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Introduction 

The U.S. Army Combat Capabilities Development Command (DEVCOM) group sponsors a 

nationwide competition to identify systems engineering artifacts that build trust in Artificial Intelligence 

(AI)-enabled systems. As AI advances, it offers significant advantages over traditional methods in 

military logistics and planning (Szabadföldi, 2021). The superiority of high-complexity AI systems, 

however, often sacrifice human readability and understandability (Dwivedi et al., 2023). Without 

validation and transparency built into the design, allowing users and operators to audit accuracy and 

verify performance at all times, AI systems will face significant challenges to adoption (Svenmarck et al., 

2018). Trust—ensuring that users, operators, and decision-makers can rely on AI systems—is crucial, 

even if the entire decision-making process is not fully understood (Leike et al., 2017). Trust is a factor 

that affects all autonomous systems, but in most control environments, statistical modeling and proven 

techniques are able to provide support to decision making (Matt et al., 2014). AI has no such statistics 

underpinning performance, and with lives potentially at stake, a lack of trust has delayed the integration 

of AI into current warfare tactics (Castelvecchi, 2016).  

This project explores the intersection of trust in AI, specifically in ways to increase visibility, 

verifiability, and understanding in decision-making through the context of a life critical control problem. 

Trust is contextualized in this case through the exercise of troop movement and minefield traversal, a 

problem characterized by uncertainty and high risk. In this problem, soldiers must navigate a simulated 

minefield with unreliable mine detection methods. My technical topic seeks to improve operational 

robustness and user confidence, or trust, in AI enabled systems through the integration of explainable 

statistical models, data, and decision methods into opaque AI architecture. Next, I will focus on the 

requirements of the adoption and usage of AI in military operations through the Social Construction of 

Technology framework, focusing on the social and ethical dynamics shaping its acceptance. 
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Developing Strategies for Safe and Trusted Minefield Navigation 

To explore methods of improving trust in AI pipelines, the goal of this work is to create a system 

that can efficiently route mine-defusing Unmanned Ground Vehicles (UGVs) and troops through 

simulated mine-laden terrain under various environmental conditions, as quickly as possible. The 

complexity of this problem stems from varying accuracy of mine detection methods. In this work, two 

systems are employed: a human observer and an AI. These methods have different accuracies depending 

on environmental factors such as visibility, time of day, and precipitation. Additionally, the processing 

times differ significantly with the AI able to evaluate a cell in one minute, whereas the human takes 30 

minutes to evaluate the same cell. To enable the mine detection methods, a routable Unmanned Aerial 

Vehicle (UAV) is utilized to provide aerial reconnaissance of each possible traversal location. The overall 

problem can be visualized in the following objective tree (Figure 1). 

 

 

With the scale of the United States military, the complexity of moving troops, supplies, and other 

goods from point A to B becomes a logistical challenge that is compounded by potentially hazardous 

terrain, inaccurate and delayed evaluation systems, and the countless environmental conditions 

encountered across all seven continents (Siegel, 2002). Ultimate decisions regarding current traversal 

methods are primarily human based using statistical prediction models, and heuristic planning to 

determine the safest path available (Serrano et al., 2023). Additionally, there are limitations of current 

technologies (e.g., mine detection systems) where operational efficiency, resource utilization, and 
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accuracy is highly variable (McCormack, 2014). Although there has been some exploration in 

incorporating AI based hazard detection and routing methods, the dependency of an autonomous system 

that must prioritize the preservation of life requires ethical consideration in the design of the AI model  

(Sarker, 2024). AI can help optimize paths, predict risks dynamically, and adapt to rapidly changing 

conditions, such as evolving enemy tactics or environmental hazards using a variety of inputs (Bistron & 

Piotrowski, 2021). 

 

Methodology and Technical Evaluation: 

To simplify the overall approach, the overall problem is considered a system of subsystems in 

three parts: Evaluation of which method (human or AI) should scan the potential location, Routing of the 

UAV, and Routing the UGV and troops.  

Modeling Detection Reliability 

The first step is modeling the inherent unreliability of AI and human detection methods in a way 

that subsequent decision making can be validated and audited through statistical techniques. Bayesian 

estimation can be employed to update the probability of mine presence per cell as additional data is 

provided (Zyphur & Oswald, 2015) (Figure 2). The accuracy, or inaccuracy, of prediction are constantly 

updating to maximize performance. 

 
Optimizing UAV Routing 

Optimizing UAV routing (Figure 3) is essential in reducing mine encounters. Incorporating 

Baysesian estimation into Deep Reinforcement Learning (RL) (Li, 2018), we seek to create adaptive UAV 

pathfinding. Modeled as a Markov Decision Process (MDP) (Puterman, 1990), with states including UAV 
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position and scanned data, while actions involve choosing cells to scan. Bayesian estimates provide an 

accuracy and performance metric, demystifying some of the black box aspects of RL. 

 

Routing UGV and Troops 

Finally in routing the UGV and soldiers, a method is needed to minimize traversal time and avoid 

mines using the UAV data. Pathfinding algorithms are able to calculate the cost for each move (Foead et 

al., 2021), and find the shortest possible path based on the likelihood of a mine. For instance, if a mine 

adds 40 minutes to a cell traversal, a cell with a 50% mine probability adds 20 minutes to the base time. 

This ensures the UGV selects the safest and most efficient route, updating paths in real-time to align with 

mission goals and enhance operational efficiency. 

 

Evaluation Criteria 

To evaluate the success of the overall system, several criteria must be addressed to ensure optimal 

performance and mission success. The primary criterion is trust and reliability. This encompasses 

verifying that the system functions as intended and inspires confidence in soldiers to rely on AI. 

Evaluating trust involves analyzing metrics such as accuracy, false positive/negative rates, and the 
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system's consistency across varied environmental conditions. Although false positives would require 

rerouting but maintain safety, a false negative is unacceptable. The system would be trained to minimize 

this feature at all costs so that troops are not unknowingly directed to a mine. Traversal time is another 

essential criteria, focusing on minimizing the duration of missions to reduce exposure to potential threats. 

This metric includes the expected time under normal conditions and variance to capture delays caused by 

obstacles like mines or shifting environments. Performance variability under different environmental 

conditions must also be assessed. This ensures the system’s resilience and reliability when faced with 

diverse, unpredictable situations. Key indicators include how environmental changes affect detection 

accuracy and the system’s adaptability to unforeseen conditions and thus, environmental resilience is an 

important outcome. Lastly, resource utilization is critical for operational efficiency, involving concurrent 

processing by both AI and human systems. Effective parallel processing ensures real-time data analysis 

and decision-making. Metrics such as the average number of concurrent processes and server utilization 

rates help identify how well resources are managed throughout identification, routing, and mine-clearing 

operations. 

 A successful implementation of this system must be able to effectively balance and optimize for 

each sub-objective. Thus, the primary exploration of the technical aspect in this work is: How can a 

balance of these sub-objectives be reached to maximize trust and minimize total traversal time?  

 

Analyzing the Adoption of AI in Military Operations 

For AI to be trusted in control of critical, life-sensitive scenarios, methods must be developed to 

ensure performance with or without human involvement. The Social Construction of Technology (SCOT) 

framework (Pinch & Bijker, 1984) provides a lens to examine how relevant social groups - users, 

decision-makers, and other stakeholders -  shape the design and adoption of technology. SCOT highlights 

the process of interpretive flexibility, where these groups ascribe different meanings, uses, and priorities 

to the technology. Over time, as negotiations between social groups resolve conflicting interpretations, 
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closure and stabilization occur, solidifying the technology's form and function. In the context of this 

project, these stages will be analyzed in the remainder of this section. 

The adoption of human-out-of-the-loop systems is shaped by the expectations and needs of its 

relevant social groups. Factors such as human impact, ethical considerations, and international law are 

critical in influencing these groups' interpretations and acceptance (Amoroso & Tamburrini, 2020). For 

example, autonomous systems that cannot be fully explained require mechanisms to ensure their 

functionality and accuracy (Umbrello et al., 2020). Without sufficient trust in these systems, relevant 

social groups may resist their adoption, regardless of technical improvements. Military leaders, as a key 

social group, must balance innovation with strategic, ethical, and safety considerations, prioritizing 

systems that allow human oversight and maintain consistent performance (Nuechterlein, 1976). This 

drives developers to incorporate trust mechanisms, such as real-time anomaly detection and explainable 

outputs, to meet the standards set by these influential groups. 

The trust gap between humans and autonomous systems presents a significant barrier. Soldiers, as 

another relevant social group, may resist adopting systems perceived as "black boxes" due to their lack of 

interpretability, even if these systems demonstrate superior performance. Leaders face the challenge of 

reconciling the potential benefits of these systems with the need for rigorous validation and ethical 

deployment. These conflicts underscore the importance of developing hybrid control systems and 

explainable AI methods that allow human oversight without compromising efficiency (Bao et al., 2021). 

Stabilization in the context of autonomous systems for military operations can only occur when 

both soldiers and leaders reach a consensus on the systems’ trustworthiness and reliability. This requires 

technologies that incorporate explainable outputs and verifiable decision-making models. When these 

systems satisfy the needs and expectations of relevant social groups, the technology can transition from 

contested adoption to widespread use, achieving closure. 

The interpretive flexibility inherent in SCOT is evident in how different social groups engage 

with autonomous systems. For soldiers, these systems must instill confidence and facilitate 

decision-making, while for leaders, they must align with broader strategic objectives and uphold 
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accountability. These differing interpretations shape the trajectory of the technology, guiding it toward 

designs that incorporate transparency and explainability to gain the full trust and acceptance of all 

relevant social groups. 

 

Research Question and Methods: 

Through the SCOT framework, I seek to answer: What factors are influencing social groups in 

adopting AI technology in military environments? For this question, I will utilize the competition reports 

and submissions for the DEVCOM competition from the nine competing schools across the country. With 

the direct involvement of DEVCOM in shaping the adoption, operationalization, and integration of 

emerging technologies into military settings, the competition results and submissions will be valuable in 

creating a complete picture of the requirements, concerns, and social factors influencing the adoption and 

trust of AI enabled systems. 

The results of the competition provide a quantitative and qualitative assessment of various 

approaches in building trust in AI systems. DEVCOM’s scoring framework ranks submissions based on 

various criteria, such as accuracy, explainability, and operational feasibility, which reflect the priorities 

and expectations of military stakeholders. These rankings not only reveal technical strengths but also 

highlight the relative importance of social factors like usability, transparency, and trustworthiness. By 

analyzing how these metrics were weighted and how the winning teams addressed stakeholder concerns, I 

can identify patterns in what is deemed essential for building trust in AI systems. 

As an additional component, the written methodologies and design rationales submitted by the 

competing teams will be analyzed. These documents provide insight into how technical teams interpret 

and address the expectations of relevant social groups, such as military leaders and operators. Through 

SCOT's interpretive flexibility lens, I will examine how teams framed their solutions to align with 

different social group priorities, uncovering competing narratives about what constitutes a trustworthy AI 

system. By utilizing both methods, the SCOT analysis will reveal how relevant social groups interpret and 
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influence AI adoption, the competing interpretations that arise, and the conditions necessary for achieving 

closure and stabilization in military applications of AI. 

 

Conclusion  

This project examines both the technical and social dimensions of trust in autonomous systems 

for military applications. The technical focus is on enhancing the operational robustness of AI-enabled 

systems for minefield navigation through explainable models and verifiable decision-making frameworks. 

The social dimension employs the Social Construction of Technology (SCOT) framework to analyze how 

stakeholders, such as soldiers and military leaders, influence the adoption and stabilization of these 

technologies. Together, these efforts aim to bridge the gap between technological capability and social 

acceptance, providing solutions that ensure safer, more effective military operations while addressing the 

ethical and operational concerns that shape trust and adoption. 
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