedicine using wearable sensors has the potential to expand clinical

support to patients in remote areas and during public health emergencies.

We acknowledge the limitations of our study, particularly the relatively small sample size.

Recruitment for this specific patient population is inherently challenging, making our cohort

size noteworthy within this context. We recognize that the ”quality” of movement might not

be a singular concept as patients may develop compensatory strategies to perform motions

effectively. This aspect warrants further investigation to refine our approach for comprehen-

sive motor function assessment. Future work will focus on expanding the participant pool,

validating the clinical utility of the proposed index in a larger cohort, and exploring the

incorporation of activity recognition for a more holistic assessment of daily function.

Our second study introduces a novel method for analyzing biomechanical gait data that

mitigates the influence of nuisance parameters like rotations and translations. This approach

leverages joint shape space for alignment, enabling the extraction of the underlying periodic

structure from kinematic and EMG data, thereby revealing valuable information about gait

patterns.

The effectiveness of the method is demonstrated in two key ways. First, it achieves superior

phase matching between source and target sequences compared to existing methods, lead-

ing to more accurate comparisons. Second, the registration facilitates the identification of

distinct clusters separating healthy individuals and stroke patients based on pairwise dis-

tance measures and Multi-Dimensional Scaling. This clear separation is crucial for effective

diagnosis and analysis, which is often hampered by traditional registration methods.

By applying this registration method and subsequent functional PCA on the gait data,

we uncover clinically relevant gait characteristics that differentiate healthy individuals from

stroke patients. The analysis reveals reduced knee flexion, shorter stride length, and less hand
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sway in stroke patients. Further analysis using functional PCA identifies specific components

that correlate with clinical metrics, providing valuable insights into gait abnormalities.

In conclusion, this method offers a powerful tool for analyzing biomechanical gait data. By

removing nuisance parameter variations and revealing underlying gait characteristics, this

method has the potential to significantly improve stroke diagnosis, assessment, and poten-

tially rehabilitation strategies. Future work will explore the application of this registration

method to larger patient cohorts and investigate its ability to monitor treatment progress

in stroke patients. Additionally, we are interested in investigating variational autoencoders

(VAEs) along with Transported Square Root Vector Fields (TSRVF) to perform nonlinear

dimensionality reduction in shape spaces.
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