
Working at a Start-Up: Experiences and Learnings as a Data Science Intern

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ansel Sanchez

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Brianna Morrison, Department of Computer Science

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

Working at a Start-Up: Experiences and Learnings as a Data
Science Intern

CS4991 Capstone Report, 2022

Ansel Sanchez
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
acs7fge@virginia.edu

ABSTRACT

A local Charlottesville start-up, Babylon
Micro-Farms, which specializes in developing smart
cabinets for automated hydroponic produce farming,
was rapidly growing and needed to innovate its
produce monitoring system. As a data science intern, I
was tasked with building a new dashboard of sensor
metrics that would be easy to use and be highly
presentable both to engineers and potential investors.
Working in an Agile environment to complete the
project, I used languages and technologies I was
familiar with such as Python, Linux, and version
control on top of a myriad of new tools learned
throughout the internship experience. In the end, I
developed, for both internal and client use, a full-stack
data scraping, visualizing, and alerting application to
fully monitor all of the company’s farms. Although the
application proved to be a success and a step in the
right direction for a better data visualization and
monitoring platform, improvements would be needed
in the complexity of visualizing sensor data trends over
time as well as in allowing for a better alerting system
with company communication channels like Slack.

1. INTRODUCTION

In creating a start-up, attracting investors is of
utmost importance in the early stages of the company.
When I joined Babylon Micro-Farms (Babylon), they
were in their early investment funding rounds,
specifically series B, in need of growing the company
even more. The company outlook was positive, but the
co-founders had a greater vision for the company,
which required more capital. They wanted to expand
the movement of hydroponic smart cabinets across
state lines and improve upon the automated technology
they currently had. To do this, they needed to attract
investors with a “wow” factor, something that would

impress businesspeople and lure them in to invest in
the growing company. That is why I, along with
another intern, were brought in and tasked with
developing a new dashboard of metrics able to monitor
the data coming in from the smart farming cabinets,
while showing aesthetically pleasing graphical
representations of the metrics to be used by clients and
engineers. Furthermore, and most importantly, with a
system like this, the company would appear to be more
serious, advanced, and sophisticated, which would be
eye-candy to potential investors.

2. BACKGROUND

The company, Babylon Micro-Farms, was
officially founded in 2017 at the University of Virginia
by Alexander Olesen and Graham Smith. The pair were
already working on a prototype of their smart farming
cabinets within the i.Lab at UVA, an incubator that
fosters support for students trying to transform ideas
into products and businesses. Babylon’s main product
is its vertical, hydroponic smart farms that grow
produce within a software-controlled cabinet.

Hydroponic farming is an alternative to
traditional farming techniques in that plants are grown
without soil and instead are set in more nutrient-rich
materials and water. Hydroponic farming boasts a
myriad of benefits over traditional farming, including
higher crop yield, less farming space, less water usage,
increased feasibility during all seasons, and reduced
supply chain issues. Babylon’s goal is to elevate
hydroponic farming by creating a turnkey farming
cabinet for businesses and everyday people that
automates the growing and harvesting process through
software and artificial intelligence (AI).

 Their key product is the Galleri, a smart-
farming cabinet that can grow more than 45 plant
varieties. The cabinet contains various sensors that

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

control the growing conditions including water level,
pH level, humidity, light intensity, and electrical
conductivity. These Internet of Things (IoT) sensors
are programmed using AI and proprietary Babylon
software to allow for the perfect growing conditions for
all of their different crops and for varying growing
situations. At the time I joined the company in 2020,
the only “easy” way for the engineers to look up farm
data from these sensors was via their app. They needed
a more central and sophisticated dashboard of this data
that could perform necessary alerts to engineers when
needed.

3. RELATED WORKS

In developing a central dashboard of metrics of
incoming IoT sensor data for all of Babylon’s farms,
there really was not previous or example work for the
other intern and me to base our application on. We
were given the freedom in designing the UI, including
how the data would be displayed and how alerts would
be sent to engineers. We did, however, use tutorials for
a lot of the platforms and technologies that the
application was built with. For example, we were
unfamiliar with Prometheus, the data scraping
component of the application, and Grafana, the
visualization component of the application, and so we
followed their “Getting Started” tutorials to show us
how each technology could be leveraged [1][2]. And
although these tutorials did not give us complete
inspiration in the design and development of the full
system, they did give us a sound foundation on how to
use these technologies to successfully incorporate them
into the final application.

4. PROJECT DESIGN AND DEVELOPMENT

The application was separated into three key
microservices: data monitoring, data visualization, and
status alerting. Each was contained in its own Docker
Container, a unit that packages software and makes it
easy to deploy by itself or with other Docker
Containers. Although the application was separated
into respective functionalities and services, the whole
application was able to spin up all the services at once
with a simple Docker command inputted via the
command line terminal. The separation of each
microservice allowed for ease of development, as
changes and refactoring to one Container’s code would
not affect the functionality of the other Containers.
YAML files were written to configure how each
Container would be spun-up, including which files

would be ran and what endpoints various webpages
were hosted at.

4.1 Data Monitoring
 The basis for the data monitoring microservice
was in utilizing a data monitoring platform called
Prometheus, a software that allows engineers to easily
pull data from databases or other data storage options.
In my case, the data was hosted on a Flask MQTT
webpage, which essentially is a webpage built with
Python that utilizes the MQ Telemetry Transport
(MQTT) protocol to retrieve data from the IoT sensors
in each of the smart farming cabinets. This webpage
that held all the data and had been built prior to me
joining Babylon and provided an easy way for me to
configure Prometheus to be able to scrape this data, as
all the data was held together in one easily accessible
source and in a standard format. Each line of the
webpage held a sensor data value for one farm along
with metadata such as the sensor type, timestamp, and
farm ID. However, some modifications were made in
how the actual data was formatted on the webpage.

Since the goal of the entire application was to
make a dashboard of metrics that made it easier to read
and assess the health of each of their farms, the actual
farm name would be beneficial to have attached to each
line of data so that engineers would not need to
remember each farm ID. To fix this issue, I edited the
Python program that created the webpage to be able to
match each farm ID to its actual farm name and append
it to its corresponding data lines on the webpage. To
allow Prometheus to scrape this data, I created
numerous configuration files that were written in the
YAML data-serialization language to be able to tell
Prometheus at which endpoint to look for the data and
in what ways to pattern match to pull and group various
data together.

For example, when the webpage that hosts the
data is running, it exposes itself at a certain endpoint in
order for systems to connect and see it. So, I wrote
YAML files that would spin up a separate Prometheus
webpage that would connect to the data webpage’s
endpoint and designed pattern matching code that
would group together data for each specific farm. So,
for example, if one were wanting to see all the sensor
data for a farm with the ID of “1”, the user would use
the query field and type in that specific farm ID and all
the sensor data for that farm would appear in a list or if
one would want to see all pH value data for all farms,

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

one would query “pH” on the Prometheus webpage and
all pH values for all the farms would appear in a list.

4.2 Data Visualization

Once the data monitoring part was completed,
we needed a way to display this data aesthetically.
Grafana, a third-party data visualizing platform, was
used to achieve this due to its ability to connect easily
with data scraped using Prometheus. YAML files were
written to be able to spin up a Grafana webpage that
would connect to the Prometheus webpage exposed at
a certain endpoint. Once the Grafana and Prometheus
webpages were connected, the configuration and
design of the graphs and visualizations of the data were
done all within the Grafana webpage’s UI.

The other intern and I had creative freedom in
the types of graphs to display, how the dashboard
should look, and what sensor data to visualize. We
decided that since this would be a dashboard of metrics
for each farm, all sensor data would be relevant to
display. We first designed and created line graphs to
model data over time. These sensor values included
water level, electrical conductivity, pH, and flow rate.
These were all displayed on one graph, and one could
filter out which data were to be displayed on the graph.
Users could choose to see all the line data or choose to
show a select few with each other. There were also
binary data sensor values that included whether the
light is on, the water pump is on, and if there was
irrigation occurring. These were displayed separately
with each sensor value occupying a card-style block
that displays whether the value is “On” or “Off” and
would be displayed as green if it’s on and red it it’s off.
An example of the visualization can be seen in Figure
1. Lastly, the temperature sensor value would be
displayed in a similar fashion to the binary variables,
as it occupied its own square and displayed the
temperature on this card-style block. Once these
visualizations were complete, users would be able to
query for a specific farm on the Grafana webpage and
it would display all relevant sensor data for that queried
farm.

Figure 1: Card-style block displaying
binary sensor data

4.3 Status Alerting
 The last component of the application is the
status alerting feature. Prometheus can be configured
to send out alerts if the data it scrapes goes over a
certain threshold set by the configurer. The other intern
and I discussed with the senior engineers to get a sense
of what kind of values would raise alarm to them if data
went above or below a certain threshold. For many of
the timeseries data, certain threshold levels were
discussed and were needed to be implemented into the
application to send alerts to engineers. YAML files
were written to set up what sensor values should check
for these threshold values as well as how the
notifications would be set up. As this was just the initial
iteration of the application, alerts were sent via email
to the engineers. These alerts contained the farm name,
farm ID, sensor value, and timestamp.

5. RESULTS
 At the conclusion of my internship, a basic
full-stack application that monitored, displayed, and
alerted engineers of data from each of their hydroponic
farms was completed. The application is currently
being used by Babylon as a way to keep track of the
health of their farms and as a way to “wow” potential
investors by illustrating a more sophisticated oversight
system of their farms.

Prior to the competition of the system,
engineers had a hard time looking at all their sensor
data at once. Now, engineers can quickly lookup farms,
either all at once or query them individually, to have
better visibility on the activity and health of their
farms’ sensor data. With this application in use,
Babylon has been able to grow significantly, as it
attracts the capital of investors as well as makes them

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

more efficient by having easy access to their sensor
data in one application.

6. CONCLUSION
 At the end of my internship with Babylon
Micro-Farms, a full-stack data monitoring, visualizing,
and alerting system was developed. This dashboard of
metrics served as an all-encompassing application for
engineers to gain better visibility of their farm data in
an easy-to-use way. This also allowed for better data
monitoring through visually appealing graphs and
notifications for concerning statuses of farm metrics.
Furthermore, this helped to greatly increase capital for
the start-up, as it allowed Babylon to show investors a
more sophisticated way of tracking their data, which
gives confidence to investors that the company is
serious in their goal of creating a more sustainable
future.

7. FUTURE WORK
 For further development of this project, it
would be more beneficial to the engineers to add in
more complex graphs that can visualize different data
trends together. This would allow engineers to be able
to diagnose problems with more information by being
able to see patterns amongst data trends that might be
similar to each other. Furthermore, the notification
system should also be improved. Currently,
notifications are sent via email. However, most of the
engineers at Babylon use Slack as the primary
communication channel, so an integration of the
application’s notifications to be sent to Slack would be
ideal.

8. ACKNOWLEDGMENTS
 I would like to thank my partner, Deniz
Cakmak, who was the other intern during my summer
internship with Babylon Micro-Farms. She played a
crucial role in helping to develop this application. I’d
also like to thank the lead engineer that worked as our
supervisor, Amandeep Ratte. He provided valuable
support in trying to help us solve problems we had,
provide us with materials and tutorials for success, and
general guidance to lead us in creating the final
deliverable.

REFERENCES
[1] Grafana. Get started with Grafana and prometheus:
Grafana documentation. Retrieved October 21, 2022

from https://grafana.com/docs/grafana/latest/getting-
started/get-started-grafana-prometheus/

[2] Prometheus. Getting started: Prometheus.
Retrieved October 21, 2022 from
https://prometheus.io/docs/prometheus/latest/getting_
started/

