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Prior knowledge about a system is crucial for accurate modeling. Bayesian pa-

rameter estimation theory, specifically the use of informative prior distributions,

offers one method for conveying prior knowledge to the learning algorithm that

may not be present in a data set. This dissertation primarily focuses on the prob-

lem of feature selection for hidden Markov models with respect to the test cost

of the individual features. Test costs include the financial cost of acquiring the

feature, the difficulty in collecting the feature, the time required to collect the

feature, etc. We propose using a feature saliency hidden Markov model (FSHMM)

that simultaneously selects features and estimates model parameters. We assume

that the number of states is known, and use the expectation maximization algo-

rithm for parameter estimation. Informative prior distributions are used to convey

the test cost to the learning algorithm. Three formulations are derived for the

FSHMM: a maximum likelihood formulation using no priors, and two maximum

a posteriori (MAP) formulations using informative priors. These are compared to

an existing formulation that uses non-informative priors and variational Bayesian

methods for parameter estimation. The proposed formulations are extended to

numerous conditional feature distributions, including the gamma distribution and

the Poisson distribution, and a semi-Markov model. The FSHMM is tested us-

ing synthetic data, a tool-wear data set, an activity-recognition data set, and an

event-detection data set. We find that the MAP formulation using a truncated

exponential distribution on the feature saliencies generally outperforms the other

FSHMM formulations and conventional feature selection techniques in terms of

predictive performance and selecting a feature subset.
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Chapter 1

Introduction

Machine learning is a collection of techniques designed to detect hidden patterns

in data and use this knowledge to predict the outcome of future data. These

predictions can be used to make decisions about the system, which will generate

the data in the face of uncertainty. One area of machine learning is focused on

learning parametric models that explain the behavior of the data. These types of

parametric models often make assumptions about how the data interact with an

outcome or the distributions generating the data. Different assumptions can lead

to wildly different outcomes in terms of model selection or accuracy. Generally, it

is best to back up an assumption with facts or details about the system or process

being modeled.

Prior knowledge about a system can come from many sources. For instance, the

cost of collecting a data stream (financial, computational, or difficulty in acquiring

the feature) is not always easy to convey in a data set. Furthermore, some systems

have physical restrictions or properties the model must adapt to, and this can also

be difficult to capture in collected data. Using these two types of information,

which would not be included if only collected data were considered, will lead to

models that more closely represent the system. Bayesian statistics, and specifically

the prior distributions used in Bayesian analysis, offer one method of incorporating

prior knowledge into system modeling.

In Bayesian statistics, all parameters are treated as random variables. Let θ repre-

sent the set of model parameters. Parameter estimation is performed by estimating

the posterior distribution P (θ|X ) of the parameters given data X . The posterior

can be found through Bayes’ rule

1
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P (θ|X ) =
P (X|θ)P (θ)

P (X )
, (1.1)

where P (X|θ) is the likelihood of the data, given the parameters; P (θ) is the prior

distribution on the parameters; and P (X ) is the marginal distribution of the data.

Often, the posterior need only be estimated proportionally, as the marginal of the

data is a fixed quantity

P (θ|X ) ∝ P (X|θ)P (θ). (1.2)

In Bayesian estimation, the prior distribution on the model parameters is typically

non-informative, meaning that it assigns equal weight to all possibilities. Priors

are chosen by the researchers; therefore, the researcher can influence the estimation

by the selection of a prior distribution or the parameters for that distributions.

Bayesians who promote non-informative priors wish for the data to be the only

factor driving estimation, and prevent any bias or influence being injected into the

estimation by the practitioner. Furthermore, non-informative priors allow for easy

selection of prior distributions and hyperparameters, as these choices have little

effect on the posterior.

On the other hand, informative priors can be used to convey information to the

estimation process that is not readily available in the collected data. Informative

priors are often avoided for two reasons in Bayesian analysis. The first is the

previously discussed researcher influence that can affect the analysis. The second

is the lack of consistent methodology for constructing informative priors that is

widely accepted over types of models and fields of study. It is reasonable to assume

that two different researchers could construct very different prior distributions,

given the same prior data or set of assumptions.

In this dissertation, we argue that the use of informative priors when modeling

systems is crucial for two reasons. First, knowledge about a system that is not

present in the collected data can be conveyed to the estimation process through

prior distributions. Second, good informative priors can increase model accuracy

and other notions about model performance.

Most decisions when modeling a data set are based on prior information. By

choosing a class of models that one believes will accurately reflect the data, the
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researcher has begun using prior information and, in a sense, has already estab-

lished a prior distribution. For example, by choosing logistic regression over other

classifiers, one has placed a prior with probability 1 on logistic regression and

probability 0 on all other classifiers. If there is strong evidence that logistic re-

gression will outperform other classifiers, or logistic regression offers advantages

over other classifiers, this strong informative prior is justified. Using the notion

that informative priors encompass any type of decision when modeling data, we

use prior knowledge and informative priors for three tasks: (1) selecting the type

of model, (2) selecting model structure, and (3) parameter estimation.

For case studies, we investigate two well known manufacturing problems: tool

wear and activity recognition. These problems are analyzed to showcase the ad-

vantages of informative priors in modeling systems. Other data sets, including

synthetic data, are also modeled, but not to the extent of either tool wear or

activity recognition.

The tool-wear problem is to predict the unknown wear on the tool given data col-

lected from the cutting process such as force or vibration. The activity-recognition

problem is to predict the activity a subject is engaged in, given data collected on

the subject such as upper-body joint positions. We use hidden Markov models

(HMMs) [95] throughout this dissertation. HMMs are widely used to model se-

quential data and have been applied in numerous fields, such as speech recognition,

finance, and video recognition. An HMM is composed of a sequence of unknown

or hidden states modeled as a Markov chain and a correlated sequence of observa-

tions. In application, the parameters of an HMM are estimated from data. When

both the hidden and observed sequences are available, the parameters can be di-

rectly calculated from the data. However, the hidden sequence is generally not

available when using HMMs. Therefore, the parameters must be estimated using

unsupervised learning algorithms such as Baum-Welch [95], Markov chain Monte

Carlo methods [12], or variational Bayesian methods [73]. We choose HMMs for

these cases studies because of their success in modeling time-series data and the

ability to train HMMs using unsupervised learning algorithms. Because of the

difficulty in labeling these types of data sets, unsupervised learning algorithms are

desirable.

In these case studies, one area of prior knowledge we wish to convey to the model is

that input features are associated with some form of cost. A vector of observations

collected from several sources can be available at each time period and the cost
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of collecting the feature associated with each source can differ significantly. In

addition, some features might not be useful to the model. In order to build a

parsimonious model, the features that do not contribute to the usefulness of the

model can be removed without significantly degrading its accuracy. One approach

to feature selection (FS) is to model every possible subset of features and compare

the models based on some metric. As the number of features grows, this quickly

becomes impractical. FS for HMMs with respect to cost is the primary problem

we address in this dissertation.

As a concrete example, consider a model with two features. The financial cost

associated with feature 1 is $500, and the financial cost associated with feature

2 is $1,000. If a model built using one feature has similar predictive ability as a

model built using two features, the model using one feature should be preferred.

Further, if the two models built on the single feature have similar predictive ability,

then feature 1 should be preferred because of its lower financial cost.

In light of this knowledge about FS with respect to cost, as well as an HMM’s

ability to model sequential data and be trained using unsupervised learning, we

propose a feature-saliency HMM (FSHMM) that simultaneously estimates model

parameters and selects features using unsupervised learning. Informative priors are

placed on some model parameters to convey test cost to the algorithm. The case

studies demonstrate that these informative priors produce models that compare

favorably to similar models that use either no priors or non-informative priors.

With respect to cost, numerous challenges are specific to FS for HMMs:

• The hidden state is often not available in the data set and requires an unsu-

pervised learning technique.

• Training HMMs can be computationally expensive, so an embedded tech-

nique that performs simultaneous parameter estimation and FS is desirable.

• Conventional FS techniques can perform poorly when applied to HMMs.

• Conventional FS techniques do not consider the test cost of features.

The work presented in this dissertation can be viewed intellectually at multiple

levels. In the broadest sense, it investigates the infusion of prior knowledge into

HMMs. At the next deeper level, it is a study of informative priors for HMMs. At
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Prior knowledge into HMMs

Informative priors with HMMs

Feature selection for HMMs

FSHMM

Figure 1.1: Intellectual Levels for FSHMM. At the highest level, we investigate
incorporating prior knowledge into HMMs. At the lowest level, we study the

FSHMM.

an even deeper level, FS with respect to cost for HMMs is considered. At the deep-

est level, a simultaneous features selection and parameter estimation algorithm is

examined. Figure 1.1 depicts this as a flowchart: as one descends the chart, the

area of study becomes more focused.

This dissertation is organized as follows. The rest of this chapter consists of a

problem statement, the approach chosen to study the problem, a literature review

of relevant topics (FS and FS specific to HMMs, tool wear and activity recogni-

tion, and informative priors), and an outline of the work’s intellectual contribu-

tions. Chapter 2 is a summary of background information on HMMs and hidden

semi-Markov models (HSMMs). Chapter 3 outlines the FSHMM and presents

numerical experiments; the FSHMM is also compared to other feature-saliency

formulations and conventional FS techniques. Chapter 4 outlines conditional fea-

ture distributions other than the Gaussian, as assumed in Chapter 3: Gaussian

mixture models, exponential distributions, gamma distributions, Poisson distribu-

tions, and non-parametric discrete distributions. Chapter 5 outlines the feature

saliency formulation for a specific form of hidden semi-Markov models. In Chapter

6, we present conclusions and suggest avenues for future research.
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1.1 Problem Statement

We investigate the use of informative priors with HMMs. Specifically, we study and

develop a method for incorporating the cost associated with collecting individual

features into a joint FS and model estimation process. Informative priors are

primarily used to deter the selection of features with a higher cost.

1.2 Approach

As mentioned earlier, we use informative priors in three ways. In this section, we

expand on and explain them.

• Model Selection HMMs have been widely used for modeling tool wear [34,

53, 112, 138] and activity recognition data [39, 48, 120, 125]. Further, tool

wear and activity recognition are time-series data with measured features

that correlate with a latent or hidden variable. This prior knowledge leads

to the first way we use informative priors, as outlined in the introduction:

the selection of HMMs to model the data.

• Model Structure Tool wear is non-decreasing. In terms of the HMM,

this means that once the wear enters a state, it cannot transition to a lower

state. This physical attribute of tool wear can be incorporated into an HMM

by restricting the Markov chain to be left-to-right (LTR). An LTR Markov

chain can only self-transition and transition to the next highest state. All

other state transitions have a probability of 0. Decisions similar to choosing

HMMs or restricting the Markov chain to be LTR can be considered using

informative priors to convey knowledge to the model structure. This is the

second way we use informative priors: to select model structure.

• Parameter Estimation Test cost plays an important role in both of these

data sets. In the tool-wear data set, two types of sensors collect data. The

difference in the financial cost of these types of sensors can be significant. It

is assumed that the force sensor costs twice as much as the vibration sensor.

This assumption was made after reviewing the price of several commercial

sensors and we believe it adequately reflects the real world. The features

in the activity-recognition data set have a different notion about cost. The
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device used to collect data (Microsoft Kinect) samples every 30th of a second.

Three coordinates for each of the upper-body joints are recorded. Features

can be calculated from the joint locations – e.g. the distance between the

hands – but only joint positions are used as features in this dissertation.

The size of this type of data can grow rapidly. For the activity-recognition

problem, we associate cost with a growth in data. Irrelevant features add to

computation time for the model and degrade its accuracy. Each feature is

assumed to have the same collection cost, and the smallest feature subset is

desired.

The third way we use informative priors is to influence parameter estimates.

Most notably, informative priors are used to convey the two previously out-

lined notions about cost to the FS algorithm by penalizing more costly fea-

tures or larger feature subsets. The hyperparameters for the informative

prior can be increased to discourage the inclusion of features. A higher

value indicates that the feature must contribute more useful information to

the model. For the tool-wear data, the hyperparameters for features from

the more costly sensor (force) are double the hyperparameters for the fea-

tures calculated from the less costly sensor (vibration). This indicates that

one feature costs twice as much as another. When modeling the activity-

recognition data set, the hyperparameters are set equal for each feature, but

the value is increased to discourage larger feature sets. The hyperparameters

for the informative priors were selected based on intuition and not formal

methodology. A methodology for choosing hyperparameters (and selecting

informative prior distrubtions) is a matter for future work and will be dis-

cussed in the future work section.

To a lesser degree, the initial values for the expectation-maximization (EM)

algorithm are used as hyperparameters for some model parameters. The

initial values are either chosen by intuition about the process and the true

values of the parameters or calculated from a supervised initialization set.

1.3 Feature Selection

Feature selection is the process of reducing the set of collected features to a sub-

set of relevant features. FS is also called variable selection, attribute selection,
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or feature subset selection. FS speeds the learning process, improves model in-

terpretation, reduces the risk of overfitting, and alleviates the effects of the curse

of dimensionality. When the feature set is small, an exhaustive search can be

performed. As the number of features grows, this method becomes impractical,

because the number of possible feature subsets grows exponentially.

Feature extraction is a separate problem from FS. FS identifies relevant features

from a candidate set of features, while feature extraction calculates new features

from a given set. FS does not alter the original features, while extraction generates

new features. Dimensionality reduction is usually applied to extracted features.

Principal component analysis (PCA) [80] is a feature-extraction method. Dimen-

sionality reduction is performed by selecting the first m principal components.

This method differs from FS, however, because all input features must still be col-

lected in order to extract the new principal components. Conversely, after FS has

been performed, the irrelevant features no longer need to be collected. Further,

the selected subset of features can give insight into the process and be interpreted

by a domain expert. However, methods such as PCA reduce the noise in the

extracted features, and can provide more discriminating features than the origi-

nal raw features. Independent component analysis (ICA) [80] is another form of

feature extraction similar to PCA.

John et al. [52] and Kohavi and John [56] outline four definitions for relevant

features that were current in the literature in the mid 1990’s. Using a correlated

XOR problem, they show that different definitions can lead to the selection of

different feature subsets, and, after arguing that definitions of strong and weak

relevance are necessary, they provide such. However, in [56], John and Kohavi go

on to show, using an example, that relevant features are not always included in

the optimal feature set and irrelevant features are not always excluded from the

optimal feature set. Blum and Langley [9] provide definitions of feature relevance

that include a target concept and a measure of complexity of the selected feature

subset. Blum and Langley’s final definition of relevance, which first appeared in

[16], introduces the idea of relevance with respect to a specific learning algorithm.

Guyon and Elisseeff [44] lay out several steps for general FS. These are in the form

of questions, and the answers lead to specific actions to be taken or a particular

FS method to be used. For example, their fifth question is, “Do you need to assess

features individually?” If the answer is yes, a procedure that ranks features should

be used.
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FS methods can be divided into three groups: filters, wrappers and embedded.

Filters assess feature relevance by investigating the feature’s properties. They

address the problems of selecting features and building models independently.

Wrappers assess feature relevance with regard to a specific learning algorithm. In

most cases, a model is built with respect to a subset of features and the model’s

performance evaluated based on specified criteria. Wrappers then move through

the subset space evaluating feature subsets with regard to the evaluation function.

Embedded methods simultaneously select features and construct models.

1.3.1 General Feature-selection Techniques

Filters treat FS as a preprocessing step and select features with no regard to the

model: They only consider the properties of the collected features and how they

distinguish themselves from one another or how they relate to a target class label.

These methods are generally fast in terms of computation, but can result in feature

subsets that do not yield satisfactory predictive accuracy. Certain types of filters

can be applied to unsupervised data. In addition, filters usually scale well to the

number of features.

The simplest filtering technique is to select features based on their correlation

with the class or continuous response variable. More complex filters include the

FOCUS [3] and Relief [55] algorithms. Extensions of Relief [57, 100] can be applied

to multi-class problems and unsupervised data. Feature-similarity FS[77] is an

unsupervised filter that groups the k closest features. A single feature from each

group is chosen to represent the group in the reduced feature subset. The idea

behind this method is that features that are similar by some metric are redundant

and can be removed with insignificant change in prediction accuracy. Some filters

rank or assign weights to features. Correlation-based methods [131] rank features

based on their association with a class label. Forman [38] compares several metrics

for ranking features. The evaluation is specific to text classification, so results may

not generalize to all classification problems. The author concludes that bi-normal

separation metrics outperforms other filters on the chosen data sets.

Wrappers test feature subsets, given a model and an evaluation function. These

methods are more computationally expensive, but take the model into account and

often yield better feature subsets than filters. However, wrappers generally require

the use of supervised data for the evaluation function. In a wrapper approach,
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data are typically divided into three groups: training, evaluation, and testing.

A model using a subset of the candidate features is trained on the training set,

then evaluated using the evaluation set. The feature subset is then augmented

in some fashion and the process repeated. The feature subset that optimizes

the evaluation function is chosen as the final feature subset and tested on the

withheld testing set. When data are scarce, the evaluation set can be eliminated

by evaluating the feature subset on the training data. However, this can cause a

poor generalization error and increase the likelihood of overfitting to the training

data. Cross validation can be used in the case of small data sets.

Sequential forward search (SFS) and sequential backward search (SBS) are two

types of exploration algorithms [52, 56]. These are considered greedy algorithms, as

opposed to an exhaustive search of the feature subsets. Sequential search methods

are often referred to as hill-climbing strategies, because they look for improvement

in the evaluation function. However, a non-exhaustive search cannot guarantee

the optimal feature subset [25]. Another exploration method, the stepwise search,

combines SFS and SBS so that at each step in the algorithm, a feature can either be

added or removed. When compared to unidirectional methods and filters, stepwise

search algorithms outperform unidirectional search and some filtering techniques

[15].

Kohavi and John [56] propose a best-first-search feature-exploration technique

with compound operators. Compound operators add or remove groups of features,

as opposed to adding or removing a single feature in SFS and SBS. The branch

and bound algorithm [81, 105] can yield an optimal feature subset, but requires

a monotonic evaluation function that is generally not practical. Floating-search

methods [93, 94] add and remove different numbers of features to avoid the nested-

feature problem.

When using wrappers, the choice of an evaluation function greatly affects the out-

come of the method. Dash, Liu and Motoda [28] compare a consistency measure to

distance measures, information measures, and dependence measures. The authors

argue for a consistency-measure evaluation function, because it is monotonic and

lacks search bias. Obviously, the type of evaluation function is based on the avail-

able data. Functions that require the class label, such as consistency or accuracy,

cannot be implemented in unsupervised learning.
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Embedded techniques simultaneously select features and construct models. There-

fore, these techniques have the wrapper’s advantage of selecting feature subsets

with respect to a specific learning algorithm, and the filter’s advantage of being

more computationally efficient than wrappers. Classification and regression trees

(CART) [80] are one example of an embedded FS method. CART recursively

divides the feature space to create a classification model. The algorithm only in-

cludes features that improve the impurity measure, thereby essentially performing

FS and constructing the classifier simultaneously. Daelemans et al. [26] show that

jointly selecting features and optimizing model parameters in a natural-language-

processing context outperforms optimizing the two processes separately.

1.3.2 Feature Selection for Gaussian Mixture Models

Most of the previously described work on FS requires the use of supervised data

– i.e., each observation has a corresponding class or response variable. Data are

rarely supervsied when working with HMMs or Gaussian mixture models (GMMs),

and require the use of unsupervised FS techniques. Most work with unsupervised

FS employs GMMs as the clustering algorithm, but FS methods have been de-

veloped specifically for the K-means algorithm [11, 54] or to be independent of a

classifier [27].

Several unsupervised FS methods for GMMs have been investigated. Any filter

that does not require supervised data can be applied to GMMs; for example, the

feature-similarity technique in [77]. When implementing a wrapper for supervised

learning, some form of accuracy is used for the evaluation function. This is not

possible for unsupervised data, so new evaluation functions have been proposed.

In [31–33], the authors use scatter separability and maximum likelihood. How-

ever, these evaluation functions are biased depending on the dimensionality of the

feature set. To implement them, steps must be taken to remove the bias; the au-

thors suggest a heuristic normalizing scheme. Raftery and Dean [97] use Bayesian

information criterion (BIC) with a greedy search. BIC with a backward stepwise

search is implemented in [72].

Penalized likelihoods are used in [91] and [118] to shrink estimates of state-

dependent means. Features with estimated means that have the same value can

be eliminated, since they do not contribute to clustering, and EM is used for the

estimation. Carbonetto et al. [14] use a Bayesian feature-weighting technique
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that shrinks parameters for irrelevant features to a common value through the use

of prior distributions. Because these methods simultaneously select features and

estimate model parameters, they are considered embedded FS techniques.

Feature saliency [62], which recasts the FS problem as a parameter-estimation

problem, was first introduced for GMMs. New parameters, called feature salien-

cies, are added to the conditional distribution of the GMM. The emission proba-

bility consists of mixture-dependent and mixture-independent distributions, and

feature saliencies represent the probability of belonging to the mixture-dependent

distribution. The saliencies can be interpreted as the probability that a feature is

relevant. The feature-saliency selection method is considered to be an embedded

FS technique, because it simultaneously constructs a model and performs selec-

tion. However, feature saliencies can be used to rank feature relevance, as is the

case with many filtering techniques.

Figueiredo, Jain, and Law [36] use a precursor to feature saliency, the minimum-

description length (MDL) criterion, and the idea of component-dependent and

component-independent distributions to select features. Vannucci and Stingo [113]

outline a Bayesian approach to variable selection that is similar to feature saliency:

A binary random variable is used to represent belonging to either a component-

dependent and component-independent distribution, and priors can be used to

convey biological information to the system. The authors outline both supervised

and unsupervised models, and suggest that Gibbs sampling be used to estimate

model parameters. However, only the supervised model is tested and evaluated

on data.

In their initial studies of feature saliency and GMMs, Law, Jain, and Figueiredo

[61] and Law, Figueiredo, and Jain [62] used the EM algorithm and the minimum-

message length (MML) criterion to estimate model parameters and the number of

clusters. The MML penalty, which is used to aid in model selection, encourages

feature-saliency estimates for irrelevant features to go to zero and helps estimate

the number of mixtures by forcing the probability of sparsely occupied components

to zero. In [62], the authors propose a post-processing step in which feature

saliencies are optimized to discriminate between components, after which other

parameters of the model are estimated using EM. They also note that a limitation

to this method is the assumption that all the features are independent.
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Bayesian methodologies have been used to solve for model parameters in the form

of variational Bayes (VB) [24, 65, 111] and expectation propagation (EP) [19].

Valente and Wellekens [111] assign a Dirichlet prior to the feature saliencies and

compare the EM method in [61, 62] with a variational Bayesian approach. They

show that the VB method outperforms EM on a speech-recognition data by yield-

ing better recognition rates, converging faster, and selecting a smaller feature

subset. Constantinopoulus, Titsias, and Likas [24] use different priors are used

for the component-dependent distribution parameter. No priors are placed on

the mixture probability, the feature saliencies or the component-independent dis-

tribution parameters; essentially, they are considered model parameters and not

random variables, as was the case in [111]. Constantinopoulus et al. do not com-

pare their VB formulation to Valente and Wellekens’ formulation but do compare

it to the EM method. They demonstrate that VB outperforms EM, but selects

more components. Localized feature saliency is presented in [65], in which the

saliencies are dependent on the cluster assignment. The authors use the same

priors as [24], and show that their method outperforms the global VB formulation

in terms of accuracy and the number of components selected on several data sets.

Chang, Dasgupta and Carin [19] apply the EP approach to a synthetic data set

and compare it to the EM method. They demonstrate that EP outperforms EM

when the number of clusters is unknown but EM performs better when the number

of clusters is correctly determined. All of these studies, simultaneously solve for

model parameters, perform FS and estimate the number of mixture components.

1.3.3 Feature Selection for Hidden Markov Models

While numerous studies have investigated FS in general and GMMs specifically,

research on FS with HMMs is lacking. In most applications, features are pre-

selected based on domain knowledge and the FS procedure is completely omitted

[78, 126]. Few attempts have been made to reduce the likelihood calculation in

the HMM [10, 63, 64], but these methods are not truly FS techniques, as all data

streams must be collected. PCA has been used to reduce the feature space and

extract features for HMMs [6, 59, 68]. ICA, which is similar to PCA, has also been

used with HMMs [122, 136]. Other methods for transforming the original feature

set for use with HMMs has also been studied. Yin et al. [130] uses segmental

boosting to create a new feature space. As previously discussed, transformation

methods such as PCA and ICA reduce the number of features in the model, but
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do not eliminate data streams. They are dimensionality-reduction or feature-

extraction techniques and should not be considered FS, as all data streams must

be collected.

Nouza [84] compares (SFS), discriminative feature analysis (DFA) and PCA. SFS

and DFA outperform PCA, but require more computation and supervised data.

Lv and Nevatia [70] use boosting to perform FS; for each feature and each class,

a single HMM is trained. The AdaBoost algorithm is used to learn weights for

each feature by increasing the weight for misclassified observations, which requires

supervised data. Ji and Carin [51] pose FS for HMMs as a partially observable

Markov decision process (POMDP), in which the action is which feature to query.

FS is performed by finding the optimal policy for the model. This method has the

advantage of including cost in the FS process. However, the authors cite numerous

drawbacks, including significant computation. Further, in the experiments, the

data are not a time series, and one of the data sets from the GMM saliency

formulation [62] is used.

Zhu, He and Leung [137] use a VB method to jointly estimate model parameters

and select features for HMMs. This method does not require the number of states

– or the number of mixtures if a GMM is used for the emission distribution – to

be known a priori. This lack of information increases computation time, increases

model complexity, and, in some cases, decreases parameter-estimation accuracy.

When using the mean field assumption, VB can underestimate the variance for

the approximate distribution [23]. Chatzis and Kosmopoulos [21] demonstrate

that in the presence of outliers, VB gives poor estimates for model parameters

and the number of states when using an HMM with Gaussian emissions. When

predicting a state sequence given the data, it is more efficient to use point estimates

and the Viterbi algorithm than to calculate the distribution of all possible state

sequences. Therefore, knowing the approximate posterior distributions is generally

not necessary for prediction. Similar to some of the VB methods applied to GMMs,

this formulation assumes that the state-independent model parameters and the

feature saliencies are not random variables.

1.3.4 Feature Selection with Cost

When the financial cost of sensors varies significantly, this information should be

included in the FS process. Also, some data might be difficult or time consuming
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to collect. These types of costs (financial, time of collection, difficulty, etc.) are

generally referred to as “test cost” [67, 76, 86, 127]. Learning algorithms that

incorporate cost are referred to as “cost-sensitive learning algorithms”. However,

these algorithms take a different approach to the problem than that taken by

classical FS techniques. Cost-sensitive learning algorithms assume that each mea-

surement of an observation is associated with a cost. The classifier must decide

whether the measurement or feature is needed in each instance given its cost. The

classic example is medical diagnosis. When a patient presents with symptoms,

which test should the doctor order to achieve the best diagnosis, given that the

tests have varying cost? Can the doctor make a diagnosis once the information

from the first test is received, or are more tests required?

FS techniques that incorporates test cost have been widely studied [40, 47, 74, 75,

90, 103, 135]. However, these methods balance test cost with misclassification cost

and primarily focus on decision systems [74, 75, 135], decision trees [40, 103] and

K-nearest neighbor [47]. Because a misclassification measure was used in the FS

process, these methods require labeled data.

As previously discussed, Ji and Carin [51] formulate the FS with cost problem as

a POMDP in which each action is choosing a feature to sample and the hidden

states are mixture components. The authors note several limitations to their work,

including significant computational requirements and the difficulty of handling

continuous features.

Paclik et. al. [90] investigate FS techniques that incorporate cost when the features

are naturally grouped together – for example, all data streams from a particular

sensor. If one would like to receive the information from one feature from the

sensor, all the other features are essentially free. The authors propose a grouped-

wise forward selection and a group-wise nested forward selection method.

Smits and Annoni [104] propose an FS technique with a budget for the total cost

of features. Their notion of cost is the sum of computational cost, the cost of

confusion error, and the cost of selecting the feature. Features are only included

in the reduced feature set if the cost of adding the feature keeps the total cost below

the budget designated by the user. A forward selection procedure is implemented

with a divergence evaluation function.

Yao et al. [129] break attribute selection into two primary categories. The first is

internal information and is essentially FS based on the data; the second is external
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information. The external method allows users to assign preferences to all features,

both quantitative and qualitative, and a feature subset is selected based on the

preference relationships. External information can incorporate any type of test

cost but requires that the user be able to supply preference information.

1.4 Case Studies

In this section, we review the existing literature on tool wear and activity recog-

nition, and focus on works that incorporates HMMs.

1.4.1 Tool Wear

As cutting tools are used, they gradually begin to fail and need replacement. Tool

wear can be broken into two primary types. Flank wear occurs on the cutting edge

that is in contact with the work piece and is characterized by the removal of the

sharp edge. Crater wear occurs on the rake face and consists of small indentations

or craters. Because this dissertation deals only with flank wear, crater wear will

not be considered in the literature review or the analysis.

Tool wear leads to increased cutting force and temperature, poor surface finish,

and tool breakage. Poor surface finish can necessitate refinishing – which consumes

time and other resources – or renders the product unusable. Tool breakage can be

catastrophic for the work piece and the machine. In most cases, a tool is replaced

after a specified number of cuts. This policy is sub-optimal since the current state

of the tool is not considered. A tool that is not worn but is still changed wastes

man-hours and machine time. A tool that is worn and not changed jeopardizes

the quality of the product. Further, significant randomness is inherent to cutting

processes, so it is difficult to determine the optimal number of cuts after which

a tool must be changed. Changes in cutting conditions (cutting parameters and

type of material) will also change the rate at which a tool wears. Manufacturing

processes of the future will require a system that accurately predicts when the tool

will be sufficiently worn to warrant changing.

Measuring tool wear can be difficult and time consuming. Halting the cutting

process to check the tool’s condition is another suboptimal policy that wastes
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man-hours and machine time. As previously stated, tool wear causes increased

cutting force and temperature. Significant research has been devoted to tool-

wear prediction using data collected from the machine. We will focus here on the

use of HMMs in tool-wear prediction; for in-depth reviews that consider multiple

algorithms, types of sensors, and machining processes, see [29] and [99].

HMMs have been used to predict tool wear in several types of machining processes,

including turning [53, 102, 117], drilling [17, 18, 34, 35, 89] and milling [5, 37, 112,

138]. Scheffer, Engelbrecht, and Heyns [102] compare HMMs to neural networks

for tool-wear prediction in turning and conclude that each method has advantages,

and neither is clearly superior in terms of predictive ability. Neural networks allow

for the continuous prediction of wear, while the HMM formulation the authors test

requires the entire cut sequence. HMMs are less complex than neural networks

and easier to implement. Most of these studies collect data using vibration or

acceleration sensors [5, 17, 18, 37, 89, 112, 117], but some collect force signals

[34, 35, 102, 138], acoustic emissions [115], or a multiple types of data [53].

Standard HMMs were used in most previous studies. However, in [17] and [18], the

authors use more complex HMMs. In the former study, multi-rate HMMs, which

can handle inputs on different time scales, are trained. In the latter study, the

authors build on their previous work by implementing multi-rate coupled HMMs,

which can handle features on different time scales and model multiple Markov

chains.

The type and amount of wear data available greatly influences the way HMMs are

trained and tested. If every cut is labeled with a wear classification, an HMM can

be trained for each class [5, 17, 18, 34, 35, 37, 53, 112, 117, 138]. For example, in

a binary classification problem comparing worn and not-worn, only data labeled

as worn are used for training the worn HMM. The same is true for the not-worn

HMM. For prediction, the label of the HMM with highest likelihood is assigned to

unknown data. While this method is widely used, there as some drawbacks. First,

supervised data are required. Second, the HMM states lack meaning. Third, the

number of HMMs that must be trained increases with the number of classes.

Scheffer, Engelbrecht, and Heyns [102] and Varma and Baras [115] train a single

HMM with states representing the wear. This allows the HMMs to be trained

with no wear labels. Further, the transition matrix of the Markov chain can be

set to reflect the non-decreasing nature of tool wear over time.
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When using HMMs, features can either be continuous or discrete. In most studies,

the features are modeled as continuous random variables, but Kang et al. [53] and

Wang, Mehrabi and Kannatey-Asibu [117] convert the collected data to discrete

features. There is not much difference in the modeling or implementation of HMMs

with continuous or discrete features. When discrete features are used for tool-wear

prediction, conversion from continuous collected data to discrete features requires

this extra step.

1.4.2 Activity Recognition

Human activity recognition is the process of identifying and labeling strings of

observations collected on a single person or a group with an activity, task or

goal. This is of interest in numerous domains, including surveillance, gaming,

medicine, and video retrieval. Similar areas of research include image classification

(identifying the contents of a single image, as opposed to labeling a series of

images), pose recognition (identifying the position of a human body), and object

recognition (identifying the presence or position of an object).

As with tool wear, the literature on human activity recognition is extensive. One

way to classify the research is by the device used to collect the observation data.

Each has its advantages and limitations. For instance, video data, which is col-

lected using a video camera, is easy to collect and is abundant in data sets and on

the web. However, analyzing the data - and specifically extracting features from

this type of data - can be difficult. Poppe [92] and Turaga et al. [110] survey the

literature and techniques for video-based human activity recognition, and Cha-

quet, Carmona and Fernández-Caballero [20] review the available video data sets.

Wearable or on-body sensors are any type of sensor the subjects has on his or

her person. These include motion-capture systems, wearable accelerometers and

mobile phones. Wearable sensors give accurate information about the movements

of the human body, but can be intrusive, and inclusion of the sensor might change

the activity. Lara and Labrador [60] survey the human activity-recognition litera-

ture on wearable sensors. The newest type of sensors for activity recognition is the

depth camera such as the Microsoft Kinect. These sensors can provide detailed

information on the human body and are not intrusive. However, research using

depth cameras is not as plentiful as the research on video- or wearable-sensor-based

systems, but is rapidly increasing. Han et al. [45] survey all research involving the
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Kinect and go beyond human-activity recognition to include object tracking and

pose estimation.

Due to the breadth of the literature on activity recognition, we will only focus

on those studies that relate to this dissertation, specifically, activity recognition

using the Kinect, HMMs used for activity recognition, and unsupervised learning

algorithms implemented for activity recognition.

While the Kinect was originally developed for gaming platforms, it has become a

popular research tool; several studies have focused on its use in activity recognition

[85, 88, 107, 108, 116, 125, 128, 134]. Many of these are strikingly similar.

First, they all use data collected in a laboratory environment. Several [88, 116,

125, 128] evaluate their proposed methods on publicly available action-recognition

data sets, such as MSR-Action3D and MSRDailyActivity3D. While using these

data sets allows for easy comparison of methods, data are collected by simply

having subjects repeat specific, predefined, scripted actions several times. There

is little or no occlusion of body parts, interaction with other subjects or objects,

or unknown activities. Further, the data are generally segmented, so that each

clip or sequence of observations only contains a single activity. Data collected in a

real-world environment would not be segmented. Also, it would contain transitions

between actions, unknown activities, possible interaction with other subjects or

objects, occluded body parts, etc. In some cases, the researchers attempt to

recreate a real-world setting by collecting their own data [85, 88, 107, 108, 125, 134].

However, these collected data sets have limitations similar to the publicly available

sets previously discussed.

Second, the only study using unsupervised learning was that of Zhang and Parker

[134], who use a Latent Dirichlet Allocation to model activity. However, their

method includes a highly customized feature that uses both the depth and intensity

data from the Kinect. All other methods cited require some amount of supervised

data. For the supervised methods, HMMs or variants on the standard HMM

are used as classifiers [85, 107, 108, 125]. Support vector machines [88, 116] and

nearest-neighbor methods [128] are also used to classify the unknown activity.

The primary difference between these is the type of feature extracted from the

depth camera and used as inputs to the classifier. Wang et al. [116] propose

mining actionlet ensembles. Xia, Chen, and Aggarwal [125] propose histograms

of 3D joints while Oreifej and Liu [88] propose histograms of oriented 4D normals
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as features, and Yang and Tian [128] develop a feature called eigenjoints. In each

of these, the newly proposed feature is the primary contribution. There is no

consensus as to the best feature set used for activity recognition with a depth

sensor, and FS is not performed.

HMMs and their variants have been routinely employed for activity recognition

using the Kinect and other sensors. In the Kinect domain, Nowozin and Shotton

[85] propose a variant of an HMM called a “firing hidden Markov model”. They

use action points to anchor the model and force actions to pass through specific

states. Sung et al. [107, 108] use maximum entropy Markov models. Xia, Chen

and Aggarwal [125] train an individual HMM for each action.

Behera, Cohn, and Hogg [7], use HMMs in conjunction with probabilistic La-

tent Semantic Analysis for workflow activity monitoring on data collected using

a motion-capture system. Wang, Huang and Tan [120] train a different HMM for

each activity for video data.

Some variants of HMMs, such as coupled HMMs [13], switching HMMs [30] and

layered HMMs [87], were primarily developed to address problems associated with

activity recognition. Variants of HMMs developed in other domains have been

applied to activity recognition, such as the variable length HMM [39] and the

hierarchical HMM [82].

Sensors used for collecting activity-recognition data can collect several data points

per second. For example, the Kinect collects a sample every 30th of a second. This

results in data sets with a large number of observations. Labeling each observa-

tion with an activity becomes significantly more time consuming and difficult as

the data sets grow. Further, accurate labeling of individual observations can be

difficult. Labeling is easy for segmented data sets, in which single activities are

performed for each sequence. However, data sets collected from real-world appli-

cations will not be nicely segmented. Pinpointing the exact transition between

two activities is no easy task, and could be interpreted differently when multiple

researchers are labeling the data set. For these reasons, unsupervised learning

techniques for activity recognition must be developed and evaluated.

Wyatt, Philipose and Choudhury [124] mine web pages to establish links between

object use and activity. The subjects wear radio-frequency identification bracelets

and interact with tagged objects, and HMMs are used as the classifier. While this

method could be useful for controlled environments, in which subjects interact with
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specified objects, it requires tagging objects and the use of an object to identify an

activity. Krause et al. [58] also use a wearable sensor and unsupervised learning;

the subjects wear a SenseWear armband, and the researchers use the k-means

clustering algorithm as an unsupervised classifier.

Niebles, Wang, and Fei-Fei [83] outline an unsupervised learning approach for ac-

tivity recognition on video in which they use probabilistic Latent Semantic Anal-

ysis and Latent Dirichlet Allocation for the unsupervised classifiers. Similarly

Wang, Ma, and Grimson [119] identify activities in large crowds using surveillance

and traffic cameras. For unsupervised classifiers, the authors propose three mod-

els: a Latent Dirichlet Allocation mixture model, a Hierarchical Dirichlet Process

mixture model, and a Dual Hierarchical Dirichlet Process model.

Semi-supervised learning combines unsupervised data with supervised data. Gen-

erally, the amount of supervised data is significantly smaller than the amount of

unsupervised data. This allows researchers to gain some of the advantages of su-

pervised techniques without consuming significant man-hours labeling the entire

data set. Further, specific portions of the data can be targeted for labeling for

convenience or to increase performance. Guan et al. [42] use co-training (train-

ing multiple classifiers then labeling the unlabeled data). Stikic, Van Laerhoven,

and Schiele [106] test co-training and self-training as well as active learning (de-

termining the most important unlabeled samples for labeling). Mahdaviani and

Choudhury [71] train semi-supervised conditional random fields for activity recog-

nition.

1.5 Informative Priors

The use of informative versus non-informative priors has been widely debated.

Jaynes [50], who outlines the historical debate up to 1985 and favors the use

of informative priors, presents the following example of how prior knowledge is

used in every-day inference: A medical diagnostician would not make a diagnosis

using only the patient’s current condition and ignore his or her medical history.

Jaynes concludes by showing how the use of highly informative priors on seasonal

parameters for monthly economic data improves forecasting.

Thomas, Witte, and Greenland [109] argue for the use of informative priors in

epidemiological studies using hierarchical models in their paper, which is subtitled
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“Who’s afraid of informative priors?” They state that letting the data “speak for

themselves” assumes that the collected data are correct and a good representation

of the system being modeled. Further, they state that data per se are not useful

without assumptions about the model and the inclusion of prior information, and

assert the need to balance data with prior assumptions and information.

Zero-numerator problems involve probabilities, such as a transition matrix for a

Markov model, that do not occur in the training data but are possible. During

training, their exclusion from the training data causes the probability estimate to

be 0, even though the true probability is greater than 0. Winkler, Smith, and

Fryback [123] study the role of informative priors in zero-numerator problems.

Similarly, Lord and Miranda-Moreno [69] demonstrate that low-sample means for

Poisson-gamma models and small sample sizes can affect posterior distributions

when vague or non-informative priors are used. Using a non-vague prior decreases

the chances of poor parameter estimation. Jang, Lee, and Kim [49] propose a

power prior for zero-inflated regression problems.

Informative priors have been used in several types of models. Angelopoulus and

Cussens [4] use informative priors in classification and regression trees. Coleman

and Block [22] use informative priors in the estimation of parameters for non-linear

systems. Mukherjee and Speed [79] study informative priors in network inference.

While previous studies have demonstrated that good informative priors can im-

prove parameter estimation and the predictive ability of models, there is no well-

established methodology for converting prior knowledge into prior distributions.

Guikema [43] compares five methods for constructing prior distributions for failure

probability estimation in reliability analysis: the method of moments, maximum

likelihood estimation, maximum entropy estimation, non-informative pre-priors,

and confidence/credible interval matching. He demonstrates that the assumptions

on the prior greatly affect the posterior. He concludes that if the data used in con-

structing the prior accurately reflects the data collected later, maximum likelihood

estimation gives a posterior with the minimum variance, but maximum entropy

estimation is the most robust to differences between the prior data and the ob-

served data. In another study, Yu and Abdel-Aty [132] compare four methods

for constructing informative priors: two-stage Bayesian updating, maximum like-

lihood estimation, method of moments, and expert experience. Each of these has

strengths and weaknesses, but the authors conclude that the two-stage Bayesian

updating procedure is superior for the data and model used by the authors.
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Raina, Ng, and Koller [98] propose the use of transfer learning for constructing

informative priors for text classification. Vanpaemel [114] uses hierarchical meth-

ods for constructing informative priors, and Washington and Oh [121] outline a

methodology for building informative priors from experts’ opinions on ranking

railroad countermeasures.

1.6 Contributions

In this dissertation, the main contributions are that we:

• Provide the first comprehensive review of FS methods specific to HMMs.

In addition, we point out the need for research on FS methods specific to

hidden Markov models and outline some requirements for a FS technique

when applied to HMMs.

• Derive the FSHMM, which is a novel method for simultaneous FS and pa-

rameter estimation for hidden Markov models using the EM algorithm for

maximum a priori parameter estimation.

• Fill the gap in the literature regarding feature saliency, HMMs and the EM

algorithm by proposing the FSHMM for solving the FS for HMM problem.

• Outline and demonstrate the advantages of the EM algorithm over VB es-

timation for the FSHMM formulation when the number of hidden states is

known a priori.

• Perform the first investigation of the use of informative priors to incorporate

test cost of features into the FS process for the FSHMM.

• Demonstrate the advantages of an embedded, unsupervised FS method specif-

ically formulated for HMMs.

• Extend the structure and model formulations of the FSHMM to include emis-

sion distributions that are not a simple Gaussian distribution (e.g. GMMs,

gamma distributions, Poisson distributions, etc.) and a semi-Markov process

for the underlying Markov chain of the FSHMM.
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Hidden Markov Models and

Semi-Markov Models

In this chapter, we provide background information on HMMs and HSMMs. It

covers model structure, inference, model training, and implementation issues.

2.1 Hidden Markov Models

A hidden Markov model (HMM) is a probabilistic model with joint probability for

unobserved states and observed emissions. For this dissertation, a discrete time

Markov chain is used for the state, and the state space is assumed to be finite. In

a first order model, the current state is only dependent upon the previous state.

The emission distribution is dependent upon the current state, and the individual

emissions at each time step are considered independent, given the state.

Consider an HMM with continuous emissions and I states. Let y = {y1, y2, ..., yT}
be the sequence of observed data where each yt ∈ RL and the observation for

the l-th feature at time t is denoted by ylt. Let x = {x1, x2, ..., xT} be the unob-

served state sequence. The transition matrix of the Markov chain associated with

this sequence is denoted as A where the components of this matrix represent the

transition probabilities aij = P (xt+1 = j|xt = i). The initial state distribution is

represented by π. Each element of A and π must be greater than or equal to 0

and the rows of A and all the elements of π must sum to 1. In terms of these

quantities, the complete data likelihood can be written as

24
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Figure 2.1: Graphical model for HMM. Squares are hidden variables and
circles are observed variables.

P (x,y|Λ) = πx1fx1(y1)
T∏
t=2

axt−1,xtfxt(yt), (2.1)

where Λ is the set of model parameters consisting of the initial distribution, tran-

sition probabilities and the emission distribution parameters; and fxt(yt) is the

emission distribution, given state xt.

The marginal likelihood of the observation sequence can be found by summing

over all possible state sequences

P (y|Λ) =
∑
x1

∑
x2

...
∑
xT

P (x,y|Λ)

=
∑
x1

∑
x2

...
∑
xT

πx1fx1(y1)
T∏
t=2

axt−1,xtfxt(yt).

(2.2)

A graphical model for an HMM is displayed in Figure 2.1.

2.1.1 The Three Primary Problems for HMMs

Lawrence Rabiner [95, 96] outlined and solved three primary problems when using

HMMs:

1. Given a sequence of observations y and the model parameters Λ, efficiently

calculate the marginal likelihood of the observations P (y|Λ).



Chapter 2. Hidden Markov Models and Semi-Markov Models 26

2. Given a sequence of observations y and the model parameters Λ, choose a

corresponding state sequence x that is optimal in some sense.

3. Given a sequence of observations y, calculate model parameters Λ that max-

imizes P (y|Λ).

The first problem, which is generally referred to as evaluation, is solved by calcu-

lating the forward variable αt(i) = P (y1, y2, ..., yt, xt = i|Λ) through induction

α1(i) = πifi(y1), 1 ≤ i ≤ I,

αt+1(j) =

[
I∑
i=1

αt(i)aij

]
fj(yt), 1 ≤ i ≤ I, 1 ≤ t ≤ T − 1.

(2.3)

The likelihood of the observed sequence can be easily calculated by

P (y|Λ) =
I∑
i=1

αT (i). (2.4)

The backward variable βt(i) = P (yt+1, yt+2, ..., yT |xt = i,Λ) is calculated in a

similar fashion

βT (i) = 1, 1 ≤ i ≤ I,

βt(i) =
I∑
j=1

aijfj(yt+1)βt+1(j), 1 ≤ i ≤ I, t = T − 1, T − 2, ..., 1.
(2.5)

The most common solution to Problem 2, which is generally referred to as infer-

ence, is the Viterbi algorithm. First, let

δt(i) = max
x1,x2,...,xt

P (x1, x2, ..., xt−1, xt = i, y1, y2, ..., yt|Λ). (2.6)

The entire optimal sequence can be found through the following steps:
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δ1(i) = πfi(y1), 1 ≤ i ≤ I,

Ψ1(i) = 0.
(2.7)

δt(i) = max
1≤i≤I

[δt−1(i)aij] fi(yt), 1 ≤ i ≤ I, 2 ≤ t ≤ T,

Ψt(i) = arg max
1≤i≤I

[δt−1(i)aij] , 1 ≤ i ≤ I, 2 ≤ t ≤ T.
(2.8)

P ∗ = max
1≤i≤I

[δT (i)],

x∗T = arg max
1≤i≤I

[δT (i)],

x∗t = Ψt+1(x∗t+1), t = T − 1, T − 2, ..., 1.

(2.9)

The third problem, which is generally referred to as estimation, can be solved

using the expectation-maximization (EM) algorithm. The EM algorithm, called

the Baum-Welch algorithm when applied to HMMs [8, 95, 96], is used to calculate

maximum-likelihood (ML) estimates for the model parameters. Priors can be

placed on the parameters to calculate the maximum a posteriori (MAP) estimates

[41]. The Baum-Welch algorithm iterates between two steps: the expectation step

(E-step) and the maximization step (M-step). The E-step finds the expected value

of the complete log-likelihood with respect to the state, given the data and the

current model parameters. The M-step maximizes the expectation computed in

the E-step to find the next set of model parameters. These two steps are repeated

until some stopping criteria is met. The expectation of the complete log-likelihood

is designated the Q function, given by

Q(Λ,Λ′) = E[logP (x,y|Λ)|y,Λ′]. (2.10)

In Equation 2.10, Λ represents the set of model parameters for the current iteration

and Λ′ is the set of parameters from the previous iteration. For ML estimation,

the Q function in Equation 2.10 is calculated in the E-step and then maximized
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with respect to Λ in the M-step. For MAP estimation, the Q function is modified

by adding terms corresponding to the prior on the model parameters, G(Λ),

Q(Λ,Λ′) + log(G(Λ)). (2.11)

That is, the Q function in Equation 2.10 is calculated for the E-step as in the ML

algorithm, but the log of G(Λ) is added to the Q function and maximized in the

M-step. For both ML and MAP, the quantities in Equations 2.10 and 2.11 are

maximized by computing roots of their derivatives with respect to Λ.

For the E-step, the following quantities are calculated

γt(i) = P (xt = i, |y,Λ)

=
αt(i)βt(i)∑I
i=1 αt(i)βt(i)

,
(2.12)

and

ξt(i, j) = P (xt = i, xt+1 = j|y,Λ)

=
αt(i)aijfj(yt+1)βt+1(j)∑I

i=1

∑I
j=1 αt(i)aijfj(yt+1)βt+1(j)

.
(2.13)

When a Gaussian distribution with mean µ and standard deviation σ is used for

the state conditional emission distribution, the M-step parameters updates are

π̂i = γ1(i), (2.14)

âij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑I
j=1 ξt(i, j)

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

,

(2.15)
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µ̂i =

∑T
t=1 γt(i)yt∑T
t=1 γt(i)

, (2.16)

and

σ̂i =

√∑T
t=1 γt(i)(yt − µi)2∑T

t=1 γt(i)
. (2.17)

2.1.2 Scaling and Implementation

Joint probabilities, such as the forward and backward variables, rapidly go to zero

as the number of total time steps T increases and fall below machine precision.

Rabiner [95, 96] proposes scaling these variables as a solution. At each time step

t, calculate a scaling factor c where

ct =
1∑I

i=1 αt(i)
. (2.18)

Denote α̂t(i) as the scaled forward probability at time t. The scaled forward

probability at time t is calculated by

α̂t(i) = ctαt(i)

=
αt(i)∑I
i=1 αt(i)

.
(2.19)

The same scaling factor used for the forward probability is used to scale the back-

ward probability

β̂t(i) = ctβt(i). (2.20)

Scaling does not affect the parameter estimation process because the scaling factors

cancel. The scaled forward and backward variables can be substituted directly for

αt(i) and βt(i) in the Baum-Welch algorithm. Furthermore, the scaling factors
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x[1:2] x[3] x[4:7]

y1 y2 y3 y4 y5 y6 y7

. . .

Figure 2.2: Graphical model for HSMM. Squares are hidden variables and
circles are observed variables. The HSMM differs from the HMM in that the
time in each state can be greater than 1 and each state can emit multiple

observations.

provide an efficient method of calculating the log-likelihood of the data given the

model parameters

log[P (y|Λ)] =
T∑
t=1

log ct. (2.21)

2.2 Hidden Semi-Markov Models

In this section, hidden semi-Markov models (HSMMs) are introduced. First, the

general HSMM is discussed followed by a discussion of the explicit duration HMM

(EDHMM), which is the type of HSMM used in this dissertation. As with the

HMMs, model formulation, we outline inference and parameter estimation.

An HSMM [133] is an extension of the standard HMM described in the previous

section, where multiple observations are emitted from a single state. The underly-

ing Markov chain follows a semi-Markov process where each state has a duration

or sojourn time modeled as a random variable. The duration is the number of

time steps in the state before a state transition occurs. The duration takes on

discrete values D = {1, 2, ..., D}.

Figure 2.2 displays a graphical model of a general HSMM. The model can remain

in a specific state for more than one time step, and the hidden state can output

more than one observation.
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Yu [133] defines the following notation for HSMMs, where a discrete time Markov

chain is assumed with a set of hidden states X = {1, ..., I}. The following de-

scription is quoted directly from [133] with the notation for the state variable x

changed to match the notation previously established in this dissertation.

• xt1:t2 = i - state i that the system stays in during the period from t1 to t2.

In other words, it means xt1 = i, xt1+1 = i, ..., and xt2 = i. Note that the

previous state xt1−1 and the next state xt2+1 may or may not be i.

• x[t1:t2] = i i state i which starts at time t1 and ends at t2 with duration

d = t2− t1 + 1. This implies that the previous state xt1−1 and the next state

xt2+1 must not be i.

• x[t1:t2 = i - state i that starts at time t1 and last till t2, with x[t1 = i, xt1+1 =

i, ..., xt2 = i, where x[t1 = i means that at t1 the system switched from some

other state to i, i.e., the previous state xt1−1 must not be i. The next state

xt2+1 may or may not be i.

• xt1:t2] = i - state i that lasts from t1 to t2 and ends at t2 with xt1 = i, xt1+1 =

i, ..., xt2] = i, where xt2] = i means that at time t2 the state will end and

transit to some other state, i.e., the next state xt2+1 must not be i. The

previous state xt1−1 may or may not be i.

For the general model [133], the state transition is a pair representing the new state

and the new duration time. The state transitions are (in, dn) → (in+1, dn+1) for

n = 1, ...,N where N is the number of state transitions. Note that
∑N

n=1 dn = T .

The state transition probability for the pair (i, d′)→ (j, d) is

a(i,d′)(j,d) = P (x[t+1:t+d] = j|x[t−d′+1:t] = i),

subject to
∑

j∈X\{i}

∑
d∈D

a(i,d′)(j,d) = 1, i, j ∈ X , d, d′ ∈ D. (2.22)

The self transition probability a(i,d′)(i,d) is equal to zero. In the general formulation,

the current state and the current duration are both dependent upon the previous

state and the previous duration. The emission probability is
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bj,d(yt+1:t+d) = P (yt+1:t+d|x[t+1:t+d] = j). (2.23)

The initial state distribution is

πj,d = P (x[t−d+1:t] = j), t ≤ 0, d ∈ D. (2.24)

The set of model parameters Λ is comprised of the initial state distribution, the

transition probabilities, and the emission probabilities. The state duration can

be either parametric or non-parametric. When defined separately from the state

transition a(i,d′)(j,d), the state duration probability is denoted as pj(d), and these

probabilities are included in the set of model parameters Λ.

The forward and backward variables, outlined by Rabiner [95] for the HMM, are

also modified for the general HSMM and outlined by Yu [133] as

αt(j, d) = P (x[t−d+1:t] = j, y1:t|Λ), (2.25)

and

βt(j, d) = P (yt+1:T |x[t−d+1:t] = j,Λ). (2.26)

The formulas for the forward-backward algorithm for an HSMM are

αt(j, d) =
∑

i∈X\{j}

∑
d′∈D

αt−d(i, d
′)a(i,d′)(j,d)bj,d(yt−d+1:t), t > 0, d ∈ D, j ∈ X ,

(2.27)

and

βt(j, d) =
∑

i∈X\{j}

∑
d′∈D

a(i,d′)(j,d)bj,d′(yt+1:t+d′)βt+d′(i, d
′), t < T. (2.28)

Yu [133] gives two assumptions for the initial conditions. The general assumption

is not used in this dissertation so only the simplifying assumption is given. For the
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simplifying assumption, it is assumed that at the first time step t1 the first state

begins, and at the last time step T the last state ends. When using the simplifying

assumption, the initial conditions for the forward and backward variables are:

α0(j, d) = πj,d, d ∈ D,

ατ (j, d) = 0, τ < 0, d ∈ D,

βT (i, d) = 1, d ∈ D,

βτ (i, d) = 0, τ > T, d ∈ D.

(2.29)

It can also be assumed that the initial distribution π′j,d can be defined as

P (x[1:d] = j|Λ). From this, the initial condition for the forward variable is

αd(j, d) = π′j,dbj,d(y1:d).

Using the forward and backward variables, Yu [133] shows that several quantities

of interest can be calculated. Filtered probabilities are probabilities conditioned

on a partial observation sequence. The filtered forward probability is

P (x[t−d+1:t] = j|y1:t,Λ) =
αt(j, d)∑
j,d αt(j, d)

. (2.30)

Further, the predicted probability that state j has duration d and begins and ends

at times t+ 1 and t+ d, given the observation sequence from time 1 to t is

P (x[t+1:t+d] = j|y1:t,Λ) =

∑
i 6=j,d′ αt(i, d

′)a(i,d′)(j,d)∑
j,d′ αt(i, d

′)
. (2.31)

Summing Equations 2.30 and 2.31 over all d yield

∑
d∈D

P (x[t−d+1:t] = j|y1:t,Λ) = P (xt] = j|y1:t,Λ), (2.32)

and

∑
d∈D

P (x[t+1:t+d] = j|y1:t,Λ) = P (x[t+1 = j|y1:t,Λ). (2.33)
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Yu [133] goes on to derive several joint probabilities that include the entire obser-

vation sequence y1:T .

ηt(j, d) = P (x[t−d+1:t] = j, y1:T |Λ)

= αt(j, d)βt(j, d),
(2.34)

ξt(i, d
′; j, d) = P (x[t−d′+1:t] = i, x[t+1:t+d] = j, y1:T |Λ)

= αt(i, d
′)a(i,d′)(j,d)bj,d(yt+1:t+d)βt+d(j, d),

(2.35)

ξt(i, j) = P (xt] = i, x[t+1 = j, y1:T |Λ)

=
∑
d′∈D

∑
d∈D

ξt(i, d
′; j, d),

(2.36)

and

γt(j) = P (xt = j, y1:T |Λ)

=
∑
τ≥t

∑
d=τ−t+1

ητ (j, d).
(2.37)

The joint probabilities in Equations 2.34 to 2.37 can be converted to posterior

probabilities by dividing by the likelihood of the observation sequence

P (y1:T |Λ) =
∑
j∈X

P (xt = j, y1:T |Λ)

=
∑
j∈X

γt(j).
(2.38)

The Viterbi algorithm for state prediction is also modified for the HSMM and

outlined by Yu [133]. The forward variable for the HSMM Viterbi algorithm is
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δt(j, d) = max
x1:t−d

P (x1:t−d, x[t−d+1:t] = j, y1:t|Λ)

= max
i∈X\{j},d′∈D

{δt−d(i, d′)a(i,d′)(j,d)bj,d(yt−d+1:t)},
(2.39)

The above equation is the maximum likelihood that the partial state sequence ends

in state j at time t and had duration d. The previous state selected by δt(j, d) is

recorded by Ψ(t, j, d) = (t− d, i∗, d∗), with i∗ and d∗ being the previous surviving

state and duration, and (t−d) being the end time for the previous surviving state

and duration. Ψ(t, j, d) is selected using

(i∗, d∗) = arg max
i∈X\{j},d′∈D

{δt−d(i, d′)a(i,d′)(j,d)bj,d(yt−d+1:t)}. (2.40)

The most likely state sequence is found by selecting the last state that maximizes

the likelihood. When using the simplifying assumption, start at the end of the

sequence and find

(j∗T , d
∗
T ) = arg max

i∈X ,d∈D
δT (i, d). (2.41)

Then backtrack to find the entire most likely state sequence

(T − 1, j∗T−1, d
∗
T−1) = Ψ(T, j∗T , d

∗
T ),

...

(t1, j
∗
1 , d
∗
1) = Ψ(t2, j

∗
2 , d
∗
2).

(2.42)

The maximum likelihood state sequence consists of both states and durations –

(j∗1 , d
∗
1), ..., (j∗T , d

∗
T ).

The first two primary problems for HMMs have now been covered for HSMMs.

The third problem, parameter estimation, can be solved using the EM algorithm.

For the general HSMM, Yu [133] the EM algorithm, where the expectations ηt(j, d)

and ξt(i, d
′; j, d) are calculated in the E-step, and the parameters are estimated in

the M-step as follows
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π̂j,d =
ηt(j, d)∑
j,d ηt(j, d)

, t ≤ 0, (2.43)

â(i,d′)(j,d) =

∑
t ξt(i, d

′; j, d)∑
j 6=i,d

∑
t ξt(i, d

′; j, d)
, (2.44)

and

b̂j,d(vk1:kd) =

∑
t [ηt(j, d)I(yt+1:t+d = vk1:kt)]∑

t ηt(j, d)
, (2.45)

where the indicator function I(yt+1:t+d = vk1:kt) = 1 if yt+1 = vk1 , ..., yt+d = vkd

and otherwise zero.

The joint probabilities in the forward-backward algorithm will rapidly become

small and cause underflow problems when calculating on a computer. To avoid

this when implementing an HSMM, Yu [133] suggests calculating predicted prob-

abilities. The forward and backward predicted probabilities are

ᾱt(j, d) = P (x[t−d+1:t] = j|y1:t,Λ), (2.46)

and

β̄t(j, d) =
P (yt−d+1:T |x[t−d+1:t] = j,Λ)

P (yt−d+1|y1:t−d,Λ)
. (2.47)

Likewise, the emission probabilities are redefined as

b̄j,d(yt−d+1:t) =
bj,d(yt−d+1:t)

P (yt−d+1:t|y1:t−d,Λ)
. (2.48)

The conversions between the joint forward and backward variables and the pre-

dicted probabilities are

αt(j, d) = P (y1:t−d|Λ)ᾱt(j, d)bj,d(yt−d+1:t), (2.49)

and
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b̄j,d(yt−d+1:t)P (yt−d+1:T |y1:t−d,Λ) = bj,d(yt−d+1:tβt(j, d). (2.50)

The calculations for the predicted forward and backward variables are now

ᾱt(j, d) =
∑

i∈X\{j}

∑
d′∈D

ᾱt−d(i, d
′)b̄i,d′(y

t−d
t−d−d′+1)a(i,d′)(j,d), (2.51)

and

β̄t(j, d) = b̄j,d(yt−d+1:t)
∑

i∈X\{j}

∑
d′∈D

a(i,d′)(j,d)β̄t+d′(i, d
′). (2.52)

Probabilities for partial observation sequences can be calculated using

P (y1:t|Λ) =
∑
j∈X

∑
d∈D

P (x[t−d+1:t] = j, y1:t|Λ)

=
∑
j∈X

∑
d∈D

P (y1:t−d|Λ)ᾱt(j, d)bj,d(yt−d+1:t),
(2.53)

and

P (yt−d+1:t|y1:t−d,Λ) =
P (y1:t|Λ)

P (y1:t−d)
. (2.54)

After the forward-backward algorithm is performed, the probabilities in Equations

2.34 and 2.35 can be calculated using

ηt(j, d)

P (y1:T )|Λ)
= ᾱt(j, d)β̄t(j, d), (2.55)

and

ξt(i, d
′; j, d)

P (y1:T |Λ)
= ᾱt(j, d)bi,d′(yt−d′+1:t)a(i,d′)(j,d)β̄t(j, d). (2.56)

Further, simpler forward and backward recursion can be implemented by making
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ᾱ′t(j, d) = ᾱt(j, d)bj,d(yt−d+1:t), (2.57)

and

β̄′t+1(j, d) = β̄t+d(j, d). (2.58)

The forward and backward variables are now calculated by

ᾱ′t(j, d) = b̄j,d(yt−d+1:t)
∑

i∈X\{j}

∑
d′∈D

ᾱ′t−d(i, d
′)a(i,d′)(j,d), (2.59)

and

β̄′t(j, d) = b̄j,d(yt:t+d−1)
∑

i∈X\{j}

∑
d′∈D

β̄′t+d(i, d
′)a(i,d′)(j,d). (2.60)

2.2.1 Explicit Duration Hidden Markov Model

The explicit duration hidden Markov model (EDHMM) is one of many specific

types of HSMMs. Other types of HSMMs include the variable transition HMM

and the residential time HMM. The general HSMM becomes one of these models

when specific assumptions about the state transitions and durations are made.

Yu [133] outlines the EDHMM in the following manner. The EDHMM assumes

that the state transition and duration of the previous state are independent. Fur-

ther, the distribution of the duration is assumed to be determined only by the

current state. The transition probability in the general model can now be broken

into two terms, a(i,d′)(j,d) = aijpj(d) with zero probability of a self transition aii = 0,

and where the transition probability is defined as aij = P (x[t = j|xt−1] = i). The

duration probability pj(d) can be either parametric or non-parametric. These in-

dependence assumptions drastically decrease the complexity when compared to

the general HSMM by reducing the number of parameters.

In addition to the changes to the transition probabilities, the following changes are

made to the general HSMM to convert it to an EDHMM: the observation proba-

bility bj,d(yt+1:t+d) is replaced with
∏t+d

τ=t+1 bj(yτ ), the backward variable βt(j, d) is
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replaced with βt(j) = P (yt+1:T |xt] = i,Λ), and the forward variable is redefined as

αt(j) = P (xt] = j, y1:t|Λ) =
∑

d∈D αt(j, d). The forward and backward recursions

for the EDHMM are now

αt(j) =
∑
d∈D

α∗t−d(j)pj(d)ut(j, d), (2.61)

α∗t (j) = P (x[t+1 = j, y1:t|Λ)

=
∑

i∈X\{j}

αt(i)aij,
(2.62)

and

β∗t (j) = P (yt+1:T |x[t+1 = j,Λ)

=
∑
d∈D

pj(d)ut+d(j, d)βt+d(j),
(2.63)

βt(j) =
∑

i∈X\{j}

ajiβ
∗
t (j), (2.64)

where

ut(j, d) =
t∏

τ=t−d+1

bj(yτ ). (2.65)

When using the simplifying assumptions, the boundary conditions are α0(i) = πi

and ατ (i) = 0 for τ < 0, and βT (i) = 1 and βτ (i) = 0 ∀ τ > T .

There are some slight adjustments to the formulations outlined by Yu in [133]

when solving for the parameter estimates and implementing the Viterbi algorithm,.

Specifically, the forward variable and the forward recursion in Viterbi must include

the duration.

The joint probability of the hidden states x, the duration in each state D, and the

observed emissions y is
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P (x,y,D) = πx1px1(d1)

[
d1∏
τ=1

fx1(yτ )

]{
N∏
n=2

axn−1,xnpxn(dn)

 d̂n+dn∏
τ=d̂n+1

fxn(yτ )

},
(2.66)

where

d̂n =
n−1∑
n̂=1

dn̂. (2.67)

As previously noted,
∑N

n=1 dn = T . It also should be noted that the equation for

the likelihood of the EDHMM in Equation 2.66 uses the number of transitions n

as the subscript on the state. This is different from the likelihood for the standard

HMM in Equation 2.1 which uses time t as the subscript.

In this dissertation, a Gaussian distribution is used for the emission distribution,

and a truncated Poisson distribution is used to model the duration. The general

Poisson distribution has a range of [0,∞) and the probability mass function (PMF)

for the Poisson distribution is

P (d|λ) =
λde−λ

d!
. (2.68)

When using an EDHMM, the minimum duration must be greater than 0 but does

not need to be restricted to 1. The maximum duration D is a finite number;

therefore, a truncated Poisson with a minimum and maximum on the range is

used for px(d). The truncated Poisson is the general Poisson PMF divided by the

sum of the PMF over the range of d

P (d|λ) =
λde−λ

d!∑D
dmin

λde−λ

d!

=
λd
∑D

dmin
d!

d!
∑D

dmin
λd
. (2.69)

The truncated Poisson can be easily calculated by dividing the Poisson PMF by

the difference of the cumulative distribution function (CDF) at the max duration

and the CDF at one minus the minimum duration.

The parameters of the EDHMM can be estimated using Baum-Welch when the

state sequence and duration sequence are unknown. As mentioned earlier, the
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forward variable must be adjusted from the formulation given by Yu [133] to

include the state duration

αt(j, d) =
I∑
i=1

D∑
d′=dmin

αt−d(i, d
′)aijpj(d)

t∏
τ=t−d+1

fj(yτ ). (2.70)

The forward and backward variables in Equations 2.70 and 2.64 are used during

the E-step to calculate the expectations – Equations 2.34, 2.35 and 2.37. During

implementation, these expectation calculations should be adjusted to the predicted

variables as described in the general HSMM section. The M-step parameter up-

dates for the EDHMM are:

π̂i = γ1(i), (2.71)

âij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑I
j=1 ξt(i, j)

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

,

(2.72)

µ̂il =

∑T
t=1 γt(i)ylt∑T
t=1 γt(i)

, (2.73)

σ̂il =

√∑T
t=1 γt(i)(ylt − µil)2∑T

t=1 γt(i)
, (2.74)

and

λi =

∑T
t=1

∑D
d=dmin

ηt(i, d)d∑T
t=1

∑D
d=dmin

ηt(i, d)
. (2.75)

The forward recursion for the Viterbi algorithm is

δt(j, d) = max
i,d′
{δt−d(i, d′)aij}pj(d)

t∏
τ=t−d+1

fj(yτ ). (2.76)
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The rest of the Viterbi algorithm is the same as described in the general HSMM

section.



Chapter 3

Feature Saliency Hidden Markov

Model

In this chapter, we outline multiple formulations for the FSHMM. The maximum

likelihood (ML) formulation does not use priors on any model parameters. The

maximum a posteriori (MAP) formulation uses priors on all model parameters and

an exponential prior on the feature saliencies. MAP-beta uses mostly the same

priors as MAP, a beta distribution is used as a prior on the feature saliencies in-

stead of the exponential. These formulations are compared to the VB formulation

in [137] on the PHM and Kinect data sets. Conventional FS techniques are also

tested on these data sets. The section outlining the model and the results on the

PHM and Kinect data sets are taken from [1].

3.1 Feature Saliency Hidden Markov Model

The feature saliency hidden Markov model (FSHMM) uses a feature saliency model

for the emission distribution allowing for simultaneous feature selection and pa-

rameter estimation [62]. A feature is considered to be relevant if its distribution

is dependent on the underlying state, and irrelevant if its distribution is indepen-

dent of the state. Let z = {z1, . . . , zL} be a set of binary variables indicating the

relevancy of each feature. If zl = 1, then the l-th feature is relevant. Otherwise, if

zl = 0 the l-th feature is irrelevant. The feature saliency ρl is defined as the prob-

ability that the l-th feature is relevant. Assuming the features are conditionally

43
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independent given the state, allows the conditional distribution of yt given z and

x to be written as

P (yt|z, xt = i,Λ) =
L∏
l=1

p(ylt|µil, σ2
il)
zlq(ylt|εl, τ 2

l )1−zl , (3.1)

where p(ylt|µil, σ2
il) is the Gaussian conditional feature distribution for the l-th

feature with state-dependent mean µil and state-dependent variance σ2
il; and

q(ylt|εl, τ 2
l ) is the state-independent Gaussian feature distribution with mean εl and

variance τ 2
l . The set of model parameters Λ for the FSHMM is {π,A, µ, σ, ρ, ε, τ}.

The marginal probability of z is

P (z|Λ) =
L∏
l=1

ρzll (1− ρl)1−zl . (3.2)

The joint distribution of yt and z, given x, is

P (yt, z|xt = i,Λ) = P (yt|z, xt = i,Λ)P (z|Λ)

=
L∏
l=1

[ρlp(ylt|µil, σ2
il)]

zl [(1− ρl)q(ylt|εl, τ 2
l )]1−zl .

(3.3)

The marginal distribution for yt, given x, can be found by summing Equation 3.3

over z

fxt(yt) = P (yt|xt = i,Λ)

=
L∏
l=1

(
ρlp(ylt|µil, σ2

il) + (1− ρl)q(ylt|εl, τ 2
l )
)
.

(3.4)

The derivations for Equations 3.3 and 3.4 are found in Appendix A Section A.1.

The complete data likelihood for the FSHMM is
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P (x,y, z|Λ) = πx1P (y1, z|x1,Λ)
T∏
t=2

axt−1,xtP (yt, z|xt,Λ). (3.5)

3.2 EM Algorithm for FSHMM

For the FSHMM, the set of hidden variables is comprised of the states and the

indicator of the feature relevance. The Q function outlined for the standard HMM

in Section 2.1.1 is modified to include z

Q(Λ,Λ′) = E[logP (x,y, z|Λ)|y,Λ′]

=
∑
x,z

log(P (x,y, z|Λ))P (x, z|y,Λ′). (3.6)

For MAP estimation, the log of the priors is added to the Q function

Q(Λ,Λ′) + log(G(Λ)). (3.7)

The derivations for the Q function are in Appendix A Section A.2.

3.2.1 E Step

For the E-step, calculate γt(i) and ξt(i, j) using the forward-backward algorithm

(Equations 2.12 and 2.13). Additionally, calculate

eilt = P (ylt, zl = 1|xt = i,Λ′)

= ρlp(ylt|µil, σ2
il),

(3.8)

hilt = P (ylt, zl = 0|xt = i,Λ′)

= (1− ρl)q(ylt|εl, τ 2
l ),

(3.9)

gilt = P (ylt|xt = i,Λ′)

= eilt + hilt,
(3.10)
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uilt = P (zl = 1, xt = i|y,Λ′)

=
γt(i)eilt
gilt

,
(3.11)

and

vilt = P (zl = 0, xt = i|y,Λ′)

=
γt(i)hilt
gilt

= γt(i)− uilt,

(3.12)

where γt(i), ξt(i, j), uilt and vilt will be used in the M-step.

3.2.2 ML M-step

The parameter estimates for the initial state distribution and the transition prob-

abilities are the same as in the Baum-Welch algorithm. The estimates for the pa-

rameters of p(·|·) and q(·|·) and the feature saliencies use the probabilities defined

in the previous section – Equations 3.11 and 3.12. Specifically, all ML parameter

estimates are given by

π̂i = γ1(i), (3.13)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (3.14)

µ̂il =

∑T
t=1 uiltylt∑T
t=1 uilt

, (3.15)

σ̂2
il =

∑T
t=1 uilt(ylt − µ̂il)2∑T

t=1 uilt
, (3.16)

ε̂l =

∑T
t=1

(∑I
i=1 vilt

)
ylt∑T

t=1

∑I
i=1 vilt

, (3.17)

τ̂ 2
l =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − ε̂l)2∑T

t=1

∑I
i=1 vilt

, (3.18)

and
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ρ̂l =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

=

∑T
t=1

∑I
i=1 ui,l,t
T

.

(3.19)

Derivations for these parameter update equations are in Appendix A Section A.3.

3.2.3 MAP M-step

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, N is the Gaussian distribution, IG is the inverse gamma distribution, and

Ai is row i of the transition matrix.

π ∼ Dir(π|p̄), (3.20)

Ai ∼ Dir(Ai|āi), (3.21)

µil ∼ N (µil|mil, s
2
il), (3.22)

σ2
il ∼ IG(σ2

il|ζil, ηil), (3.23)

εl ∼ N (εl|bl, c2
l ), (3.24)

τ 2
l ∼ IG(τ 2

l |νl, ψl), (3.25)

ρl ∼
1

Z
e−klρl , (3.26)

where Z is the normalizing constant. The probability distributions are defined in

Appendix C.

The parameter update equations are

π̂i =
γ1(i) + p̄i − 1∑I

i=1 (γ1(i) + p̄i − 1)
, (3.27)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (3.28)
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µ̂il =
s2
il

∑T
t=1 uiltylt + σ̂2

ilmil

s2
il

∑T
t=1 uilt + σ̂2

il

, (3.29)

σ̂2
il =

∑T
t=1 uilt(ylt − µ̂il)2 + 2ηil∑T

t=1 uilt + 2(ζil + 1)
, (3.30)

ε̂l =
c2
l

∑T
t=1

(∑I
i=1 vilt

)
ylt + τ̂ 2

l bl

c2
l

∑T
t=1

(∑I
i=1 vilt

)
+ τ̂ 2

l

, (3.31)

τ̂ 2
l =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − ε̂l)2 + 2ψl∑T

t=1

(∑I
i=1 vilt

)
+ 2(νl + 1)

, (3.32)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (3.33)

Derivations for these parameter update equations are in Appendix A Section A.4.

The ML and MAP parameter updates can be easily adjusted for multiple obser-

vation sequences.

The graphical model for the MAP formulation using the exponential prior is in

Figure 3.1.

The MAP formulation, specifically the use of an informative exponential prior

on ρ, allows the user to affect the estimated saliency of each feature. For higher

values of kl, more evidence that a feature is relevant is needed for the algorithm

to estimate higher values of ρl, and thus select the lth feature as relevant. This

can be used to limit the number of features selected by the algorithm, or input

the cost of collecting the feature into the feature selection process.

Another choice for a prior on ρ is the beta distribution, because estimates of ρ

are restricted to [0,1]. However, we found that it does not perform as well when

estimating the relevance of features, even though it seems more appropriate than

the truncated exponential prior. The parameter update for ρ using the beta prior

B(ρl|kl, κl) is

ρl =

∑T
t=1

∑I
i=1 uilt + kl − 1

T + kl + κl − 2
. (3.34)
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m s ζ η
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c

ν

ψ

t = 1...T

Figure 3.1: Graphical model for MAP formulation using exponential prior.
Squares represent hidden variables. Filled circles are observable variables. Open

circles are model parameters.

In order to ensure that ρl ≥ 0, we must set kl ≥ 1∀l. When kl = 1, the parameter

estimate for ρ simplifies to

ρl =

∑T
t=1

∑I
i=1 uilt

T + κl − 1
. (3.35)

As long as there is more than one observation in y, the denominator of Equation

(3.35) will be greater than 0. For the remainder of the dissertation, we will desig-

nate the formulation using the truncated exponential as MAP, and the formulation

using the beta prior as MAP-beta. The graphical model for the MAP formulation

using a beta prior is displayed in Figure 3.2.

An algorithm for estimating the parameters of the MAP FSHMM is given in

Algorithm 1. MAP-beta follows the same algorithm, but must select the additional

hyperparameter κl in Step 2. This algorithm can be modified for ML estimation

by removing Step 2 and using the M-step update equations in Section 3.2.2 for

Step 6.
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. . .

yt−1 yt

zρk

κ

µ σ

ε

τ

m s ζ η

b

c

ν

ψ

t = 1...T

Figure 3.2: Graphical model for MAP formulation using beta prior. Squares
represent hidden variables. Filled circles are observable variables. Open circles

are model parameters.

Algorithm 1 MAP FSHMM Algorithm

1. Select initial values for πi, aij, µil, σil, εl, τl and ρl for i = 1..I, j = 1...I, and
l = 1...L
2. Select hyperparameters p̄i, āij,mil, sil, ζil, ηil, bl, cl, νl, ψl, and kl for i = 1..I, j =
1...I, and l = 1...L
3. Select stopping threshold δ and maximum number of iterations M
4. Set absolute percent change in the posterior probability between current itera-
tion and previous iteration ∆L to ∞ and the number of iterations it to 1
4. while ∆L > δ and it < M do
5. E-step: calculate probabilities in Section 3.2.1
6. M-step: update parameters in Section 3.2.3
7. calculate ∆L
8. it = it+ 1
9. end while
10. Perform feature selection based on ρl and construct reduced models

3.3 Prediction

When predicting states using the Viterbi algorithm, there are two possible choices

for p(yt|xt = i,Λ): (1) the full conditional distribution using both state-dependent

and state-independent parameters (Equation 3.1), or (2) a reduced conditional
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distribution using only the state-dependent parameters. The reduced conditional

distribution is

P (yt|xt = i,Λ) =
L∏
l=1

p(ylt|µil, σ2
il). (3.36)

The reduced conditional decreases the number of parameters that need to be stored

after training, and reduces the computational resources need for prediction. The

model using Equation 3.36 during prediction resembles a standard HMM. The

rationale behind the reduced conditional distribution is that if ρ is close to 1 for

a particular feature, the contribution of the q(ylt|εl, τ 2
l ) to P (yt|xt = i,Λ) is small.

This will be confirmed by experiments on the PHM data. However, in cases where

ρ is not close to 1, the full conditional distribution might give better predictive

results. However, it is not clear that the reduced conditional should be used for

prediction under all circumstances.

3.4 Synthetic Data Experiments

In this section, ML, MAP, MAP-beta, and VB are tested on synthetic data. Three

observation sequences are produced by a model with two relevant features. The

two dimensional vectors of relevant features are generated from N (µi,Σ). The

model has two states, and 500 time steps are generated for each sequence. The

model parameters are:

µ1 =
[
10 20

]
, µ2 =

[
30 60

]
, Σ =

[
25 0

0 25

]
,

A =

[
0.75 0.25

0.4 0.6

]
, π =

[
0.4

0.6

]
.

Three irrelevant features of random noise, generated from N (0, I), are added to

the data, resulting in a model with five features in total.

The hyperparameters for the priors in the MAP formulation are: p̄i = āij =

2, sil = ζil = ηil = νl = ψl = 0.5, and cil = 1. bl is the mean of the observations
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Algorithm π̂1 π̂2 â11 â12 â21 â22

ML 0.6667 0.3333 0.7797 0.2203 0.3933 0.6067
MAP 0.6 0.4 0.7792 0.2208 0.3937 0.6063

MAP-beta 0.6 0.4 0.7782 0.2218 0.3885 0.6115
VB 0.7309 0.2691 0.7795 0.2205 0.3921 0.6079

Table 3.1: Parameter estimates for initial distribution and transition matrix.
The initial state distribution is biased by the training set. The transition prob-

abilities are within 0.03 units of the true value.

Algorithm µ̂11 µ̂12 µ̂21 µ̂22

ML 10.1368 20.2196 30.1373 60.0852
MAP 9.7914 19.7352 29.8442 59.1704

MAP-beta 9.1135 19.1568 30.0574 59.1704
VB 10.1237 20.2042 30.1245 60.0841

Table 3.2: Parameter estimates for µ for relevant features. All estimates are
within 1 unit of the true value.

for the lth feature. m1l is bl minus 1 standard deviation, and m2l is bl plus 1

standard deviation. For the feature saliencies, the weight parameter kl is set to

50. (At kl ≥ 50, the majority of the exponential prior’s density lies between zero

and one.) For MAP-beta, the hyperparameters are the same, except that kl = 1

and κl = 49, giving the same expectation as the truncated exponential prior. The

hyperparmeters for the VB formulation are the same as described in [137].

The algorithms are initialized using equal initial probabilities and transition prob-

abilities. µ is randomly selected, σ = 4, ε = b, and τ is the standard deviation

of the data. The feature saliencies are always initially set to 0.5. The algorithms

are run for a maximum of 1000 iterations. Convergence is tested by calculating

the absolute percent change in the likelihood for ML, the posterior probability for

MAP and MAP-beta, and the lower bound for VB. The convergence threshold is

10−9.

The estimates for the VB formulation are the expectations of the approximate

posterior distributions. The synthetic data set has two observation sequences that

start in state 1, and the other starts in state 2. The model parameters estimated

by the three approaches are all listed in Tables 3.1 to 3.6.

The estimates for π do not match their true values because the training data is

skewed – i.e., two of the three sequences begin in state 1. ML exactly estimates

from the training data the proportion of sequences that start in each state, while

MAP, MAP-beta, and VB are affected by their priors. All the estimates for A are
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Algorithm σ̂11 σ̂12 σ̂21 σ̂22

ML 4.8290 4.8286 5.0016 4.9561
MAP 4.8100 4.8413 4.9696 5.0260

MAP-beta 4.3589 4.4238 4.7860 5.0261
VB 4.8159 4.8204 5.0102 4.9607

Table 3.3: Parameter estimates for σ for relevant features. All estimates are
within 1 unit of the true value.

Algorithm ε̂3 ε̂4 ε̂5
ML -0.0388 -0.4889 0.0059

MAP -0.0109 -0.0776 0.0014
MAP-beta -0.0109 -0.0776 0.0014

VB -0.0109 -0.1190 0.0014

Table 3.4: Parameter estimates for ε for irrelevant features. All estimates are
within 0.5 units of the true value which is 0.

Algorithm τ̂3 τ̂4 τ̂5

ML 0.9538 0.8306 0.9298
MAP 0.9828 1.0022 0.9697

MAP-beta 0.9828 1.0022 0.9697
VB 0.9672 0.9481 0.9415

Table 3.5: Parameter estimates for τ for irrelevant features. All estimates are
within 0.5 units of the true value which is 1.

Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

ML 0.9935 1.0000 0.2125 0.3293 0.1953
MAP 0.9897 0.9999 2.9670× 10−7 1.3311× 10−5 2.5308× 10−6

MAP-beta 0.8873 0.9159 1.7390× 10−7 1.8658× 10−5 1.4998× 10−6

VB 0.9935 0.9989 10−9 0.0234 10−9

Table 3.6: Parameter estimates for feature saliencies of all features. ML
overestimates the relevance of the irrelevant features. MAP-beta underestimates
the relevance of the relevant features. MAP and VB successfully identify the

relevant and irrelevant features.

within 12% of their true value. The estimates for the state dependent model pa-

rameters (µ and σ) are within 1 unit of their true values for all four methods. The

estimates for ρ corresponding to the relevant features are above 0.99 for ML, MAP

and VB. MAP-beta underestimates ρ for the relevant features. We find that un-

derestimating the relevance of relevant features is the primary disadvantage of the

MAP-beta formulation. When kl > 1 and κl is chosen so the expectation matches

the exponential prior, MAP-beta continues to underestimate ρ for the relevant

features. The ML method produces the highest ρ for the irrelevant features, while
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Figure 3.3: Plot for estimated ρ for feature 3, a non-relevant feature, as the
number of observations in the training set increases. The VB estimate for ρ
increases with the number of observations. The ML estimate remains constant.
The prior on ρ in MAP and MAP-beta is used to keep estimates of ρ close to 0.

MAP, MAP-beta and VB produce smaller estimates. (In order to prevent division

by zero in the VB algorithm, an upper and lower bound is placed on the saliencies.

For this experiment, these were 1− 10−9 and 10−9.) Overestimating the relevance

of irrelevant features is one disadvantage of the ML formulation.

After 1000 iterations, the VB method had not converged. MAP converged after 359

iterations, MAP-beta after 366 iterations, and ML after 372 iterations. When ei-

ther the number of iterations is decreased or the convergence threshold is increased,

the VB method produces greater saliency estimates for the irrelevant features. The

estimates produced by MAP, MAP-beta and ML are not significantly affected by

changes in the maximum number of iterations or the convergence threshold.

Through testing, we found that the VB method is sensitive to the number of

observations in the training data. Specifically, the estimated feature saliencies

for non-relevant features increase as the number of observations increase. To

illustrate, we test on synthetic data. The same model as above is used to generate

a sequence of 100,000 observations. We train models using an increasing number

of observations from the synthetic data.

The same starting values and hyperparameters as the previous test are used. How-

ever, we change k in the MAP formulation to scale with the number of observations

(k = T/4). For MAP-beta, we use k = 1 and scale κ.
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As previously stated, the non-relevant feature saliencies in the VB formulation

increase with the number of observations. There is an increase in the relevant

feature saliencies but it is very small in comparison. The feature saliencies for

relevant and non-relevant features for ML, MAP and MAP-beta appear unaffected

by the number of observations. The estimated ρ for each algorithm for feature 3, a

non-relevant feature, are plotted in Figure 3.3. The estimates for MAP and MAP-

beta are indistinguishable and very close to 0, because Feature 3 is irrelevant.

This example leads to a heuristic for choosing the value of kl for the exponential

prior and κl for the beta prior: given no other information about the system or

cost of features, one quarter of the total number of observations is a reasonable

initial choice for the hyperparameters of the priors on ρ.

3.5 PHM Data

The ML, MAP, MAP-beta and VB algorithms are compared using a tool wear

data set. The 2010 Prognostics and Health Management (PHM) conference1 used

this data set for their data challenge. The data consists of six tools used for 315

cuts on a CNC milling machine. Three tools (designated Tools 1, 4 and 6) are

supervised and have corresponding wear measurements. Three tools (Tools 2, 3

and 5) are unsupervised. Force and vibration in three directions (X, Y and Z) are

collected for each cut.

Root mean square (RMS), the sum of log energies (SLE) and maximum energy

(ME) are calculated from each sensor and used as features. The features are

normalized so their scales are similar. The cost of each force sensor is assumed to

be $2,400, and the cost of each vibration sensor is assumed to be $1,200. These

values were selected after reviewing the prices of several commercial sensor. For

this set of numerical experiments, we assume that each direction of each sensor

can be removed while leaving the other directions in place. For example, the force

sensor in the X direction can be removed from the mill without removing the Y

and Z directions.

A leave-one-out cross validation (LOOCV) testing methodology is implemented:

one of the supervised tools is removed from the data , a model is trained on the

1http://www.phmsociety.org/competition/phm/10



Chapter 3. Feature Saliency Hidden Markov Model 56

remaining five tools, and then the model is tested on the withheld tool. LOOCV

is applied to each of the three supervised tools so that all tools with wear mea-

surements are tested. The wear measurements are divided into equally spaced

discrete bins. The wear bins correspond to the hidden states x of the HMM. The

Viterbi algorithm using the reduced conditional distribution (Equation 3.36) is

used to predict the state of the test tool. The median of the wear bin is used

as the predicted wear value. Root mean squared error (RMSE) between the true

wear measurement, and the predicted wear value is calculated as a measure of

accuracy. Models with 5, 10 and 20 hidden states are trained. Models using all

18 features are referred to as full models. The estimates for ρ are used to remove

features and construct reduced models.

For reduced models, all features associated with a single sensor are removed re-

ducing the feature set by three features. ρ̄ is the mean of the three ρ associated

with a particular sensor. For example, ρ̄ForceX is the mean of ρ for RMS, SLE and

ME for the force in the X direction. The sensor with the smallest ρ̄ is removed

to form the reduced model, decreasing the number of features from 18 in the full

model to 15 in the reduced model.

Tool wear is non-decreasing, so a left-to-right Markov chain is assumed for the hid-

den states. However, the stick breaking representation of the hierarchical Dirichlet

process in the VB formulation does not allow for a left-to-right Markov chain.

The ML, MAP and MAP-beta algorithms are initialized with the same values.

The initial self transition aii is 0.95, and the transition to the next state ai,i+1

is 0.05. Because we assume that the tool at t = 1 is new, π1 = 1. The state-

dependent means µil are equally spaced between -2 and 2. The state-dependent

standard deviation σil is 1 for all states and features. The state-independent

parameters are calculated from the training data. For MAP, the prior parameters

are āii = āi,i+1 = 2, āij = 1 for j 6= i and j 6= i + 1, p̄1 = 2, p̄i 6=1 = 1, m = µinit,

s = 0.5, ζ = η = ν = ψ = 0.5, b = 0, and c = 1. Half of the assumed cost of each

sensor is used for kl (kl = 1200 for the force features and kl = 600 for the vibration

features). For MAP-beta, the hyperparameters are the same as for MAP, except

kl = 1 and κl is half the assumed cost of the sensor. The hyperparameters for

VB are the same as in [137], where their value is chosen to be as non-informative

as possible. The initial parameter values for the VB algorithm are set as close as

possible to the initial values of the EM methods. The convergence threshold for

this experiment is increased to 10−6 for all four algorithms.
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The hyperparameters for MAP and MAP-beta are chosen based on intuition and

domain knowledge. As mentioned earlier in the synthetic data experiments, T/4

is a good initial choice for the hyperparameters on ρ if no other prior information

is available. For the PHM data, T/4 is roughly 400. However, the cost of the

sensors is known. Given the T/4 heuristic, using the cost of sensors as the values

for the hyperparameters would probably result in underestimating the relevance

of features. Therefore, half of the assumed cost is used to bring the values closer

to T/4.

An informative prior is also used for µ and ε. The data in this experiment is

standardized; therefore, one can assume that irrelevant features follow a standard

Gaussian distribution N (0, 1). The mean of the data in the training set is close

to 0, so it was used as the mean of the prior on ε. Using similar logic and the

knowledge that the data is standardized, it is reasonable to assume that the means

of the state-dependent distributions should be roughly evenly spaced from -2 to 2

and ascending. Thus, the initial value for µ is used for m. All other hyperparam-

eters are chosen to minimize their effect on the posterior. This logic is used for

selecting the hyperparameters for all PHM experiments in this dissertation.

Tables 3.7 to 3.9 contain the RMSE values for the full and reduced models, the ρ̄

for the removed sensor, and the sensor removed during feature selection. Figures

3.4 to 3.6 display plots of the true wear values, the estimated wear values for the

full models, and the estimated wear values for the reduced models.

Removing a sensor decreases average RMSE in only 4 of the 12 tests. However,

when a sensor is removed, the average RMSE increases more than 2 µm in only two

tests (VB using 20 states and MAP-beta using 10 states). The largest increase

in RMSE for the reduced model occurs for the MAP-beta test on Tool 6 using

10 states. We believe this is due to the model underestimating relevant features

resulting in skewed parameter estimates.

In the experiments using 20 states, ML yields the lowest average RMSE for the full

(21.81 µm) and reduced models (22.14 µm). In the experiments using 10 states,

VB yields the lowest average RMSE for the full (20.77 µm) and reduced models

(21.52 µm). In the experiments using 5 states, MAP yields the lowest average

RMSE for the full model (24.07 µm) and MAP-beta yields the lowest for the re-

duced model (24.59 µm). For all three assumed number of states, MAP produces

full and reduced models with average RMSE below 27 µm while the results for
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Algorithm and RMSE Full RMSE Reduced
Smallest ρ̄

Removed
Tool Model (µm) Model (µm) Sensor

ML Tool 1 19.00 18.96 0.9700 Force Y
ML Tool 4 22.19 22.57 0.9676 Vibration Y
ML Tool 6 24.23 24.91 0.9672 Force X

Average 21.81 ± 2.64 22.14 ± 3.00
MAP Tool 1 16.03 16.19 0.6482 Force Y
MAP Tool 4 22.46 22.64 0.6708 Force Y
MAP Tool 6 30.26 30.03 0.5919 Force Y

Average 22.92 ± 7.13 23.03 ± 6.93
MAP-beta Tool 1 14.53 14.32 0.3579 Force Y
MAP-beta Tool 4 22.10 22.25 0.3751 Force Y
MAP-beta Tool 6 31.06 34.25 0.3685 Force Y

Average 22.56 ± 8.27 23.61 ± 10.03
VB Tool 1 38.57 38.10 0.9844 Force Y
VB Tool 4 20.13 19.98 0.9815 Force X
VB Tool 6 51.99 60.03 0.9727 Vibration Y
Average 36.90 ± 16.00 39.68 ± 20.06

Table 3.7: Results for 20 state PHM experiments. MAP and MAP-beta con-
sistently select force in the Y direction for removal, which is the more expensive
sensor. ML and VB, which do not consider cost, select varying sensors for
removal. The average RMSE and ± 1 standard deviation are given for each

formulation.

ML, MAP-beta and VB vary depending on the number of states. For this appli-

cation when only prediction accuracy is considered, the ML, MAP and VB are

essentially interchangeable depending on the initial assumptions, while MAP-beta

gives poor accuracy results for the 10 state models. The formulations using the

cost of features distinguish themselves during the feature selection process.

The MAP-beta formulation gives the smallest estimated feature saliency for all

features. The estimated feature saliencies for the MAP algorithm are smaller than

either ML or VB but larger than MAP-beta. This is expected due to the use of

the prior, and the fact that we have previously established that MAP-beta can

underestimate ρ. For ML and VB, the lack of a prior results in ρ for each sensor

greater than 0.75. In general, these ρ close to 1 would indicate that the feature

is relevant and should not be removed from the model. However, our goal is to

remove one sensor in order to reduce the cost of the sensor setup. The total cost

of all six sensors is $10,800. When a vibration sensor is removed, the total cost

of the remaining sensors is $9600. When a force sensor is removed, the total cost

is $8400. For all the MAP and MAP-beta tests, the force in the Y direction
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Algorithm and RMSE Full RMSE Reduced
Smallest ρ̄

Removed
Tool Model (µm) Model (µm) Sensor

ML Tool 1 19.24 18.30 0.9483 Vibration Y
ML Tool 4 21.15 21.13 0.9376 Vibration Y
ML Tool 6 28.87 28.87 0.9410 Force Y

Average 23.09 ± 5.10 22.77 ± 5.47
MAP Tool 1 18.87 25.73 0.4761 Force Y
MAP Tool 4 19.52 21.08 0.5708 Force Y
MAP Tool 6 30.78 28.06 0.5539 Force Y

Average 23.06 ± 6.70 24.95 ± 3.55
MAP-beta Tool 1 17.42 17.74 0.3251 Force Y
MAP-beta Tool 4 19.15 21.14 0.3171 Force Y
MAP-beta Tool 6 52.93 88.16 0.3022 Force Y

Average 29.83 ± 20.02 42.35 ± 39.71
VB Tool 1 22.47 23.59 0.9102 Vibration Y
VB Tool 4 17.01 18.50 0.9093 Force X
VB Tool 6 22.79 22.47 0.8960 Vibration Y
Average 20.77 ± 3.25 21.52 ± 2.67

Table 3.8: Results for 10 state PHM experiments. MAP and MAP-beta
consistently removes force in the Y direction, which is the more expensive sensor.
VB and ML, which do not consider cost, select varying sensors for removal. The

average RMSE and ± 1 standard deviation are given for each formulation.

is removed during feature selection. Further, both MAP algorithms consistently

remove the same sensor when the training set is changed. The removed sensor

when using the ML and VB algorithms vary when the number of states and the

training set are changed. However, the removed sensor does stabilize for ML and

VB when the number of states is reduced to 5. MAP and MAP-beta consistently

yield a reduced model with the lowest total cost of sensors. The ML and VB

algorithms do not give a clear indication of which sensor should be purchased,

while MAP consistently indicates that Force in the Y direction can be eliminated

from the sensor setup. The ML and VB algorithms suggests three different sensor

can be removed depending on the number of states and training sets.

As the number of states decreases, the RMSE generally increases indicating that

the models with 20 states fit the data better. We increase the number of states

from 5 to 20 in order to demonstrate the effect of more states on ρ. The estimated

saliencies increase with the number of states, because, in general, the probability

of a series of observations coming from a multi-modal Gaussian distribution (the

state-dependent distribution) is greater than the probability of them coming from

a single Gaussian (the state-independent distribution). The priors force ρl towards
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Algorithm and RMSE Full RMSE Reduced
Smallest ρ̄

Removed
Tool Model (µm) Model (µm) Sensor

ML Tool 1 20.44 20.45 0.7774 Vibration Y
ML Tool 4 29.07 27.64 0.8499 Vibration Y
ML Tool 6 55.14 38.75 0.8379 Vibration Y

Average 34.88 ± 18.07 28.95 ± 9.22
MAP Tool 1 17.73 17.93 0.2037 Force Y
MAP Tool 4 18.14 18.84 0.1947 Force Y
MAP Tool 6 36.33 41.37 0.3273 Force Y

Average 24.07 ± 10.62 26.05 ± 13.28
MAP-beta Tool 1 24.87 22.21 0.2434 Force Y
MAP-beta Tool 4 24.58 18.92 0.1961 Force Y
MAP-beta Tool 6 32.14 32.64 0.1953 Force Y

Average 27.20 ± 4.28 24.59 ± 7.16
VB Tool 1 29.11 29.34 0.8601 Vibration Y
VB Tool 4 27.52 26.95 0.8642 Vibration Y
VB Tool 6 48.07 37.42 0.8941 Vibration Y
Average 34.90 ± 11.43 31.24 ± 5.49

Table 3.9: Results for 5 state PHM experiments. MAP and MAP-beta consis-
tently removes force in the Y direction, which is the more expensive sensor. ML
and VB, which do not consider cost, remove a less expensive sensor, vibration
in the Y direction. The average RMSE and ± 1 standard deviation are given

for each formulation.

0 and help discriminate between relevant and irrelevant features. This is further

support for using a MAP formulation over ML or VB when modeling HMMs with

a larger state space.

The VB algorithm does not estimate a left-to-right Markov chain. During testing,

the VB models can predict decreasing wear estimates (see Figures 3.4 to 3.6).

A proposed advantage of VB is the ability to estimate the number of states. In

this experiment, the estimated number of states by VB is the same as the initial

number of states.

3.5.1 PHM Data using Full Conditional with Viterbi

As discussed earlier, there are two possible choices for p(yt|xt = i,Λ) during pre-

diction. In this section, results using the full conditional distribution are given.

The training procedure is the same as in the previous section, the only difference

is how the conditional likelihood is calculated for the Viterbi algorithm.
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Algorithm RMSE Full RMSE Reduced
Smallest ρ̄

Removed
and Tool Model (µm) Model (µm) Feature

ML Tool 1 13.02 12.88 0.9700 Force Y
ML Tool 4 22.85 23.34 0.9676 Vibration Y
ML Tool 6 31.78 34.28 0.9672 Force X

Average 22.55 ± 9.38 23.50 ± 10.70
MAP Tool 1 14.32 14.19 0.6482 Force Y
MAP Tool 4 23.66 23.68 0.6708 Force Y
MAP Tool 6 31.67 32.04 0.5919 Force Y

Average 23.22 ± 8.68 23.30 ± 8.93
MAP-beta Tool 1 12.32 11.95 0.6482 Force Y
MAP-beta Tool 4 23.54 23.65 0.6708 Force Y
MAP-beta Tool 6 34.34 34.33 0.5919 Force Y

Average 23.40 ± 11.01 23.31 ± 11.19
VB Tool 1 35.91 33.11 0.9844 Force Y
VB Tool 4 19.82 20.22 0.9815 Force X
VB Tool 6 21.01 33.77 0.9727 Vibration Y
Average 25.58 ± 8.97 29.03 ± 7.64

Table 3.10: Results for 20 state PHM experiments using the full conditional
distribution. MAP and MAP-beta consistently removes force in the Y direc-
tion, which is the more expensive sensor. VB and ML, which do not consider
cost, select varying sensors for removal. The average RMSE and ± 1 standard

deviation are given for each formulation.

Tables 3.10 to 3.12 contain the testing results when the full conditional distribution

is used for calculating p(yt|xt = i,Λ) in the Viterbi algorithm.

For the 20 state models, the results for the VB algorithm drastically improve due

to a decrease in RMSE for Tool 6. The mean RMSE for ML and MAP increase,

but only by a small margin. The RMSE for the full MAP-beta model increases,

while the RMSE for the reduced model decreases. For ML, MAP and VB, the full

models outperform the reduced models, while the reduced model for MAP-beta

slightly outperforms the full model.

For the 10 state models, the mean of the RMSE over all test tools and algorithms

improves. The mean RMSE for MAP-beta improves significantly. The full models

outperform the reduced models but by a small margin.

For the 5 state models, the VB algorithm performs better than when using the

reduced conditional distribution. The MAP and MAP-beta algorithms perform

worse than when the reduced conditional distribution is used. The ML algorithm

performs better on the full model but worse on the reduced model. The reduced
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Algorithm RMSE Full RMSE Reduced
Smallest ρ̄

Removed
and Tool Model (µm) Model (µm) Feature

ML Tool 1 15.28 15.27 0.9483 Vibration Y
ML Tool 4 21.16 21.15 0.9376 Vibration Y
ML Tool 6 30.03 29.80 0.9410 Force Y

Average 22.16 ± 7.43 22.07 ± 7.31
MAP Tool 1 15.28 14.11 0.4761 Force Y
MAP Tool 4 21.16 21.09 0.5708 Force Y
MAP Tool 6 30.03 31.65 0.5539 Force Y

Average 22.16 ± 7.43 22.28 ± 8.83
MAP-beta Tool 1 13.66 14.07 0.6482 Force Y
MAP-beta Tool 4 21.16 21.33 0.6708 Force Y
MAP-beta Tool 6 34.72 34.51 0.5919 Force Y

Average 23.18 ± 10.67 23.30 ± 10.36
VB Tool 1 17.56 17.60 0.9102 Vibration Y
VB Tool 4 17.01 18.50 0.9093 Force X
VB Tool 6 25.46 24.74 0.8960 Vibration Y
Average 20.01 ± 4.73 20.28 ± 3.89

Table 3.11: Results for 10 state PHM experiments using the full conditional
distribution. MAP and MAP-beta consistently removes force in the Y direc-
tion, which is the more expensive sensor. VB and ML, which do not consider
cost, select varying sensors for removal. The average RMSE and ± 1 standard

deviation are given for each formulation.

models for ML, MAP and VB perform better than the full model, while the full

model for MAP-beta outperforms the reduced model.

After examining these results, it is unclear which conditional distribution is prefer-

able. The reduced conditional offers the advantage of less computation during

prediction and fewer parameter need to be stored. This benefit could be useful

if the FSHMM was used in a commercial product. We will continue using the

reduced conditional for testing, but concede that the full conditional could yield

better predictive accuracy in cases where ρ is not close to 1 for features included

in the reduced model.

As expected, the difference between the two conditional distributions is most ap-

parent in the 5 state models due to the smaller values for ρ.
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Algorithm RMSE Full RMSE Reduced
Smallest ρ̄

Removed
and Tool Model (µm) Model (µm) Feature

ML Tool 1 20.54 20.46 0.7774 Vibration Y
ML Tool 4 28.23 27.64 0.8499 Vibration Y
ML Tool 6 40.63 36.31 0.8379 Vibration Y

Average 29.80 ± 10.14 28.14 ± 7.94
MAP Tool 1 17.88 17.88 0.2037 Force Y
MAP Tool 4 19.54 19.54 0.1947 Force Y
MAP Tool 6 45.82 44.76 0.3273 Force Y

Average 27.74 ± 15.67 27.39 ± 15.06
MAP-beta Tool 1 21.18 21.18 0.6482 Force Y
MAP-beta Tool 4 22.16 22.16 0.6708 Force Y
MAP-beta Tool 6 40.20 40.48 0.5919 Force Y

Average 27.85 ± 10.71 27.94 ± 10.87
VB Tool 1 28.56 28.98 0.8601 Vibration Y
VB Tool 4 27.51 26.14 0.8642 Vibration Y
VB Tool 6 33.65 33.97 0.8941 Vibration Y
Average 29.91 ± 3.28 29.70 ± 3.96

Table 3.12: Results for 5 state PHM experiments using the full conditional
distribution. MAP and MAP-beta consistently removes force in the Y direction,
which is the more expensive sensor. VB and ML, which do not consider cost,
select vibration in the Y direction for removal. The average RMSE and ± 1

standard deviation are given for each formulation.

3.6 Microsoft Kinect Data

Experiments are also performed on a data set containing Microsoft Kinect data 2.

This data was collected by observing a worker engaged in a painting process in a

manufacturing setting. For more details on the experimental setup and data col-

lection, see [101]. This painting process can be described as a sequence of six tasks,

which are labeled as ‘Fetch’, ‘Paint’, ‘Dry’, ‘Load’, ‘Walk’ and ‘Other’. These tasks

are performed repeatedly by the worker. The objective is to infer the task (the

hidden state) that the worker is engaged in at each time step from body position

observations collected by the Kinect. As observable features, the Kinect records

the X, Y, and Z coordinates of ten upper body joints. Specifically, the Kinect

records the positions of ten joints on the body labeled ‘Head’, ‘Shoulder Center’,

‘Shoulder Left’, ‘Elbow Left’, ‘Wrist Left’, ‘Hand Left’, ‘Shoulder Right’, ‘Elbow

Right’, ‘Wrist Right’, and ‘Hand Right’. The set is composed of observations col-

lected over the course of one hour. The first two-thirds of the data are used for

training the models and the last third is reserved for testing the accuracy of our

2http://people.virginia.edu/ djr7m/incom2015/
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estimated models. The first 2000 observations of the training set are are used to

calculate initial parameter estimates. The task being performed by the worker

at each time step is actually known, but is only used for calculating the initial

parameter estimates and validation. The true tasks are not used when training

the models using EM or VB.

All four algorithms are initialized with the same values. The state-dependent pa-

rameters p(·|·) are initialized by calculating the state-dependent mean and stan-

dard deviation from the initialization set. The parameters for q(·|·) are the means

and standard deviations of the training data. The transition probabilities are ini-

tialized by counting the number of transition in the initialization set. The MAP

hyperparameters are ā = 1, p̄ = 1,m = µinit, s = 0.25, ζ = 0.25, η = 1, b =

εinit, c = 0.5, ν = 0.25, ψ = 0.5, k = 15, 000. The MAP-beta hyperparameters are

the same as MAP, except kl = 1 and κl = 15, 000. The cost of collecting each

feature is the same for this data set. Therefore, the hyperparameters on ρ in MAP

and MAP-beta are used to penalize larger feature subsets. The VB parameters

are the same used in the previous section. The convergence threshold is 10−6.

The hyperparameters for the feature saliencies are chosen using the T/4 heuristic.

Informative priors are also used for µ and ε. The mean of the prior on µ is set to

the initial value of µ, which is calculated from the supervised initialization set. It

is logical to assume that the estimated values for µ should be close to the value

calculated on a small supervised set of the data. The mean of the prior on ε

is set to the mean of all the data. Irrelevant features should follow a Gaussian

distribution with a mean close to the grand mean of the data. Similar intuition is

used for selecting hyperparameters for all Kinect data experiments.

Three validation experiments are performed. In each experiment, the four algo-

rithms are used to estimate model parameters. In the first experiment, all 30 fea-

tures are treated as relevant, and the classification accuracy of the four algorithms

is calculated on a test set. In the second experiment, features with estimated ρ

below a given threshold are removed, and the classification accuracy on the test

set is calculated for each reduced model. In the third experiment, we sequentially

remove features based on the estimated ρ, and calculate classification accuracy

for these reduced models. The test set is composed of approximately 20 minutes

worth of data sampled at a rate of 30 frames per second, resulting in 30,102 time

steps. Using the models obtained by each of the algorithms, the task being per-

formed in each time step is inferred, and compared with the known task in that
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Figure 3.7: Blue bars indicate saliences ≥ 0.9 and red bars indicate saliences
< 0.9. Features with ρ less than 0.9 are removed from the model during feature

selection.

time step. The Viterbi algorithm using Equation 3.36 is implemented for task

prediction. The fraction of correctly classified states is used to measure accuracy.

This testing procedure only yields a point estimate for the accuracy of the model.

In the first experiment, the fractions of correctly classified states on the test set for

ML, MAP, MAP-beta and VB are 0.7572, 0.7473, 0.7590 and 0.6415. ML, MAP

and MAP-beta outperform VB by more than 10%. The EM formulations perform

similarly in terms of classification accuracy.

In the second experiment, a removal threshold of 0.9 is chosen. Then features

with estimated ρ below 0.9 are removed from the model during feature selection.

Figure 3.7 displays plots of ρ, where features below the threshold are marked

in red. Using a truncated exponential prior with support on [0, 1] in the MAP

formulation forces ρ estimates towards zero, and allows k to be chosen so the

features can distinguish themselves between relevant and irrelevant. All estimated

saliencies using MAP-beta are below the 0.9 threshold. ML and VB tend to

assign higher ρ making it more difficult to perform feature selection. The fraction
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of correctly classified states for the reduced ML model is 0.7600, the reduced MAP

model is 0.7606, and the reduced VB model is 0.6561. The fraction of correctly

classified states for the reduced MAP-beta model is 0.4964 which is to be expected

as no features are used in the estimation. The model predicts every observation

as ‘Paint’ and the classification accuracy reflects the proportion of ‘Paint’ in the

test set. For a better comparison, we remove features with estimated ρ below 0.5

and retest MAP-beta. This yields a fraction of correctly classified states of 0.7480.

The largest estimated ρ for MAP-beta is 0.6525, while the smallest for VB and

ML are 0.7402 and 0.8068. Therefore, we cannot select a single removal threshold

that is acceptable for every model.

The reduced ML and VB models each remove 5 features, while the reduced MAP

model removes 18 features. The reduced models for theses three algorithms have

improved accuracy over their corresponding full model. When the removal thresh-

old is lowered to 0.5 for MAP-beta, only 6 features are removed and the accuracy

decreased compared to the full model.

In the third experiment, features are removed sequentially based on the estimated

saliencies. More specifically, for the single removed feature models, the feature

with the lowest estimated ρ is removed and tested. For the models removing two

features, the two features with the lowest estimated saliencies are removed and the

models are tested. The process continues until all features have been removed and

tested resulting in 30 reduced models per algorithm. The results are displayed in

Figure 3.8.

For this third experiment, we see that the EM based algorithms dominate the VB

algorithm until over 25 features are removed from the model. At this point, the

algorithms’ accuracies converge and begin to drop dramatically. When focusing

on the EM algorithms, ML has a higher accuracy than MAP and MAP-beta until

more than 25 features are removed. MAP and MAP-beta yield similar results

with MAP-beta outperforming MAP in 16 of the 30 reduced models. However,

starting at removing 24 features, the accuracy of MAP-beta drops to around 66%.

At this point, under estimating the relevance of relevant features starts to affect

the performance of the algorithm. ML and MAP do not have this problem and

continue with performance measurements above 70% until a few more features are

removed.
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Figure 3.8: Sequential feature removal results for ML, MAP, MAP-beta and
VB algorithms. The EM based methods have a higher accuracy than the VB

method until more than 25 features are removed.

Table 3.13 contains the order the features are removed for each algorithm. It is

clear that each algorithm removes features in a different order; however, the first

feature removed is always the ‘Right Hand’ in the Y direction. Further, when

the same feature subset is used for testing, as in the first model and the modeling

removing 3 features, the EM based algorithms outperform the VB algorithm. This

indicates that the EM algorithms in general give better parameter estimates than

the VB algorithm for this data set.

Again, the VB algorithm does not allows for certain transition of the Markov

chain to be 0. For this implementation, specific transition between tasks could be

impossible. For instance, a worker might never go from ‘Paint’ to ‘Load’. The

VB algorithm could allow for this transition, but if this transition never happens

in the training set, the ML and MAP algorithms will set this transition to 0. It

should be noted that MAP only estimates transitions that appear in the training

set because the hyperparameter is set to 1. If āij is set greater than 1 for all

possible transitions, the algorithm will estimate a small transition probability for

transitions that do not occur in the training set.
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# Removed ML MAP MAP-beta VB
1 Right Hand Y Right Hand Y Right Hand Y Right Hand Y
2 Right Wrist Y Right Wrist Y Right Wrist Y Left Hand Y
3 Left Hand Y Left Hand Y Left Hand Y Right Wrist Y
4 Center Shoulder Y Left Wrist Y Left Wrist Y Left Wrist Y
5 Left Wrist Y Center Shoulder Y Right Elbow Y Right Shoulder X
6 Head Y Right Wrist Z Hand Right X Left Shoulder X
7 Left Shoulder Y Right Hand Z Right Wrist Z Head X
8 Left Hand Z Right Elbow Y Right Hand Z Left Elbow X
9 Right Shoulder Y Left Hand Z Right Elbow Z Center Shoulder X
10 Left Wrist Z Right Elbow Z Right Wrist X Right Shoulder Z
11 Right Shoulder X Left Wrist Z Left Elbow Y Left Hand Z
12 Right Shoulder Z Right Shoulder Z Right Elbow X Right Shoulder Y
13 Left Elbow Z Head Y Left Hand X Center Shoulder Y
14 Right Hand X Left Shoulder Y Right Shoulder Z Left Wrist Z
15 Head Z Left Elbow Z Left Hand Z Left Elbow Z
16 Left Shoulder Z Right Shoulder Y Left Wrist X Left Wrist X
17 Center Shoulder Z Right Hand X Left Wrist Z Left Hand X
18 Head X Right Shoulder X Center Shoulder Y Right Elbow X
19 Left Hand X Head Z Left Elbow X Right Hand Z
20 Left Wrist X Left Elbow Y Right Shoulder Y Head Z
21 Left Shoulder X Left Shoulder Z Right Shoulder X Head Y
22 Right Elbow Y Center Shoulder Z Center Shoulder X Right Elbow Y
23 Left Elbow Y Head X Head X Left Shoulder Z
24 Center Shoulder X Left Hand X Shoulder Left X Left Shoulder Y
25 Right Hand Z Left Wrist X Left Elbow Z Right Wrist Z
26 Right Elbow Z Left Shoulder X Head Y Right Wrist X
27 Left Elbow X Left Elbow X Left Shoulder Z Left Elbow Y
28 Right Wrist Z Center Shoulder X Center Shoulder Z Right Hand X
29 Right Elbow X Right Elbow X Head Z Right Elbow Z
30 Right Wrist X Right Wrist X Left Shoulder Y Center Shoulder Z

Table 3.13: Order of features removed during sequential reduced model test-
ing. Each formulation removes features in a different order.

3.7 Highly Correlated Features

The FSHMM assumes that each feature is independent. In practice, it is highly

unlikely that there is zero correlation between all features. Removing redundant

features is typically a desirable property of a feature selection algorithm. Once the

information is given to the classifier by a single relevant feature, the redundant

features are not needed and do not provide a benefit. In this section, we give

an argument for including redundant features when using HMMs. Redundant

features actually improve the accuracy of an HMM. Then it is shown how the

FSHMM performs in the presence of redundant features.

This section gives an example specific to HMMs; however, Guyon and Elisseeff

[44] give an example for redundant features improving the accuracy for general

classifiers.

3.7.1 Redundant Features and HMMs

First, we demonstrate how the conditional likelihood p(yt|xt = i) is affected by

redundant features. The third sequence of the synthetic data from Section 3.4 is

used in these experiments.
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Observation True State p(yt|xt = 1) p(yt|xt = 2)
p(yt|xt = 1)/
p(yt|xt = 2)

1 1 0.0772 9.3654× 10−6 8.2482× 103

2 1 0.0779 6.2922× 10−5 1.2378× 103

3 1 0.0460 0.0010 44.7527
4 1 0.0702 1.7752× 10−4 395.6814
5 2 4.5821× 10−4 0.0585 0.0078
6 1 0.0721 4.0135× 10−6 1.7973× 104

7 2 1.2691× 10−4 0.0734 0.0017
8 2 1.0721× 10−7 0.0388 2.7606× 10−6

9 2 1.9549× 10−5 0.0795 2.4575× 10−4

10 2 3.5797× 10−5 0.0796 4.4985× 10−4

Table 3.14: Conditional likelihoods and ratios for a single feature. Only first
10 observations are displayed.

Observation True State p(yt|xt = 1) p(yt|xt = 2)
p(yt|xt = 1)/
p(yt|xt = 2)

1 1 0.0060 8.7710× 10−11 6.8032× 107

2 1 0.0061 3.9592× 10−9 1.5322× 106

3 1 0.0021 1.0561× 10−6 2.0028× 103

4 1 0.0049 3.1514−8 1.5656× 105

5 2 2.0996× 10−7 0.0034 6.1326× 10−5

6 1 0.0052 1.6108× 10−11 3.2301× 108

7 2 1.6106× 10−8 0.0054 2.9933× 10−6

8 2 1.1494× 10−14 0.0015 7.6207× 10−12

9 2 3.8217× 10−10 0.0063 6.0395× 10−8

10 2 1.2814× 10−9 0.0063 2.0237× 10−7

Table 3.15: Conditional likelihoods and ratios for two redundant features.
Only first 10 observations are displayed. Two redundant features decrease the

likelihood but increase the ratio between the two states.

The conditional likelihood using the first feature is calculated for each state. The

true parameter values are used for these calculations. The first ten observations

are in Table 3.14, and these results are consistent when all 500 observations are

examined.

As one would expect, the conditional likelihood is larger for the true state. To

create redundant features, the first feature is copied and used as the second and

third features. The conditional likelihoods for two and three redundant features

are in Tables 3.15 and 3.16.

Because the conditional likelihood is a product when features are considered in-

dependent, the conditional likelihood has an exponential relationship with the
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Observation True State p(yt|xt = 1) p(yt|xt = 2)
p(yt|xt = 1)/
p(yt|xt = 2)

1 1 4.6094× 10−4 8.2144× 10−16 5.6114× 1011

2 1 4.7246× 10−4 2.4912× 10−13 1.8965× 109

3 1 9.7275× 10−5 1.0853× 10−9 8.9631× 104

4 1 3.4657× 10−4 5.5943× 10−12 6.1949× 107

5 2 9.6206× 10−11 2.0033× 10−4 4.8025× 10−7

6 1 3.7532× 10−4 6.4650× 10−17 5.8054× 1012

7 2 2.0440× 10−12 3.9469× 10−4 5.1788× 10−9

8 2 1.2323× 10−21 5.8575× 10−5 2.1037× 10−17

9 2 7.4710× 10−15 5.0336× 10−4 1.4842× 10−11

10 2 4.5870× 10−14 5.0387× 10−4 9.1037× 10−11

Table 3.16: Conditional likelihoods and ratios for three redundant features.
Only first 10 observations are displayed. Three redundant features decrease the

likelihood but increase the ratio between the two states.

likelihood of each redundant feature p(yt|xt = i) = p(ylt|xt = i)n, where n is the

number of redundant features. The ratios between the conditional likelihood for

each state are given in the final column of Tables 3.14, 3.15, and 3.16. As the

number of redundant features increases, the ratios between the conditional likeli-

hoods increase when the true state is 1 and decrease when the true state is 2. This

indicates that the discriminating power increases as more redundant features are

added to the model.

The posterior distribution p(xt|y) = γt(i) (Equation 2.12) can be used to further

illustrate this point. As above, the true parameters are used in the calculations.

The posterior probabilities for the first 10 observations of the first sequences are

displayed in Tables 3.17, 3.18, and 3.19. The probability for the correct state

increases as the number of redundant features increases. We can conclude that

redundant relevant features lead to more accurate parameter estimates during

training and more accurate state estimates during prediction.

A logical conclusion from this example is that adding more features, not necessarily

relevant features, will improve the model. We test this theory by performing the

posterior distribution experiment using the first relevant feature from the synthetic

data set and the last irrelevant feature (random noise) from the synthetic data set.

For the irrelevant feature, we use the following parameters: µ1 = −1, µ2 = 1, σ1 =

σ2 = 0.5. The results are in Table 3.20.

When an irrelevant feature is used, the predictions are not as accurate as when

only relevant features are used. For the tests using a single relevant features, state
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Observation True State p(xt = 1|y) p(xt = 2|y)
1 1 0.9999 9.7031× 10−5

2 1 0.9999 1.4565× 10−4

3 1 0.9960 0.0040
4 1 0.9980 0.0020
5 2 0.0421 0.9579
6 1 0.9998 1.9338× 10−4

7 2 0.0022 0.9978
8 2 7.7280× 10−7 1.0000
9 2 6.8290× 10−5 0.9999
10 2 1.2501× 10−4 0.9999

Table 3.17: Posterior distribution using a single feature. Only first 10 obser-
vations are displayed.

Observation True State p(xt = 1|y) p(xt = 2|y)
1 1 1.0000 1.1759× 10−8

2 1 1.0000 1.1607× 10−7

3 1 0.9999 8.8758× 10−5

4 1 1.0000 5.1099× 10−6

5 2 3.4484× 10−4 0.9997
6 1 1.0000 1.1142× 10−8

7 2 3.7417× 10−6 1.0000
8 2 2.1169× 10−12 1.0000
9 2 1.6776× 10−8 1.0000
10 2 5.6214× 10−8 1.0000

Table 3.18: Posterior distribution using two redundant features. Only first
10 observations are displayed. Two redundant features increase the posterior

probability for the correct state.

Observation True State p(xt = 1|y) p(xt = 2|y)
1 1 1.0000 1.4257× 10−12

2 1 1.0000 9.3741× 10−11

3 1 1.0000 1.9834× 10−6

4 1 1.0000 1.2914× 10−8

5 2 2.7014× 10−6 1.0000
6 1 1.0000 6.2011× 10−13

7 2 6.4736× 10−9 1.0000
8 2 5.8437× 10−18 1.0000
9 2 4.1228× 10−12 1.0000
10 2 2.5288× 10−11 1.0000

Table 3.19: Posterior distribution using three redundant features. Only first
10 observations are displayed. Three redundant features increase the posterior

probability for the correct state.
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Observation True State p(xt = 1|y) p(xt = 2|y)
1 1 0.9826 0.0174
2 1 0.7079 0.2921
3 1 0.2057 0.7943
4 1 0.3086 0.6914
5 2 2.5048× 10−6 1.0000
6 1 1.0000 1.3744× 10−8

7 2 1.5026× 10−6 1.0000
8 2 0.4939 0.5061
9 2 1.2148× 10−4 0.9999
10 2 9.1461× 10−6 1.0000

Table 3.20: Posterior distribution using one relevant feature and one irrele-
vant feature. Only first 10 observations are displayed. Bold indicates incorrect
state prediction based on posterior probability. Irrelevant features increase the

number of incorrectly classified states.

predictions based on the posterior probabilities yield an error rate of 0.0160, while

adding an irrelevant feature increases the error to 0.1680.

From this experiment, we can conclude that more features are not always better.

Relevant redundant features can increase the accuracy of the HMM, but irrelevant

features can significantly decrease the accuracy. For HMMs, a feature selection

method that eliminates redundant features is not required; however, in some cases,

removing redundant features could be a desirable property.

3.7.2 FSHMM and Redundant Features

For this set of experiments, the FSHMM is applied to highly correlated synthetic

data. The data is the same synthetic data used in all previous experiments. In

these experiments, only the estimated feature saliencies are discussed.

For the first experiment, the first feature of the first sequence is replicated and

used for the second and third features. ML and MAP with kl = 50 are run on

the redundant data. ML produces a saliency of 0.9868 for all three features and

MAP a saliency of 0.9882 for all three features. When kl is increased to 500 for the

priors on the second and third feature (k = [50 500 500]),the estimated saliencies

are [0.8752 0.1910 0.1910]. This indicates that k can be used to exclude redundant

features, if it is known that the features are redundant before modeling.
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For a second experiment, the second and third features are scaled by factors of

2 and 3. This changes the feature values but keeps the correlation between all

features 1. ML and MAP are tested on the scaled data, and the MAP algorithm

is run with kl = 50. The saliency estimates for this experiment are [0.9579 0.9349

0.9315] for MAP and [1.0000 0.9868 1.0000] for ML. The MAP algorithm assigns

lower saliencies to the features with larger range. The scaling has little effect on

the ML algorithm.

For a final experiment, MAP is performed on the redundant data set with three

identical features with random noise added to k. The expectation of this exper-

iment is that the feature with the smallest weight will have the highest saliency

estimate. kl is drawn from a Gaussian distribution with a mean of 100 and a vari-

ance of 10. For this experiment, k = [87.9251 107.1724 116.3024] and the saliency

estimates are [0.9378 0.9303 0.9264].

Even though we establish in the previous section that redundant features should

not necessarily be removed during feature selection, this set of experiments demon-

strates that the MAP formulation can deal with redundant features by adjusting

k, if redundancy of features is known before modeling.

3.8 Conventional Feature Selection Comparison

In this section, we test conventional feature selection methods on the PHM and

Kinect data sets. We evaluate sequential forward search (SFS), sequential back-

ward search (SBS), an unsupervised feature similarity method and principal com-

ponents analysis (PCA). For the sequential searches, both supervised and unsu-

pervised evaluation functions are tested. PCA is not a FS technique, but rather

a feature reduction or feature extraction method. The goal is to contrast widely

used wrappers (SFS and SBS), filters (feature similarity and PCA) and embed-

ded (FSHMM). It is demonstrated that these methods do not compare well to

FSHMM on these data sets. The wrappers are time consuming to implement, re-

quire the choice of an evaluation function, do not perform well with unsupervised

data, and can select different feature subsets based on the choice of evaluation

function. The unsupervised filtering method does not allow for control over the

size of the selected feature subset. PCA is an easier method to implement and less

time consuming, but does not produce models as accurate as FSHMM. In the case
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of the PHM data, PCA does not give insight into eliminating sensors, therefore

the cost of the sensor setup cannot be reduced.

3.8.1 Sequential Methods

For the PHM data, a 5 state model is used. Twelve experiments are conducted us-

ing supervised SFS and SBS. Table 3.21 contains a summary for each experiment.

In each experiment, a supervised tool is withheld for testing on the final model.

In Experiment 1, the model is trained on the unsupervised tools and evaluated

using the two remaining supervised tools. The evaluation function is the RMSE

between the wear value and the median of the predicted state. A single feature is

either added or removed at each step. In Experiment 2, the set of unsupervised

tools and one of the remaining supervised tools is used for training the model at

each step. The other remaining supervised tool is used for evaluation. The RMSE

is again used as the evaluation function and a single feature is either added or

removed at each step. Experiments 3 and 4 use the same setup as Experiments

1 and 2, but remove the three features corresponding to a single sensor at each

step instead of a single feature. Experiment 5, 6, 7, and 8 have the same setup

as the first four experiments, but uses the RMSE between the wear state and the

predicted state. Experiment 9, 10, 11, and 12 have the same setup as the first

four experiments, but use percent of correctly classified states as the evaluation

function. These experiments demonstrate that the training set and the evaluation

function can affect the accuracy of the final model and the selected feature subset.

Once a feature subset has been selected, a model for testing must be trained. We

construct two possible models for the testing step. The first only uses the tools

in the training set and does not use the tools in the evaluation set. The second

model uses the tools in the training and evaluation set. For example, in Exp. 1,

the first model would only use the unsupervised tools for training. The second

model would use all the tools except the one withheld for testing.

When there are models at each step that produce the same value for the evaluation

function, all subsequent models are explored. For instance, if removing feature 1

and feature 3 both yield the same RMSE, both subsets are explored.
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Experiment Training Set Features Removed Evaluation Function
1 U Feature RMSE wear value
2 U & S Feature RMSE wear value
3 U Sensor RMSE wear value
4 U & Sensor RMSE wear value
5 U Feature RMSE wear state
6 U & S Feature RMSE wear state
7 U Sensor RMSE wear state
8 U & S Sensor RMSE wear state
9 U Feature Percent correctly classified
10 U & S Feature Percent correctly classified
11 U Sensor Percent correctly classified
12 U & S Sensor Percent correctly classified

Table 3.21: Summary of each experiment for the supervised sequential search
methods. The training set column indicates which tools are used for training
the models. “U” indicates all unsupervised tools are used for training and the
remaining supervised tools are used for evaluation. “S” indicates one supervised
tool is used for training and one is used for evaluation. The feature removed
column indicates if individual features or entire sensors are removed at each

step. The evaluation function column displays the evaluation function used.

Tables B.1 to B.12 in Appendix B contain the results for the twelve experiments for

SFS. The results for SBS are in Tables B.13 to B.24 in Appendix B. The first col-

umn labeled “Test” contains the tool used for testing. The second column labeled

“Eval” contains the tools used for evaluation. The third column labeled “Train”

contains the tools used for training the model and “U” designates all unsuper-

vised tools (Tools 2, 3, and 5). The column labeled either “Added” or “Removed”

contains a list of the features or sensors added or removed from the model in the

order they were added or removed from the model. The final two columns con-

tain the results of testing the selected features on the test tool. The evaluation

function used during the evaluation step is used as the performance metric. The

performance metric followed by a “1” is the model using only the training data

when building the model for testing. The performance metric followed by a “2” is

the model using the training and evaluation data for testing.

Before the sequential methods are compared with FSHMM, some general issues

with the sequential methods are outlined. First, there are several decisions to be

made before the sequential methods can be implemented. One must choose how

to split the data set into training, evaluation, and testing sets. The experiments

using sequential methods demonstrate that the selected feature subset and the

performance of the final model are sensitive to the tools used in the training and
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evaluation sets. For illustration, examine Tables B.15 and B.16. When testing

on Tool 1, if Tools 4 and 6 are used for evaluation, SBS removes VY and FX.

However, if Tool 6 is used for evaluation, SBS removes VZ and the RMSE drops

from 25.95 to 17.27. Guyon and Elisseeff [44] state that variance in feature subset

selection is an open problem that needs to be addressed in future research.

The results of the sequential methods are also sensitive to the evaluation function.

For instance, in Table B.17 when Tool 1 is used for testing and the evaluation

function is RMSE, the removed features are VZ me, FX me, VY me, and VX me.

If we compare this with the testing of Tool 1 in Table B.21, where the data set is

divided in the same fashion and the only difference is that accuracy is used as the

evaluation function, FX rms and FX sle are removed.

If the same evaluation function is used but calculated in a slightly different way,

the selected feature subsets can change. The results can be different if the RMSE

between the predicted wear median and the true wear value is used as the evalua-

tion function instead of the RMSE between the predicted wear state and the true

wear state. In Table B.15 when Tool 1 is used as the test tool, the sensors VY and

FX are removed. In Table B.19 with the same same tools used for training, eval-

uation, and testing, the sensors FZ and VZ are removed. Again, different feature

subsets are selected when the only change is the way RMSE is calculated.

For each of these issues, only one instance in the set of experiments is highlighted;

however, they can be found throughout the experiments. In conclusion, choices

made about the supervised sequential methods before the process is implemented

can have significant affect on the outcome.

When the sequential methods are compared with FSHMM, we see further draw-

backs. First, as implemented above, the sequential methods require supervised

data while the FSHMM does not. Later in this section, unsupervised sequential

methods are tested and compared to the FSHMM.

The amount of computation for the sequential methods is much larger than for

FSHMM. When using FSHMM, only one model is trained. Feature selection is

conducted based on the results of parameter estimation. Then a reduced model

is constructed from the estimated parameters. For sequential methods, numerous

HMMs must be trained. In SBS, initially the full model is constructed, then L

models, each removing a single different feature from the feature set, are trained.

In the case of the PHM data, the first step in SBS requires 18 models to be trained.
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Test Eval Train Removed RMSE1 RMSE2
1 4 U 6 FX 27.20 27.41
1 6 U 4 VZ 17.28 24.74
4 1 U 6 VX 23.18 21.61
4 6 U 1 FZ 25.08 26.50
6 1 U 4 VZ 14.72 32.27
6 4 U 1 34.75 34.76

Table 3.22: Experiment 4 SBS. The RMSE and the removed sensor are sen-
sitive to the training and evaluation sets.

In each subsequent step, one less model is trained. The number of models in total

for the sequential methods is dependent upon the number of features and the

number of steps in the selection process.

The sequential methods must address the issue of ties when evaluating the removal

or addition of features. In Table B.22, when Tool 1 is used for testing and Tool 6

is used for evaluation, there are seven different feature subsets that can be chosen

due to ties in the evaluation function. There is one subset that is selected twice

just in a different order. The results and the selected feature subsets are dependent

upon which feature is chosen when a tie occurs. We have previously discussed how

changes in the division of the data set and evaluation function can give different

results and subsets. In this case, the division of the data and the evaluation

function are the same. There is a significant spread in the accuracy depending on

how the tie is broken. The accuracy ranges from 0.23 to 0.68. The FSHMM could

also produce feature saliency estimates with the same value. However, the two

features will either be included or excluded. The tie will not result in significantly

different feature subsets and results as in the sequential methods.

When comparing the results of the sequential methods with those of the FSHMM,

we must compare the RMSE2 in Table B.16. For ease of comparison, this table is

reprinted in this chapter in Table 3.22. FSHMM performs better on Tools 1 and 4,

but worse on Tool 6. Depending on how the data is divided into testing, training,

and evaluation, SBS selects different sensors for removal. For three divisions of

the data, a vibration sensor is removed. There is one instance when no sensor

is selected for removal. These four scenarios result in a larger total sensor cost

than FSHMM. When a force sensor is selected for removal, SBS cannot agree on

which direction. In one scenario, FX is removed and in the other FZ is removed.

FSHMM always chooses FY for removal.
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Testing Tool Resulting Model RMSE
1 VX rms VZ rms VZ me 27.67
4 VY rms VZ rms VZ me 31.71
6 VX rms VY rms VZ rms VZ me 40.95

Average 33.44 ± 6.81

Table 3.23: Sequential search results for AIC and BIC when adding or remov-
ing a feature. Varying feature sets are selected depending on the training set.

The average RMSE and ± 1 standard deviation are given.

Finally, the sequential methods cannot include the cost of the sensor into the

feature selection process. There is no process built into the sequential methods

for giving one feature preference over another feature. Each feature is treated the

same, and feature selection is purely based on changes in the evaluation function.

The previous experiments involving sequential search required supervised data for

the evaluation function. The FSHMM is an unsupervised method, so for a better

comparison, sequential search methods using unsupervised evaluation functions are

evaluated. The Akaike information criteria (AIC) and the Bayesian information

criteria (BIC) are used as unsupervised evaluation functions [80]. AIC and BIC

for HMMs are

AIC = 2((I − 1) + I(I − 1) + 2IL)− 2P (Y |θ), (3.37)

and

BIC = 2P (Y |θ)− ((I − 1) + I(I − 1) + 2IL) log(NT ). (3.38)

The quantity ((I − 1) + I(I − 1) + 2IL) is the number of free parameters and

P (Y |θ) is the likelihood. AIC is minimized, while BIC is maximized at each step.

Both evaluation functions and both search directions result in the same model.

Tables 3.23 and 3.24 contain the resulting models when individual features and

sensors are removed.

For a better comparison with the MAP FSHMM, unsupervised SBS is used to

remove a single sensor. Both AIC and BIC result in the same sensor being removed.

The results are displayed in Table 3.25. Testing on Tools 1 and 4 removes FY,

the same sensor removed by MAP FSHMM. Testing on Tool 6 removes FX. All

three testing tools remove a force sensor resulting in the same sensor expense as
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Testing Tool Resulting Model RMSE
1 VZ 26.79
4 VZ 19.75
6 VZ 26.54

Average 24.36 ± 3.99

Table 3.24: Sequential search results for AIC and BIC when adding or re-
moving a sensor. These models result in a single sensor in the selected feature

subset. The average RMSE and ± 1 standard deviation are given.

Testing Tool Removed Sensor RMSE
1 FY 24.45
4 FY 25.12
6 FX 40.63

Average 30.07 ± 9.15

Table 3.25: Sequential search results for AIC and BIC when removing a single
sensor. Varying force sensors are removed depending on the training set. The

average RMSE and ± 1 standard deviation are given.

FSHMM. However, changing the training data result in a different selected feature

subset. Further, the MAP FSHMM reduced models perform better than the SBS

unsupervised models on two out of the three tools.

The unsupervised methods are also tested on the Kinect data set. The initializa-

tion, training, and testing sets are divided as in the experiments using the FSHMM.

Six hidden states are assumed. For SFS, both AIC and BIC yield the same final

model and add 16 features: HeadY, HeadZ, ShoulderCenterY, ShoulderCenterZ,

ShoulderLeftY, ShoulderLeftZ, ElbowLeftY, ElbowLeftZ, WristLeftY, WristLeftZ,

HandLeftY, HandLeftZ, ShoulderRightY, ShoulderRightZ, ElbowRightY, and El-

bowRightZ. The accuracy for this model is surprisingly low at 0.0549. On the

test set, the model predicts the first time step correctly then transitions to the

‘Other’ state and never transitions out of that state. The SFS method selects

a larger feature subset, but includes several features associated with the Y and

Z directions and excludes features associated with X. For comparison, the MAP

FSHMM removes features in the Y direction and prefers features associated with

X and Z.

For SBS, again AIC and BIC yield the same feature subset. WristRightX, Han-

dRightX, and HandRightZ are removed during feature selection. The final model

produces an accuracy of 0.5714 on the test set, while MAP FSHMM has an accu-

racy above 0.7.



Chapter 3. Feature Saliency Hidden Markov Model 83

Tool K Sensor Removed RMSE (µm)

Tool 1 3 VZ rms VZ sle FX me VX me 17.72
Tool 4 3 VX sle VY sle FZ me 23.19
Tool 6 3 VX sle VY sle FZ me 34.45

Average 25.12 ± 8.53

Tool 1 4 VZ rms VY sle VZ sle FX me VX me 20.23
Tool 4 4 FY sle FZ sle VX sle VY sle FZ me 22.08
Tool 6 4 FY sle FZ sle VX sle VY sle FZ me 37.90

Average 26.74 ± 9.71

Table 3.26: Results for feature similarity method on PHM data. Feature
similarity cannot remove a single sensor. The average RMSE and ± 1 standard

deviation are given.

From the experiments on the Kinect data, we can see that SFS and SBS using

unsupervised methods selects features that increase the likelihood but not features

that help the model accurately distinguish between states.

3.8.2 Filters

The feature similarity method [77] removes features that are similar to a specific

feature by some measure. The idea is that removing these features will not sig-

nificantly affect the predictive ability of the classifier. This method is similar to

a K nearest neighbor classifier, and an initial value for K, the number of similar

features to evaluate, must be selected for the algorithm. Mitra, Murthy, and Pal

[77] claim that a good initial value for K is the number of features in the original

data set minus the number of features desired in the reduced set. However, this

relationship does not always hold.

For the PHM data, K = 3 and K = 4 were tested. The similarity method only

produces a reduced set and does not rank features; therefore, the user has little

control over the selection process. A single sensor was not able to be removed

when using this method. The removed features and the RMSE for both values of

K are displayed in Table 3.26.

When K = 3, four features are removed for Tool 1, and 3 features are removed for

Tools 4 and 6. When K = 4, five features are removed for each tool. The former

has a lower RMSE than the reduced MAP FSHMM model, while the latter has

a higher RMSE. It is difficult to compare the similarity method to the FSHMM

because FSHMM is required to remove the sensor with the lowest average feature
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saliency. This type of testing is not possible with the feature similarity method

and is one drawback to the method.

For the kinect data set, K = 10 and K = 15. The first setting removes 13 features

and produces a test set accuracy of 0.6679. The other setting for K removes 21

features and has a test set accuracy of 0.6647. Neither is as accurate as the reduced

MAP FSHMM model. Again, a direct comparison is difficult because the number

of features removed is different from the FSHMM. This reiterates the drawback

that it is difficult to control the size of the reduced feature subset when using

feature similarity.

3.8.3 Principal Component Analysis

Principal component analysis (PCA) [80] is also used to reduce the number of

features, even though it is not a true feature selection method. New features

are constructed from the whole feature set instead of reducing the original set of

features to a subset. In the case of the PHM problem, where we try to eliminate

sensor to reduce the total cost of the sensor setup, PCA would not be acceptable

because all the sensors would be required to construct components on new data. It

is an unsupervised method of feature reduction, so it will be tested and compared

with FSHMM.

The principal components (PCs) are calculated on all six tools. The percent of

variance explained in the first five components is displayed in Figure 3.9 by the

bars, and the cumulative sum of the variance is the blue line. The first four princi-

pal components account for 94% of the variance, the first five account for 96% and

the first six for 98%. As before, LOOCV is used as the testing methodology. PCA

is performed again on the training data with the testing tool removed. The testing

tool is converted to PCs using the coefficients calculated on only the training data.

HMMs are trained using Baum Welch on the first four, five, and six components,

then tested using Viterbi. A five state model is assumed.

The RMSE for each testing tool using the first four, five, and six PCs are in Table

3.27. The MAP formulation of the FSHMM outperform PCA on Tools 1 and 4

but not on Tool 6. However, as previously discussed, no sensors are removed. All

information for the sensors is needed to create the PCs.
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Figure 3.9: Scree plot for principal components. Bars indicate percent of
variance explained by each PC and the solid line is the cumulative variance.

Tool 4 PCs 5 PCs 6 PCs
Tool 1 43.36 39.15 37.43
Tool 4 26.77 27.04 29.52
Tool 6 31.27 30.45 25.23

Average 33.80 ± 8.58 32.21 ± 6.24 30.73 ± 6.19

Table 3.27: RMSE for HMMs using first 4, 5 and 6 principal components.
The average RMSE and ± 1 standard deviation are given.

A similar PCA is performed on the Kinect data set. The percent of variance

explained by each PC is calculated using the entire data set, then PC coefficients

are calculated on the training set. The PCs for the test set are calculated using

the PC coefficients from the training set. The first two thirds of the noon hour

are used for training and the last third is reserved for testing. The first two PCs

account for 95% of the variance, the first four account for 98% and the first seven

account for 99%. The test set accuracy for HMMs trained using the first two, four

and seven PCs are 0.4998, 0.7165 and 0.6129. The ML and MAP reduced models

for the FSHMM both outperform the best PC model tested. Further, as discussed

previously, PC is not a FS technique so all the data from the Kinect is needed to

calculate the PCs.
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3.9 Chapter Conclusions

Conclusions from this chapter are listed below:

• The FSHMM can be used as a simultaneous feature selection and parameter

estimation algorithm.

• The MAP formulation outperforms ML, MAP-beta, and VB in terms of fea-

ture subset selection size, feature subset selection consistency, and accuracy.

• T/4 is a heuristic for choosing the hyperparameters for the priors on ρ, given

no other knowledge about the system or cost of features.

• VB does not perform as well as the EM based methods, and the estimated

feature saliencies can be affected by the number of observations.

• ML overestimates the relevance of irrelevant features.

• MAP-beta underestimates the relevance of relevant features.

• Methods using priors on ρ can stabilize parameter estimates as the number

of states increases. This is demonstrated in the PHM experiments.

• Redundant features do not necessarily need to be removed during feature

selection for HMMs.

• MAP outperforms conventional feature selection techniques.



Chapter 4

Other Conditional Feature

Distributions

The FSHMM outlined in the previous chapter assumes the relevant features follow

a single Gaussian distribution. In this chapter, other conditional feature distribu-

tions are explored. Parameter estimates are derived, and the algorithms are tested

on synthetic data. When applicable, the models are tested on the PHM, Kinect,

or an event detection data set.

4.1 Gaussian Mixture Model

In this section, it is assumed that the relevant features follow a Gaussian mixture

model (GMM) (see [8] and [95] for information on standard HMMs using GMM

emissions). As in the previous chapter, consider an HMM with I states and L

features. Let y = {y1, y2, ..., yT} be the sequence of observed data where the ob-

servation for the l-th feature at time t, which is represented by the l-th component

of yt, is denoted by ylt. Let x = {x1, x2, ..., xT} be the unobserved state sequence.

Let z = {z1, . . . , zL} be a set of binary variables indicating the relevancy of each

feature. If zl = 1, then the l-th feature is relevant. Otherwise, if zl = 0 the l-th

feature is irrelevant.

Assume the relevant feature distribution is composed of a mixture of M Gaussian

distributions. Let Φ = {φ1t, ..., φMt} be the hidden variable indicating the mixture

component, where φmt = 1 if observation t comes from the mth mixture and

87
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φmt = 0 otherwise. Let ωim be the probability that the observation comes from

the mth mixture, given the state. This model formulation has 3 hidden variables

(x, z, and Φ) where the standard FSHMM only has 2 (x and z). The set of model

parameters Λ is now {π,A, µ, σ, ρ, ε, τ, ω}.

The marginal probability of φt is

P (Φ|Λ) =
M∏
m=1

ωφmtim . (4.1)

The marginal probability of z is the same as in Equation 3.2. Assuming the

features are conditionally independent given the state, the conditional distribution

of yt given z, x and Φ can be written as

P (yt|Φ, z, xt = i,Λ) =
L∏
l=1

[p(ylt|µilm, σ2
ilm)zl q(ylt|εl, τ 2

l )1−zl ]φmt . (4.2)

The joint distribution of yt, Φ, and z given x is

P (yt,Φ,z|xt = i,Λ) = P (yt|Φ, z, xt = i,Λ)P (Φ|Λ)P (z|Λ)

=
M∏
m=1

[
ωim

L∏
l=1

[ρlp(ylt|µilm, σ2
ilm)]zl [(1− ρl)q(ylt|εl, τ 2

l )]1−zl

]φmt
.

(4.3)

The marginal distribution for yt given x can be found by summing 4.3 over z and

Φ.

fxt(yt) = P (yt|xt = i,Λ)

=
M∑
m=1

ωim

L∏
l=1

(
ρlp(ylt|µilm, σ2

ilm) + (1− ρl)q(ylt|εl, τ 2
l )
)
.

(4.4)

The complete data likelihood for the FSHMM with GMM emissions is

P (x,y, z,Φ|Λ) = πx1P (y1,Φ, z|x1,Λ)
T∏
t=2

axt−1,xtP (yt,Φ, z|xt,Λ). (4.5)
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Derivations for the Q function and the ML and MAP parameter update equations

are given in Appendix A Section A.5.

4.1.1 E-Step

The E-step is augmented from the standard FSHMM to include Φ. TheQ function

is

Q(Λ,Λ′) = E[logP (x,y, z,Φ|Λ)|y,Λ′]

=
∑
x,z,Φ

log(P (x,y, z,Φ|Λ))P (x, z,Φ|y,Λ′). (4.6)

The conditional state probabilities γt(i) and the conditional transition probabilities

ξt(i, j) are the same as in Equations 2.12 and 2.13.

The E-step probabilities are now

eilmt = P (ylt, zl = 1|φmt = 1, xt = i,Λ′)

= ρlp(ylt|µilm, σ2
ilm),

(4.7)

hilmt = P (ylt, zl = 0|φmt = 1, xt = i,Λ′)

= (1− ρl)q(ylt|εl, τ 2
l ),

(4.8)

gilmt = P (ylt|φmt = 1, xt = i,Λ′)

= eilmt + hilmt
(4.9)

uilmt = P (zl = 1, xt = i, φmt = 1|y,Λ′)

= γt(i)

(
eilmt
gilmt

)(
ωim

∏L
l=1 gilmt∑M

m=1 ωim
∏L

l=1 gilmt

)
,

(4.10)

and
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vilmt = P(zl = 0, xt = i, φmt = 1|y,Λ′)

= γt(i)

(
hilmt
gilmt

)(
ωim

∏L
l=1 gilmt∑M

m=1 ωim
∏L

l=1 gilmt

)
.

(4.11)

4.1.2 M-Step ML

The M-step update parameters are

π̂i = γt(i), (4.12)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (4.13)

µ̂ilm =

∑T
t=1 uilmtylt∑T
t=1 uilmt

, (4.14)

σ̂2
ilm =

∑T
t=1 uilmt(ylt − µilm)2∑T

t=1 uilmt
, (4.15)

ε̂l =

∑T
t=1

(∑I
i=1

∑M
m=1 vilmt

)
ylt∑T

t=1

∑I
i=1

∑M
m=1 vilmt

, (4.16)

τ̂ 2
l =

∑T
t=1

(∑I
i=1

∑M
m=1 vilmt

)
(ylt − εl)2∑T

t=1

∑I
i=1

∑M
m=1 vilmt

, (4.17)

ω̂im =

∑T
t=1

∑L
l=1 uilmt∑T

t=1

∑L
l=1

∑M
m=1 uilmt

, (4.18)

and

ρ̂l =

∑T
t=1

∑I
i=1

∑M
m=1 uilmt∑T

t=1

∑I
i=1

∑M
m=1 uilmt +

∑T
t=1

∑I
i=1

∑M
m=1 vilmt

=

∑T
t=1

∑I
i=1

∑M
m=1 uilmt

T
.

(4.19)
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4.1.3 M-Step MAP

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, N is the Gaussian distribution, IG is the inverse gamma distribution, and

Ai is row i of the transition matrix.

π ∼ Dir(π|p̄), (4.20)

Ai ∼ Dir(Ai|āi), (4.21)

µil ∼ N (µil|mil, s
2
il), (4.22)

σ2
il ∼ IG(σ2

il|ζil, ηil), (4.23)

εl ∼ N (εl|bl, c2
l ), (4.24)

τ 2
l ∼ IG(τl|νl, ψl), (4.25)

ωi ∼ Dir(ωi|wi), (4.26)

ρl ∼
1

Z
e−klρl , (4.27)

where Z is the normalizing constant, ωi represents the vector of mixture compo-

nent for state i, and wi represents the corresponding hyperparameter vector. The

parameter update equations are

π̂i =
γ1(i) + p̄i − 1∑I

i=1 (γ1(i) + p̄i − 1)
, (4.28)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (4.29)

µ̂ilm =
s2
il

∑T
t=1 uiltmylt + σ2

ilmmilm

s2
ilm

∑T
t=1 uilmt + σ2

ilm

, (4.30)

σ̂2
ilm =

∑T
t=1 uilmt(ylt − µilm)2 + 2ηilm∑T

t=1 uilmt + 2(ζilm + 1)
, (4.31)

ε̂l =
c2
l

∑T
t=1

(∑I
i=1 vilmt

)
ylt + τ 2

l bl

c2
l

∑T
t=1

(∑I
i=1 vilmt

)
+ τ 2

l

, (4.32)
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Figure 4.1: Graphical model for MAP GMM FSHMM using exponential prior.
Squares represent hidden variables. Filled circles are observable variables. Open

circles are model parameters.

τ̂ 2
l =

∑T
t=1

(∑I
i=1

∑M
m=1 vilmt

)
(ylt − εl)2 + 2ψl∑T

t=1

(∑I
i=1

∑M
m=1 vilmt

)
+ 2(νl + 1)

, (4.33)

ω̂im =

∑T
t=1

∑L
l=1 uilmt + wim − 1∑M

m=1

(∑T
t=1

∑L
l=1 uilmt + wim − 1

) , (4.34)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1

∑M
m=1 uilmt)

2kl
. (4.35)

The graphical model for the MAP GMM FSHMM using an exponential prior is

displayed in Figure 4.1.

The beta prior B(ρl|kl, κl) can also be used for feature saliencies when the emissions

are assumed to be a GMM. The parameter update equation is

ρl =

∑T
t=1

∑I
i=1

∑M
m=1 uilmt + kl − 1

T + kl + κl − 2
. (4.36)
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Algorithm π̂1 π̂2 â11 â12 â21 â22

True Value 1 0 0.75 0.25 0.4 0.6
ML 1 0 0.7630 0.2370 0.4174 0.5826

MAP 0.8 0.2 0.7621 0.2379 0.4180 0.5820
MAP-beta 0.8 0.2 0.7625 0.2375 0.4177 0.5823

VB 1 0 0.7638 0.2362 0.4190 0.5810

Table 4.1: GMM parameter estimates for initial distribution and transition
matrix. The priors on MAP and MAP-beta affect the estimates for the ini-
tial distribution. All transition probabilities are within 0.02 units of the true

probability.

4.1.4 Synthetic Data Experiments

Three observation sequences, each with 500 time steps, are generated from a two

state HMM. There are two relevant features and a GMM with two mixtures is used

for the state conditional distribution for these features. Three irrelevant features

of random noise, generated from N (0, I), are added to the data, resulting in a

model with five features in total. The parameters for the model are listed in the

tables with the estimated parameters.

The hyperparameters for the priors in the MAP and formulation are: p̄i = āij =

2, sil = 0.5, ζil = ηil = νl = ψl = cil = 1, kl = 50. bl is the mean of the observations

for the lth feature. For the first relevant feature (l = 1), m is 1 minus the true

value for i = 1 for each mixture and 1 plus the true value for i = 2 for each

mixture. For the second feature (l = 2), m is 1 plus the true value for i = 1 for

each mixture and 1 minus the true value for i = 2 for each mixture. MAP-beta

uses the same hyperparmeters, except kl = 1 and κl = 50. The hyperparmeters

for the VB formulation are the same as described in [137].

The algorithms are initialized using equal initial state, transition, and mixture

probabilities. µ is set to the prior in the MAP formulation m, σ = 1, ε = b, τ

is the standard deviation of the data, and ρl = 0.5. The algorithms are run for

a maximum of 500 iterations. Convergence is tested by calculating the absolute

percent change in the likelihood for ML, the posterior probability for MAP and

MAP-beta, and the lower bound for VB. The convergence threshold is 10−6.

The parameter estimates for the synthetic data are in Tables 4.1 to 4.7. The

ML formulation converges in 37 iterations, the MAP formulation converges in

189 iterations, the MAP-beta formulation converges in 169 iterations and the VB

formulation converges in 375 iterations. The conclusions from the synthetic data
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Algorithm ŵ11 ŵ21 ŵ12 ŵ22

True Value 0.75 0.25 0.4 0.6
ML 0.7438 0.2562 0.4304 0.5696

MAP 0.7446 0.2554 0.4306 0.5694
MAP-beta 0.7501 0.2499 0.4181 0.5819

VB 0.7411 0.2589 0.4235 0.5765

Table 4.2: GMM parameter estimates for mixture probabilities. All mixture
probabilities are within 0.04 units of the true probability.

Algorithm µ̂111 µ̂112 µ̂121 µ̂122 µ̂211 µ̂212 µ̂221 µ̂222

True Value 10 20 40 50 30 40 80 100
ML 9.84 19.82 39.92 49.94 29.99 40.13 80.37 100.13

MAP 9.78 19.77 40.05 50.03 30.24 40.18 80.00 100.08
MAP-beta 9.31 19.77 40.04 50.08 30.60 40.17 80.07 100.08

VB 9.85 19.82 39.91 49.93 30.13 40.13 80.59 100.13

Table 4.3: GMM parameter estimates for µ for relevant features. All param-
eters are within 1 unit of the true value.

Algorithm σ̂111 σ̂112 σ̂121 σ̂122 σ̂211 σ̂212 σ̂221 σ̂222

True Value 5 2 5 2 5 2 5 2
ML 4.79 2.09 4.90 2.05 4.45 2.10 4.79 2.01

MAP 4.81 2.08 4.88 2.01 4.40 2.09 4.75 2.00
MAP-beta 4.46 1.97 4.77 1.88 3.69 2.08 4.62 2.00

VB 4.75 2.12 4.84 2.04 4.01 2.09 4.65 2.01

Table 4.4: GMM parameter estimates for σ for relevant features. All param-
eters are within 0.5 units of the true value.

Algorithm ε̂3 ε̂4 ε̂5
True Value 0 0 0

ML 0.02 -0.03 0.05
MAP -0.02 -0.003 0.003

MAP-beta -0.02 -0.003 0.003
VB -0.02 -0.003 0.003

Table 4.5: GMM parameter estimates for ε for irrelevant features. All param-
eters are within 0.1 units of the true value.

Algorithm τ̂3 τ̂4 τ̂5

True Value 1 1 1
ML 0.95 1.00 0.98

MAP 0.95 1.02 1.02
MAP-beta 0.95 1.02 1.02

VB 1.09 0.97 0.96

Table 4.6: GMM parameter estimates for τ for irrelevant features. All param-
eters are within 0.1 units of the true value.
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Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

True Value 1 1 0 0 0
ML 0.9978 0.9993 0.5020 0.5053 0.4962

MAP 1.0000 0.9973 0.0466 0.0046 0.0023
MAP-beta 0.9147 0.9472 0.0396 0.0051 0.0022

VB 0.9911 0.9896 10−9 10−9 10−9

Table 4.7: GMM parameter estimates for feature saliencies of all features.
ML overestimates the relevance of the irrelevant features, while MAP, MAP-
beta, and VB estimate ρ below 0.05 for the irrelevant features. MAP-beta

underestimates the relevance of the relevant features.

experiments are the same as in the single Gaussian case. The MAP and MAP-

beta formulations produce skewed initial state distribution parameters due to the

prior distribution. The ML formulation results in higher estimates for feature

saliencies on the irrelevant features than the other three algorithms. MAP-beta

slightly underestimates the relevance of relevant features; however, this trait is

less pronounced than in the single Gaussian case. The VB formulation gives the

smallest estimates for the irrelevant feature saliencies. All four algorithms produce

accurate estimates for all the other parameters. MAP-beta and VB perform better

on the GMM feature model than the single Gaussian model.

4.1.5 PHM Data

The GMM FSHMM is also tested on the PHM data set and the ML, MAP, MAP-

beta and VB formulations are compared. We assume there are 5 states and two

mixtures per state. The training and testing procedure is the same as in the

previous chapter.

The ML, MAP and MAP-beta algorithms are initialized with the same values. The

initial self transition aii is 0.9, the transition to the next state ai,i+1 is 0.1, and

π1 = 1. The mixture components for each state are the inverse of the number of

components ωim = M−1. The state-dependent means for the first mixture µil1 are

equally spaced between -2 and 2. The initial value for the state-dependent mean of

the second mixture is randomly chosen by adding a small amount of random noise

to the value of the first mixture (µil1 +N (0, 0.252). The state-dependent standard

deviation σil is 1 for all states, mixtures and features. The state-independent

parameters are calculated from the training data. For MAP, the prior parameters

are āii = āi,i+1 = 2, āij = 1 for j 6= i and j 6= i + 1, p̄1 = 2, p̄i 6=1 = 1, wim = 2,
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Algorithm and RMSE Full RMSE Reduced
Smallest ρ̄

Removed
Tool Model (µm) Model (µm) Sensor

ML Tool 1 18.21 15.45 0.9520 Vibration Y
ML Tool 4 22.41 22.78 0.9663 Force X
ML Tool 6 32.28 28.90 0.9745 Vibration Y

Average 24.30 ± 7.22 22.38 ± 6.73
MAP Tool 1 17.77 18.54 0.5383 Force Y
MAP Tool 4 22.50 13.13 0.5875 Force Y
MAP Tool 6 25.33 24.17 0.5757 Force Y

Average 21.87 ± 3.82 21.94 ± 5.52
MAP-beta Tool 1 19.98 20.34 0.3290 Force Y
MAP-beta Tool 4 19.89 21.17 0.3270 Force Y
MAP-beta Tool 6 45.91 38.06 0.3250 Force Y

Average 28.59 ± 15.00 26.52 ± 10.00
VB Tool 1 29.37 29.34 0.8939 Vibration Y
VB Tool 4 27.52 25.53 0.8593 Vibration Y
VB Tool 6 48.07 37.42 0.8524 Vibration Y
Average 34.99 ± 11.37 30.77 ± 6.07

Table 4.8: Results for 5 state PHM experiments using 2 mixtures per state.
MAP and MAP-beta, which incorporate the cost of features, consistently selects
force in the Y direction for removal. VB selects vibration in the Y direction
for removal, which is less expensive than the force sensor. ML removes varying
sensors. The average RMSE and ± 1 standard deviation are given for each

formulation.

m = µinit, s = 0.5, ζ = η = ν = ψ = 0.5, b = 0, and c = 1. Half of the assumed

cost of each sensor is used for kl (kl = 1200 for the force features and kl = 600

for the vibration features). For MAP-beta, the hyperparameters are the same

as for MAP, except kl = 1 and κl is half the assumed cost of the sensor. The

hyperparameters for VB are the same as in [137]. The initial parameter values

for the VB algorithm are set as close as possible to the initial values of the EM

methods. The convergence threshold for this experiment is lowered to 10−6 for all

four algorithms.

The ML and MAP formulations for the GMM FSHMM both have improved av-

erage RMSE over the single Gaussian case. The MAP-beta formulation using the

GMM FSHMM does not perform as well as the single Gaussian case. The VB

formulation shows improvement for the reduced model but not the full model. As

expected, the estimated saliencies for the GMM FSHMM are closer to 1 than those

in the single Gaussian case. While the difference in accuracy of the formulations

might not be significant due to the small sample size, the formulations incorporat-

ing cost distinguish themselves during feature selection by consistently selecting
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the more expensive sensor for removal.

The 10 and 20 state models are not tested in this analysis. As the number of states

and mixtures grows, more data is needed to accurately estimate model parameters.

Sparsity of the data with respect to state and mixture becomes an issue for the

ML formulation. This causes estimates for some components of τ to go to 0. The

MAP, MAP-beta and VB formulations do not run into this problem because the

priors keep the estimates from going to 0.

4.2 Exponential Distribution

Consider an HMM with I states and L features. The notation for x, y and z is the

same as in previous sections. Assume the relevant features have a state-dependent

exponential distribution and the irrelevant features have a state-independent Gaus-

sian distribution. The conditional distribution for yt given xt = i and z is

P (yt|z, xt = i,Λ) =
L∏
l=1

p(ylt|µil)zlq(ylt|εl, τ 2
l )1−zl , (4.37)

where

p(ylt|µil) = µile
−µilylt . (4.38)

The marginal distribution for z is the same as Equation 3.2. The joint distribution

of yt and z, given xt = i, is the same as in Equation 3.3 with Equation 4.38 used

for p(·|·) and the joint distribution of x, y, and z is the same as in Equation 3.5

with Equation 4.37 used for P (yt|z, xt = i,Λ).

The state-independent distribution q(·|·) is a Gaussian for the exponential features.

This is due to the difficulty in distinguishing exponential distributions with dif-

ferent parameters. Figure 4.2 displays histograms of random samples drawn from

exponential distributions with µ = 20 and µ = 100. The distribution with µ = 100

is completely contained within the distribution with µ = 20, making distinguish-

ing between the two distributions difficult. The state-independent distribution is

left as a Guassian to alleviate this issue.

The E-step probabilities are the same as in Equations 3.8 - 3.12 with the appro-

priate substitutions and γt(i) and ξt(i, j) calculated using the forward-backward
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Figure 4.2: Top: Histogram of 1000 random samples from an exponential
distribution with µ = 20. Bottom: Histogram of 1000 random samples from
an exponential distribution with µ = 100. It is difficult for an algorithm to

distinguish between these two exponential distributions.

algorithm (Equations 2.12 and 2.13). Derivations for the ML and MAP M-step

parameter update equations are in Appendix A Section A.6.

4.2.1 M-Step ML

The M-step update parameters are

π̂i = γ1(i), (4.39)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (4.40)

µ̂il =

∑T
t=1 uilt∑T

t=1 uiltylt
, (4.41)

ε̂l =

∑T
t=1

(∑I
i=1 vilt

)
ylt∑T

t=1

∑I
i=1 vilt

, (4.42)



Chapter 4. Other Conditional Feature Distributions 99

τ̂ 2
l =

∑T
t=11

(∑I
i=1 vilt

)
(ylt − εl)2∑T

t=1

∑I
i=1 vilt

, (4.43)

and

ρ̂l =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

=

∑T
t=1

∑I
i=1 ui,l,t
T

.

(4.44)

4.2.2 M-Step MAP

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, N is the Gaussian distribution, IG is the inverse gamma distribution, G is

the Gamma distribution using shape and rate as hyperparameters, and Ai is row

i of the transition matrix.

π ∼ Dir(π|p̄), (4.45)

Ai ∼ Dir(Ai|āi), (4.46)

µil ∼ G(µil|mil, sil), (4.47)

εl ∼ N (εl|bl, cl), (4.48)

τ 2
l ∼ IG(τl|νl, ψl), (4.49)

ρl ∼
1

Z
e−klρl , (4.50)

where Z is the normalizing constant. The parameter update equations are

π̂i =
γ1(i) + p̄i − 1∑I

i=1 (γ1(i) + p̄i − 1)
, (4.51)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (4.52)

µ̂il =

∑T
t=1 uilt +mil − 1∑T
t=1 uiltylt + sil

, (4.53)
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ε̂l =
c2
l

∑T
t=1

(∑I
i=1 vilt

)
ylt + τ 2

l bl

c2
l

∑T
t=1

(∑I
i=1 vilt

)
+ τ 2

l

, (4.54)

τ̂ 2
l =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − εl)2 + 2ψl∑T

t=1

(∑I
i=1 vilt

)
+ 2(νl + 1)

, (4.55)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (4.56)

4.2.3 Synthetic Data

As in previous sections, the exponential formulation of the FSHMM is tested on

synthetic data. However, there is no published VB formulation using an exponen-

tial distribution, so only the ML and MAP formulations are tested. MAP-beta is

also excluded because the advantages and disadvantages of this prior have already

been explored.

Three observation sequences of 500 time steps are generated from a two state

HMM. There are two relevant features with state-dependent exponential distri-

butions. Three irrelevant features of random noise generated from N (10, I) are

added to the data, resulting in a model with five features in total. The mean of

the irrelevant features is increased to 10 so all the observations are greater than or

equal to 0. If the observations contained a negative emission, an exponential dis-

tribution would not be considered as an appropriate state-dependent distribution.

The model parameters are

µ1 =
[
10 20

]
, µ2 =

[
50 100

]
, A =

[
0.75 0.25

0.4 0.6

]
, π =

[
1

0

]
.

The hyperparameters for the priors in the MAP formulation are: p̄i = āij = 2, sil =

νl = ψl = 1, cl = 1. bl is the mean of the observations for the lth feature. mil for

the relevant features is 1 minus the true value. mil for the irrelevant features is

1 minus the true value for state 1 and 1 plus the true value for state 2. For the

feature saliencies, the weight parameter kl is set to 50. ML and MAP are initialized
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Algorithm π̂1 π̂2 â11 â12 â21 â22

ML 1 0 0.74 0.26 0.34 0.66
MAP 0.78 0.22 0.75 0.25 0.37 0.63

Table 4.9: Exponential feature parameter estimates for initial distribution
and transition matrix. The prior used in MAP affects the estimates for the
initial distribution. All transition probabilities are within 0.02 units of the true

probability.

Algorithm µ̂11 µ̂12 µ̂21 µ̂22

ML 9.35 19.16 48.21 86.10
MAP 9.72 19.23 49.65 88.05

Table 4.10: Exponential feature parameter estimates for µ for relevant fea-
tures. The estimates for µ22 are more than 10% from the true value. The other

estimates are within 2 units of the true value.

Algorithm ε̂3 ε̂4 ε̂5 τ̂3 τ̂4 τ̂5

ML 10.03 9.96 9.98 0.99 1.01 1.00
MAP 10.03 9.96 9.98 0.99 1.01 1.00

Table 4.11: Exponential feature parameter estimates for ε and τ for irrelevant
features. All parameter estimates are within 0.1 units of the true value.

Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

ML 0.9902 0.9644 5.937× 10−9 6.0405× 10−9 6.1995× 10−9

MAP 1.0000 1.0000 5.9445× 10−9 6.0489× 10−9 6.2079× 10−9

Table 4.12: Exponential feature parameter estimates for ρ of all features. For
the exponential feature FSHMM, the ML formulation does not overestimate the

relevance of irrelevant features.

with the same values: equal initial state probabilities and transition probabilities,

µ = m, ε = b, ρ = 0.5, and τ is the standard deviation of the data. The maximum

number of iterations is 500 and the convergence threshold is 10−6.

The estimated parameters are in Tables 4.9 to 4.12. In the training data, all three

of the state sequences start in state 1. The ML algorithm gives initial state distri-

bution estimates that match the true value exactly. The prior on the initial state

distribution parameters for MAP results in skewed estimates. Both algorithm give

accurate parameter estimates for the transition probabilities. The MAP formula-

tion gives parameter estimates for µ that are marginally closer to the true value

than the ML formulation. Both formulations produce estimates for µ22 that are

more than 10% from the true value. This is due to the difficulty of distinguishing

the difference between lower valued observations drawn from exponential distribu-

tions. For instance, when the distribution is exponential, P (0.01|µ = 20) = 16.38
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while P (0.01|µ = 100) = 36.79. This point is further illustrated in Figure 4.2.

Observations on the lower end could belong to either distribution.

The estimates for ρ are accurate for both formulations. This is due to the algorithm

easily distinguishing between features that come from an exponential distribution

and features generated by a Gaussian distribution. The advantage of the MAP

formulation is the ability to include the test cost of features.

4.3 Gamma Distribution

Consider an HMM with I states and L features. The notation for x, y and z is the

same as in previous sections. Assume the relevant features have a state-dependent

Gamma distribution and the irrelevant features have a state-independent Gamma

distribution. The conditional distribution of yt given z and x is

P (yt|z, xt = i,Λ) =
L∏
l=1

p(ylt|µil, σil)zlq(ylt|εl, τ 2
l )1−zl , (4.57)

where

p(ylt|µil, σil) =
σµilil

Γ(µil)
yµil−1
lt e−σilylt , (4.58)

and q(ylt|εl, τ 2
l ) follows a similar Gamma distribution. The marginal distribution

for z is the same as Equation 3.2. The joint distribution of yt and z given xt = i

is the same as in Equation 3.3 with Equation 4.58 used for p(·|·) and q(·|·), and

the joint distribution of x, y and z is the same as in Equation 3.5 with Equation

4.57 used for P (yt|z, xt = i,Λ).

The E-step probabilities are the same as in Equations 3.8 - 3.12 with the appropri-

ate substitutions, and γt(i) and ξt(i, j) are calculated using the forward-backward

algorithm (Equations 2.12 and 2.13). Derivations for the ML and MAP M-step

parameter update equations are in Appendix A Section A.7.

4.3.1 ML M-Step

There are no closed form solutions for µil and εl, so an iterative optimization

routine must be used. Almhana et al. [2] use a gradient based method to update
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the shape parameter for mixtures of Gamma distributions; however, we outline a

Newton’s method for the Gamma feature parameters, which is presented in the

following section.

The M-step parameter update equations for the parameters with closed form so-

lutions are

π̂i = γ1(i), (4.59)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (4.60)

σ̂il =
µil
∑T

t=1 uilt∑T
t=1 uiltylt

, (4.61)

τ̂l =
εl
∑T

t=1

(∑I
i=1 vilt

)∑T
t=1

(∑I
i=1 vilt

)
ylt
, (4.62)

and

ρ̂l =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

=

∑T
t=1

∑I
i=1 ui,l,t
T

.

(4.63)

4.3.2 MAP M-step

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, N is the Gaussian distribution, G is the Gamma distribution using shape

and rate as hyperparameters, and Ai is row i of the transition matrix.
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π ∼ Dir(π|p̄), (4.64)

Ai ∼ Dir(Ai|āi), (4.65)

µil ∼ G(µil|mil, sil), (4.66)

σl ∼ G(σil|ζil, ηil), (4.67)

εl ∼ G(εl|bl, cl), (4.68)

τl ∼ G(τl|νl, ψl), (4.69)

ρl ∼
1

Z
e−klρl , (4.70)

where the Zs are the normalizing constants. Again, there are no closed form

solutions for µil and εl. The parameter update equations for the parameters with

closed form solutions are

π̂i =
γ1(i) + p̄− 1∑I

i=1 (γ1(i) + p̄i − 1)
, (4.71)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (4.72)

σ̂il =
µil
∑T

t=1 uilt + ζil − 1∑T
t=1 uiltylt + ηil

, (4.73)

τ̂l =
εl
∑T

t=1

(∑I
i=1 vilt

)
+ νl − 1∑T

t=1

(∑I
i=1 vilt

)
ylt + ψl

, (4.74)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (4.75)

4.3.3 Newton’s Method for Gamma Features

Even though there is a closed form solution for the rate parameter, we optimize

both the shape and rate simultaneously using Newton’s method. (The state-

dependent and state-independent parameters can be treated as two separate op-

timization problems.) Further, both of these parameters must be strictly greater
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than zero, therefore, a barrier function is used. The optimization problem for the

relevant distribution using ML is defined as follows

minimize
µil,σil

−
T∑
t=1

uilt log p(ylt|µil, σil)

subject to µil > 0, i = 1...I, l = 1...L,

σil > 0, i = 1...I, l = 1...L.

(4.76)

The optimization problem for the irrelevant distribution using ML is defined as

follows

minimize
εl,τl

−
T∑
t=1

I∑
i=1

vilt log q(ylt|εl, τl)

subject to εl > 0, l = 1...L,

τl > 0, l = 1...L.

(4.77)

For MAP estimation, the logarithm of the priors is added to the objective function

minimize
µil,σil

−
T∑
t=1

uilt log p(ylt|µil, σil)− log(G(µil))− log(G(σil))

subject to µil > 0, i = 1...I, l = 1...L,

σil > 0, i = 1...I, l = 1...L.

(4.78)

and

minimize
εl,τl

−
T∑
t=1

I∑
i=1

vilt log q(ylt|εl, τl)− log(G(εl))− log(G(τl))

subject to εl > 0, l = 1...L,

τl > 0, l = 1...L.

(4.79)

To ensure the constraints are followed, a log barrier function is added to the

objective. The ML optimization problems are now

minimize
µil,σil

−
T∑
t=1

uilt log p(ylt|µil, σil)−
1

ck
log(µil)−

1

ck
log(σil), (4.80)
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and

minimize
εl,τl

−
T∑
t=1

I∑
i=1

vilt log q(ylt|εl, τl)−
1

ck
log(εl)−

1

ck
log(τl). (4.81)

The MAP optimization problems with the barrier functions are

minimize
µil,σil

−
T∑
t=1

uilt log p(ylt|µil, σil)− log(G(µil))− log(G(σil))

− 1

ck
log(µil)−

1

ck
log(σil),

(4.82)

and

minimize
εl,τl

−
T∑
t=1

I∑
i=1

vilt log q(ylt|εl, τl)− log(G(εl))− log(G(τl))

− 1

ck
log(εl)−

1

ck
log(τl),

(4.83)

where ck is the number of iterations at iteration k of the optimization. The barrier

function for the rate parameter is not always necessary, and can be omitted in some

implementations.

Newton’s method [80] is an iterative optimization technique using the gradient of

the objective function and the Hessian matrix. Let x be the set of parameters one

wishes to minimize. Newtons method is

xk+1 = xk − αH−1G, (4.84)

where k is the iteration, α is the step size, H is the Hessian, and G is the gradient.

The optimization stops after a specified number of iterations or H−1G becomes

sufficiently small.

Let the objective function be represented by F . The components of the gradient

and the Hessian matrix needed for Newton’s method for the ML formulation are

∂F

∂µil
= − log(σil)

T∑
t=1

uilt + Ψ(µil)
T∑
t=1

uilt +
T∑
t=1

uilt log(ylt)−
1

ckµil
, (4.85)
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∂F

∂σil
= −µil

σil

T∑
t=1

uilt +
T∑
t=1

uiltylt −
1

ckσil
, (4.86)

∂2F

∂µ2
il

=
∂Ψ(µil)

∂µil

T∑
t=1

uilt +
1

ckµ2
il

, (4.87)

∂2F

∂µil∂σil
= − 1

σil

T∑
t=1

uilt, (4.88)

∂2F

∂σ2
il

=
µil
σ2
il

T∑
t=1

uilt +
1

ckσ2
il

, (4.89)

∂F

∂εl
= − log(τl)

T∑
t=1

I∑
i=1

vilt + Ψ(εl)
T∑
t=1

I∑
i=1

vilt +
T∑
t=1

I∑
i=1

vilt log(ylt)−
1

ckεl
, (4.90)

∂F

∂τl
= −εl

τl

T∑
t=1

I∑
i=1

vilt +
T∑
t=1

I∑
i=1

viltylt −
1

ckτl
, (4.91)

∂2F

∂ε2l
=
∂Ψ(εl)

∂εl

T∑
t=1

I∑
i=1

vilt +
1

ckε2l
, (4.92)

∂2F

∂εl∂τl
= − 1

τl

T∑
t=1

I∑
i=1

vilt, (4.93)

and

∂2F

∂τ 2
l

=
εl
τ 2
l

T∑
t=1

I∑
i=1

vilt +
1

ckτ 2
l

, (4.94)

where Ψ(µil) = ∂ log(Γ(µil))
∂µil

and Ψ(εl) = ∂ log(Γ(εl))
∂µil

. Ψ(·) is referred to as the digamma

function.

For MAP, the components of the gradient and Hessian are

∂F

∂µil
= − log(σil)

T∑
t=1

uilt + Ψ(µil)
T∑
t=1

uilt +
T∑
t=1

uilt log(ylt)

− mil − 1

µil
+ sil −

1

ckµil
,

(4.95)
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∂F

∂σil
= −µil

σil

T∑
t=1

uilt +
T∑
t=1

uiltylt −
ζil − 1

σil
+ ηil −

1

ckσil
, (4.96)

∂2F

∂µ2
il

=
∂Ψ(µil)

∂µil

T∑
t=1

uilt +
mil − 1

µ2
il

+
1

ckµ2
il

, (4.97)

∂2F

∂µil∂σil
= − 1

σil

T∑
t=1

uilt, (4.98)

∂2F

∂σ2
il

=
µil
σ2
il

T∑
t=1

uilt +
ζil − 1

σ2
il

+
1

ckσ2
il

, (4.99)

∂F

∂εl
= − log(τl)

T∑
t=1

I∑
i=1

vilt + Ψ(εl)
T∑
t=1

I∑
i=1

vilt +
T∑
t=1

I∑
i=1

vilt log(ylt)

− bl − 1

εl
+ cl −

1

ckεl
,

(4.100)

∂F

∂τl
= −εl

τl

T∑
t=1

I∑
i=1

vilt +
T∑
t=1

I∑
i=1

viltylt −
νl − 1

τl
+ ψl −

1

ckτl
, (4.101)

∂2F

∂ε2l
=
∂Ψ(εl)

∂εl

T∑
t=1

I∑
i=1

vilt +
bl − 1

ε2l
+

1

ckε2l
, (4.102)

∂2F

∂εl∂τl
= − 1

τl

T∑
t=1

I∑
i=1

vilt, (4.103)

and

∂2F

∂τ 2
l

=
εl
τ 2
l

T∑
t=1

I∑
i=1

vilt +
νl − 1

τ 2
l

+
1

ckτ 2
l

. (4.104)

4.3.4 Synthetic Data

For the synthetic data tests, an observation sequence of 2000 time steps is gener-

ated from a two state HMM. There are two relevant features with state-dependent

Gamma distributions. Three irrelevant features are generated from a single Gamma

distribution, and are added to the data, resulting in a model with five features in

total. The model parameters are
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Algorithm π̂1 π̂2 â11 â12 â21 â22

ML 1 0 0.74 0.26 0.40 0.60
MAP 0.67 0.33 0.74 0.26 0.40 0.60

Table 4.13: Gamma parameter estimates for initial distribution and transition
matrix. The prior in MAP affects the initial distribution. The estimates for the

transition probabilities are within 0.01 units of the true probability.

Algorithm µ̂11 µ̂12 µ̂21 µ̂22 σ̂11 σ̂12 σ̂21 σ̂22

ML 10.40 21.04 49.18 112.74 1.04 1.05 0.98 1.13
MAP 10.21 20.90 48.49 107.19 1.01 1.04 0.96 1.07

Table 4.14: Gamma parameter estimates for µ and σ for relevant features.
The estimates for µ22 are more than 5% from the true value. The rest of the

parameter estimates are within 2 units of the true value.

Algorithm ε̂3 ε̂4 ε̂5 τ̂3 τ̂4 τ̂5

ML 32.54 29.78 32.29 1.08 0.99 1.07
MAP 32.01 29.23 31.86 1.07 0.97 1.06

Table 4.15: Gamma parameter estimates for ε and τ for irrelevant features.
The estimates for ε are within 3 units of the true value. The estimates for τ 0.1

units of the true value.

µ1 =
[
10 20

]
, µ2 =

[
50 100

]
, σ1 =

[
1 2

]
, σ2 =

[
1 1

]
,

A =

[
0.75 0.25

0.4 0.6

]
, π =

[
1

0

]
.

The shape parameter for the single Gamma is 30 and the rate is 1.

The hyperparameters for the priors in the MAP formulation are: p̄i = āij = 2, sil =

ζil = ηil = νl = ψl = cl = 1. bl is the mean of the observations for the lth feature;

and m1l = [8 18] and m2l = [45 90] for the relevant features. mil for the irrelevant

features is 1. For the feature saliencies, the weight parameter kl is set to 50. ML

and MAP are initialized with the same values: equal initial state probabilities and

transition probabilities, µinit = m,σinit = 0.9, εinit = b, τinit = 0.9, and ρinit = 0.5,.

The maximum number of iterations is 500 and the convergence threshold is 10−6.

The estimated parameters are in Tables 4.13 to 4.16. As expected, the parameter

estimates for the initial state distribution for the MAP formulation are skewed due

to the prior. The initial state distribution for ML matches the true parameters
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Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

ML 0.9990 0.9987 0.0011 0.0019 9.9996× 10−4

MAP 1 1 0 0 0

Table 4.16: Gamma parameter estimates for ρ of all features. Both formula-
tions identify the relevant and irrelevant features.

exactly. Both algorithms give the same accurate parameter estimates for the tran-

sition probabilities. The parameter estimates for the shape and rate parameters

for both the relevant and irrelevant features are within 20% of the true values. For

the feature saliency parameter estimates, both algorithms accurately identify the

relevant and irrelevant features with the MAP algorithm picking the true values

exactly. The MAP algorithm converges in 18 iterations, while ML converges in

35. In conclusion, ML and MAP are both viable options for the FSHMM with

Gamma features. On the synthetic data, neither algorithm significantly distin-

guishes itself from the other in terms of parameter estimation accuracy but MAP

does converge faster. MAP also has the ability to include the cost of features.

These tests on synthetic data demonstrate that Newton’s method can be used for

estimating parameters of an HMM with Gamma emissions.

4.4 Poisson Features

Consider an HMM with I states and L features. The notation for x and z is the

same as in previous sections; however, Ylt is used to denote a discrete observation.

Assume the relevant features have a state-dependent Poisson distribution and the

irrelevant features have a state-independent Poisson distribution. The conditional

distribution for Yt given xt = i and z is

P (yt|z, xt = i,Λ) =
L∏
l=1

p(ylt|µil, σ2
il)
zlq(ylt|εl, τ 2

l )1−zl , (4.105)

where

p(Ylt|µil) =
µYltil e

−µil

Ylt!
. (4.106)

The marginal distribution for z is the same as Equation 3.2. The joint distribution

of yt and z given xt = i is the same as in Equation 3.3 with Equation 4.106 used
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for p(·|·) and q(·|·). The joint distribution of x, y and z is the same as in Equation

3.5 with Equation 4.105 used for P (yt|z, xt = i,Λ).

The E-step probabilities are the same as in Equations 3.8 - 3.12 with the appro-

priate substitutions and γt(i) and ξt(i, j) calculated using the forward-backward

algorithm (Equations 2.12 and 2.13). Derivations for the ML and MAP M-step

parameter update equations are in Appendix A Section A.8.

4.4.1 M-Step ML

The M-step update parameters are

π̂i = γ1(i), (4.107)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (4.108)

µ̂il =

∑T
t=1 uiltYlt∑T
t=1 uilt

, (4.109)

ε̂l =

∑T
t=1

(∑I
i=1 vilt

)
Ylt∑T

t=1

∑I
i=1 vilt

, (4.110)

and

ρ̂l =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

=

∑T
t=1

∑I
i=1 ui,l,t
T

.

(4.111)

4.4.2 M-Step MAP

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, N is the Gaussian distribution, G is the Gamma distribution using shape

and rate as hyperparameters, and Ai is row i of the transition matrix.



Chapter 4. Other Conditional Feature Distributions 112

π ∼ Dir(π|p̄), (4.112)

Ai ∼ Dir(Ai|āi), (4.113)

µil ∼ G(µil|mil, sil), (4.114)

εl ∼ G(εl|bl, cl), (4.115)

ρl ∼
1

Z
e−klρl , (4.116)

where Z is the normalizing constant. The parameter update equations are

π̂i =
γ1(i) + p̄i − 1∑I

i=1 (γ1(i) + p̄i − 1)
, (4.117)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (4.118)

µ̂il =

∑T
t=1 uiltYlt +mil − 1∑T

t=1 uilt + sil
, (4.119)

ε̂l =

∑T
t=1

(∑I
i=1 vilt

)
Ylt + bl − 1∑T

t=1

(∑I
i=1 vilt

)
+ cl

, (4.120)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (4.121)

4.4.3 Synthetic Data

As in previous sections, the Poisson FSHMM is tested on synthetic data. How-

ever, there is no published VB formulation so only the ML and MAP formulations

are tested. In a later section, the Poisson FSHMM will be tested on a real data

set along with the discrete non-parametric FSHMM. Again, the MAP-beta for-

mulation is excluded as it has already been extensively compared to the MAP

formulation.
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Algorithm π̂1 π̂2 â11 â12 â21 â22

ML 0 1 0.78 0.22 0.41 0.59
MAP 0.33 0.67 0.78 0.22 0.41 0.59

Table 4.17: Poisson parameter estimates for initial distribution and transition
matrix. The prior in MAP affects the estimates for the initial distribution.
The estimates for the transition probabilities are within 0.03 units of the true

probability.

Algorithm µ̂11 µ̂12 µ̂21 µ̂22

ML 10.00 20.04 49.77 99.86
MAP 9.99 20.04 49.76 99.84

Table 4.18: Poisson parameter estimates for µ for relevant features. All esti-
mates are within 0.5 units of the true value.

Algorithm ε̂3 ε̂4 ε̂5
ML 30.28 29.78 30.04

MAP 29.95 29.82 30.11

Table 4.19: Poisson parameter estimates for ε for irrelevant features. All
parameters are within 0.5 units of the true value.

An observation sequence of 2000 time steps is generated from a two state HMM.

There are two relevant features with state-dependent Poisson distributions. Three

irrelevant features generated from a single Poisson distribution with an expected

value of 30 are added to the data, resulting in a model with five features in total.

The model parameters are:

µ1 =
[
10 20

]
, µ2 =

[
50 100

]
, A =

[
0.75 0.25

0.4 0.6

]
, π =

[
0.4

0.6

]
.

The hyperparameters for the priors in the MAP formulation are: p̄i = āij = 2, sil =

cl = 1. bl is the mean of the observations for the lth feature, m1l = [5 15 25 30 35],

and m2l = [40 90 35 30 25]. For the feature saliencies, the weight parameter kl is

set to 50. ML and MAP are initialized with the same values: equal initial state

probabilities and transition probabilities, µinit = m, εinit = b, and ρinit = 0.5. The

maximum number of iterations is 500 and the convergence threshold is 10−6.

The ML method converged in 21 iterations while MAP converged in 184. The

estimated parameters are in Tables 4.17 to 4.20. ML gives initial distribution

estimates that match the training data. In spite of the training data starting in

state 2, MAP gives initial distribution estimates that more closely reflect the true
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Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

ML 1.0000 1.0000 0.3847 0.4999 0.3895
MAP 1.0000 1 0.0050 0.0105 0.0037

Table 4.20: Poisson parameter estimates for ρ of all features. ML overesti-
mates the relevance of the irrelevant features, while MAP successfully identifies

the relevant and irrelevant features.

parameters due to the prior distribution. Both algorithms give accurate estimates

for the transition probabilities and the emission distribution parameters. As seen

in previous formulations, ML overestimates ρ for irrelevant features, while the prior

on the feature saliencies force the MAP estimates towards 0. Both formulations

give accurate estimates for the feature saliencies of the relevant features.

4.5 Discrete Non-Parametric Features

Consider an HMM with I states and L features. For the discrete non-parametric

features, let Pil(Y) be the probability that the observation symbol from the lth

feature is from the set of possible observation symbols Y , given x = i. The total

number of possible observation symbols for the lth feature is Pl.

There are two possibilities for modeling the state-independent distribution. The

state-independent distribution can be modeled as nonuniform and estimated by

the algorithm; or it can be assumed that the state-independent distribution is

uniform and set to a fixed value a priori. For the former, q(Ylt) = Pl(Y) and for

the latter q(Ylt) = P−1
l (note that the conditional parameters have been dropped

from the notation as these distributions are non-parametric).

The notation for x and z is the same as in previous sections. The conditional

distribution for Yt given xt = i and z is

P (yt|z, xt = i,Λ) =
L∏
l=1

Pil(Ylt)
zlq(Ylt)

1−zl , (4.122)

The marginal distribution for z is the same as Equation 3.2. The joint distribution

of yt and z given xt = i is the same as in Equation 3.3 with the appropriate

substitutions used for p(·|·) and q(·|·). The joint distribution of x, y and z is the

same as in Equation 3.5 with Equation 4.122 used for P (yt|z, xt = i,Λ).
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The E-step probabilities are the same as in Equations 3.8 - 3.12 with the appro-

priate substitutions and γt(i) and ξt(i, j) calculated using the forward-backward

algorithm (Equations 2.12 and 2.13). Derivations for the ML and MAP M-step

parameter update equations are in Appendix A Section A.9.

4.5.1 M-Step ML

When q(Ylt) is estimated from data, the ML M-step updates are

π̂i = γ1(i), (4.123)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (4.124)

P̂il(Y) =

∑T
t=1 uiltI(Y = Ylt)∑T

t=1 uilt
, (4.125)

P̂l(Y) =

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt)∑T

t=1

∑I
i=1 vilt

, (4.126)

and

ρ̂l =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

=

∑T
t=1

∑I
i=1 ui,l,t
T

,

(4.127)

where I(Y = Ylt) = 1 if Y = Ylt and 0 otherwise. When the state-independent

distribution is assumed to be uniform and not estimated, P̂l(Y) = P−1
l . The other

parameter update equations do not change and are the same as above.

4.5.2 M-Step MAP

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, Ai is row i of the transition matrix and Pil is a vector representing every

possible observation symbol for state i and the lth feature.
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π ∼ Dir(π|p̄), (4.128)

Ai ∼ Dir(Ai|āi), (4.129)

Pil ∼ Dir(Pil|mil), (4.130)

Pi ∼ Dir(Pl|bl), (4.131)

ρl ∼
1

Z
e−klρl , (4.132)

where Z is the normalizing constant. The parameter update equations are

π̂i =
γ1(i) + p̄i − 1∑I

i=1 (γ1(i) + p̄i − 1)
, (4.133)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (4.134)

P̂il(Y) =

∑T
t=1 uiltI(Y = Ylt) +mil(Y)− 1∑

Y

(∑T
t=1 uiltI(Y = Ylt) +mil(Y)− 1

) , (4.135)

P̂l(Y) =

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt) + bl(Y)− 1∑

Y

(∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt) + bl(Y)− 1

) , (4.136)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (4.137)

As in the ML case, when the state-independent distribution is assumed to be

uniform and not estimated, P̂l(Y) = P−1
l . The prior on the state-independent

distribution is omitted, but the rest of the parameter update equations are the

same as above.



Chapter 4. Other Conditional Feature Distributions 117

4.5.3 Synthetic Data

As in previous sections, the discrete non-parametric FSHMM is tested on synthetic

data. Again, there is no published VB formulation so only the ML and MAP

formulations are tested. For comparison, both the model estimating Pl(Y) and

the model treating it as uniform are evaluated.

An observation sequence of 2000 time steps is generated from a three state HMM.

There are two relevant features with state-dependent discrete non-parametric dis-

tributions. Three irrelevant features generated from a uniform distribution are

added to the data, resulting in a model with five features in total. Both the

relevant and irrelevant features have 3 possible observation symbols. The model

parameters are:

P11(Y) = [0.95 0.025 0.025], P12(Y) = [0.99 0.005 0.005],

P21(Y) = [0.01 0.98 0.01], P22(Y) = [0.025 0.95 0.025],

P31(Y) = [0.025 0.025 0.95], P32(Y) = [0.01 0.01 0.98],

A =


0.55 0.25 0.2

0.3 0.5 0.2

0.15 0.25 0.6

 , π =


0.4

0.4

0.2

 .
The hyperparameters for the priors in the MAP formulation are βi = αij =

mil(Y) = bl(Y) = 2. For the feature saliencies, the weight parameter kl is set

to 50. ML and MAP are initialized with the same values: equal initial state prob-

abilities and transition probabilities are used. For the initial values of Pil(Y), the

symbol with the largest true probability for state i and the lth feature is set to 0.9

and the other two symbols are set to 0.05. For the initial value of Pl(Y) (when

being estimated and not assumed to be uniform), the sum of the symbols divided

by T is used. The maximum number of iterations is 500 and the convergence

threshold is 10−6.

The ML method converged in 53 iterations and ML assuming a uniform distri-

bution for the state-independent distribution (designated ML-U) converged in 53

iterations. MAP converged in 310 iterations and MAP-U converged in 322 itera-

tions. The estimated parameters are in Tables 4.21 to 4.25. There appears to be
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Algorithm π̂1 π̂2 π̂3

ML 0 0 1
ML-U 0 0 1
MAP 0.25 0.25 0.5

MAP-U 0.25 0.25 0.5

Table 4.21: Estimates for non-parametric feature FSHMM initial distribution.
The prior in MAP affects the estimates of the initial distribution.

Algorithm â11 â12 â13 â21 â22 â23 â31 â32 â33

ML 0.58 0.24 0.18 0.31 0.48 0.21 0.15 0.22 0.63
ML-U 0.58 0.24 0.18 0.30 0.49 0.21 0.15 0.22 0.63
MAP 0.58 0.24 0.18 0.31 0.48 0.21 0.15 0.22 0.63

MAP-U 0.58 0.24 0.18 0.31 0.48 0.21 0.15 0.22 0.63

Table 4.22: Estimates for non-parametric feature FSHMM transition matrix.
All estiamtes are within 0.03 units of the true probability.

Algorithm P̂1l(1) P̂1l(2) P̂1l(3) P̂2l(1) P̂2l(2) P̂2l(3) P̂3l(1) P̂3l(2) P̂3l(3)
ML F1 0.99 0 0.01 0 1.00 0 0.01 0 0.99
ML F2 1.00 0 0 0.03 0.95 0.02 0 0 1.00

ML-U F1 0.98 0.01 0.01 0 1.00 0 0.01 0.01 0.98
ML-U F2 1.00 0 0 0.03 0.94 0.02 0 0 1.00
MAP F1 0.95 0.03 0.02 0.01 0.98 0.01 0.02 0.03 0.95
MAP F2 0.98 0.01 0.01 0.04 0.94 0.02 0.01 0.01 0.98

MAP-U F1 0.95 0.03 0.02 0.01 0.98 0.01 0.02 0.03 0.95
MAP-U F2 0.98 0.01 0.01 0.04 0.94 0.02 0.01 0.01 0.98

Table 4.23: Estimates for non-parametric FSHMM Pil(Y). F1 is feature 1
and F2 is feature 2. The estimates for the algorithm that assumes the state
independent distribution is uniform are similar to the estimates for the algorithm
that estimates the states independent distribution. The estimated probabilities

are within 0.05 units of the true probabilities.

little difference between the methods that estimate Pl(Y) and those that assume

it is uniform. Further, the estimates for Pl(Y) are close to a uniform distribution.

These results are most likely biased by the fact that the irrelevant features are

drawn from a uniform distribution.

ML and MAP give similar parameter estimates for A, but the priors skew the

results for π. For the relevant feature parameters, ML tends to overestimate some

of the probabilities, while the use of priors in MAP prevents this. As seen in

previous formulations, ML overestimates ρ for irrelevant features, while the prior

on the feature saliencies force the MAP estimates towards 0. Both formulations

give accurate estimates for the feature saliencies of the relevant features.
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Algorithm P̂1(1) P̂1(2) P̂1(3) P̂2(1) P̂2(2) P̂2(3) P̂3(1) P̂3(2) P̂3(3)
ML 0.34 0.33 0.33 0.35 0.32 0.33 0.34 0.32 0.34

MAP 0.34 0.33 0.33 0.34 0.32 0.34 0.33 0.33 0.34

Table 4.24: Estimates for non-parametric FSHMM Pl(Y), the state-
independent parameters. The estimates are within 0.02 units of the true value.

Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

ML 0.9785 0.9755 0.5004 0.5014 0.5012
ML-U 0.9662 0.9722 0.5004 0.5012 0.5010
MAP 1.0000 1.0000 8.8006× 10−4 0.0050 0.0030

MAP-U 1.0000 1.0000 6.7891× 10−4 0.0072 0.0025

Table 4.25: Estimates for non-parametric FSHMM feature saliencies. The ML
formulation overestimates the relevance of the irrelevant features, while MAP

successfully identifies the relevant and irrelevant features.

4.5.4 Cal IT Data

To test the discrete feature FSHMM formulation, the CalIT2 data set publicly

available on UCI Machine Learning Repository [66] is modeled. The CalIT2 data

set is comprised of counts for people entering and exiting a building through the

main entrance over a 15 week period. Each count is aggregated over a half hour

period, and each half hour is labeled with a time and date. The data includes a

list of scheduled events with their dates and times. The objective for this data set

is to detect the known events.

Ihler, Hutchins, and Smyth [46] model the CalIT2 data set using a joint Markov

and Poisson process; where the day of the week and time of day are modeled

as effects on the Poisson rate parameter, and the observations are the counts.

An FSHMM is trained assuming the entering and exiting counts have a Poisson

distribution, and the day of the week and time of day have discrete non-parametric

distributions. As in [46], a two state Markov chain represents the presence of an

event.

The method presented in [46] demonstrates remarkable accuracy at detecting the

presence of an event, as well as having the ability to estimate the event attendance.

The goal of this analysis is not to suggest the FSHMM is a better method for

modeling this data set, but to demonstrate that discrete feature formulation of

the FSHMM is possible and that features assuming different distributions can be

modeled together. The FSHMM assumes that state 1 is the normal operation or

no event, and state 2 is an event.
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Ihler et al. [46] do not split the data into training and testing sets, and we will

follow this procedure so our analysis is comparable to theirs. The models are

trained on the entire data set and then Viterbi is used to detect the presence of

events on the same data. The VB method in [137] only uses Gaussian distributions

so we will omit the VB method, and only compare the ML, MAP and MAP-beta

formulations.

The three formulations are initialized with the same values, where π = [1; 0]; the

self transition of A is 0.9, and the transition to the other state is 0.1; and the Pois-

son parameters for the state representing no event are set to 1, and the parameters

for an event are set to 20. The non-parametric probabilities are initialized so there

is a larger probability of an event on weekdays, and from 8 o’clock in the morning

to 8 in the evening:

Pday =

[
0.25 0.1 0.1 0.1 0.1 0.1 0.25

0.025 0.19 0.19 0.19 0.19 0.19 0.025

]
,

Ptime =

[
0.0278 . . . 0.0139 . . . 0.0278

0.0139 . . . 0.0278 . . . 0.0139

]
.

The state-independent Poisson parameters are set to the mean of the data and,

as previously stated, the state-independent non-parametric probabilities are fixed

to the inverse of the number of possible symbols (7−1 and 48−1). As always, the

initial feature saliencies are 0.5. For the MAP formulations, ā = 2, p̄ = 1,m =

λinit, s = 1, p̂ = 2, b = εinit, and c = 1. For MAP using an exponential prior, k is

equal to a quarter of the number of observations k = 1260. For MAP-beta, k = 1

and κ = 1260.

The estimated saliencies for the three features are displayed in Table 4.26. Reduced

models were constructed by removing the feature with the lowest estimated ρ. For

ML, the feature representing count entering the building was removed, while for

MAP and MAP-beta the feature representing the day was removed.

The ML full and reduced models successfully detected 28 out of the 29 scheduled

events within the time period the event occurred. The full and reduced models

for both MAP formulations detected a schedule event in the time period the event

occurred with 100% accuracy. There were several unscheduled events detected
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Algorithm Count In Count Out Day Time
ML 0.7895 0.8335 0.9952 0.9993

MAP 0.6876 0.7650 0.0848 0.5372
MAP-beta 0.5083 0.5903 0.0782 0.3256

Table 4.26: Estimated feature saliencies for ML, MAP and MAP-beta. ML
removes the count entering the building, while MAP and MAP-beta remove the

day of the week.

with no method for validation. Ihler et al. [46] were also able to achieve 100%

scheduled event detection using their most liberal choice of prior hyperparameters.

Their method also detected numerous unscheduled events.

4.6 Chapter Conclusions

The primary conclusions from this chapter are listed below.

• Distributions other than a Gaussian can be used as state-dependent feature

distributions for the FSHMM. The conditional feature distributions tested

in this chapter are GMMs, exponential, gamma, Poisson and discrete non-

parametric features.

• As the number of states and mixtures increase, sparsity of the data becomes

an issue, which can lead to parameter estimates for the variance parameters

of 0. Methods that use a prior on the variance are one solution to this issue.

• Newton’s method with a barrier function can be used to solve for the pa-

rameters of the conditional gamma distribution used for the FSHMM.

• Models using different distributions for each feature can be trained. This is

possible due to the assumption that each feature is independent.
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Feature Saliency Explicit

Duration Hidden Markov Model

In this chapter, feature saliency is applied to a semi-Markov process; specifically,

the explicit duration HMM outlined in Section 2.2.1. The emission distribution is

assumed to be a single Gaussian, but any of the distributions outlined in Chapter

4 can be used. The steps of the EM algorithm for an ML and MAP formulation

are derived, and the model is tested on synthetic data, the PHM data set, and

the Kinect data set. This formulation is denoted as the feature saliency explicit

duration hidden Markov model (FSEDHMM).

5.1 FSEDHMM

Consider a hidden semi-Markov model (HSMM) with I states. Let y = {y1, y2, ..., yT}
be the sequence of observed data, where each yt ∈ RL. The observation for the

l-th feature at time t, which is represented by the l-th component of yt, is de-

noted by ylt. Let x = {x1, x2, ..., xT} be the unobserved state sequence. Assume

that the hidden states follow a semi-Markov process, where the duration in a

state is modeled as a truncated Poisson random variable with parameter λ. Let

D = {d1, ..., dN} be the sequence of duration random variables, where N is the

number of sojourn periods or one plus the number of state transitions. Note that

there are two sets of subscripts: t represents the time step, and n represents the

nth sojourn period. The duration of the nth sojourn period can last for multiple

time steps with a minimum value of dmin and a maximum value of dmax. The sum

122
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of the individual duration random variables is equal to the total number of time

steps
∑N

n=1 dn = T . The probability of duration d in state j is represented by

pj(d). The explicit duration formulation assumes that state transition and dura-

tion are independent. The state transition for a semi-Markov model, as defined in

Section 2.2, is split into separate components a(i,d′)(j,d) = ai,jpj(d) when using the

explicit duration assumption. The truncated Poisson distribution (Equation 2.69)

is used for pj(d).

As with all saliency formulations, let z = {z1, . . . , zL} be a set of binary variables

indicating the relevancy of each feature. If zl = 1, then the l-th feature is relevant.

Otherwise, if zl = 0 the l-th feature is irrelevant. The state-dependent and state-

independent distributions are assumed to be Gaussian using the notation outlined

in Section 3.1. The set of latent random variables for the FSEDHMM is {x,z,D},
and the set of model parameters Λ is {π,A, µ, σ, ρ, ε, τ, ω λ}.

The marginal probability of z is the same as Equation 3.2, and the joint distribu-

tion of yt and z, given x, P (yt, z|xt = i,Λ) is the same as Equation 3.3. The joint

probability of all random variables is

P (x,y, z,D) = πx1px1(d1)

[
d1∏
τ=1

P (yτ , z|x1 = i,Λ)

]

N∏
n=2

axn−1,xnpxn(dn)

 d̂n+dn∏
τ=d̂n+1

P (yτ , z|xn = i,Λ)

 ,

(5.1)

where

d̂n =
n−1∑
n̂=1

dn̂. (5.2)

5.2 EM Algorithm for FSEDHMM

The E-step is augmented from the standard FSHMM to include D. TheQ function

is
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Q(Λ,Λ′) = E[logP (x,y, z,D|Λ)|y,Λ′]

=
∑
x,z,D

log(P (x,y, z,D|Λ))P (x, z,D|y,Λ′). (5.3)

The E-step probabilities are the same as Equations 3.8 through 3.12, with the

Equation 2.37 used for γt(j), and Equation 2.35 used for ξt(i, j). In addition,

ηt(j, d) (Equation 2.34) must be calculated. The forward backward algorithm for

an EDHMM is outlined in Section 2.2.1. Derivations for the Q function and ML

and MAP M-step parameter update equations are in Appendix A Section A.10.

5.2.1 ML M-Step

The parameter estimates are the same as the single Gaussian formulation but

include the duration parameter.

π̂i = γ1(i), (5.4)

âij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (5.5)

µ̂il =

∑T
t=1 uiltylt∑T
t=1 uilt

, (5.6)

σ̂2
il =

∑T
t=1 uilt(ylt − µ̂il)2∑T

t=1 uilt
, (5.7)

ε̂l =

∑T
t=1

(∑I
i=1 vilt

)
ylt∑T

t=1

∑I
i=1 vilt

, (5.8)

τ̂ 2
l =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − ε̂l)2∑T

t=1

∑I
i=1 vilt

, (5.9)

λ̂i =

∑T
t=1

∑D
d=dmin

ηt(i, d)d∑T
t=1

∑D
d=dmin

ηt(i, d)
, (5.10)

and
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ρ̂l =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

=

∑T
t=1

∑I
i=1 ui,l,t
T

.

(5.11)

5.2.2 MAP M-step

The priors used for MAP estimation are listed below. Dir is the Dirichlet distri-

bution, N is the Gaussian distribution, IG is the inverse gamma distribution, G

is the gamma distribution and Ai is row i of the transition matrix.

π ∼ Dir(π|p̄), (5.12)

Ai ∼ Dir(Ai|āi), (5.13)

µil ∼ N (µil|mil, s
2
il), (5.14)

σ2
il ∼ IG(σ2

il|ζil, ηil), (5.15)

εl ∼ N (εl|bl, c2
l ), (5.16)

τ 2
l ∼ IG(τl|νl, ψl), (5.17)

λi ∼ G(λi|oi, $i), (5.18)

ρl ∼
1

Z
e−klρl , (5.19)

where Z is the normalizing constant.

The parameter update equations are

π̂i =
γ1(i) + p̄− 1∑I

i=1 (γ1(i) + p̄i − 1)
, (5.20)

âij =

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) , (5.21)

µ̂il =
s2
il

∑T
t=1 uiltylt + σ̂2

ilmil

s2
il

∑T
t=1 uilt + σ̂2

il

, (5.22)



Chapter 5. Feature Saliency Explicit Duration Hidden Markov Model 126

σ̂2
il =

∑T
t=1 uilt(ylt − µ̂il)2 + 2ηil∑T

t=1 uilt + 2(ζil + 1)
, (5.23)

ε̂l =
c2
l

∑T
t=1

(∑I
i=1 vilt

)
ylt + τ̂ 2

l bl

c2
l

∑T
t=1

(∑I
i=1 vilt

)
+ τ̂ 2

l

, (5.24)

τ̂ 2
l =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − ε̂l)2 + 2ψl∑T

t=1

(∑I
i=1 vilt

)
+ 2(νl + 1)

, (5.25)

λ̂i =

∑T
t=1

∑D
d=dmin

(
ηt(i, d)d

)
+ oi − 1∑T

t=1

∑D
d=dmin

ηt(i, d) +$i

, (5.26)

and

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (5.27)

5.2.3 Implementation

HSMMs significantly increase the amount of computation needed for estimating

model parameters and prediction compared to an HMM. The EDHMM assump-

tion, that the state transition and duration are independent, decreases the amount

of computation compared to the general HSMM. However, the computational load

is still much greater than that of a standard HMM, the FSHMM, or some other

formulations of the HSMM. For a comparison of the complexity and storage needs

for different versions of HSMMs, see [133].

As with HMMs, multiplying long streams of probabilities quickly drive calculations

below machine precision. For HMMs, this is addressed by scaling some probabil-

ities. For HSMMs, this issue can be overcome for some data sets by using the

predicted forward and backward probabilities (Equations 2.46 and 2.47). How-

ever, for larger data sets, the predicted probabilities do not completely alleviate

the underflow problem. The E-step probabilities must be calculated in the log

domain, and the log-sum-exponent trick must be used extensively.

The log-sum-exponent trick [80] is used for summing numerous small probabilities,

where the individual probabilities could fall below machine precision, but the sum
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is above machine precision. In generic terms, let x1, ..., xN be a string of very small

numbers, and let z =
∑N

n=1 xn. Taking the log of both sides yields

log z = log

(
N∑
n=1

xn

)

= log

(
N∑
n=1

elog xn

)
.

(5.28)

Let m = max log xn. The log of z can then be written as

log z = m+ log

(
N∑
n=1

elog xn−m

)
(5.29)

Equation 5.29 can be used to calculate the predicted probabilities without the

individual probabilities dropping below machine precision and being rounded to

0.

5.3 Synthetic Data

Three observation sequences are produced by an EDHMM with two relevant

features. The two dimensional vectors of relevant features are generated from

N (µi,Σ), and the duration periods are generated by Pois(λi). The model has two

states and the three sequences have 503, 505, and 502 time steps. The model

parameters are:

µ1 =
[
10 20

]
, µ2 =

[
30 60

]
, Σ =

[
25 0

0 25

]
,

A =

[
0 1

1 0

]
, π =

[
1

0

]
λ =

[
5

10

]
.

Note that the transition matrix has no self transitions, which is a requirement of

EDHMMs. Three irrelevant features of random noise, generated from N (0, I), are

added to the data, resulting in a model with five features in total.
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Algorithm µ̂11 µ̂12 µ̂21 µ̂22

ML 10.0131 20.0315 30.1661 60.0931
MAP 10.0053 19.9857 30.0776 60.0755

Table 5.1: FSEDHMM parameter estimates for µ for relevant features. All
estimates are within 0.2 units of the true value.

Algorithm σ̂11 σ̂12 σ̂21 σ̂22

ML 4.6571 4.8262 4.8509 5.0238
MAP 4.6509 4.8040 4.9093 5.0000

Table 5.2: FSEDHMM parameter estimates for σ for relevant features. All
estimates are within 0.5 units of the true value.

Algorithm ε̂3 ε̂4 ε̂5
ML -0.0811 -0.0615 -0.0449

MAP -0.0067 -0.0567 0.0001

Table 5.3: FSEDHMM parameter estimates for ε for irrelevant features. All
estimates are within 0.1 units of the true value.

The hyperparameters for the priors in the MAP formulation are: p̄i = āij = 1 and

sil = ζil = ηil = νl = ψl = cil = $i = 1. bl is the mean of the observations for

the lth feature. mil is the true value minus 1. oi for each state is equal to 6. For

the feature saliencies, the weight parameter kl is set to 50. The algorithms are

initialized using the true values for πi and aij. Previous tests on synthetic data

have demonstrated that these parameters are easy to estimate, and the EDHMM

formulation restricts the transition probabilities in a two state model. For initial-

izing the other parameters, the following values are used: µ = m, σ = 4, λ = oi,

ε = b, and τ is the standard deviation of the data. The feature saliencies are al-

ways initially set to 0.5. The algorithms are run for a maximum of 500 iterations.

Convergence is tested by calculating the absolute percent change in the likelihood

for ML and the posterior probability for MAP. The convergence threshold is 10−6.

The maximum duration is 20 time steps and the minimum duration is 1 time step.

The model parameters estimated by ML and MAP are all listed in Tables 5.1 to

5.6. The estimates for the transition probabilities and the initial probabilities are

omitted, because they are estimated exactly.

The ML and MAP formulations give similar parameter estimates that are close

to the true values. As with the FSHMM, the primary difference between the

two methods can be seen in the estimates for ρ. The relevant features all have
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Algorithm τ̂3 τ̂4 τ̂5

ML 0.9653 0.9975 0.9453
MAP 1.0065 0.9860 0.9776

Table 5.4: FSEDHMM parameter estimates for τ for irrelevant features. All
estimates are within 0.1 of the true value.

Algorithm λ̂1 λ̂2

ML 5.1942 9.5588
MAP 5.1933 9.5136

Table 5.5: FSEDHMM parameter estimates for λ. All estimates are within
0.5 units of the true value.

Algorithm ρ̂1 ρ̂2 ρ̂3 ρ̂4 ρ̂5

ML 0.9908 0.9984 0.2825 0.2826 0.2731
MAP 0.9953 0.9986 0.0022 0.0191 0.0100

Table 5.6: FSEDHMM parameter estimates for feature saliencies of all fea-
tures. The ML formulation overestimates the relevance of the irrelevant features,

while MAP successfully identifies the relevant and irrelevant features.

estimated ρ above 0.99. ML estimates higher ρ for the irrelevant features than

MAP.

5.4 PHM Data

The ML and MAP formulations of the FSEDHMM are tested on the PHM data

set. The experimental setup is same as described in Section 3.5. There is no version

of the VB formulation for EDHMMs to test, and the MAP-beta formulation for

the FSEDHMM is omitted. Only the 5 state model is evaluated.

The ML and MAP FSEDHMMs are initialized with the same values. The initial

state probability and the transition matrices are not estimated. We assume a

left-to-right model. For an EDHMM, a LTR model has a probability of 1 of

transitioning to the next state, and a zero probability for all other state transitions.

The initial distribution is also known to be 1 for the first state, and 0 for all other

states, because we assume each tool is new and has no wear. The state-dependent

means µil are equally spaced between -2 and 2. The state-dependent standard

deviations σil is 1 for all states and features. The state-independent parameters

are calculated from the training data. The initial values for λi are T/I. For MAP,

the prior hyperparameters are m = µinit, s = ζ = η = ν = ψ = 0.5, b = 0, c = 1,
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Algorithm and RMSE Full RMSE Reduced
Smallest ρ̄

Removed
Tool Model (µm) Model (µm) Feature

ML Tool 1 29.01 28.01 0.8366 Vibration Y
ML Tool 4 26.16 29.73 0.5762 Vibration Y
ML Tool 6 48.11 34.84 0.7700 Vibration Y

Average 34.43 ± 11.94 30.86 ± 3.55
MAP Tool 1 17.83 17.83 0.3239 Force Y
MAP Tool 4 18.68 18.91 0.1768 Force Y
MAP Tool 6 33.51 33.94 0.2069 Force Y

Average 23.34 ± 8.82 23.56 ± 9.01

Table 5.7: FSEDHMM results for 5 state PHM experiments. MAP removes
force in the Y direction, while ML removes vibration in the Y direction which
is less expensive than the force sensor. The average RMSE and ± 1 standard

deviation are given for each formulation.

o = λinit, and $ = 1. Half of the assumed cost of each sensor is assumed for kl

(kl = 1200 for the force features and kl = 600 for the vibration features). The

convergence threshold for this experiment is 10−6. The RMSE values for the full

and reduced models are in Table 5.7 and plots of the estimated paths for the full

and reduced models are in Figure 5.1.

The MAP formulation outperforms the ML formulation in terms of average RMSE

and feature reduction. The ML formulation chooses vibration in the Y direction

to be removed, and the MAP formulation chooses force in the Y direction. The

average estimated ρ for the removed features are lower for MAP than for ML,

which is to be expected due to the prior. The reduced model for ML performs

better than the full while the full model slightly outperforms the reduced for MAP.

When comparing the FSEDHMM to the FSHMM results in Table 3.9, the ML

FSEDHMM has a lower average RMSE for the full model, but a higher average

RMSE for the reduced. The MAP FSEDHMM has a lower average RMSE for

both the full and reduced models. The features selected for removal are the same

for FSEDHMM and FSHMM. The EDHMM formulation improves on the single

Gaussian HMM. However, the GMM emission formulation using MAP (Table 4.8)

outperforms the MAP FSEDHMM. The predictive ability of the FSEDHMM on

the PHM data could possibly be improved upon by using a GMM for the emission

distribution, however, this would increase computation. The difference in the

average RMSE of the FSEDHMM and FSHMM might not be significant; however,

the MAP formulation continues to select the more expensive sensor for removal.
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Algorithm and Tool λ1 λ2 λ3 λ4 λ5

ML 1 & 4 56.52 82.99 80.15 63.22 80.31
ML 1 & 6 68.79 75.84 61.20 48.04 61.19
ML 4 & 6 78.54 79.85 63.63 49.46 72.53

MAP 1 & 4 55.91 78.12 59.90 82.79 74.91
MAP 1 & 6 46.44 83.17 62.78 67.30 81.72
MAP 4 & 6 33.33 82.80 67.12 76.63 81.42

Table 5.8: FSEDHMM λ’s for 5 state PHM experiments. In this table, the
tools indicate the training set. These parameters can be interpreted as the

average time in each state.

One advantage to the FSEDHMM is the ability to interpret the estimated values

for λ as the average time in each state. For example, the estimated λ for ML

using Tools 1 and 4 as the training data are [56.52, 82.99, 80.15, 63.22, 80.31].

On average, this model will spend 56 cuts in the first state. All values for the

estimated λ are in Table 5.8. λ estimated by MAP more closely reflect a true wear

curve than the ML estimates, because the average number of cuts spent in the

first state, which can be interpreted as the initial wear-in state, is shorter than the

average number of cuts in all other states.

5.5 Kinect Data

The FSEDHMM is also tested on the Kinect data set. The data are divided into

training and testing sets as in all previous experiments: the first two thirds are used

of training, the last third is reserved for testing, and the first 2000 observations

of the training set are used for initializing the algorithm. This testing procedure

only provides point estimates for the accuracy. Due to the significant increase

in the computation required to train the FSEDHMM, the training set is broken

into smaller sequences, so it can be processed in parallel. More specifically, the

probabilities for each sequence in the E-step of the EM algorithm can be calculated

independently and in parallel. Each sequence is approximately four minutes worth

of data. Without parallel processing, the amount of time needed to train the

FSEDHMM on the Kinect data set is on the order of months. However, there is a

trade-off to segmenting the data sets in this fashion: it introduces discontinuities to

the data. For the first observation in each of the smaller sequences, the algorithm

has no knowledge of the data that came before it. For the last observation, there is

no knowledge of the data that comes after it. As the number of sequences increases,
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this affect on the data increases. We believe four minute sequences adequately

balance the trade-off between the training time and adding discontinuities to the

data.

ML and MAP are initialized with the same values. The state-dependent param-

eters p(·|·) are initialized by calculating the state-dependent mean and standard

deviation from the initialization set. The parameters for q(·|·) are the means and

standard deviations of the training data. The transition probabilities are initial-

ized by counting the number of transition in the initialization set. The dura-

tion distribution parameters are calculated from the initialization set by averaging

the time spent in each state before a transition. The MAP hyperparameters are

ā = 1, p̄ = 1,m = µinit, s = 0.25, ζ = 0.25, η = 1, b = εinit, c = 0.5, ν = 0.25, ψ =

0.5, o = λinit, $ = 1, and k = 15, 000. In the MAP formulation, in addition to

informative priors on µ, ε, and ρ, which are used in the FSHMM, we place an

informative prior on λ. This is an informative prior because the hyperparameter o

is calculated from the initialization set. The maximum duration is 2000, and the

minimum duration is 30. These values are selected based on the range of times

for each task. The maximum duration is just over one minute, the total work

sequence should take around 30 seconds to complete so none of the primary tasks

should last for one minute. The ‘Other’ state is the only possible task that can

last longer than one minute but this rarely occurs. The minimum duration is one

second, and each task should take at least this amount of time to complete. The

convergence threshold for this experiment is increased to 10−4 in order to decrease

training time.

The fraction of correctly classified observations, or the accuracy, for the ML full

model is 0.8056, and the accuracy for the reduced model is 0.8067. The accuracies

for the MAP full and reduced models are 0.8193 and 0.8037. The full MAP model

gives the best accuracy, and reduced MAP gives the worst. The full and reduced

models are less than 1% apart. Overall, the FSEDHMM performs better on the

Kinect data than the FSHMM. ML removes 5 features, while MAP removes 19,

one more feature than its FSHMM counterpart. This is possibly due to the higher

convergence threshold. While the reduced MAP model does not perform as well

as the full model or either ML model in terms of accuracy, it uses more than half

the number of features with less than a 2% drop in accuracy.

As with the PHM data, we can examine the estimates for the duration parameters

to gain understanding about the process. The parameter estimates for λ are
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Algorithm Fetch Paint Dry Load Walk Other

ML 106.97 203.53 57.68 468.00 33.25 64.99
MAP 92.80 208.91 52.84 446.69 31.31 98.25

Table 5.9: FSEDHMM λ’s for Kinect data. These parameters can be inter-
preted as the average time in each task.

displayed in Table 5.9. We see that on average ‘Walk’ takes the least amount of

time. This makes sense the distance between the painting booth and the drying

rack is about a step. On average, ‘Load’ takes the most time because the worker

can remain at the loading rack for a significant amount of time performing several

tasks.

5.6 Chapter Conclusions

The primary conclusions for this chapter are listed below.

• The feature saliency conditional distribution can be applied to HSMMs. This

chapter specifically shows the implementation for an explicit duration model.

• The log-sum-exponent trick can be used to overcome precision issues when

using the FSEDHMM. Further, predicted probabilities should be used for

calculating the expectations in the E-step.

• The FSEDHMM performs better on both the PHM and Kinect data sets

than the standard FSHMM using a single Gaussian distribution.

• As the number of states and the maximum duration increases, the compu-

tation required for training the FSEDHMM and predicting using Viterbi in-

creases significantly. We address this issue by segmenting the Kinect training

data set into smaller sequences, so that the E-step in EM can be performed

in parallel.



Chapter 6

Conclusion and Future Work

In this chapter, conclusions about the model formulations and numerical experi-

ments performed in Chapters 3, 4 and 5 are given, as well as ideas for future work

stemming from the ideas proposed in this dissertation.

6.1 Conclusion

At the end of Chapters 3, 4 and 5 conclusions from the chapters are summarized

as bullet points. In this section, they are restated and expanded upon.

6.1.1 FSHMM

In Chapter 3, the FSHMM is proposed, and a ML and two MAP formulations are

derived. They are compared to a preexisting VB formulation and standard feature

selection techniques. ML, MAP and MAP-beta use the expectation maximization

algorithm to solve for model parameters. This is possible given that the number

of hidden states in the Markov chain is finite and known a priori. Numerical

experiments on synthetic data and two case study data sets demonstrate that the

FSHMM can be used for simultaneous parameter estimation and feature selection

for HMMs.

The primary difference between the four formulations is the use of informative

priors. ML does not use priors on any model parameters. MAP and MAP-beta

135
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use priors on all model parameters. The difference between these two formulations

is the prior distribution used on the feature saliencies: MAP uses a truncated ex-

ponential while MAP-beta uses a beta distribution. VB classifies some parameters

as random variables and assigns them prior distributions; but classifies others, in-

cluding the feature saliencies, as model parameters and does not assign them prior

distributions. We can now divided the four formulations into two classes: those

that use informative priors on the feature saliencies (MAP and MAP-beta) and

those that do not use priors on the feature saliencies (ML and VB).

The two FSHMM formulations using informative priors on the feature saliencies

(MAP and MAP-beta) have the ability to incorporate the test cost of each feature

into the feature selection process. There are two notions about test cost presented

in this dissertation. The first assumes that the features have a financial cost as-

sociated with its use. For example, consider a system with two features where

feature 1 costs twice as much as feature 2. When used as inputs to a classifier,

if both features result in the same predictive ability of the classifier, the lower

cost feature should be preferred. The MAP and MAP-beta formulations allow for

the relative cost between features to be conveyed to the feature selection process

through the informative prior distribution on the feature saliencies. In other sys-

tems, stakeholders might value a low cost sensor array over high predictive ability.

This would establish a trade-off between these two factors. The priors could be

used to convey the desired trade-off to the estimation algorithm.

The second notion about cost assumes that larger feature sets have a higher cost

due to the increase in computation for prediction and storage requirements. This

becomes crucial as the size of data sets, in terms of both the number of features

and the number of observations, becomes large. Given similar predictive ability, a

smaller feature set should be preferred. Again, the trade-off between accuracy and

cost can be considered and conveyed to the learning algorithm through informative

priors.

The synthetic data experiments demonstrate that ML tends to overestimate the

relevance of irrelevant features, which leads to the inclusion of irrelevant features in

a final feature subset. MAP-beta tends to underestimate the relevance of relevant

features, which leads to the exclusion of relevant features from the final feature

subset. VB provides accurate relevancy estimates for the features, but requires

many more iterations in the training process and does not converge. Further, it

is demonstrated that the feature saliency estimates for VB are affected by the
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number of observations in the training set, i.e. a larger number of observations

results in the over estimation of the relevance of irrelevant features.

When the four model formulations are compared on the PHM data, the MAP

formulation outperforms ML, MAP-beta and VB in terms of accuracy and feature

selection. MAP generally yields lower RMSE and consistently selects a lower cost

feature subset. These experiments also demonstrate that the formulations that

do not use priors on the feature saliencies give inconsistent feature subsets, which

change with different training data sets. MAP and MAP-beta consistently select

the same feature subset regardless of the training data. Further experiments on

the PHM data demonstrate that a reduced conditional distribution, using only the

parameters from the state-dependent distribution, can be used in place of the full

conditional distribution.

The experiments on the Kinect data reiterate the results from the PHM experi-

ments on a larger data set in terms of both the number of features and the number

of observations. The reduced MAP model outperforms all other models and selects

the smallest feature subset. MAP-beta’s problem with underestimating relevant

features is evident in this experiment, where all the features are removed from

the model given a fixed removal threshold. This results in a significant drop in

accuracy from the full model.

While this work does not provide a methodology for selecting hyperparameters

(this is left to future work and expanded on in the next section) a heuristic for

choosing the hyperparameters for the prior distribution on ρ is provided. Given

no other information on the cost of features, T/4, where T is the number of

observations in the training set, appears to be a good rule of thumb. The Kinect

experiments use this rule, while the PHM experiments use the relative cost between

features.

Generally, feature selection techniques attempt to remove redundant or highly cor-

related features. Synthetic data experiments demonstrate that redundant features

can improve the predictive ability of an HMM; thus, a feature selection technique

specifically for HMMs should not require the removal of redundant features. The

FSHMM assumes that each feature is independent. In many applications, this

assumption might not be reasonable. A methodology for dealing with correlated

features for the FSHMM is still an open question and left to future work.
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The MAP FSHMM also outperforms standard feature selection techniques. Su-

pervised sequential searches are extremely sensitive to several factors, including

the choice of the evaluation function and the training set, in terms of both ac-

curacy and feature subset selection. The unsupervised sequential search methods

are more robust, but do not perform as well and cannot incorporate cost into the

feature selection process. The feature similarity method only produces a feature

subset (it does not rank features so the user can control their removal) and does

not incorporate cost. PCA is a feature extraction technique so it can reduce the

dimension of the input, but all features must be collected in order to transform

the data into the principal component space.

6.1.2 Other Feature Distributions

In Chapter 4, FSHMM formulations with feature distributions other than the stan-

dard Gaussian are derived and tested. The distributions explored in this chapter

are mixtures of Gaussian distributions, exponential distributions, gamma distribu-

tions, Poisson distributions, and non-parametric discrete distributions. The GMM

formulation is tested on synthetic data and the PHM data set. The numerical ex-

periments demonstrate that the more complex model can improve the accuracy of

the models over those explored in Section 3.5. However, as the number of states

and mixtures increase, sparsity of data becomes an issue. This is illustrated by

the ML formulation estimating the variance of some conditional distributions as

0. The models with priors do not have this problem, because the priors keep the

estimate greater than 0.

The exponential and gamma FSHMMs are only tested on synthetic data. Testing

these formulations on real world data is left to future work. There is no closed

form solution for the shape parameter of the gamma distribution, so a Newton’s

method with a barrier function is implemented. The existing method outlined for

mixtures of gammas use a simpler gradient descent technique.

Formulations using discrete features are derived for both a Poisson distribution and

non-parametric distributions. An event detection data set is used for numerical

experiments as well as synthetic data. For the event detection experiments, we

demonstrate that the FSHMM can successfully model data with different assumed

distributions. The Poisson distribution is used to model counts of people entering

and exiting the building, and non-parametric distributions are used for features
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representing the day of the week and time of day. The FSHMM achieves accuracy

on par with the model previously published using the event detection data set.

6.1.3 FSEDHMM

In Chapter 5, a feature saliency model for a semi-Markov process is derived and

tested. A semi-Markov process assumes that there is a sojourn or residence time

to each state, meaning that state transitions do not need to occur every time step.

There are several types of HSMMs, but the one studied in this dissertation is

the explicit duration model. The EDHMM models the duration in each state as a

random variable with a state-dependent distribution, and assumes that transitions

and durations are independent. We use a truncated Poisson distribution to model

the state duration. Semi-Markov processes generally perform well on data where

the self-transition probabilities are high, indicating the process stays in the same

state for a number of time steps. Further, the explicit duration assumption works

well when the duration spent in each state is dependent on the current state.

Their are two primary implementation issues for the FSEDHMM, which is why

semi-Markov models are not more widely used. First, numerical precision and

underflow (probabilities that are non-zero being rounded to 0) are two issues that

are not as straight forward to address as when using HMMs. The predicted prob-

abilities can alleviate these issues when the number of states and the maximum

duration are small – e.g. two states and a maximum duration of 3. When these

become larger, the log-sum-exponent trick needs to be implemented. Second, the

computational load for training an EDHMM is significant. We address this issue

by segmenting the Kinect data set into smaller sequences, so they can be processed

in parallel. This reduces the time for training the model from months to days.

However, there is a trade-off to splitting the data into smaller segments: the in-

troduction of discontinuities into the data. Dividing the data into more sequences

allows for faster training time but can lead to less accurate parameter estimates.

Another option is to increase the convergence threshold. Again, we trade faster

training time for less accurate parameter estimates.

The MAP FSEDHMM performs better in terms of accuracy on both the PHM

and Kinect data sets than the standard FSHMM. On the PHM data, the ML

formulation removes a vibration sensor while MAP removes a force sensor. The

FSEDHMM also removes one more feature on the Kinect data set than the FSHMM.
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This is most likely due to the increase in the convergence threshold. In terms of

feature subset selection, the FSEDHMM performs as good or better than the

standard FSHMM. However, the increase in performance comes with a significant

increase in training and prediction times.

6.2 Future Work

Future work concerning informative priors for HMMs and feature selection for

HMMs can be broken into several categories outlined below.

• Reduced Conditional Distribution We outline two conditional distribu-

tions that can be used during prediction: the full conditional which uses the

state-dependent distribution and the state-independent distribution, and the

reduced conditional which uses only the state dependent distribution. We

demonstrate on the PHM data that the reduced conditional can be used

in place of the full conditional, reducing prediction times and parameter

storage needs. However, it is not clear if the reduced conditional should be

used in all cases or if it has significant benefits. Future work should assess

the trade-off between these two conditional distributions, and explore this

question on more data sets to investigate if a methodology for a picking a

conditional distribution for prediction can be established.

• Newton’s Method for Gamma Features In this work, a Newton’s method

for solving for the parameters of an FSHMM with an assumed gamma fea-

ture distribution is presented (Section 4.3.3). In the literature, there exists a

gradient descent procedure for mixtures of gammas [2]. Future work would

include a comparison of Newton’s method to other optimization routines for

solving for the model parameters of latent variable models with a gamma

feature distribution. Comparisons should be made for mixtures of gammas,

standard HMMs with gamma distributions, and the FSHMM with gamma

features presented in thesis. Further, the numerical experiments in Section

4.3.4 are only performed on synthetic data. Future work should include

experiments on real data sets.

• Redundant Features Even though we have demonstrated that redundant

features are not necessarily a problem for HMMs, this is still a needed area
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of research. The FSHMM assumes that each feature is independent. In

practice, this is often not the case. We would expect features calculated

from the same sensor or joints, such as the head and shoulders, to have

non-zero correlations. By assuming the features in our test systems are

independent, were are essentially acting contrary to some prior knowledge

about the system. This is a modeling trade-off. We are neglecting some prior

knowledge (feature correlation) to include other prior knowledge (feature

selection that considers test cost). An embedded feature selection technique

that can include cost and eliminate redundant features is an area of future

research. This could be an addition to the FSHMM or a new method entirely.

• Estimate Number of Hidden States The work in this dissertation as-

sumes that the number of hidden states in the model is known a priori. In

some applications, this might not be possible. There are established tech-

niques for estimating the number of states. However, most are similar to

those used for greedy feature selection, where multiple models with different

numbers of states are constructed, and an evaluation function is used to se-

lect the best model. The VB method in [137] can simultaneously estimate

the number of hidden states or the number of mixtures. This option is lack-

ing in the EM methods derived in this thesis. However, the VB method does

not allow for the inclusion of cost and cannot estimate a LTR Markov chain.

An FSHMM formulation that can include cost and estimate the number of

states is an area of future work.

• Hyperparmaeter Estimation and Selection In this thesis, hyperparam-

eters for all prior distributions are chosen using intuition and not a formal

methodology. A heuristic for the saliency hyperparameter is proposed, but

this is just a general starting point. Future work should develop a methodol-

ogy for estimating the hyperparameters for all of the prior distributions used

for the FSHMM. A significant portion of the future research should focus on

converting cost, and other forms of prior knowledge, into a representative

hyperparameter for the feature saliencies. Methods that can estimate the

values of the hyperparameters from data should be explored.

• Prior Distribution Selection Methodology We study using an informa-

tive prior to incorporate cost into the feature selection process. Two priors

on the feature saliencies, a beta distribution and an exponential distribution,

are proposed and compared. Future work will investigate a methodology for
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selecting the type of distribution used as a prior. The beta and exponen-

tial distributions are used to convey the cost of features. Other types of

distributions could be used to convey different information such as physical

properties or interactions. New priors on the other parameters in the model

should be tested.

• Modeling Trade-offs and Resource Allocation Trade-offs when mod-

eling systems with prior knowledge are an important consideration. Given

a limited amount of time to study a system, the allocation of resources is

important. For example, should one focus on learning as much as possible

about the system before modeling begins, or should they focus on explor-

ing all possible aspects of modeling. This is a trade-off between getting

better priors and getting better models for the likelihood. Non-parametric

Bayesian methods could provide better models for the likelihood. They have

an infinite number of parameters, which significantly increases the amount

of computation in the modeling step. Bayesian methods in general perform

better when the priors give accurate information about the system. In a

Bayesian setting, we now have two competing objectives: either make the

priors as strong as possible or significantly increase the number of model pa-

rameters to better model the data. Non-parametric Bayesian methods with

respect to informative priors is an area of future research.



Appendix A

Derivations

Appendix A outlines in detail the derivations discussed in the body of this thesis.

A.1 Derivations for the Joint and Marginal Dis-

tributions for FSHMM

Start with the conditional distribution of yt given z and xt, 3.1.

P (yt|z, xt = i,Λ) =
L∏
l=1

p(ylt|µil, σ2
il)
zlq(ylt|εl, τ 2

l )1−zl . (A.1)

The joint distribution of yt and z given the state is the product of P (yt|z, xt = i,Λ)

and the marginal distribution of z,

P (z |Λ) =
L∏
l=1

ρzll (1− ρl)1−zl , (A.2)

P (yt, z|xt = i,Λ) = P (yt|z, xt = i,Λ)p(z |Λ)

=

(
L∏
l=1

p(ylt|µil, σ2
il)
zlq(ylt|εl, τ 2

l )1−zl

)
L∏
l=1

ρzll (1− ρl)1−zl

=
L∏
l=1

[ρlp(ylt|µil, σ2
il)]

zl [(1− ρl)q(ylt|εl, τ 2
l )]1−zl .

(A.3)

143
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The marginal distribution of yt given the state can be found by summing the above

equation over all values of z.

P (yt|xt = i,Λ) =
∑
z

P (yt, z|xt = i,Λ)

=
∑
z

L∏
l=1

[ρlp(ylt|µil, σ2
il)]

zl [(1− ρl)q(ylt|εl, τ 2
l )]1−zl

=
L∏
l=1

1∑
zl=0

[ρlp(ylt|µil, σ2
il)]

zl [(1− ρl)q(ylt|εl, τ 2
l )]1−zl

=
L∏
l=1

(
ρlp(ylt|µil, σ2

il) + (1− ρl)q(ylt|εl, τ 2
l )
)
.

(A.4)

A.2 FSHMM Q Function

TheQ function is expanded into a sum of terms where each term can be maximized

independently. The terms are theQ functions for the initial state π, the state tran-

sition matrix A, and the parameters for the emission distribution θ = {µ, σ, ε, τ, ρ},

Q(Λ,Λ′) = Q(π, π′) +Q(A,A′) +Q(θ, θ′). (A.5)

The terms in this sum are given by

Q(π, π′) =
∑
x,z

log πx1P (x, z|y,Λ′)

=
I∑
i=1

log πiP (x1 = i|y,Λ′)

=
I∑
i=1

log πiγ1(i),

(A.6)
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Q(A,A′) =
∑
x,z

(
T∑
t=2

log axt−1,xt

)
P (x, z|y,Λ′)

=
I∑
i=1

I∑
j=1

T−1∑
t=1

log aijP (xt = i, xt+1 = j|y,Λ′)

=
I∑
i=1

I∑
j=1

T−1∑
t=1

log aijξt(i, j),

(A.7)

Q(θ, θ′) =
∑
x,z

(
T∑
t=1

logP (yt, z|x)

)
P (x, z|y,Λ′)

=
T∑
t=1

I∑
i=1

L∑
l=1

1∑
zl=0

[
P (xt = i, zl|y,Λ′)

(
zl(log ρl + log p(ylt|µil, σ2

il))

+ (1− zl)(log(1− ρl) + log q(ylt|εl, τ 2
l ))
)]

=
T∑
t=1

[
I∑
i=1

L∑
l=1

P (xt = i, zl = 1|y,Λ′) log p(ylt|µil, σ2
il)

+
I∑
i=1

L∑
l=1

P (xt = i, zl = 0|y,Λ′) log q(ylt|εl, τ 2
l )

+
L∑
l=1

(
log ρl

I∑
i=1

P (xt = i, zl = 1|y,Λ′)

+ log(1− ρl)
I∑
i=1

P (xt = i, zl = 0|y,Λ′)
)]

=
T∑
t=1

[
I∑
i=1

L∑
l=1

uilt log p(ylt|µil, σ2
il) +

I∑
i=1

L∑
l=1

vilt log q(ylt|εl, τ 2
l )

+
L∑
l=1

(
log ρl

I∑
i=1

uilt + log(1− ρl)
I∑
i=1

vilt

)]
.

(A.8)

A.3 Derivation of ML EM Parameter Updates

Start with the Q function defined in the previous section. The parameters are

separable so each part of the Q function can be maximized separately. Set the

partial derivative with respect to the parameter being optimized equal to 0 to

solve.
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∂

∂πi
Q(π, π′) =

∂

∂πi

(
I∑
i=1

log πiγ1(i)

)

=
γ1(i)

πi
.

(A.9)

This process does not yield a feasible solution. The joint probability P (x1 = i,y|Λ)

is substituted for P (x1 = i|y,Λ) and a Lagrange multiplier is added to ensure the

contraint
∑I

i=1 πi = 1.

∂

∂πi

[
I∑
i=1

log πiP (x1 = i,y|Λ) + λ

(
I∑
i=1

πi − 1

)]
=
P (x1 = i,y|Λ)

πi
+ λ, (A.10)

P (x1 = i,y|Λ)

πi
+ λ = 0, (A.11)

πi =
P (x1 = i,y|Λ)

−λ
. (A.12)

Summing both sides over I yields −λ = P (y|Λ) giving

πi =
P (x1 = i,y|Λ)

P (y|Λ)

= P (x1 = i|y,Λ)

= γ1(i).

(A.13)

The maximization of Q(A,A′) follows a similar logic and has a constraint that the

rows of A must sum to 1.

∂

∂aij

[
I∑
i=1

I∑
j=1

T−1∑
t=1

log aijP (xt−1 = i, xt = j,y|Λ′) + λ

(
I∑
j=1

aij − 1

)]
=

∑T−1
t=1 P (xt−1 = i, xt = j,y|Λ′)

aij
+ λ.

(A.14)
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Setting the derivative equal to 0 yields

aij =

∑T−1
t=1 P (xt−1 = i, xt = j,y|Λ′)

−λ
. (A.15)

Summing both sides over I for all j gives −λ =
∑T−1

t=1 P (xt−1 = i,y|Λ′).

aij =

∑T−1
t=1 P (xt−1 = i, xt = j,y|Λ′)∑T−1

t=1 P (xt−1 = i,y|Λ′)

=

∑T−1
t=1 P (xt−1 = i, xt = j|y,Λ′)∑T−1

t=1 P (xt−1 = i|y,Λ′)

=

∑T−1
t=1 ξt(i, j))∑T−1
t=1 γt(i)

.

(A.16)

The derivations for µ, σ, ε, τ, and ρ all use Q(θ, θ′). To find the updates, set the

partial derivative with respect to the desired parameter equal to 0 and solve for the

parameter. The parameters in Q(θ, θ′) are separable so only the terms containing

the desired parameter updates are required.

∂

∂µil
Q(θ, θ′) =

∂

∂µil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt log p(ylt|µil, σ2
il)

]

=
∂

∂µil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt

(
−1

2
log(2π)− log(σil)−

(ylt − µil)2

2σ2
il

)]

=
T∑
t=1

uilt

(
ylt − µil
σ2
il

)
,

(A.17)

T∑
t=1

uilt

(
ylt − µil
σ2
il

)
= 0, (A.18)

T∑
t=1

uiltµil =
T∑
t=1

uiltylt, (A.19)
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µil =

∑T
t=1 uiltylt∑T
t=1 uilt

. (A.20)

∂

∂σil
Q(θ, θ′) =

∂

∂σil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt log p(ylt|µil, σ2
il)

]

=
∂

∂µil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt

(
−1

2
log(2π)− log(σil)−

(ylt − µil)2

2σ2

)]

=
T∑
t=1

uilt

(
− 1

σil
+

(ylt − µil)2

σ3
il

)
,

(A.21)

T∑
t=1

uilt

(
− 1

σil
+

(ylt − µil)2

σ3
il

)
= 0, (A.22)

T∑
t=1

uilt

(
−1 +

(ylt − µil)2

σ2
il

)
= 0, (A.23)

T∑
t=1

uilt
(ylt − µil)2

σ2
il

=
T∑
t=1

uilt, (A.24)

σ2 =

∑T
t=1 uilt(ylt − µil)2∑T

t=1 uilt
. (A.25)

∂

∂εl
Q(θ, θ′) =

∂

∂εl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt log q(ylt|εl, τ 2
l )

]

=
∂

∂εl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt

(
−1

2
log(2π)− log(τl)−

(ylt − εl)2

2τ 2
l

)]

=
T∑
t=1

I∑
i=1

vilt

(
ylt − εl
τ 2
l

)
,

(A.26)

T∑
t=1

I∑
i=1

vilt

(
ylt − εl
τ 2
l

)
= 0, (A.27)
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T∑
t=1

I∑
i=1

viltεl =
T∑
t=1

I∑
i=1

viltylt, (A.28)

εl =

∑T
t=1

(∑I
i=1 vilt

)
ylt∑T

t=1

∑I
i=1 vilt

. (A.29)

∂

∂τl
Q(θ, θ′) =

∂

∂τl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt log q(ylt|εl, τ 2
l )

]

=
∂

∂τl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt

(
−1

2
log(2π)− log(τl)−

(ylt − εl)2

2τ 2
l

)]

=
T∑
t=1

I∑
i=1

vilt

(
− 1

τl
+

(ylt − εl)2

τ 3
l

)
,

(A.30)

T∑
t=1

I∑
i=1

vilt

(
− 1

τl
+

(ylt − εl)2

τ 3
l

)
= 0, (A.31)

T∑
t=1

I∑
i=1

vilt

(
−1 +

(ylt − εl)2

τ 2
l

)
= 0, (A.32)

T∑
t=1

I∑
i=1

vilt
(ylt − εl)2

τ 2
l

=
T∑
t=1

I∑
i=1

vilt, (A.33)

τ 2 =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − εl)2∑T

t=1

∑I
i=1 vilt

. (A.34)

∂

∂ρl
Q(θ, θ′) =

∂

∂ρl

[
T∑
t=1

L∑
l=1

(
log ρl

I∑
i=1

uilt + log(1− ρl)
I∑
i=1

vilt

)]

=
1

ρl

T∑
t=1

I∑
i=1

uilt −
1

1− ρl

T∑
t=1

I∑
i=1

vilt,

(A.35)

1

ρl

T∑
t=1

I∑
i=1

uilt −
1

1− ρl

T∑
t=1

I∑
i=1

vilt = 0, (A.36)
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(1− ρl)
T∑
t=1

I∑
i=1

uilt − ρl
T∑
t=1

I∑
i=1

vilt = 0, (A.37)

ρl

(
T∑
t=1

I∑
i=1

uilt +
T∑
t=1

I∑
i=1

vilt

)
=

T∑
t=1

I∑
i=1

uilt, (A.38)

ρl =

∑T
t=1

∑I
i=1 uilt∑T

t=1

∑I
i=1 uilt +

∑T
t=1

∑I
i=1 vilt

. (A.39)

A.4 Derivation of MAP EM Parameter Updates

For MAP estimation, add the log of the prior distribution to the Q function and

perform the same steps as the previous section.

∂

∂πi

[
Q(π, π′) + log(G(π)) + λ

(
I∑
i=1

πi − 1

)]

=
∂

∂πi

[
I∑
i=1

log πiγ1(i)− log(B(p̄) +
I∑
i=1

(p̄i − 1) log(πi) + λ

(
I∑
i=1

πi − 1

)]

=
γ1(i)

πi
+
p̄i − 1

πi
+ λ,

(A.40)

γ1(i)

πi
+
p̄i − 1

πi
+ λ = 0, (A.41)

γ1(i) + p̄i − 1 = −λπi, (A.42)

πi =
γ1(i) + p̄i − 1

−λ
. (A.43)

Summing both sides over all I yields

πi =
γ1(i) + p̄i − 1∑I

i=1 (γ1(i) + p̄i − 1)
. (A.44)
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The derivations for the rest of the parameters are

∂

∂aij

[
Q(A,A′) + log(G(A)) + λ

(
I∑
j=1

aij − 1

)]

=
∂

∂aij

[
I∑
i=1

I∑
j=1

T−1∑
t=1

log aijξt(i, j) +
I∑
i=1

(
− log(B(āi)

+
I∑
j=1

(āij − 1) log(aij)

)
+ λ

(
I∑
j=1

aij − 1

)]

=

∑T−1
t=1 ξt(i, j)

aij
+
āij − 1

aij
+ λ,

(A.45)

∑T−1
t=1 ξt(i, j)

aij
+
āij − 1

aij
+ λ = 0, (A.46)

T−1∑
t=1

ξt(i, j) + āij − 1 = −λaij, (A.47)

aij =

∑T−1
t=1 ξt(i, j) + āij − 1

−λ

=

∑T−1
t=1 ξt(i, j) + āij − 1∑I

j=1

(∑T−1
t=1 ξt(i, j) + āij − 1

) . (A.48)

∂

∂µil
[Q(θ, θ′) + log(G(µ))] =

∂

∂µil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt log p(ylt|µil, σ2
il) + log(G(µ))

]

=
∂

∂µil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt

(
−1

2
log(2π)− log(σil)−

(ylt − µil)2

2σ2
il

)

+
I∑
i=1

L∑
l=1

(
− 1

2
log(2π)− log(sil)−

(µil −mil)
2

2s2
il

)]

=
T∑
t=1

uilt

(
ylt − µil
σ2
il

)
− µil −mil

s2
il

,

(A.49)
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T∑
t=1

uilt

(
ylt − µil
σ2
il

)
− µil −mil

s2
il

= 0, (A.50)

s2
il

T∑
t=1

uilt(ylt − µil)− σ2
il(µil −mil) = 0, (A.51)

s2
ilµil

T∑
t=1

uilt + σ2
ilµil = s2

il

T∑
t=1

yltuilt + σ2
ilmil, (A.52)

µil =
s2
il

∑T
t=1 yltuilt + σ2

ilmil

s2
il

∑T
t=1 uilt + σ2

il

. (A.53)

∂

∂σil
[Q(θ, θ′) + log(G(σ))] =

∂

∂σil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt log p(ylt|µil, σ2
il) + log(G(σ))

]

=
∂

∂σil

[
T∑
t=1

I∑
i=1

L∑
l=1

uilt

(
−1

2
log(2π)− log(σil)−

(ylt − µil)2

2σ2
il

)

+
I∑
i=1

L∑
l=1

(
ζil log(ηil)− log(Γ(ζil)) + (−ζil − 1) log(σ2

il)−
ηil
σ2
il

)]

=
T∑
t=1

uilt

(
− 1

σil
+

(ylt − µil)2

σ3
il

)
− 2

ζil + 1

σil
+ 2

ηil
σ3
il

,

(A.54)

T∑
t=1

uilt

(
− 1

σil
+

(ylt − µil)2

σ3
il

)
− 2

ζil + 1

σil
+ 2

ηil
σ3
il

= 0, (A.55)

T∑
t=1

uilt

(
− 1 +

(ylt − µil)2

σ2
il

)
− 2(ζil + 1) + 2

ηil
σ2
il

= 0, (A.56)

σ2
il

T∑
t=1

uilt + 2σ2
il(ζil + 1) =

T∑
t=1

uilt(ylt − µil)2 + 2ηil, (A.57)

σ2
il =

∑T
t=1 uilt(ylt − µil)2 + 2ηil∑T

t=1 uilt + 2(ζil + 1)
. (A.58)
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∂

∂εl
[Q(θ, θ′) + log(G(ε))] =

∂

∂εl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt log q(ylt|εl, τ 2
l ) + log(G(µ))

]

=
∂

∂εl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt

(
−1

2
log(2π)− log(τl)−

(ylt − εl)2

2τ 2
l

)

+
I∑
i=1

L∑
l=1

(
− 1

2
log(2π)− log(cl)−

(εl − bl)2

2c2
l

)]

=
I∑
i=1

T∑
t=1

vilt

(
ylt − εl
τ 2
l

)
− εl − bl

c2
l

,

(A.59)

I∑
i=1

T∑
t=1

vilt

(
ylt − εl
τ 2
l

)
− εl − bl

c2
l

= 0, (A.60)

c2
l

I∑
i=1

T∑
t=1

vilt(ylt − εl)− τ 2
l (εl − bl) = 0, (A.61)

c2
l εl

I∑
i=1

T∑
t=1

vilt + τ 2
l εl = c2

l

I∑
i=1

T∑
t=1

yltvilt + τ 2
l bl, (A.62)

εl =
c2
l

∑T
t=1 ylt

(∑I
i=1 vilt

)
+ τ 2

l bl

c2
l

∑T
t=1

(∑I
i=1 vilt

)
+ τ 2

l

. (A.63)

∂

∂τl
[Q(θ, θ′) + log(G(τ))] =

∂

∂τl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt log q(ylt|εl, τ 2
l ) + log(G(τ))

]

=
∂

∂τl

[
T∑
t=1

I∑
i=1

L∑
l=1

vilt

(
−1

2
log(2π)− log(τl)−

(ylt − εl)2

2τ 2
l

)

+
I∑
i=1

L∑
l=1

(
νl log(ψl)− log(Γ(νl)) + (−νl − 1) log(τ 2

l )− ψl
τ 2
l

)]

=
I∑
i=1

T∑
t=1

uilt

(
− 1

τl
+

(ylt − εl)2

τ 3
l

)
− 2

νl + 1

τl
+ 2

ψl
τ 3
l

,

(A.64)
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I∑
i=1

T∑
t=1

vilt

(
− 1

τl
+

(ylt − εl)2

τ 3
l

)
− 2

νl + 1

τl
+ 2

ψl
τ 3
l

= 0, (A.65)

I∑
i=1

T∑
t=1

vilt

(
− 1 +

(ylt − εl)2

τ 2
l

)
− 2(νl + 1) + 2

ψl
τ 2
l

= 0, (A.66)

τ 2
l

I∑
i=1

T∑
t=1

vilt + 2τ 2
l (νl + 1) =

T∑
t=1

vilt(ylt − εl)2 + 2ψl, (A.67)

τ 2
l =

∑T
t=1

(∑I
i=1 vilt

)
(ylt − εl)2 + 2ψl∑T

t=1

(∑I
i=1 vilt

)
+ 2(νl + 1)

. (A.68)

For the truncated exponential prior

∂

∂ρl
[Q(θ, θ′) + log(G(ρ))]

=
∂

∂ρl

[
T∑
t=1

L∑
l=1

(
log ρl

I∑
i=1

uilt + log(1− ρl)
I∑
i=1

vilt

)
+ log(G(ρ))

]

=
∂

∂ρl

[
T∑
t=1

L∑
l=1

(
log ρl

I∑
i=1

uilt + log(1− ρl)
I∑
i=1

vilt

)
+

+
L∑
l=1

(
− log(Zl)− klρl

)]

=
1

ρl

T∑
t=1

I∑
i=1

uilt −
1

1− ρl

T∑
t=1

I∑
i=1

vilt − kl,

(A.69)

1

ρl

T∑
t=1

I∑
i=1

uilt −
1

1− ρl

T∑
t=1

I∑
i=1

vilt − kl = 0, (A.70)

klρ
2
l −

(
T∑
t=1

I∑
i=1

uilt +
T∑
t=1

I∑
i=1

vilt + kl

)
ρl +

T∑
t=1

I∑
i=1

uilt = 0, (A.71)

klρ
2
l − (T + kl) ρl +

T∑
t=1

I∑
i=1

uilt = 0. (A.72)
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The quadratic formula is used to find the root of Equation A.72

ρ̂l =
T + kl −

√
(T + kl)2 − 4kl(

∑T
t=1

∑I
i=1 uilt)

2kl
. (A.73)

The solution using + in the quadratic formula yields estimates for ρ > 1 so only

the solution using − is used for the parameter estimate.

For the beta prior

∂

∂ρl
[Q(θ, θ′) + log(G(ρ))]

=
∂

∂ρl

[
T∑
t=1

L∑
l=1

(
log ρl

I∑
i=1

uilt + log(1− ρl)
I∑
i=1

vilt

)
+ log(G(ρ))

]

=
∂

∂ρl

[
T∑
t=1

L∑
l=1

(
log ρl

I∑
i=1

uilt + log(1− ρl)
I∑
i=1

vilt

)
+

+
L∑
l=1

(
− log(B(kl, κl)) + (kl − 1) log ρl + (κl − 1) log(1− ρl)

)]

=
1

ρl

T∑
t=1

I∑
i=1

uilt −
1

1− ρl

T∑
t=1

I∑
i=1

vilt +
kl − 1

ρl
− κl − 1

1− ρl
,

(A.74)

1

ρl

T∑
t=1

I∑
i=1

uilt −
1

1− ρl

T∑
t=1

I∑
i=1

vilt +
kl − 1

ρl
− κl − 1

1− ρl
= 0, (A.75)

(1− ρl)
T∑
t=1

I∑
i=1

uilt − ρl
T∑
t=1

I∑
i=1

vilt + (1− ρl)(kl − 1)− ρl(κl − 1) = 0, (A.76)

ρl =

∑T
t=0

∑I
i=1 uilt + kl − 1

T + kl + κl − 2
. (A.77)
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A.5 Derivation of GMM Parameter Updates

The derivations for πi and aij for ML and MAP are the same as in the single

Gaussian case. The derivations for µilm, σilm, εl, τl, and ρl are trivial given the

previous derivations in the single Gaussian case and the updated Q function given

below, so they are omitted from this section.

Begin by redefining the Q function to include Φ.

Q(θ, θ′) =
∑
x,z,Φ

(
T∑
t=1

logP (yt, z,Φ|x)

)
P (x, z,Φ|y,Λ′)

=
T∑
t=1

I∑
i=1

L∑
l=1

1∑
zl=0

M∑
m=1

1∑
φmt=0

{
P (xt = i, zl, φmt|y,Λ′)

∗
[
φmt

(
logωim + zl

(
log ρl + log p(ylt|µilm, σ2

ilm)
)

+ (1− zl)
(

log(1− ρl) + log q(ylt|εl, τ 2
l )
))]}

=
T∑
t=1

[
I∑
i=1

M∑
m=1

logωim

L∑
l=1

P (xt = i, zl = 1, φmt = 1|y,Λ′)

+
I∑
i=1

L∑
l=1

M∑
m=1

P (xt = i, zl = 1, φmt = 1|y,Λ′) log p(ylt|µilm, σ2
ilm)

+
I∑
i=1

L∑
l=1

M∑
m=1

P (xt = i, zl = 0, φmt = 1|y,Λ′) log q(ylt|εl, τ 2
l )

+
L∑
l=1

(
log ρl

I∑
i=1

M∑
m=1

P (xt = i, zl = 1, φmt = 1|y,Λ′)

+ log(1− ρl)
I∑
i=1

M∑
m=1

P (xt = i, zl = 0, φmt = 1|y,Λ′)
)]

=
T∑
t=1

[
I∑
i=1

M∑
m=1

logωim

L∑
l=1

uilmt

+
I∑
i=1

L∑
l=1

M∑
m=1

uilmt log p(ylt|µilm, σ2
ilm) +

I∑
i=1

L∑
l=1

M∑
m=1

vilmt log q(ylt|εl, τ 2
l )

+
L∑
l=1

(
log ρl

I∑
i=1

M∑
m=1

uilmt + log(1− ρl)
I∑
i=1

M∑
m=1

vilmt

)]
.

(A.78)
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For ML estimation, the update equation for ωim is found using the first part of

the Q function

Q(ω, ω′) =
T∑
t=1

I∑
i=1

M∑
m=1

logωim

L∑
l=1

uilmt. (A.79)

In order for
∑M

m=1 ωim = 1, a Lagrange multiplier is added to Q(ω, ω′) when the

partial derivative is taken and set to 0

∂

∂ωim

[ T∑
t=1

I∑
i=1

M∑
m=1

logωim

L∑
l=1

uilmt + λ
( M∑
m=1

ωim − 1
)

= 0, (A.80)

∑T
t=1

∑L
l=1 uilmt

ωim
+ λ = 0, (A.81)

ωim =

∑T
t=1

∑L
l=1 uilmt
−λ

. (A.82)

Summing both sides over M yields −λ =
∑T

t=1

∑L
l=1

∑M
m=1 uilmt which gives

ωim =

∑T
t=1

∑L
l=1 uilmt∑T

t=1

∑L
l=1

∑M
m=1 uilmt

. (A.83)

For MAP estimation, the prior is added to Q(ω, ω′) with the Lagrange multiplier

∂

∂ωim

[
Q(ω, ω′) + log(G(ω)) + λ

( M∑
m=1

ωim − 1
)]

=
∂

∂ωim

[ T∑
t=1

I∑
i=1

M∑
m=1

logωim

L∑
l=1

uilmt+

I∑
i=1

(
− log(B(wi)) +

M∑
m=1

(wim − 1) log(ωim)
)

+ λ
( M∑
m=1

ωim − 1
)]

=

∑T
t=1

∑L
l=1 uilmt

ωim
+
wim
ωim

+ λ,

(A.84)
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where B(wi) is the Beta function. Solving for ωim and summing both sides over

M yields

ωim =

∑T
t=1

∑L
l=1 uilmt + wim − 1∑M

m=1

(∑T
t=1

∑L
l=1 uilmt + wim − 1

) . (A.85)

A.6 Derivation of Exponential EM Parameter

Updates

For the exponential FSHMM, all parameter update equations are the same as the

single Gaussian case except those associated with the state dependent distribu-

tion p(·|·). The only change to the Q function is making p(·|·) an exponential

distribution so the derivation of Q(µil, µ
′
il) is omitted.

For ML estimation, the derivation for the µil update equation is

∂

∂µil

[ T∑
t=1

uilt(log µil − µilylt)
]

= 0, (A.86)

∑T
t=1 uilt
µil

−
T∑
t=1

uiltylt = 0, (A.87)

µil =

∑T
t=1 uilt∑T

t=1 uiltylt
. (A.88)

For MAP estimation, the log of the prior is added

∂

∂µil

[ T∑
t=1

uilt(log µil − µilylt) +mil log(sil)−

log(Γ(mil)) + (mil − 1) log(µil)− µilsil
]

= 0,

(A.89)

∑T
t=1 uilt
µil

−
T∑
t=1

uiltylt +
mil − 1

µil
− sil = 0, (A.90)
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µil =

∑T
t=1 uilt +mil − 1∑T
t=1 uiltylt + sil

. (A.91)

A.7 Derivation of Gamma EM Parameter Up-

dates

The parameter updates for πi, aij and ρl are the same as in the single Gaussian case

so their derivations are omitted from this section. When using a Gamma distri-

bution, only the rate parameter has a closed form solution. The shape parameter

is found using Newton’s method and this is outlined in Section 4.3.3.

For ML estimation, the closed form solutions for σil and τl are found through the

following derivations

∂

∂σil

[ T∑
t=1

uilt
(
µil log(σil)− log(Γ(µil)) + (µil − 1) log(ylt)− σilylt

)]
= 0, (A.92)

µil
∑T

t=1 uilt
σil

−
T∑
t=1

uiltylt = 0, (A.93)

σil =
µil
∑T

t=1 uilt∑T
t=1 uiltylt

. (A.94)

∂

∂τl

[ T∑
t=1

I∑
i=1

vilt
(
εl log(τl)− log(Γ(εl)) + (εl − 1) log(ylt)− τlylt

)]
= 0, (A.95)

εl
∑T

t=1

∑I
i=1 vilt

τl
−

T∑
t=1

( I∑
i=1

vilt

)
ylt = 0, (A.96)

τl =
εl
∑T

t=1

∑I
i=1 vilt∑T

t=1

(∑I
i=1 vilt

)
ylt
. (A.97)
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For MAP estimation, the log of the prior is added

∂

∂σil

[ T∑
t=1

uilt
(
µil log(σil)− log(Γ(µil)) + (µil − 1) log(ylt)− σilylt

)
+mil log(sil)− log(Γ(mil)) + (mil − 1) log(µil)− silµil

+ ζil log(ηil)− log(Γ(ζil)) + (ζil − 1) log(σil)− ηilσil
]

= 0,

(A.98)

µil
∑T

t=1 uilt
σil

−
T∑
t=1

uiltylt +
ζil − 1

σil
− ηil = 0, (A.99)

σil =
µil
∑T

t=1 uilt + ζil − 1∑T
t=1 uiltylt + ηil

. (A.100)

∂

∂τl

[ T∑
t=1

I∑
i=1

vilt
(
εl log(τl)− log(Γ(εl)) + (εl − 1) log(ylt)− τlylt

)
+ bl log(cl)− log(Γ(bl)) + (bl − 1) log(εl)− clεl

+ νl log(ψl)− log(Γ(νl)) + (νl − 1) log(τl)− ψlτl
]

= 0,

(A.101)

εl
∑T

t=1

∑I
i=1 vilt

τl
−

T∑
t=1

I∑
i=1

viltylt +
νl − 1

τl
− ψl = 0, (A.102)

τl =
εl
∑T

t=1

∑I
i=1 vilt + νl − 1∑T

t=1

(∑I
i=1 vilt

)
ylt + ψl

. (A.103)

A.8 Derivation of Poisson EM Update Parame-

ters

For the Poisson FSHMM, all parameter update equations for π, aij and ρ are the

same as the single Gaussian case. The only changes to the Q function is making

p(·|·) and q(·|·) Poisson distributions.

For ML estimation, the derivations for the µil and εl update equations are
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∂

∂µil

[ T∑
t=1

uilt(Ylt log µil − µil − log(Ylt!))
]

= 0, (A.104)

∑T
t=1 uiltYlt
µil

−
T∑
t=1

uilt = 0, (A.105)

µil =

∑T
t=1 uiltYlt∑T
t=1 uilt

. (A.106)

∂

∂εl

[ T∑
t=1

I∑
i=1

vilt(Ylt log εl − εl − log(Ylt!))
]

= 0, (A.107)

∑T
t=1

(∑I
i=1 vilt

)
Ylt

εl
−

T∑
t=1

I∑
i=1

vilt = 0, (A.108)

εl =

∑T
t=1

(∑I
i=1 vilt

)
Ylt∑T

t=1

∑I
i=1 vilt

. (A.109)

For MAP estimation, the log of the prior is added

∂

∂µil

[(
T∑
t=1

uilt(Ylt log µil − µil − log(Ylt!))

)

+mil log sil − log(Γ(mil)) + (mil − 1) log µil − silµil

]
= 0,

(A.110)

∑T
t=1 uiltYlt
µil

−
T∑
t=1

uilt +
mil − 1

µil
− sil = 0, (A.111)

µil =

∑T
t=1 uiltYlt +mil − 1∑T

t=1 uilt + sil
. (A.112)
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∂

∂εl

[(
T∑
t=1

I∑
i=1

vilt(Ylt log εl − εl − log(Ylt!))

)

+ bl log cl − log(Γ(bl)) + (bl − 1) log εl − clεl

]
= 0,

(A.113)

∑T
t=1

(∑I
i=1 vilt

)
Ylt

εl
−

T∑
t=1

I∑
i=1

vilt +
bl − 1

εl
− cl = 0, (A.114)

εl =

∑T
t=1

(∑I
i=1 vilt

)
Ylt + bl − 1∑T

t=1

(∑I
i=1 vilt

)
+ cl

. (A.115)

A.9 Derivation of Discrete Non-Parametric EM

Update Parameters

For the discrete non-parametric FSHMM, all parameter update equations for π,

aij and ρ are the same as the single Gaussian case. The only changes to the

Q function is making p(·|·) and q(·|·) discrete non-parametric distributions. To

ensure that
∑
Y Pil(Y) = 1, a Lagrange multiplier is added to the Q function.

For ML estimation, the derivations for the Pil(Y) and Pl(Y) update equations are

∂

∂Pil(Y)

[
T∑
t=1

uiltI(Y = Ylt) logPil(Y) + λ

(∑
Y

Pil(Y)− 1

)]
= 0, (A.116)

∑T
t=1 uiltI(Y = Ylt)

Pil(Y)
+ λ = 0, (A.117)

Pil(Y) =

∑T
t=1 uiltI(Y = Ylt)

−λ
. (A.118)

Summing both sides over Y , leads to λ = −
∑
Y

(∑T
t=1 uiltI(Y = Ylt)

)
= −T .
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Pil(Y) =

∑T
t=1 uiltI(Y = Ylt)

T
. (A.119)

∂

∂Pl(Y)

[
T∑
t=1

big(
I∑
i=1

vilt
)
I(Y = Ylt) logPl(Y) + λ

(∑
Y

Pl(Y)− 1

)]
= 0,

(A.120)

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt)

Pl(Y)
+ λ = 0, (A.121)

Pl(Y) =

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt)

−λ
. (A.122)

Summing both sides over Y , leads to λ = −
∑
Y

(∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt)

)
=

−T .

Pl(Y) =

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt)

T
. (A.123)

For MAP estimation, the log of the prior is added

∂

∂Pil(Y)

[
T∑
t=1

uiltI(Y = Ylt) logPil(Y)

− log(B(mil)) +
∑
Y

(mil(Y)− 1) logPil(Y)

+ λ

(∑
Y

Pil(Y)− 1

)]
= 0,

(A.124)

∑T
t=1 uiltI(Y = Ylt)

Pil(Y)
+
mil(Y)− 1

Pil(Y)
+ λ = 0, (A.125)

Pil(Y) =

∑T
t=1 uiltI(Y = Ylt) +mil(Y)− 1

−λ
. (A.126)



Appendix A. Derivations 164

Summing both sides over Y , leads to

λ = −
∑
Y

(∑T
t=1 uiltI(Y = Ylt) +mil(Y)− 1

)
which gives

Pil(Y) =

∑T
t=1 uiltI(Y = Ylt) +mil(Y)− 1∑

Y

(∑T
t=1 uiltI(Y = Ylt) +mil(Y)− 1

) . (A.127)

∂

∂Pl(Y)

[
T∑
t=1

( I∑
i=1

vilt
)
I(Y = Ylt) logPl(Y)

− log(B(bl)) +
∑
Y

(bl(Y)− 1) logPl(Y)

+ λ

(∑
Y

Pl(Y)− 1

)]
= 0,

(A.128)

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt)

Pl(Y)
+
bl(Y)− 1

Pl(Y)
+ λ = 0, (A.129)

Pl(Y) =

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt) + bl(Y)− 1

−λ
. (A.130)

Summing both sides over Y , leads to

λ = −
∑
Y

(∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt) + bl(Y)− 1

)
which gives

Pl(Y) =

∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt) + bl(Y)− 1∑

Y

(∑T
t=1

(∑I
i=1 vilt

)
I(Y = Ylt) + bl(Y)− 1

) . (A.131)

A.10 Derivation of FSEDHMM Parameter Up-

dates

As with the FSHMM, the Q function can be split into several parts separating the

parameter associated with the Markov chain from those associated with the state

duration and the emission distribution.

Q(Λ,Λ′) = Q(π, π′) +Q(A,A′) +Q(θ, θ′), (A.132)
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where θ = {µ, σ, ε, τ, ρ, λ}. Expanding Equation 5.3 using the appropriate substi-

tutions for the FSEDHMM and separating the parameters yields the following Q
functions:

Q(π, π′) =
∑
x,z,D

log(π1)P (x, z,D|y,Λ′)

=
I∑
i=1

log(πi)P (x1 = i|y,Λ′)

=
I∑
i=1

log(πi)γ1(i),

(A.133)

Q(A,A′) =
∑
x,z,D

(
N∑
n=2

log(axn−1,xn)

)
P (x, z,D|y,Λ′)

=
I∑
i=1

I∑
j=1

T−1∑
t=1

log(ai,j)P (xt] = i, x[t+1 = j|y,Λ′)

=
I∑
i=1

I∑
j=1

T−1∑
t=1

log(ai,j)ξt(i, j),

(A.134)

Q(θ, θ′) =
∑
x,z,D

N∑
n=1

(
log(pxn(dn)) +

d̂n+dn∑
τ=d̂n+1

log(P (yτ , z|xn = i,Λ′)

)
P (x, z,D|y,Λ′)

=
T∑
t=1

I∑
i=1

D∑
d=dmin

log(pxt(d))P (x[t−d+1:t] = i|y,Λ′)

+
T∑
t=1

I∑
i=1

L∑
l=1

1∑
zl=0

[
P (xt = i, zl|y,Λ′)

(
zl(log ρl + log p(ylt|µil, σ2

il))

+ (1− zl)(log(1− ρl) + log q(ylt|εl, τ 2
l ))
)]
.

(A.135)

From this point, Q(θ, θ′) can be separated into two summations. The first only

has parameters pertaining to the duration distribution. The derivation for this

part can be finished by substituting ηt(i, d) for P (x[t−d+1:t] = i|y,Λ′). The second
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is identical to the Q function for the FSHMM which has already been derived in

the Appendices.

The update for all parameters except λ are the same as previously derived for the

FSHMM. The ML update equation is can be found by setting the derivative of

the first part of Q(θ, θ′) equal to 0.

∂

∂λi

[
T∑
t=1

I∑
i=1

D∑
d=dmin

log(pxt(d))ηt(i, d)

]
= 0, (A.136)

∂

∂λi

[
T∑
t=1

I∑
i=1

D∑
d=dmin

(λi log(d)− λi − log(d!)) ηt(i, d)

]
= 0, (A.137)

T∑
t=1

D∑
d=dmin

(
λi
d
− 1

)
ηt(i, d) = 0, (A.138)

λi =

∑T
t=1

∑D
d=dmin

(
ηt(i, d)d

)∑T
t=1

∑D
d=dmin

ηt(i, d)
. (A.139)

The MAP update equation is found by adding the prior then setting the derivative

equal to 0.

∂

∂λi

[
T∑
t=1

I∑
i=1

D∑
d=dmin

(λi log(d)− λi − log(d!)) ηt(i, d)

+ oi log($i)− log(Γ(oi)) + (oi − 1) log(λi)−$iλi

]
= 0,

(A.140)

T∑
t=1

D∑
d=dmin

(
λi
d
− 1

)
ηt(i, d) +

oi − 1

λi
−$i = 0, (A.141)

λi =

∑T
t=1

∑D
d=dmin

(
ηt(i, d)d

)
+ oi − 1∑T

t=1

∑D
d=dmin

ηt(i, d) +$i

. (A.142)



Appendix B

Sequential Search Results

This Appendix contains all of the sequential search method results from Chapter

3. The first column labeled “Test” contains the tool used for testing. The second

column labeled “Eval” contains the tools used for evaluation. The third column

labeled “Train” contains the tools used for training the model and “U” designates

all unsupervised tools (Tools 2, 3, and 5). The column labeled either “Added”

or “Removed” contains a list of the features or sensors added or removed from

the model in the order they were added or removed from the model. The final

two columns contain the results of testing the selected features on the test tool.

The evaluation function used during the evaluation step is used as the perfor-

mance metric. The performance metric followed by a “1” is the model using only

the training data when building the model for testing. The performance metric

followed by a “2” is the model using the training and evaluation data for testing.

B.1 Sequential Forward Search

Test Eval Train Added RMSE1 RMSE2
1 4 6 U VZ rmse VZ sle FX sle VZ me 23.2850 27.3782
4 1 6 U FY sle FX rmse FZ sle 29.0999 30.7657
6 1 4 U VY sle 46.7726 46.9585

Table B.1: Experiment 1 SFS
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Test Eval Train Added RMSE1 RMSE2
1 4 U 6 A VX sle VZ sle VY rms 19.0689 17.9445

VX me VY me
1 4 U 6 BA VX sle VZ sle VY me 18.3028 18.0947

FY rms VY sle FY me
1 4 U 6 BBA VX sle VZ sle VY me 18.3028 18.0947

FY me VY sle FY rms
1 4 U 6 BBB VX sle VZ sle VY me 18.3028 16.8768

FY me VY sle FZ rms
1 6 U 4 FZ sle VZ sle VX me 24.5273 26.8862
4 1 U 6 VY sle 17.0147 17.1893
4 6 U 1 FY sle FZ sle FY me 26.2982 30.2979
6 1 U 4 VY sle VY rms 42.5751 47.3041
6 4 U 1 A VY sle VY me VX sle 34.2946 37.9831

Table B.2: Experiment 2 SFS

Test Eval Train Added RMSE1 RMSE2
1 4 6 U VZ 21.9622 26.7892
4 1 6 U FZ 24.2417 23.4235
6 1 4 U FY FX 24.5433 24.7485

Table B.3: Experiment 3 SFS

Test Eval Train Added RMSE1 RMSE2
1 4 U 6 VZ VY 29.3652 18.2035
1 6 U 4 VZ 25.4810 26.7892
4 1 U 6 FY FX 22.6151 21.2156
4 6 U 1 VZ 18.8469 19.7496
6 1 U 4 FY FX 25.1434 24.7485
6 4 U 1 VX VY 36.1040 39.3351

Table B.4: Experiment 4 SFS

Test Eval Train Added RMSE1 RMSE2
1 4 6 U VX sle FY sle VZ sle 0.6399 0.5225

VZ me FZ sle VZ rms
4 1 6 U FY sle FX rms VX sle 0.7281 0.7216

VZ sle VX me
6 1 4 U VY sle 1.1778 1.1805

Table B.5: Experiment 5 SFS
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Test Eval Train Added RMSE1 RMSE2
1 4 U 6 AA VX sle VZ sle VY rms FY rms 0.5225 0.3695
1 4 U 6 AB VX sle VZ sle VY rms VX me 0.5225 0.5133
1 4 U 6 BA VX sle VZ sle VY me FY rms 0.5164 0.3695
1 4 U 6 BB VX sle VZ sle VY me FY me 0.5195 0.4880
1 6 U 4 FZ sle VZ sle VX me 0.6249 0.6667
4 1 U 6 VY sle 0.5040 0.5008
4 6 U 1 VX me 0.9759 0.5434
6 1 U 4 VY sle 1.1738 1.1805
6 4 U 1 A VY sle VY me VZ rms 0.8747 0.9984
6 4 U 1 B VY sle VY me VX sle 0.8819 0.9578

Table B.6: Experiment 6 SFS

Test Eval Train Added RMSE1 RMSE2
1 4 6 U VZ 0.5801 0.6619
4 1 6 U FZ FX VY 0.9050 0.9103
6 1 4 U VX VY 0.8927 0.9791

Table B.7: Experiment 7 SFS



Appendix B. Sequential Search Results 170

Test Eval Train Added RMSE1 RMSE2
1 4 U 6 VX VY 0.4472 0.3780
1 6 U 4 VZ 0.6325 0.6619
4 1 U 6 FY FX 0.7389 0.6878
4 6 U 1 VZ 0.6449 0.6325
6 1 U 4 FY FX 0.6947 0.6878
6 4 U 1 VX VY 0.9241 0.9791

Table B.8: Experiment 8 SFS

Test Eval Train Added Acc1 Acc2
1 4 6 U VZ rms 0.5651 0.5206
4 1 6 U FY sle FX rms VX sle VZ sle VX me 0.4984 0.4794
6 1 4 U VX sle 0.4603 0.3810

Table B.9: Experiment 9 SFS

Test Eval Train Added Acc1 Acc2
1 4 U 6 AA VX sle VZ sle VY rms FY rms 0.7270 0.8635
1 4 U 6 AB VX sle VZ sle VY rms VX me 0.7270 0.7365
1 4 U 6 BA VX sle VZ sle VY me FY rms 0.7333 0.8635
1 4 U 6 BB VX sle VZ sle VY me FY me 0.7302 0.7619
1 6 U 4 FZ sle VZ sle VX me 0.6095 0.5556
4 1 U 6 VY sle 0.7460 0.7492
4 6 U 1 VX me VZ sle FZ sle 0.4413 0.5968
6 1 U 4 VY sle 0.2794 0.2730
6 4 U 1 VY rms VZ rms VY sle VX me 0.3302 0.3302

Table B.10: Experiment 10 SFS

Test Eval Train Added Acc1 Acc2
1 4 6 U VZ 0.6635 0.5619
4 1 6 U FZ FY FX VY 0.4730 0.4190
6 1 4 U VY VX 0.3270 0.2222

Table B.11: Experiment 11 SFS

B.2 Sequential Backward Search
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Test Eval Train Added Acc1 Acc2
1 4 U 6 VX VY 0.8000 0.8571
1 6 U 4 VZ 0.6000 0.5619
4 1 U 6 FY FX 0.4540 0.5270
4 6 U 1 VZ 0.5841 0.6000
6 1 U 4 FY FX 0.5175 0.5270
6 4 U 1 VX VY 0.3079 0.2222

Table B.12: Experiment 12 SFS

Test Eval Train Removed RMSE1 RMSE2
1 4 6 U VZ me FX me VZ rms 19.8326 19.6901

VX rms FZ sle
4 1 6 U VY me 23.5113 23.1872
6 1 4 U VY me 20.0487 34.8861

Table B.13: Experiment 1 SBS

Test Eval Train Removed RMSE1 RMSE2
1 4 U 6 VZ rms 18.0304 17.2636
1 6 U 4 VX rms VZ me VX sle 17.2790 17.7750
4 1 U 6 AA VY rms FX rms 22.9934 23.0519
4 1 U 6 AB VY rms FZ me 23.1521 23.1598
4 1 U 6 BA VZ rms FX rms 23.6343 22.9987
4 1 U 6 BB VZ rms FZ rms 23.8629 23.0786
4 6 U 1 VX rms VZ me VZ rms VY rms 23.4939 24.1017

FX sle
6 1 U 4 A FX rms 37.9241 37.9207
6 4 U 1 A VZ me VY rms FX rms FZ me 30.7464 34.4576

FX me FZ rms VX me
6 4 U 1 B VZ me VY me VX me FZ sle 29.3038 40.4509

FZ me FY sle FX rms

Table B.14: Experiment 2 SBS

Test Eval Train Removed RMSE1 RMSE2
1 4 6 U VY FX 25.9527 24.8857
4 1 6 U VY VZ VX FZ 23.7596 21.2156
6 1 4 U FZ VY FX FY VX 23.6698 26.5374

Table B.15: Experiment 3 SBS
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Test Eval Train Removed RMSE1 RMSE2
1 4 U 6 FX 27.1968 27.4125
1 6 U 4 VZ 17.2790 24.7388
4 1 U 6 VX 23.1817 21.6103
4 6 U 1 FZ 25.0843 26.4993
6 1 U 4 VZ 14.7172 32.2658
6 4 U 1 34.7496 34.7584

Table B.16: Experiment 4 SBS

Test Eval Train Removed RMSE1 RMSE2
1 4 6 U VZ me FX me VY me VX me 0.5285 0.4880
4 1 6 U VY me VZ me FZ me FY me 0.6547 0.7015
6 1 4 U VY me 0.5801 0.9085

Table B.17: Experiment 5 SBS

Test Eval Train Removed RMSE1 RMSE2
1 4 U 6 VZ rms FX rms FZ me 0.3984 0.4063

VX me FZ rms VZ me
1 6 U 4 VX rms VZ me VX sle 0.4063 0.4140
4 1 U 6 AA VY rms FX rms 0.7015 0.7015
4 1 U 6 AB VY rms FZ me 0.7127 0.7105
4 1 U 6 BA VZ rms FX rms 0.7105 0.6969
4 1 U 6 BB VZ rms FZ rms 0.7259 0.7037
4 6 U 1 VX rms VZ me VZ rms VY rms 0.7193 0.7216
6 1 U 4 A FX rms VY sle 0.9809 0.8997
6 1 U 4 B VX sle VZ sle FX rms VX me 1.0220 0.9743
6 4 U 1 AA VZ me VZ sle FZ rms FX rms 0.7908 0.9808

FZ me VX me FY rms
6 4 U 1 AB VZ me VZ sle FZ rms FX rms 0.9677 1.0435

FZ me VX me FY me
6 4 U 1 BA VZ me VZ sle FZ me FX rms 0.7908 0.9808

FZ rms VX me FY rms
6 4 U 1 BB VZ me VZ sle FZ me FX rms 0.9677 1.0435

FZ rms VX me FY me

Table B.18: Experiment 6 SBS

Test Eval Train Removed RMSE1 RMSE2
1 4 6 U FZ VZ 0.6992 0.4577
4 1 6 U VY VZ VX FZ 0.7517 0.6878
6 1 4 U FZ VY FY 0.6901 0.8106

Table B.19: Experiment 7 SBS
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Test Eval Train Removed RMSE1 RMSE2
1 4 U 6 FX FY 0.5285 0.6498
1 6 U 4 VZ 0.4063 0.5375
4 1 U 6 VX 0.7237 0.6992
4 6 U 1 FZ 0.7601 0.7705
6 1 U 4 VZ VY VX FZ 0.6947 0.6878
6 4 U 1 VZ 0.5463 0.8545

Table B.20: Experiment 8 SBS

Test Eval Train Removed Acc1 Acc2
1 4 6 U FX rms FX sle 0.6603 0.7333
4 1 6 U VY me 0.5270 0.4921
6 1 4 U VY me 0.6635 0.6317

Table B.21: Experiment 9 SBS

Test Eval Train Removed Acc1 Acc2
1 4 U 6 VZ rms FX rms FZ me 0.8413 0.8349

VX me FZ rms VZ me
1 6 U 4 AA VX rms FX rms FX me VX sle 0.2286 0.4032

VZ rms VZ me FZ sle
1 6 U 4 AB VX rms FX rms FX me VZ me 0.3746 0.4222

VZ rms
1 6 U 4 B VX rms FY rms FX sle 0.6762 0.7143
1 6 U 4 C VX rms FZ rms FX sle 0.6730 0.6317
1 6 U 4 DA VX rms FX me FX rms VX sle 0.2286 0.4032

VZ rms VZ me FZ sle
1 6 U 4 DB VX rms FX me FX rms VZ me 0.3746 0.4222

VZ rms
1 6 U 4 E VX rms FY me FX sle 0.6762 0.5111
1 6 U 4 F VX rms FZ me FX sle 0.6698 0.5143
4 1 U 6 AA VY rms FX rms 0.5079 0.5079
4 1 U 6 AB VY rms FZ me 0.4921 0.4952
4 1 U 6 BA VZ rms FX rms 0.4952 0.5143
4 1 U 6 BB VZ rms FZ rms 0.4730 0.5048
4 6 U 1 VX rms VZ me 0.5111 0.4762
6 1 U 4 A FX rms VY sle 0.6095 0.6571
6 1 U 4 B VX sle VZ sle FX rms VX me 0.5937 0.6222
6 4 U 1 VZ me FY rms FZ rms FZ me 0.3302 0.3302

VX me

Table B.22: Experiment 10 SBS
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Test Eval Train Removed Acc1 Acc2
1 4 6 U FX VZ 0.3492 0.3587
4 1 6 U VY VZ VX FZ 0.4349 0.5270
6 1 4 U FZ VY 0.4857 0.6254

Table B.23: Experiment 11 SBS

Test Eval Train Removed Acc1 Acc2
1 4 U 6 FX FY 0.7206 0.5778
1 6 U 4 VZ 0.8349 0.7111
4 1 U 6 VX 0.4762 0.5111
4 6 U 1 VZ FX 0.4635 0.4794
6 1 U 4 VZ 0.7905 0.6413
6 4 U 1 FM 0.6444 0.6571

Table B.24: Experiment 12 SBS
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Probability Distributions

Gaussian Distribution N (x|µ, σ2)

p(x|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (C.1)

Gamma Distribution Gamma(x|α, β)

p(x|α, β) =
βα

Γ(α)
xα−1e−βx. (C.2)

Inverse Gamma Distribution IG(x|α, β)

p(x|α, β) =
βα

Γ(α)
x−α−1e−

β
x . (C.3)

Dirichlet Distribution Dir(x1, ..., xK−1|α1, ..., αK)

p(x1, ..., xK−1|α1, ..., αK) =
1

B(α)

K∏
i=1

xαi−1
i , (C.4)

where

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
, (C.5)
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and α = (α1, ..., αK).

Exponential Distribution Exp(x|λ)

p(x|λ) = λe−λx. (C.6)

Poisson Distribution Pois(x|λ)

p(x|λ) =
λx

x!
e−λ. (C.7)
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