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Abstract

The developments in signal processing, data mining, and machine learning tools,

supported by the advent of body sensor networks, capable of collecting high-precision

and continuous data in a non-invasive fashion, resulted in great interest in manip-

ulating gait data into equivalent objective markers for identification of pathological

gait or other functional and cognitive impairments, monitoring ailments, evaluating

the efficacies of the treatments, guiding recovery and rehabilitation, sports training,

and enabling self-monitoring. Gait analysis has become a crucial assessment tool in

medicine. It is used to provide new insights to help understand various human move-

ment patterns and fluctuations in them corresponding to pathologies and neurological

conditions affecting motor and/or cognitive functions. Multiple sclerosis (MS) is an

example of such disorders. People with MS represent a heterogeneous cohort with a

broad spectrum of symptoms. Gait dysfunction is a common finding, but one with

varied etiology.

Assessments of MS-associated cognitive and motor disability, the disease course

and its progression, and decision-making regarding disease-modifying treatments and

symptoms management, are based on clinical observations, comprised of outcomes

of physical examinations and medical imaging, and patient-rated questionnaires. Be-

ing reliant on physicians’ judgment in interpreting imaging and clinical outcomes,

affected by the differences among individuals regarding the notion of disability or im-

provements, time-consuming, imprecise, having limited sensitivity to subtle changes

in gait, and low variance in ratings are some of the drawbacks of current subjective

evaluations. Moreover, patient-reported outcomes (PROs) are subject to response

shifts due to changes within individuals over time regarding health standards, and

could lead to confusing findings and discrepancies between expected and observed



indicators, negatively impacting disease prognosis. We intend to augment existing

information, on-going research, and currently-used speed and distance-based clinical

assessments, for a neurologic condition, with new, objective, and clinically meaningful

anchors. Although our goals are motivated for a target application (finding physio-

logically meaningful gait features for assessing functional quality in MS using inertial

gait data), our test measures could be adopted for gait assessments and monitoring

in other neurological disorders, balance, stability, and fall risk prediction, and general

health and wellness applications.

We derive inertial features using angular rate gait data collected using a body

sensor node for improved gait assessment with three goals – (i) using variations in

gait features over time, i.e., gait dynamics, to remove the inter-subject variability and

guide personalized assessments in neurology-affected locomotion, aging, or chronic

diseases, (ii) finding computationally efficient and robust gait features that neither

require identification of exact gait cycles nor need a large dataset to capture gait

deterioration and make physical sense, (iii) translating pathology-induced fluctuations

into frequency-domain features to identify the impact of MS on important gait phases.

We include gait variables for comparable controls in the study to determine the unique

and overlapping features.

We use a class of data mining to generate models estimating the relationships be-

tween the inertial measures and clinical assessments and identifying the physiological

significance of the feature space to make it accessible to the doctors and allow pa-

tient’s engagement. The relationships between the inertial and clinical measures also

help to identify the clusters of gait variables, besides and beyond what are identified

using a traditional disability assessment scale, to confirm whether the scale is the

best way to categorize persons with MS into different disability levels based on gait

impairment.



To conclude, we use inertial measures to verify three hypotheses – (i) pathologic

gait in MS is restricted and, thus, is less variable in comparison to a healthy gait,

(ii) distinct types of MS disability introduces disturbance in various gait components,

and (iii) changes in gait variables over time carry additional information about the

disease status. We believe that knowledge of our test measures will improve our

capacity to monitor the disease and its progression, evaluate the effectiveness of the

treatments, improve and tailor subjective assessments based on individual needs, and

guide self-management of symptoms.
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Chapter 1

INTRODUCTION

Walking is a sequence of repeated gestures known as gait cycles. For these ges-

tures to take place, the nervous system and musculo-skeletal system must function

and coordinate properly to generate a sequence of events to complete the process of

walking. The events are mainly an activation of walk commands in the central nervous

system (CNS) and their passage to the peripheral nervous system (PNS) followed by

the development of tension by alternately contracting and relaxing muscles and, fi-

nally displacement and generation of ground reaction forces [1]. Thus gait dynamics

carries substantial information about human health and has been proven to measure

not only physical and functional impairment but also neurological integrity and func-

tions. Some applications of gait analysis include – (i) medical research applications

and healthcare management, such as fall prevention and risk assessment, rehabilita-

tion engineering, assessment of orthopedic surgery, prosthetic design, elderly in-home

monitoring, diagnosing dementia and cognitive disorders, (ii) sports medicine and

bio-mechanics for athletic training and performance optimization, and (iii) recogni-

tion bio-metric using a combination of spatial-temporal and kinematic features to

identify persons.

1



Multiple sclerosis (MS) is a neurological disorder that destroys axons [2], the

mechanism of communication between the brain and other parts of the body, resulting

in neurological, physical, and functional deterioration [3]. Gait dysfunction is an

almost ubiquitous symptom even in the early stages of the disease, but one with varied

etiology, and could be the result of MS-induced fatigue, balance problem, weakness,

sensory loss, or other clinical symptoms. The increased incidence and severity of

gait dysfunction is found in tandem to increased disease severity [3]. Loss of gait

function results in significant reduction in functional independence and quality of life

in MS [4]. Thus assessment of walking capacity over the course of disease progression

is an integral part of MS evaluations.

The most commonly used diagnosis test for MS is the McDonald criterion [5]. The

physician’s judgement in interpreting the outcomes of neurological exams, medical

history, and medical imaging results, if used, is a crucial part of the diagnosis [6].

After diagnosis, persons with MS are categorized into disability levels such as mild,

moderate, severe, etc., depending on the outcomes of functional system scores [7]. In

addition, objective timed-walking tests such as six-minute walk test (6MWT) [8, 9]

and subjective questionnaires [10, 11] are used to assess the impact of MS on specific

functional, physical, or cognitive functions.

Each type of assessment has important limitations, such as being qualitative,

prone to floor and ceiling effects, dependent on physicians’ judgment in interpreting

outcomes of imaging and clinical symptoms, affected by the differences among in-

dividuals regarding the notion of disability or improvements, time-consuming, being

imprecise (over-/under-reporting, missing data being difficult to interpolate), hav-

ing low variance across ratings, limited sensitivity to subtle changes in functions,

affected by the response shifts [12] due to changes within individuals regarding health

standards, and being burdensome for the persons with MS. Furthermore, severity



and disability assessments are neither conclusive nor based on a simple yes or no

criterion [6]. Lack of clinically meaningful objective features could lead to confus-

ing findings and discrepancies between expected and observed indicators, and thus

making it difficult to make an accurate prognosis.

The high-precision, non-invasive, and continuous data collection capabilities of

inertial body sensor networks (BSNs) has led to great interest in finding objective

markers of neurological disorders and disease progression, including MS. Previous

works have demonstrated the potential of using inertial gait features for quantitative

mobility assessments in persons with MS. The features studied include, but are not

limited to, energy expenditure estimator [13], causality index [14], stance to swing

ratio [15], double support [15], Lyapunov exponent [16], and warp scores [17], each

with a certain separability performance. These works primarily focus on finding

gait variables that improve separability performance to distinguish between controls

and MS subjects with or without reference to MS disability levels, assigned using

an expanded disability status scale (EDSS) [7], and often, the relationships between

inertial gait variables and clinical data are not explored. With our research, we plan

to augment MS research taking into account a few of the currently open areas, as

described in the next section.

1.1 Research Motivation

The importance and motivation to do this research are given below.

1. People with MS represent a heterogeneous group with a broad spectrum of physi-

ological, functional, and psychological symptoms that vary among individuals and

within individuals over time [18]. Thus, it is important to analyze both within

and across group differences. Individuals within a certain disability group might



have statistically different gait parameters and gait analysis of individuals initially

categorized into different disability groups could produce similar gait variables de-

pending on the specific impact of MS on their functions. For example, limitations

in doing household chores could be due to the impact of MS on physical functions

for one MS subject and on cognitive functions for another.

2. There is a limited literature on the exploration of the relationships between inertial

measures and clinical data. Despite having low variance in ratings, clinical mea-

sures are easier to be interpreted by the physicians, so the relationships of clinical

data to inertial measures should be explored for the following reasons:

• To validate inertial features as clinically meaningful markers

• To give physiological meanings to the gait features and make them easily

interpretable and more accessible by the doctors

• To tailor subjective questionnaires based on individual needs

• Wearable BSNs technology is now advanced enough to support high-precision,

continuous, minimally invasive data collection, without human intervention.

Thus, once an inertial feature is validated as a marker of the disease, it

could be employed on inertial nodes enabling doctors/physicians to monitor

the disease and its progression, continuously, objectively, and remotely. The

longitudinal data could be leveraged to evaluate the efficacy of therapies,

predict the course of the disease, and self-management by the persons with

MS.

• Features might have high variance across subjects but show no clear relation-

ships with any subjective assessments or clinical symptoms. Identification of

such features is important, since it might be an indication of information that



is missing from current subjective assessments, and needs to be captured by

new/alternate means.

The relationships of inertial measures to clinical data would allow patient’s edu-

cation and engagement, whereby people can keep a track of their gait features,

besides other vital signs, relate changes in their gait variables to their lifestyles

or therapies, and take informed and active decisions regarding the ongoing treat-

ments, thus opening directions for out-of-clinic monitoring and management of

symptoms.

3. While absolute assessments are important in order to understand population char-

acteristics, examination of variations in an individual’s baseline over time is useful

to remove inter-patient variability. The gait parameters should be computed over

an interval of time, when possible, and the amount of change in them should be

observed and tracked with the changes in clinical measurements. For example,

when using timed-walking tests [8] to assess the gait quality, not only the stan-

dard deviation SD of the stride time (time elapsed between two consecutive heel

strikes of the same foot), σst, but also its variability over time should be examined.

Small but variable σst could be an indication of balance problems or other aspects

of walking impairment.

4. Computation of most of the commonly used gait variables such as stride time stan-

dard deviation (STSD), dynamic time warping (DTW) scores, stride length, gait

phase, depend on accurate identification of gait cycles, which is a computationally

expensive and noise-sensitive process. Thus gait features that don’t require seg-

mentation of gait data into individual cycles and could be derived from a subset of

the data would be beneficial from the standpoints of storage and processing require-

ments. Such features could be adapted and implemented on resource-constrained



inertial nodes for longitudinal gait monitoring.

5. There is an opportunity to leverage gait phases, such as stance and swing, as they

may provide additional information regarding the variable and precise impact of

the disease on these events. Component-specific features and their relationships

to the clinical data can be used as predictors of balance, stability, fall risk, etc.

Thus, an event-specific study of gait variables is needed.

1.2 Societal Motivation

According to [6], MS has a median estimated incidence of 2.5 in every 100, 000

persons and 1.3 million diagnoses, around the globe, with twice as many women di-

agnosed with MS as men. The loss of motor functions in persons with MS, including

young adults, results in significant reduction in functional independence and quality

of life [4, 6]. Since persons with MS need help with daily activities and emotional

support, MS impacts the family members as well. The amount of physical and emo-

tional burden increases as the disease progresses. Persons with MS eventually leave

the workforce. Loss of personal self-sufficiency then creates a financial burden on

society.

Current clinical practices are subjective and rely on physician’s judgement and re-

ports from persons with MS, thus could be time-consuming, infrequent, and imprecise.

Accurate and objective mobility assessments are important not only for successful in-

terventions, but also for monitoring the disease progression and evaluating efficacy

of the therapies. MS is an unpredictable, chronic disorder. For maximized wellness,

patients’ education and engagement are important to help them make informed de-

cisions, re-gain their independence, and improve the quality of life [6]. Objective

measures are accurate but must be tied to physiological processes, when possible,



by interpreting them in clinical context, thereby making them meaningful and easily

understandable by the doctors and persons with MS.

The advancements in signal processing and machine learning techniques can be

used for characterizing the gait impairment accurately and quantitatively thus im-

proving healthcare and reducing healthcare costs. In addition, the use of non-invasive,

wearable inertial sensors will enable continuous monitoring of disease course.

1.3 Broader Impacts

Our test features can be adopted in relevant domains such as evaluating the ef-

fectiveness of treatments and therapies, fall prediction, guiding recovery and rehabil-

itation, gait monitoring in elderly, and general health and wellness monitoring. They

can also be employed in other neurological disorders in which gait deterioration and

disability are common problems. Examples of neurologic disorders whose gait char-

acteristics have been examined by researchers using inertial sensors include Friedre-

ich’s ataxia [19], Huntington’s disease [20], Parkinson’s disease [21], Alzheimer’s dis-

ease [22], normal pressure hydrocephalus (NPH) [23], and stroke [24].

1.4 Our Contribution

We extract inertial features from gait of MS subjects, collected using ankle-worn

BSN nodes, and study the relationships of gait features to the subjective assessments

to establish our test features as clinically relevant and meaningful objective anchors

of the disease. We also determine the physiological significance of our feature set

related to four crucial aspects of MS-induced impairment, namely, weakness, balance,

physical fatigue, and cognitive/concentration. The 6MWT, a standardized walking

test used to assess dynamic motor fatigue [8], was used as the protocol to collect the



inertial data. Two types of gait features are investigated:

1. Temporal features. These features represent temporal aspects of the gait. Following

two temporal features are studied:

• The STSD and its gradient over six-minutes. They measure the vari-

ations in the stride time as subjects perform the 6MWT test. Higher values

reflect poor walk quality, which could be either due to the impact of MS on

gait or a fatigue-induced effect.

• The normal kernel density estimate (KDE). The KDE is obtained using

the 6MWT gait time series. The relationships to clinical data show that the

value of KDE peak above a threshold indicates balance and weakness issues

in MS.

2. Spectral features. The magnitude spectral density, corresponding to impor-

tant events comprising a gait cycle, is computed and seven spectral features are

extracted. The relationships of spectral features to the clinical data show that

different phases of gait carry important information about the state of the disease.

To maximize the benefits of data analysis, the signal processing techniques em-

ployed should be well-suited to the data-set being investigated. Since gait data are

non-stationary [25], spectral analysis using a transform based on a fixed basis and/or

stationary assumption will only give an average state of the gait and not reflect the

changes in its behavior occurring during the observation interval, if any. Thus the

transform basis should be local and adaptive to the variations in the data for it

to be able of analyzing the non-stationary data [26]. The Hilbert-Huang transform

(HHT) [26] basis satisfies these conditions, making it a suitable candidate for gait

analysis, and thus is used in this work.



The HHT expands a non-stationary time series using an adaptive data-driven

basis as a sum of zero-mean components and then applies the Hilbert transform to

each of these components to yield an spectrum based on instantaneous amplitude

and frequency, unlike the global distribution formulated by the Fourier analysis. The

final three-dimensional amplitude-time-frequency representation is commonly known

as the Hilbert spectrum [26]. The process to generate the basis functions is, however,

extremely sensitive to noise and small changes in the underlying data. To make the

analysis step of HHT stable, we modify the decomposition algorithm and use modified

version for extracting the spectral features. Table 1.1 gives a summary of the feature

space.

Table 1.1: Gait features

Feature Input Output

Stride time Set of identified gait
cycles

a. STSD
b. Gradient of the STSD from minute 1 to
minute 6

Kernel density esti-
mate (KDE)

Segment of gait data KDE peak

Magnitude spectral
density

3D HHT spectra of a
set of gait cycles

a. Mean magnitude spectral density
b. Corresponding feature vector

We found that the typical ranges of gait variables corresponding to EDSS-based

disability groups overlap with each other. In fact, the gait variables for subjects in

the lower disability categories overlap with those of control subjects. Thus the gait

differences among various EDSS categories might not always be seen and observing

persons with MS in different disability groups having statistically similar gait variables

is likely. On the other hand, although not precise, PROs represent the ground-truth

regarding the functional and cognitive state of persons with MS. So, we also study

the relationships between the inertial features and PROs to look for gait differences

among subjects or within individuals over time, and possibly identify the clusters of



gait variables without restricting to disability groups, as defined by EDSS. Lastly, to

unearth the physiological significance of the inertial features, we employ regression

analysis [27, ch. 3], a data mining [28] technique, to generate models predicting

the gait variables using clinical assessments. The interpretations of inertial measures

from a clinical viewpoint are important for successfully employing new gait features

along with traditional speed based metrics as disease markers. By exploring the

relationships of our test measures with the clinical data, we support the clinical

and research application of inertial features to MS and other pathologies affecting

gait. Data from comparable control subjects are also used to identify distinct and

overlapping features. All analyses were performed using MATLAB R2016a®.

We believe that with our research, we are augmenting existing information, on-

going research, and currently-used speed and distance-based clinical assessments with

new, high-precision objective anchors to fulfill the requirements unmet by the cur-

rent measures. The relationships of inertial measures to clinical data can be used

to improve the precision of subjective questionnaires by customizing them based on

individual needs. The measures studied in this work can be used as complimentary

anchors, alongside traditionally used gait speed, to advance precise and objective

analysis of MS-associated walking disability and their physiologic significance indi-

cates their clinical utility. Using our test features, we hope to better characterize

and differentiate features within MS cohorts and between MS and control subjects.

Knowledge of changes in these features over time will improve our capacity to longi-

tudinally and continuously monitor the disease progression, evaluate the effectiveness

of the treatment, and possibly predict the future state of the disease.



1.5 Literature Review

Inertial measures for research applications and improved healthcare:

Advancements in signal processing and machine learning tools as well as the emer-

gence of BSN has given researchers and clinicians opportunities to employ new and

robust inertial measures for a better understanding of the mechanisms of human

movement disorders and monitoring of neurological diseases. Such measures are also

shown to distinguish subjects clinically diagnosed with a particular disorder from

control subjects, each with a certain classification accuracy and separability perfor-

mance. Results in [29] demonstrate various methods to identify Parkinson’s disease

tremor using a waist-worn accelerometer node. In [19], inertial data are used to

identify Friedreich’s ataxia subjects from controls. Sejdic et al. [21] use time and

frequency based features to separate Parkinson’s and control subjects. Shanshan et

al. [30] use inertial measurements to show that ankle-foot orthoses modify heel con-

tact. The authors of [31] investigate the effectiveness of using training sessions based

on overground and treadmill walking to improve walking performance after stroke.

The potential of using high-precision inertial sensors to estimate relevant gait param-

eters is shown in [32]. The authors of [33] use a discrete wavelet decomposition of

acceleration signals from an ear-worn sensor for assessing gait impairment for con-

tinuous monitoring of recovery following knee-replacement surgery. Shrinivasan et

al. [23] demonstrate using simple inertial measures such as stance and swing periods,

stance to swing ratio, double support to help aid the diagnosis of NPH in a minimally

invasive fashion instead of traditional high volume lumbar puncture followed by the

evaluation of clinical response. The authors of [34] use inertial data to analyze gait

differences between individuals with post-stroke hemiparesis and controls at matched

speeds using treadmill walking. Barth et al. [35] show the feasibility of using body sen-



sors for long-term, high-fidelity gait analysis in healthcare and research applications.

The authors of [36] propose linear dynamical modeling for robust clustering of a set

of human actions using inertial sensors data. In [16], it is shown that the Lyapunov

exponent can be used to assess gait stability with a better separability performance

and improved differential diagnosis. The authors of [37] introduce a Mobility Lab to

assess gait impairment in neurological disorders. Li et al. [38] use an ear-worn sensor

to study gait pattern detection algorithms.

Six-minute walk test (6MWT): The 6MWT has been used in a variety of

applications. Garber and Friedman use 6MWT to study the relationship between

fatigue and physical function in Parkinson’s disease [39]. Goldman et al. assess the

correlation of 6MWT to subjective measures of fatigue, ambulation, and physical

function [8]. Savci et al. study the factors that contribute to functional capacity

in MS subjects [40]. The authors show that MS subjects cover shorter distance

during a 6MWT compared to control subjects due to limited daily activity, fatigue,

and resting heart rate. The authors of [41] investigate the link between perceived

impact of fatigue on functioning (physical, cognitive and psychosocial) and exertion

dyspnea and/or deteriorated cardiorespiratory function during walk for people with

mild disability with normal cardiorespiratory response. The results show that the

6MWT distance correlates significantly to a disability score but not to subjective

fatigue. In addition, [31, 42–44] have utilized the test to evaluate the benefits of

rehabilitation following stroke.

Inertial measures for MS: Zwibel [4] studies the contribution of symptoms

such as walking impairment, spasticity, fatigue, depression, and pain, to a patient’s

quality of life and economic burden of MS. Gong et al. [14] demonstrate that the

causality index can be used to study the strength of interaction between body parts to

distinguish MS subjects from controls with a better separability than other methods



available in literature. The authors of [17] show the capability of DTW and warp

scores to detect changes in gait dynamics introduced by the 6MWT and validate them

as clinical measures alongside gait speed to quantify fatigue-related gait deterioration.

Givon et al. characterize MS gait parameters and correlate them with subjects’

neurological disability [45]. Martin et al. study balance and gait impairment in

MS patients with mild pyramidal signs, with no pyramidal signs, and controls [46].

In [47], Gong et al. determine the correlations of multiple sclerosis walking scale

(MSWS) [48] and other clinical measures to body sensor measurements. The authors

of [49] discuss the clinical significance of DTW and warp scores to MS symptoms

specific to gait impairment. The authors of [50] measure several gait parameters to

identify various MS disability groups and control subjects and show the relationships

between those parameters and MSWS scores. Crenshaw et al. use reflective markers

and a motion analysis video system to study the gait variability in MS subjects and

conclude that there was more variability in kinematic measures for MS subjects who

also reported more fatigue and walked slower compared to controls [51]. Bourke et

al. [13] show that energy expenditure estimation can be improved by combining it

with accelerometry and heart-rate measurements. Motl et al. validate accelerometry

data, based on its correlations with 6MWT distance and oxygen cost of walking,

as objective markers of walking limitations in MS [52]. Sandmann et al. [53] use

sensors to capture biomarkers as predictors of day quality of persons with MS. Socie

et al. [54] use a waist-worn ActiGraph to assess ambulation in persons with MS. The

authors of [55] show that inertial data can be used to capture the variability of the

gait features in MS. Huisinga et al. [56] use accelerometry signals to determine linear

and nonlinear features as measures of gait variability in persons with MS.

MS clinical research: To reduce the burden on patients, [57] develop and val-

idate a Bayesian reasoning and domain-specific based adaptive symptom reporting



system to reduce the number of questions required for accurate disability assessment

(75% reduction associated with 4.45% clinically relevant estimation error). Haus-

dorff [58] emphasizes the importance of observing the stride-to-stride fluctuations for

identification of elderly fallers with higher sensitivity compared to traditional mea-

sures such as average gait speed. The authors of [59] evaluate bladder dysfunction in

MS and discuss strategies for disturbances management. Alaqtash et al. [60] develop

a method for an automated gait classification for analysis and classification of patho-

logical gait patterns using ground reaction forces data. Nowaczyk and Cierpia [18]

identify three different psychological profiles of MS patients based on resource conser-

vation using a k-means clustering algorithm and propose that the diverse dynamics

of the functioning of MS patients indicated by these profiles should be taken into

account for improved multidisciplinary rehabilitation.

Data mining in bioinformatics and biomedical engineering: The authors

of [61] discuss the opportunities and challenges for data mining research in emerging

domains including biomedical engineering. Kropp and Caulfield [62] review the im-

pact of data mining in bioinformatics on biological research. The authors of [63, 64]

show the potential of using data mining to increase the understanding of Parkinson’s

disease. Bonato et al. [63] use wearable sensors’ data to identify patterns as well

as severity of motor disorders in Parkinson’s disease. The authors suggest that the

approach can be generalized to similar diseases affecting motor functions. Ramani

and Sivagami [64] conduct a survey of data mining techniques for the classification

of persons with Parkinson’s disease from healthy subjects. Bejarano et al. [65] assess

the diagnostic accuracy of clinical variables, including expanded disability status scale

(EDSS), using various computational classifiers and employ data mining for feature

selections, for predicting the MS course. Li and Schwartz [12] use a partitioning tree

analysis technique to identify response shift patterns in persons with MS. Other ap-



plications of data mining in bioinformatics include probe selection for gene-expression

arrays [66], plant genotype discrimination [67], experiments with automatic cancer di-

agnosis [68], protein annotation [69], and identification and prediction of drug-induced

nausea [70].

1.6 Dissertation Outline

The dissertation is organized as follows. The overview of the Hilbert-Huang trans-

form and our signal processing contribution to it are presented in Chapter 2. Chap-

ter 3 addresses the importance of investigating the relationships between clinical mea-

sures and inertial features. It also elaborates on various types of clinical data studied

in this work. Chapter 4 describes the study procedures, the data collection BSN

platform, the gait terminologies, and all related signal processing aspects. Chapter 5

describes the two-step statistical analysis performed used in this work to determine

the physiological significance of our inertial features.

The technical contributions and the main results of the dissertation are arranged

into Chapters 6 to 8. Chapter 6 studies the first temporal feature, namely, the gra-

dient of the stride time standard deviation. Chapter 7 discusses the second temporal

feature, namely, the kernel density estimate of the gait data and also studies the re-

lationships of clinical data to these estimates. Chapter 8 investigates the importance

of the phase-specific spectral densities wherein spectra are generated corresponding

to different phase of a gait cycle.

Chapter 9 summarizes the whole dissertation and concludes the results. Lastly,

the sample questionnaires used to collect subjective data for clinical assessments are

given at the end of the dissertation in the appendix.



Chapter 2

HILBERT-HUANG

TRANSFORM

The Hilbert-Huang transform (HHT) [26] is a spectral analysis technique. The

basis function of a spectral tranform should be suited to the data being investigated

to reflect the changes in the data occurring during the observation interval, if any,

instead of giving an average state of the underlying process. The transform basis of

the HHT satisfies the crucial requirements needed to accommodate the non-stationary

data, such as gait [25], and is, thus, used in this work for analyzing the frequency

domain characteristics of the gait data. However, the algorithm used to generate the

basis functions is extremely sensitive to noise and minor fluctuations in the data. So,

we modify the original algorithm and use the modified version for decomposing the

gait data [71]. This chapter gives an overview of the HHT and our modification. The

modified algorithm was published in [71].

16



2.1 Introduction

The Hilbert-Huang transform (HHT) is a two-step spectral analysis technique

which is used to study non-stationary data. In the first step, the HHT uses an al-

gorithm, known as empirical mode decomposition (EMD), to decompose the data

into a set of basis functions and then applies the Hilbert transform to these func-

tions to yield an instantaneous amplitude-time-frequency distribution, known as the

Hilbert spectrum [26]. In this chapter, the details of these two steps are given. The

original EMD algorithm is sensitive to small changes in the signal. In order to make

EMD stable against small variations in the data, we present an improvement of the

traditional algorithm, known as selective extrema analysis.

2.2 Background

Data analysis is essential in research and clinical applications, and techniques

used should be well-suited to the data-set being investigated. Gait data are non-

stationary [72]. Such data have no time scale and their analysis require the transform

basis function to be local and adaptive for the following two reasons to properly

capture their properties [26]:

1. Locality is needed so that events embedded in the signal can be identified by

their occurrence times in the absence of a time scale. The first requirement

can be fulfilled by using a basis that is allowed to have variable amplitude and

frequency over time [26].

2. The basis function should be adaptive to the local variations in the data.

Results from spectral transforms based on a fixed, a priori basis and stationary as-

sumption gives only an average state of the phenomenon and does not reflect the



changes in the nature of the data occurring during the observation interval, if any.

Fourier and wavelet are the two most common used spectral analysis techniques.

However, both of these have shortcomings in the context of non-stationary data analy-

sis [26]. The Fourier transform, for example, requires underlying data to be stationary

for the resulting spectrum to make physical sense. The Fourier basis is a set of si-

nusoidal functions, and thus does not depend on the nature of the data. Moreover,

since the sinusoidal functions have constant amplitude and frequency, they can con-

struct stationary data only. The wavelet transform, on the other hand, solves the

locality problem by letting resultant components having parameters that determine

their own scale over time. Adaptivity, however, is still an issue since, similar to the

Fourier transform, the decomposition basis should be set a priori [26]. There are also

other methods, each with own benefits and limitations, that are designed to modify

the global representation of the Fourier analysis in some way [73, 74].

The Hilbert-Huang transform (HHT) [26, 75] is a spectral technique whose trans-

form basis fulfills the two requirements crucial to accommodate the non-stationary

data. The basis function is adaptive and data-driven, determined by the initial data

itself. HHT is comprised of two steps: the first step is to use an empirical mode

decomposition (EMD) algorithm to decompose a time series into a set of intrinsic

mode functions (IMFs) components and possibly a residue, a function that can not

be decomposed into more IMFs. The second step is to apply the Hilbert transform to

these IMFs to yield an amplitude-time-frequency distribution, known as the Hilbert

spectrum. The final representation is in terms of instantaneous amplitude and fre-

quency rather than the global amplitude and frequency defined by traditional Fourier

spectral analysis [26].



2.3 Intrinsic Mode Function

An IMF is a simple oscillatory mode, as a counterpart to a simple harmonic

function, but it can have variable amplitude and frequency along the time axis [26].

Each successive IMF contains lower frequency oscillations than the preceding one.

Throughout this chapter, we use the following notations:

• s(t) is the analyzed signal sampled into N samples thus {t1, tN} are the end-

points.

• {1, N} are the indices or locations of the endpoints.

• mx and mn are the sets containing the locations of local maxima and minima

of s(t), respectively.

• The extrema are the locations of maxima and minima combined.

• ci(t) refers to the ith IMF.

• If the remainder of the decomposition is sufficiently small or becomes a function

from which more IMFs can not be obtained, it is called the residue r(t).

For a function c(t) to be a candidate IMF, it should satisfy two requirements:

1. The size of mx and mn combined and the number of zero-crossings (ZC) must

either be equal or differ at most by one (allowed to have exactly one zero between

successive extrema). If |·| represents the cardinality of a set, then this condition

can be written mathematically as

abs(|mx|+|mn|−|ZC|) ≤ 1 . (2.1)



2. At any point, the mean value of the upper envelope (curve connecting the local

maxima) and the lower envelope (curve connecting the local minima) is zero

(zero local mean).

2.4 Empirical Mode Decomposition

The original EMD was proposed as an algorithm in [26]. The EMD method is

adaptive and efficient and uses sifting to systematically decompose a time series into

one or more IMFs, based on the characteristic time scales present in the time series.

The synthesis equation for a signal s(t), decomposed into n IMFs and a residue, is

given as

s(t) =
n∑

i=1

ci(t) + r(t) . (2.2)

Fig. 2.1 shows typical IMFs of an inertial measurement of a gait cycle.

Fig. 2.1: A gait cycle (a) decomposed into three IMF components (b-d)
and a residue (e)



IMFs can have variable amplitude and frequency along the time axis, and thus can

be used to expand the non-stationary data.

2.4.1 Sifting Process and its Instability

Every step of sifting starts with determining the mx and mn and connecting

them using cubic splines to generate the upper and lower envelopes, respectively. It

is an iterative process, and the result of successive iterations depend on the results of

envelope interpolation in the previous iteration. See [26] for details.

EMD is sensitive to the extrema of the signal and even small changes in the

location and number of extrema might make decomposition look different from one

obtained in the absence of these changes/noise. The following example illustrates this

point. Consider a simple sinusoid

s(t) = sin(ωt) (2.3)

The signal is essentially an IMF as it satisfies the definition of an IMF. Let us inter-

change two random samples of s(t) to yield an extra hump in the signal, as shown

in Fig. 2.2. Even though the difference between the signal amplitude at this pair is

negligible, the original EMD generates a completely different decomposition (from

the single IMF decomposition s(t) = c1(t)), as shown in Fig. 2.3.

In cases where a higher frequency noise is superimposed on a lower frequency

signal, one or more low-order IMFs can be thrown away to remove noise from the

signal and obtain a partial signal reconstruction; but in cases where minor changes

do not matter or noise is insignificant and has corrupted only a few signal values, it

would be desirable to not generate extra IMF(s) accounting for small changes in the

signal. Instead, our modified sifting algorithm can be used to obtain an approximate



Fig. 2.2: A sinusoid with two sample values interchanged

but stable decomposition with an arbitrarily small decomposition error. We call our

modified process selective extrema analysis. With our modified algorithm, these two

extrema will be ignored and the shapes of the splines will not be impacted. Thus,

unless the application demands to keep all the extrema to highlight this change of

values, we can discard this extrema pair and still take s(t) as the one (modified) IMF.

2.4.2 Selective Extrema Analysis

Selective extrema analysis uses a subset of the actual extrema obtained from the

analyzed signal at every step of sifting. The final decomposition has a number of

IMFs no larger than the original decomposition and is different from what we would

obtain if the whole set of extrema was used for sifting. The extrema adjustment

makes the modified decomposition insensitive to small changes in the signal, in the

presence of sampling errors or slowly varying weak noise, and thus helps reduce the

number of IMFs a signal is decomposed into. Without extrema adjustment, EMD

might decompose two very similar signals into a different number of components and

thus different looking IMFs, making it difficult to compare corresponding IMFs (as



(a)

(b)

Fig. 2.3: IMFs of Fig. 2.2 without any extrema adjustment; (a) original
signal and all IMFs, (b) individual IMFs identified

they would have different scales) and draw conclusions. Extrema can be adjusted

to let EMD yield the same number of modified IMFs for somewhat different signals.



This makes comparison of IMFs possible and convenient.

We propose to compare the heights of neighboring extrema using an exhaustive

search. If the heights are close enough, i.e., if the difference between the heights of

neighboring extrema is within a certain (preset or adaptive) threshold, we remove

these extrema from the set of candidate extrema used for sifting. Thus the decom-

position is different from the original EMD as modified IMFs might not truly satisfy

the conditions given in (2.1).

Although the decomposition is changed, we gain two benefits. First, the modified

algorithm lets EMD decompose signals into a fewer number of approximate basis

functions. Second, in some applications, we need to compare the data before and

after processing of some kind. If we get a different number of IMFs from pre- and

post-processed data-sets, it is difficult to compare the IMFs. However, if we are

able to decompose both data-sets into the same number of (approximate) IMFs, it is

then possible to compare corresponding IMFs and their spectra for changes and draw

useful conclusions.

Initially, endpoints are neither a part of mx nor mn. Let us define a new set ε that

contains mx, mn, and the endpoints {1, N}. Since extrema adjustments might need

to be done near endpoints, endpoints must be included in the set ε before extrema

adjustment. As mx and mn are disjoint, ε can be written as

ε = {1, sort(mx ∪mn), N} . (2.4)

Here sorting is done in ascending order of time indices, and thus ε contains alternating

locations of maxima and minima and is used for extrema adjustment.

We carry out the adjustment in two steps, first working with groups of neighboring

extrema triplets and then with groups of neighboring extrema pairs. We always



throw away extrema in pairs to make sure elements of ε are alternating minima-

maxima locations of the signal s(t). Thus triplets look like {max,min,max} or

{min,max,min} and, of course, pairs look like {max,min} or {min,max}.

1. Pick the triplet which has closest vertical heights (i.e., three neighboring ex-

trema at which the amplitude of the signal deviates the least). Double differen-

tiation can help identify such a triplet, for example. Check if this deviation is

within the threshold. If it is not, there is no need to analyze any further triplet,

as, obviously in this case, the deviation in signal values at all the other triplets

will be larger than the threshold used for extrema adjustment; move to Step II.

But if the amplitude of the signal at this triplet deviates within the threshold,

we can throw away one of the {min,max} or {max,min} pairs in the triplet,

whichever has a smaller vertical distance. Note this is a relative comparison

and hence, no threshold is needed here. Thus we replace ε with the remaining

extrema. We repeat Step I using this pruning process until all sets of triplets

have been considered, exhaustively.

2. Using the same sequential exhaustive search of step I, but now with extrema

pairs instead of triplets, we eventually remove all unnecessary extrema pairs.

It is possible that extrema adjustment occurs near the edges of the signal, so we

include boundaries in ε. The algorithm works as follows near the boundaries. In

Step I, if a candidate triplet is found for adjustment that includes any of the edges,

it keeps the endpoint(s) and throws away the other pair instead. (This won’t be a

problem as the deviation at this triplet is already within the threshold). In Step II,

if it finds an extrema near the boundary such that deviations of signal amplitude at

this {extrema, endpoint} pair is within the threshold, it discards that extrema (not

the endpoint). If we throw away the endpoint(s) and instead keep the other maxima



or minima near the edges, we generate an extraneous extrema pair when we replicate

the signal for boundary adjustment. In the end, we can obtain modified maxima and

minima mx1 and mn1 from the remaining elements in ε for sifting.

2.4.3 Setting the Threshold

Any reasonably small threshold works and often helps reduce the number of IMFs.

The IMFs defined in (2.1) guarantee a well-behaved Hilbert transform. So, setting a

higher threshold and over-adjusting the extrema will not be useful, as it might lead

to a large decomposition error, yielding incorrect decomposition and meaningless

spectra.

2.4.4 Mirror Extension for Boundary Condition

The mirror extension technique of [76, 77] is used with the EMD algorithm in

order to properly extend interpolation to the edges of the signal. Mirror extension

repeats the image of the signal to the left and right and transforms the sets mx and

mn into extended sets. Doing mirror extension after extrema analysis is efficient

because it avoids the need to perform extrema analysis on extended versions of sets

mx and mn.

2.4.5 Stopping Criterion

The stopping criterion is extremely important in the EMD procedure as it affects

the number and the shape of the IMFs. Ideally, the sifting should be stopped when the

result of sifting satisfies the definition of a candidate IMF. In practice, some stopping

criterion should be used to avoid infinite loops. Any suitable stopping criterion can

be used. One commonly used stopping criterion is a Cauchy type of convergence



test [26]. A check should be made at the end of every step of sifting and it should

be stopped when the standard deviation of the result between consecutive sifting,

σ, becomes smaller than a preset tolerance level T (from (5.5) in [26]). If σ < T

is satisfied, the result of sifting should be declared an IMF. The sifting process is

then repeated on the residue. We can also limit the maximum number of iterations

allowed for sifting to obtain each IMF, or place a tolerance on the energy of the signal

obtained after each iteration, or their combination [78].

2.4.6 Modified Algorithm

The new sifting process is given in Algorithm 1.

Algorithm 1: Modified sifting process

Step 1: Identify the sets mx and mn
Step 2: Generate the set ε using (2.4)
Step 3: Perform extrema analysis to throw away some of the elements in ε and
generate the modified sets mx1 and mn1

Step 4: Carry out boundary adjustment on mx1 and mn1

Step 5: Connect all the local maxima using as the upper envelope U(t)
Step 6: Repeat Step 5 for the local minima to produce the lower envelope L(t)
Step 7: Find their mean: m(t) = 0.5(L(t) + U(t))
Step 8: Find the residual signal: h(t) = s(t)−m(t)
Step 9: Repeat sifting if stopping criterion is not met

The modified sifting procedure was used to decompose 24 gait cycles, collected

using an inertial body sensor node, from a randomly chosen young healthy subject.

We found that the gait cycles were statistically similar to each other (Pearson’s linear

correlation coefficient, r = 0.97 and p-value, p < 0.0001) and thus, expect to get a

similar EMD decomposition for all the cycles. We show that even with an arbitrary

small threshold, the modified algorithm is able to decompose most of the cycles into

an IMF and a residue, as compared to the original algorithm, which decomposes most

of the cycles into two IMFs and a residue. The same threshold is used to decompose



all the cycles. If, even with the extrema adjustment, a cycle is decomposed into more

than one IMF (and possibly a residue), or if the IMFs look different from the IMFs

of other cycles, we can look closely at the cycle and find abnormalities, if any. Thus

extrema adjustment can be used to indicate the presence of some kind of abnormal

behavior.

Fig. 2.4 illustrates the extrema removal process for an example gait cycle. Extrema

that are close in value (in amplitude and time) are successively removed, as shown.

Endpoints (1st and 33rd samples in this case) were also included in the pruning

process.

Fig. 2.4: Extrema removal process shown for a gait cycle; (a) original
signal with all extrema marked as red pluses, (b) after the first cycle of
extrema removal, (c) the final set of extrema marked with red pluses

Fig. 2.5 shows the result of modified EMD on the number and shape of IMFs. The

results obtained for two randomly chosen gait cycles are shown. Extrema adjustment

helps reduce the number of IMFs. Using the original EMD method, we can throw



away the first IMF from the second cycle and get a smoother cycle; but we cannot

always do this, as cycles could be decomposed into two or fewer IMFs. Instead, by

employing extrema adjustments, we get a uniform decomposition on all the cycles

without the need to throw away information from signals.

Fig. 2.5: IMFs of gait cycles; (a) Two gait cycles, first in black and second
in red, (b) actual IMFs of first cycle, (c) actual IMFs of second cycle, (d)
IMFs of second cycle after extrema adjustment

Fig. 2.6 shows the number of IMFs generated for corresponding gait cycles. Some

cycles still have two IMFs and a residue, even after our modification. Upon further

investigation, we noticed that using a higher value of the threshold for extrema ad-

justment makes all the gait cycles decompose into one IMF and a residue. In general,

setting a bigger threshold might not be desired, as it will let the algorithm produce

IMFs with a larger decomposition error.



Fig. 2.6: Number of IMFs generated by EMD, last IMF is residue (Top)
without any extrema adjustment, (Bottom) with extrema adjustment

The above modification can be employed on data with small sampling errors or

with noise in the form of small changes in the signal values. If the signal is itself

just one or two IMFs plus possibly a residue, throwing away higher IMFs to remove

noise is not a good idea as one might lose important information embedded in those

higher IMFs. Instead, we can use our modified version of EMD to get an approximate

decomposition and preserve all the signal.

2.5 The Hilbert Spectrum

Once the IMFs are obtained, the Hilbert transform is performed on each IMF

components [26]. The Hilbert transform of the ith IMF, ĉi(t), is

ĉi(t) =
1

π
p.v.

∫ +∞

−∞

ci(τ)

t− τ
dτ . (2.5)



The corresponding analytic signal xi(t) is obtained as

xi(t) = ci(t) + jĉi(t), where j =
√
−1 . (2.6)

The polar form of the ith analytic signal in terms of its envelope, ai(t), and its

instantaneous phase, θi(t), is given by

xi(t) = ai(t) exp(jθi(t)) , (2.7)

where

ai(t) =

√
ci(t)2 + ĉi(t)

2
, (2.8)

and

θi(t) = arctan
( ĉi(t)
ci(t)

)
. (2.9)

The instantaneous frequency of the ith IMF, fi(t), is defined as the derivative of the

phase

fi(t) =
1

2π

dθi(t)

dt
Hz . (2.10)

The envelope and frequency as functions of time can be used to identify structures

embedded in the data. The three-dimensional time-frequency-amplitude representa-

tion is known as the Hilbert spectrum H(f, t) [26]. The Hilbert spectra of the IMFs

shown in Fig. 2.1 are given in Fig. 2.7. Note that every successive IMF contains

lower frequency content than the previous one. The radius of the circle at a given

coordinate (t, f) shows the magnitude contribution from a frequency at a specific

time.



Fig. 2.7: The Hilbert spectra of IMFs of a gait cycle

Ignoring the residue, the synthesis equation in (2.2) can be written implicitly in terms

of the Hilbert spectrum as follows

s(t) =
n∑

i=1

ai(t)<
(

exp(j

∫ t

−∞
2πfi(τ)dτ)

)
. (2.11)

Equation (2.11) can be considered a generalized Fourier series with components whose

amplitudes and frequencies vary with time to accommodate non-stationary data. The

two-dimensional distribution of the amplitude at a given time and frequency makes

it easy to visualize which frequencies occurred over the signal time span and where

most of the signal energy is concentrated in time and frequency domains, thus allows

an understanding of the signal in time and frequency space, simultaneously [26].



2.6 Previous Applications and Modifications of the

HHT

Researchers have used the HHT for data analysis in a number of clinical and

research domains including gait studies. The authors of [79] develop an EMD and

amplitude/frequency modulation model to classify accelerometry gait patterns. A

non-stationary signal analysis based on EMD for gait recognition is proposed in [80].

The potential of EMD for extracting meaningful gait parameters using inertial data

from an ear-worn sensor is shown in [38]. Schiecke et al. [81] investigate merits and

limitations of EMD and one of its variants to study heart rate variability.

Several research works have modified the original EMD procedure for various pur-

poses. The authors of [82] propose end mirror extensions and employing least square

polynomials to lower the errors due to end effects in EMD. The algorithm proposed

in [83] uses the above mirror extension technique to lower the errors due to end effects

by restricting the splines from varying abruptly at the ends of gaps encountered in

real data. The authors of [76, 84] propose the concept of a weak IMF by relaxing the

requirement that an IMF should be zero mean function. Vatchev and Sharpley prove

that any function with simple zeros and extrema can be decomposed into a sum of

two or fewer weak IMFs. The decomposition is constructive and it is not obtained

by applying EMD [76]. Wang et al. [79] use EMD with modulating techniques to

extract features from accelerometer signals and classify walking patterns. Ibrahim et

al. [85] classify five different gait patterns using discrete cosine transform features on

IMFs of accelerometry data, obtained using a waist-mounted BSN. Yeh [86] proposes

a method for computing complex bi-dimensional EMD that could be used to analyze

two-dimensional signals. The authors of [87] introduce a convex optimization based



approach for generating the envelope of a signal during EMD, and show that their

method overcomes the shortcomings of spline interpolation. Lee et al. [88] combine

nonlinear measures, namely, the weighted mean instantaneous frequencies based on

HHT and Lyapunov exponents, to identify a person using his/her gait. The authors

of [89] propose a modified version of EMD to separate the amplitude and frequency

modulated signals with a better noise performance as compared to others methods.

Filters are also used with EMD. Filters with long impulse responses might mix

features far apart in the original signal so may not be desirable to use for signals

with transients, while low-pass compact support filters are not smooth enough and

thus create artificial oscillations in higher-order IMFs. The authors of [90] propose

compactly supported, infinitely differentiable, adaptive local iterative filters to find

adaptive and stable decompositions of nonlinear and non-stationary signals. A moving

average based approach for a stable EMD analysis is proposed is [91].

2.7 Summary

In this chapter, we discussed the commonly used spectral transforms and their lim-

itations in the context of non-stationary data analysis. Since gait is a non-stationary

signal, gait analysis using spectral transforms based on a fixed basis and stationary

assumption gives only an average state of the gait and does not reflect the changes

in the nature of the data occurring during the observation interval, if any. Thus the

transform basis should be local and adaptive to the variations in the data in order to

accommodate the non-stationary data. The HHT basis, used in this work, satisfies

these conditions and is well-suited to gait analysis.

We also presented a simple but effective modification of the original EMD algo-

rithm. Since EMD is sensitive to the location and number of extrema and small



changes in the data, by including extrema adjustment into the sifting procedure, a

modified but more controlled decomposition can be obtained with arbitrary small

decomposition error. The HHT procedure can be summarized as shown in Fig. 2.8.

s(t)
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decomposition

(EMD)

The Hilbert

transform
̂
ci(t)

Instantaneous

amplitude & phase

ai(t) =
√√√√ci(t)2 +

̂
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2

θi(t) = atan(
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ci(t)
ci(t)
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1
2π.

dθi(t)
dt

Mode function, ci(t)

The Hilbert spectral analysis

ci(t)
̂
ci(t) θi(t)

Fig. 2.8: HHT block diagram



Chapter 3

CLINICAL MEASURES FOR MS

ASSESSMENTS

This chapter gives an overview of the clinical assessments studied in this work.

These assessments include physician-rated metrics, patient-reported outcomes, and

the 6MWT.

3.1 Introduction

Despite having low variance in ratings, clinical measures, the subject of this chap-

ter, are accessible to physicians. On the other hand, researchers have shown the poten-

tial value of using inertial data to extract gait variables as indicators of MS. However,

the relationships between gait variables and MS symptoms within and between the

MS population specifically, remain under-explored. The relationships between inertial

features and clinical measures should be studied for various important reasons. First,

such relationships help to know physiological meanings of the gait features making

them clinically relevant and easily interpretable by the doctors. Moreover, features

might have high variance across study participants but show no clear relationships
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with any subjective assessments or clinical symptoms. Identification of such features

is important, since it might be an indication of information that is missing from

current subjective assessments, and needs to be captured by new/alternate means.

These relationships could also help to personalize current subjective questionnaires,

thereby adding value to them. For these reasons, we study the relationships between

available clinical data and our inertial features. The standard questionnaires used to

record the clinical data are attached in appendix.

3.2 Types of Clinical Data

MS is diagnosed by analyzing clinical symptoms, neurological examination find-

ings, and paraclinical metrics (e.g., the results of medical imaging) [5, 7, 8]. In

addition, quantitative measures of ambulation, based on timed-walking tests, and

subjective assessments are used to monitor the disease progression. Subjective as-

sessments, comprised of questionnaires, can be categorized into two broad categories,

namely, physician-rated scores and patient-reported outcomes. A summary of these

assessments is given in Table 3.1. Some of the most important metrics are further

described below.

3.2.1 Physician-rated Scores

Physician-rated scores are based on assessments done by physicians or nurses

during the clinical visit. Functional system scale and expanded disability status scale

are among the most common examples.

1. Functional systems scores (FSS): FSS are based on a physical exam comprised

of seven functional systems, namely, pyramidal, cerebellar, brainstem, sensory,



Table 3.1: Summary of clinical data categories

Category Description

Ashworth scale Measure of muscles stiffness
Bio-data1 Age, sex, height, weight, BMI
BP1 Blood pressure measurements
Cognitive One of the performance scales to assess cognitive disabil-

ity
EDSS Walking impairment due to MS based on FSS ratings and

gait observations
Fatigue and depression Performance scales measuring MS-associated fatigue and

depression
FSS Seven functional systems: Pyramidal, cerebellar, brain-

stem, sensory, vision, bowel/bladder, and cognitive
Hand function1 One of the performance scales, a measure of hands func-

tionality based on a nine hole peg test [92], [93], labeled
as PS4

Instrumental activities of
daily living (IADL)

Eight activities: Using the telephone, getting to places
beyond walking distance, grocery shopping, preparing
meals, doing handyman work, doing laundry, taking med-
ications, managing money, and total IADL score

MFIS Impact of fatigue on cognitive, physical and psycho-social
components

MHI1 General psychological distress and mental health
Mobility, sensory, spasticity,
pain, and tremor

Five performance scales

MSIS1 Impact of MS on physical and psychological components
of daily life

MSWS Impact of motor-related fatigue on walking quality
PDDS Patient rating of disability
SF36 General health status
1 Clinical categories whose sub-scores didn’t correlate significantly with inertial features, and

thus are not discussed further in this work.

bowel and bladder, visual, and mental functions [7]. Each query is rated by an

examiner on a scale ranging from 0 to 5 or 6.

2. Expanded disability status scale (EDSS): Walking impairment due to MS

is classified using EDSS. It is an ordinal scale whose outcomes are based on a

neurological examination and gait observations. The scale ranges from 0 (normal

neurological examination) to 10 (death due to MS) [7], in steps of 0.5.



3. Modified Ashworth: Ashworth scale is used to assess spasticity or muscle stiff-

ness, based on the outcomes of a physical exam [94]. The ordinal scale increases

from 0 (normal) to 5 (total stiffness), in steps of 1.0.

3.2.2 Patient-reported Outcomes

Patient-reported outcomes (PROs) comprise questionnaires completed by people

with MS and later evaluated by physicians. Examples of such assessments are:

1. Multiple sclerosis walking scale (MSWS): MSWS is a 12-item patient-rated

measure of impact of motor-related fatigue on walking quality [48, 95]. The scale

ranges from 1 to 5. Thus the range of total MSWS score is from 12 to 60, with a

median value of 36. The MSWS measures different, although related, aspects of

walking than the objective tests such as the 6MWT [11].

2. Modified fatigue impact scale (MFIS): MFIS is a self-reported measure of

the impact of fatigue on cognitive, physical and psychosis components [8]. MFIS

consists of 21 items rated on a scale from 0 and 4 [10]. Thus the range of the total

MFIS score is from 0 to 84, with a median value of 42.

3. Mental health inventory (MHI): MHI is a 18-item patient-based measure of

general psychological distress [10]. The scores range from 1 to 6. It is reported

to be a reliable tool for mental health assessment [10]. MHI measures the overall

emotional functioning and includes a number of negative and positive emotions.

4. Health status questionnaire (SF36): SF36 comprises 11 questions, each con-

taining sub-questions. It is a measure of general health status [10, 96]. The scale

ranges from 1 to 5.



5. Multiple sclerosis impact scale (MSIS-29): MSIS is a 29-item patient-reported

measure of impact of MS on a the daily life of people with MS [97]. It is comprised

of 20 physical and 9 psychological components. The scale ranges from 1 to 5.

6. Patient determined disease steps (PDDS): PDDS are patient-reported sur-

rogate of EDSS [98], used to evaluate MS disability and progression. The scale is

ordinal and ranges from 0 (normal) to 8 (bedridden), in steps of 1.0.

7. Performance scales (PS): PS are self-reported assessments of health status,

and describe 11 different kinds of disabilities persons with MS may have, namely,

mobility, hand, vision, fatigue, cognitive, bladder/bowel, spasticity, pain, depres-

sion, tremor, and sensory symptoms [92]. The scale is ordinal, and increases from

0 (normal function) to 5 or 6 (total disability), in steps of 1.0. The PS were de-

veloped to find easier ways to collect disability related data already captured by

other measures such as MSWS and MFIS.

3.2.3 Physiological Significance of Gait Features

The physiological significance of our inertial features is identified by quantifying

their relationships with four crucial aspects of MS disability, namely, weakness, phys-

ical fatigue, balance, and cognitive/concentration, as proposed in [99]. Research has

shown that degradation in waling is associated with impaired cognition [100], thus,

cognitive/concentration impairment is included. The relevant clinical sub-scores mea-

suring the four aspects of MS disability are grouped together and the proportion of

variance in each inertial feature as explained by these categories is studied. Following

is the list of the sub-scores comprising each disability:

1. Weakness (lower extremity muscle strength). MSWS (Q3, 4, 8-9), MFIS

Q13, and FSS pyramidal



2. Physical fatigue (sustained physical exertion). MSWS Q6, and MFIS (Q6,

7, 10, 21)

3. Balance (balance and stability problems). MSWS (Q4-5, 8-9), MFIS (Q4),

and Cerebellar FS

4. Cognitive/concentration (cognitive impairment and fatigue). MSWS (Q12),

MFIS (Q1-3, 11-12, 15-16, 18-19), and FSS cerebral

3.2.4 Quantitative Walking Tests

Numerous walking tests are used by practitioners to monitor the MS progression.

In our work, the data from the six-minute walk test (6MWT) [11] are used. The

6MWT is used to assess gait impairment by measuring the distance covered by a

person in six minutes using a standard protocol [11], and is validated as a reliable

measure of walking capacity and motor fatigue [8].

3.3 Previous Work Correlating Gait and Clinical

Metrics

Many works present in literature have studied the relationships of clinical data

to inertial variables to determine their clinical value. Givon characterized MS gait

parameters and correlated them with their neurological disability [45]. Martin stud-

ied balance and gait impairment in MS patients with mild pyramidal signs, with no

pyramidal signs, and controls [46]. In [47], Gong et al. determined the correlations

of total MSWS scores and other clinical measures to body sensor measurements. [17]

validated warp score as an inertial measure to quantify fatigue-related gait deteriora-

tion and showed it had significant correlations to MSWS, MFIS, and two functional



systems, namely, cerebellar and pyramidal. [49] showed the clinical significance of

DTW and warp scores to MS symptoms specific to gait impairment. [50] measured

several gait parameters to identify various MS disability groups and control subjects

and also found the relationships between those parameters and MSWS scores.

3.4 Summary

This chapter is a brief overview of the available clinical data used in the statisti-

cal analysis. It is important to study the relationships between inertial features and

clinical data. Such relationships help to discover physical meanings of the inertial

features and make them clinically relevant and easily interpretable by the doctors.

The correlations between inertial measures and clinical data can be used to augment

and customize subjective questionnaires based on a patient’s personal needs. Fea-

tures that show strong correlations to patient-reported outcomes are early indicators

of MS-related dysfunction. Moreover, features having high variance across study sub-

jects but no clear relationship with clinical symptoms should be identified since they

suggest there is a need to capture more clinical information. Thus we study the

relationships between clinical data and our inertial features. The clinical data are

summarized in Table 3.1.



Chapter 4

DATA COLLECTION AND

PRE-PROCESSING

This chapter gives a brief description of the study procedures, the inertial nodes

used for data collection, and the pre-processing done on the data before feature ex-

traction. It also elaborates on the gait terminologies and conventions used in this

dissertation.

4.1 Body Sensor Network

The inertial body sensor network (BSN) nodes known as TEMPO3.1 (technology-

enabled medical precision observation) was developed at the University of Virginia [101].

It is a third generation BSN capable of accurately capturing the inertial data at a

sampling rate of up to 128 Hz, adequate to capture gait dynamics [102]. The form of

the node is similar to that of a wrist watch enabling non-invasive and minimal inter-

vention data collection. TEMPO3.1 has been used in many human subject studies

including orthopedic assessment for children with Cerebral Palsy [30], tremor assess-

ment in Parkinson’s disease patients [103], gait assessments in patients with normal
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pressure hydrocephalus [23], and others. TEMPO3.1 nodes collect 3 accelerometer

axes and 3 gyroscope axes [101], as shown in Fig. 4.1 [15].

Fig. 4.1: Sensing axis relationships of TEMPO3.1 worn on ankle [35]

4.2 Study Subjects and Protocol

The study cohort comprises of 73 MS and 12 comparable control subjects followed

for two years, with successive visits being six months apart. Subjects with clinically

definite MS [5], categorized into three disability levels, namely, mild (EDSS 0− 2.5),

moderate (EDSS 3.0− 4.0), and severe (EDSS 4.5− 6.5), based on a neurological ex-

amination and gait observations, were recruited from the UVa Neurology department

outpatient clinic. The small values of EDSS assigned to mild MS subjects suggest

that there are minimal problems in their gait and physical and cognitive functions,

and, thus, differentiating them from control subjects using inertial gait markers is of-



ten a difficult task. All subjects were able to walk for six minutes to safely complete

the 6MWT. The exclusion criteria were morbid obesity, known cardiac or respiratory

disease, neurological impairment from other diagnoses, or orthopedic limitations. All

study procedures were approved by the University of Virginia (UVa) Institutional

Review Board. Fatigue-related medications were withheld 48 hours prior to study

procedures. Neurostatus-certified staff performed neurological exam for EDSS [7] as-

sessments prior to 6MWT. The MFIS [10] (all subjects) and MSWS [48] (MS only)

were collected as well. These details are summarized in Table 4.1.

Table 4.1: Demographics of controls and MS subjects

Controls Mild MS Moderate MS Severe MS All MS subjects

Study subjects 12 34 28 11 73
Total visits 37 73 57 20 150
Females 5 18 16 10 44
Age 37.0(10.8)1 43.0 (9.6) 47.0 (9.3) 46.0 (8.9) 46.0 (9.4)
BMI 26.5 (6.5) 26.6 (4.3) 30.3 (5.1) MD3 28.0 (4.6)
EDSS 1.0 (0.6) 2.0 (0.5) 3.5 (0.4) 6.3 (0.6) 3.0 (1.5)
MFIS 19.0 (11.5) 16.0 (14.7) 40.0 (18.3) 50.0 (16.7) 27.0 (20.1)
MSWS NA2 12.0 (7.4) 26.0 (13.6) 56.5 (6.9) 19.0 (15.9)
PDDS NA 0.0 (0.8) 1.0 (1.4) 5.5 (1.4) 1.0 (1.9)
SF36 104.0 (3.6) 103.0 (5.0) 101.0 (6.4) MD 102.0 (5.6)
1 Median (SD)
2 Not applicable (NA) indicates clinical sub-scores that were not collected for control subjects.
3 Missing data (MD)

The 6MWT was completed in a 75-foot corridor using the script given in [8]. To

collect the 6MWT inertial gait time series, subjects wore TEMPO3.1 on their wrists,

ankles, and the sacrum. Distance was recorded in one minute intervals by hand.

4.3 Gait Cycle Components

A gait cycle is comprised of various events that are divided into two main phases,

namely, stance and swing [1, 15, 104, 105], as shown in Fig. 4.2. The stance phase



occurs when the foot is in contact with the ground and makes up 60% of a normal

gait cycle. It is comprised of three sub-phases – heel strike (HS), which starts when

the heel touches the ground till just before the toes touch the ground, followed by

the mid-stance, which occurs when the entire foot is settled on the ground, and lastly

toe-off (TO), when the heel is off the ground and terminates with the toes off the

ground as well. The phase between TO and HS is known as the swing phase and

makes up 40% of a normal gait cycle. It is also comprised of three sub-phases – the

initial swing, which occurs after TO when forward movement is being made in order

to carry the body weight forward (acceleration phase), followed by the mid-swing,

when acceleration is maximum, and the terminal swing, which ends when the heel is

put on the ground (deceleration phase).

Fig. 4.2: Human gait phases (not drawn to scale) [106]

4.4 Gait Time Series

For gait analysis, gyroscope data from the ankles, corresponding to the angular

velocity in the X, Y, and Z planes shown in Fig. 4.1, are used in this work. The

X plane measures “the sideways foot rotation”, the Y plane measures “the twisting

in a plane perpendicular to the central axis of the tibia”, and the Z plane measures

“the rotation about the central axis of the ankle” [15]. Angular rate signals are less



noisy than linear acceleration signals and are used to provide information about the

state of the pathological gait, in addition to what is already obtained using the more

commonly used linear acceleration signals. We use the magnitude of the three signals

to avoid errors due to small deviations in the way the nodes are mounted with respect

to the human body frame [32]. The corresponding 6MWT gait time series, B(t), and

gait phases are shown in Fig. 4.3.

Fig. 4.3: The gait signal B and its components

We use the time-stamps obtained from the inertial node to identify the beginning

and end of the signal B(t). At a sampling frequency of 128 samples/s, every 7680

samples represent one minute epoch of the data making the entire 6MWT gait time

series B 46080 samples long. It should be noted that the prominent peaks present in

the signal B correspond to the maximum acceleration during the mid-swing compo-

nent of gait, making mid-swing easy to identify. To cancel the integration drift [32],

the time series between successive mid-swing phases of the same foot is taken as a



gait cycle or a stride in this work. Stride time, the time to complete one stride, is,

thus, the time (samples) between successive mid-swing of the same foot.

For segmenting B(t) into gait cycles, a peak detection algorithm is used to identify

the locations of the local peaks corresponding to mid-swing. To avoid detection of

multiple peaks surrounding mid-swing, B(t) is filtered using a third-order low pass

Butterworth filter. The cut-off frequency of the filter is chosen to be 3 Hz, based on

the highest frequency component in the spectrum of B. The signal B is then scaled to

lie between ±1 so that local mid-swing peaks lie over 0.4 amplitude value, as shown

in Fig. 4.4, facilitating the identification of gait cycles. Once the peak locations are

obtained, the original unfiltered/unscaled inertial data, shown in Fig. 4.3, are used

to extract individual gait cycles.

Fig. 4.4: Signal B scaled to ±1. The threshold for detecting peaks cor-
responding to mid-swing is 0.4. Gait components and first 3 gait cycles
identified.



4.5 Summary

In this chapter, the study procedures, the demographics of the subjects, the de-

scription of the inertial sensor platform, and the details of the data pre-processing are

described. Fig. 4.4 shows the identified gait cycles and important gait components.



Chapter 5

STATISTICAL ANALYSIS

In order to determine the relationships between feature space obtained from in-

ertial gait data and clinical data of interest, two types of statistical analysis are

performed. First, the correlation between inertial features and clinical data is stud-

ied to determine which gait features tend to change with the clinical data. Second,

linear regression models are employed to give physiological significance of the inertial

features. This chapter gives an overview of the statistical analysis methods used in

this work.

5.1 Spearman Correlation Coefficient

To account for potential non-linear relationships between gait features and clin-

ical data and the presence of ordinal variables, the Spearman correlation coeffi-

cient [107, 108] is used. In contrast to the Pearson correlation, which assesses linear

relationships, the Spearman correlation evaluates monotonic relationship (linear or

otherwise) between two variables where variables tend to change together, but not

necessarily in a linear fashion or at a constant rate. It is based on the ranked values

for each variable rather than the actual data. In the case of Spearman correlation,
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a meaningful relationship can exist between two variables even if the correlation co-

efficients are close to 0. Pairwise Spearman correlation coefficients rs and p-values

are reported to demonstrate the relationships of clinical data to the inertial features.

The p-value is used in statistics to test the hypothesis of no correlation versus the

alternate hypothesis that there is a non-zero correlation [109]. A p-value smaller than

the chosen significance level α indicates that the correlation between two variables is

significantly different from 0. The 5% significance level, p < α, corrected by the total

number of comparisons for a given relationship, is used.

Consider two variables X and Y , containing n sample points each. If xi and yi

represent the ith sample of X and Y , respectively, then the Pearson’s correlation

coefficient rp is a measure of the linear dependence between random variables X and

Y . Mathematically,

rp =
1

n− 1

n∑

i=1

(xi − µX

σX

)(yi − µY

σY

)
≈ cov(X, Y )

σXσY
. (5.1)

where µX and σX are the sample mean and sample standard deviation (SD) of X,

respectively, and µY and σY are the sample mean and sample SD of Y , respectively.

The Spearman correlation coefficient rs is obtained by first converting the raw vari-

ables X and Y into ranked variables, Xr and Yr, respectively, and then computing

the correlation between them as follows

rs =
cov(Xr, Yr)

σXrσYr

. (5.2)

where σXr and σYr are the SD of the ranked variablesXr and Yr, respectively. Thus the

Spearman correlation coefficient is equivalent to the Pearson’s correlation coefficient

applied to the ranked variables.



5.2 Linear Regression Model

Step-wise linear regression models (LRMs) are generated to determine the rela-

tionships between a clinical sub-score (dependent variable or response) and the gait

features (independent variables or features) [27, 110]. The step-wise LRM automati-

cally chooses a subset of significant features that explain the response variable in the

best possible way. It is a semi-automated process of building a model by successively

adding or removing independent variable based on the Akaike information criterion

(AIC) [111] performance metric of the model and the t-statistic of the feature with

the goal to find the best combination of features to predict the response variable.

For every model, the gait features are response variables whereas the clinical scores

are the features. Let X be the independent variable and Y be the response variable.

Then MY
X represents a linear regression model, M, predicting the response Y using

independent variables X, where:

• X ∈ Clinical data discussed in Chapter 3

• Y ∈ Inertial gait features and 6MWT speed

Speed is a common clinical anchor used to measure the progression of MS [99], and

has been shown to have strong correlation with the overall disability status captured

by the EDSS [99, 112]. Therefore, we have included speed in the regression anal-

ysis to show that our test measures supplement and add value to the speed-based

assessments.

The adjusted R2, indicating the proportion of the total variation in a depen-

dent variable or response that is predictable from the independent features [113], is

reported for each model. A large value of the adjusted R2 indicates that a model pre-

dicts the response well. To show the % contributions of the aspects of MS disability



to the gait features, described in Chapter 3, bar plots are used.

5.3 Summary

We use a two-step statistical analysis to determine the relationships between avail-

able clinical data and the inertial features. In the first step, a correlational analysis

is performed to identify strong and statistically significant relationships between in-

ertial measures and clinical sub-scores. In the second step, linear models are fitted.

Spearman correlation coefficients rs and the adjusted R2 along with the corrected sig-

nificance level α are reported for correlational and regression analysis, respectively.



Chapter 6

GRADIENT OF THE STRIDE

TIME

This chapter studies the first temporal feature, namely, the gradient of the stride

time, which verifies the hypothesis that fluctuations in gait variables over time carry

information about the status of the disease. The results show that not only the stride

time standard deviation (STSD) is high, but it fluctuates more over six minutes, as

the subjects perform the 6MWT, for MS subjects as compared to those of control

subjects. The work presented in this chapter was published in [114].

6.1 Stride Time Standard Deviation

The STSD is one of the most commonly used markers for MS [112]. Ideally, in

normal gait, we expect the standard deviation (SD) of the stride time to be low. If

the 6MWT gait time series B is segmented into m cycles {Ci}i=m
i=1 with every cycle
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being |Ci| samples long, then the STSD, σst, can be calculated using

σst =

√√√√√
m∑
i=1

(|Ci|−B)2

m− 1
, samples . (6.1)

where B, the average stride time, is given as

B =
|B|
m
, samples . (6.2)

The STSD for the given data-set for controls and MS subjects is shown in Fig. 6.1.

It can be easily noted that the STSD for MS subjects with lower disability levels (0 ≤

EDSS ≤ 4) is smaller compared to those with higher disability levels (4 < EDSS

≤ 6.5), when computed using the entire 6MWT gait time series. In fact, σst for

most of mild subjects is found comparable to those of control subjects. Previous

studies [99, 112, 114] have shown that MS subjects slow down while completing the

6MWT, which indicates more variations in the STSD values for MS subjects over

time.



Fig. 6.1: STSD for study groups

6.2 Gradient of Stride Time Variability over Six

Minutes

Using absolute values for σst may obscure or average out the changes in stride

time, if any, happening over an interval of time. Moreover, occasionally reduced

speed, higher/lower STSD, or abnormal ranges for other gait parameters could be

encountered due to numerous unknown reasons, including (but not limited to) the

fact that the person is a slow walker, his/her mood or general health on the day of

the clinical visit, the foot-wear, the walking surface, the motivation behind the walk,

etc. Thus, instead of using one absolute value of σst to assess a subject’s walking

impairment, we compute σstj for each minute of the 6MWT, 1 ≤ j ≤ 6, and show

that the gradient of σstj over six-minutes are higher, in general, for MS subjects,

including those in the low disability category. We can re-write (6.1) and (6.2) for



minute j as follows:

σstj =

√√√√√
mj∑
i=1

(|Ci,j|−Bj)2

mj − 1
, samples . (6.3)

where mj is the number of cycles obtained from minute j and Bj is the corresponding

average stride time, given as

Bj =
|Bj|
mj

, samples . (6.4)

Plots showing σstj for 1 ≤ j ≤ 6 are given in Figs. 6.2 to 6.7. It can be noted that,

in general, σstj fluctuates more for MS subjects than those of control subjects. The

fluctuations in STSD are noticeable even for low disability subjects (0 ≤ EDSS ≤ 4).

In fact, towards the end of the walk, the separation between the disability groups

increases, with the highest gradient of the STSD found for severe MS subjects.



Fig. 6.2: (a) STSD for minute 1 for MS and control subjects. (b) STSD
is shown individually for various MS disability groups

Fig. 6.3: STSD for minute 2



Fig. 6.4: STSD for minute 3

Fig. 6.5: STSD for minute 4



Fig. 6.6: STSD for minute 5

Fig. 6.7: STSD for minute 6



The gradient of σstj is computed as

∆6MWT =

6∑
j=2

(|σstj − σstj−1
|)

6
, samples . (6.5)

The gradient ∆6MWT is plotted in Fig. 6.8, which gives a better insight in the behavior

of MS and control subjects’ gait. In addition to the gait impairment, gait quality of

MS subjects is worsened by MS-induced fatigue. Due to the frequent and strong

feelings of fatigue, MS subjects slow down while doing a physical task. Thus the

fluctuations in the STSD during the 6MWT captured by ∆6MWT are quite noticeable

even for mild MS subjects, making it a better parameter to gauge the impact of MS

on a subject’s gait compared to the absolute value of the STSD. In the next section,

we perform a statistical analysis to determine the physiological significance of stride

time gradient.

Fig. 6.8: Gradient of STSD



6.3 Clinical Significance of Stride Time Gradient

6.3.1 Statistical Analysis

It has been previously demonstrated that MS subjects cover shorter distances

and walk at a reduced speed during the 6MWT compared to control subjects [8].

The distances covered by the subjects during the 6MWT, d, are plotted in Fig. 6.9.

Some MS subjects with EDSS 0 − 4 covered distances similar to those of control

subjects. Thus not all MS subjects walked at a slow pace or had a higher gradient

of the STSD. To find the clinical reasons behind this, we determine the relationships

between ∆6MWT and the domains of MS dysfunctions, mentioned in Chapter 3. We

show that ∆6MWT is smaller (stable STSD for each of the six minutes) for subjects

who reported smaller values for disability-related clinical scores.

Fig. 6.9: Distance covered during the 6MWT by study groups

The Spearman correlation coefficients are used to identify clinical sub-scores sig-



nificantly correlated with ∆6MWT , shown in Table 6.1. The corrected significance

level was found to be 0.0002. The corresponding LRMs MY
X are then fitted with

• X ∈ {Significantly correlated clinical sub-scores}

• Y ∈ {6MWT speed, ∆6MWT , σst}

As mentioned in Chapter 5, 6MWT speed is added as one of the response variables to

show the value added by the gradient to traditionally used speed-based assessments.

The adjusted R2 for the models are reported in Table 6.2. The next section discusses

the results of statistical analysis for each clinical categories.

Table 6.1: Spearman correlation coefficient between
clinical data and the gradient of STSD, ∆6MWT

Clinical score rs
1 Clinical score rs

MFIS Q9 0.27 MFIS Q21 0.30
Spasticity symptoms 0.30 Bladder or bowel 0.30
Minute 2 distance -0.31 Minute 1 distance -0.32
Minute 3 distance -0.32 Minute 4 distance -0.32
MFIS Q17 0.32 MFIS Q10 0.33
Fatigue 0.33 Minute 6 distance -0.33
MFIS Q6 0.34 MSWS Q5 0.34
MSWS Q8 0.34 6MWT speed -0.34
Minute 5 distance -0.34 MSWS Q4 0.35
FSS bladder 0.36 MFIS Q20 0.36
MSWS Q11 0.36 MSWS Q12 0.36
MSWS Q2 0.37 FSS pyramidal 0.38
MSWS total 0.38 MSWS Q1 0.39
MSWS Q10 0.39 MSWS Q6 0.39
FSS cerebellar 0.40 MSWS Q7 0.41
MSWS Q3 0.43 MSWS Q9 0.45
EDSS 0.45 PDDS 0.45
Mobility 0.46

1 The rows are arranged in increasing order of rs.



Table 6.2: The adjusted R2 from step-wise LRMs

Clinical category1 6MWT speed σst ∆6MWT

Performance scale: fatigue 26.1 13.3 8.7
MFIS (MFIS Q6, 9, 10, 17, 20, 21) 55.3 33.3 14.4
FSS (pyramidal, cerebellar, blad-
der)

62.5 43.7 29.4

Physical fatigue 63.6 29.4 16.6
EDSS 67.1 45.8 29.9
Cognitive/concentration 68.9 52.5 51.5
PDDS 75.0 45.5 28.2
Performance scales: mobility and
spasticity

75.2 52.3 35.2

MSWS (MSWS Q1-12, total) 75.4 56.9 36.6
Balance 76.7 54.4 38.9
Weakness 77.8 56.9 41.8

1 From Table 3.1. For each category, clinical sub-scores significantly correlated
with the inertial measures are used for regression. The rows are arranged in
increasing order of the adjusted R2 values for the 6MWT speed.

6.3.2 Results and Discussions

In this section, the significantly correlated sub-scores are plotted against σst and

∆6MWT . For each plot, the x-axis represents clinical scores reported as ordered cate-

gories, unless otherwise noted.

1. From statistical analysis, it was found that only three FSS components, namely,

pyramidal, cerebellar, and bladder, showed significant relationships to the STSD

gradient, as shown in Fig. 6.10 (a-c). Bladder function is a surrogate for assessing

spinal cord disease, and thus, both the STSD and its gradient are high for persons

with MS whose bladder functions were impaired.

2. EDSS has a strong relationship with the STSD gradient, given in Fig. 6.10 (d).



(a) FSS bladder/bowel (b) FSS pyramidal

(c) FSS cerebellar (d) EDSS

Fig. 6.10: Relationships of FSS components and EDSS to σst and ∆6MWT

3. MFIS sub-scores as well as total MFIS, shown in Figs. 6.11 and 6.12, respectively,

demonstrate weak but significant dependency on the gradient of the STSD. Note

that the x-axes in Fig. 6.12 represent the STSD and its gradient, respectively,

quantized into three intervals for better visualization.



(a) “Pace myself in my physical
activities”

(b) “Limited ability doing things away
from home”

(c) “Trouble maintaining physical
effort for long”

(d) “Less able to complete physical
effort tasks”

(e) “Limited my physical activities” (f) “Needed to rest more often/longer”

Fig. 6.11: Relationships of MFIS components to σst and ∆6MWT

4. All MSWS scores had a relationship with the STSD as well as its gradient, although

some were weaker than others. Examples for MSWS Q4 and MSWS Q5 are shown



Fig. 6.12: Relationship of total MFIS to σst and ∆6MWT

in Fig. 6.13, which showed strong and weak relationship with the stride time

variability, respectively.

(a) “Standing when doing things
difficult”

(b) “Limited balance when standing or
walking”

Fig. 6.13: Relationships of MSWS components to σst and ∆6MWT

5. PDDS also showed robust relationships to ∆6MWT , as shown in Fig. 6.14.



Fig. 6.14: Relationship of PDDS to σst and ∆6MWT

6. Fig. 6.15 shows that mobility has a strong relationship with the variations in the

STSD.

Fig. 6.15: Relationship of mobility to σst and ∆6MWT

Relationship of stride time variability to four aspects of MS disability.

As can be seen from Table 6.2, the adjusted R2 for each of the four MS disability

aspects, namely, weakness, physical fatigue, balance, and cognitive/concentration,

and 6MWT speed are over 60. The strong relationships of the clinical data to speed

are intuitive and also confirmed by literature, which show that the 6MWT speed



has the significant correlation with cognitive and physical impairment in MS, better

than the available inertial features, including the gradient of the STSD [17, 99]. The

adjusted R2 for cognitive/concentration corresponding to both σst and ∆6MWT is a

little over 50. The adjusted R2 for physical fatigue is smallest (≈ 16.6) for ∆6MWT .

The % of variance explained by these four disability groups are given in Table 6.3,

and their corresponding values are plotted in Fig. 6.16.

Table 6.3: The % adjusted R2 for four aspects of MS disability

Gait feature Weakness Physical fatigue Balance Cognitive/concentration

6MWT speed (fps) 27.1 22.2 26.7 24.0
σst (samples) 29.5 15.2 28.2 27.2
∆6MWT (samples) 28.1 11.2 26.1 34.6

Fig. 6.16: % of variance explained by the four aspects of MS disability

The 6MWT speed is an overall measure of physical and cognitive deterioration

captured by the four categories. The STSD is a uniform indicator of all disability

categories but physical fatigue. The gradient is, particularly, the best indicator of



cognitive/concentration (34.6%), and least of physical fatigue (11.2%). This is also

evident from individual sub-scores shown above, such as MSWS4. The correlation of

the gradient of STSD with the individual disability scores and to the four impairment

categories shows that it adds value to speed-based assessments.

6.4 Summary

In a normal gait, we expect the strides to be regular, with successive stride times

similar. In the controlled setup of the 6MWT, subjects are asked to walk as fast as

they can. However, as MS subjects keep walking, they feel tired as a result of fatigue

and motor problems, and thus slow down suggesting more variations in their stride

time.

This chapter studied the relationships between subjective assessments and change

in the STSD over six minutes. The results illustrate that using the gradient, along

with the absolute values of STSD, highlights the differences between controls and MS

subjects in the low disability categories, even though the overall STSD is low and the

distances covered in 6MWT are the same. This is due to the fact that fatigue and

impact of MS on physical functions make people with MS slow down while walking

over longer duration, yielding variable STSD for different minutes. The effect on

gait stride time is higher for subjects for whom fatigue has high impact compared to

those who reported fatigue having minimal impact on their functional capacities. The

people with MS who reported that fatigue had a minimal impact on them maintained

a steady pace while performing the 6MWT, and thus had a low gradient of the STSD.

While absolute assessments are important in order to understand population char-

acteristics, examination of variations in an individual’s baseline over time is useful

from a clinical point-of-view. Minute-based analysis of the STSD is an example of



personalized signal processing, by letting physicians observe changes in gait variables

over time instead of evaluating the actual/absolute values to remove inter-patient

variability.



Chapter 7

KERNEL DENSITY

ESTIMATION

This chapter studies the second temporal feature, namely, the kernel density es-

timate (KDE), which verifies the hypothesis that pathologic gait in MS is restricted

in comparison to a healthy gait. The statistics of KDE indeed show that the gait

data of MS subjects are less variable than those of control subjects. One feature of

KDE, its peak value, is shown to have statistically strong and significant relationships

with clinical sub-scores capturing balance and weakness disability in MS. The work

presented in this chapter was published in [99, 115, 116].

7.1 Definition

Kernel density estimation is a non-parametric statistical method used to estimate

the probability density function, known as a kernel density estimate, of a random vari-

able [27, ch. 6]. Kernel density estimation approximates a smooth density function,

assuming that it exists, from a finite random sample of the data. The kernel den-

sity estimates (KDEs) can be used to discover important features of the underlying
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process.

Let X be the underlying random variable with unknown density function, fX(x).

We want to estimate fX(x) using N random observations (x1, x2, ..., xN) of X. To ap-

proximate fX(x), the kernel method counts the neighbors within a distance h around

a point of interest x with weights that diminish with distance from x. hK > 0 is the

so-called smoothing parameter or bandwidth. Specifically, the kernel estimator can

be defined as

f̂h(x) =
1

N

N∑

i=1

Kh(x− xi) =
1

NhK

N∑

i=1

K(
x− xi
hK

) . (7.1)

Here Kh(x) = 1
hK
K(x/hK) is a non-negative kernel function that assigns weights

to the neighbors of x. Normal kernels are a popular choice, with

K(x) = (2π)−
1
2 exp−x

2/2 (7.2)

7.1.1 Bandwidth Selection

A small bandwidth may yield under-smoothed estimates containing artifacts,

while a large bandwidth may produce over-smoothed estimates resulting in loss of cru-

cial features of the data. Minimizing the mean integrated squared error, E[
∫

(f̂h(x)−

f(x))2dx], is one of the most commonly used criteria to select an optimal bandwidth.

For normal KDE, the optimal value of the bandwidth is

hK ≈ 1.06σ̂N−1/5 (7.3)



where σ̂ is the sample SD.

7.2 Kernel Density Estimates of Gait Data

To estimate the probability density functions of gait amplitude values, the entire

6MWT gait time series B is used. A normal kernel function with the optimal band-

width determined using (7.3) is chosen, and the density is estimated at 100 equally

spaced amplitude values in the range of B. If b ∈ B represent those 100 amplitude

values, then f̂h(b) represents the gait KDE. Fig. 7.1 shows the first 6 seconds of a

gait signal B with its corresponding KDE. Note that the density is largely uni-modal,

concentrated between amplitudes 3200 and 3600.

Fig. 7.1: (Top) First 6 seconds of the 6MWT gait data, B(t), for an MS
subject, (Bottom) the KDE for the entire 6MWT gait time series. The
KDE peak and the location at which peak occurs is shown

The typical densities for MS and control subjects are shown in Fig. 7.2. The KDE

can have two peaks – a higher left and a lower right. The KDEs for control subjects



are found to be bi-modal whereas the MS subjects’ gait KDEs are mostly uni-modal.

In addition, the KDE peaks for MS subjects are significantly higher, compared to

those of control subjects, as evident from Fig. 7.3. This means that, for MS subjects,

the difference in gait amplitude among different gait phases is small.

Fig. 7.2: Typical KDEs of gait time series for various study groups



Fig. 7.3: KDE peaks for various study groups

The gait differences are not always present, and thus, some MS and control sub-

jects were found to have similar densities. Fig. 7.4 shows typical and atypical gait

densities of MS and control subjects.



Fig. 7.4: Outliers in control and MS groups: example showing typical and
atypical gait densities

It is also worthwhile to note that the gait density estimates were found to be

robust and statistically similar to each other (rp = 0.82, p < 0.0001), regardless of

whether the entire or segments of the 6MWT gait data, corresponding to each minute,

were used to estimate the densities, as shown in Fig. 7.5. Thus, the gait KDE is an

intrinsic feature. They did, however, change if longitudinal gait data were used.

7.3 Interpretation of the KDE Peak

The KDE peak is used as the inertial feature of interest. The statistics of KDE

peak are shown in Table 7.1. We observe that although the gait KDE peaks for some

MS subjects are comparable to those of controls, the median values for MS subjects

are higher than those of controls.



Fig. 7.5: The KDE for each minute of the 6MWT gait data for an MS
subject

Table 7.1: Statistics of the KDE peak

Group Minimum value Median value (SD) Maximum value

Controls 0.0012 0.0017 (0.0004) 0.0030
Mild MS 0.0011 0.0018 (0.0006) 0.0039

Moderate MS 0.0010 0.0024 (0.0009) 0.0055
Severe MS 0.0025 0.0073 (0.0045) 0.0151

As seen in Chapter 6, the MS subjects who reported to have low disability (0 ≤

EDSS ≤ 4) covered 6MWT distance d (plotted again in Fig. 7.6(a)) comparable

to those of controls. We divide KDE peaks, denoted as ρ in this work, into three

intervals, namely, 0 − 0.003, 0.003 − 0.0055, and 0.0055 − 0.0151, using maximum

values given in Table 7.1. The distances covered by the subjects whose KDE peaks

lie in respective intervals are plotted in Fig. 7.6(b).



Fig. 7.6: (a) 6MWT distance d covered by the four study groups, (b)
Relationship between intervals of the KDE peaks, ρ, and d (rs = −0.788, p =
10−41)

Three observations are made.

1. First, KDE peak correlates significantly and negatively with d, (rs = −0.788, p =

10−41).

2. Second, the 6MWT distances and the gait KDE peaks of MS subjects with

EDSS up to 4 were comparable to those of control subjects.

3. Third, it suggests that ρ = 0.003 (for the given data) can be taken as a bench-

mark for identification of gait impairment.

MS has a variable impact on gait of different subjects and its symptoms vary

among individuals. Thus we conclude that if the gait is not affected significantly, the

KDE peaks for MS subjects can be as low as those of controls.



7.4 Clinical Significance of the KDE Peaks

7.4.1 Statistical Analysis

In order to establish the KDE peak as a useful clinical gait feature, statistical

analysis is performed to find its relationships with the clinical data. The relevant

clinical sub-scores were identified using (Spearman) correlational analysis and chosen

for regression analysis. The corrected significance level was found to be 0.0002. The

step-wise linear regression models (LRMs) MY
X were then fitted with

• X ∈ {Significantly correlated clinical sub-scores}

• Y ∈{6MWT speed (feet/s or fps), KDE peak}

The adjusted R2 values from LRMs are given in Table 7.2.

Table 7.2: The adjusted R2 from step-wise LRMs

Clinical category1 6MWT speed KDE peak

SF36 (Q4b, 4c, 4e, 4f, 4g, 4h, 4i, 4j, total) 56.0 54.4
Daily activities 57.7 81.2
FSS (pyramidal, cerebellar, bladder, cerebral) 62.5 39.3
Physical fatigue 63.6 30.8
MFIS (Q4, 6-10, 13, 14, 17, 18, 20, 21, total) 65.2 36.8
EDSS 67.1 45.1
Cognitive/concentration 68.9 38.4
PDDS 75.0 51.6
MSWS (Q1-12, total) 75.4 53.9
Balance 76.7 60.0
Weakness 77.8 53.9
Mobility, sensory, pain, tremor 78.4 57.2

1 From Table 3.1. For each category, only significantly correlated sub-scores are used.
The rows are arranged in increasing order of the adjusted R2 values for the 6MWT
speed.



The KDE peaks show strong relationships with various types of clinical data,

although some of these relationships are weaker than others. The relationships of

each clinical category to KDE peak are discussed in the next section.

7.4.2 Results and Discussions

In this section, the significantly correlated sub-scores are plotted against KDE

peak. For each plot, the x-axis represents the clinical scores reported using ordered

categories. If the number of ordered categories are more 12, the three intervals of ρ,

shown above, are used as the x-axis.

1. As seen previously, the KDE peaks of MS subjects, assigned an EDSS score of up

to 4, overlap with those controls. The regressions results confirm that EDSS has

a weak but statistically significant relationship with the KDE peak, as shown in

Fig. 7.7.

Fig. 7.7: Relationship between EDSS and the KDE peak



2. Statistical analysis shows that four FSS components, namely, pyramidal, cerebel-

lar, bladder, and cerebral, have statistically significant relationships to the KDE

peak, as shown in Fig. 7.8. The weak relationship of the KDE peak with the

cerebral function impairment is its divergent validity.

(a) FSS bladder (b) FSS pyramidal

(c) FSS cerebellar (d) FSS cerebral

Fig. 7.8: Relationships between FSS components and the KDE peak



3. PDDS also shows robust relationships to the KDE peak, shown in Fig. 7.9.

Fig. 7.9: Relationship between PDDS and the KDE peak

4. All MSWS scores have strong relationships with the KDE peak. Two MSWS

components related to standing and balance, (Q4, 5), are shown in Fig. 7.10.

Thus, higher KDE peaks indicate balance problems.

(a) “Standing when doing things
difficult”

(b) “Limited balance when standing or
walking”

Fig. 7.10: Relationships between MSWS components and the KDE peak



5. As shown in Fig. 7.11, each of mobility, sensory, and pain showed robust rela-

tionships to the KDE peak. Tremor/loss of coordination demonstrated weak but

statistically significant relationships to the KDE peak.

(a) Mobility (b) Sensory

(c) Pain (d) Tremor

Fig. 7.11: Relationships between performance scales and the KDE peak

6. Fig. 7.12 shows that instrumental activities of daily living (IADL) exhibit strong

relationships to KDE peak. Clearly, the gait of subjects who reported problems in

carrying out day-to-day activities had higher KDE peaks.



(a) Difficulty doing housework (b) Difficulty doing laundry

(c) Difficulty preparing meals (d) Difficulty doing grocery shopping

(e) Difficulty getting beyond walking
distance (f) Total IADL score

Fig. 7.12: Relationships between IADLs and the KDE peak



7. SF36 Q4 assesses limitations in doing activities on a typical day due to health [10].

It is striking that SF36 components from Q4 as well as total SF36 show significant

correlations with the KDE peak, as shown in Figs. 7.13, 7.14. The KDE peaks

were found to be greater than 0.003 for subjects who reported that motor-related

fatigue had a higher impact on their lives.

(a) “Moderate activities” (b) “Carrying groceries”

(c) “Climbing one flight of stairs” (d) “Bending, kneeling, or stooping”

Fig. 7.13: Relationships between SF36 components (Q4 b, c, e, f) and the
KDE peaks



(a) “Walking more than a mile” (b) “Walking several blocks”

(c) “Walking one block” (d) “Bathing or dressing”

(e) SF36 total score

Fig. 7.14: Relationships between SF36 components (Q4 g-j, total score)
and the KDE peak



8. Numerous MFIS components as well as total MFIS show significant correlation

to the KDE peaks, as shown in Fig. 7.16. The KDE peaks were found to be

greater than 0.003 for subjects who reported that motor-related fatigue had a

higher impact on their daily lives.

(a) “Less motivated for
physical effort”

(b) “Trouble maintaining physical
effort”

(c) “Less able to do physical tasks” (d) “Limited my physical activities”

Fig. 7.15: Relationships between MFIS components (Q7, 10, 17, 20) and
the KDE peak



(a) “Needed to rest more” (b) Total MFIS score

Fig. 7.16: Relationships of KDE peak to MFIS Q7 and its total score

Relationship of KDE peak to four aspects of MS disability. As shown in

Chapter 6, the 6MWT speed has strong relationships with various disability domains

of MS as compared to previously reported inertial measures. Table 7.2 shows that

the KDE peaks also show robust relationships to these aspects. These relationships

are non-uniform and weaker than those for 6MWT speed. The adjusted R2 for the

KDE peaks is close to 60 for weakness and balance each, while it is almost half for

both physical fatigue and cognitive/concentration.

The percentage contributions of these disability aspects to the KDE peaks and

6MWT speed are given in Table 7.3 and plotted in Fig. 7.17. Specifically, a high

value of the KDE peak is an indicator of weakness and balance problems, making it

the strongest overall measure of walking impairment, better than some of the other

inertial measures [99]. This is also evident from individual sub-scores shown above,

such as MSWS Q5. Thus, the peak value of the KDE could be used alongside the

gait speed to supplement weakness and balance deterioration information.



Table 7.3: The % adjusted R2 for four aspects of MS disability

Gait feature Weakness Physical fatigue Balance Cognitive/concentration

KDE peak 29.4 16.8 32.8 21.0
6MWT speed (fps) 27.1 22.2 26.7 24.0

The contribution of physical fatigue to the KDE peak is the smallest, 4% smaller

than that of cognition/concentration impairment. The KDE peak values not only

distinguish between various disability groups but also track with self-reported func-

tional impairment and balance difficulty. Weakness and balance problems put people

with MS at high risk for falling. Thus, the KDE peaks could possibly be used to

identify subjects who are at high risk for falls.

Fig. 7.17: % of variance explained by the four aspects of MS disability



7.5 Summary

The peak value of the gait KDE is an excellent measure of weakness and bal-

ance difficulty, the two most prominent causes of gait impairment. The gait den-

sity estimates did not change when computed separately for each of the six-minutes

(rs = 0.82, p < 0.0001), indicating that the gait density is an intrinsic feature. They

did, however, change if longitudinal gait data were used, with changes being correlated

to the changes in clinical symptoms.

The gait KDE peaks for MS subjects in the low disability levels might be com-

parable to those of control subjects. There is also less variability in the gait signal

amplitude for MS subjects, which means the KDEs are concentrated around smaller

range of values, leading to high peaks. Thus peak value above a threshold is, indeed,

an evidence of MS-related walk deterioration, as supported by the clinical data. Using

the relationships of the clinical data to the KDE peak, we conclude that a threshold

of KDE peak = 0.003 (for the given data) could be used as a clinical anchor. In

cases where the KDE peaks are found to be above the threshold, relevant in-depth

subjective assessments could be performed, thus reducing the overall burden of those

questionnaires. The threshold can easily be determined for any data-set in a similar

way. Some of the benefits of the KDE peak are:

1. The KDE peak explains over 50% of the variance in clinical outcomes measuring

weakness and balance problems, making them the strongest overall measures of

walking impairment, better than some of the other inertial measures [99].

2. Computation of other commonly used gait variables such as stride time SD [114],

dynamic time warping (DTW) scores [17], gait phase, stride time [15], etc.,

depend on accurate identification of gait cycles, which is a computationally ex-



pensive and noise-sensitive process. The KDE peak is most convenient from a

processing standpoint, as it is distribution based and does not require segmen-

tation of gait data into individual gait cycles.

3. The density estimates were found to be robust and statistically similar to each

other, regardless of whether the entire or a subset of the 6MWT gait data were

used to determine the KDEs. This would be beneficial in scenarios where re-

sources (storage/power) are limited, e.g., when computing the KDE on wearable

BSN nodes for longitudinal gait monitoring. The density estimates of the gait

data can be computed periodically so that an equivalent but small dataset be

stored on nodes.



Chapter 8

GAIT CYCLE EVENT-SPECIFIC

SPECTRAL FEATURES

This chapter studies the spectral features obtained from a gait cycle and its phases.

The relationships of these features with the clinical data verify the hypothesis that

phase-specific gait features indicate different types of MS-induced disabilities. The

work presented in this chapter was published in [117].

8.1 Motivation

Features obtained using the gait time series data corresponding to events in a

typical gait cycle may provide specific information regarding the variable impact of

the disease on various gait components. Such features can also be used as markers

of balance, stability, fall risk, etc. Identifying important parts of a gait cycle is ad-

vantageous from resource point of view since processing the entire gait cycle is more

computationally intensive. Thus we extract spectral features using parts of gait cy-

cles corresponding to three important phases, namely, mid-swing to HS (deceleration

phase), HS to TO (foot-flat), and TO to mid-swing (acceleration phase), shown in
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Fig. 4.2.

We obtain the following results using phase-specific spectral features:

• Most of the information regarding health is contained in the TO to mid-swing

and mid-swing to HS phases.

• The TO to mid-swing phase is the most indicative of functional and cognitive

health status in MS. In fact, it is the only phase that measures the impacts of

motor-fatigue on functional, physical, and cognitive components.

• The mid-swing to HS phase is specific to motor problems.

• Foot-flat showed statistically strong and significant relationships to instrumental

activities of daily living.

The adjusted R2 obtained using step-wise linear regression models, relating spectral

features to clinical data, corresponding to the three phases are reported. In order to

show the clinical utility of an event-specific analysis, the regression models, showing

the relationships between clinical data and the spectral features obtained from an

entire gait cycle, are also generated.

8.2 Extraction of Gait Phases

We segment each gait cycle into three phases, namely, mid-swing to HS, HS to

TO, and TO to mid-swing. Recall from Fig. 4.3, the peaks of the signal B correspond

to the mid-swing, whereas the troughs before and after mid-swing represent TO and

HS, respectively. Since the stride time varies from cycle to cycle, each gait cycle, C(t),

is re-sampled to have 300 samples (≈ 2.34 s), as shown in Fig. 8.1, and segmented

into three windows, each comprising 100 samples. The resampling of a gait cycle into



300 samples works well for our data since it allows the three gait phases of interest to

naturally fall into one of the three windows. The first window represents mid-swing

to HS phase, the second corresponds to foot-flat, and the third represents TO to HS

transition of the gait cycle.

Fig. 8.1: A gait cycle re-sampled to have 300 samples and divided into
three windows. The windows (approximately) represent the three gait
phases, namely, mid-swing to HS, HS to TO, and TO to mid-swing

It should be noted that above segmentation is not perfect, for example, the 100th

sample after mid-swing extends beyond the HS. To segment gait cycles into respective

phases based on the actual local locations of HS and TO, the procedure given in [15]

can be used. However, in the presence of multiple troughs near HS and TO, it is

difficult to identify the exact locations of these events. Our procedure is not simple,

but it also guarantees that the first window completely captures the end of HS.

Similarly, it makes sure that the third window starts before or at the TO.



8.3 Mean Magnitude Spectral Density

From the Hilbert spectrum given in (2.11), a two-dimensional feature, known as

the marginal spectrum or magnitude spectral density h(f) [26], is obtained. If fmax

is the maximum frequency component present in the underlying signal, then

h(f) =

∫

t

H(f, t)dt, f ≤ fmax . (8.1)

The marginal spectrum is a measure of the total magnitude contribution from a fre-

quency component present in the data. Note that, unlike the Fourier transform, a

non-zero value of h(f) simply means there is a high likelihood for f to have appeared

locally in the whole time span of the underlying signal [26]. If the 6MWT gait time

series is comprised of m gait cycles, the marginal spectra represents a set {hi(f)}mi=1,

consisting of one marginal spectrum per gait cycle. We transform the marginal spec-

trum into what we call the mean magnitude spectral density (MMSD), h(f). The

MMSD is obtained by averaging the marginal spectra over m giving the mean mag-

nitude contribution from individual frequency components. Mathematically, MMSD

can be written as

h(f) =

m∑
i=1

hi(f)

m
, f ≤ fmax . (8.2)

Frequencies that appear consistently in most of the gait cycles will have a higher

value of h(f). We compute MMSD and extract twelve spectral features for each of

the three windows described above. These features, along with their descriptions, are

given in Table 8.1.



Table 8.1: Summary of the spectral features

Spectral feature Description

fm The frequency that contributes the most to the spectrum, i.e.,
the frequency at which the peak of the MMSD occurs

Peak MMSD (hm)1 The maximum magnitude contribution from any frequency
Band power (Pband)

1 Average power
Mean frequency (fmean)1 The sum of product of the MMSD and the frequency divided by

the sum of the MMSD [118]
Median frequency (fmedian)1 The frequency at which the MMSD is divided into two regions

of equal magnitude [118]
Occupied bandwidth (OBW) 99% occupied bandwidth
Power bandwidth (PBW )1 Half power bandwidth of the MMSD
Skewness Skewness of the spectrum
Kurtosis Kurtosis of the spectrum
Total area under MMSD (PMMSD)1 The square-root of the total power contained in the MMSD

0 ≤ f ≤ fmax

Area under main lobe of the spec-
trum (Pmain)1

The magnitude contribution from low frequencies
1 ≤ f ≤ 3 Hz

Area under MMSD tail (Ptail) The magnitude contribution from high frequencies
3 ≤ f ≤ 5 Hz

1 Selected features

8.4 Relationships of Clinical Data to Spectral Fea-

tures

This section describes the physiological significance of spectral features and gait

phases.

8.4.1 Statistical Analysis

Feature selection. We compute the Spearman correlation coefficients in order

to identify the spectral features that have statistically significant correlations with

the clinical sub-scores. The seven chosen spectral features are marked in Table 8.1

above. In addition, some of the clinical categories showed relationship to none of the

spectral features, and are not included in the rest of the analysis.



Regression models. Once spectral features and clinical categories are chosen,

we generate linear regression models (LRMs) MY
X , predicting response Y from inde-

pendent variables X, using model parameters described in Chapter 5. A total of 77

models were fitted for the whole gait cycle and its three windows with

• X ∈ {Clinical data discussed in Chapter 3}

• Y ∈{Spectral features from Table 8.1}

The adjusted R2 values from LRMs are given in Table 8.2. The results are discussed

in the next section.

8.4.2 Results and Discussions

Spectral features. It is apparent from the table that spectral features show

strong relationships with various types of clinical categories, although some of these

relationships are weaker than others. Some of the spectral features measure similar

types of impairment. The most populated and strongest relationships of clinical

data are with the band power. The important thing to note is that it captures the

functional status mainly in the first window. Bandwidth power is also an interesting

feature as it is related to problems in doing daily activities in the second window and

to cognitive/concentration impairment in the third window. Area under main lobe of

the spectrum shows stronger relationships with balance and cognitive/concentration

in the third window compared to other parts, and in fact, the entire gait cycle.

The mean and the median frequencies are not as informative as some of the

other spectral features in the three windows but are statistically significant when

using the entire gait cycle. The mean frequency is a stronger predictor of MFIS and

fatigue-related disability while the median is more closely related to MSWS and motor

disability. Overall, the mean frequency explains the variance in problems related



Table 8.2: The % of variance in the spectral features
predicted by the clinical data

Clinical data1 hm Pband fmean fmedian PBW PMMSD Pmain

FSS I2 -4 29.6 - - - - -
FSS III2 - - - - - - 23.4
FSS*3 36.8 40.2 - 30.5 - 33.9 -
EDSS I - 28.1 - - - - -
EDSS* 44.0 47.3 26.6 36.7 - 41.7 28.1
Daily activities I 30.7 51.8 - - - 41.8 41.2
Daily activities II2 - 2167 - - 25.2 - -
Daily activities* 45.2 55.3 39.3 48.0 - 47.7 42.2
MFIS III - - - - - - 21.4
MFIS* 32.0 36.1 31.4 22.1 - 33.2 20.4
MSWS I - 35.8 - - - 23.6 21.5
MSWS III - - - - - - 26.7
MSWS* 44.9 54.4 30.3 39.6 - 50.5 36.7
PDDS I - 33.6 - - - 21.3 -
PDDS* 43.4 53.7 25.8 38.3 - 47.8 33.4
PS1 I - 31.7 - - - 20.4 -
PS1* 45.5 57.9 31.8 44.8 - 49.1 35.7
Weakness I - 35.9 - - - 23.1 20.7
Weakness III - - - - - - 22.8
Weakness* 44.0 56.3 22.2 40.1 - 47.3 33.5
Physical fatigue I - 23.2 - - - - -
Physical fatigue III - - - - - - 23.0
Physical fatigue* 34.4 35.2 - 25.2 - 35.8 23.2
Balance I - 32.8 - - - 20.7 -
Balance III - 20.7 - - - 23.5 32.1
Balance* 40.4 54.2 21.2 35.5 - 43.3 31.0
Cognitive and Concentration I - 33.4 - - - - -
Cognitive and Concentration III - - - - 25.0 20.7 38.5
Cognitive and Concentration* 44.2 50.0 35.0 24.8 - 39.7 31.9
1 From Table 3.1
2 Features obtained from windows I to III shown in Fig 8.1
3 Features obtained from the whole gait cycles are marked with a *
4 Variance values less than 20% are not shown

to cognitive/concentration, whereas the median frequency explains the variance in

clinical data measuring weakness and balance disability. The proportion of total

variation of balance and cognitive/concentration explained by the total area under

MMSD is similar in the first and third window. In addition, this feature also shows



a strong relationship with daily activities in the first window.

Importance of gait phases. Statistical features individually contribute to ex-

plain variance in different disability measures. To motivate the significance of event-

specific analysis, we generate LRMs MY
X , predicting response Y using independent

variables X, with

• X ∈{Spectral features from Table 8.1}

• Y ∈ {Clinical data discussed in Chapter 3}

The adjusted R2 values from LRMs are given in Table 8.3.

From previous studies and work presented in this dissertation, we already know

that gait cycles capture physical and neurologic disability in MS, as is also validated

from R2 values given in the last column of Table 8.3. But the interesting finding is

that most of the cognition and fatigue related information is present only in the third

window. Thus, the TO to mid-swing phase of a gait cycle gives as much information,

regarding the MS-induced fatigue and cognitive deterioration, as does the the state

of an entire gait cycle

The goal of extracting phase-specific spectral features is to identify precise impact

of MS symptoms on gait cycle components. This information could be used to develop

disease-modifying therapies and exercises. The clinical relevance of spectral features

to the three gait phases is given below:

1. Window I (Mid-swing to HS). This phase is a predictor of motor problems,

captured using all MSWS components and its total score, tasks of daily living,

and performance scale on mobility.

2. Window II (Foot-flat). It might not be intuitive, but findings suggest that

the disturbed state of the gait between HS and TO (when the foot touches



the ground and completely settles on it, before being carried forward into the

next stride), indicates limitations in performing instrumental activities of daily

living, namely, “getting beyond walking distance”, “grocery shopping”, and

“doing laundry”, in the order of the strongest to weakest prediction, as apparent

from the Table 8.3.

3. Window III (TO to mid-swing). This is the acceleration phase, the one

in which forward movement is being made in order to carry the body weight

forward. This phase is a measure of overall disability status, including physical,

functional, and most importantly, cognitive components. In fact, it is the only

phase that explains the variance in clinical data quantifying impact of fatigue

on persons with MS. The clinical categories include MFIS (Q 4, 6, 9-10, 13, 20

and total score), SF36 (Q4 d and g), all MSWS components and its total score,

FSS components (cerebellar, pyramidal, and bladder), and EDSS.

8.5 Summary

Gait cycles capture physical and neurologic disability in MS, as is also validated

from previous studies and results presented in this dissertation. Based on event-

specific study, we found that most of the information regarding disability in persons

with MS is contained in the TO to mid-swing and mid-swing to HS phases. The

mid-swing to HS phase is specific to motor function. The TO to mid-swing phase

is indicative of overall health status, including functional, physical, and cognitive

components. Most importantly, it is the only phase that measures the impacts of

motor-fatigue on persons with MS. So analyzing TO to mid-swing phase of a gait

cycle to measure MS-induced fatigue and cognitive impairment is as good as analyzing

the state of an entire gait cycle. It is interesting to know that the the foot-flat



phase, the transition between HS and TO, showed statistically strong and significant

relationships to patient-reported outcomes regarding the limitations in performing

activities of daily living.

We conclude that the event-based analysis could help researchers and clinicians

identify precise impact of MS symptoms on gait cycle components, and therefore, on

neurological, functional, and physical functions. We believe that this information is

specific and could be used to better understand the personal needs of an individual

and develop customized disease-modifying therapies and exercises.



Table 8.3: The adjusted R2 showing the proportion of variance in
clinical sub-scores as explained by the spectral features

Clinical data1 Window I Window II Window III Complete gait cycle2

SF36 Q4d - - 23.3 -
SF36 Q4g - - 22.0 -
MFIS Q13 - - 22.1 -
MFIS total - - 20.5 20.3
FSS cerebellar - - 21.5 20.8
Performance scale spasticity - - - 20.9
MFIS Q21 - - - 22.2
Performance scale fatigue - - - 22.3
MFIS Q4 - - 23.6 24.3
MFIS Q10 - - 25.6 26.0
MFIS Q17 - - - 26.1
Hand function - - - 26.4
FSS pyramidal - - 28.1 26.6
MFIS Q20 - - 26.8 29.1
LLE Ashworth - - - 30.5
MFIS Q6 - - 29.9 30.8
SF36 Q4j - - - 32.8
MFIS Q9 - - 27.3 33.7
MSWS Q2 20.9 - - 37.1
FSS bladder - - 22.8 37.1
RLE Ashworth - - - 38.6
MSWS Q4 23.1 - 21.9 39.6
MSWS Q12 24.1 - 42.4 39.7
MSWS Q6 23.2 - 39.1 40.0
Preparing meals 41.1 - - 42.0
Getting beyond walking distance 44.0 33.3 - 43.2
Doing housework 37.9 - - 43.8
MSWS Q11 28.0 - 38.2 45.8
MSWS Q5 25.7 - 39.4 46.0
MSWS Q7 25.1 - 41.2 46.5
Grocery shopping 49.7 33.0 - 46.6
MSWS Q10 29.2 - 31.2 47.5
MSWS Q1 31.3 - 32.7 49.0
Doing laundry 48.4 22.2 - 49.6
MSWS Q3 29.7 - 40.9 50.7
MSWS total 31.5 - 44.0 51.2
MSWS Q8 35.9 - 42.7 52.5
EDSS 31.6 - 40.3 54.7
IADL score 53.7 - - 55.3
PDDS 36.8 - 28.6 59.5
MSWS Q9 39.1 - 40.9 60.5
Performance scale mobility 37.2 - 38.0 63.4

1 From Table 3.1
2 Rows are sorted in order of increasing adjusted R2 values for complete gait cycle



Chapter 9

SUMMARY AND CONCLUSION

Walking, an act of repeating cyclic gestures or gait cycles, is known to be a

complex cognitive task. To carry out this task, the nervous system and musculo-

skeletal system must function and coordinate properly to generate a sequence of

events to complete the process of walking. Thus, the quality of walking is degraded if

neurology is disturbed or if the communication between the nervous system and the

rest of the body is interrupted. Gait dynamics carry substantial information about

human heath as do other vital signals such as heartbeat and pulse. Gait analysis has

become a handy tool in medicine and general fitness and health maintenance.

Our research goals were characterizing MS-affected gait using inertial data and

mining their physiological significance. Existing literature targets finding gait vari-

ables that improve separability performance to distinguish between controls and MS

subjects with or without reference to MS disability levels, assigned using a subjective,

ordinal scale. Often, the relationships between inertial gait variables and clinical data

are not explored. We developed gait markers taking into account a few of the current

unmet needs. Our inertial markers verify three hypotheses:

1. There is an inverse relationship between stride time stability and worsening of
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symptoms (results in Chapter 6).

2. The peaks of kernel density estimates verify that pathologic gait in MS is re-

stricted and less variable in comparison to a healthy gait (results in Chapter 7).

3. The disturbances in various gait phases predict distinct types of MS-induced

disabilities (results in Chapter 8).

Our results also suggest that in the early stages of the disease, when motor functions

are not significantly affected, the walk appears normal, i.e., gait variables of persons

with MS may be statistically similar to those of control subjects. Thus, mild MS

subjects are difficult to distinguish since their features overlap with control subjects.

To make our test measures accessible for the doctor, we used a data mining per-

spective to discover the relationships of gait variables with clinical data. Regression

results show that subjects with similar self- or physician-rated clinical scores might

not belong to the same group (or the other way around), either due the fact that

subjective ratings are imprecise, insensitive to subtle changes in gait, or because of

the impact of type and severity of symptoms on specific functions.

The components of MSWS, MFIS, and FSS can be grouped into four groups,

intended to gauge the crucial types of disabilities caused by MS, namely, weakness,

physical fatigue, balance, and cognitive/concentration. To investigate the physiological

significance of our feature space, we perform a regression analysis to determine the

proportion of variation in inertial features as explained by the domains of MS-induced

disability, in terms of the adjusted R2. The results are summarized in Table 9.1.

The feature space shows significant correlations with various types of MS-induced

disability, although some of the relationships are stronger than others. Table 9.2

show the % contributions of MS disability groups to the inertial measures.



Table 9.1: Summary of the results from Chapters 6 to 8

Inertial measures Weakness Physical Balance Cognitive/
fatigue concentration

6MWT speed 77.81 63.6 76.7 68.9
Stride time SD, σst 56.9 29.4 54.4 52.5
Stride time gradient,
∆6MWT

41.8 16.6 38.9 51.5

KDE peak, ρ 53.9 30.8 60.0 38.4

MMSD peak, hm 44.0 34.4 40.4 44.2
MMSD bandpower, Pband 56.3 35.2 54.2 50.0
Mean frequency, fmean 22.2 18.6 21.2 35.1
Median frequency, fmedian 40.1 25.2 35.5 24.8
Total area under MMSD,
PMMSD

47.3 35.9 43.3 39.7

Total area under main lobe
of MMSD, Pmain

33.5 23.2 31.0 31.9

1 The adjusted R2 values, the proportion of variation in different inertial measures as ex-
plained by the distinct MS disabilities, are shown.

Table 9.2: The % contributions of various aspects of
disability in MS to the inertial measures

Inertial measures Weakness Physical Balance Cognitive/
fatigue concentration

6MWT speed 27.1 22.2 26.7 24.0
Stride time SD, σst 29.5 15.2 28.7 27.2
Stride time gradient,
∆6MWT

28.1 11.2 26.2 34.6

KDE peak, ρ 29.4 16.8 32.8 21.0

MMSD peak, hm 27.0 21.1 24.8 27.1
MMSD bandpower, Pband 28.8 18.0 27.7 25.5
Mean frequency, fmean 22.9 19.1 21.8 36.1
Median frequency, fmedian 31.9 20.1 28.2 19.7
Total area under MMSD,
PMMSD

28.4 21.6 26.1 23.9

Total area under main lobe
of MMSD, Pmain

28.0 19.4 25.9 26.7

Walking speed is the core of clinical assessments as a best measure of neurologic

and motor disability. Our results show that walking speed has the strongest relation-



ships to all the aspects of MS disability. The association of walking speed with various

neurological impairment affecting walking is intuitive, and has also been validated by

many past studies. Thus, walking speed is an indicator of overall health and mobility

status. Other inertial measures are more specialized but are not intended to serve as

substitutes for walking speed, but rather to supplement it.

Without proper management of symptoms, the disease progresses, and impairment

worsens, and the four types of impairment no longer remain disjoint. For example,

cognitive/concentration problems may lead to balance problems. Hence, although

capturing distinct types of disabilities, the inertial measures show correlations to all

the disability categories, with some relations being stronger than the others.

The MMSD peak has equally strong and significant relationships with the weak-

ness and cognitive/concentration. Both standard deviation stride time and its gradi-

ent have the weakest relationship with physical fatigue, the corresponding adjusted

R2 value for the gradient is, however, surprisingly small. Interestingly, the gradient

of the stride time is the most sensitive to impairment in cognition or concentration

than other types of disabilities, with a difference of ≈ 10% more than the other cate-

gories. Thus, a high gradient value is more of a result due to problems in cognition or

concentration that those in weakness or balance. Peak of the kernel density estimate

is the best indicator of weakness and balance issues, and thus can be used to predict

fall risk. The band power and stride time standard deviation give similar informa-

tion regarding weakness, balance, or cognitive/concentration problems, but the band

power also has a relatively strong relationships with the physical fatigue. The mean

frequency is particularly is the most sensitive to cognitive/concentration, and thus

can be used as an effective objective measure to quantify the impaired cognition or

concentration. These correlations validate inertial features as useful clinical anchors.

For visualization, values given in the Table 9.1 and Table 9.2 are plotted in Fig. 9.1



and Fig. 9.2, respectively.

Fig. 9.1: The variance in gait features explained by MS disability aspects

Fig. 9.2: The % contributions of MS disabilities to the inertial measures



One of our motivations for looking at gait data is to determine whether there are

features which vary across the MS population but do not correlate strongly with any

clinically obtained data. Although the KDE peak shows significant relationships with

the clinical data specific to weakness and balance deterioration, the gait amplitude

at which the KDE peak occurs did not show any relationship with the clinical data.

This can be investigated further as it might be an indication of missing information

from the clinical assessments.

Numerous questionnaires are developed to assess the physical and cognitive dis-

ability in MS, e.g., the gait imparment in MS is captured using MSWS as well as a

performance scale on mobility. The inertial features show strong relationship with

both metrics. As future work, a study can be conducted to determine which scale is

better based on its relationships with various gait parameters.

EDSS based categorizations of subjects into disease severity groups are not sharp,

especially for low disability groups (0 ≤EDSS≤ 4). The classifications of MS subjects

using the PROs are, in fact, more telling, and also track with the inertial measures.

EDSS is a composite score, with some of the scores not directly related to walking

quality, such as vision. In the future, these correlations between the EDSS, PROs,

and inertial measures can be carefully studied to refine EDSS. The best combina-

tions of the inertial features should be identified to help assess and predict disability.

Moreover, some of the inertial features have similar physiological meaning, e.g., the

KDE peak and the median frequency of MMSD contribute equally to balance and

weakness. A way to determine the best-suited measure depending on the clinical or

research goal is needed. Last but not the least, the adaptability of these measures to

other neurological disorders should be tested.

Our work is intended towards more comprehensive exploration of inertial features

and discovering their physical significance to add clinical utility to them. Our new,



objective anchors can be used in addition to traditional speed-based assessments

and/or other inertial features available in literature, to improve physician’s capacity

to monitor the disease and its progression, evaluate the effectiveness of the treatments,

follow recovery and rehabilitation, tailor subjective assessments based on individual

needs, and guide out-of-clinic, self-management of symptoms by the individuals. Al-

though our goals were motivated by the study a specific neurological disorder, the

developed test measures could be adapted for gait assessments and monitoring in

other neurological disorders affecting gait or balance, fall risk prediction, and general

health and wellness applications. We believe that, through this research, we have

augmented the existing information and on-going research to support medical and

research community, and done a small part in improving the quality of life.



Appendix

Subjective Questionnaires

Clinical data comprising of patient-reported and physician-reported clinical sub-

scores are obtained using standard forms. Following questionnaires are attached in

the appendix:

1. Functional systems scores (FSS) [7]

2. Expanded disability status scale (EDSS) [7]

3. Multiple sclerosis walking scale (MSWS) [48, 95]

4. Modified fatigue impact scale (MFIS) [10]

5. Health status questionnaire (SF36) [10, 96]

6. Patient-determined disease steps (PDDS) [98]

7. Performance scales for mobility, hand, vision, fatigue, cognitive, bladder/bowel,

sensory, spasticity, pain, depression, and tremor [92]

8. Modified Ashworth [94]
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Kurtzke Functional Systems Scores (FSS) 
 
 

❏ Pyramidal Functions 
0 -  Normal 
1 -  Abnormal signs without disability 
2 -  Minimal disability 
3 -  Mild to moderate paraparesis or hemiparesis (detectable weakness but most 

function sustained for short periods, fatigue a problem); severe monoparesis (almost 
no function) 

4 -  Marked paraparesis or hemiparesis (function is difficult), moderate quadriparesis 
(function is decreased but can be sustained for short periods); or monoplegia 

5 -  Paraplegia, hemiplegia, or marked quadriparesis 
6 -  Quadriplegia 
9 -  (Unknown) 

 
 

❏ Cerebellar Functions  
0 -  Normal 
1 -  Abnormal signs without disability 
2 -  Mild ataxia (tremor or clumsy movements easily seen, minor interference with 

function) 
3 -  Moderate truncal or limb ataxia (tremor or clumsy movements interfere with function 

in all shpheres) 
4 -  Severe ataxia in all limbs (most function is very difficult) 
5 -  Unable to perform coordinated movements due to ataxia 
9 -  (Unknown) 

❏ Record #1 in small box when weakness (grade 3 or worse on pyramidal) interferes with 
testing. 
 
 

❏ Brainstem Functions 
0 -  Normal 
1 -  Signs only 
2 -  Moderate nystagmus or other mild disability 
3 -  Severe nystagmus, marked extraocular weakness, or moderate disability of other 

cranial nerves 
4 -  Marked dysarthria or other marked disability 
5 -  Inability to swallow or speak 
9 -  (Unknown) 
 



❏ Sensory Function 
0 -  Normal 
1 -  Vibration or figure-writing decrease only in one or two limbs 
2 -  Mild decrease in touch or pain or position sense, and/or moderate decrease in 

vibration in one or two limbs; or vibratory (c/s figure writing) decrease alone in three 
or four limbs 

3 -  Moderate decrease in touch or pain or position sense, and/or essentially lost 
vibration in one or two limbs; or mild decrease in touch or pain and/or moderate 
decrease in all proprioceptive tests in three or four limbs 

4 -  Marked decrease in touch or pain or loss of proprioception, alone or combined, in 
one or two limbs; or moderate decrease in touch or pain and/or severe 
proprioceptive decrease in more than two limbs 

5 -  Loss (essentially)  of sensation in one or two limbs; or moderate decrease in touch 
or pain and/or loss of proprioception for most of the body below the head 

6 -  Sensation essentially lost below the head 
9 -  (Unknown) 
 
 

❏ Bowel and Bladder Function 
 (Rate on the basis of the worse function, either bowel or bladder) 

0 -  Normal 
1 -  Mild urinary hesitance, urgency, or retention 
2 -  Moderate hesitance, urgency, retention of bowel or bladder, or rare urinary 

incontinence (intermittent self-catheterization, manual compression to evacuate 
bladder, or finger evacuation of stool) 

3 -  Frequent urinary incontinence 
4 -  In need of almost constant catheterization (and constant use of measures to 

evacuate stool) 
5 -  Loss of bladder function 
6 -  Loss of bowel and bladder function 
9 -  (Unknown) 

 



❏ Visual Function 
0 -  Normal 
1 -  Scotoma with visual acuity (corrected) better than 20/30 
2 -  Worse eye with scotoma with maximal visual acuity (corrected) of 20/30�20/59 
3 -  Worse eye with large scotoma, or moderate decrease in fields, but with maximal 

visual acuity (corrected) of 20/60�20/99 
4 -  Worse eye with marked decrease of fields and maximal visual acuity (corrected) of 

20/100�20/200; grade 3 plus maximal acuity of better eye of 20/60 or less 
5 -  Worse eye with maximal visual acuity (corrected) less than 20/200; grade 4 plus 

maximal acuity of better eye of 20/60 or less 
6 -  Grade 5 plus maximal visual acuity of better eye of 20/60 or less 
9 -  (Unknown) 

❏ Record #1 in small box for presence of temporal pallor 
 
 

❏ Cerebral (or Mental) Functions 
0 -  Normal 
1 -  Mood alteration only (does not affect EDSS score)  
2 -  Mild decrease in mentation 
3 -  Moderate decrease in mentation 
4 -  Marked decrease in mentation (chronic brain syndrome � moderate) 
5 -  Dementia or chronic brain syndrome � severe or incompetent 
9 -  (Unknown) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sources: Kurtzke JF.  Rating neurologic impairment in multiple sclerosis: an expanded disability status scale 
(EDSS). Neurology. 1983 Nov;33(11):1444-52.  

 
  Haber A, LaRocca NG. eds.  Minimal Record of Disability for multiple sclerosis.  New York: National 

Multiple Sclerosis Society; 1985. 
 



Kurtzke Expanded Disability Status Scale (EDSS) 
 

 
❏  0.0 - Normal neurological exam (all grade 0 in all Functional System (FS) scores*). 
 
❏  1.0 - No disability, minimal signs in one FS* (i.e., grade 1).  
 
❏  1.5 - No disability, minimal signs in more than one FS* (more than 1 FS grade 1). 
 
❏  2.0 - Minimal disability in one FS (one FS grade 2, others 0 or 1). 
 
❏  2.5 - Minimal disability in two FS (two FS grade 2, others 0 or 1). 
 
❏  3.0 - Moderate disability in one FS (one FS grade 3, others 0 or 1) or mild disability in three or 

four FS (three or four FS grade 2, others 0 or 1) though fully ambulatory.  
 
❏  3.5 - Fully ambulatory but with moderate disability in one FS (one grade 3) and one or two FS 

grade 2; or two FS grade 3 (others 0 or 1) or five grade 2 (others 0 or 1). 
 
❏  4.0 - Fully ambulatory without aid, self-sufficient, up and about some 12 hours a day despite 

relatively severe disability consisting of one FS grade 4 (others 0 or 1), or combination of 
lesser grades exceeding limits of previous steps; able to walk without aid or rest some 500 
meters.  

 
❏  4.5 - Fully ambulatory without aid, up and about much of the day, able to work a full day, may 

otherwise have some limitation of full activity or require minimal assistance; characterized 
by relatively severe disability usually consisting of one FS grade 4 (others or 1) or 
combinations of lesser grades exceeding limits of previous steps; able to walk without aid 
or rest some 300 meters.  

 
❏  5.0 - Ambulatory without aid or rest for about 200 meters; disability severe enough to impair 

full daily activities (e.g., to work a full day without special provisions); (Usual FS 
equivalents are one grade 5 alone, others 0 or 1; or combinations of lesser grades usually 
exceeding specifications for step 4.0).  

 
❏   5.5 - Ambulatory without aid for about 100 meters; disability severe enough to preclude full 

daily activities; (Usual FS equivalents are one grade 5 alone, others 0 or 1; or combination 
of lesser grades usually exceeding those for step 4.0). 

 
❏   6.0 - Intermittent or unilateral constant assistance (cane, crutch, brace) required to walk about 

100 meters with or without resting; (Usual FS equivalents are combinations with more than 
two FS grade 3+). 

 



❏   6.5 - Constant bilateral assistance (canes, crutches, braces) required to walk about 20 meters 
without resting; (Usual FS equivalents are combinations with more than two FS grade 
3+). 

 
❏   7.0 - Unable to walk beyond approximately 5 meters even with aid, essentially restricted to 

wheelchair; wheels self in standard wheelchair and transfers alone; up and about in 
wheelchair some 12 hours a day; (Usual FS equivalents are combinations with more than 
one FS grade 4+; very rarely pyramidal grade 5 alone). 

 
❏   7.5 - Unable to take more than a few steps; restricted to wheelchair; may need aid in transfer; 

wheels self but cannot carry on in standard wheelchair a full day; May require motorized 
wheelchair; (Usual FS equivalents are combinations with more than one FS grade 4+). 

 
❏   8.0 - Essentially restricted to bed or chair or perambulated in wheelchair, but may be out of 

bed itself much of the day; retains many self-care functions; generally has effective use of 
arms; (Usual FS equivalents are combinations, generally grade 4+ in several systems). 

 
❏   8.5 - Essentially restricted to bed much of day; has some effective use of arm(s); retains some 

self-care functions; (Usual FS equivalents are combinations, generally 4+ in several 
systems). 

 
❏   9.0 - Helpless bed patient; can communicate and eat; (Usual FS equivalents are 

combinations, mostly grade 4+). 
 
❏   9.5 - Totally helpless bed patient; unable to communicate effectively or eat/swallow; (Usual FS 

equivalents are combinations, almost all grade 4+). 
 
❏  10.0 - Death due to MS.  
 

 
 
*Excludes cerebral function grade 1. 
 
Note 1: EDSS steps 1.0 to 4.5 refer to patients who are fully ambulatory and the precise step 

number is defined by the Functional System score(s).  EDSS steps 5.0 to 9.5 are defined by 
the impairment to ambulation and usual equivalents in Functional Systems scores are 
provided.   

 
Note 2: EDSS should not change by 1.0 step unless there is a change in the same direction of at 

least one step in at least one FS. 
 
 
 
Sources: Kurtzke JF.  Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). 

Neurology. 1983 Nov;33(11):1444-52.  
 
  Haber A, LaRocca NG. eds.  Minimal Record of Disability for multiple sclerosis.  New York: National Multiple 

Sclerosis Society; 1985. 



Twelve Item MS Walking Scale (MSWS-12)
Record form

To be completed by the healthcare professional
Total score  out of 60

Percentage %

Subject ID Number

Date 
Questionnaire 
Completed

Subject Initials Day Month Year

In the past two weeks,  
how much has your MS . . .

Not at all A little Moderately
Quite 
a lot

Extremely

1. Limited your ability to walk? 1 2 3 4 5

2. Limited your ability to run? 1 2 3 4 5

3.  Limited your ability to climb up and down stairs? 1 2 3 4 5

4.  Made standing when doing things more difficult? 1 2 3 4 5

5.  Limited your balance when standing or walking? 1 2 3 4 5

6. Limited how far you are able to walk? 1 2 3 4 5

7.  Increased the effort needed for you to walk? 1 2 3 4 5

8.  Made it necessary for you to use support when 
walking indoors (eg holding on to furniture,  
using a stick, etc.)?

1 2 3 4 5

9.  Made it necessary for you to use support when 
walking outdoors (eg using a stick, a frame, etc.)?

1 2 3 4 5

10. Slowed down your walking? 1 2 3 4 5

11. Affected how smoothly you walk? 1 2 3 4 5

12. Made you concentrate on your walking? 1 2 3 4 5

If you cannot walk at all, please tick this box   

From the numbers you circle against these questions, your healthcare professional can calculate your MSWS-12 score. This is done 
by adding the numbers you have circled, giving a total out of 60, and then transforming this to a scale with a range from 0 to 100. 
Higher scores indicate a greater impact on walking than lower scores.

© 2010 Biogen Idec GmbH 
Date of preparation: February 2011



MFIS-1

Patient's Name:                                       Date:    _____/____/____
                                 month  day  year

ID#:   _____________________ Test#:          1     2     3     4

MODIFIED FATIGUE IMPACT SCALE (MFIS)

Following is a list of statements that describe how fatigue may affect a person.  Fatigue
is a feeling of physical tiredness and lack of energy that many people experience from
time to time.  In medical conditions like MS, feelings of fatigue can occur more often
and have a greater impact than usual.  Please read each statement carefully, and then
circle the one number that best indicates how often fatigue has affected you in this way
during the past 4 weeks.   (If you need help in marking your responses, tell the
interviewer the number of the best response.)  Please answer every question.  If you are
not sure which answer to select, please choose the one answer that comes closest to
describing you.  The interviewer can explain any words or phrases that you do not
understand.
       
Because of my fatigue
during the past 4 weeks....
                                                              

                          Almost
      Never   Rarely   Sometimes    Often    always         

                
1. I have been less alert.   0  1     2 3       4

2. I have had difficulty
paying attention for
long periods of time. 0  1     2 3       4

3. I have been unable to
think clearly. 0  1     2 3       4

4. I have been clumsy
and uncoordinated. 0  1     2 3       4

5. I have been forgetful. 0  1     2 3       4

6. I have had to pace myself
in my physical activities. 0  1     2 3       4

7. I have been less motivated
to do anything that requires
physical effort. 0  1     2 3       4



MFIS-2

Because of my fatigue
during the past 4 weeks....
                                                               

                                                           Almost
           Never   Rarely   Sometimes    Often    always    
8. I have been less motivated

to participate in social
activities. 0  1     2 3       4

 9. I have been limited in my
ability to do things away 
from home. 0  1     2 3       4

10. I have had trouble
maintaining physical effort
for long periods. 0  1     2 3       4

11. I have had difficulty
making decisions. 0  1     2 3       4

12. I have been less motivated to 
do anything that requires 
thinking. 0  1     2 3       4

13. my muscles have felt weak. 0  1     2 3       4

14. I have been physically
uncomfortable. 0  1      2 3       4

15. I have had trouble finishing
tasks that require thinking. 0  1      2 3       4

16. I have had difficulty
organizing my thoughts
when doing things at home
or at work. 0  1      2 3      4

17. I have been less able to
complete tasks that require
physical effort. 0  1      2 3      4 

18. my thinking has been 
slowed down. 0  1      2 3      4

19. I have had trouble
concentrating. 0  1      2 3      4



MFIS-3

Because of my fatigue
during the past 4 weeks....
                                                               

         Almost
           Never   Rarely   Sometimes    Often    always     
20. I have limited my 

physical activities. 0  1      2 3      4

21. I have needed to rest more
often or for longer periods. 0  1      2 3      4



SF36-1

Patient's Name:                                        Date:         _____/____/____
                         month day year

ID#:   ____________________             Test#:         1     2     3     4

HEALTH STATUS QUESTIONNAIRE (SF-36)

INSTRUCTIONS
This survey asks for your views about your health and daily activities.  If you are
marking your own answers, please circle the appropriate responses (0, 1, 2,...).  If you
need help in marking your responses, tell the interviewer the number of the best
response (or what to fill in).  Please answer every question.  If you are not sure which
answer to select, please choose the one answer that comes closest to describing you.  The
interviewer can explain any words or phrases that you do not understand.

1. In general, would you say your health is:

Excellent         Very Good  Good          Fair             Poor
1      2      3             4     5

2. For each statement please circle the one number that indicates  how true or false
that statement is for you.

Definitely
True

Mostly
True

Not
Sure

Mostly
False

Definitely
False

a) I seem to get sick a little
    easier than other people. 1    2 3 4 5

b) I am as healthy as 
    anybody I know. 1    2 3 4 5

c) I expect my health to get
    worse. 1   2 3 4 5

d) My health is excellent. 1    2 3 4 5

3. Compared to one year ago, how would you rate your health in general now?

Much    Somewhat  Somewhat Much
Better      Better     Same     Worse Worse
   1         2        3          4     5

© Quality Quest, Inc., 1989
All Rights Reserved



SF36-2

4. Now, think about the activities you might do on a typical day.  Does your health
limit you in these activities?  If so, how much?  Please circle 1, 2 or 3 for each item
to indicate how much your health limits you.

a) Vigorous activities, such as
    running, lifting heavy objects,
    participating in strenuous sports

Yes,
Limited
A Lot

1

Yes,
Limited
A Little

2

No, Not
Limited
At All

3

b) Moderate activities, such as moving
    a table, pushing a vacuum cleaner
    or bowling, or playing golf 1 2 3

c) Lifting or carrying groceries 1 2 3

d) Climbing several flights of stairs 1 2 3

e) Climbing one flight of stairs 1 2 3

f) Bending, kneeling, or stooping 1 2 3

g) Walking more than a mile 1 2 3

h) Walking several blocks 1 2 3

i) Walking one block 1 2 3

j) Bathing and dressing yourself 1 2 3

5. During the past 4 weeks, have you had any of the following problems with your
work or other regular daily activities as a result of your physical health?  Please
circle "1" (Yes) or "2" (No) for each item.

YES NO

a) Cut down on the amount of time you spent on work
    or other activities

 
1 2

b) Accomplished less than you would like 1 2



SF36-3

During the past 4 weeks, have you had any of the following problems with your work
or other regular daily activities as a result of your physical health?  Please circle "1"
(Yes) or "2" (No) for each item.

YES NO

c) Were limited in the kind of work or other activities 1 2

d) Had difficulty performing the work or other activities
(for example, it took extra effort)

1 2

6. How much bodily pain have you had during the past 4 weeks?

None      Very mild           Mild Moderate     Severe    Very severe
   1  2    3       4         5             6

7. During the past 4 weeks, how much did pain interfere with your normal work
(including work both outside the home and housework)?

Not at all    A little bit         Moderately        Quite a bit       Extremely
1 2       3     4    5

8. During the past 4 weeks, have you had the following problems with your work or
other regular daily activities as a result of any emotional problems (such as feeling
depressed or anxious)?  Please circle "1" (Yes) or "2" (No) for each item.

YES NO

a)  Cut down on the amount of time you spent on work
     or other activities 1 2

b) Accomplished less than you would like 1 2

c) Did do work or other activities less carefully than usual 1 2

9. During the past 4 weeks, to what extent have your physical health or emotional
problems interfered with your normal social activities with family, friends,
neighbors, or groups?

Not at all       Slightly          Moderately       Quite a bit      Extremely
      1 2       3    4   5



SF36-4

10. The next set of questions is about how you feel and how things have been with you
during the past 4 weeks.  For each question, please circle the one number for the
answer that comes closest to the way you have been feeling.

How much of the time 
during the past 4 weeks...

a) did you feel full of pep?

All
of the
Time

1

Most
of the
Time

2

A Good
Bit of

the Time

3

Some
of the
Time

4

A Little
of the
Time

5

None 
of the
Time

6

b) have you been a very
    nervous person? 1 2 3 4 5 6

c) have you felt so down in 
    the dumps nothing could 
    cheer you up? 1 2 3 4 5 6

d) have you felt calm and
     peaceful? 1 2 3 4 5 6

e) did you have a lot of 
    energy? 1 2 3 4 5 6

f) have you felt down
    hearted and blue? 1 2 3 4 5 6

g) did you feel worn out? 1 2 3 4 5 6

h) have you been a happy
    person? 1 2 3 4 5 6

i) did you feel tired? 1 2 3 4 5 6

11. Finally, during the past 4 weeks, how much of the time has your physical health or
emotional problems intefered with your social activities (like visiting with friends,
relatives, etc.)?

All of the   Most of the Some of the       A little of             None of the
    time       time              time        the time                  time

1         2                    3  4                5



PDDS 
Patient-determined Disease Steps 

Please read the choices listed below and choose the one that best describes your own 
situation. This scale focuses mainly on how well you walk. Not everyone will find a 
description that reflects their condition exactly, but please mark the one category that 
describes your situation the closest. 

 
� 0 Normal: I may have some mild symptoms, mostly sensory due to MS but 

they do not limit my activity. If I do have an attack, I return to normal when 
the attack has passed.  

� 1 Mild Disability: I have some noticeable symptoms from my MS but they 
are minor and have only a small effect on my lifestyle. 

� 2 Moderate Disability: I don't have any limitations in my walking ability. 
However, I do have significant problems due to MS that limit daily 
activities in other ways. 

� 3 Gait Disability: MS does interfere with my activities, especially my 
walking. I can work a full day, but athletic or physically demanding 
activities are more difficult than they used to be. I usually don't need a cane 
or other assistance to walk, but I might need some assistance during an 
attack. 

� 4 Early Cane: I use a cane or a single crutch or some other form of support 
(such as touching a wall or leaning on someone's arm) for walking all the 
time or part of the time, especially when walking outside. I think I can walk 
25 feet in 20 seconds without a cane or crutch. I always need some 
assistance (cane or crutch) if I want to walk as far as 3 blocks. 

� 5 Late Cane: To be able to walk 25 feet, I have to have a cane, crutch or 
someone to hold onto. I can get around the house or other buildings by 
holding onto furniture or touching the walls for support. I may use a scooter 
or wheelchair if I want to go greater distances. 

� 6 Bilateral Support: To be able to walk as far as 25 feet I must have 2 canes 
or crutches or a walker. I may use a scooter or wheelchair for longer 
distances. 

� 7 Wheelchair / Scooter: My main form of mobility is a wheelchair. I may be 
able to stand and/or take one or two steps, but I can't walk 25 feet, even 
with crutches or a walker. 

� 8 Bedridden:  Unable to sit in a wheelchair for more than one hour. 

Subject’s Initials ___________________ 
Study ID #   ___________________ 
Date ____________________________ 



PERFORMANCE SCALES 

Instructions: These scales are meant to describe some of the different kinds of 
disabilities people with MS may have. Some of these problems may have to do with MS, 
and for some you may not be so sure. Do not be concerned by this. We are interested in 
any problem you have with each aspect of your functioning, regardless of whether it is 
due to MS, medication or some other health problem. By "normal", we mean the way you 
were before you developed MS. 

MOBILITY 
On the next two pages are categories of mobility disability. Each category has some 
examples included to help you decide. All of the examples within a category may not 
apply to you. Please read all of the categories; check the single category that best 
describes your average condition in the past month. Compare your current condition to 
your mobility before you developed MS. 

� 0 Normal: Functionally normal walking and running. 
x Although I have MS and some symptoms, my walking or running is not 

limited. 
 

� 1 Minimal Gait Disability: Minor but noticeable effects on mobility. 
x I am making minor adjustments in my work or lifestyle because of some 

difficulty in walking. 
x I have given up some particularly strenuous activities because of 

walking problems. 
 

� 2 Mild Gait Disability: Noticeable effects on mobility. 
x I have to park closer to my destination because of difficulty in walking. 
x I have given up some activities, such as long shopping trips, dancing, 

hiking, or other activities that require a lot of walking. 
 

� 3 Occasional Use of Cane or Unilateral Support: May use cane or 
unilateral support (e.g., spouse's arm) outside for greater distances.  
x I find myself using the wall, other people's arms, or furniture, to help 

support my walking at times, but I can walk at least 25 feet (i.e., 2 car 
lengths) without any support. 

x I do not use a cane or similar support around the house, but do use it 
when I leave the house. I use a cane or similar support to avoid looking 
like I am drunk. 

x I carry a cane even if I do not use it, because it makes me feel more 
secure. 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



 
 
� 4 Frequent Use of Cane: Unable to walk 25 feet (i.e., 2 car lengths) without 

a cane/unilateral support. 
 

x I need a cane or similar support to get around in the house, as well as 
outside.  I need to use a wall, furniture, or other people's arms to allow 
me to walk short distances (i.e., less than 25 feet).  

x I do not walk anywhere without using some support on one side (e.g., 
wall, furniture, pushing shopping cart, cane, someone’s arm). 

 
� 5 Severe Gait Disability�Bilateral Support: Requires bilateral support 

(e.g., crutches, walker) to walk 25 feet (i.e., 2 car lengths). 
x I need to hold onto something with both hands in order to walk 25 feet 

or more.  
x I have to use two crutches, walker, or a pushcart in order to walk most 

of the time. 
 

� 6 Total Gait Disability or Bedridden: Essentially confined to a wheelchair; 
may be able to take 1 or 2 steps. 
x Even though I can take a step or two on my own, I need to use a 

wheelchair for any distances greater than 25 feet (i.e., 2 car lengths). 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



HAND FUNCTION 
Please read all of the categories and check the single category which best describes your 
worst hand function condition in the past month. Compare your current condition to 
your hand function before you developed MS. 
 

� 0 Normal: Hands are functionally normal. 
x Although I have MS and some symptoms, my hands have not been 

affected. 
 

� 1 Minimal Hand Disability 
x I have some problems with my hands, but it has not changed my 

activities. 
x I do not write as well as I used to. 

 
� 2 Mild Hand Disability 

x I am making a few adjustments in my activities because of some 
difficulty with coordination, shaking, and strength in my hands. 

x I have reduced some activities requiring fine hand control, such as 
writing, handicrafts, typing, etc. 
 

� 3 Moderate Hand Disability 
x I am making many adjustments in my activities due to hand problems. 

 
� 4 Severe Hand Disability 

x I have given up important activities due to hand problems. 
 I am still able to do my activities, but they take me much longer.  

 
� 5 Total Hand Disability 

x Every day, difficulty with my hands prevents me from doing many of 
my activities. 

 
 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



VISION 
Please read all of the categories, and check the single category which best describes your 
overall visual condition (with glasses if you use them) over the past month. Compare 
your current condition to your vision before you developed MS. 
 

� 0 Normal Vision: Functionally normal; no limitations on activity or lifestyle. 
x MS has not affected my vision. 
x I wear glasses but otherwise my vision is normal. 

 
� 1 Minimal Visual Disability 

x My vision is normal, but it has been affected in the past by MS. 
 

� 2 Mild Visual Disability 
x I have visual symptoms of either blurred or double vision, but I am still 

able to do all of my usual activities. 
 

� 3 Moderate Visual Disability 
x Because of my visual problems, I have been forced to give up some of 

my usual activities, but after a period of rest I can usually return to these 
activities. 
 

� 4 Severe Visual Disability 
x I am no longer able to maintain my original lifestyle because of my 

vision, and rest does not seem to help my vision. 
x I can no longer drive a car because of my vision. 

 
� 5 Total Visual Disability 

x I am essentially blind. 
x I cannot read, even with aids. 

 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



FATIGUE 
Please read all of the categories, and check the single category that best describes your 
fatigue condition in the past month. Compare your current condition to your fatigue 
level before you developed MS. 
 

� 0 Normal Fatigue: Functionally normal; no limitations on activity or 
lifestyle. 
x I do not notice being fatigued. 
 

� 1 Minimal Fatigue Disability 
x I experience fatigue for no apparent reason, but it has not changed my 

activities. 
 

� 2 Mild Fatigue Disability 
x Fatigue occasionally forces me to change some of my activities (e.g., 

once a week or less). 
 

� 3 Moderate Fatigue Disability 
x Fatigue frequently forces me to change some of my activities (e.g., 

several times a week). 
 

� 4 Severe Fatigue Disability 
x Every day, fatigue forces me to modify my daily activities. 
x I am always tired. 

 
� 5 Total Fatigue Disability 

x Every day, fatigue prevents me from doing many of my daily activities. 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



COGNITIVE SYMPTOMS 
Problems with remembering, thinking, difficulties with calculations, confusion, difficulty 
remembering what you read, word recall, etc., compared to before you developed MS. 

Please read all of the categories, and check the single category which best describes your 
cognitive symptoms in the past month. Compare your current condition to your level 
of cognition before you developed MS. 

� 0 Normal Cognition: Functionally normal; no limitations on activity or 
lifestyle. 
x I have not noticed any problems with memory or confusion. 

 
� 1 Minimal Cognitive Disability 

x I notice some problems with memory or confusion, but they do not 
interfere with my activities. 
 

� 2 Mild Cognitive Disability 
x Memory problems or confusion occasionally affect some of my 

activities (e.g., once a week or less). 
 

� 3 Moderate Cognitive Disability 
 Memory problems or confusion frequently affect some of my activities 

(e.g., several times a week). 
 
� 4 Severe Cognitive Disability   

x I constantly need to allow for problems with memory or confusion in 
my daily activities. 

x  
� 5 Total Cognitive Disability 

x Every day, memory problems or confusion prevent me from doing many 
of my daily activities. 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



BLADDER / BOWEL 
Please read all of the categories, and check the single category which best describes your 
bladder or bowel symptoms in the past month even if you use a catheter or have had 
surgical procedures.  Compare your current condition to your bladder/bowel 
function before you developed MS. 
 

� 0 Normal Bladder/Bowel: Functionally normal; no limitations on activity or 
lifestyle. 
x I have not noticed any problems with my bladder or bowel control. 

 
� 1 Minimal Bladder/Bowel Disability 

x I have some problems with bladder or bowel control (e.g., urinary 
frequency, urgency or hesitancy), but it does not interfere with my 
activities. 

x I am aware of needing to control my bladder and bowel, and I do not 
have any problem with wetting or soiling. 
 

� 2 Mild Bladder/Bowel Disability   
x Bladder or bowel control problems occasionally affect some of my 

activities (e.g., once a week or less). 
x I have trouble controlling my bladder or bowel once a week or less (e.g., 

dribbling). 
 

� 3 Moderate Bladder/Bowel Disability 
x Bladder or bowel control problems frequently affect some of my 

activities (e.g., several times a week).  I have trouble controlling my 
bladder or bowel several times a week (e.g., wet or soil). 
 

� 4 Severe Bladder/Bowel Disability 
x Every day, bladder or bowel control problems force me to modify my 

daily activities. 
 

� 5 Total Bladder/Bowel Disability 
x Every day, bladder or bowel control problems prevent me from doing 

many of my daily activities. 
 
 
 
 
 
 
 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



SENSORY SYMPTOMS 
Problems with numbness, tingling, odd sensations, electric shock, burning, band-like 

sensation around trunk or extremities.  Do not include aching pain or headaches. 

Please read all of the categories, and check the single category that best describes your 
sensory symptoms in the past month.  Compare your current condition to your level of 
sensory function before you developed MS. 

� 0 Normal Sensory: Functionally normal; no limitations on activity or 
lifestyle. 
x I have not noticed any problems with numbness or tingling. 

� 1 Minimal Sensory Disability   
x I have some problems with numbness or tingling, but it does not 

interfere with my activities. 

� 2 Mild Sensory Disability 
x Numbness or tingling occasionally forces me to change some of my 

activities  (e.g., once a week or less). 

� 3 Moderate Sensory Disability 
x Numbness or tingling frequently affects some of my activities (e.g., 

several times a week). 

� 4 Severe Sensory Disability 
x Every day, numbness or tingling problems force me to modify my daily 

activities. 

� 5 Total Sensory Disability 
x Every day, numbness or tingling prevents me from doing many of my 

daily activities. 
 

Subject’s Initials ___________________ 
 
Study ID #   ___________________ 
 



SPASTICITY SYMPTOMS 
Unusual tightening of muscles that feels like leg stiffness, jumping of legs, a repetitive 

bouncing of the foot, muscle cramping in legs or arms or legs going out tight and straight 
or drawing up. 

Please read all the categories, and check the single category that most accurately 
describes your spasticity symptoms in the past month. Compare your current condition 
to your level of spasticity before you developed MS. 

� 0 Normal Spasticity: No symptoms of spasticity. 
x I have not noticed any problems with spasticity. 

 
� 1 Minimal Spasticity Disability 

x I notice some problems with spasticity, but they do not interfere with 
my activities. 

� 2 Mild Spasticity Disability   
x Spasticity occasionally forces me to change some of my activities (e.g., 

once a week or less). 

� 3 Moderate Spasticity Disability  
x Spasticity frequently affects some of my activities (e.g., several times a 

week). 

� 4 Severe Spasticity Disability 
x Every day, spasticity problems force me to modify my daily activities. 

� 5 Total Spasticity Disability 
x Every day, spasticity problems prevent me from doing many of my 

daily activities. 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



PAIN 
Please read all the categories, and check the single category that most accurately 
describes your pain (regardless of cause) in the past month. Compare your current 
condition to your experience before you developed MS. 

� 0 Normal: No symptoms of pain. 
x I have not noticed any problems with pain. 

� 1 Minimal Pain 
x I notice some problems with pain, but they do not interfere with my 

activities. 

� 2 Mild Pain 
x Pain occasionally forces me to change some of my activities (e.g., once 

a week or less). 

� 3 Moderate Pain 
x Pain frequently affects some of my activities (e.g., several times a 

week). 

� 4 Severe Pain 
x Every day, pain problems force me to modify my daily activities. 

� 5 Total Disabling Pain  
x Every day, pain problems prevent me from doing many of my daily 

activities. 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



 

DEPRESSION 
Please read all the categories, and check the single category which most accurately 
describes symptoms of depression in the past month. Compare your current condition 
to what you felt before you developed MS. 

� 0 Normal: No symptoms of depression. 
x I have not noticed any problems with depression. 

� 1 Minimal Depression 
x I notice some problems with depression, but they do not interfere with 

my activities. 

� 2 Mild Depression   
x Depression occasionally forces me to change some of my activities 

(e.g., once a week or less). 

� 3 Moderate Depression 
x Depression frequently affects some of my activities (e.g., several times a 

week). 

� 4 Severe Depression 
x Every day, depression problems force me to modify my daily activities. 

� 5 Total Depression 
x Every day, depression problems prevent me from doing many of my 

daily activities. 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
 



TREMOR / LOSS OF COORDINATION 
Tremor is the rhythmic shaking of the head, hands or legs. Loss of coordination is 
clumsiness or imbalance (e.g., staggering gait or unsteady gait like being drunk). 

Please read all the categories, and check the single category that most accurately 
describes your tremor and loss of coordination symptoms in the past month. Compare 
your current condition to your experience before you developed MS. 

� 0 Normal/no tremor or loss of coordination 
x I do not have any tremor or loss of coordination. 
x I have not noticed any problems with tremor or loss of coordination. 

� 1 Minimal tremor or loss of coordination 
x Sometimes I have some tremor or loss of coordination, but it does not 

interfere with my activities. 

� 2 Mild tremor or loss of coordination 
x Tremor or loss of coordination occasionally forces me to change some 

of my activities (e.g., once a week or less).  

� 3 Moderate tremor or loss of coordination 
 Tremor or loss of coordination frequently affects some of my activities 

(e.g., several times a week). 

� 4 Severe tremor or loss of coordination 
x Every day, tremor or loss of coordination problems force me to modify 

my daily activities. 

� 5 Total Disabling tremor or loss of coordination 
x Every day, tremor or loss of coordination problems prevent me from 

doing many of my daily activities. 
 

Subject’s Initials __________________ 
 
Study ID #   ___________________ 
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