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In this work, we develop an efficient computational frame-
work for process space exploration in laser powder bed fu-
sion (LPBF) based additive manufacturing technology. This
framework aims to find suitable processing conditions by
characterizing the probability of encountering common build
defects. We employ a Bayesian approach towards inferring a
functional relationship between LPBF processing conditions
and the unobserved parameters of laser energy absorption
and powder bed porosity. The relationship between process-
ing conditions and inferred laser energy absorption is found
to have good correspondence to literature measurements of
powder bed energy absorption using calorimetric methods.
The Bayesian approach naturally enables uncertainty quan-
tification and we demonstrate its utility by performing effi-
cient forward propagation of uncertainties through the mod-
ified Eagar-Tsai model to obtain estimates of melt pool ge-
ometries, which we validate using out-of-sample experimen-
tal data from the literature. These melt pool predictions are
then used to compute the probability of occurrence of keyhole
and lack-of-fusion based defects using geometry-based crite-
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ria. This information is summarized in a probabilistic print-
ability map. We find that the probabilistic printability map
can describe the keyhole and lack of fusion behavior in ex-
perimental data used for calibration, and is capable of gen-
eralizing to wider regions of processing space. This analysis
is conducted for SS316L, IN718, IN625, and Ti6Al4V using
melt pool measurement data retrieved from the literature.

1 Introduction
Additive manufacturing (AM) technologies are a class

of manufacturing methods in which products are built by de-
positing and fusing raw material in successive passes and
layers. In particular, metal-based AM technologies like
Laser Powder Bed Fusion (LPBF) successively fuse layers
of metal powder using a scanning laser [1]. There has been
an increased interest in the technology recently due to the
potential advantages that AM offers over traditional tech-
niques, such as the ability to enable on-demand manufac-
turing and greater design flexibility. A major challenge is
controlling and understanding variability from print-to-print



and machine-to-machine [2].
A variety of modeling approaches have been used to

study the LPBF process and establish the relationship be-
tween processing parameters and defects. A common ap-
proach is to focus on modeling the melt pool geometry. This
is due to the strong correlation between the melt pool geome-
try and common defects encountered in LPBF. Tang et al. [3]
used melt pool data to accurately predict porosity arising
from insufficient overlap of the melt pool (lack-of-fusion).
Cunningham et al. [4] studied pore formation in Ti6Al4V
samples and observed that excess power density caused key-
holing pores. Scime and Beuth [5] performed ex-situ char-
acterization of IN718 single tracks and established the rela-
tionship between melt pool geometries and porosity defects
arising from keyholing, lack-of-fusion, and balling.

Approaches for modeling the melt pool range from high-
resolution multi-physics simulations of the LPBF process
(e.g [6]) to simpler analytical models, e.g the Eagar-Tsai
(ET) model [7] or the Rosenthal model [8]. Although high-
fidelity simulations and finite-element methods can more
accurately reflect the complex physical phenomena in the
LPBF process, they are more computationally expensive,
making them unsuitable for usage in studies that aim to char-
acterize a large number of experimental conditions. Alterna-
tively, one can choose to employ a lower-fidelity, computa-
tionally cheap analytical model. Although these models dis-
play some inconsistency with experimental measurements,
they are able to capture the essential relationship between
processing parameters and melt pool geometries, and have
successfully been used in guiding parameter exploration and
mapping process space [9, 10].

Data-driven and machine learning (ML) modeling ap-
proaches also have gained maturity, and can be used in tan-
dem with simulation modeling and experimental data to ex-
tract knowledge about the LPBF process. The review by Qin
et al. [11] details applications of ML in AM, which can in-
clude in-situ process monitoring and using data mining to
investigate correlations between processing parameters, ma-
terials properties, and melt pool geometry. However, purely
ML approaches require large amounts of data and can have a
black-box nature. Instead, one can combine ML approaches
with simulation models. One such method is via a calibration
routine, which fits the model to experimental data by finding
a suitable value for an unobserved parameter of the model.
For more expensive models, often ML surrogates are used in
calibration. This involves approximation by a fast-running
ML model, e.g Gaussian process regression [12–14]. This
approximation is not necessary for cheaper models.

A critical parameter that is difficult to measure in real
time during the manufacturing process is the laser energy
absorption, as it is closely linked to physical phenomena
governing the transition between conduction mode welding
and keyhole mode welding. Thus, absorptivity is commonly
selected as a calibration parameter in modeling studies of
LPBF [15–17]. It is typical to approximate a material’s laser
absorptivity with a value which is constant over the entire
processing space. This is a reasonable approximation for
conduction-mode welding, but breaks down in the keyhole

regime as the keyhole shape and vapor depression below the
laser influences the absorption of laser energy [18]. Exper-
imental studies have demonstrated the dependence of laser
energy absorption on processing parameters [19, 20].

Due to the nature of LPBF as a variable process, there
has been interest and developments in applying techniques
from the field of uncertainty quantification (UQ) to model-
ing techniques in LPBF [21]. Uncertainty in modeling may
arise due to inherent randomness in the underlying physical
processes (aleatoric uncertainty), or due to unknown parame-
ters of the physical system (epistemic uncertainty). A natural
way to model uncertainty in parameters in calibration studies
is to employ a Bayesian approach towards inferring unob-
served parameters [17,22,23]. Rather than providing a point
estimate, Bayesian methods combine prior knowledge with
experimental data to provide uncertain estimates of unob-
served parameters [24]. After carrying out inference, one is
given uncertain estimates for unobserved parameters, which
cannot be compared directly to experimental data. Then, it
is necessary to use uncertainty propagation to obtain useful
estimates for comparison. An efficient approach towards un-
certainty propagation that has been explored in the AM liter-
ature is the polynomial chaos method [25], which requires
significantly less model evaluations than standard Monte-
Carlo approaches to achieve comparable estimation quality.

Once a model has been fit, additional work must be done
to extract insights about the parameter space. A printability
map uses the model to summarize the relationship between
processing parameters and likely defects in a single graphic.
Typically, regions of the laser power/laser scan speed space
are labeled according to the likely defect; e.g keyhole, lack of
fusion, or balling [26, 27]. These labels may be based upon
scaling ratios of the melt pool [10]. Previous studies inves-
tigating frameworks for constructing printability maps have
mostly employed deterministic models, resulting in sharp
well-defined transition boundaries between melting regimes.
However, it may not be realistic to treat the boundaries pre-
dicted by a model to be so well-defined, due to the uncertain-
ties in the modeling process and in the LPBF process itself.
A principled approach is to propagate modeling uncertain-
ties into the printability map itself. Vela et al. [28] created
probabilistic maps exploring the effect of alloy composition
on balling. Wang et al. investigated the propagation of un-
certainty into predictions of final part porosity [22]. Ye et
al. [29] explored probabilistic maps for Directed Energy De-
position, but as of yet this has not been explored for the case
of melt pools in LPBF.

In this work, we employ a modified version of the ET
model to develop an efficient computational framework with
UQ for exploration of the LPBF process space. First, in con-
trast to previous calibration studies using the ET model, we
infer laser-power and laser-speed dependent values for the
calibration parameters in our study. This dependence better
reflects the underlying physical processes involved in LPBF,
and the inference procedure allows for flexibility in model-
ing results across different experiments and conditions. Sec-
ond, we utilize an efficient uncertainty propagation routine
based upon polynomial chaos to propagate uncertainties aris-



ing from parameter estimation through the ET model. Fi-
nally, the uncertainty propagation routine is used to construct
a new variant of the printability map taking these uncertain-
ties into account (the probabilistic printability map). This
approach will provide a comprehensive approach in charac-
terizing the printability of materials and assisting in process
optimization. The workflow of our approach is visualized in
Figure 1.

2 Methods
2.1 Modified Eagar-Tsai model and thermophysical

properties of materials
The modified ET model used in this work was first de-

veloped by Whalen et al [23], which adapts the original ET
model by the inclusion of parameters specific to LPBF. In
particular, these are apparent absorptivity and porosity pa-
rameters. For a full description of the model, we refer back
to the original work [23], but provide a brief overview of the
parameters of interest here.

The original ET model [7] may be used to predict the
temperature field arising from a Gaussian heat source mov-
ing over a flat metal plate. The heat source is described by
the parameters of speed v, power P, and the distribution pa-
rameter of the heat source σ, i.e the standard deviation of the
Gaussian beam. The substrate is described by the thermal
diffusivity a, the initial temperature T0, the critical (melting)
temperature Tc, and the density ρ. Given these parameters,
the model outputs an approximation of the temperature field
under the laser. From this, we obtain an estimate of the melt
pool dimensions by selecting isotherms at the melting tem-
perature of the material.

In the modified ET model, we incorporate the param-
eters of apparent laser absorptivity (η) and apparent pow-
der bed porosity (φ). Temperature-dependent thermophysical
properties were retrieved from the literature, and are enumer-
ated for each material in Table 1. Apparent absorptivity is a
coefficient on the power input, i.e

Peff = ηP

Thus, an absorptivity of η = 1 corresponds to full laser ab-
sorption. Porosity is inversely related to the powder bed
packing fraction. This quantity enters the model as an ef-
fective density and an effective thermal conductivity.

ρeff = (1−φ)ρsolid

Thus, a value of φ near 1 indicates a very low packing
density, and a value near 0 indicates a very high (near solid)
packing density. The effective thermal conductivity is com-
puted as

κeff = κsolid
1+(ke −1)Bφ

1−Bψφ

by the Lewis-Nielson model [30], where ke is the Einstein
coefficient. B is a constant capturing the relationship be-
tween the thermal conductivity of the material and the ther-
mal conductivity of the inert gas. ψ depends on the maxi-
mum attainable powder bed porosity and the current poros-
ity φ [23, 30]. We selected argon as the inert gas, and its
temperature-dependent thermal conductivity was retrieved
from [31] and [32].

In LPBF, it is known that powder bed conditions can
be complex and heterogeneous across different locations in
the powder bed, and so a single scalar such as the appar-
ent powder bed porosity φ is unlikely to realistically describe
these conditions. However, as changes in apparent powder
porosity can influence the thermal conductivity, appropriate
calibration of the apparent porosity parameter has the pos-
sibility of capturing LPBF phenomena that influence heat
transfer and energy absorption within the melt pool, which
are not explicitly modeled by the ET model. These may
include Marangoni convection and vapor depression forma-
tion, which affect the melt pool width and melt pool depth
respectively. In this sense, including apparent absorptivity
along with apparent porosity gives the ET Model additional
flexibility in modeling thermal phenomena that are influen-
tial in melt pool formation in LPBF while retaining a high
degree of computational efficiency. Previous studies have
examined the utility of including such parameters within the
modeling process [15, 33].

Material References

IN625 [34] [35] [36]

IN718 [37] [38] [39] [40]

SS316L [41] [42]

Ti6Al4V [43]

Table 1. Sources for thermophysical properties of the studied ma-
terials.

2.2 Bayesian calibration of absorptivity and porosity
Although the modified ET model incorporates addi-

tional information that the original ET model does not, it
requires the use of a parameter calibration procedure to
improve agreement with experiment. We opt to use the
Bayesian calibration procedure. A key reference for the
Bayesian calibration of computer models is Kennedy and
O’Hagan [44]. We adapt their inference paradigm for the
ET model to balance ease of modeling, computational effi-
ciency, and predictive accuracy given the underlying physi-
cal phenomena in LPBF.

Given an experimental dataset, Bayesian calibration of
a computer model requires the specification of at least 3 el-
ements: (1) the model to be calibrated; in this case the ET
model. (2) A likelihood function, specifying the likelihood
of unobserved parameters given the experimental data and



Fig. 1. The workflow of our computational modeling approach. Functional calibration of absorptivity and porosity is discussed in Sections
2.1-2.3. In this step, we first utilized Bayesian inference to calibrate the modified ET numerical model [23] by inferring values for laser energy
absorption and powder bed porosity based on limited experimental data from the literature. Then, we built two sets of independent data-driven
models using the non-linear heteroscedastic Bayesian additive regression trees (HBART) method that links the LPBF processing conditions
with the parameters of (1) absorption and (2) powder bed porosity. These HBART models allow us to predict, along with the associated
uncertainties, the absorptivity and powder bed porosity for the entire LPBF processing space. In the uncertainty propagation step (discussed
in Section 2.4), we combined predictions from HBART with polynomial chaos expansion and the modified ET model to predict the melt
pool geometries (depth and width), along with the associated uncertainties. The final outcome of our approach is a probabilistic printmap
(discussed in Section 2.5) that uses the predictions from the previous steps to delineate regions in the processing space in terms of the
probability of occurrence of build defects, namely keyhole and lack of fusion. In the previous work, Whalen et al. developed the Bayesian
inference approach for calibrating the modified ET model using experimental data of 316L stainless steel and constructed deterministic
printability maps [23]. In this work, we have expanded the methodology by formally modeling uncertainty at each stage of the process.
We use HBART to model an uncertain parameter response surface, and employ state-of-the-art uncertainty propagation techniques such
as polynomial chaos expansions to rigorously construct probabilistic printability maps. We demonstrate the promise of this approach on a
number of important engineering alloys, namely SS316L, IN625, IN718 and Ti6Al4V.

the model. (3) Prior distributions, which can be used encode
expert knowledge about likely parameter values prior to fit-
ting to data. A notable feature of Bayesian inference is that
it outputs a probability distribution for an unknown param-

eter rather than a point estimate. This distribution is known
as a posterior distribution [24], and this feature is particu-
larly desirable for uncertainty analysis. A standard procedure
for computing the posterior is Markov Chain Monte Carlo



(MCMC) [45].
Let ETd(X ,φ,η) and ETw(X ,φ,η) be the functions

which respectively return the melt pool depth and width as
computed by the modified ET Model. X is a vector of pro-
cessing conditions X = [P,V,σ] where P is laser power, V is
laser speed, and σ is the distribution parameter of the laser
beam. φ and η again denote the powder porosity and ab-
sorptivity respectively. Let D = {(Xi,di,wi)}n

i=1 denote the
experimental melt pool measurement data. Xi = [Pi,Vi,σi] is
the set of processing parameters associated with the ith mea-
surement, and di,wi denote the measured depth and width.

We infer the unobserved parameters of porosity φ and
absorptivity η, and estimate separate sets of parameters for
the depth and the width, resulting in four estimates: φd and
ηd for the depth, and φw and ηw for the width. Following the
notation of Kennedy and O’Hagan [44], this is written as:

wi = ETw(Xi,φw,ηw)+ εi

di = ETd(Xi,φd ,ηd)+ εi

where the noise is assumed to be Gaussian with εi ∼
N (0,σ2

ε). We set the standard deviation of the noise as
σε = 15 in both inference schemes.

While depth and width are unlikely to have the same
variation experimentally, without further information prior
to acquiring calibration data, this is a reasonable simplifying
assumption that reduces the computational burden. Further-
more, variation in the data will ultimately be captured in the
posterior distributions of the fitted parameters. So, the pos-
terior distributions will capture both aleatory and epistemic
uncertainties. Calibration studies are known to face the chal-
lenge of identifiability, where it is difficult to distinguish be-
tween sources of uncertainty [46]. Given this, the value of
employing an inference procedure which separates sources
of uncertainty with the low-fidelity ET model and the low-
resolution parameters of apparent absorptivity and porosity
is not clear. Thus, given the known inadequacy of the ET
model, we do not attempt to address in depth the identifia-
bility issue in this study, and leave this matter for subsequent
investigations.

We choose to separate inference for the depth and width
for two reasons. First, the physical processes of interest cap-
tured by the calibration of η and φ differ along the depth
and width. As observed by Kennedy and O’Hagan [44], no
computer model can ever perfectly represent the underlying
physical process of interest, and so there is always discrep-
ancy between the output of the computer model and the true
mean value of the physical process of interest. Then, one
can think of calibration studies as inferring missing informa-
tion about the physical process not captured by the computer
model and summarizing this information in inferred param-
eters, along with any remaining variation in the data due to
unreported parameters or aleatory variation. As mentioned,
the ET model is known to not capture phenomena in LPBF
such as Marangoni convection and recoil pressure, which dif-
fer along the depth and width. So, for accurate prediction, it
is thus necessary to separate inference. This is supported

by prior studies. Using high-fidelity simulations, Khairal-
lah et al. [6] observed that the melt pool depth is more sen-
sitive to changes in absorptivity than the melt pool width,
which is governed more by changes in beam size. They
noted that this may be due to the metal vapor plume forming
along the melt pool depth, which affects the laser absorption
along the melt pool depth. Thus, we expect a different de-
pendence of the absorptivity along the depth with respect to
power versus the absorptivity along the width with respect
to power. In addition, following the argument by Whalen
et al. [23] that the apparent porosity parameter can act as a
surrogate for the influence of the localized vapor depression
within the melt pool, we expect the dimension of depth to
exhibit increased sensitivity to the apparent porosity param-
eter. Since the width formation is primarily governed by dif-
ferent thermal phenomena, the depth-fit porosity parameter
will not capture the same processes as for the width. Kamara
et al. [47] studied the inclusion of anisotropic thermal con-
ductivity enhancement and found that an enhancement factor
in the the direction of depth was not helpful in modeling the
thermal field, but found that enhancement factors in the other
two orthogonal directions were required. Since porosity can
be viewed as a parameter capturing these heat transfer pro-
cesses, this also suggests that porosity should differ along the
depth and the width to obtain accurate prediction.

Second, it is more computationally tractable to focus on
modeling single-output functions. While it is possible to per-
form multi-objective calibration, this scenario is more com-
plicated. Additionally, Kennedy and O’Hagan [44] focus on
the scenario of single-output models. Modeling each dimen-
sion separately gives additional flexibility in modeling the
effects of phenomena not explicitly incorporated in the ET
model, such as the aforementioned vapor depression.

To complete the specification of the calibration proce-
dure, we define the priors for the unobserved parameters. We
use Gaussian priors for both the absorptivity and the porosity.
Powder absorptivity measurements for the materials consid-
ered in our work are available in the literature from Boley
et al. [48] and are used to specify the means of the priors.
The mean values of the priors are listed in Table 2. How-
ever, given the lower fidelity of the ET Model and the dif-
ferent physics governing the the depth and width of the melt
pool, the apparent absorptivity parameter η likely does not
correspond exactly to powder measurements. Thus, we opt
to employ a fairly diffuse Gaussian prior for the absorptiv-
ity priors, setting its standard deviation to ση = 0.15. For
the case of the porosity parameter, some powder bed pack-
ing density measurements are available in the literature [49],
but unlikely to fully describe the experimental conditions as
full details of powder conditions are usually not reported,
and the process of spreading powder for AM can be consid-
ered as a complex and random process [50]. Due to this,
we follow previous work in Whalen et al. [23] and set the
mean of the porosity prior to µφ = 0.4 based on the theoreti-
cal packing limit of around 64% for equal spheres. We again
employ a relatively diffuse prior, setting the standard devi-
ation of σφ = 0.10. For a given material, we use the same
priors for the depth and width models.



To perform inference via MCMC, we use the
Metropolis-Hastings algorithm as implemented in the
BayesianTools R package [51]. We set the burn-in to
500 and draw a total of 10500 samples for each run. We will
denote the model parameters as being approximated by the
chain values. This is the vector of samples drawn through
MCMC, e.g φd ≈ [φ

(1)
d , . . . ,φ

(K)
d ], where K denotes the total

number of samples after discarding samples from the burn-in
period; i.e, K = 10000.

We compiled a dataset of melt pool measurements from
multiple literature sources to use for the calibration routine,
which are listed in Table 3. Further information about the
data may be found in the Supplemental Material, Section S1.

Material µη ση

SS316L 0.68 0.15

IN625 0.67 0.15

IN718 0.67 (*) 0.15

Ti6Al4V 0.74 0.15
(*) Used the measurement for IN625.

Table 2. Mean of the absorptivity priors for the materials studied.
Retrieved from Boley et al. [48]

Material References

IN625 [52]

IN718 [52]

SS316L [53] [54] [55] [13]

Ti6Al4V [56] [57] [58] [18]

Table 3. Sources for melt pool geometry data used in parameter
calibration.

2.3 Inferring functional dependence of absorptivity and
porosity on processing conditions

When the standard Bayesian calibration procedure is ap-
plied directly to the entire data set, the functional dependence
of unobserved parameters on predictor variables cannot be
inferred. That is, parameters to be inferred are assumed
to be constant with respect to the predictor variables. For
LPBF, this assumption is sub-optimal for fully describing
the melt pool formation. Experimental evidence indicates
that absorptivity varies with respect to laser power and laser
speed [19,20], and it is reasonable that the apparent porosity
can vary with respect to processing parameters that govern
keyhole formation (Section 2.2). Besides, from the view-
point of calibration, the inference of functional dependencies
can correct for systematic model error, replacing the δ(x)

discrepancy function in the Kennedy and O’Hagan frame-
work [44, 59] while providing better physical contextualiza-
tion of the performance and limitations of the model. Thus,
rather than inferring η and φ which do not vary with respect
to the processing inputs X , we aim to infer functions η(X)
and φ(X). To do so, it is necesasry to partition the calibra-
tion dataset D into non-overlapping parts D1, . . . ,DN .

In the present work, we achieve such a partitioning by
dividing D into N = 16 parts by first binning the data into
four parts with equal numbers of data points according to
the quartiles of the laser power. Then, for each of these four
parts, we then compute the quartiles of the laser speed within
that part, and divide a single part into another four parts by
binning the data according to the laser speed quartiles. Due
to insufficient quantity of data at differing beam diameters,
beam diameter is not selected as a binning variable. Then, for
each part D j, we carry out the inference procedure described
in Section 2.2 and obtain the parameter estimates for that
part, which we will denote as φd, j,ηd, j,φw, j, and ηw, j.

In order to obtain estimates for all parameters for an ar-
bitrary X , we use a probabilistic regression model known
as HBART (Heteroscedastic Bayesian Additive Regression
Trees) [60] as implemented in the R package rbart [61].
HBART is a flexible tree-based nonparametric Bayesian re-
gression model which is capable of modeling a variety of
functions. Given predictor variable X and output variable Y ,
it models the conditional distribution Y | X and can estimate
the conditional mean and variance, E[Y | X ] and Var[Y | X ].
Notably, HBART is a heteroscedastic modeling technique,
meaning the predictive uncertainty may vary with respect to
the predictor variables. This is a realistic property of our cur-
rent setting; the uncertainty is expected to be small in regions
of processing space which have been sampled extensively,
but larger in unexplored regions.

We train an HBART model by using the values from
the MCMC samples. We prepare the MCMC sample data
for usage with HBART in the following manner. Let θ be a
calibration parameter, and let |D j| = n j denote the number
of data points in the jth part. Let Pj,i,v j,i refer to the power
and speed of the ith data point in the jth partition. Recall that
K denotes the length of the sampled chain after burn-in, i.e
K = 10000.

1. For each part D j with 1 ≤ j ≤ n:
Get the parameter estimate for that part: θ j ≈
[θ

(1)
j , . . . ,θ

(K)
j ].

Thin the MCMC samples by selecting every T samples,
i.e θ j,thin ≈ [θ

(T )
j ,θ

(2T )
j , . . . ,θ

(⌊K/T⌋)
j ] .

Compute the average value of the processing parame-
ters (X = [P,v]) for the part, which we denote X j, and
compute as

X j =
[

1
n j

∑
n j
i Pj,i

1
n j

∑
n j
i v j,i

]
We can rewrite the final vector with each component as
X j = [P j,V j]



Pair the thinned samples θ with the mean of that part to
yield a dataset H j = {(X j,θ

(kT )
j )}⌊K/T⌋

k=1 .
2. Combine the H j back into one dataset H, i.e H =⋃N

j=1H j.
3. Fit an HBART model to the dataset H using the X j as

the predictor and θ as the response variable, yielding
estimates for the conditional mean and variance of θ:
E[θ | X ] and Var[θ | X ].

We repeat this process and obtain HBART models for
all parameters, which we may write as φd | X ,φw | X ,ηd | X ,
and ηw | X . Thinning serves to reduce autocorrelation in the
chain sample data and improve predictive capability. We set
T = 250 in our fitting procedure.

2.4 Forward prediction via polynomial chaos expan-
sions

After obtaining a probabilistic model of the inferred
parameters’ dependence on the processing parameters via
HBART, the next step is to use the inferred parameters to
obtain estimates of the melt pool geometries using the modi-
fied ET Model. We do this via the polynomial chaos method
as implemented in the chaospy Python package [62].

Polynomial chaos expansions (PCE) are a computation-
ally efficient method for performing uncertainty propaga-
tion. Broadly, PCE techniques may be used to solve prob-
lems of the following form: find the distribution of Y where
Y = f (X ,Q), X is a vector of known deterministic inputs, and
Q is a vector of stochastic inputs with known distribution.
More details can be found in the paper for the chaospy
package [62].

We apply PCE to our setting to propagate uncertainties
from the HBART model of the calibrated parameters into
melt pool predictions for both depth and width. Here, our
function is ETd or ETw, and the deterministic inputs are the
processing inputs P,V,σ. Our stochastic inputs are the cali-
brated parameters φd ,ηd , for the case of computing ETd and
φw,ηw for the case of computing ETw. For both width and
depth, we model the absorptivity η as a normal distribution
with mean E[η | X ] and variance Var[η | X ] as computed by
HBART. However, we model φ as a truncated normal distri-
bution between 0 and 1 to avoid numerical errors from the
modified ET model. To compute the coefficients of the poly-
nomial expansion, we use the Gaussian quadrature rule as
implemented in chaospy, which proposes a set of nodes in
the parameter domain for the ET model to evaluate. The dis-
cretized Stieltjes procedure is used to construct the orthogo-
nal polynomial expansion, and we use a 3rd order expansion.

We perform Monte-Carlo uncertainty propagation as a
baseline to ensure the correctness of the PCE-based uncer-
tainty propagation procedure and to inspect the form of the
underlying distribution. As discussed in the Supplemental
Material, Section S3, the distribution of d and w is well ap-
proximated by a normal distribution, enabling the usage of
standard techniques for sampling from and modeling normal
random variables.

2.5 Defect criteria and printmaps
Empirical criteria to classify melt pools as keyhole or

lack-of-fusion have been used in previous computational
and experimental studies for mapping out LPBF processing
space [3]. For example, Johnson used the criterion w/d < 1.5
to identify keyholing melt pools. The criterion d/t < 1.5
(where t is the powder bed layer thickness) was used to iden-
tify lack-of-fusion melt pools [26]. Given a thermal model
capable of predicting these quantities from processing con-
ditions, the expected defect associated with a particular pro-
cessing condition can be predicted. However, if the thermal
model used to predict these quantities is deterministic, then
these criteria give a binary prediction - either there is a defect
or not. A model incorporating uncertainty, as in the current
work, enables the prediction of the probability that a defect
will occur given the knowledge from the current experimen-
tal data.

Thus, we compute probabilities for the keyholing and
lack-of-fusion defects using the criteria above, and treat melt
pools which have a low probability of keyholing and lack-
of-fusion to be desirable melt pools. To compute the lack-
of-fusion probability, i.e P[d/t < 1.5], we may rewrite the
probability as P[d < 1.5t] and use the cumulative density of
d under the assumption that it is normally distributed. To
compute the keyholing defect probability (P[w/d < 1.5]) we
use a standard Monte-Carlo approach, i.e draw samples from
the distributions of d and w, compute the expression inside
the brackets, and divide the number of samples satisfying the
inequality by the total number of samples. Then, these prob-
abilities can be computed over a regular grid in the LPBF
processing space in order to map out the keyhole and lack of
fusion regions. This information is summarized in a contour
map of probabilities, which we call the probabilistic print-
ability map.

3 Results and discussion
3.1 Melt pool geometry predictions without calibration

To assess the capabilities of the modified ET Model be-
fore calibration, we predicted melt pool geometries for all
parameter combinations in the respective materials’ datasets.
The prior means were used for the absorptivity and porosity
parameter values, and the resulting R2 values may be found
in Table 4. Additional plots may be found in the Supple-
mental Material, Section S4. The modified ET model tends
to under-predict the depth and over-predict the width (Fig-
ure 2). This is consistent with observations from previous
applications of the ET model in LPBF [26].

3.2 Fitted absorptivity and comparison with experi-
mental measurements

We observed that the predicted means for the depth-fit
absorptivity (ηd) and the depth-fit porosity (φd) tended to in-
crease with respect to power and decrease with respect to
speed for all materials. Depth-fit porosity and absorptivity
tend to saturate past a certain power threshold. This gen-
eral behavior is consistent with experimental work and cor-



Material Depth R2 Width R2

IN625 0.804 0.769

IN718 0.848 0.815

SS316L 0.766 0.747

Ti6Al4V 0.596 0.584

Table 4. R2 values for prediction from modified ET Model before
calibration. Absorptivity and porosity were set to their prior values
(Section 2.2).

Fig. 2. Uncalibrated predictions for SS316L from the modified ET
model against available data for calibration (Table 3). (a) compares
the predicted depth against the experimental depth, (b) compares
the predicted width against the experimental width. Both plots ex-
hibit systematic discrepancy with experiment. The depth is under-
predicted and the width is over-predicted, which has been observed
in prior applications of the ET model (e.g Johnson et al. [26])

responds to a the physics of the melt pool. Ye et al. [19]
observed absorptivity saturates at a certain threshold. An in-
crease and saturation in the fitted porosity corresponds to the
formation of the vapor depression, indicating the onset of the
keyholing mode and increasing depth. However, the width-
fit absorptivity ηw and the width-fit porosity φw were often
nearly constant, suggesting the validity of constant parameter
values for computing the width. This is in agreement with the
observation by Khairallah et al. [6] that the melt pool width
is less sensitive to changes in absorptivity, indicating a con-
stant absorptivity and porosity may be sufficient to capture
the relevant physics. The vapor depression primarily affects
the dimension of depth, and the width is more sensitive to
the beam diameter. Notable exceptions were the absorptiv-
ity functions φw for Ti6Al4V and SS316L. The fitted φw for
these materials tended to decrease with respect to power, but

did not vary significantly with respect to speed. This behav-
ior was not observed for IN625 and IN718. It is possible
this behavior may be correlated to heat transfer modes not in
the ET model such as Marangoni convection [63], which is
known to affect the formation of the melt pool width [64].
However, due to the large uncertainties, no conclusive state-
ment can be made about what this observation might indi-
cate. Plots of absorptivity and porosity for all materials can
be found in the Supplemental Material, Section S5.

We compare the predicted depth-fit absorptivity from
SS316L to the experiment by Trapp et al. [20] (Figure 3).
We find that the mean predicted absorptivity follows the data
from Trapp et al. well. We also compare the predicted depth-
fit absorptivity from Ti6Al4V to the experiment by Ye et
al. [19]. We find that the experimental measurement from
Ye et al. lies within the 95% credible region predicted by our
model. The good correspondence indicates that our infer-
ence procedure has managed to capture the relevant physical
dynamics in the LPBF process. However, the uncertainty is
large. This may arise due to to the approach of partitioning,
which effectively models regions of process space indepen-
dently from each other during inference. Thus, information
about the value of the parameter is not shared between parti-
tions during inference, resulting in inefficient estimation.

In contrast, we find the model systematically under-
predicts the absorptivity measurement for IN625 by Lane et
al. [65] This may be due to the discrepancy between the beam
diameters considered in the calibration data versus the beam
diameter in the experiment by Lane et al., which will be dis-
cussed in Section 3.3. In addition, Lane et al. employed a
photoreflectometer approach for measuring the laser energy
absorption, in comparison to Trapp et al. and Ye et al. who
utilized calorimetric methods. Lane et al. noted that discrep-
ancies may arise between these approaches, e.g laser energy
may be scattered and not absorbed into the workpiece.

3.3 In-sample and out-of-sample fit for melt pool pre-
dictions after calibration

We assessed the performance of the model by using
the HBART fit parameter curves to assess the in-sample
(i.e training data) and out-of-sample fit of the calibrated ET
model to melt pool geometry data. For the in-sample data,
there is a moderate improvement for all materials in R2 fit
values for the depth, and the predictions qualitatively ex-
hibit improved agreement with the experimental data and
deviate less systematically. We compute the coverage statis-
tic, denoting the percentage of points from the experimental
dataset which fall within the 95% credible region given by
our prediction routine. In ideal circumstances, this should
be near 95%. However, we find that the depth predictions
exhibit coverage values of around 75-85%, indicating a pos-
sible under-prediction of uncertainty. This may be due to
systematic deviation from the mean not yet accounted for by
our modeling technique. This is most apparent for Ti6Al4V,
which may be due to the heterogeneity of the data. In
contrast, the width coverage is consistently near 100% for
all materials, indicating that the uncertainty may be over-



Fig. 3. Comparison of experimentally measurement laser absorption vs. absorption predicted by HBART model. (a), (b) HBART predicted
absorptivity compared to the experimentally measured absorptivity reported by Trapp et al. for the 316L stainless steel [20]. (a) Comparison
of absorptivity for a constant scanning speed of 100 mm/s. (b) Comparison of absorptivity for a constant scanning speed of 1500 mm/s. (c)
HBART predicted absorptivity compared to the experimental work of Ye et al. for Ti6Al4V [19]. The red line is the average absorptivity across
powder layer thicknesses from Figure 1C in Ye et al. (d) HBART predicted absorptivity compared to the experimental work of Lane et al.
for IN625 [65]. There is a large discrepancy between the predicted and experimental results. However, the predicted curve seems to follow
approximately the same shape as the Lane et al. data.

predicted. Additional plots for in-sample predictions can be
found in the Supplemental Material, Section S6.

Fitted R2 Coverage

Material Depth Width Depth Width

IN625 0.87 0.918 84.4% 100%

IN718 0.885 0.868 88.9% 97.8%

SS316L 0.832 0.752 81.4% 100%

Ti6Al4V 0.646 0.833 76.6% 97.7%

Table 5. R2 values for prediction on in-sample data from modified
ET Model with calibrated absorptivity and porosity.

We test the predictive capabilities of our model by pre-
dicting on out-of-sample data. Melt pool geometries for
IN625 were retrieved from Dilip et al. [66] and Lane et
al. [65]; and melt pool measurements for Ti-6Al-4V were
retrieved from Liu et al. [67]. An additional dataset for Lee
et al. [52] for IN718 as manufactured on a Mlab machine
was also used to test the model. The R2 and coverage of
the model are tabulated in Table 6. Additional plots and in-
formation about the data can be found in the Supplemental

Material, Section S7.

Fitted R2 Coverage

Material Depth Width Depth Width

IN625 (Dilip) [66] 0.849 0.848 72.7% 97%

IN625 (Lane) [65] 0.971 (*) 0.833 44.4% 100%

IN718 (Lee) [52] 0.765 0.908 80% 100%

Ti6Al4V (Liu) [67] 0.903 0.909 57.7% 100%
(*) Strong linear relationship despite poor fit.

Table 6. R2 values for prediction on out-of-sample data from modi-
fied ET Model with calibrated absorptivity and porosity.

Performance of the model is good on the test datasets,
achieving R2 values roughly around 0.8. (See Table 6 and
Figure 4.) The model is able to capture the essential correla-
tions between processing parameters and melt-pool geome-
try present in the data, and the model is able to achieve good
predictive performance for out-of-sample data with similar
conditions. Thus, it is sufficient for exploration of the pro-
cess space. However, it is interesting to investigate possi-
ble reasons for the poorer performance of the model on the



Fig. 4. Comparison of predicted depths from modified ET model to
out-of-sample experimental depths. (a) shows the comparison of
predictions for IN625 with Lane et al. [65]. There is a large discrep-
ancy between experiment and prediction. Despite this, a high R2 is
achieved due to a strong correlation. (b) shows the comparison with
Liu et al. [67], which shows good agreement. One experimental point
with a larger depth is under-predicted.

IN625 data from Lane et al. to understand the limits of the
model. One possible explanation is the lack of information
in the model regarding how laser energy absorption changes
with respect to beam diameter, as observed by Ye et al. [19].
Since this relationship is not modeled within the ET model, it
is to be inferred via calibration. But, this is not captured well
in the current framework due to a lack of extensive data for
multiple beam diameters. In particular, we found that includ-
ing beam diameter as a feature in the HBART model does not
improve the predictive performance (See Supplemental Ma-
terial, Section S2.)

Thus, we can view the inferred parameters as being ap-
plicable to a specific range of beam diameters, namely the
average of those present in the calibration data. For example,
the original Lee et al. [52] data contained beam diameters of
50, 100, and 150 µm. Thus, the calibrated model performed
reasonably well on the Dilip et al. data, which employed a
beam diameter of 100µm. In contrast, Lane et al employed
a beam diameter of 62 µm, indicating a more focused beam
with more energy absorption, and so our model systemati-
cally underpredicts the melt pool depth in this scenario.

The results in this section demonstrate the dependence
of inferred parameters on the overall composition of the
dataset. Ideally, clean data with appropriately selected pro-
cessing parameters will give the best predictive results for

a variety of conditions. Even so, with limited experimen-
tal data, the model is able to capture useful correlations in
the LPBF process that can be used to explore a processing
regime of interest.

3.4 Probabilistic printability maps and comparison
with experimental printability map

To demonstrate the descriptive power of the model, we
compute printmaps for all materials investigated within the
processing region of the experimental data. Each point from
the experimental dataset is labeled by computing the defect
criterion using experimental melt pool geometry measure-
ments, and plotted on top of the printmap. We find that for
the materials investigated, the printmap is able to capture the
essential boundaries present in the data. Figure 5 shows the
printmaps for IN625 and IN718 overlaid with the labeled
in-sample calibration data. The calibration data is labeled
by computing the same defect criteria, but using experimen-
tal melt pool geometries rather than simulated ones. The
maps for both the keyhole and lack of fusion defect illustrate
clear transition regions, where a region of high probability
smoothly transitions to a region of low probability. Addi-
tional printability maps for the other materials are available
in the Supplemental Material, Section S8. While the IN625
and IN718 printability maps are well structured with clear
keyhole and lack-of-fusion zones, there were data challenges
with other printmaps that led to difficulties in modeling. For
example, the Ti6Al4V map overpredicts the keyhole region
to the measurement technique by Vaglio et al. [56] where
the width is taken to be the width of the melt track, rather
than the width of the melt pool. However, despite the data
challenges, the printability maps tend to accurately summa-
rize the trends present in the experimental data, indicating
that if given clean and accurate data, the model will describe
the trends in the data well. From a practical standpoint, this
uncertain boundary is expected to assist process engineers
in setting appropriate risk tolerances for their choice of pro-
cessing parameters based on the current data. Alternately,
this transition region may be a region of interest for further
targeted experimentation in order to fully understand the in-
herent variabilities in the keyhole-conduction transition.

We assess the predictive capability of the model by com-
puting the printmap for regions of process space where no
training data exist, and validate the prediction with litera-
ture data. We compare the generated printmap for IN718
to the data from Scime and Beuth [5], which character-
izes a larger region of processing space than present in our
calibration data. The comparison is illustrated in Figure
6. We find that the model is able to generalize into re-
gions of processing space in which it has no data for IN718
reasonably well, and captures the essential boundaries be-
tween keyholing-conduction and conduction-lack-of-fusion
well based upon the Scime and Beuth data. In the keyhole
map, near the boundaries of the processing space and in re-
gions where no training data exist, we see that the model
outputs probabilities near 0.5, indicating larger predictive
uncertainty. This area of increased predictive uncertainty



Fig. 5. Probabilistic printability maps for IN625 and IN718. The data used for calibration is labeled by computing the defect criterion using
the experimental measurements, and overlaid on top of the printmap computed by the ET model. “P(Keyhole)” and “P(LoF)” denote the
probability of the keyhole defect and the lack of fusion defect, respectively. (a),(c) are the probabilistic printability maps for IN625, computed
with a beam diameter of 100 µm and a layer thickness of 25 µm. (b),(d) are the probabilistic printability maps for IN718, computed for the
same conditions as IN625. (a), (b) presents the probability of keyholing as a function of power of speed, and (c),(d) presents the probability
of lack of fusion as a function of power and speed. The calibration data from Lee et al. [52] is overlaid on both plots. The color and shape
of the markers correspond to the characterization of the Lee et al. data according to the the geometric defect criteria as computed on the
experimental dataset. Some noise is added to the power and speed for the IN625 and IN718 data in order to display replicated measurements.
Both the keyholing and lack of fusion maps have well-defined regions and capture the boundaries present in the Lee et al. data. The lack of
fusion region for IN718 is smaller than IN625, and the keyhole region for IN718 appears to be larger than for IN625.

is more apparent in the high-power high-speed region (up-
per right corner) of the keyhole map (Figure 6a). Here, the
probability appears greater in the high-power high-speed re-
gion than in the low-power high-speed region. This makes
intuitive physical sense as the probability of keyholing in-
creases with power, but the model is uncertain due to the
lack of data. In the lack-of-fusion maps, this increase in pre-
dictive uncertainty is seen as the boundary region between
lack-of-fusion-free region and the lack-of-fusion region be-
comes wider near higher speeds and higher powers (Figures
6b and 6c.) This increased uncertainty is likely due to a lack
of data in the region. However, Wang et al. [22] observed
a similar trend where the variability of lack-of-fusion poros-
ity increased with respect to speed. It is possible our model
may have captured a similar trend, but further investigation
is required to verify.

Scime and Beuth provided a value of 70 µm± 20 µm for
the layer-thickness. We find that given our model, a value

of 70 µm results in the over-prediction of the lack-of-fusion
region, i.e some points marked as conduction fall within the
lack-of-fusion region. Using a layer thickness value of 50
µm appears to better match the experimental characterization
from Scime and Beuth. This over-prediction may be due to
underprediction of the mean melt pool depth.

4 Summary and conclusion
A probabilistic modeling technique for identifying re-

gions of process space likely to result in defect-free prod-
ucts based upon melt pool geometry criteria was devel-
oped. We utilized the modified ET model, incorporating
both temperature-dependent thermophysical properties and
the additional parameters of powder bed porosity and laser
absorptivity. The modified ET model was calibrated against
melt pool measurement data from the literature by using a
Bayesian inference procedure to infer the values of laser ab-



Fig. 6. Comparison of the created probablistic printmap for IN718 with the experiment by Scime and Beuth [5]. The shape and color of the
overlaid markers represent the experimental characterization by Scime and Beuth [5], who use similar geometry-based criteria. The blue
box with dotted lines indicates the range of processing parameters containing the data used for calibration (Lee et al. [52]).“P(Keyhole)” and
“P(LoF)” denote the probability of the keyhole defect and the lack of fusion defect, respectively. (a) displays the keyhole printability map for
IN718. The keyhole region is well-defined and captures the boundary in the Scime and Beuth data. At higher powers where no calibration
data is available, the predicted probability is near 0.5, indicating a large amount of predictive uncertainty. This also occurs near the bottom
edge of the processing space. (b) shows the lack of fusion printability map for IN718, computed with the nominal layer thickness of 70 µm.
The lack of fusion region is over-predicted and does not match as well with the characterization by Scime and Beuth using this layer thickness
value. (c) shows the lack of fusion printability map for IN718, computed with a layer thickness of 50 µm, which falls within the layer thickness
reported by Scime and Beuth of 70 µm± 20 µm, which appears to better align with the lack of fusion characterization by Scime and Beuth.

sorptivity and powder porosity. However, rather than in-
ferring values for these parameters which do not vary with
respect to processing conditions, we infer functional rela-
tionships for absorptivity and porosity which vary with re-
spect to laser power and scan speed. This was done by par-
titioning the dataset, inferring values for each partition via
MCMC, and fitting an HBART model to the MCMC sam-
ples. Then, the fitted parameters were used to produce prob-
abilistic predictions of the melt pool geometry. Computation
of these probabilistic predictions was facilitated by the use
of the polynomial chaos technique. These probabilistic pre-
dictions were used to create probabilistic printability maps,
which more realistically capture uncertainties about the in-
herent stochasticity in LPBF and current knowledge given
the limited experimental data.

Our key findings are:

1. Inference of absorptivity. The absorptivity curves in-
ferred via the calibration procedure match well to exper-
iments conducted under similar processing conditions to
the calibration data.

2. In-sample and out-of-sample fit. The calibration pro-
cedure improved the fit of the modified ET model to
the calibration data. The model was capable of accu-
rately predicting melt pool geometries on out-of-sample
data processed under similar conditions to the calibra-
tion data.

3. Printmaps. The calibrated model was capable of gener-
ating printmaps which correctly identified the transition
regions in LPBF process space based on experiment, and



was capable of generalizing to larger process spaces in
which the model was not trained.

4. Quantification of uncertainty. Experimental width mea-
surements nearly always fell within the error bars pre-
dicted by the model, whereas in cases not exhibiting sys-
tematic deviation from experiment, roughly 70%-80%
of experimental depth measurements fell within the er-
ror bars predicted by the model. This suggests that the
uncertainty from the depth is likely under-predicted and
the uncertainty from the width is over-predicted.

5. Effect of beam diameter. The model did not adequately
account for the effect of beam diameter on melt pool ge-
ometry and absorption, and could only model processing
conditions with beam diameters similar to the average
beam diameter present in the calibration data.

A source of uncertainty that impacted predictions for
SS316L and Ti6Al4V was machine-to-machine variability,
and data heterogeneity. It is known that significant differ-
ences can arise in specimens manufactured from different
machines [2]. Parameters that are not reported or difficult to
measure, or differing measurement techniques, causes sys-
tematic differences between datasets that are compiled to-
gether and used for calibration, adding additional sources of
discrepancy within the calibration framework. While the cal-
ibrated model could perform reasonably well on the valida-
tion test sets, indicating that there are general trends which
appear to be applicable from machine-to-machine, one key
area to improve the applicability of our framework is to de-
velop additional methods for investigating and quantifying
this source of uncertainty. Future work can investigate fur-
ther improvement by incorporating the influence of beam di-
ameter on absorptivity or the melt pool geometry, either via
statistical inference or further modification of the ET model,
as well as alternate calibration schemes that better quantify
associated uncertainties, e.g by separation of aleatory and
epistemic uncertainties.

Overall, this work demonstrates the potential of utiliz-
ing parameter calibration and UQ to attain a good and com-
putationally efficient descriptive model capable of mapping
out the LPBF process space and summarizing the current
knowledge available in experimental data. In addition, we
demonstrated that inferring processing-parameter dependent
absorptivity and porosity has physical justification and can
improve the flexibility and performance of the model. We
demonstrated the value of the model by using it to create
probabilistic printability maps, which are able to summarize
current knowledge about processing space along with the as-
sociated uncertainties.
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S1 Summary of calibration datasets

S1.1 IN718 calibration data

Lee et al. [8]
Used data from M2 machine for calibration only.

• # of observations: 180

• Powers (W): 120, 180, 240

• Speeds (mm/s): 200, 400, 600, 800, 1000

• Beam diameters (µm): 50, 100, 150

• Layer thicknesses (µm): 25, 50

S1.2 IN625 calibration data

Lee et al. [8]

• # of observations: 176

• Powers (W): 120, 180, 240

• Speeds (mm/s): 200, 400, 600, 800, 1000

• Beam diameters (µm): 50, 100, 150

• Layer thicknesses (µm): 25, 50

S1.3 SS316L calibration data

Bertoli et al., [11] Goosens et al., [3] Hu et al., [4]

• # of observations: 113

• Power (W): 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600

• Speeds (mm/s): 150, 200, 250, 300, 400, 450, 500, 600, 700, 750, 800, 900, 1000, 1100, 1200, 1250, 1500, 1800, 2000

• Beam diameters (µm): 15, 37.5, 52, 55

• Layer thicknesses (µm): 10, 30, 50, 75

S1.4 Ti6Al4V calibration data

Kusuma [6], Vaglio et al. [12], Dilip et al. [2], Patel et al. [10]

• # of observations: 128

• Powers (W): 50, 90, 100, 120, 130, 150, 160, 170, 190, 200, 210, 220, 250, 260, 300, 350, 400

• Speeds (mm/s): 200, 250, 500, 730, 750, 800, 850, 870, 1000, 1100, 1150, 1200, 1250, 1360, 1500, 1750, 2000, 2250, 2500

• Beam diameters (µm): 50, 70, 100

• Layer thicknesses (µm): 25, 30, 70
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S2 Including beam diameter as a feature in the HBART model does not
improve fit on geometry prediction

To evaluate whether including beam diameter in the HBART model improved predictive performance, we fitted two sets
of models to the parameter samples obtained from Bayesian calibration, one with and one without. In the set with beam
diameter, we included the average beam diameter as a feature for HBART (see the main body of the paper, Section 2.3).
For the analyses conducted in the main body of the paper, we do not use the beam diameter as a feature to HBART. We
use both models to predict the effective absorptivity and effective porosity, then propagate these parameters through the
modified ET model using polynomial chaos and evaluate the fit on the calibration data set as in Section 3.2 of the main body
of the paper. We primarily consider the fit on the melt pool depth data, as both models performed well for the melt pool
width.

Figures S-1, S-2, S-3, S-4 illustrate that including beam diameter as a feature fails to resolve any systematic discrepancy
between experiment and prediction. In addition, including beam diameter sometimes decreased R2 (as in the case of IN625,
IN718), and sometimes increased R2 (for SS316L, Ti6Al4V). Overall, since including beam diameter did not improve the fit
of the model, we did not include it as a feature for HBART.

Figure S-1: Comparison of predicted depth and experimental depth for IN625. The top figure shows the prediction using the
HBART model without beam diameter as a feature. The lower figure shows the prediction using the HBART model with
beam diameter as a feature. Including beam diameter decreases the R2 of the model and does not significantly affect the
qualitative properties of the fit.
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Figure S-2: Comparison of predicted depth and experimental depth for IN718. The top figure shows the prediction using the
HBART model without beam diameter as a feature. The lower figure shows the prediction using the HBART model with
beam diameter as a feature. Including beam diameter decreases the R2 of the model and does not significantly affect the
qualitative properties of the fit.
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Figure S-3: Comparison of predicted depth and experimental depth for SS316L. The top figure shows the prediction using
the HBART model without beam diameter as a feature. The lower figure shows the prediction using the HBART model with
beam diameter as a feature. Including beam diameter increases the R2 of the model, but does not significantly affect the
qualitative properties of the fit.
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Figure S-4: Comparison of predicted depth and experimental depth for Ti6Al4V. The top figure shows the prediction using
the HBART model without beam diameter as a feature. The lower figure shows the prediction using the HBART model with
beam diameter as a feature. Including beam diameter increases the R2 of the model, but does not significantly affect the
qualitative properties of the fit.

S3 Monte Carlo uncertainty propagation yields an approximately normal
distribution

To assess whether it was valid to model the depth as a normal distribution, we carried out Monte-Carlo uncertainty propaga-
tion. We considered this for the case of IN718. After calibration, we obtained normal posterior distributions for absorptivity
and porosity, then sampled from these posterior distributions to perform Monte-Carlo uncertainty propagation. We assessed
the distributions for the power and speed combinations present in the Lee et al. dataset. We drew 700 samples for each
parameter combination. It can be observed that the distribution of predicted depth does not deviate significantly from the
normal fit. (Figures S-5, S-6, S-7)
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Figure S-5: Histograms of predicted melt pool depth obtained by Monte-Carlo uncertainty propagation, where the power is fixed at 120 W. Speeds increase from left
to right and top to bottom, ranging from 200 mm/s to 1000 mm/s. A kernel density estimate is plotted over the histogram in blue. The normal fit (calculated from
the sample mean and SD) is plotted over in samples in red. The kernel density estimate does not strongly deviate from the normal fit.
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Figure S-6: Histograms of predicted melt pool depth obtained by Monte-Carlo uncertainty propagation, where the power is fixed at 180 W. Speeds increase from left
to right and top to bottom, ranging from 200 mm/s to 1000 mm/s. A kernel density estimate is plotted over the histogram in blue. The normal fit (calculated from
the sample mean and SD) is plotted over in samples in red. The kernel density estimate does not strongly deviate from the normal fit.
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Figure S-7: Histograms of predicted melt pool depth obtained by Monte-Carlo uncertainty propagation, where the power is fixed at 240 W. Speeds increase from left
to right and top to bottom, ranging from 200 mm/s to 1000 mm/s. A kernel density estimate is plotted over the histogram in blue. The normal fit (calculated from
the sample mean and SD) is plotted over in samples in red. The kernel density estimate does not strongly deviate from the normal fit.
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S4 Modified ET Model melt pool predictions without calibration

This section provides unfitted predictions for all materials considered in this work. The details for producing these results is
in Section 3.1 of the main paper. All plots exhibit the same trend of underpredicted depth and overpredicted width.

S4.1 IN625

Figure S-8: IN625 predicted melt pool geometry vs. experimental melt pool geometry. The left plot shows the comparison
of predicted melt pool depth against experimental melt pool depth. The right plot shows the comparison of predicted melt
pool width against experimental melt pool width.

S4.2 IN718

Figure S-9: IN718 predicted melt pool geometry vs. experimental melt pool geometry. The left plot shows the comparison
of predicted melt pool depth against experimental melt pool depth. The right plot shows the comparison of predicted melt
pool width against experimental melt pool width.
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S4.3 SS316L

Figure S-10: SS316L predicted melt pool geometry vs. experimental melt pool geometry. The left plot shows the comparison
of predicted melt pool depth against experimental melt pool depth. The right plot shows the comparison of predicted melt
pool width against experimental melt pool width.

S4.4 Ti6Al4V unfitted predictions

Figure S-11: Ti6Al4V predicted melt pool geometry vs. experimental melt pool geometry. The left plot shows the comparison
of predicted melt pool depth against experimental melt pool depth. The right plot shows the comparison of predicted melt
pool width against experimental melt pool width.

S5 Absorptivity and porosity curves

Here, representative curves of the fitted effective absorptivity and effective porosity are plotted. See Section 2.3 and Section
3.2 of the main paper for more information.
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S5.1 IN718

Figure S-12: Plots of effective absorptivity and effective porosity for IN718. The top left plot shows the depth-fitted absorptivity ηd. The top right plot shows the
depth-fitted porosity ϕd. The bottom left plot shows the width-fitted absorptivity ηw. The bottom right plot shows the width-fit porosity ϕw. ηd and ϕd increase with
respect to power and decrease with respect to speed. In contrast, ηw and ϕw are practically constant with respect to both power and speed.
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S5.2 IN625

Figure S-13: Plots of effective absorptivity and effective porosity for IN625. The top left plot shows the depth-fitted absorptivity ηd. The top right plot shows the
depth-fitted porosity ϕd. The bottom left plot shows the width-fitted absorptivity ηw. The bottom right plot shows the width-fit porosity ϕw. ηd and ϕd increase with
respect to power and decrease with respect to speed. In contrast, ηw and ϕw are practically constant with respect to both power and speed.
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S5.3 SS316L

Figure S-14: Plots of effective absorptivity and effective porosity for SS316L. The top left plot shows the depth-fitted absorptivity ηd. The top right plot shows the
depth-fitted porosity ϕd. The bottom left plot shows the width-fitted absorptivity ηw. The bottom right plot shows the width-fit porosity ϕw. ϕd increases with
respect to power and decreases with respect to speed. ηd exhibits a jagged, non-monotonic trend with respect to power and speed. However, this is difficult to interpret
due to the large uncertainty. ϕw is practically constant with respect to both power and speed. However, ηw appears to decrease with respect to power, but not as
significantly with respect to speed.
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S5.4 Ti6Al4V

Figure S-15: Plots of effective absorptivity and effective porosity for Ti6Al4V. The top left plot shows the depth-fitted absorptivity ηd. The top right plot shows the
depth-fitted porosity ϕd. The bottom left plot shows the width-fitted absorptivity ηw. The bottom right plot shows the width-fit porosity ϕw. ϕd and ηd increase with
respect to power and decrease with respect to speed. ϕw is practically constant with respect to both power and speed. However, ηw appears to decrease with respect
to power, but not as significantly with respect to speed.
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S6 Uncertainty propagation: width and depth

This section shows the plots for calculations to assess in-sample fit, corresponding to Section 3.3 in the main paper. The
results of these calculations are summarized in Table 5 in the main paper.

S6.1 IN718

Figure S-16: In-sample predictions for IN718, comparing predicted melt pool geometry with experimental melt pool geometry
from calibration data. The left plot shows the predicted depth vs. the experimental depth. The right plot shows the predicted
width vs. the experimental width.

S6.2 IN625

Figure S-17: In-sample predictions for IN625, comparing predicted melt pool geometry with experimental melt pool geometry
from calibration data. The left plot shows the predicted depth vs. the experimental depth. The right plot shows the predicted
width vs. the experimental width.
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S6.3 SS316L

Figure S-18: In-sample predictions for SS316L, comparing predicted melt pool geometry with experimental melt pool geometry
from calibration data. The left plot shows the predicted depth vs. the experimental depth. The right plot shows the predicted
width vs. the experimental width.

S6.4 Ti6Al4V

Figure S-19: In-sample predictions for Ti6Al4V, comparing predicted melt pool geometry with experimental melt pool
geometry from calibration data. The left plot shows the predicted depth vs. the experimental depth. The right plot shows
the predicted width vs. the experimental width.

S7 Model validation by out-of-sample geometry prediction

This section shows plots for out-of-sample prediction, corresponding to Section 3.3 in the main paper. The results of these
calculations are summarized in Table 6 in the main paper.

S7.1 Summary of validation data

IN625: Dilip et al. [1]

• # of observations: 33

• Powers (W): 50, 75, 100, 125, 150, 175, 195

• Speeds (mm/s): 200, 400, 600, 800, 1000, 1200

• Beam diameters (µm): 100

• Layer thicknesses (µm): 20

IN625: Lane et al. [7]
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• # of observations: 9

• Powers (W): 50, 65, 80, 100, 120, 150, 200, 250, 300

• Speeds (mm/s): 500

• Beam diameters (µm): 62

• Layer thicknesses (µm): 60

IN718: Lee et al. (Mlab data) [8]

• # of observations: 117

• Powers (W): 70, 80, 90, 100

• Speeds (mm/s): 500, 700, 800, 900, 1100

• Beam diameters (µm): 50

• Layer thicknesses (µm): 25, 35, 45

Ti6Al4V: Liu et al. [9]

• # of observations: 26

• Powers (W): 50, 100, 150, 200, 250, 300, 350

• Speeds (mm/s): 200, 240, 320, 400, 480, 560, 600, 800, 1000, 1200, 1400, 1600, 2000

• Beam diameters (µm): 100

• Layer thicknesses (µm): 0 (bare plate), 30, 60

Figure S-20: Predicted melt pool geometry vs. experimental melt pool geometry from Dilip et al. [1]. Overall, the model
performs well on this dataset. The depth uncertainty is somewhat under-quantified.
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Figure S-21: Predicted melt pool geometry vs. experimental melt pool geometry from Lane et al. [7]. There is a systematic
discrepancy between experiment and prediction for the case of the melt pool depth. However, the width predictions show
reasonable agreement and fall within the error bars.

Figure S-22: Predicted melt pool geometry vs. experimental melt pool geometry from Liu et al. [9]. Overall, the model
seems to perform well on this dataset. The depth uncertainty is somewhat under-quantified. An observation with high depth
is under-predicted.
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Figure S-23: Predicted melt pool geometry vs. experimental melt pool geometry from Lee et al. [8], Mlab machine data. After
calibration, the modified ET model is able to generalize reasonably well to experiments with similar processing conditions.

S8 Printmaps

This section contains printmaps for Ti6Al4V and SS316L, which faced data challenges in computation. Both datasets were
more varied and heterogenous than the Lee et al. [8] data for IN625 and IN718. The data from Vaglio et al. [12] used a
measurement technique inconsistent with our methodology, e.g reporting the track width rather than the melt pool width.
For SS316L, only small beam diameters were present in the data (around 62-50 µm) making the applicability of the model
to moderate beam diameters (e.g around 100µm) difficult.
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Figure S-24: Probabilistic printability maps for SS316L. The top figure shows the probability of keyhole predictions, and the
bottom figure shows the probability of lack of fusion predictions, both computed for a beam diameter of 37.5µm and a layer
thickness of 30µm. The data from Goossens et al. [3]. keyhole region may be very large due to the small beam diameters
present in the data set. This made predictions for moderate beam diameters (about 100µm difficult, as the parameters
obtained for the calibration data set were only applicable to these smaller diameters. See Section 3.3 of the main paper for
more information.
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Figure S-25: Probabilistic printability maps for Ti6Al4V. The top figure shows the probability of keyhole predictions, and
the bottom figure shows the probability of lack of fusion predictions. The keyhole region appears to be over-predicted due
to the measurement technique used by Vaglio et al. [12] of treating the track width as the width, rather than the melt-pool
width. The track width is smaller than the melt pool width. This means that the width in the criterion w/d < 1.5 used by
Johnson et al. [5] is smaller than expected, artificially decreasing the w/d ratio and increasing the probability of keyholing.
Nonetheless, it can be seen that the model successfully captures the boundaries present in the data.
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