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Abstract 
 

We describe a novel atom interferometry technique for manipulating Bose-Einstein 

Condensate. The technique requires a Bose-Einstein condensate, which will be 

manipulated using pulsed, off-resonant laser beams. The new technique permits a larger  

interferometer arm separation and longer separation times compared to previous 

experiments, thus providing greater sensitivity to gravity.  To achieve such feat we need 

the pulsed beams’ phase stabilized via an electro-optical active feedback system.  Such 

apparatus is built and demonstrated to manipulate ultra cold atoms with precision.  We 

present interferometry measurements to accurately ascertain the recoil velocity of the 

 atoms to less than 1% of the theoretical value.  This work lays the foundation for 

the next generation gravity measurement improving the sensitivity over the current 

existing instruments.   
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Introduction 

Introduction and Motivation Behind Atom Interferometry 

 

 

 Many devices have been available throughout history to measure quantities such 

as time, distance, weight, acceleration, temperature, speed of light, and gravity.  Whether 

it is a very accurate meter stick, a precise weight scale, or a reliable atomic clock, the 

pursuit of perfection drives scientists to measure these quantities more accurately than 

their predecessors.  The greater purpose behind measuring these quantities accurately is 

to understand of the workings of the universe; many of the fundamental constants, the 

laws of physics, and even the origin of the universe owes its understanding to measuring 

these quantities accurately.  In the modern era, one of the best techniques for making 

such measurement accurately is an interferometer.  An optical interferometer is a device 
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which makes use of the principle of superposition in electromagnetic waves such that the 

wave is split, traveling two different paths, and then recombined to show constructive or 

destructive interference output determined by the path and/or refractive index difference 

relative to each other.  Laser based optical interferometers have been in existence for 

many decades and is used in fields such as astronomy, geology, oceanography, 

spectroscopy, radar, gyroscopes, and rotational sensors.   

 With the recent advancement in ultra-cold atom science with Bose-Einstein 

condensates (BEC), we are now exploring interferometers based on atoms as a coherent 

source.  The ultra-cold atoms also possess wave functions which behave much like that of 

the electromagnetic waves exhibiting the principles of superposition for building an atom 

based interferometer.  We can also split, reflect, and recombine atom waves just like laser 

beams in a similar “style and fashion” but with an alternative methodology.  The 

resulting output is also a combination of constructive and destructive interference output.  

Hence we can build an interferometer based on ultra-cold atoms as a source and be able 

to measure external quantities that may have been difficult to measure with laser 

interferometer such as gravity.  As we shall see in the next few sections, such devices 

promise a greater sensitivity over the laser interferometers.  In this introduction we 

explore both types of interferometers - laser and atom based interferometers, and describe 

how an atom interferometer can be built to measure gravity with more precision than the 

current existing gravimeters.    

 This thesis is divided into following chapters: 1) Introduction, 2) Theoretical 

Considerations, 3) Instrumentation, 4) Bose-Einstein Condensate, 5) Asymmetric 

Splitting, 6) Asymmetric Interferometer, and 7) Conclusion.  Our aim here is to 
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demonstrate a feasibility of our newly proposed way to measure gravity through an 

asymmetric splitting of Bose-Einstein condensate.  Such device, if successful, allows 

BEC trajectories of increasing vertical separation, which improves the sensitivity of 

gravity measurement with greater accuracy which is not possible to achieve with a 

conventional symmetric atom interferometer.  We approach such endeavor theoretically 

and experimentally and present our preliminary results. 

 

1.1  History of Interferometer – Laser vs. Atoms 

 In 1665, an Italian Jesuit priest, Francesco Grimaldi, observed diffraction fringes 

produced by a narrow slit and concluded that light is consisted of a very fine fluid in a 

state of constant vibration.  Although the pre-mature assumption was inaccurate, it started 

the beginning of understanding of light.  In 1678, the Dutch scientist Christiaan Huygens 

formulated the wave propagation theory, suggesting that the spherical waves propagate 

along the wave front.  A booked published by Sir Isaac Newton in 1704 called Optiks, 

encompassed understanding of behavior of light with the concepts of refraction, 

dispersion, diffraction, and discovery of spectrum.  It was not until 1802 that Thomas 

Young performed his double slit experiment and found that light propagates in a wave 

form and be able to interfere with itself.  Young contributed two of the most fundamental 

principles in the field of interferometry: the Principles of Coherence and Principle of 

Superposition.  From the white light double split experiment to the invention of lasers in 

1960 by Charles Townes, a tremendous amount of progress in the field of optics allowed 

scientists build a scientific instrument such as an optical interferometer. 
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 A simple concept of an optical interferometer is shown in Fig. 1.1.  A coherent 

electromagnetic wave such as laser beam enters from the left and is split, travel two 

different paths, deflected by mirrors to change direction, and then re-combined.  In the 

case when one path of the interferometer experiences a length change or an index of 

refraction change compared to the other path, the wave traveling through that region will 

experience a phase shift.  This effect in one path will change the relative phase between 

the two waves when recombined, changing the interference output.  Like that of Young’s 

double slit experiment, interference output is result of constructive and destructive effects 

of superposition of electromagnetic wave [1].   

 

Figure 1.1  Conceptual drawing shows a simple interferometer where interference pattern 
is obtained when the electromagnetic wave such as laser beam is split, enclosing an area 
or traveling two different paths through a beam splitter and mirrors.  Output interference 
is measured using a photo detector. 

 

The resulting interference signal is measured by a photodetector as a measurable intensity.  

By measuring interference, we can learn about environment of path so that we can 

determine the types of effects and what was causing the electromagnetic wave in that 

particular path to shift phase.  This is the basics of interferometer.  It is a device that can 

quantify the effect in one of the arms’ path by measuring the interference output.  Such a 

technique is well established and already crystallized in the scientific history which 

mirror

mirror

Beam splitter
Input 

Beam combiner 
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includes famous Young’s double slit experiment, Michelson interferometer, Mach-

Zender, and Fabry-Perot interferometers [2, 3].  Their uses in the modern era encompass 

astronomy, metrology, quantum mechanics, spectroscopy, and geology.  Furthermore, 

there are plethora of industrial and military applications. 

 However, an interferometer is not only limited to electromagnetic waves from 

laser beams.  We know from physics that the atom also has an equivalent matter-wave 

wavefunction and behave much like electromagnetic waves.  Hence, if we use atom’s 

wavefunction as the source of an interferometer, we can also construct an interferometer 

based on the atoms.  The atom wavefunction exhibits constructive and destructive 

interference just like electromagnetic waves.  More specifically, quantum mechanics 

states that the wavefunction of an atom is derived from the Schrodinger’s equation as, 

     di H
dt
ψ ψ== .     (1.1.1) 

We also assume an eigenstate exist for the condition, 

     H Eψ ψ= .     (1.1.2) 

The solution to Schrodinger’s equation is a simple mathematical solution, yielding, 

     0( , )
iE t

r t eψ ψ
−

= =G     (1.1.3) 

where 0ψ  is an amplitude, E is the energy of atom, t  is time, and =  is the Plank’s 

constant divided by 2π .   The atom wavefunction phase is given by the Bohr phase,  

     Bohr
Etφ =
=

.     (1.1.4)   

To illustrate the interference of two atom wavefunctions in an atom interferometer, 

specifically writing out the wavefunctions of the two paths,  
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     1
1 1

ie φψ ψ −=      (1.1.5) 

     2
2 2

ie φψ ψ −=      (1.1.6) 

where phases 1
1

E tφ =
=

 and 2
2

E tφ =
=

 and 1E  and 2E  are the energies of atoms associated 

with the wavefunctions 1ψ  and 2ψ  respectively.  The total wavefunction is 

    1 2
1 2 1 2

i i
total e eφ φψ ψ ψ ψ ψ− −= + = +    (1.1.7) 

and the resulting intensity when recombined is, 

  2 2 2* 2
1 2 1 22 cos ( )total total totalI ψ ψ ψ ψ ψ ψ ψ φ= = ⋅ = + + ⋅ Δ   (1.1.8) 

where the phase 2 1E E tφ −
Δ =

=
.  Equation (1.1.8) is a mathematical representation of the 

resulting interference intensity output and clearly shows that the interference signal varies 

as 2cos ( )φΔ .  Therefore, when the atom wavefunctions recombine, such an energy 

difference shows up as intensity variation in the interference output.  The output intensity 

is basically a probability of the atom to be in a specific state in quantum mechanics.  Such 

a quantity is observable using a conventional photodetector.  Hence there is no need for a 

special quantum mechanical “atom detector” to observe the interference.   

 As a specific example, consider the measurement of gravity. Heuristically 

speaking, gravity can be measured with an atom interferometer by measuring the energy 

difference between two different vertical paths that the atoms traveled at different heights.   

The energy difference of the atoms traveling at different heights 1z and 2z is proportional 

to  

     E mg zΔ = Δ      (1.1.9)   
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where 2 1z z zΔ = − .  Therefore a change in the energy changes the Bohr phase of the 

wavefunction and according to equation (1.1.8) an interference output is observed.  

Although the wavefunction is complex and cannot be observed, its probability - square of 

the wavefunction - is measurable. 

 To illustrate such concept, a hypothetical atom interferometer, as shown in Fig. 

1.2, is similar to the laser interferometer previously mentioned.  In this new atom 

interferometer, the atom packet from the left enters the “atom splitter” and splits into two 

distinct packets.  One-half of the original atom packet is sent upward, while the other  

 

Figure 1.2  A simple concept of atom interferometer where it can split, reflect, and 
recombine to make atom interferometer. 

 

one-half remains at the same height.  After the top packet travels some height against 

gravity, the “atom mirror” reflects the top atom packet to travel in the opposite direction.  

A certain time later, an “atom re-combiner” is used to combine the two packets together.  

Following the basics of an interferometer, the top packet just experienced a different 

gravitational energy than the one that remained at the same height.  The resulting 
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superposition of the two wavefunctions will show interference based on the energy 

difference, i.e. the height difference 2 1z z− , between the two wavefunctions. The 

interference output is analogous to the light interferometer output where interference 

signal reveals any relative phase difference obtained by the two paths.  We will go over 

detailed derivation of such an atom interferometer later in the thesis. 

For the past two decades, before ultra-cold atoms became available to the 

scientific community, there had been a significant progress on gravity measurements 

using the thermal atom interferometry.  A thermal atom interferometer uses a 

conventional gas, as opposed to a Bose-Einstein condensate. The relation between the 

two is similar to the difference between white light and a laser.  The lower coherence of a 

thermal atom source restricts the operation of an interferometer to certain “white light” 

configurations, where the interferometer phase is independent of the atomic velocity. A 

few known gravity measurement using thermal atom interferometers have configurations 

such as dropping the atoms in a free fall and measuring its time to fall a known distance 

accurately, or in a fountain geometry where the atoms are launched up and then let it 

come down eventually due to gravity.  In an interferometer of such configuration, the 

exact phase of a wavefunction can be calculated with an action function S(t) by 

    ( )S t dtφ = ∫ =
.     (1.1.4) 

To gain significant phase to measure gravity, a thermal interferometer would require 

integration over longer times which directly translate into longer drop distances ( 2~d t ).  

Hence, measuring gravity with thermal atoms intrinsically requires taller and bigger 

systems.  Furthermore, we will soon learn that the sensitivity goes as the inverse distance 

and time - a long-distance drop and long-times are needed for a high sensitivity 
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measurements, corroborating the requirement for a longer and bigger apparatus. 

Nevertheless, the technique has surpassed the conventional mechanical gravimeter [1].   

 

Figure 1.3  Typical thermal atom gravity sensing apparatus.  Notice the vertical length 
atoms has to travel to make the measurement. [5] 

 

Recently, atom interferometry with the Bose-Einstein condensate (BEC) promises 

similar sensitivity as thermal atom interferometry, but with the possibility to avoid large 

drop distances.  Our scheme is not to drop BEC a longer distance but suspend the atom 

packets against gravity via repeated laser pulses so that the BEC does not drop 

significantly, but at the same time be able to separate a large packet displacement (~ cm) 

to attain a sensitivity that can exceed the current thermal interferometers.  There are 

several reasons for using the BEC over the thermal atoms for such configuration.   

First, the BECs are formed in a single potential in a same quantum state which is 

equivalent to a laser whose photons are all in the same coherent state.  However, the 
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thermal atoms have a wide velocity spread, which has multiple states, making them 

equivalent to a beam of white light.  Therefore, the BEC intrinsically has a longer 

coherence length over thermal atom, analogous to the longer coherence length of laser 

beam compared to that of white light.  The coherence length, l,  for atoms is given by  

     /l p= Δ=      (1.1.10) 

where =  is Plank’s constant and pΔ is the momentum spread of the atom.  The coherence 

length is basically the extent of the wavefunction for an atom.  The BECs are spatially 

coherent across their entire wave-packet.  Interference results if the difference in path 

length is equal or less than the coherence length of the wave packet which is around 10 - 

100μm .  Therefore, the BECs have a good phase coherence length so they can exhibit 

interference even when using complex trajectories.  However, for thermal atoms, the 

coherence length is about 51 10 μm−×  which is much smaller than the coherence length of 

the condensates.  For this reason, the thermal atoms require a careful design to make sure 

the waves overlap at the recombine where as the BECs are not bound to such rigorous 

alignment.  

Second, the BECs are made with temperature close to absolute zero Kelvin.  The 

resulting effect is that BECs do not have high group velocities, just few mm/s, whereas 

thermal atoms have velocities in the orders of hundreds of m/s.  With such low kinetic 

energy, BECs are much easier to manipulate with weak laser beams allowing complex 

trajectories.  For example, a simple 180 degree reflection of a BEC wave packet would 

require a few mW of laser power.  For thermal atoms, even a small deflection would 

require hundreds of mW of laser power.  It is very difficult to repeatedly suspend thermal 
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atoms against the gravity with laser pulses.  This is a limit for the thermal interferometer 

geometry.   

 The thermal atom interferometers typically obtain their arm separation by 

inducing a transition to the internal state of the atoms. When measuring the output state, 

the populations of different internal states are recorded.   Because the interferometer 

includes this internal state transition, the output is susceptible to noise on that transition, 

including effects like fluctuating magnetic fields, ac Stark shifts, and inaccuracy of the 

oscillator generating the transition frequency.  In turn, these depend on the relative phase 

which is sensitive to the phase of the laser.  The phase of the laser will accumulate on top 

of any other additional phase the thermal atoms experience.  This will introduce noise to 

the output if there is any noise in the laser beam, which often is the case. In contrast, a 

condensate interferometer can easily use atoms in a fixed internal state, because the 

motion of the condensed atoms is easier to directly manipulate and detect. 

 Overall, interferometers such as the Mach-Zender type configuration [4] are best 

achieved using a low velocity and longer coherent source, that do not require much effort 

to manipulate the atom wave packets.  Therefore, the characteristics of BECs intrinsically 

have many advantages over thermal atoms in the interferometer business.  However, as 

much as BEC seemed to be a dominating factor, the downside is that the BEC are 

produced in a small quantities at a time (~ 510  atoms at best), and they are very fragile to 

external effects. However, the high sensitivity it offers may outweigh the disadvantages. 

 

 

1.2 Motivation – Gravity and Recoil Frequency 
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 With an ultra-cold atom interferometer with BEC, we can measure external 

effects like rotation, acceleration, electric fields, magnetic fields, fundamental constants 

such as electric polarizability, atomic kinetic energy, and gravity.  Contemporary research 

with atom interferometers encompasses goals from measuring fundamental constants to 

purely application oriented military/commercial development.  In this study, and in 

possible extensions from this study, we are mainly interested in measuring two quantities 

– 1) gravity, and 2) atomic kinetic energy. 

 First, accurately measuring gravity is important because many hidden 

underground features affect gravity values.  For example, underground tunnels, oil and 

mineral deposits, and underground geological anomalies affect local gravity values.  

Digging to find these features is time consuming and takes time and resources.  Hence a 

simple, quick, compact and an accurate way to ascertain the gravity value is needed.  

Using BEC may provide a solution to this problem.  Several preliminary studies, both 

theoretical and experimental, point to its feasibility [1]. 

 To approach measuring gravity with BEC interferometer, we go back to the 

hypothetical atom interferometer with trajectories previously shown in Fig. 1.2.  In reality, 

these atom “splitters, mirrors, and re-combiners” do not exist as simple physical units like 

the beam splitters and mirrors in laser interferometry.  Instead, these manipulations are 

done by pulsed laser beams to change the momenta of the wave packet velocities 

allowing the atom paths as shown in Fig. 1.3.  Nevertheless, in this atom interferometer, 

if any one of those wave packets is exposed to the external effects such as gravity, a 

phase is introduced to the wavefunction and changes the resulting interference intensity 

as 2sin φ  and 2cos φ  where φ  is the phase.   
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In addition to measuring gravity, the interferometer geometry in Fig 1.3 is well 

suited to measurement of kinetic energy, since the atoms move along one path but is 

stationary in the other.  From this measurement, a value for the atomic recoil frequency 

can be obtained. This is a basic atomic parameter closely related to several important 

fundamental constants. When an atom absorbs or emits a photon, the atom recoils with a 

momentum p k= =  where k  is the wavevector. The resulting kinetic energy 

2 2 / 2k m= defines the recoil frequency rω= . By measuring the phase from the kinetic 

energy in the interferometer, rω  can be measured, in principle very accurately. We will 

discuss how to measure the recoil frequency in more detail in later chapters.   

 

Figure 1.3  Atom wave packet trajectories and corresponding laser pulses.  Atom 
interferometer can also measure external effects such as gravity via phase measurement. 
Unlike Fig. 1.2. atom splitters, mirrors, and recombiners do not exist.  Instead, atom 
manipulations are done via laser pulses. 

 

 Before proceeding further, one must understand how much sensitivity can be 

achieved with a given separation and time.  To illustrate this, consider a gravity 

measurement.  The sensitivity on gravity in an atom interferometry is 
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( )( )
dg

m t z
φδ =
Δ

=     (1.2.1) 

where dφ  is the accuracy of the phase measurement.  The best conventional mechanical 

gravitational acceleration sensors have 8 24.9 10 m/sgδ −= ×  after 15 minutes 

measurements averaged [1].  To improve on the gravity sensitivity with an atom 

interferometry, it is obvious one would want a large separation, zΔ  and time, t.  For 

example, a separation of 1 cm with time of 1 second, and measuring dφ  accurately to 

within 0.01 radians would yield 10 27.27 10 m/sgδ −= × .  This is nearly a factor of 100 

gain and measurement could take only 1 second.  This would definitely be an advantage, 

for example, in a hostile environment where you do not have 15 minutes to make a 

measurement. 

 As indicated earlier, scientists have used thermal atoms to measure gravity.  The 

first measurements of g with matter-wave interferometer with neutrons were done by 

Colella et al. (1975) [6], followed by atom experiments by Kasevich and Chu [7] in 1992.  

There are several more experiments using thermal atoms; notably, Peters et al. 1997, 

1999, 2001 [8, 9, 10]; Schmiedmayer et al. 1997 [11]; McGuirk et al. 2002 [12].    To 

compare some of the sensitivities obtained in these experiments, McGuirk et. al 2002 

used thermal atoms in a “fountain” experiment, launching atoms 12 cm high in 320 ms 

and yielding sensitivity of 9 25.06 10 m/sgδ −= ×  in 1 minute averaged measurement.  

Peters et al. 1997 also uses fountain and improved gravity measurements to 

9 23 10 m/sgδ −= ×  with 1 minute measurement and 10 21 10 m/sgδ −= ×  with 2 days of 

averaging.  Fountains and long drop experiments make the apparatus big and also 

introduce side effects with falling time.  For instance, since the fall distance increases as 
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2~d t , improving the sensitivity rapidly leads to even larger systems.  This makes the 

apparatus non-compact and difficult for practical use. Furthermore, over a long drop 

distance, the gravity is not constant throughout the apparatus, which leads to significant 

complications [13].  It is also more challenging to protect the atoms from other 

environmental effects. For example, the magnetic fields B contributes a large energy 

U Bμ= − ⋅
JG JG

, where μ
JG

 is the magnetic moment, and must therefore be precisely stabilized 

over the entire drop distance which becomes challenging [13].   

 To address these effects and to keep the system small, we propose to improve 

from a free-falling thermal atom configuration to something more compact so that the 

atoms do not drop very much but still gain sensitivity to measure g  accurately.  Our idea 

is to separate the BEC atoms against gravity by repeated laser pulses.  Hence the BEC 

atoms separate from each other to get a large zΔ , but never actually fall a significant 

distance, only in the orders of ~ cm total.  However, the sensitivity one would gain by 

continuously separate atoms for a long time (~1 s) would be ideal as the system is 

compact but still gains sensitivity.  This proposed concept first needs the key ingredient: 

BEC. 

 

1.3 Bose-Einstein Condensate 

The BEC is best described as a collection of atoms sharing the same wavefunction.  

This is equivalent to a coherent laser beam with many photons sharing the same electric 

field.   The BEC is the key ingredient for our proposed method because our 

interferometer requires atoms with a very narrow velocity distribution. Without going too 

much into details of BEC, we will simply go over pertinent information needed to 
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understand our atom interferometry.  Readers are invited to thoroughly understand BEC 

from list of references [14,15].    

 The understanding of Bose-Einstein condensate starts with the Bose-Einstein 

energy distribution which is 

     ( )/

1( )
1Bk Tf

e ε με −=
−

    (1.3.1) 

where ε  is energy of boson, μ  is chemical potential energy, Bk  is boltzmann’s constant, 

and T  is temperature.  For bosons as T  goes to zero, occupation of the lowest energy 

(ε = 0) can get macroscopically large, and a phase transition occurs – a Bose-Einstein 

condensate forms. 

 The phase transition can be understood by examining a particle’s thermal de 

Broglie wavelength defined as 

     
22

dB
Bmk T

πλ =
=      (1.3.2) 

where m  is mass of the particle.  The thermal de Broglie’s wavelength quantifies the 

quantum uncertainty in the atom’s position: dBx λΔ � .  At high temperatures, the atoms 

are very well localized in position.  However, for low temperatures, the uncertainty in 

position is increased and the wave nature of the particle starts to dominate over the 

particle nature.  At very low temperatures, the de Broglie wavelength is long enough that 

the individual wavefunctions start to overlap, constructively interfering due to exchange 

property of bosons, forming the condensate.  For example, Rb at 1 nK, 6 μmdBλ =  where 

as at 300 K, 0.01 nmdBλ = .  To be considered a BEC, the density n must be high enough 
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that the number of atoms per cubic wavelength approaches one.  This quantified with the 

phase space density which is represented as 

     3PSD dBnλ= .     (1.3.3) 

BEC occurs for PSD > (3 / 2)ζ = 2.61 where ζ  is the Reimann Zeta function.  The 

chemical potential μ  is effectively zero at this transition.  We find the critical 

temperature by plugging in (1.3.2) into (1.3.3), yielding 

    
2/3 22

2.61C
B

nT
mk
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
=  .    (1.3.4) 

For 87Rb we find 88 10  KCT −≈ × (density ~ 19 -310 m ).  For a complete derivation on the 

Bose-Einstein condensate, readers are encouraged to a plethora of excellent books [16, 17, 

18]. 

Our BECs are formed by laser cooling, magnetic trapping, and evaporative 

cooling.  The end product is a collection of 410  87Rb atoms with temperature of around 1 

nK acquired in the lab.  The production process takes 100 seconds.  We will discuss 

production of BEC in more details in chapter 4.  The main concept needed to know for 

now is that the BEC is a coherent source for cold-atom interferometry, which makes use 

of its matter wave as atom wave packet, splitting, reflecting, and recombining to make an 

interferometer. 

 

1.4 Symmetric vs. Asymmetric Splitting 

 To achieve an atom interferometer, one has to split the BEC wave packet, 

propagate the two packets some distance and have one or both arms of the wave packet 

exposed to an external effect.  The packets are then recombined and finally we quantify 
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the interference signal it produces.  As mentioned before, these manipulations are done 

via pulsed laser beams by transferring the momentum from photons to atoms. 

Previously in our lab, the splitting has been done symmetrically.  We use a single 

frequency, ω , laser beam and create a standing wave on top of the atoms by retro-

reflecting the incoming laser beam as shown in Fig. 1.4.   This configuration transfers 

momentum to the atoms equally in both directions, allowing an even split.   The result is 

two distinct wave packets propagating in the opposite directions from each other.  Using 

such technique, the previous atom interferometer measured gravity, the ac and dc electric 

polarizability, and is currently pursuing a gyroscope measurement. Although useful, the 

symmetric technique has some limitations that will be discussed below. 

  

Figure 1.4  Symmetric splitting is done by sending one frequency (ω ) laser beam and 
retro-reflecting from a mirror.  This configuration creates standing wave which splits 
atoms evenly. 
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Figure 1.5  Asymmetric splitting is done by having two different frequency laser beams 
on atom wave packet.  This creates the traveling standing wave, allowing asymmetric 
splitting. 

 

 In this study, we will change the symmetric scheme by splitting the wave packet 

asymmetrically with laser beams of non-equal frequency as shown in Fig. 1.5.   With this 

new configuration, which creates a traveling standing wave, we can split the atom wave 

packet asymmetrically, allowing greater flexibility in building an atom interferometer 

with different path ways, which will permit an improved gravity measurement method, 

and also allows recoil frequency measurement.  Nevertheless, the pulsed laser 

manipulation of the atom packets remains the key factor and must be understood 

thoroughly in quantum mechanics.   As you will see in the next chapter, we describe the 

transitions of atoms in a two-level system using quantum mechanics and use the 

Schrodinger’s equation to understand the cyclic behavior of atoms in that two-level 

systems in the presence of two color laser beams. 

1.5  Asymmetric Splitting of BEC Elsewhere in the World 
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 Many scientists around the world have experimented with symmetric splitting.  

Two counter-propagating laser beams with an equal frequency creates the standing wave, 

making the atoms to split evenly.  However, an asymmetric atom interferometer is not 

easily found in labs around the world.  There have been just few cases of such work. 

 Back in 1999, Kozuma et al. (1999) a group from NIST-Gaithersburg have 

successfully split BEC of Sodium atoms asymmetrically with multiple orders n k=  of 

momentum states [19].  They report 1st order (n=1) asymmetric split with 100% 

efficiency, followed by 2nd and 3rd orders with 45%, and up to 6th order with efficiency 

15%.  Although asymmetric splitting was demonstrated, an interferometer of such type to 

measure recoil frequency or other measurements is not realized.  Gupta et al. (2002) from 

MIT have built a modified type ‘triple’ splitting interferometer using Kapitza-Dirac pulse 

to measure the recoil frequency to ascertain the fundamental h
m

 value accurately [20].  

Horikoshi and Nakagawa 2007 from Japan have demonstrated the asymmetric 

interferometer experiment to measure the magnetic trap frequency [21].  Their proof-of-

concept shows that asymmetric splitting can be used to make Sagnac rotational 

interferometer.  However, a recoil frequency measurement with reflect and recombination 

pulses were not developed in this study. 

 We are able to take a step further than the previously attempted studies to 

construct an asymmetric atom interferometer by adding a spatial phase detection system 

and an active phase stabilization system.  Such system allows detection of laser phase and 

stabilization of its laser phases which needed to demonstrate asymmetric splitting 

capability.  We use a combination of electro-optical modulator and a feedback electronics 
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to quickly correct any offset phases of the laser.  Such system will be explained in the 

following chapters. 

  
1.6  Summary 

 We explored two main types of interferometer and briefly explored that the ultra-

cold atom interferometer can offer a greater sensitivity to measure gravity.  Like that of 

the laser interferometers, the wavefunction of atoms can be constructive and destructive 

depending on the phase it acquires along the path.  Such phase can be measured, and can 

ascertain what effects had affected the beam path.  We can measure quantities such as 

gravity, electric, magnetic fields, and kinetic energy associated with the atoms such as 

recoil frequency.  The ultra-cold atom interferometer have advantages over the thermal 

atom based interferometer in that it can be made smaller volume and does not require 

long distance drops. 
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2.0  

Theoretical Consideration 

Theoretical Foundation in Quantum Mechanics 

 

 

 Before embarking on developing experimental techniques to make an asymmetric 

atom interferometer using BEC, we explore some theoretical aspects of asymmetric 

splitting.  We consider a simple two-level system, the quantum mechanics of asymmetric 

splitting, and the general Schrodinger’s equation governing the beam splitting process. 

These provide a firm foundation for developing the experiment according to our required 

criteria.   
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2.1 Asymmetric Schrodinger’s Equation 

   

Figure 2.1.  Energy level diagram for asymmetric splitting.  An atom packet in the 
ground state 0p =  transitions to an excited state 2p k= + = .  A photon-atom 

momentum transfer occurs with a stimulated emission.  Atoms gain total of 2 k= .  All 
other transitions are considered eliminated with “X” symbols.  The shape of the curve 
for ground state and excited states are dictated by the relationship 2 / 2mE p= . 

     

 To asymmetrically split the atom packet with pulsed laser beams, we need to 

understand the interaction picture of the laser beams with atoms.  We know from physics 

that a quantum mechanical wave is governed by the Schrodinger’s equation.  Hence, the 

light interaction with atoms begins with the understanding of the Schrodinger’s equation 

first.  We can then build an evolution model from it.  Let us consider two non-equal 

frequency counter-propagating laser beams as shown in Fig. 2.1 in which their 

electromagnetic waves are represented by 2( ( ) )
1 0( , ) i kz tE z t E e ω φ− − +Δ += and  

1( )
2 0( , ) i kz tE z t E e ω φ− +=  where 0E  is the amplitude of electric field, Δ  is the frequency 
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difference between the two laser beams, and the variables , ,k ω and φ  represent the 

wavevector, angular frequency, and laser phase, respectively.  At the atoms, the incident 

laser beams have combined total ( , )totalE z t  field  

  1 2( ) ( ( ) )
0 0( , ) i kz t i kz t

totalE z t E e E eω φ ω φ− + − − +Δ += +  .  (2.1.1) 

We factor out 
( )

2
i t

e
ω Δ

− +

 and set  1 2

2 2
φ φ φ−

=  , so the ( , )E z t  field is re-written as 

   
1 2( ) ( ) ( ) ( )

2 2 2 2 2 2
0 [ ]

i t i i kz t i kz t
E e e e e

φ φ φ φω Δ − Δ Δ
− + + + − + +

= + .  (2.1.2) 

Using Euler’s identity 

    

1 2( ) ( )
2 2

0 [2cos( )]
2 2

i t i
E e e kz t

φ φω φΔ −
− + Δ

= + + .  (2.1.3) 

The magnitude squared of this field yields 

   
2 2 2

04 cos ( )
2 2

E E kz t φΔ
= + +

 
   (2.1.4) 

                     
2
02 [1 cos(2 )]E kz t φ= + + Δ +    (2.1.5) 

The intensity is related to the electric field by the relationship 2
0( , ) ( , ) / 2I z t E z t ξ=  

where 0 01 / 377Ohmscξ ε= = .  Using the relationship for Rabi frequency [section 2.3] 

2
2 ( , )( , )

2 s

I z tz t
I

Γ
Ω = , we find the relationship 

   
2

2 2
0

0

( , ) [1 cos(2 )]
2 s

z t E kz t
I

φ
ξ

Γ
Ω = + + Δ +    (2.1.6) 

The two beams incident on the atoms will shift energy level of an atom via a potential 

that it creates.  This is important as the atomic interaction with light plays a vital role in 

the optical manipulation of atoms.  Specifically, for the detuning frequency dΔ , the light 
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shifts the energy of the ground state by 
2

4 d

V Ω
=

Δ
= .  Hence, ignoring the constant term 

which simply offsets the energy, upon substitution, we get 

   
2

2
0

0

( , ) cos(2 )
8 s d

V z t E kz t
I

φ
ξ

Γ
= + Δ +

Δ
=    (2.1.7) 

To make the equation (2.1.7) more simpler, we introduce the intensity parameter where 

2 2 2
0 0

08 4s d s d

E I
I I

β
ξ

Γ Γ
= =

Δ Δ
and 

2
0

0
02

EI
ξ

=  yielding 

   ( , ) cos(2 )V z t kz tβ φ= + Δ +=     (2.1.8) 

where 2 6 MHzπΓ = ×  as the natural line-width, 0I  as the intensity of the standing wave, 

and sI  as the saturation intensity which is 2.504 2mW/cm  for our atoms and linear 

polarization.  Equation (2.1.8) describes a traveling standing wave.   

 The Schrodinger’s equation is now 

  

2 2

2 ( cos(2 ))
2

d dkz t i
m dz dt

ψ ψβ φ ψ− + + Δ + =
= = =

.
  (2.1.9) 

The Schrodinger’s equation from (2.1.9), gives us the relationship between the potential 

created by the two laser beams and the wavefunction of the atom packet.   

 

2.2  Theoretical Derivation - Population Density 

 We need to solve equation (2.1.9) to gain an understanding of the interaction.  We 

first approach this relationship using expansion of the eigen wavefunction.  The 

expansion of wave function in momentum basis is equation is simply 

    ( ) ( ) 2n
n

z C t nψ δ
+∞

=−∞

= +∑      (2.2.1) 
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where ( )nC t  is time dependent population coefficient, n  is the state with momentum 

n k= , and 0mvδ =
=

 where 0v  is the initial velocity of the atoms.  Note that the expansion 

shows that the potential only couples the atomic states with momentum difference of 

2n k=  because our interaction only allows the transition of that difference by a photon-

recoil interaction.  All other states are excluded.  Re-writing the wave function in the 

position basis 

(2 )( ) ( ) i n kz
n

n

z C t e δψ
+∞

+

=−∞

= ∑     (2.2.2) 

The first and second derivatives are  

(2 )( ) (2 ) i n kz
n

n

d C t i n ke
dz

δψ δ += +∑
  

 (2.2.3) 

2
2 2 (2 )

2 ( )(2 ) i n kz
n

n

d C t n k e
dz

δψ δ += − +∑    (2.2.4) 

Substituting the equations (2.2.3) and (2.2.4)  into (2.1.9) and changing the cos( )kz  term 

in the middle into exp notations with
2

4 12.36 10
2r
k s
m

ω −= = ×
=  

( )2 (2 ) [(2( 1) ) ] [(2( 1) ) ] (2 )( )(2 ) ( ) ( )
2

i n kz i n kz t i n kz t i n kz
r n n n

n n n

C t n e C t e e i C t eδ δ φ δ φ δβω δ + + + +Δ + − + −Δ − ++ + + =∑ ∑ ∑ �

            

           (2.2.6) 

Shifting the indices 

( )2 (2 ) [(2 ) ] [(2 ) ] (2 )
1 1(2 )

2
i n kz i n kz t i n kz t i n kz

r n n n n
n n n

C n e C e C e i C eδ δ φ δ φ δβω δ + + +Δ + + −Δ + +
− ++ + + =∑ ∑ ∑ �  

           (2.2.7) 

Putting in all into one term and combining summations, 
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( )[ ] [ ]2 (2 )

1 1(2 ) 0
2

i t i t i n kz
n r n n n

n

C n C e C e iC e
φ φ δβω δ

Δ + − Δ + +
− +

⎧ ⎫+ + + − =⎨ ⎬
⎩ ⎭

∑ �   (2.2.8) 

If we set rtτ ω= , and i

r

e φββ
ω

=�  and * i

r

e φββ
ω

−=�  , equation (2.2.8) reduces to 

2
1 1

1(2 ) ( * )
2

i in
n n n

dCi C n C e C e
d

τ τδ β β
τ

Δ − Δ
− += + + +� �� �   (2.2.9) 

Equation (2.2.9) is a state coupling equation which governs the population states for the 

atoms during the manipulation of asymmetric split, reflect, and recombine of the wave 

packets. These manipulations are performed using pulsed laser beams by transferring 

momentum between photons to atoms.  Equation (2.2.9) is hard to solve exactly with 

analytical approach.  One approach is to investigate it with numerical modeling, as will 

be discussed in section 2.4. Another approach is to reduce the equations to an 

approximate two-level system, which can be solved analytically in the next section.  

  

2.3 Two Level System Review 

 We can approach the two-level system with an analytical model first before 

attempting to solve with the numerical programming.   We start with a solid foundation 

by reviewing the basic two-level system. 

 Let us first consider a multi-level energy system as shown in Fig. 2.1.  The atom, 

initially at the ground state g  with momentum 0p =  can be excited to a momentum 

2p k= + =  state by absorbing a detuned laser beam, excited to a virtual state EΔ  with 

momentum + k=  temporarily, as indicated in dotted-line just below the excited level e .  

If the atom emits a stimulated photon in the opposite direction of the higher frequency 

incident beam it gains another momentum kick + k=  and finally arrives at the ground 
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state with total recoil momentum + 2 k= .   Contrarily, if the excited atom emits a 

stimulated photon in the same direction of the higher frequency incident beam, it will 

lose - k= , then the atom will return to its original state (p = 0).    The stimulated emission 

is represented by e g sE E ω− = =  where the iE  represents the energy of the ground and the 

excited states and sω  is the angular frequency of the stimulated emission.  All other 

momentum states are off-resonant with the correct Δ  only allowing the transition from 

0p k= =  to 2p k= + =  state.   Hence the other states are indicated by “X” in Fig. 2.1.   

 It is important to realize that the frequencies of the stimulated photon generated 

from the excited state atom depend on the incoming beam’s pulse time.  The uncertainty 

of a BEC is only limited by the uncertainty principles ~x pΔ Δ =  and ~E tΔ Δ =  where the 

variables xΔ , pΔ , EΔ , tΔ  stand for the uncertainties in position, momentum, energy, and 

time, respectively.  

Elaborating further, the energy equation can be re-written as ~ 1tωΔ Δ  where ω  

is interpreted as the frequency of a laser driving an atomic transition, and Δt the time 

duration of the laser pulse.  This gives us a tool to control the frequency sensitivity if we 

have a well defined pulse time tΔ .  For example, we if have a long laser pulse exciting an 

atom from a ground state to an excited state, then we can be certain that when the atom 

eventually returns to the ground state by a stimulated emission, the frequency of the 

stimulated emission ωΔ  generation is limited to a very narrow window of frequencies.  

However, if we have a very short pulsed beam, then the rule suggests that we have a 

wider range of stimulated emission frequencies.  Hence depending on how short or long 

the pulsed beam is, the stimulated photons with different frequencies can be generated.   

The frequency emitted may not always be the same as the frequency absorbed.  This is 
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not a drawback but actually an advantage when it comes to optical manipulation of atoms.  

We have better control of the frequencies, allowing us to, at times, eliminate certain 

transitions, or allow other transitions. For instance, we choose laser pulse duration such 

that the final kinetic energy ( )22
2
hk
m

 is within the uncertainly limit, but the exchange of 

four photons, leading to final energy ( )24
2
hk
m

 , is suppressed.  This tool is used to 

selectively split the atom packets as desired.  

 For short interaction times, we can safely assume that the kinetic energy in 

equation (2.1.9) is negligible since the wavefunction which describes the wave packet 

will not move much while applying the pulse.  Hence we can directly calculate the 

components in the Hamiltonian matrix, i.e.  

  ( )2 0 2 cos(2 ) 0
2

i tH dz z kz t z e φββ φ Δ ++ = + + Δ + =∫
==  (2.3.0)  

and get 

    

( )

( )

0
2

4
2

i t

i t
r

e
H

e

φ

φ

β

β ω

Δ +

− Δ +

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= .   (2.3.1) 

The Schrodinger’s equation is 

     di H
dt

ψ ψ==     (2.3.2) 

where ψ  is the wavefunction.  We write the wave function as superposition of the 

ground state and the excited state as 

     0 2g ec cψ = +     (2.3.3) 
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where gc  and ec  are the population coefficients for the ground and the excited states, 

respectively.  We define these coefficients as time dependent as, ( ) ( ) i t
ec t d t e− Δ=  where 

( )d t  is slowly varying amplitude.  We use Rotating Wave Approximation (RWA) which 

is a mathematical technique yielding valid approximation when the applied 

electromagnetic radiation is near resonance with an atomic transition and the intensity is 

low.  With it, the effective Hamiltonian can be re-written as 

    
0

2

2

i

eff
i

e
H

e

φ

φ

β

β −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−Π⎢ ⎥⎣ ⎦

=     (2.3.4) 

where 4 rωΠ = Δ − .  So we let the wavefunction evolve in time 

     '( ) ( ) '(0)t U tψ ψ=     (2.3.5)  

and use appropriate ansatz for ( ) i t i td t Ae Beμ μ−= +  where A and B are coefficients which 

are calculated with boundary condition at t = 0, and 1 ( )
2

Xμ = Π ±  with 2 2X β= + Π .  

Solving the relationship yields ( )d t  and ( )gc t  which yield the ( )U t  which is the time 

evolution operator 

 2

cos sin sin
2 2 2

sin cos sin
2 2 2

i
ti

i

Xt Xt Xti i e
X XU e
Xt Xt Xti e i

X X

φ

φ

β

β

Π

−

Π⎡ ⎤− −⎢ ⎥
= ⎢ ⎥

Π⎢ ⎥− +⎢ ⎥⎣ ⎦

 . (2.3.7) 

 From equation (2.3.7) we can calculate various experimental parameters (in 

experiment chapter) such as 
2
π

− pulse.   For example, to split the atoms asymmetrically 

with equal population distribution on two packets, we use values 0Π =  which we infer 
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4 rωΔ =  and X β= .  Hence starting with the initial population in the ground state, we 

get 

   2

( ) 1cos sin
2 2

sin cos( ) 0
2 2

i
g ti

i

t tc t i e
e

t ti ed t

φ

φ

β β

β β

Π

−

⎡ ⎤⎡ ⎤ ⎡ ⎤−⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

  (2.3.8) 

   
( ) cos

2

sin( )
2

g

i

tc t

ti ed t φ

β

β −

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

     (2.3.9) 

For equal population we set 2 2cos sin
2 2
t tβ β⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 from which is only true if 

     
2

t πβ =      (2.3.10) 

Hence this is the reason why we call the even split, the 
2
π

− pulse.  With the intensity 

parameter β  fixed, we can calculate the pulse time at which we achieve an even split 

occurs from the condition in equation (2.3.10).  For a pulse that populates the excited 

state, we set  2sin 0
2
tβ⎛ ⎞ =⎜ ⎟

⎝ ⎠
 from which 

     tβ π=      (2.3.11) 

Hence the total population inversion from the ground state to the excited state is called a 

π − pulse. 

It is also useful to understand the asymmetric splitting with 
2
π

− pulse in quantum 

mechanical notations.  For symmetric splitting as illustrated in Fig. 2.1, noting the bra-ket 
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notation represents its momentum state in units of k= , the splitting of the atom packets 

from the zero momentum in its equivalent quantum operation is,  

   ( )10 0 2
2

→ + +      (2.3.12) 

This means that the wave packets go from the rest state, 0p k= = , to the split states with 

momenta 0 k=  and + 2 k= .   If we choose the pulse duration to be corresponding with a 

2
π

− pulse as indicated in equation (2.3.10), the wave packet is split 50/50 to p = 0 and p 

= + 2 k= .  However, if we choose a pulse time duration corresponding to a π − pulse as 

shown in equation (2.3.11), the atoms transfer 100% to p = + 2 k=  state.   Equation 

(2.3.12) is the main operation of this thesis.  We want to be able to split asymmetrically 

so that the ½ of the atoms remain at rest while the other ½ is moving away with 

+ 2 k= momentum.   

For reflection, while the wave-packet is moving away with momentum 2 k± = , we 

apply a pulse to drive the 4 k= total transition, allowing the atom to change direction and 

propagate in the opposite direction.  For example, the atom, initially at the 2 k− =  state 

will absorb a photon from left and emit a stimulated photon to the opposite direction 

gaining recoil net of 2 k+ = and making the transition to 0 k= state.  Immediately after, the 

atom repeats the photon absorption-stimulated emission cycle and finally arrives at 

2 k+ = state.  The atoms has just been reflected, changing the initial momentum from 

2 k− =  to 2 k+ =  state by gaining the total momenta of 4 k+ = .  The quantum state 

representation is,  

 2 2+ ↔ − .     (2.3.13) 
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which means the atom can go from p = 2 k+ =  state to p = 2 k− = , or vice versa.  Reflection 

is not something new but was used in previous symmetric experiments [14,15].  For 

analytic solution to the reflect pulse, it require bit more work.  The reflect pulse drives 

three transitions in series: 2+  to 0 and then finally to 2− .  Hence an analytical 

solution is not possible hence if desired, need to solve numerically much like the Rabi 

solution.  Rob Horne has performed this calculation and obtained a numerical value as 

will discuss in chapter 6. 

For recombining, as the atom packets are coming together, a laser pulse with one 

laser beam frequency switched from ω + Δ  to ω − Δ  can recombine the atom wave-

packets as, 

            ( )1 2 0 0
2

+ + →     (2.3.14)  

where the wave-packets traveling with momentum 2 k+ = to come to rest, p = 0.   

 

2.4  Numerical Simulation 

 We now consider a numerical solution to the analytical problem considered in 

section 2.3.  We solve equation (2.2.9) numerically, with initial velocity 0δ = , including 

the indices n  up to 6± .  We only calculate n  up to 6±  as the dominant population states 

are between n = 0 and 2±  and other higher states probability amplitudes are small and are 

safely neglected.  We investigate the behavior of the population density in the presence of 

asymmetric beams by plotting the probability of states of interest, in our case, 0 , 

2 k+ = , and 2 k− =  states, and see how this varies with time.  The plot in Fig. 2.2 

represents the normalized population of the two states, 0  and 2 k+ =  for 1β = .  The 



 34

major behavior we observe is a Rabi oscillation of the population between the two states.   

It is obvious that mainly the two states, 0C  and 1C+  oscillate population while the third 

state 1C−  is insignificantly affected (not shown).   We note that as the parameter β  is 

increased, the Rabi oscillation frequency increases as well.  This also tells at which laser 

beam pulse times, either equal inversion ( 1
20C =  and 1

21C+ = ) or total inversion ( 0 0C =  

and 1 1C+ = ) occurs.  Such pulses are labeled as the 
2
π

− pulse or the π − pulse, as 

previously mentioned.  For the graph shown in Fig. 2.2, we can have the 
2
π

− pulse 

occurring at 1.75μs  where as the π − pulse occurs at 3.5μs  which is twice as long as the 

pulse times for the other pulse. 
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Figure 2.2  Shows Rabi oscillation, for 1β = , between 0C (blue) and 1C+ (red).  The 

population density inversion is mainly between 0C  and 1C+  with negligible amount in 

1C− .   
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Fig. 2.3  Maximum population inversion efficiency for a given β .  We would prefer 
higher inversion around 1 / 0.5β ≈ . 

 

 We studied the Rabi oscillation curves for β  values ranging from 0.2 to 4 and 

ascertain the first π − pulse total inversion efficiency.  For various values of β  where the 

maximum π − pulse population inversion occurs, we investigate this inversion efficiency 

relationship to ascertain at which β , the desired (maximum) population inversion occurs 

as shown in Fig. 2.3. As β  increases, the coupling to the other states increases, so that the 

efficiency of the π − pulse drops.  However, at lower β , the inversion efficiency is 

higher and one would immediately choose to select such values for the laser beam 

parameter.  However, for lower β  values the population inversion is very sensitive to Δ .  

Hence a nominal optimal value, in our case, β  closer to 2 is optimal. 

 The graphs shown in Fig. 2.2 and Fig 2.3 form the foundation for constructing the 

actual experiment.  We need to have the estimated values for β  and pulse time pulset  
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before starting the experiment to get a rough idea of pulse times and intensity we need to 

split the atoms.    

 Now we have the three main atom manipulation techniques: asymmetric split, 

reflect, and recombine.  The previous theoretical work lays the foundation for an 

experimental development.  We want to use the asymmetric splitting to achieve an 

asymmetric atom interferometer, allowing us to measure the recoil frequency and gravity 

with much more accuracy.   

 

2.5  Motivation Behind Recoil Frequency Measurement 

 The recoil frequency is interesting to measure because it relates to the 

fundamental measurement of the fine structure constant α  - a dimensionless parameter 

that quantifies the strength of the electromagnetic force.  This quantity is currently 

accurate to within 4 parts per billion (ppb) via electron positron (g-2) measurement 

together with QED.  We approach this from atomic physics perspective as,  

    2 2

e e

R h R M h
c m c M m

α ∞ ∞ ⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

     (2.5.1) 

where R∞  is Rydberg constant (0.008ppb), eM  is electron mass (0.7ppb).  M and m are 

test particle masses.  The equation offers possibility to accurately measure α  in ppb if M 

and h
m

 can be measured accurately.  From the recoil frequency, 

     21
2rec k

m
ω =

=      (2.5.2) 

where k is wave vector of the photon absorbed by the atom.  Recently, Cesium, CsM , 

have been measured 0.17 ppb, Csk  to within 0.12 ppb, and ,rec Csω  have been measured at 
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Stanford with atom interferometer to 6 ppb.  Hence we can also use Rb to measure ,rec Rbω .  

In our test, we are not pursuing an accuracy to ppb but using it as a test to our system.  

With further improvements in the future, it might be possible to accurately measure to 

within 1 ppb. 

 

2.6 Interferometers 

 We investigate a few asymmetric interferometers using the operations asymmetric 

split, reflect, and recombine.  The simplest interferometer we experiment is an 

interferometer where the atoms are asymmetrically split only to be followed immediately, 

short wait time τ , by another asymmetric split.  We control the wait time between the 

two pulses to be very short so that the atoms do not have enough time to separately 

completely, but have two distinct packets with different momenta.  After the second split 

we give the atoms enough time to separate, which is often called time-of-flight.  

 The basic idea behind the time-of-flight is to wait a relatively long time until the 

packets are separated with a significant distance. At the end of time-of-flight, we can 

measure the number of atoms in different output states and will be used to ascertain the 

phase information via the number of atoms, 0 / totalN N  where 0N  is the number of atoms 

left in rest state and totalN  is the total number of atoms in the system (both states) after the 

recombination.  By measuring the period, we can measure the interference output. 

 The purpose of this interferometer is to test the asymmetric splitting operation.   

We find that the probability of finding atoms in state 0  is 2cos
2

rφ⎛ ⎞
⎜ ⎟
⎝ ⎠

 while finding 
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atoms in state 2  is 2sin
2

rφ⎛ ⎞
⎜ ⎟
⎝ ⎠

 where 4r rφ ω τ= .  We call this first interferometer the 

Ramsey interferometer named after American physicist Norman Ramsey who used a 

similar technique to measure the transition frequencies of atoms using magnetic 

resonance.   

 

Figure 2.4.  Ramsey interferometer configuration.  Two identical asymmetric pulses with 
wait time τ  in between.  Atoms are separated in momentum space but spatially 
overlapped. 

 

Figure 2.5.  Ramsey-Borde type 1 interferometer configuration.  After asymmetric split, 
one atom packet remains at rest while the other gains momentum 2 k+ = .  At τ  time 
later, a reflect pulse is applied, only reflecting the moving atom wave packet.  Again at 
second τ  time later, recombination pulse is applied, showing interference as a result. 
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 The second interferometer we can build, as shown in Fig. 2.5 uses a single 

reflection.  The atoms are split asymmetrically, the moving atoms are later reflected and 

returned back to the original position, and then finally recombined with the atoms at rest.  

We find that the probability of finding atoms at rest 0  is ( )2cos rφ .  We call this 

Ramsey-Borde type 1 interferometer - Borde is named after French physicist Christian 

Borde who use atomic recoil to create a beam splitter for an atom interferometer.   

 The third interferometer is the Ramsey-Borde type 2 interferometer where the 

moving atom packet under goes two reflections, making the path journey on both side of 

the initial position, and then recombining with the atoms at rest as shown in Fig. 2.6.  We 

find that the probability of finding atoms at rest 0  is ( )2cos 2 rφ .  The only difference 

between RB1 and RB2 is that this one reflects twice and waits time 2τ before the second 

reflect pulse is applied.  The total phase it experience is 4 rφ  compared to rφ  in Ramsey 

and 2 rφ  in RB1. 

 

Figure 2.6. Ramsey-Borde type 2 interferometer configuration.  After asymmetric split, 
one atom packet remains at rest while the other gains momentum 2 k+ = .  At τ  time 
later, a reflect pulse is applied, only reflecting the moving atom wave packet.  Wait 2τ  
time later, second reflect pulse is applied.  At τ  time later, recombination pulse is 
applied, showing interference as a result. 
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 For all three interferometers, since we know that 4r rφ ω τ=  so for a full period, τ , 

we can get the value of rω  which is the recoil frequency by measuring the period of the 

interference.  This can be done by successfully measuring the number of atoms at rest at 

the end of the interferometer for differentτ times. 

 Although we can manipulate the atom packets asymmetrically to build an atom 

interferometer, such a task still remains elusive as we have to consider the overall phase 

stability.  For asymmetric split to occur, we have to stabilize the laser beams’ phases.  We 

will review this utmost importance in the next section. 

 

2.7  The Importance of Phase Stability in Asymmetric Interferometer 

 In the interference output, the populations in the final momentum states depend 

on the phase.  This includes the phase developed by the atoms as well as any uncertainty 

phase from the laser.  With with the atom manipulation technique understood, let us 

investigate what happens to the phase of the atom wavefunctions during the operations.   

 The interferometer shown in Fig. 2.6 can be analyzed in detail including the phase 

introduced by the laser beam on atoms.  Start with the initial atom packet at rest state 

with zero initial velocity 0δ =  (see 2.2.1): 

  0ψ =     (2.7.1) 

After an asymmetric split, this becomes 

1
1 0 2
2

iie φ⎡ ⎤+⎣ ⎦     (2.7.2) 

where 1φ  is the laser phase introduced from the laser pulse.  As we wait time t, the atom 

packet evolves in time and becomes 
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1 41 0 2
2

ri i tie eφ ω−⎡ ⎤+⎣ ⎦    (2.7.3) 

with
2 2

2r
k

m
ω =

=
=

.  Reflecting the packet, the wavefunction becomes 

1 2( 2 ) 41 0 2
2

ri i tie eφ φ ω− −⎡ ⎤+ −⎣ ⎦    (2.7.4) 

where 2φ  is the laser phase introduced from the reflect pulse.  Let the atoms evolve over 

time 2t 

1 2( 2 ) 121 0 2
2

ri i tie eφ φ ω− −⎡ ⎤+ −⎣ ⎦   (2.7.5) 

Reflecting again 

1 2 3( 2 2 ) 121 0 2
2

ri i tie eφ φ φ ω− + −⎡ ⎤+ +⎣ ⎦   (2.7.6) 

where 3φ  is the laser phase introduced from the second reflect pulse.  Again let atoms 

evolve over time t 

1 2 3( 2 2 ) 161 0 2
2

ri i tie eφ φ φ ω− + −⎡ ⎤+ +⎣ ⎦   (2.7.7) 

Finally recombine and add 4φ the laser phase from the recombination pulse and finding 

the amplitude to be in the 0  state is 

 1 2 3 4( 2 2 ) 161 0 0
2

ri i te eφ φ φ φ ω− + − −⎡ ⎤−⎣ ⎦   (2.7.8) 

The above equation (2.6.8) will result if the laser phases are uncorrected.   Always results 

will fluctuate if phases fluctuate.  It comes clear that we must be able to control the phase 

so that we can eliminate the phase contribution from the laser pulses.  This can be done if, 
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at each operation, experimentally set the laser phase to zero.  Hence if this is to happen, 

we get, 1 2 3 4 0φ φ φ φ= = = = .  Then equation (2.6.8) reduces to 

  161 1 0
2

ri te ω−⎡ ⎤−⎣ ⎦     (2.7.9) 

and the probability finding the atoms at rest is 

2
0 cos (8 )rP tω=     (2.7.10) 

Therefore, by measuring the period of the interference curve, one can measure, for 

example, directly, the recoil frequency rω .   

 

2.8 Correcting the Laser Phase 

 Even though we can asymmetrically split, reflect, and recombine, the end result 

does not tell us anything about the recoil frequency, rω , unless we can control the laser 

phase. For asymmetric interferometer to work, we need to consider our overall laser 

beam phase stability.   As the laser beam fluctuates and mirrors vibrate, unstable phases 

can be introduced onto the laser beam.  In previous symmetric split experiments [Hughes 

2008], a single mirror controlled the relevant laser phase (Fig. 1.4).  The standing wave is 

produced by retro-reflecting off of that single mirror.  Since the laser beam follows the 

same path, only that mirror has to be carefully stabilized and vibration free to keep the 

phases of the two beams constant.  A great deal of work was put into the vibration 

isolation and stabilization of that mirror.   However, the asymmetric splitting requires a 

more complex setup.  Two beams with two different frequencies will follow two different 

optical paths with many mirrors to reach the atoms.  If those mirrors vibrate 

independently, it changes the relative phases of the laser beams.   It is very hard to 
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control and stabilize many mirrors.  The result is the introduction of an unknown phase to 

the interferometer, making it noisy or even useless as shown in equation (2.6.8).   

 Hence for an asymmetric interferometer to work, this external phase must be 

corrected. Our approach is employing an active phase stabilization through an electro-

optical feed back system.  This stabilization system would be able to measure the phase 

quickly and actively correct it during the experiment.  We describe in detail the active 

phase correction electronics in our experiment chapter.   

 

2.9 Future Asymmetric Gravity Interferometer Concept 

 So far, we have not addressed specifically how we can actually measure gravity.  

Some of the previously mentioned interferometers can measure recoil frequency but need 

to be oriented vertical to measure gravity.  Our motivation was to devise a method to not 

fall atoms very far but still achieve a longer arm separation distance to measure gravity.  

This is more evident by examining the proposed vertical interferometer where the wave-

packets follow the path shown in Fig. 2.11.   In this vertical interferometer, the two 

separate wave-packets experience different heights manifests in a gravitational phase,  

1 ( )g S t dtφ = ∫=  where ( )S t  is the action which is integrated over time t .    We use the 

action integral as the atoms are moving in a potential where the momentum, p, is not 

constant.  We will dig deeper into the details of manipulations and value of gφ  in chapter 

7, however, it is worth mentioning now that we can make such interferometer and at the 

end of recombination, we expect interference where the probability of finding atoms at 
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0  state is derived to be 2cos
2
gφ⎛ ⎞

⎜ ⎟
⎝ ⎠

, whereas the probability at finding atoms at 2−  

state is derived to be 2sin
2
gφ⎛ ⎞

⎜ ⎟
⎝ ⎠

.   

 

Figure 2.11  Proposed atom packet trajectory to measure gravity with better precision 
through large distance separation and larger separation times.  This configuration would 
require asymmetric splitting and reflection to make it work. 

 

 Theoretically, a trajectory with 1000 pulses will yield about 1 cm separation in 1 

second.  If the phase accuracy is 0.01 radians, one can achieve sensitivity to about 

10 27.27 10 m/sgδ −= ×  which is a significant improvement over previous experiments and 

surpasses the sensitivity of a mechanical sensor.   

The asymmetric splitting and recombining operation is needed to build our 

proposed atom interferometer. These transitions allow the atom wave-packet to gain 

momentum in only one direction, and require beams with slighly different frequencies.  

This is the main motivation for this thesis, and is the first step toward implementing 

interferometer of Fig. 2.11. 
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2.10  Summary 

 We explored the theoretical aspects of the asymmetric splitting and have the tools 

to design and configure the laser pulses’ characteristics to asymmetrically split, reflect, 

and recombine the wave packets.  It is evident that in order for our interferometer to work 

properly, we must find a way to stabilize the laser beam phase so that the laser phase is 

not introduced during the atom manipulations.  The mathematical derivation in this 

chapter forms the basis for the instrument development, hence the goal of our instrument 

is to phase stabilize both beams in a very short times, in the order of few percent of the 

pulsed time.   

 We covered the theory on the interferometers and how it can measure the phase 

via an interference obtained at the output.  With such an understanding, we are able to 

devise a few interferometers that use the asymmetric splitting to measure the recoil 

frequency and gravity.  Henceforth, all we need is to build an interferometer that fits the 

bill.  We explore such instrumentation in the next chapter. 
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3.0  

Instrumentation 

Optical & Electronics 

 

 

 For the asymmetric interferometer to work, as mentioned in the previous chapters, 

we must stabilize the laser phases at each optical operation: asymmetric split, reflect, and 

recombine.  Without stabilizing the laser phase, at each laser pulsed operation, we 

introduce unknown laser phase onto the atoms’ Bohr phase.  As derived in equation 
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(2.6.8), the extra phases accumulate on top of the atom phase.  Hence interference 

measurement for recoil frequency or gravity may yield incorrect result.   

 We need to be able to stabilize the phase so that those laser phases are eliminated 

altogether.  Our strategy is to employ a feedback system to control the laser phase.  We 

use an electro-optical system to stabilize the relative phase between the two beams.  

Further, we need to stabilize the beam quickly, within a few percent of the pulse time, so 

that the stabilization process does not affect the atomic wavefunctions.  For example, if a 

pulse is 70 μs long, then we want to stabilize the phase to within a few μs .   The required 

stabilization time, st , is calculated from considering our split fidelity from equation (2.4.8) 

with 0Π =  (hence X β= ) 

    2

cos sin
2 2

sin cos
2 2

s s
ti

s s

t ti
U e

t ti

β β

β β

Π
⎡ ⎤−⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

   (3.0.1) 

The concern is that while the phase stabilization apparatus is correcting the phase, we 

want to make sure that there is no significant effect on the wavefunction during 

stabilization period.  Taking 2 2 7.5rβ ω π= = × kHz, we consider 1stβ << corresponding 

to 20t << μs .  Under this condition, (3.0.1) becomes 

     
1

2

1
2

s

s

ti

ti

β

β

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

.    (3.0.2) 
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When (3.0.2) is applied to our initial state 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, we get 
1

2
sti β

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎣ ⎦

.  Hence the population in 

the moving state is  
2 2

4
stβ .  If 4st sμ< , then 

2
1 4 1%
4 20

s
s

μ
μ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  so we will have,  less than 

1% unwanted population.  So we want time 
2

stβ  less than 4μs .  We operate at 3.6μs .   

  Therefore, we require the phase locking apparatus bandwidth to be much greater 

than 1 / 3.6μs , which is ~ 300 kHz.  To ensure reliable locking, we need a bandwidth at 

least 10 times that, so 3 MHz or more.  Hence the challenge of this experiment is in the 

instrumentation: the opto-electronics that can quickly stabilize the laser phase as we 

apply the optical manipulating pulse to the wave packets.  We also demand the phase 

locking accuracy to within 10 mrad as this is the accuracy at which we can measure the 

interferometer output.  We achieve these feats by employing an active electro-optical 

phase correction system.  The system detects the relative phase of the laser beams, 

generates an error signal, and locks to the error signal to correct the phase of laser beams.  

So the challenge is finding a clever way to approach this issue with a simple solution.   

 This chapter describes our approach and is divided into three main parts.  The first 

part explains the optical set up of the laser beams to extract the interference of the laser 

phase.  The second part explains the electronic system used to import the laser phase 

information and generate the error signal to feedback to the electro-optical-modulator 

which can correct the phase via electro-to-optical phase conversion.  The third part 

explains the design and construction of the amplifier system to drive the AOMs.   All 

three parts constitute the main apparatus which allows the asymmetric splitting.   
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Fig. 3.1 Optical test bed for asymmetric splitting development.  We use two acoustic-
optical modulators (AOMs)  followed by an electro-optical modulator (EOM).  The beam 
cube allows interference of the two beams at the duel photo-detector (PD) where phase 
information is extracted.  A single laser beam is split using polarizing beam splitter (PBS). 

 

3.1 Optical Set-up 

 Figure 3.1 shows the basic schematic of the optical set up.  The phase stabilization 

apparatus is a combination of electronics and optical systems working together in unison 

to provide laser phase stabilization.  The optical component of the apparatus serves two 

purposes; 1) set up the laser beam alignment to split the atom packets, and 2) set up the 

laser beam geometry to extract the laser phase signal.  The first is set up by having the 

two beams overlap on the atoms.  The latter is set up using a Michelson-like 

interferometer configuration geometry to reveal spatial interference of laser phase with 

respect to each other.  Our aim is to hold this spatial standing wave via electro-optical 
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feedback system to keep the differential phase to zero.  Thus, we can implement a system 

where the relative laser phase that is stable and not changing.   

 As shown in Fig. 3.1 the laser is a 780 nm diode laser from New Focus TLM7000 

with the output power up to 50mW.   The laser beam is split into two using a half-

waveplate and a polarizing beam splitter.  The two beams are directed to two NEOS 

acoustic optical modulators (AOMs) (part #AOBD-461103LTD).  The AOMs are devices 

which shift the frequency of the incoming laser beam via phonon-photon coupling. 

Simultaneously the AOMs also deflect the beams.  In our set up, we use two AOMs with 

one AOM driven slightly higher frequency ( 15kHzΔ = ) from the central f = 100 MHz.  

We also use the AOMs to turn the beams on and off like a shutter.  In principle, the 

AOMs could be used to correct the laser phase, but in practice they are too slow for that 

purpose.  It takes an AOM about 300 ns to transition signals from acoustic phonons to 

photons.  This corresponds to a 500 kHz bandwidth,  which is too slow for our purpose.  

Instead, we employ an electro-optical-modulator (EOM) from EOSpace (part # pm-0k5-

00-pfu-pfu-780-ul-s) in-line with one of the laser beams.  The EOM is used to change the 

phase of the laser beam proportional to an input voltage and has bandwidth of several 

hundred MHz.  For the EOM we employ, the control voltage value at which the phase is 

shifted by π  is called Vπ  and is measured to be 1.4V.   

The laser beams from the two AOMs are coupled into optical fibers through 

THorlabs C220-TM-B achromat lenses with a focal length f = 11 mm.  The EOM is also 

fiber coupled so that both beams can be delivered to the experiment via optical fibers in 

lieu of mirrors.  Also, fiber coupling cleans the TEM modes of the laser beam, making 

the output beam very Gaussian.  Another two sets of coupling lenses are on the outputs of 
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the fiber/EOM near the experiment.  The measured output beam waist at  21 / e  is about 1 

mm for both beams. 

 

3.1.1 Phase Detection Concept 

 

Fig. 3.2   Cartoon representation of interference signal at PD. 

 

 The phase difference between two laser beams can be approached in two different 

ways.  One way is to employ a heterodyne technique in temporal domain to detect the 

phase by beating two frequencies of the laser.  However, this technique is not fast enough 

as ours is a 15kHz frequency which must be detected in a few microseconds.  The second 

way is instead of using the time domain detection, we use spatial interference signal and 

obtain a “snap shot” of the phase signal to ascertain the phase information.   We use the 

latter technique by using a fast photodetector (to be discussed in later sections) to detect 

the interference signal created by the two beams at an angle as shown in Fig. 3.2.  For the 

situation in Fig. 3.2, the two laser beams have electric fields  
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     1 1( )
1 1

i k r tE E e ω⋅ −=
G GG

   (3.1.1.1) 

     2 2( )
2 2

i k r tE E e ω⋅ −=
G GG

   (3.1.1.2) 

where the wavevectors 1 ˆk kx=
G

, 2 ˆ ˆ(cos sin )k k x yθ θ= −
G

, and ˆ ˆr xx yy= +
G .  The detectors 

see an interference signal 

   1 2( )2 2 ( cos ) ( sin )
1 2 1 22 i ti k k x i k yI E E E E e e e ω ωθ θ − ++ −= + +  (3.1.1.3) 

which depends on the angle between the beams and the frequency difference of the laser 

beams.  Hence the detector sees a spatial variance signal proportional to the phase of the 

laser beams.  We can achieve the spatial phase detection through the following way: as 

shown in Fig. 3.1 the two beams are aligned counter propagating and overlapping the 

atoms.  On the same path, on the left side of the atoms in Fig. 3.1, the beams also enter a 

phase detecting beam cube assembly.  The beam cube assembly is composed of 30R/70T 

beam splitter cube with a mirror and a photodiode (PD) on 2D translation stage on cage 

mount system. The purpose of this beam cube assembly is to simply set up the beam path 

geometry to acquire interference signal of phase between the two laser beams.  At the end, 

the Hammamatsu S4202 dual PD is used to resolve spatial standing wave parallel to the 

detectors as shown in Fig. 3.2.   

The Hammamatsu dual PD is 1 2 mm×  two square element array with 0.02 mm 

gap between the photodetector A (PD-A) and photodetector B (PD-B).  The distance 

between the anti-nodes of the standing wave is /D λ θ= . The dual PD have a spacing of 

2 mm, so by setting D = 4 mm (θ = 0.2 mrad), difference between the signals detected by 

PD-A and PD-B indicates the laser interference phase.    
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3.1.2  Phase Detection Implementation 

 The angle θ  is achieved between the two beams to the detector using a mirror 

situated perpendicular to the beams incoming path to the beam cube in the cage mount 

assembly.  The beam cube has only one reflective surface diagonal to the cube so our 

beam “A” will reflect once to PD while the other beam “B” will reflect, then bounce off 

mirror on the opposite side of the PD, and then finally arrive at the PD through passing 

the beam cube one more time.  Simultaneously, this same beam will allocate most of its 

first split beam (70% transmit) towards the atoms.  A beam power balancing is a juggling 

act in this configuration.  We want about equal amount of intensities to overlap the atoms 

as well as having an equal amount of intensities from both beams hitting the PD.  We 

adjust the input intensities of the two beams by a series of half-wave plate adjustments at 

the AOM side of the optical set up. 

 Although the cage mount system worked well to acquire the interference signal of 

laser phase, we decided to surround the beam cube with four singlet lenses (f = 35 mm) 

mounted on Thorlabs CM1-4ER cage mount.  The purpose of the four lenses spatially at 

35 mm from the center of beam cube on all four sides can be explained by examining Fig. 

3.3.  The beam “A” (color red) is focused at the center of the beam cube and then 

reflected towards the PD as it focuses out.  As the beam is reflected/transmitted and is 

expanded, the second focusing lens re-creates the beam diameter of the original beam 

hence no change is realized for beam “A” as it exits the second lens.  For laser beam “B” 

(color blue) the beam incident on lens is focused, reflected to another lens at 35 mm away, 

and when it exits the lens, it is likewise, re-formed with same diameter beam.  However, 

the mirror with deflection angle / 2θ  will reflect the beam off-axis so that when the 
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beam enters the focusing lens again from the back side, the beam does not focus at the 

center of the cube but rather at an off-axis as shown.  As the beam passes through the 

final lens before hitting the PD, the beam is directed to the PD with an angle θ  which 

results in an overlap with the laser beam “A.”  What we achieve by creating such 

complex web of lens is that it makes the alignment simpler and easier.  Regardless of the 

angle of the reflecting mirror, the beam will always find a path back to the PD.  Hence, 

we can control the interference angle θ  without affecting the over-all beam paths.  Also, 

we want to put the whole assembly on a vibration-free stage eventually so we want to 

make all components compact hence minimal adjustment is required to resolve the phase 

interference.   

 In the beam cube assembly, we use a cube beam splitter instead of a plate beam 

splitter.  Use of a cube beam splitter is important, as compared to a plate splitter, since a 

plate beam splitter can introduce aberrations to the beams through a multiple passing of 

the beam splitting side.  We are not able to resolve a good beat note with plate beam 

splitter as one of the beam going into the PD was elongated horizontally, reducing the 

visibility of the beat note.  This aberrations is significantly reduced with the use of cube 

beam splitter. 

 Unlike the previous symmetric splitting experiment where the most important 

reflecting mirror is set up on a vibration controlling stage, we will put the beam cube 

assembly in lieu of that mirror.  The main purpose is to make it one piece on a standard 1 

inch mount.  For this experiment, we did not use an isolation stage.    
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Fig. 3.3  Schematic showing the beam cube assembly.  The beam splitter is 30R/70T 
which allows maximum beam to the atoms and enough beam power to be directed to duel 
PD where the phase information is extracted.  The four surrounding focusing lens allows 
change of θ  without changing the direction of the collimated beam onto PD. 

 

3.1.3 Phase Detection Performance 

 Obtaining the interference at the PD is another balancing act that must be 

understood.  As laser beams A and B arrive at the PD with B at beam angle θ with 

respect to the beam A, we obtain interference.  As we vary the angle between the two 

beams, we can adjust the phase interference offset as detected by the PD.   

 We want to adjust the angle θ  so that the transverse period of the spatial 

interference signal is nominally twice the photodiode spacing, as shown in Fig. 3.4. In 

this configuration, the difference between the two photodiode signals is maximally 
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sensitive to the phase of the interference.  The intensity as a function of position can be 

expressed using Eq. (3.1.1.3) as  

   [ ]2 11 cos (1 cos ) sin ( )I kx ky tθ θ ω ω∝ + − + + − ,          (3.1.3.1) 

which for small θ  reduces to 

    1 cos( )I k yθ φ∝ + +                    (3.1.3.2) 

where 2 1( ) itφ ω ω φ= − + .  By sampling this function at half its period in y, we can 

determine φ  as desired. 

 

Fig. 3.4  Dual PD with width d and separation distance s.  As the phase from the two 

beams is moving with respect to time, the detectors see two different spatial intensities.  

Subtracting the two signals yield spatial phase information. 

 

 In practice, the photodiode elements have width d and separation s as shown.   

The signal produced by one PD is therefore 



 57

   1
0 0

1 cos( )
d d

S I dz k y dyθ φ= ∝ + +∫ ∫               (3.1.3.3) 

Evaluating the integral we get 

        [ ]1
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θ φ φ

θ
∝ + + −                    (3.1.3.4) 

The signal from the second photodiode will be  
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For the ideal spacing ( )k s dθ π+ =  the difference signal is  
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Our photodiodes had s = 0.99 mm and d = 0.02mm, so the nominal angle was θ = 0.07 

degrees. 

 Hence the visibility oscillates so we want to maximize the visibility by adjusting 

θ  to detect the maximum visibility.  Originally, we intended to offset the phase 

difference to be 180 degrees which we thought would give us the maximum contrast.  

However, upon practice and theoretical investigation (3.1.3), 90 degrees phase worked 

best for us.  This is because the intensity is attenuated at 180 degrees so that the 

difference is better at 90 degrees as compared to 180 degrees.  To illustrate such 

examples, the phase differences are shown in Fig. 3.4.  For our phase locking system to 

work, the phase is relative and we are not stringently set for 180 degrees.  We prefer 

having a higher contrast between the two beams so that our electronics (to be discussed 

next section), have enough voltage to work with.  Therefore, we choose 90 degrees as our 
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set phase.  If desired, any phase offset that yields maximum contrast will work well as 

long as enough voltage is acquired. 
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Fig. 3.4.  Shows (a) phase difference of 90 degrees of laser beams, (b) phase difference of 
180 degrees, (c) difference of signals in (a), (d) difference of signals in (b). 

 

3.2 Electronic Phase Feed-back System 

 The result of the optical component of the experiment is to attain the phase 

information in terms of the voltage signal. We can now devise a complementing active 



 59

electronic feedback system that can correct the laser phase offset to zero in 10 MHz 

bandwidth.   The electronics system, as shown in Fig. 3.5 is a series of sub-components 

that can subtract the PD signal, generate error signal based on a PI feedback circuit, and 

sample and hold the error signal to ultimately provide feedback to the EOM to stabilize 

the phase.  During the process, amplifications and attenuation are an essential part of the 

circuit. 

 

Figure 3.5.  Block diagram for all electronics.  Starting from two laser beams feedback to 
EOM is generated as a final product of the electronics. 

 

 The utmost importance in designing an electronic feedback system is the 

bandwidth.  How fast should we make our circuit to operate?  Clearly we want bandwidth 

greater than 3 MHz.  To comfortably rely on good practice, we aim for bandwidth in the 

10 MHz range (equation 3.0.2).  Without focusing too much on going above 10 MHz 

which would require some selective rf components which are exorbitant in cost, we find 

cost effective balance by building a circuit with bandwidth of 10 MHz with a reasonable 

cost.  We describe the electronics development in the next sections. 
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3.2.1 Photodetector 

The photo-diode pair (PD) is a Hammamatsu S4202 as shown in Fig. 3.6 which is 

a dual-element Silicon P-I-N photodiode with nominal 30 MHz bandwidth.  We find 0.25 

A/W efficiency.  A simple circuit diagram of the PD unit is shown in Fig. 3.7.  It is 

simply a 12 V biased circuit with output current converted with a 50 Ω  resistor for a fast 

response.   

 

Fig 3.6.  Hammamatsu S4202 dual photodetector with dimensions (in mm).   

For higher gain, 100 Ω  resistors can be used instead.  The whole PD assembly is fit 

inside the one-inch optical barrel mount on a 2D translation stage with micrometer 

mounted to the stage to accurately position the PD to obtain the laser phase interference 

signal. 

 

Figure 3.7 Schematic of PD Circuit.  We bias the PD using existing 12V and convert 
current to voltage via 50 Ω  resistors.   
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For our purpose, the frequency response of the electronics component is the most 

important as our system must operate quickly to stabilize the phase.  Hence, we measure 

frequency response of the PD to ensure that our desired 10 MHz bandwidth is achieved.   

For testing purpose, we set up a simple interferometer as shown in Fig. 3.8, modulating 

only one of the beams with the EOM.  

 

Fig. 3.8.  Optical testing of PD as function of frequency. 
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Figure 3.9  Bode plot of photodiode response.  (a) shows amplitude gain as function of 
frequency, (b) shows phase as function of frequency.  50 Ω  resistor is used for this 
measurement. 
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 By varying the modulating frequencies to the EOM with a rf function generator, 

we spot check at several frequencies up to 30MHz.  This is a direct optical modulation 

measurement.  The Bode plot is shown in Fig. 3.9.  We find that gain is 40 dBm at 1MHz 

to 38.5 dBm at 10 MHz while phase lag is zero until after 5 MHz and then quickly lags 

about 50 degrees at 10MHz. 

 

3.2.2 Differential Amplifier 

The output of the dual element PD feeds to an Analog Devices AD8138 

differential amplifier (DA) which subtracts the PD-A input from the PD-B input.  The 

AD8138 chip is mounted on an evaluation board EVAL-8138 with a fixed relative gain 

0.75 for each output channel.  The schematic of the unit is shown in Fig. 3.10 with its 

component values.  It should be noted that there are two outputs from the differential 

amplifier but only one output is used for electronics following after.  For example, we use 

Output A to feed into the amplifier, and use Output B to monitor the signal with an 

oscilloscope to verify that we have a good differential signal from PD-A and PD-B 

during the actual experiment. 

 

Fig. 3.10  The schematic for differential amplifier.  Two inputs from PD are differentially 
subtracted.  Two outputs show two different polarity subtractions. 



 63

32

34

36

38

40

42

0.1 1 10 100

Differential Amplifier
A

m
pl

itu
de

 (d
B

)

Frequency (MHz)

-200

-150

-100

-50

0

50

0.1 1 10 100

Differential Amplifier Phase

P
ha

se
 (d

eg
re

es
)

Frequency (MHz)

 

Figure 3.11   BODE plot of differential amplifier.  (a) shows amplitude gain as function 
of frequency, (b) shows phase as function of frequency. 

 

We test the frequency response of the circuit by directly feeding in an rf signal to the 

input of the differential amplifier and observing the output.  This gives the Bode plot as 

shown in Fig. 3.11.  As seen, the phase lag is 45 degrees at 5 MHz. 

 

3.2.3  Amplifier 

 We need gain to amplify the voltage to generate the error signal.  We do this by 

using a dc coupled high speed amplifier.  The amplifier is a fixed gain amplifier 

commercially available at RF Inc. part number DCA-50-23.  We also measure the 

frequency response as shown in Fig. 3.12.  The amplifier yields very good gain and phase 

frequency response at 10MHz. The gain is fairly constant at about 24 dBm until 10 MHz 

and phase is delayed only by 20 degrees at the same frequency. 

The output from the amplifier contains the relative phase information of the two 

PD signals.  In reality, for a nominal input of two beams of 2 mW each making the fringe 
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pattern on the photo-detector, after the differential amplifier and amplifier, we measure 

about 375 mV of signal output at 0 degrees phase. 
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Figure 3.12 Bode plot of amplifier.  (a) shows amplitude gain as function of frequency, (b) 
shows phase as function of frequency. 

 

3.2.3.1   Overall Gain & Phase 

 We measure the overall gain and phase lagging of all components in series: PD, 

differential amplifier, and amplifier.  For this test, the input is an optical laser beam on 

PD and the EOM is modulated with an rf function generator.  We find that our operating 

range is close to 10MHz.  This suggests that our locking circuit can successfully lock in 

the few μs  range.   

 The overall gain and phase is not entirely consistent with that of the individual 

components.   The reason for this is not clear, but it likely has to do with the effect of 

electrical loading between the subsystems.  When all systems are connected, it must 

change the impedance load of the system. 
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Figure 3.13 Bode plot of overall gain and phase.  (a) shows amplitude gain as function of 
frequency, (b) shows phase as function of frequency. 

 

3.2.4 Attenuation 

 In order to provide an adjustable gain in the feedback circuit, we pass the error 

signal through a voltage controlled attenuator.  This is done through a simple circuit 

shown in Fig. 3.14.  It is a high speed attenuator which can be accomplished via a fast 

transistor and a fast op-amp.  The field effect transistor (FET) acts like a variable resistor, 

controlled by the attenuation voltage, which controls the amplitude of the signal going to 

the buffer op-amp.  The attenuation is variable hence we can adjust the error signal level 

as needed by the feedback circuit.  The attenuation is adjusted through a one-turn 

potentiometer on the front panel.  We set the attenuation level empirically by optimizing 

the lock behavior.  
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Figure 3.14  Schematic of attenuate circuit.  SMA (In) is the differential signal in through 
the SMA port, SMA (out) is the attenuated signal out, and SMA (attn) is the control 
voltage applied to adjust the gain. We use this circuit to attenuate the error signal going 
into the lock circuit. 

 

3.2.5 Proportional and Integrate Circuit 

 We need to generate error signal to feed back to EOM to stabilize the phase.  

There are several widely known error signal generating mechanisms such as 

proportional-integral-derivative (PID) controller that can generate the feedback signal to 

correct for the error from a set point of our desired value [22].  In our system, we use a 

proportional-integral control circuit.  We omit the derivative portion of the circuit as we 

anticipate that our system does not need it.  The basic idea of the error generating circuit 

is equivalent to a thermostat in a house.  The thermostat keeps the house at a certain 

temperature by subtracting the measured temperature of the house from a set point (i.e. 

70 degrees Fahrenheit).  If there is any deviation from the set point, either an air 

conditioning or a heater will be applied to regain the set temperature.  For our system, the 

differential phase of the laser beams is like the temperature and we would like to set this 

to zero. 
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 Mathematically, the error signal generation for the PI is, 

    
0

( ) ( ) ( )
t

p iu t K e t K e dτ τ= + ∫              (3.2.5.1) 

where pK  is the proportional gain, iK  is the integral gain, t  is time, and ( )e t is the error 

signal, defined as the difference between the current value and the set point value.  For 

detailed analysis of the PI control theory there are plethora of control theory books and 

on-line [23]. 

 

Figure 3.16  Schematic diagram for S/H Circuit.  The circuit is combination of proportion 
and integrate error signal circuit followed by a sample and hold circuit.  Switching the 
locking on and off and time delay is also needed to lock the phase when needed.  Time 
delay is adjustable at the front panel by a turning knob potentiometer. 

 

 A part of our PI circuit is shown in Fig. 3.16 enclosed by red dashed lines.  The 

proportional component is an operational-amplifier AD826 labeled “P” with gain of pK = 
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3 set by the resistors combination ( 300 Ω  and 100 Ω ).  The integrate is an identical 

operational-amplifier labeled “I” with resistor and a capacitor with 

8 11 / 1 / (100 50pF) 2.0 10iK RC s−= = Ω ⋅ = × .  The proportional and integral signals are 

equal at a signal frequency  2 10 MHzi

p

K
K

π= × .  The two op-amps are equipped with 

ADG1421 switch on the feedback loop which can toggle on/off error generating circuits 

by an external TTL signal.  When the switch is off, the error signals from the proportional 

and integrate are added at a third op-amp and is fed into the HA5351 Sample & Hold 

chip. 

 

3.2.6  Sample and Hold Circuit 

 The PI circuit is followed by the sample and hold chip, HA5351.  A brief circuit 

diagram is shown in Fig. 3.16.  The sample and hold circuit’s main task is to sample the 

incoming signal, which is the feedback signal from the PI, and store its value for some 

length of time until the input is sampled again.  Electronically, when the S/H is in a 

sample state, the error voltage at the input appears at the output and varies simultaneously.  

When the control is changed to hold mode, the last sampled error signal voltage is held 

inside the chip and its output is a constant value of this voltage.  For phase locking, the 

main purpose of the S/H circuit is to correct the phase of one beam respect to another to 

zero at the start of the asymmetric splitting only for a very short time (~ 3.6 sμ ) so that 

the beams’ phase do not contribute to the overall phase gained by the atoms during the 

actual interferometer experiment.  After the initial 3.6 sμ , the phase of the pulsed beam 

must be allowed to develop as tφ = Δ , in order for the asymmetric splitting to occur.  At 
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this point, the phase locking circuit must be inactive.  Hence, the chip “sample and hold” 

is in fact “track and then hold.”  Of course, the sample and hold gets its error signal from 

the PI circuit which determines the amount of error correction needed to stabilize the 

phase.  The control signal is generated from the laser on/off signal by adding a 3.6 μs  

delay using the ICM 7555 chip .   We can adjust how long we want to keep the S/H on 

sample mode by changing the automatic set delay time via a 10-turn potentiometer.   

 The actual circuit is designed using Eagle CAD software.  The two-layer board 

(top and bottom) is a surface mount component design and is sent to a manufacturer to 

get fabricated and its board layout is included in the Appendix A 

 

3.2.7  Control Timing 

 It is worth going over some details on the timing signals.  Our electronics are built 

for a fast operation ~ 10MHz.  Hence some aspects of the timing control needs 

clarification to design and operate our locking circuit properly.  Recall that our atom 

manipulation is done by pulsed laser beams of tens to hundreds of micro-seconds 

duration.    We want the following events to occur in sequence to lock the phase 

successfully as shown in Fig. 3.17.   

 First, the “laser pulse-on” TTL signal turns on the AOM applying the light to both 

the atoms and the lock system.  It takes about 1.8 sμ  for the laser to fully fire on.  This is 

done through an initial delay which is explained in detail in Appendix B.   Immediately 

after the 1.8μs  delay, we activate the PI circuit so that the error signal is generated.  At 

the same time, the sample and hold is in sample mode hence the output of the chip 

follows the feedback signal generated by the PI and adjusts the EOM to stabilize the 
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phase.  After a 3.6 μs  delay from the original laser pulse-on TTL, the sample & hold chip 

is switched to the hold state.  The feedback signal on the EOM is then held at a constant 

voltage.  This is when we allow the laser phase develop for the asymmetric splitting 

process.  When the laser pulse-on TTL goes low, the AOMs and the laser beams turn off. 

The circuit returns to the initial state which is: PI-off, sample & hold – sample (but has no 

signal), and the time delay – low.   

 

Fig. 3.17.  Shows the timing sequence of relevant component of the lock circuit.  Initial 
1.8 sμ  delay from a delayer is not drawn as it shifts all timing by 1.8 sμ .  Active phase 
correction of EOM is set for 3.6 sμ . 

 

3.3  AOM Driver 

 A second part of the electronics deals with an in-house built AOM drivers to 

accurately generate two frequencies - 2 100 MHzπ × and 2 100.015MHzπ × – and be able 

to provide enough rf power to drive the AOMs.  We implement the driver system by 
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using a single master rf frequency generator with 2 100 MHzω π= × , splitting the master 

rf signal into two signals - rfA  and rfB , but  mixing rfA  with 0.015MHzΔ =  with IQ 

modulator via multiplexer.  The two rf signals then go through power amplifiers which 

can drive AOMs.  Remember that the offset frequency, 2 0.015MHzπΔ = × , is set by the 

frequency that is needed to drive the atoms from 0 k=  to 2 k+ =  which was discussed in 

the theory chapter.   

 The overall schematic of the driver is shown in Fig. 3.18.  Briefly, the AOM 

drivers consist of a single master oscillator generating the 100 MHz frequency followed 

by a splitter in which one signal is fed into IQ modulator while the other input goes to 

power amplifier through an attenuator.  The IQ modulator mixes the 100 MHz with a 

small 15 kHz signal and outputs to another power amplifier via an attenuator.  There are 

two AOMs in the experiment, driving AOM1 with ω + Δ  and AOM2 with ω  where 

2 100 MHzω π= ×  and 2 0.015MHzπΔ = × .  This section describes how we generate 

those frequencies. 

 We need two phase coherent sources with exactly Δ  difference.  Independent 

oscillators will generally not provide this as exactly tuning both oscillators with precision 

is very difficult with simple commercially available products.   Fortunately, there are two 

different ways we can implement the frequency generation.  One way is using two 

oscillators and locking the frequency.  Or alternatively, drive both frequencies from a 

single oscillator.  Either could work, but we chose the latter.  We therefore had to 

implement frequency mixing component to the circuit with an IQ modulator. 
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Figure 3.18.  Block diagram for IQ modulator and amplifier circuit.  The main frequency, 
100 MHz is mixed with 15 kHz at the IQ modulator and drives AOM1 where as the 
second amplifier drives AOM2 with just the main frequency. 

 

3.3.1  IQ Modulator 

The main purpose of the IQ modulator is to impose a phase-controlled frequency 

shift to the master oscillator.  Since we are only using one master oscillator using the IQ 

modulator can shift the frequency as desired for the laser beams.   Using only one master 

oscillator, the latter is easily achieved by simply driving the AOM with the master 

oscillation.  However, rfA  will need an IQ modulator to mix two signals to give ω + Δ .  

The IQ modulator works by mixing the input signal with a combination of cos( )I t= Δ , 

and  sin( )Q t= − Δ .  Its operation schematic is shown in Fig. 3.19. 

Recall that a signal can be characterized by its complex amplitude, so the real 

voltage ( )v t  is 

     ( ) Re{ ( )}v t V t=            (3.3.1.1) 

where ( ) i tV t Ae ω=  for the oscillation frequency ω  and a complex amplitude A. 

With an IQ modulator, the Local Oscillator (LO) input, 0ω ω= , is a fixed carrier  
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Fig. 3.19.  IQ modulator operation schematic.  LO is local oscillator, -90 represents 90 
degrees out of phase, and I and Q are mixing inputs to the modulator. 

 
0

0LO i tA e ω= .  The modulator outputs the signal 0
1RF [ ( ) ( )]i tA e I t iQ tω= + .  Hence if we 

make ( ) cos( )I t M t= Δ  and ( ) sin( )Q t M t= Δ , the output is simply 

     0[ ( ) ]
1RF i tA Me ω +Δ=              (3.3.1.2) 

The expression in equation (3.3.1.2) is a signal oscillating at 0ω + Δ  that is phase 

coherent with the original LO input.   

 We use one master oscillator (mini-Circuits ZX95-100-S+) and split the signal 

into two channels using a directional coupler, ZFDC-20-3-S+.  One of the outputs is fed 

into the LO of the IQ modulator while the other side goes to a ZAS-3 attenuator.  The 

ZAS-3 attenuator is used to attenuate the rf power going into the AOM amplifier 

(Wideband CHF 30-200 MHz RF power amplifier) which is a commercial unit with 

maximum output power of 1.5 W.  For the IQ side, the ω  input at LO is mixed with 

(I+iQ) at the modulator and output is sent to “RF” as shown in Fig. 3.18.  Again, the 

signal can be attenuated using a ZAS-3 before going into the power amplifier. 
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3.3.2    Power Amplifier 

 To drive the AOMs there is not enough power from the master oscillator.  We will 

need to employ two rf amplifiers to drive the AOMs.  In our experiment, the NEOS 

AOMs require 2W (33 dBm) of power according to the manufacturer.  Upon measuring 

the NEOS driver, we find that power is actually 1.5 W (32 dBm).  Hence, we want to 

acquire a commercially available amplifier with at least 1.5 W (32 dBm) to drive the 

AOMs.  We purchased two “wideband VHF 30-200MHZ RF power amplifier” from 

seller bg7cr on ebay. 

 We tested the amplifiers and found the minimum input power to be 0.5 mW (-3 

dBm) to 1mW (0 dBm).  Anything less than 0.5 mW reduced the output power 

significantly.  The maximum output of the amplifier is 1.5 W (32 dBm).  The amplifier is 

powered by about 0.3 amps at 12 V (DC).  

 We have the flexibility to control the power output of the amplifier.  This is 

needed in order to attenuate the power of the laser beam during the experiment to change 

laser beam parameters such as β .  Although we used full maximum power for each 

pulses in this study, for future experiments, we want to be able to vary the intensity of the 

beams eventually.  Therefore, we measure the relative optical power as a function of 

attenuation control voltage of ZAS-3.  If desired, this result is used to calculate the 

correct β .  The normalized power is shown in Fig. 3.20. 
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Figure 3.20.  Response of AOM power as a function of ZAS-3 input voltage.  We 
planned on using attenuated signal of this but ended up using the full power (5V). 

 

3.3.3  Multiplexer 

 The split, reflect, and recombine pulses require different frequency components.  

We generate these by providing different frequency signals to the IQ modulator through a 

multiplexer.  We manipulate the outputs of the multiplexer via control digital bits.  The 

multiplexer has four inputs: 15 kHz, 15 kHz (90 degrees out of phase), Ground, and DC 

offset.   The DC offset signal allows us to set both laser beams to the same frequency for 

symmetric operations.  We did not use the DC input for experiments discussed here.  The 

15 kHz input from the function generator is shifted 90 degrees by a phase shifter circuit.  

The original 15 kHz signal and the 90 phase shifted signal both go into two multiplexers 

but in a swapped pin configuration as shown in Fig. 3.21.   

 The output, labeled “D” in Fig. 3.21, of the multiplexer is chosen by the control 

bits labeled “A” and “B.”  The control bits are two-bit binary which give 4 possible 

output configurations.  Each output goes to a buffer, the two signals then goes to the 

inputs of the IQ modulator and mixed with LO which is 0ω  from a master oscillator 
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previously described.  At the end, we get the output to the AOM1 driver with the 

following output with control bits: 

Function C1 C2    I Q Frequency1 
Split 0 0 cos( )tΔ  sin( )tΔ  0ω + Δ  
Reflect  0 1 cos( )tΔ  0  0ω + Δ  , 0ω − Δ  
Recombine 1 0 cos( )tΔ  - sin( )tΔ  0ω − Δ  

 

 
 
Figure 3.21.  Schematic diagram of multiplexer.  Four inputs are fed into the multiplexer 
and digital control bits (Cntl1 and Cntl2) select which two signals are fed into the IQ 
modulator. 

 

3.4  Optical & Electronics Performance 

 With all locking electronics and optical components working in unison, 

examining the differential signal is the first step in making the locking circuit work.  As 

shown in Fig. 3.22, the two elements of the PD show exactly opposite phase (180 degrees) 

beat frequency that is exactly at 15 kHz.  Note that the DC level is the same which allows 

the complete subtraction at the differential amplifier and subsequently attenuated as 

desired.   
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Figure 3.22  Interference from the two laser beams show as 15kHz beat note.  Holding 
this signal constant is equivalent to holding phase constant. 

 

From the PD output we can do further analysis with the error signal and feedback signal.  

As an example of the working vs. non-working locking signal, we see the phase locking 

(working) in action as shown in Fig. 3.23. When the locking pulse is on (blue), the S/H is 

on a sample mode.  The error signal (red) is initially at zero as we are holding the phase 

at zero by having the error signal feedback to the EOM, which in turn, adjusts the phase.  

Therefore, the feedback to the EOM (black) is increasing.  The circuit awaits until a 

specified delay time (~3.6 sμ ) and then sets the S/H to hold mode.  From this time on, 

the feedback to the EOM is constant; the laser phase is starting to develop as shown by 

start of sine wave from zero in the error signal.  

 Notice that the feedback signal (black) is not same shape at every pulse-on cycle 

which means the phase is different and constantly changing.  When the pulse is off, the 

lock is no longer in effect and the feedback is zero.  At every locking pulse-on, the shape  
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Figure 3.23.  Plot shows good locking of phase.  Pulse on (Blue).  Differential PD signal 
– inverted (Green).  Locking signal (Red).  EOM Feedback signal (black).  Shows error 
signal start at zero for 3.6 sμ  and then starts sinusoidal wave form indicating laser to 
develop its phase. 
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Figure 3.24. Plots here show circuit not locking the phase.  Notice the error signal (red) 
starts as upside-down sinusoidal wave.  Compare this with Fig. 3.20 to see the difference. 
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of the error signal should be identical – it should quickly go to zero and be delayed 

3.6 sμ  before starting a sinusoidal oscillation.  As long as the differential PD signal is 

stable the circuit is working properly.  However, there are cases when the locking fails 

due to a power glitch, sudden bumping of PD, laser beam intensity fluctuation, etc. 

In Fig. 3.24, this graph shows example phase lock not working.  At the start of the 

pulse (blue), the phase is not stable and is no longer the proper sinusodial wave (red).  It 

is actually flipped inverted here, however, this is arbitrary and could show up as any 

incorrect phase.  With this error signal, the phase is random and feedback to the EOM is 

arbitrary.   This occurs more often when the delay time for locking is shortened.  This can 

be clearly be seen when the delay is reduced from 3.6μs to 2.0μs . This error signal is 

used as a monitoring signal during the actual experiment.  This is a direct way of 

checking the phase stability at the start of the pulsed beams.    

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.005

0

0.005

0.01

0.015

0.02

0.025

-0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005

Error Signal and PD Signals during 
Short Pulse

E
rro

r S
ig

na
l (

V
)

P
D

 S
ignals (C

h. 1 &
 2)

Time (s)

Error Signal

PD1PD1

  

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.005

0

0.005

0.01

0.015

0.02

0.025

-0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005

Error Signal and PD Signals during 
Long Pulse

E
rro

r S
ig

na
l (

V
)

P
D

 S
ignals (C

h. 1 &
 2)

Time (s)

Error Signal

PD1PD1

 

   (a)      (b) 

Figure 3.27.   Monitoring of phase locking during experiment.  Shows error signal for (a) short and (b) long 
pulse times which shows locked behavior. 
 

As a final test to the instrumentation, we monitor the error signal as we 

asymmetrically split the atoms for Rabi oscillation measurement (chapter 5).  When the 
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pulse is on, we verify that error signal shows the proper waveform.  Such an example is 

shown in Fig. 3.27 where the error signal, as well as the two PD signals, are seen. 

With the phase locking circuit and the AOM driver circuit working, we can 

implement the circuit to the actual asymmetric splitting of the BEC.  However, before 

proceeding further, a quantitative analysis of phase locking performance is explored. 

 

3.5  Phase Correction Accuracy & Locking Stability ( dφ ) 

 As the S/H circuit and AOM amplifier unit performs jointly, we study the stability 

of the locking circuit.  This can be done statistically.  For the locked circuit, which yields 

a sinusoidal waveform after a lock, we recorded N samples ( )if t  where i is the waveform 

number. We defined the average ( ) ( ) /i
i

f t f t N= ∑   and the deviations 

     ( ) ( ) ( )i if t f t f tδ = − .    (3.5.1) 

We see that ( )f t  is well described as 

     0( ) sin( )f t A A t ϕ= + Ω +    (3.5.2) 

where 0A  is an offset, A  the amplitude, Ω  the frequency, and ϕ  is the offset phase.  

Consider each waveform to be a deviation from this average ( )f t  as 

    0( ) ( )sin( )if t A A A tδ ϕ δφ= + + Ω + +    (3.5.3) 

where Aδ  is a small deviation in amplitude and δφ  is a small deviation from the phase 

ϕ .  Re-writing the equation (3.5.3) in an expanded form 

  0 ( )(sin( ) cos( ))A A A t tδ ϕ δφ= + + Ω + + Ω     (3.5.4) 

Ignoring the second order quantities 
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0 ( sin( ) sin( ) cos( ) cos( )A A t A t A t A tϕ δ ϕ δφ ϕ δ φ ϕ= + Ω + + Ω + + Ω + + Ω + )  (3.5.5) 

So, (3.5.1) becomes 

   ( ) sin( ) cos( )if t A t A tδ δ ϕ δφ ϕ= Ω + + Ω +    (3.5.6) 

Multiplying both sides by cos( )t ϕΩ +  

 
21 cos( ) ( ) sin( )cos( ) cos ( )i

At f t t t t
A A

δϕ δ ϕ ϕ δφ ϕΩ + ⋅ = Ω + Ω + + Ω +  (3.5.7) 

Define tθ ϕ= Ω +  and n is a multiple cycle index, integrate both sides 

 

2

0 0

1 cos( ) ( ) [ sin( ) cos( ) cos ( )]
T n

i
Af t d d

A A

π δθ δ θ θ θ δφ θ θ⋅ = +∫ ∫    (3.5.8) 

RHS is equal to δφ  and recasting the integral in terms of time  

   0

2 ( )cos( )
T

if tt dt
n A

δδφ ϕ
π
Ω ⎛ ⎞= Ω + ⋅⎜ ⎟

⎝ ⎠∫     (3.5.9) 

Substituting ( )cos( ) if tU t
A

δϕ ⎛ ⎞= Ω + ⋅⎜ ⎟
⎝ ⎠

 and converting the integral as discrete sum 

    

1

0
2 1 1

2 2

N

i ij n
ij

U U U t
n

δφ
π

−⎡ ⎤Ω
= + + Δ⎢ ⎥

⎣ ⎦
∑    (3.5.10) 

Where i is column matrix.  Hence 

    

( )cos( ) i
i

f tU t
A

δ⎛ ⎞= Ω ⋅ ⎜ ⎟
⎝ ⎠

    (3.5.11) 

So this gives iδφ .  So 

     
2 2

1

1 N

i i
iN

φ δφ
=

< >= ∑     (3.5.12) 

Finally arriving at the expression of accuracy of phase as 

     
2

iδφ φ= < >      (3.5.13) 
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For different delay times, we measure 100 samples.  As the delay gets longer, the phase 

accuracy improves.  Our desired delay is 3.6 sμ , which is experimentally set by a 

potentiometer dial of 7.5 turns from zero.   As shown in Fig. 3.25, we plot and fit the 

average ( )f t  for each delay times and calculateδφ ’s for each delay times.  We fit the 

data and obtain a relationship between the phase accuracy and delay times as plotted in 

Fig. 3.26. 

 The stability of the lock is very stable as indicated by ~ 1 mrad at 3.6 sμ .  As you 

vary the S/H delay times, glitches show up when getting too close to shorter delay times.  

This is due to the fact that it takes some time for the electronics to lock and also timing 

between the laser being present in the actual AOM crystal and S/H trying to lock when 

there is no beam.  Of course, when there is no beam in the AOM/EOM, there is no lock  

 

Figure 3.25.   Sine fitted phase locked signal of 100 sampled averaged for delay time = 

3.6 us. 
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Figure 3.26.   Delay of sample and hold.  For our purpose, 7.5 turns is equal to about 3.6 
sμ  delay.  At this setting, the phase locking accuracy is ~1mrad. 

 

signal.  Originally, we proposed that we want to accurately lock φ  to within 10 mrad as 

this is the accuracy that we have in measuring the interferometer phase.  However, from 

our results, we can control the phase of the laser beams down to 1 mrad which is a factor 

of 10 better than proposed.  This means that although there are plenty of other sources of 

phase noise in the experiment, we are far from being limited by the laser system.  

 

3.6  Summary 

 We successfully built an optical and electronic feedback system to accurately 

phase lock the two laser beams for the asymmetric splitting operation.  Some of the major 

practical challenges were finding and correctly implementing low cost rf power 

amplifiers, and determining an effective protocol for aligning the laser beams quickly and 
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repeatedly.  We overcame these challenges and the system now works reliably and can 

stay locked for days. 
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4.0  

Bose-Einstein Condensate 

Production of BEC and its Trap Characteristics 

 

 

The atom interferometry experiment starts with the production of BEC.  Our lab has been 

doing atom interferometry for over a decade and have previously used an atom 

interferometer to measure the electric polarizibility, gravity, and to implement an atom 

gyroscope.  All experiments used the symmetric splitting process.  Our work presented 

here is a different type of atom interferometer using asymmetric splitting.  In this chapter 

we describe the BEC producing apparatus, its production, and the waveguide trap. 
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4.1  A Brief History of Bose-Einstein Condensate 

 In the early 1920, an Indian physicist Satyendra Bose and Albert Einstein 

developed the idea that a certain type of atoms called bosons exhibit an unusual behavior 

when cooled to a lower temperatures.  Unlike the fermions which obey the Pauli-

exclusion principle, multiple bosons can occupy the same quantum.  When many bosons 

co-exist in the same state, they produce a coherent matter wave.  The comparison of BEC 

to a gas of thermal atoms is equivalent to comparing laser to a white light source in 

optical interferometer.  In practice, BEC is formed by laser cooling and trapping 

techniques combined with a rf forced evaporation.  The first BEC production was 

awarded the Nobel prize in 1995 to a group of physicists at the University of Colorado 

and at MIT.   

 

4.2  Casslab BEC production 

 The experiments described here were performed in a new BEC apparatus.  Our it 

first produced 87 Rb  BEC on Feb 18th, 2014.  The vacuum chamber consists of two glass 

cells linked by a thin tube, as shown in Fig. 4.1. The first chamber has a base vacuum 

pressure of 92 10−× Torr.  In this cell, atoms are loaded into a magneto-optical trap 

(MOT).  The MOT consists of a quadrupole magetic field with three pairs of mutually 

perpendicular cooling laser beams slightly red tuned of the 1/2 3/25 , 2 5 , 3S F P F= → =  

transition of 87 Rb .  Also present is a weaker ‘repump’ laser beam which drives 

the 1/2 3/25 , 1 5 , 2S F P F= → =  transition. This is needed to prevent the atoms from being 

trapped in the F=1 state.  The temperature of the MOT is approximately200 Kμ  and  
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Figure 4.1   Top view of the experiment chamber.  The MOT chamber and BEC chamber 
is connected via small tube and coils move on a translation stage.  The bragg beam is in 
the y direction at the science chamber. 

 

 

Fig. 5.1 Energy level diagram for 87Rb D2 cooling and repump. 

 

amasses  about 910  atoms in a spherically shaped ‘ball’ at the center of the cell.   

The temperature of the atoms in the MOT cannot be further reduced due to the 

constant momentum recoil-exchange with photons via an absorption and emission 
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process.  This prevents atoms to come to a complete stop,  and the minimum temperature 

is often called the Doppler limit.  There are other laser cooling techniques which can cool 

beyond the Doppler limit, but in our system, the density of the atoms is too high to 

achieve sub-Doppler cooling.   

However, the density of atoms in the MOT is too low to produce a condensate.  

Typically, the MOT density is around 10 310 atoms/cm , but at a temperature of 200 Kμ , 

BEC would require a density of 13 31 10 atoms/cm×  at temperature of 1 nK .  Therefore, 

another stage of cooling is required.  This involves turning off the laser beams and 

holding the atoms with only the magnetic fields.  We call this a magnetic trap. 

 The magnetic trap initially consists of a quadrupole field with anti-Helmholtz coil 

configuration.  This is similar to the field used in the MOT but we increase the magnetic 

gradient state from 10 Gauss/cm to 450 Gauss/cm .  In this configuration, the atoms are 

trapped in the 1/25 , 2, 2fS F m= =  state where fm  is the magnetic quantum number.  No 

laser beams are present.  We then move the coil (along with atoms) using a translation 

stage to the science chamber where the vacuum is maintained at a much lower pressure 

of 113 10−×  Torr.   

 The quadrupole trap has a significant flaw: at the zero point of the magnetic field, 

atoms can get lost, via the Majorana transition, 2 2f fm m= → = − .  These atoms fall out 

of the trap, experiencing it as an anti-trapping potential.   This is very important as at the 

center of the trap where the density is the highest, more loss will occur preventing the 

formation of condensate.  To prevent the zero point loss, we use a more sophisticated trap 

called the time-orbiting-potential (TOP).  It is basically an added time-dependent 

magnetic field on top of the quadrupole field so that the zero point of the magnetic field 
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moves around in a circular path at a high frequency.  We carefully design the orbiting 

frequency so that the atoms cannot physically follow the orbiting zero point.  Instead the 

atoms experience a time-averaged force that confines them at the center. 

 The final stage before making the BEC is the rf evaporative cooling.  It is a forced 

evaporative cooling process which ejects the hottest energy atoms from the trap via rf 

radiation which is resonant with the atoms near the edge of the trap.   More specifically, 

only the most energetic atoms are able to reach the edge of the trap where the potential is 

highest.  Hence the rf evaporation tunes the frequency to drive the 2 2f fm m= → = −  

transition at the trap edge.  Once the high energy atoms are ejected, the remaining atoms 

re-thermalize to a lower temperature.  Re-thermalization occurs as a result of inter-atomic 

collisions.  We go through a successive iteration of rf evaporation process, lowing the 

temperature of the remaining atoms at each succession.  The whole process takes about 

one minute. The result is a formation of BEC with temperature of about 100 nK, with 

about 41 10× atoms.  For further information of BEC formation, previous graduates thesis 

contain wealth of information and details of apparatus and techniques [25,26,27,28]. 

 

4.3  Transfer to Cube Trap 

  In the BEC chamber, another effort led by Rob Horne is to create a novel atom 

trap based on six independent coils inside the vacuum chamber on a one-inch cube as 

shown in Fig.  4.2.  The original intention of the cube trap is to create a circular path 

geometry for realizing an atom gyroscope.  For our purposewe excite atomic motion 

along only one direction.  The cube trap is positioned inside the science chamber with the 

center of the trap overlapping that of the quadrupole trap.  the cube coils produce the  
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Fig. 4.2.  Shows cube trap with six side coils independently biased to create adjustable 
trap configuration for atom waveguide.  Originally built for gyroscope atom waveguide 
experiment.  Centers on each sides have holes for laser beams to pass through.  Reference 
[24] 

 

 rotating field used to make the TOP trap.  To load the cube trap, we adiabatically reduce 

the dc quadrupole field to zero. 

 The cube trap can generate the cylindrically symmetric trapping potential, 

   2 2 2 2 2
0

1 1
2 2 2

ACz
z

BU B mgz z m z m zρ
μμ ω ω ρ= + − + +   (4.3.1) 

where the trap frequencies, 

   
2 2

2

0 0

1 7
8 64

B DCz ACzB B
m B Bρ
μω

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
     (4.3.2) 

   
2 2

2

0 02 8
B DCz ACz

z
B B

m B B
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⎛ ⎞
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⎝ ⎠
     (4.3.3) 
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where 0B  is rotating bias field, DCz
BB
z

∂
=

∂
 is the dc qudrupole field, and ACz

BB
z

∂
=

∂
 is the 

cube quadrupole field.  Te cube quadrupole field also provides support against gravity. 

 One attractive feature about this trap is we can manipulate the trap frequencies by 

adjusting the coil currents.  For our experiment we use trap frequencies: 

       2 2 Hz, 2 2 Hz, 2 6.5Hzx y zω π ω π ω π= × = × = ×   (4.3.4) 

The trap with the above condition provides a weakly confining waveguide for the atoms 

[29].   

 

4.4  Imaging   

 The imaging of the atoms is used to ascertain the number, temperature, position, 

and velocity of the atoms.  We use a technique called absorption imaging to take a 

snapshot of the atoms at a given time.  Technically, an image is acquired by passing a 

near-resonant laser beam through the atoms to a CCD camera on the opposite side.  Since 

the laser beam is near resonance, it is absorbed by the atoms leaving a darker spot on the 

CCD where the atoms should be as compared to a bright background.  At the same time 

we take an image, we also destroy the BEC due to photon scattering.   

 We take two images, one with the atoms present and one without.  In addition, a 

background image is taken for no laser probe.  The images are processed to give a signal 

image defined by 

   atom image -backgroundSignal(x,y)
no atom image- background

= .   (4.4.1) 

The transmission of the laser beam through the atoms follows the Beer’s law, so that at 

each pixel (x,y) 
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    ( , )Signal(x,y) x yAe κ−=     (4.4.2) 

where ( , )x yκ  is the absorption coefficient of the atoms at location (x,y).  We fit 

( , )x yκ to a Gaussian to ascertain various parameters such as the atoms central position 

and cloud size.   

 We use an Apogee Alta U1 CCD camera.  Three different signal images of the 

atoms in the final stages of rf forced evaporation cooling are pictured with a false color as 

shown in Fig. 4.3 

 

  (a)           (b)           (c)   

Figure 4.3.   First picture of BEC production on Feb 18th, 2014. (a) thermal atom cloud, 
(b) thermal/bec atoms, and (c) BEC.  

 

 

4.5  Summary 

 In this chapter, we described the BEC production through the stages of MOT, 

magnetic trap, TOP trap, and rf evaporation cooling.  Our set up is a two chamber system 

connected via a small thin tube which separates the MOT chamber to the science 

chamber where the BEC is made.  In the science chamber is a new type of trap which 

provides the weakly confining waveguide for our asymmetric splitting experiment.  We 
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use the absorption imaging method to take the images of the atoms at the end of 

interferometer measurement.  At this stage, we have all the necessary tools to start the 

interferometer: optics, electronics, BEC, waveguide, and imaging.     
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5.0  

Asymmetric Splitting 

Manipulating Atoms with Pulsed Laser Beams 

 

With a solid understanding of the theory, optical, electronics, and atomic ensembles, we 

can proceed with the asymmetric splitting experiment.  From the previous chapters we 

had amassed quite a bit of expertise in setting up the instrumentation to control the phase 

of the pulsed laser beams.  We can now put that to work and finish towards an 

asymmetric interferometer.  During the process, we will revisit some theoretical 

relationships to ascertain key laser beam values such as intensities and pulse times.  In 
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this chapter, we describe testing of the asymmetric splitting technique.  We measure the 

population in the two interferometer states as a function of pulse times, as described in 

the theory chapter (chapter 2).  Such a test forms the basis for further interferometer work. 

 

5.1  Asymmetric Splitting Test Set-up 

 We discussed the theory of Bragg asymmetric splitting of BEC in chapter 2 and 

described the optics and electronics for implementing Bragg splitting in chapter 3.  

Briefly re-stating the concept, we want to split BEC atoms asymmetrically by making the 

transition from the 0  to the 2 k=  motional state.  Experimentally, this transition can 

happen by sending pulsed laser beams with two different frequencies, ω  and ω + Δ while 

fixinging the initial relative phase of the laser beams to zero.  The Bragg beam portion of 

the experiment is shown in Fig. 5.1. 

 

Fig. 5.1.  Beam delivery to the science chamber via optical fiber and EOM. Several mirrors and 
polarizers are omitted in the drawing to focus on beam delivery and alignment set up.  For detailed 
optical set up, refer to Fig. 3.1. 

 

 The splitting laser beam comes from a New Focus Stablewave 7000TLM laser, 

blue detuned from the cooling transition 1/2 3/25 , 2 5 , 3S F P F= → = .  During the testing 
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process we tried several different wavelengths but at the end used λ = 780.152 nm for the 

interferometer work (chapter 6).   The laser beam is split into two via a half-waveplate 

and polarizing beam splitter cube.  The two beams go through two AOMs to provide 

intensity control and to generate the frequency offset.  The beam with frequency ω  is 

coupled into a single mode fiber and while the beam with frequency ω + Δ  is coupled 

into a fiber based electro-optical modulator (EOM).  Near the science chamber, both 

beams have a 21 / e  radius of 1.4 mm.  The plain fiber output is mounted on XYZ 

translation stage with micrometers for position accuracy.  The output of this beam passes 

along the y-axis as defined in Fig. 4.2, through a polarizer and the beam cube assembly 

before going through the chamber where the atoms are located.  On the other side of the 

chamber, the EOM fiber output goes through a polarizer and two mirrors before passing 

through the chamber.  The beam cube assembly detected the relative laser phase as 

explained in chapter 2.  Two beam phase interference output is spatially detected with a 

PD.     

 For asymmetric splitting to work, we must align the laser beams onto the atoms as 

well as aligning the beams at the phase detector.  Hence we have two constraints we need 

to satisfy.  The alignment of the beams on the atoms is performed by tuning the laser near 

resonance and measuring the loss produced by a laser pulse.  We first adjusted the 

position of the plain fiber output to maximize this loss.  Figure 5.7 shows the loss 

measurement as a function of beam position.  We then used mirrors to direct the beam 

from the EOM fiber back into the plain fiber.  This ensured that both beams were 

overlapped on the atoms.  
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Figure 5.2  Bragg beam alignment using absorption technique.  We fit the inverted 
Gaussian curve which gives us the position in the Z and X direction. 

 

 After aligning the beams on the atoms, we adjusted the phase detector photodiode 

and mirror alignment to maximize the phase detection signal.  This process does not (by 

design) change the alignment of the beams on the atoms. 

 Another effect that needs attention is the polarization.  For the splitting operation 

and to obtain interference at the phase detection PD, we need to set the linear polarization 

axis of the laser beams to the same axis.  In our case we set the polarization axis to 

vertical.  Both optical fibers are polarization maintaining.  We established vertical 

polarization by fibers’ axis to be vertical.  However, we found that it was necessary to use 

polarizers to obtain good polarization accuracy.  This was evident in the phase detection 

signal as its visibility is reduced when the two beam polarizations are not identical.   

 We asymmetrically split the atoms using a pulsed laser beams counter-

propagating with respect to each other at the atoms.  When verifying the phase locking, 

we see an error signal initially locked at zero and then develop into a sinusoidal wave as 

the pulse starts as previously shown in Fig. 3.27.  Once a good error signal is obtained, 

we run a few tests by splitting the atoms with a short pulse of tens of sμ .   
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 We monitor and stabilize our laser frequency by picking off one of the 0th order 

beam from one of the AOM outputs and feeding it into a wavemeter.  After turning the 

laser on, it takes about 30 minutes to stabilize.  Infrequently, the wavelength of the laser 

beam shifts by 0.001 nm, and then we manually re-adjust the laser to the desired 

wavelength of 780.152 nm.  We monitor the intensity of the beams by picking off the 0th 

order from the other AOM, and meqasuring it with a photodetector throughout the 

experiment.  Another way to monitor the intensity is by constantly observing the phase 

detector PD signals at every pulsed operation to make sure the voltage level is consistent 

throughout the experiment.  Minor optical adjustment is occasionally needed. 

 

5.2  Rabi Oscillation 

 Based on the numerical simulation in chapter 2, the asymmetric split pulse, can 

induce a transition from the 0  state to the 2 k=  state with varying population inversion.  

To verify this, we initially image the atom position via an absorption imaging technique.  

Once the position and the number of atoms are ascertained, we run the experiment again 

and apply the Bragg beams.  We wait 100 ms, allowing the 2 k= atoms to move 1.2 mm 

(140 pixels).  We then take an absorption image and process it to determine the relative 

number of atoms at different velocities. 

 To asymmetrically split the atoms, initially we obtain the intensity parameter β  

from our numerical simulation from chapter 2 Fig. 2.2.  From the plot in Fig. 2.2, we 

choose β  to be around 2, providing a good compromise between efficiency and velocity 

sensitivity. We initially used 3mW total beam power with beam waist of 2 mm at a 
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detuning of 780.220 nm.  We calculate 
2

0

4 sat

I
I

β Γ
≡

Δ
= 6.75 kHz which is ~1.79 rω .  Later 

in the experiment we change the detuning and try several different wavelengths to settle 

on an optimal wavelength which will be discussed in the next chapter. 

 For each experiment run, which encompasses making the BEC to absorption 

imaging, we analyze the image calculating position and atoms numbers.  This is plotted 

and we see the Rabi oscillation as predicted as shown in Fig. 5.3.   To characterize the 

effect of the pulse, we vary pulse duration from 10 sμ  to 300 sμ .   

 

Figure 5.3   shows first cycle of Rabi oscillation.  Population density inversion is evident 
at 90 sτ μ= .   

 

An example of such an asymmetric split is shown in Fig. 5.4.  We are able to drive the 

transition where the two momentum states are equally populated with a 
2
π

− pulse, as 

well as transferring all atoms to the 2 k=  state with a π − pulse.  Recall that the different 

pulse duration gives different population states from the Rabi model.  For example, 
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during our initial testing stage, an asymmetric split pulse duration of 45 sμ , the atoms are 

½ and ½ in both states where as a pulse time of 90 sμ the transition to 2 k=  state is 

mostly complete.  Note that each experiment requires making a new BEC. 

 

Figure 5.4.   Three different laser pulses, 0, / 2,π π with β =1.79 rω .  Different pulse 
times determine population density in asymmetric splitting.  This result is the direct effect 
of the Rabi oscillation. 

 

 For one complete Rabi oscillation, we use laser intensity parameter I = 

22 0.2 / ( 0.175 )π× ×  = 6.57 mW/cm2, with beam waist 1.75 mm, and detuning of 

780.220 nm.  Note that one of the beam had 2mW but the other had 0.2mW.  We 

calculate 
2

0

4 sat

I
I

β Γ
≡

Δ
=  3.2 rω .  From the period of oscillation T=182 sμ , we infer 

2Tβ π= and obtain β =1.45 rω .  This indicates that our experiment estimate for β  is 

about a factor of 2 off.  A part of the issue is that although the beams are aligned to the 

atoms, this alignment is not perfect, and can drift over time.  This lowers the intensity and 

thus β .  Usually, the β  values calculated from the intensity and detuning are not reliable 

as the intensity of the beam may fluctuate and polarization may change during every 

experiment runs (for an extended time, we did not use polarizers).  What is reliable is 
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obtaining the Rabi curve.  We focus on getting the correct β  value from the period rather 

than calculated value. 

 

5.3  Summary 

 We perform the initial asymmetric splitting experiment and obtained a Rabi 

oscillation curve.  The Rabi oscillation is a direct check of asymmetric splitting, allowing 

us to implement 
2
π - pulse and π - pulse.  We use the Rabi curve to calibrate the beam 

intensity via the β  parameter.  We verify that asymmetric splitting works as expected and 

will be using it to create atom interferometer in the next chapter. 
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6.0  

Asymmetric Interferometers 

Measuring Recoil Frequency Using an Asymmetric Interferometer 

 

 

 We investigate a few asymmetric interferometers using the operations asymmetric 

split, reflect, and recombine.  The simplest interferometer we perform is an 

interferometer where the atoms are asymmetrically split only to be followed immediately 

by asymmetric recombination.  We configure the wait time between the pulses such that 

the atoms do not have enough time to spatially separately completely, but they do have 
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two distinct packets with different momenta.  After the second pulse we allow the atom 

wave packets enough time to separate and measure the resulting momentum distribution.  

The main advantage of this interferometer is that it requires only the asymmetric splitting 

operation demonstrated in chapter 5.   We call this first interferometer a Ramsey 

interferometer, after American physicist Norman Ramsey who used a similar technique to 

measure transition frequencies of molecules using magnetic resonance.  

 The second interferometer uses a reflection pulse, where the atoms are split 

asymmetrically, the moving packet is reflected and return back to the original position, 

and then the two packets are recombined.  We call this the Ramsey-Borde type 1 

interferometer.  French physicist Christian Borde developed a similar interferometer 

scheme for a thermal atom interferometer.   

 The third interferometer is the Ramsey-Borde type 2 interferometer where the 

moving atom wave packet undergoes two reflections, making the path journey on both 

side of the initial position, before recombining with the atoms at rest.  Through all three 

interferometers, we can measure the recoil velocity of atoms and compare it with current 

accepted values.  We will explore these interferometers in more details in the next few 

sections. 

 

6.1 Ramsey Interferometer 

 The Ramsey interferometer provides a simple and reliable test for us to illustrate 

the phase locking performance.  At the same time, it can also measure the atomic recoil 

frequency.   The basic trajectories for the interferometer are shown in Fig. 6.1.  The atom 

packet is initially at rest, and is split with a 
2
π

− pulse.  Within a very short time later, τ , 
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an identical 
2
π

− pulse is applied.  Te time τ  must be short enough that the two packets 

do not separate.  This interferometer has two outputs.  We will analyze the behavior this 

section. 

 The moving atom velicoty is 12 mm/s, and the packet size is about 0.1 mm.  The 

interferometer time τ  must therefore be small compared to 0.01s.  We explore the τ  

dependence of the interferometer signal below. 

 

Figure 6.1.  Ramsey interferometer configuration.  Two identical asymmetric pulses with 
wait time τ  in between.  Atoms are separated in momentum space but spatially 
overlapped. 

 

 To accurately understand the Ramsey interferometer, we must include the fact 

that the atoms start with a small non-zero momentum ip kδ= = .  Quantum mechanically, 

we start with a wave packet described as  ψ δ= .  After the first asymmetric split, the 

wavefunction becomes 

    1 2
2

iψ δ δ→ + +⎡ ⎤⎣ ⎦     (6.1.1) 
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where 2 δ+  describes a packet with momentum (2 ) kδ+ =  .  After free evolution 

timeτ , the atoms in the both states develop phases 

   
2 2( )

2 21 2
2
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m me ie

δ τ δ τ

ψ δ δ
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where 2p k= = .  If we substitute 
2 2

2r
k

m
ω =

=
=

 and set 4r rφ ω τ= , and omit the overall phase,  

the equation is simplified as 

    
21 2

2
r

kii mie e
δτ

φδ δ
−−⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

    (6.1.3) 

After the second split, the packets undergo the transformation 

   1 2
2

iδ δ δ→ + +⎡ ⎤⎣ ⎦      (6.1.4) 

   12 2
2

iδ δ δ+ → + +⎡ ⎤⎣ ⎦      (6.1.5) 

Combining the above equations together, the final product is 

  
2 21 1 1 2

2
r r

k ki ii im me e i e e
δτ δτ

φ φψ δ δ
− −− −⎡ ⎤⎛ ⎞ ⎛ ⎞

= − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

  (6.1.6) 

The probability finding the atoms with final momentum δ  is 

  
22

2
0

1 1 cos
4 2

r

kii rm kP e e
m

δτ
φ φ δτ−− ⎛ ⎞= − = +⎜ ⎟

⎝ ⎠
    (6.1.7) 
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Similarly, the probability finding the atoms in 2 δ+  is 

  
22

2
1

1 1 sin
4 2

r

kii rm kP e e
m

δτ
φ φ δτ−− ⎛ ⎞= + = +⎜ ⎟

⎝ ⎠
    (6.1.8) 

Since 4r rφ ω τ= , by measuring the period of the iP  vs. τ , we can estimate the value of   

rω .  However, as (6.1.7) and (6.1.8) show, the interference period will also depend on δ .

 To implement the interferometer, we used a Bragg wavelength of 780.152 nm and 

an intensity parameter of 2 rβ ω= .   Here β  was most accurately determined from the 

measured 
2
π

−  pulse duration of 65split sτ μ=  .     For each run, between the split pulses 

we vary the time τ from  

 

Figure 6.2.   Detailed time sequence for Ramsey interferometer.  65split sτ μ=  while 
τ varies from 15 sμ to 75 sμ  in 15 sμ  increments for each run. 

 

15 sμ to 75 sμ  in 15 sμ  increments.  A short diagram of the time sequence is shown in 

Fig. 6.2.  After the completion of the second split, an absorption image is taken following 

a 11ms time-of-flight.  We record the population density of the atoms at rest and atoms 

moving away by Gaussian fitting the images. 
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 Fig. 6.3 shows the relative number of atoms left in the δ  state, and we see that 

the population oscillates as a function of τ .  From equation (6.1.8) we know that the 

oscillation frequency should be close to 4 rω  which is 67 sμ .  Our interference is fitted 

and shows the period as 67 6 sμ± which matches expectations.  As we increase the time 

between the pulses, the visibility drops significantly as shown in Fig. 6.4.  The visibility 

is measured by fitting the data to a sinusoid,   

     0
2sinS A y
T
πτ φ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
   (6.1.9) 

where 0NS
N

=  and A, T, φ  and 0y  are fit parameters.  The visibility is then, 

max min

max min 0

S S AV
S S y

−
= =

+
.    (6.1.10) 

We measuredτ  up to 3 ms and see that the visibility starts decline around 1 ms.  Our best 

visibility is when τ  was 15 sμ  which yielded the visibility of 80%.   The figure also 

shows the underlying contrast,  which is defined as max min

max min

S SC
S S

−
=

+
 with signal values 

taken directly from the data rather then from the sinusoidal fit.  This is therefore a 

measure of the signal spread.  If the noise is entirely due to phase noise δφ , then C 

represents the visibility that would be obtained if the phase noise were eliminated.  As 

can be seen in Fig. 6.4, the visibility declines more quickly than the contrast. 
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Figure 6.3.   Result of Ramsey Interferometer.  From this result we get recoil velocity of 
67.4 sμ  with visibility of 80%.  Error bar represents the stand deviation.  Not all data 
points have standard deviation as only one measurement was made for that point.  

 

 

Figure 6.4.   Plot of decreasing visibility (blue) with increased wait times τ .  Plot of 
underlying contrast (red).  Two fits are for visibility with and without the initial velocity. 

 



 109

 In Fig. 6.4 we see a plot of visibility (blue dots) as a function of total 

interferometer time. We see the visibility decreases as time increases.  This is expected, 

because the packets are moving further apart, and as they stop overlapping, the 

interference goes away.  Since we know how big the packets are (50 um) and how fast 

they are moving (12 mm/s), we can theoretically calculate that effect, with the result 

shown here (red curve).  Visibility is fitted with  

     
2( )( ) BtV t Ae−=      (6.1.11) 

where A = 0.822  0.099±  and B = 3.97  0.70± .  As shown in the figure, it does not 

agree very well.   We are instead seeing the effects of noise.  We tracked this down and 

determined it to be noise in the initial velocity of the condensate.  Ideally the condensate 

should start at rest, but in the process of loading the cube trap, we can inadvertently 

excite its motion.  If the condensate initially has velocity vδ , then that changes the kinetic 

energies and the phase evolution of the interferometer packets.  The result for the phase is 

(6.1.7 and 6.1.8).  Hence if vδ  fluctuates, φ  will fluctuate.  From looking at the atoms in 

the trap, we estimated fluctuation amplitude vδ  about 10%.  If we use that fluctuation 

and calculate the average visibility given as 

 ( , , , )C x y z t =  

2

2 2

1
7
26

x vt y zA dxdydz
L L
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∞

−∞

⎛ ⎞
⎜ ⎟−⎛ ⎞ ⎛ ⎞ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∫    (6.1.12) 

where A = 0.6266  and L = 0.026 mm , we get the curve (blue), which agrees pretty well 

with the data.  We can in fact still see the packet separating effect.  When the interference 
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is noisy, we can define the interferometer contrast using the magnitude of the fluctuations. 

If we plot that contrast, we see that it agrees well with what we expect from the packets 

separating. So we are confident that we understand pretty well the effects of initial 

velocity. 

 

6.1.1  Initial Velocity 

The motion of the atom wave packet in the trap must be addressed if we want to 

split the packet by transferring the momentum from photon to atom.  Our paradigm of 

asymmetric splitting is based on the fact that we do the pulsed beam operation on the 

atom packet at rest 0p k= = and transfer to 2p k= + = state.  However, there is no 

guarantee that before the split pulse is applied the atoms will be at a complete rest.  If 

there is some initial motion of the atoms before the splitting, then the pulsed beams may 

not have the proper resonance to transfer all atoms to the higher state.  Since the 

momentum transfer is not perfect to all atoms, we will have an inefficient splitting.  For 

example in extreme cases where atoms have higher initial velocity, the laser beam will 

not be resonant at all, hence the laser beams will not transfer momentum to atoms as 

intended.  However, for small oscillations, effect will be an inefficient splitting, and small 

portion of the populations may even get transition to a higher order states i.e. 4p k= ± = , 

6p k= ± = , etc.. 

 On debugging our issues of reliability, we check to make sure that the atoms are 

actually stable and do not have a significant initial velocity.  We take an absorption image 

soon after the atoms are transferred from the TOP trap to the cube trap.  Varying the wait 

time after the transfer and successively taking images, we do find that there is actually a 
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significant initial velocity present as shown in Fig 6.8.  We find the maximum velocity to 

be 1
max 1.49v mm s−= ⋅ .  This is about 10% of the atom’s velocity.  We are certain that this 

maybe the main culprit contributing to our interferometer uncertainty results.  However, 

we find a work around by adjusting the start time of the interferometer to be at the 

turning point of the motion where min 0v = . 

 

 

Figure 6.8.   We verify that atoms have initial velocity when transferring from strong 
quadrupole trap to weak spherical trap.  Max velocity is ~1.5 mm/s 

 

6.2 Ramsey-Borde Type 1 

For the Ramsey-Borde type 1 (RB1) interferometer, we require the full split-

reflect-recombine operations.  The RB1 uses a triangular path in time by the atom packets, 

eventually meeting back at the original position when recombined as shown in Fig. 6.5.   
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Figure 6.5.  Ramsey-Borde type 1 interferometer configuration.  After asymmetric split, 
one atom packet remains at rest while the other gains momentum 2 k+ = .  At τ  time 
later, a reflect pulse is applied, only reflecting the moving atom wave packet.  Again at 
second τ  time later, recombination pulse is applied, showing interference as a result. 

 

  To accurately understand the RB1 interferometer, the velocity condition follows 

that of Ramsey hence after the first asymmetric split, the wavefunction becomes 

    1 2
2

iψ δ δ→ + +⎡ ⎤⎣ ⎦     (6.2.1) 

where 2 δ+  describes a packet with momentum (2 ) kδ+ =  .  After free evolution 

timeτ , the atoms in the both states develop phases 
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where 2p k= = .  If we substitute 
2 2

2r
k

m
ω =

=
=

 and set 4r rφ ω τ= , and also drop the overall 

phase, the equation is simplified as 
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    (6.2.3) 

After reflection, the packets undergo the transformation 
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    δ δ→       (6.2.4) 

    2 2δ δ+ → − +      (6.2.5) 

Hence (6.1.3) becomes, 
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kii mie e
δτ

φδ δ
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⎣ ⎦

   (6.2.6) 

After free evolution timeτ , the atoms in the both states develop phases 
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Again dropping the overall phase term and simplifying 

   21 2
2

riie φδ δ−⎡ ⎤+ − +⎣ ⎦      (6.2.8) 

After recombine, the packets undergo the transformation 

    2iδ δ δ→ + − +      (6.2.9) 

    2 2 iδ δ δ− + → − + +     (6.2.10) 

  21 2 ( 2 )
2

rii ie iφδ δ δ δ−⎡ ⎤+ − + + − + +⎣ ⎦    (6.2.11) 

Combining the above equations together, the final product is 

  ( ) ( )2 21 1 1 2
2

r ri ie i eφ φψ δ δ− −⎡ ⎤= − + + − +⎣ ⎦    (6.2.12) 

The probability finding the atoms with final momentum δ  is 

  ( )22 2
0

1 1 cos
4

ri
rP e φ φ−= − =       (6.2.13) 

Similarly, the probability finding the atoms in 2 δ− +  is 



 114

  ( )22 2
1

1 1 sin
4

ri
rP e φ φ−= + =       (6.2.14) 

 

 The Ramsey-Borde interferometer is a scalable interferometer which uses all three 

operations of atom manipulation: asymmetric split, reflect, and recombine.  Similar to 

that of the Ramsey interferometer, it posses the capability to measure the recoil frequency, 

and furthermore builds a foundation for the next generation gravity measurement.  Recall 

that we are in a weak horizontal trap, not a vertical trap against the gravity.  The same 

manipulations, however, will be needed in the future ‘vertical’ experiment.  

 As in the Ramsey interferometer, we use a Bragg beam detuning of 780.152 nm, 

and an intensity parameter 2 rβ ω= .   Our 
2
π

−  pulse time is 65split sτ μ= .  After a 

successful split, we wait time τ  before applying a reflect pulse with 360reflect sτ μ= .  This 

drives the transition 2 2+ → − , reflecting back the moving atoms.  The stationary 

atoms are not affected by the reflect pulse.  We wait another time τ  before 

administrating the final recombination pulse with a beam frequency change from 0ω + Δ  

to 0ω − Δ .  The time sequence is shown in Fig. 6.6.  A time-of-flight absorption imaging 

is taken after 100ms to measure the number of atoms in both packets.   
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Figure 6.6.  Detailed time sequence for Ramsey-Borde type 1  interferometer.  
65split sτ μ=   and 360reflect sτ μ=  while τ varies from 10 sμ to 140 sμ  in 10 sμ  

increments for each run. 
 

 There were several issues that had to be resolved before successfully running the 

experiment.  Originally, the reflect pulse was to switch the frequency of the laser such 

that laser beam with 0ω + Δ  was suppose to change to 0ω  and the intensity parameter β  

was suppose to change from 2 rω  to 4.5 rω  allowing the reflect of the moving wave 

packet.  However, to do this, we have to attenuate the beam power to administer the pulse.  

Turns out, this technique proved to be very difficult as when the laser power is decreased, 

the phase signal at the Hammamatsu PD also decreased and there was not enough voltage 

in the error signal for the electronics to lock the phase.  Hence the laser locking was not 

working. Even though the atoms were reflected, we often saw multiple packets and 

subsequent recombination pulse did not work.   

 For this reason, to make a successful RB1 interferometer, we needed to keep 

reflect splitβ β≈ .  We acieve this by switching one of the inputs to the multiplexer from DC 

to a 15 kHz sinusoidal wave, allowing the second beam to have both 0ω + Δ  and 0ω − Δ  

components.  The first beam remains at 0ω .  We numerically simulate the reflection 

process as in section 2.4, this time with an extra term in the potential in equation (2.1.7) 

with [ ]cos(2 ) cos(2 )kz t kz tφ φ+ Δ + + − Δ + .  To find the reflect time, we optimized the 

pulse duration to give the highest fidelity for a given β  using the gradient descent 

algorithm.  We determined β  from the asymmetric π −  pulse time and then set the 

reflect time accordingly.  The results suggestd an optimum reflect pulse time of 
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360reflect sτ μ= .  More details about this reflect pulse can be found in Rob Horne’s thesis 

[24].  

 Building upon this finding, we perform the timed pulse operation as shown in Fig. 

6.6.  We obtain the interferometer result shown in Fig. 6.7.   

 We obtain a period of 68 6 sμ±  with visibility of ~ 45%.  The period is consistent 

with the known recoil frequency value 67 sμ .  Along with a lower visibility, we see a 

wider spread of the data points and the chi square fit is not as good, giving 2 0.5R = .  

Here 1 denotes a perfect fit. 

 

 

Figure 6.7.  Result of Ramsey-Borde type 1 interferometer.  From this result we get recoil 
velocity of 68.2 sμ  with visibility of 45%.  We were not able to make multiple data 
points so no error bars on data points. Data at 061914 

 

 We attribute this relatively poor performance to the velocity sensitivity of the 

reflection pulse.  As noted previously, the initial velocity fluctuation are significant, up to 
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10% of the recoil velocity.  As we will investigate this effect in next section, such an 

initial velocity of atoms may give rise to an inefficient splitting, reflect, and recombine.    

 Nevertheless, we demonstrate that we can manipulate the atoms using the 

asymmetric split, reflect, and recombine. To acquire more stable interferometer result, the 

initial velocity will need to be resolved for future work. 

 

6.3 Ramsey-Borde Type 2 

 The RB of the second type resembles the double triangular path as shown in Fig. 

6.9.  In this configuration, the moving atom packet makes a full cycle back to the original 

position at the end, recombining with the packet at rest.  The RB2 interferometer reflects 

twice and waits time 2τ before the second reflect pulse is applied.  The total recoil it 

endures is 4 rφ  compared to rφ  in Ramsey and 2 rφ  in RB1.  The motivation behind the 

RB 2 is that the moving packet will experience both sides of the trap.  Although the trap 

is fairly flat, the atoms do not generally start out at the trap center.  They therefore 

experience a potential gradient, which can contribute to the measured interferometer 

phase.  By using a symmetric trajectory like RB2, the effect of the potential gradient 

cancels out. 
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Figure 6.9. Ramsey-Borde type 2 interferometer configuration.  After asymmetric split, 
one atom packet remains at rest while the other gains momentum 2 k+ = .  At τ  time 
later, a reflect pulse is applied, only reflecting the moving atom wave packet.  Wait 2τ  
time later, second reflect pulse is applied.  At τ  time later, recombination pulse is 
applied, showing interference as a result. 

 
 The calculation for RB2 follows that of RB1.  The only difference is that the cycle 

is repeated twice.  The probability finding atoms at rest is 

( )2
0 cos 2 rP φ=      (6.3.1) 

 The RB type 2 interferometer follows the same initial split and reflect pulse as 

that of RB type 1.  In this interferometer, we wait 2τ  before applying the second reflect  

 

Figure 6.10.  Detailed time sequence for Ramsey-Borde type 2  interferometer.  For 1-2-1 
experiment 65split sτ μ=   and 360reflect sτ μ=  while τ varies from 1 ms to 1.01 sμ  
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in 5 sμ  increments for each run.  For 0-0-0 experiment, τ varies from 10 sμ to 25 sμ  
in 5 sμ  increments for each run. 

 

pulse also with 360reflect sτ μ= .  The final recombination pulse is applied after waiting τ . 

Time sequence diagram is shown in Fig. 6.10.  For the RB 2 we ran two experiments with 

two sets of times: for 1 msτ =  and its variations, we call this a 1-2-1 interferometer, first 

number representing the time we wait between the asymmetric split pulse and the first 

reflect pulse, the second number is time we wait between the subsequent reflect pulses, 

and the last number representing time between the last reflect and recombine pulses, 

respectively in ms.  Hence the number 1-2-1 represents split, then wait 1 ms, reflect, wait 

2 ms, reflect, wait 1 ms, and recombine.  For 10 sτ μ= and its variations, we call this the 

0-0-0 interferometer as the atoms really do not move that much spatially.  Again, we use 

absorption imaging to record the population density.   

 We first discuss the 0-0-0 interferometer.  The pulse parameters were the same as 

in the RB1 experiment.  After each measurement, we vary the initial time 10 sτ μ=  by 

increasing it by 4 sμ .   We show the results in Fig. 6.11 giving a period of 69 2 sμ±   

with visibility of 49%. 
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Figure 6.11.  Result of Ramsey-Borde type 2, 0-0-0 interferometer.  From this result we 
get recoil velocity of 69 sμ  with visibility of 49%. 

 

 The 1-2-1 interferometer is shown in Fig. 6.12.   

  

Figure 6.10.  Result of Ramsey-Borde type 2, 1-2-1 interferometer.  From this result we 
get recoil velocity of 78.9 sμ  with visibility of 35%.  Error bars show standard deviation. 
062614 
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We here obtain a period of 79 4 sμ±  which is not too far from the recoil of 67 sμ .  We 

get visibility of about 35% which is less than all of our Ramsey-Borde type 

interferometers.  It is clear that our interferometer need some minor tuning to get a better 

visibility.   

 To check the interferometer phase in a more sensitive way, we can compare the 

results of the 0-0-0 and 1-2-1 experiments. These differ only in the amount of free 

evolution time, and the phase during the free evolution should evolve as rφ .  To observe 

this, we can compare the times at which an interference maximum occurs in each data set. 

The 0-0-0 fit gives max 0t 5 3 μs= ± , while the 1-2-1 interferometer gives 

max1t 4.088 0.003 ms= ± . If the experiment is working correctly, the time difference 

t = 4.082 0.006 msΔ ± should correspond to an integer number of periods of rφ . Using the 

known value of the recoil frequency 2 15kHzrω π= × , the period of rφ  is 66.3μsT = . 

We therefore see t / 61 0.006TΔ = ± . The fact that this value is an integer, within error, is 

validation of the phase stability of the apparatus. 

 Overall, we performed several interferometer experiments to validate our 

asymmetric splitting capabilities.  First, the Rabi experiment in chapter 5 clearly showed 

the cyclic oscillation of population density.  We followed up with the Ramsey 

interferometer, and then the Ramsey-Borde to complete the interferometry.  We varied, 

τ , time between pulses, and made repeated measurement on the recoil velocity.   

 

6.4 Recoil Velocity Measurement Summary 

 We summarize the result obtained for recoil frequency measurement via  
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interference period in Table 6.1.   

Table 6.1 

Type 
Measured 
Period( sμ ) 

Theoretical 
Value Visibility 

Ramsey 67 5± 67 80% 
Ramsey-Borde 1 68 6± 67 45% 
0-0-0 Ramsey-Borde2 69 2± 67 49% 
1-2-1 Ramsey-Borde2 79 4± 67 35% 

 

From the result, it is obvious that a longer separation and more pulsed operations reduce 

the visibility and accuracy.  This by all means, is not discouraging, but gives hope that we 

can make this better once we have a complete control of few little minor issues such as 

the initial velocity.  We did not just make one interferometer, but made 4 different types 

of measurements.  Measuring the recoil frequency measurement was apex of this thesis.   

 

6.5  Summary 

 We were able to demonstrate an atom interferometer using asymmetric operations 

and our phase stabilization scheme.  We obtained values for the 87 Rb  recoil frequency 

that are in good agreement with expectations.  We identified the main limiting factor in 

the performance as the residual velocity fluctuations in the initial atoms, coupled with the 

velocity sensitivity of the reflection pulse. 

 One issue that still needs to be resolved is repeatability.  Throughout the work, it 

was challenging to keep the intensity parameter β  stable.  We identified and fixed several 

sources of drift, but further study will likely be required.   

 Overall, we surpassed the goal of this thesis, which was targeting the development 

of instrumentation for asymmetric splitting.  Within short time of accomplishing the 
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asymmetric splitting, we accelerated our progress and implemented a functional 

interferometer.  We acknowledge the significant contributions to this effort of fellow 

student Robert Horne. 
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7.0  

Conclusion 

Wrapping Up and New Start 

 

 

 We have successfully split BEC wave packets asymmetrically.  We were able to 

split, reflect and recombine successfully.  The phase locking circuit and AOM drive 

circuits worked well and stabilizes phase throughout the interferometer duration times.  

We obtain interference of the Ramsey with greater than 80% visibility and Ramsey-

Borde with visibility of ~50%.  We were able to measure, with some accuracy, the recoil 
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frequency.  One can note immediately that asymmetric splitting is required for a recoil 

frequency measurement. 

 This initial study is a proof of concept for future work on measuring gravity with 

much higher sensitivity in small volume than previously done.  Already underway is set 

up for that next generation experiment.  We have identified initial velocity fluctuations as 

an important obstacle.  

 For gravity measurement, the beam needs to be oriented vertically. Previous 

experiments (Hughes 2008) have shown that after multiple pulses, the atoms can drift out 

of the beam center, reducing the fidelity and visibility.  We can address these issues with 

bigger and higher power beams to do optical manipulations. 

 Measuring gravity will be the a challenge.  We have taken the first step in 

developing the phase locking circuit and the optical pulse manipulations.  Hence we have 

already begun a set of experiment that can be fruitful in future.   

 

7.1 Future Asymmetric Interferometer Concept 

 So far, we have not addressed the details of the gravity measurement.  Recall that 

our goal was to devise a method to achieve a longer arm separation distance to measure 

gravity.  This is more evident by examining the proposed vertical interferometer where 

the wave-packets follow the path shown in Fig. 7.1.  There are some similarities with 

optical manipulation as done by Hughes et. al. 2008 such as reflecting the wave-packets 

using pulsed lasers but we need asymmetric splitting in order to achieve the trajectories 

proposed in Fig. 7.1. 
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In Fig. 7.1, the wave-packets are manipulated using the following method: 

initially at A (d = 0), a wavepacket at rest is split using the transition 

10 ( 0 2 )
2

i→ + + .  This means the top packet gains momentum 2 k=  while the 

bottom packet falls from rest.  The top packet comes to rest at B after time 2 kt
mg

=
= , 
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2

1 2
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kd h g
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distance 
2

1 2
2A

kd h g
gm

⎛ ⎞
= − = − ⎜ ⎟

⎝ ⎠

=  and reaches velocity 2
A

kv
m

= −
= .  At this point there 

 

Figure 7.1  Proposed atom packet trajectory to measure gravity with better precision 
through large distance separation and larger separation times.  This configuration would 
require asymmetric splitting and reflection to make it work. 

 
 

are two series of operations as shown in Fig. 7.2.  First, a reflect pulse of 4 k=  is applied, 

temporarily sending the bottom wave-packet to 1
2

B
kv

m
= +

=  (Fig. 7.2 (a)) while the top 

packet stays v = 0.  It is immediately followed by another pulse driving the transition 
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0 2↔ + , thus changing the bottom packet momentum to 0v = (Fig. 7.2 (b)) while 

giving the top wave-packet a 2 k=  kick.  So after two sets of pulses, the bottom 

wavepackets falls again from rest while the top wavepacket is sent upward against 

gravity and the cycle repeats.  At the mid point labeled C in Fig. 7.1 where the top packet 

reaches distance 
2

1 2
2c A

kd h h g
mg

⎛ ⎞
= + = + + ⎜ ⎟

⎝ ⎠

=  with v = 0, the bottom packet reaches 

2
1 2
2c A

kd h h g
mg

⎛ ⎞
= − = − − ⎜ ⎟

⎝ ⎠

=  with velocity, 2
C

kv
m

= −
= . Both packets are subjected to a 

4 k=  reflection pulse, causing the bottom packet to reverse direction while the top wave-

packet continues at v = 0.   

 

Figure 7.2  Double pulse method to reflect atoms at the bottom.  First reflect pulse of 
4 k=  followed by another pulsed to change the bottom packet momentum to while giving 
the top wave-packet a 2 k=  kick.  Results the bottom wave-packets falls again from rest 
while the top wave-packet is sent upward against gravity. 
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As the packets come back together, the applied operations are just the opposite of 

that described for point B.  At the end, the recombination pulse is applied driving the 

transition 1 ( 0 2 ) 0
2

+ − → .  This recombines the packets and provides the output 

interference signal.   More precisely, the recombination causes transitions 

10 ( 0 2 )
2

i→ + −    (7.1.1) 

12 ( 2 0 )
2

i− → − +    (7.1.2) 

So, the wave-function evolves as, 

1 1( 0 2 ) (1 ) 0 ( ) 2
22

i i iie ie i eφ φ φψ ϕ− − −⎡ ⎤= + − → = + + + −⎣ ⎦  (7.1.3) 

The probability of finding atoms at 0  state is derived to be 2cos
2 2
φ π⎛ ⎞+⎜ ⎟

⎝ ⎠
, 

whereas the probability at finding atoms at 2−  state is derived to be 2sin
2 2
φ π⎛ ⎞+⎜ ⎟

⎝ ⎠
.  The 

two separate wave-packets experience different heights manifests in a gravitational phase,  

1 ( )S t dtφ = ∫=      (7.1.4) 

where ( )S t  is action function.  Carrying on the integral for the first journey to point B, 

the top packet gravitational phase is developed as, 

     21 1( )
2

mv mgz dtφ = −∫=    (7.1.5) 

Through classical mechanics of falling body, we find velocity and displacement, 

     0v gt v= − +      (7.1.6) 

and  
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     21 2
2

kz gt t
m

= − +
= .    (7.1.7) 

With initial velocity of wave packet trusted upward with 0
2 kv
m

=
=  with time of flight 

2 kt
gm

τ= =
=  reaching height Ah+  , we find phase for the upper wave packet to be, 

     
3 3

2

1 4
3top

k
gm

φ = −
=

=
    (7.1.8) 

where as for the bottom wave packet reaching height Ah− , 

     
3 3

2

1 1
3bottom

k
gm

φ =
=

=
    (7.1.9) 

For our case, at end of each pulse cycle, the atom are separated 14 mμ  in 1.19t ms= .   

Theoretically, a bounces of 1000 pulses will yield about 1 cm separation in 1 second.  

With a phase measurement accuracy of 0.01 radians, one can achieve sensitivity of about 

10 27 10 m/sgδ −= ×  which is a significant improvement over previous experiments and 

surpasses the sensitivity of a mechanical sensor.  Here this sensitivity can be reached with 

no significant drop distance, and a vertical space requirement of only the 1 cm needed to 

accommodate the packet separation.   However we also have limitations.  As we pulse 

atoms with laser beams, we will start to lose atoms during every pulse.  If we end up 

losing 1% of the atoms every pulse, by time 1000th pulse is applied, we would not have 

any atoms left for measurement.  Hence, we need to build our instrument that can 

efficiently manipulate BEC wave packets as well as stable laser beam that does not 

introduce additional noise unto the phase of the beam. 

The splitting and recombining operation described above was not used in earlier 

experiments done by Hughes et. al 2008, as it requires the asymmetric transitions  
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0 2 k↔ =  and 0 2 k↔ − = . This is the main motivation for this thesis and now see 

how asymmetric splitting can accurately measure gravity. 
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Appendix A - Sample and Hold PCB Design 

 

 

Figure A.  Board layout for S/H.  We use Eagle CAD software for two layer design. 
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Appendix B – Initial Delayer 

We delay the laser pulse on signal with the initial delayer shown in Fig. C.  This delayer 

is used to make sure that any delay in shutter and AOM operation do not contribute to 

locking of phase.  Delay is set for 1.8 sμ  but range of delay is adjustable. 

 

Figure B.   Schematic diagram for delayer which delays turning on the locking signal.  
This makes sure that laser beam is present in AOMs before S/H lock turns on. 
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Appendix C – Multiplexer 

Fig. C shows detailed circuit diagram for multiplexer.  Input 1 is 15 kHz from function 

generator which is phase shifted 90 degrees and enters the MUX in switched pins (S1 and 

S2).  Input 2 and 3 is optional for future experiments.  For this experiment, we connect 

the 15 kHz to input 2.  Output from MUX is pin labeled “D” and its output is controlled 

using control bits A0 and A1.  Outputs are fed into IQ modulator.    

 

Fig. C.  Shows detailed circuit diagram for multiplexer. 
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Appendix D –program: Bragg_deriv_delta 

This program runs the asymmetric Rabi model as described in Chapter 2 equation (2.2.9) 

function dydt = bragg_deriv_Delta(t,y) 
global b d; 
dydt = zeros(13,1); 
Delta = 4 ; 
n = 1; 
nn = n-7; 
dydt(n) = -1i*((2*nn+d)^2*y(n) + b/2*y(n+1)*exp(-1i*Delta*t)); 
for n=[2:12] 
nn = n-7; 
dydt(n)=-1i*((2*nn+d)^2*y(n)+b/2*(y(n-1)*exp(1i*Delta*t)+y(n+1)*exp(-
1i*Delta*t))); 
end 
n = 13; 
nn = n-7; 
dydt(n) = -1i*((2*nn+d)^2*y(n) + b/2*y(n-1)*exp(1i*Delta*t)); 



 137

Appendix E –program: b_max 

This program is used to calculate max split values for intensity parameter β  and give 

graph shown in Fig. 2.2 

global b d 
b1=.2; 
b2=4; 
b_step=0.1; 
totalrun=(b2-b1)/b_step+1; 
barray=b1+[0:totalrun-1]*b_step; 
resultarr=zeros(4,totalrun); 
cnt=1; 
for cnt=1:totalrun 
b = barray(cnt); %our b is between .2 to 4 
y = zeros(1,13); %setting up array of 1(column) by 13(row) matrix 
yi = y; 
yi(7) = 1; % 7th row is 1.  initial state with population in n = 0; 
  % d = dp/hk for initial momentum dp 
d = 0.0; % for initial state with momentum 0 hk 
t1 = 30.0; %max=3*2*Pi/b 
n = 6 ; %this is c_-1 
[t,y] = ode45(@bragg_deriv_Delta,[0 t1],yi); %calling ODE function that 
        returns Cn 
y1 = y(:,n); %This is the result for C_-1 (n=6) 
f_minus1=zeros(length(y1),1); %setting up result matrix that equals  
      dimension of array 
for i1=1:length(y1); %Since we cannot simply do "abs^2" need to   
    transpose array. 
    temp_y1=y1(i1); %temperorary to store the array 
    f_minus1(i1) = abs(temp_y1)^2; %getting the magnitude 
end 
pks = findpeaks(f_minus1); 
first_peak_value=pks(1); 
location_1stPeak_f_minus1 = find(f_minus1 == first_peak_value); 
t_1stmax=t(location_1stPeak_f_minus1); 
resultarr(:,cnt)=[b,1/b,t_1stmax,first_peak_value]; 
cnt 
end 
figure(1) 
plot(resultarr(2,:),resultarr(4,:)); 
title('Splittting efficiency') 
xlabel('1/b') 
ylabel('Max 1st Split values') 
figure(2) 
plot(resultarr(3,:),resultarr(1,:)); 
title('b versus t') 
xlabel('t') 
ylabel('b') 
figure(3) 
plot(resultarr(3,:),resultarr(4,:)); 
title('efficiency versus t') 
xlabel('t') 
ylabel('efficiency') 
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Appendix F –program: dphi 
This program is used to calculate the phase accuracy as shown in Fig. 3.2.4 as exlained in 
Chapter 3.4. 
 
dir='C:\Users\Eun\Desktop\PhD\MATLAB\2014_2_21\CSV\'; % 
files location 
for i = 1:100; 
    str_i = int2str(i); 
    filename=[dir 'scope_' str_i '.csv']; 
    M = csvread(filename); 
    if i == 1 
       M_1= M(:,1); 
       M_3_Array=M(:,3); 
    else 
       M_3_Array=[M_3_Array M(:,3)]; 
    end 
end 
avg=mean(M_3_Array,2); 
figure(1) 
plot(M_1,avg); 
  x_low=419 %min(find(M_1 > -7.8e-4)); need to look 
manually for min. 
  x_high=1752 %max(find(M_1 < 0.0)); need to look manually 
for max 
  timevec=M_1(x_low:x_high); 
  x=timevec; 
  y=avg(x_low:x_high); 
  [estimated_params]=sine_fit(x,y,[NaN NaN NaN NaN],[0 
0.085 0 15000],1) 
   FittingPara=[estimated_params]; 
   offset=FittingPara(1,1) %offset 
   A=FittingPara(1,2) %amplitude  
   phaseshift=FittingPara(1,3) %phaseshift 
   frequency=FittingPara(1,4) %frequency 
    
   new_M_3_Array=M_3_Array-offset; 
   check_m3=new_M_3_Array-M_3_Array; 
   newavg=avg-offset; 
   checkavg=newavg-avg; 
   fit_y= FittingPara(1,1) + FittingPara(1,2) * 
sin( FittingPara(1,3) +      
 2*pi*FittingPara(1,4)*timevec );  
   for i = 1:100; 
       if i == 1  
          delta_f=M_3_Array(x_low:x_high,i)-fit_y; 
       else 
          delta_f=[delta_f M_3_Array(x_low:x_high,i)-fit_y];  
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       end 
   end 
   x_low; 
   x_high; 
 newavg=y-offset; 
 
   df_over_A=(delta_f)/abs(A); 
   dt=5.0000e-007; 
   period=x_high-x_low; 
   t1=-phaseshift/frequency; 
   c0s=cos(2*3.14159*frequency*(x-t1)); 
   for i=1:100   
       U_0=0.5*(c0s(1)*df_over_A(1,1)); 
       U_f=0.5*(c0s(length(c0s)))*df_over_A(length(c0s),1); 
       U(i)=dot(c0s,df_over_A(:,i))-U_0-U_f; 
   end 
       phi=2/period*(U)*1;   
   for i = 1:100; 
        phi2=1/100*sum(phi(i)^2); 
   end       
   delta_phi=sqrt(phi2) 
    
   figure(2) 
   plot(newavg) 
   hold on 
   plot(A*c0s) 
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 Appendix G – Rubidium Data 
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