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Abstract

Active magnetic bearings (AMBs) have found a wide range of high-speed rotating machinery

applications in energy storage, electric power generation, machine tool operation, heart pumps and

hybrid vehicles. Compared with conventional mechanical bearings, AMBs need feedback control to

support and constrain the rotor and demand additional electronic devices.

When AMBs are used to support flexible rotors, their nonlinear characteristics and complex

dynamics of flexible rotors cause problems with stabilization and disturbance rejection. Proportional-

integral-derivative (PID) controllers are the most popular control method for AMB applications.

They are easy to implement and reasonable control performance can be achieved. However, it is

difficult for PID controllers to deliver robust and near optimal performance for complex dynamic

systems. In recent years, robust control techniques such as µ-synthesis have also been applied to

AMB applications. The µ-synthesis is able to better handle the uncertainties in complex systems

and to achieve reliable performance. However, it requires plant and uncertainty models to generate

the most suitable solution, which makes this control design not as practical as PID controllers.

The characteristic model-based all-coefficient adaptive control (ACAC) method has been widely

used in process control and the aerospace industry. Numerous applications have demonstrated

its effectiveness. This method is able to provide robust control performance on multidimensional

complex dynamical systems, while maintaining a simple structure and not requiring the actual

plant model. It focuses on the characteristics of the plant and the control performance requirements

instead of precise system dynamics. It compresses the corresponding information of the high order

plant into several characteristic parameters so that no information is lost. The simplicity of the

characteristic model based ACAC method makes it convenient for practical engineering applications.

This thesis explores the application of the characteristic model based all-coefficient adaptive

ii
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control method to the stabilization of a flexible rotor AMB system. Simulation has shown performance

improvements over the µ-synthesis in terms of minimizing the vibration and maintaining a small

orbit. Experimental results have also demonstrated some features of ACAC method and shown it

is comparable to the µ-synthesis in certain measures. These results show its strong potential to

perform well in spite of its simplicity.
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Chapter 1

Introduction

Active magnetic bearings have been an active research subject for decades and are becoming popular

in practical applications. AMBs operate quite differently from conventional mechanical bearings.

On one hand, AMBs rely on electromagnetic force to support the object. There is no physical

contact, creating an operation environment nearly free of friction. On the other hand, AMBs require

feedback control to generate appropriate supporting force, which demands additional electronics.

Although AMBs possess several advantages such as high efficiency and reliability, low maintenance

and repair costs, and clean working environment, they are also more complex since they require

auxiliary equipment to provide the desired control performance. Because of the nonlinearity and

open-loop instability of AMB systems, the controller design is the most essential task in an AMB

application.

PID controllers are the most widely used control mechanism for magnetic bearing systems [4].

Because of their simplicity, PID controllers are easy to implement and can be tuned intuitively. They

can achieve reasonable control performance after the tuning process. However, for complex dynamic

systems, it is difficult for PID controllers to deliver robust performance. In recent years, robust

control techniques such as µ-synthesis have also been applied to magnetic bearing applications [5,6].

Compared with the PID control, the µ-synthesis approach is able to better handle the uncertainties

in complex systems and to achieve better control performance. However, µ-synthesis requires

accurate plant and uncertainty models to generate the most suitable solution, and in reality, it

takes a lot of efforts to model a complex system. Besides, if the properties of the plant change

significantly, the original µ controller might not work properly anymore [7].

1
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The characteristic model based all-coefficient adaptive control (ACAC) method has been widely

used in process control and aerospace industry, and numerous applications have demonstrated its

effectiveness [8]. This method is able to provide robust control performance on multi-dimensional

complex dynamical systems, while maintaining a simple structure and not requiring the actual plant

model [9–11]. Motivated by its strong control performance and simplicity, in this thesis, we explore

the application of the characteristic model based ACAC method on magnetic bearing systems.

1.1 Magnetic Bearings

Magnetic bearings were invented during World War II and became more mature and applicable

for practical use around 25 years ago [12]. Magnetic bearing use electromagnetic force to pull the

rotor with a mounted lamination stack from a ferromagnetic stator so that a certain clearance

can be obtained. There are several poles on the stators, which are usually configured as 8 poles

or 16 poles. Generally there exist two types of magnetic bearing designs. One is to handle the

radial direction movement (radial bearings) and the other is to handle the axial direction movement

(thrust bearings). A typical magnetic bearing is shown in Fig. 1.1. In this thesis, we will focus on

the radial bearings.

Figure 1.1: An active magnetic bearing [1].

In order to achieve typical operational objectives, including levitation, minimization of rotor

vibration, endurance and failsafe features, a complete rotor magnetic bearing system generally

consists of
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• Real time digital control system, such as DSP, FPGA, RT-linux,

• Data acquisition and real-time monitoring system, such as Labview,

• Hall position sensors, current transducers, optical probes, amplifiers and anti-aliasing filters,

• Auxiliary backup bearings,

• Backup power system,

• Rotor with lamination stacks, and

• Radial and/or thrust magnetic bearings.

The controller is the most essential element in an AMB system because magnetic bearings

need feedback control to operate. Analog control systems were widely used in the early days and

they were capable of handling simple AMB control applications. Because they could operate in

real time and possess high control bandwidth, analog controllers are theoretically very effective.

However, because the components in analog controllers are hard-wired, it is difficult to change the

configurations and activate new functions. Besides, the resulting closed-loop system is sensitive to

environmental changes and component aging. As a result, they cannot be operated under some

extreme external conditions. Digital controllers have become more and more popular in AMB

applications [13]. Digital controllers are implemented by digital signal processors (DSPs), which

are powerful and flexible for control implementations. Compared with analog controllers, digital

controllers are more compact and reliable, and they are less susceptible to the sensitivity issues.

When an AMB system is running, a variety of data need to be collected and monitored

simultaneously, such as the orbit size of the shaft, the control voltage and current, and the running

speed. DSP computers usually include functions for graphic user interface (GUI) designs so we can

directly display the sensor data on the computer. Labview is another powerful data acquisition and

monitoring system. Compared with the DSP built-in logging function, Labview is able to display

the data at a higher sampling rate and in different forms by using the built-in transformation blocks.

This allows to detect any failure and to thoroughly diagnose the system operating conditions.

Some other electrical components are also indispensable for the operation of an AMB system.

The Hall effect probes measure the displacement of the shaft with respect to the geometric center,
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which provides important feedback for the controller. The operational amplifiers convert the control

voltage to current and two amplifiers are required for each control axis of a magnetic bearing. The

current transducers measure how much control current goes through the coil and the optical probes

read how fast the shaft is rotating. The anti-aliasing filters are used to restrict the bandwidth of a

signal so when the signal is sent to the sampler, no aliasing will occur. A backup ball bearing is

usually mounted on the stator and there is enough clearance between the magnetic bearing and the

ball bearing. When the power is off, the ball bearing sustains the shaft and there is no contact with

the magnetic bearing. If the shaft is running and suddenly the power is cut off, the ball bearing

can absorb the impact from shaft dropping and protect the magnetic bearing and the rest of the

machine.

Some advantages of magnetic bearing over conventional bearings are highlighted as follows:

• High energy efficiency,

• Low power consumption,

• Being nearly maintenance-free,

• Being free of lubrication,

• No mechanical wear,

• Allowing extreme working conditions, and

• High speed operations.

AMBs have been used in compressors, flywheel energy storage systems, machine tool spindles,

and many other applications related to energy, oil and gas, and turbomachinery. Although the

initial cost for those devices to use AMBs is higher than to use the conventional bearings due to the

additional equipment, the advantages of efficiency and maintenance will compensate for the cost.

In the long run, AMBs will show their strong potentials. AMB supported artificial heart pump is

also getting more and more popular, where AMBs play a critical role. Because they do not require

lubrication and their regular service is much easier than that of conventional bearings, there will not

be contamination to human body and the patients do not need to suffer from frequent replacement

of heart pump components. Some typical applications for AMBs are shown in Figs. 1.2 and 1.3.
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Figure 1.2: Industrial compressor [2].

Figure 1.3: Gas turbine [3].

1.2 Fundamentals in AMB Control

AMB control systems modulate electromagnetic forces to stabilize rotor position. Here a one degree

of freedom AMB model is used to illustrate the force characteristics. As shown in Fig. 1.4, the

magnetic force can be calculated based on Ampere’s Law and the conservation of magnetic flux as

follows,

f =
µ0N

2AgI
2

4g2
0

, (1.1)

where µ0 is the permeability, I is the current, N is the number of turns of wires, Ag is the face area

of the pole and g0 is the size of the air gap.
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Figure 1.4: AMB control fundamental.

The net force generated by a pair of electromagnets based on the movement x and the air gap

can be expressed as

f = f1 − f2 =
µ0N

2AgI
2
1

4(g0 − x)2
− µ0N

2AgI
2
2

4(g0 + x)2
=
µ0N

2Ag
4

[
I2

1

(g0 − x)2
− I2

2

(g0 + x)2

]
. (1.2)

The currents I1 and I2 are based on the bias current Ib and the perturbation i generated from

the controller as

I1 = Ib + i, I2 = Ib − i. (1.3)

Then, the force equation can be written as

f =
µ0N

2Ag
4

[
I2

1

(g0 − x)2
− I2

2

(g0 + x)2

]
=
µ0N

2Ag
4

[
4I2
b g0x+ 4i2g0x+ 4Ibig

2
0 + 4Ibix

2

(g4
0 + x4 − 2g2

0x
2)

]
. (1.4)

Linearization of the expression in (1.4) around the equilibrium point (i = 0 and x = 0) results in

f =
µ0N

2Ag
g4

0

(I2
b g0x+ Ibig

2
0) =

µ0N
2AgI

2
b

g3
0

x+
µ0N

2AgIb
g2

0

i, (1.5)

f = kxx+ kii, (1.6)

where kx =
µ0N2AgI2b

g30
and ki =

µ0N2AgIb
g20

are the stiffness and current gains.
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Because of the negative stiffness generated by the magnetic force, AMB is inherently unstable.

More than one channel always need to be controlled, so the multiple-input multiple-output (MIMO)

control design strategy can usually facilitate the task. As shown in Fig. 1.5, for a magnetic bearing

with 8 poles, each axis needs a pair of amplifiers and a total of four amplifiers are required to provide

currents to the coils. The controller will produce suitable control voltages to the amplifiers based

on the measurements of position sensors, where two sensors are mounted for each axis. After the

magnetic forces are applied to the shaft, the shaft can be levitated with a specified clearance.

Figure 1.5: Basic AMB control components.

1.3 Review of AMB Control Literature

AMB systems have the capability of compensating for vibration forces and keeping the shaft near

the geometry axis within the limits of the actuator capacity and bandwidth. For AMB supported

rotors, currently there are several general methods to deal with vibration minimization. Automatic

balancing control [14] is a typical strategy for cancelation and rejection of the synchronous bearing

reaction force. There is also adaptive unbalance control [15], which can reduce the bearing reaction

force and housing vibration. These approaches aim to reduce the synchronous component of the

rotor response to the amplifier. However, these approaches usually cannot deal with bending critical

speeds so they cannot be directly applied to flexible rotors. The second category for cancelation

and rejection of unbalance vibrations includes periodic learning control [16] and real time balancing
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[17]. These approaches aim to reduce the measured rotor position error. They can minimize the

vibration induced by unbalance with appropriate compensation generated in AMBs and are suitable

for precise position control applications. The third category aims to deal with the bending modes,

including optimum damping control [18] and synchronous vibration control [19]. These strategies

can attenuate the vibration when the rotor passes through bending critical speeds. If there exists a

large residual unbalance, a large amplifier power for large magnetic bearing compensation force is

needed.

For a flexible rotor, because of its bending natural modes, it has higher gain near those natural

frequencies and it also has a wider mechanical bandwidth than a regular rigid rotor, which brings

control bandwidth issues. The controller needs to have excellent dynamic performance at high

frequency to control a flexible rotor. Besides those, the sensor and actuator noncollocation is also an

important issue because around bending critical speeds, the sensor measurement could be different

from the actual shaft movement at the bearing. Generally there are two approaches to deal with

bending flexible modes, one is called phase compensation and the other is called gain compensation

[4]. For the phase compensation, the phase of the controller should be positive near the bending

frequency and the gain product of the controller and plant should be bigger than 1. For the gain

compensation, the gain product of the controller and plant should be less than 1 even though the

controller could have negative phase near the bending frequency. The controller usually needs to

combine both approaches to achieve stability and performance requirements.

Control of flexible rotors supported by AMBs have been reported on by several researchers

[6, 20–23]. Several PID control designs have been documented in controlling flexible high speed

rotors. In general, a PID controller itself could not stabilize the flexible modes, so notch filters are

needed. Besides, low-pass filters are necessary to roll off the control signal at high frequencies so the

noise is not amplified. In some of the literature, additional filters such as the phase bump filter were

proposed to enhance the performance of PID control [22]. Robust control µ synthesis has also been

applied to control of flexible rotors and good results have been documented [6, 20]. The µ controller

does not need any additional filters and the inherent notch effect makes it ideal to handle flexible

modes. It provides robust stability and performance under certain ranges of parameter variations so

it is quite reliable for AMB control applications.
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1.4 Objectives of the Thesis

The main goal of this thesis is to explore using the characteristic model based ACAC method to

stabilize a flexible rotor AMB test rig. The new control method will be compared with an existing

µ-synthesis controller in both simulations and experiments so we can fully understand its advantages

and limitations.

1.5 Organization of the Thesis

The thesis is organized as follows: Chapter 2 presents the all-coefficient adaptive control. First

this method is briefly introduced, then we will study the golden-section robust control method and

analyze it with stable and unstable second order systems. Afterwards, the golden-section adaptive

control is described and some simulation results are shown at the end. Chapter 3 presents the

characteristic modeling. First it is applied to a linear time-invariant plant with only distinct nonzero

poles, then it is applied to a linear time-invariant plant with additional zero poles and repeated real

poles. Afterwards, the characteristic modeling method is analyzed and the modeling error issue is

addressed. At the end of this chapter, some simulation results are presented. Chapter 4 presents

the application of the characteristic model based all-coefficient adaptive control to an AMB system.

First it describes the flexible rotor AMB test rig and an existing µ-synthesis controller, then the

concept of characteristic modeling with all-coefficient adaptive control mechanism is introduced.

Afterwards, it applies the characteristic modeling method to the rotor AMB model and then it

presents the implementation on the actual test rig and shows the simulation and experimental

results. Conclusions and future work are summarized in Chapter 5.



Chapter 2

All-coefficient Adaptive Control

All-coefficient adaptive control (ACAC) was originally developed by Wu and his colleagues in

the 1980’s [24]. It aims to resolve many practical engineering problems more effectively than the

conventional adaptive control. It can be easily implemented and applied to many engineering

systems for control operations [25,26].

The early development of ACAC focused on linear time-invariant plants with unknown plant

parameters. It was later discovered that ACAC could also be applied to linear slowly time-varying

systems and certain nonlinear systems. One of the most important conclusions in the development

of ACAC is that under the proposed circumstances, the sum of all the coefficients from the derived

discretized system equal to one. Based on this condition, the selection of the initial values of system

coefficients gets simplified and it reduces the calculation for parameter estimations. Besides, it

can guarantee the boundness of the controller coefficients by using the least-squares parameter

estimation algorithm. The ACAC method also plays an important role in the characteristic model

based intelligent control theory and the golden-section controller is based on the ACAC method. By

combining the characteristic modeling and golden-section adaptive control, it formulates a complete

system modeling and control design method.

The ACAC method guarantees not only the closed-loop stability but also sufficient performance

during the transient process. The golden-section adaptive controller is one of the most important

components in the all-coefficient adaptive control structure. It will be demonstrated that this

controller design can deliver good dynamic performance and make the closed-loop system stable

when the sampling time satisfies certain conditions.

10
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In this chapter, we will summarize the ACAC method and the golden-section control design.

2.1 All-coefficient Adaptive Control Method

Consider a linear time-invariant plant described by the following differential equation

y(n) = an−1y
(n−1) + · · ·+ a0y + bm−1u

(m−1) + · · ·+ b0u, (2.1)

where n > m. The discretized form of (2.1) is given as

y(k + n) = α1y(k + n− 1) + · · ·+ αny(k) + β0u(k +m− 1) + · · ·+ βm−1u(k), (2.2)

with the transfer function

G(z) =
Y (z)

U(z)
=

β0z
m−1 + β1z

m−2 + · · ·+ βm−1

zn − α1zn−1 − α2zn−2 − · · · − αn
. (2.3)

The coefficients of Eq. (2.2) satisfy the following conditions [8]:

• If the static gain D equals to unity, where D = −b0/a0, then the sum of all the coefficients

equals to one, i.e.,

n∑
i=1

αi +

m−1∑
i=0

βi = 1.

• If the static gain D 6= 0 and is bounded, the sum of all the coefficients approaches one as the

sampling time T → 0, i.e.,

lim
T→0

(
n∑
i=1

αi +

m−1∑
i=0

βi

)
= 1.
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When T → 0, we have the following approximations:

dy(t)

dt

∣∣∣∣
t=KT

=
y(k + 1)− y(k)

T
=

1∑
i=0

p1,iy(k + i)

T
;

dy2(t)

dt2

∣∣∣∣
t=KT

=
y(k + 2)− 2y(k + 1) + y(k)

T 2
=

2∑
i=0

p2,iy(k + i)

T 2
;

...

dyn(t)

dtn

∣∣∣∣
t=KT

=

y(k + n) +
n−1∑
i=0

ciy(k + i)

Tn
=

n∑
i=0

pn,iy(k + i)

Tn
.

du(t)

dt

∣∣∣∣
t=KT

=
u(k + 1)− u(k)

T
=

1∑
j=0

q1,ju(k + j)

T
;

du2(t)

dt2

∣∣∣∣
t=KT

=
u(k + 2)− 2u(k + 1) + u(k)

T 2
=

2∑
j=0

q2,ju(k + j)

T 2
;

...

dum−1(t)

dtm−1

∣∣∣∣
t=KT

=

u(k +m− 1) +
m−2∑
j=0

dju(k + j)

Tm−1
=

m−1∑
j=0

qm−1,ju(k + j)

Tm−1
.

(2.4)

It can be observed that
n−1∑
i=0

ci = −1 and the sum of all the coefficients
1∑
i=0

p1,i = 0, . . . ,
n∑
i=0

pn,i = 0,

1∑
j=0

q1,j = 0, . . . ,
m−1∑
j=0

qm−1,j = 0 in Eq. (2.4). Substituting Eq. (2.4) in Eq. (2.1) results in

y(k + n) = an−1T

n−1∑
i=0

pn−1,iy(k + i) + · · ·+ a1T
n−1

1∑
i=0

p1,iy(k + i)

+ a0T
ny(k) + bm−1T

n−m+1
m−1∑
j=0

qm−1,ju(k + j) + · · ·+ b1T
n−1

1∑
j=0

q1,ju(k + j)

+ b0T
nu(k)−

n−1∑
i=0

ciy(k + i),
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which is in the form of Eq. (2.2). Thus,

n∑
i=1

αi +

m−1∑
j=0

βj = a0T
n + b0T

n −
n−1∑
i=0

ci. (2.5)

Since
n−1∑
i=0

ci = −1, we have
n∑
i=1

αi +
m−1∑
j=0

βj = 1 as T → 0.

When the static gain D = −b0/a0, the coefficients of the difference equation above follow

n∑
i=1

αi + (−a0

b0
)

m−1∑
i=0

βi =

n∑
i=1

αi +
1

D

m−1∑
i=0

βi = 1,

because D = β0+β1+···+βm−1

1−α1−α2−···−αn for z = 1 based on Eq. (2.3).

Therefore,
n∑
i=1

αi +
m−1∑
i=0

βi = 1 when D = −b0/a0 = 1.

Based on the derivation above, several extended conclusions can be acquired:

• When a0 = 0 in Eq. (2.1), it can be easily observed that for Eq. (2.2)

n∑
i=1

αi = 1.

• When a0 6= 0, it can be observed that

a0 = −
n∏
i=1

pi = −
n∏
i=1

1

Ti
,

T
′

= n

√√√√ n∏
i=1

Ti,

where pi are the poles of the transfer function derived from Eq. (2.1), Ti are the time constants

for each pole and it can be derived that a0 = −( 1
T ′

)n.

• Although the values of a0 and T
′

are unknown, it is not difficult to find the possible maximum

value of |a0| or the ranges of the maximum pole |pimax| [27], so we can define the minimum
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equivalent time constant Tmin and the the maximum equivalent time constant Tmax as follows,

Tmin =
n

√√√√√ 1
n∏
i=1
|pimax|

= n

√
1

|a0 max|
,

Tmax =
n

√√√√√ 1
n∏
i=1
|pimin|

= n

√
1

|a0 min|
.

• When the system static gain equals to 1, no matter how big the sampling time T is chosen,

the sum of the coefficients will be equal to 1. When the static gain does not equal to 1 but

T approaches 0, the sum of the coefficients also approaches 1. When D 6= 1 and T 6→ 0,
n∑
i=1

αi +
m−1∑
j=0

βj = 1 + ε and ε = (D − 1)( T
T ′

)n.

The ranges of αi and βi can be determined in advance based on the ranges of ai and bi. The

sampling time T is usually chosen as

T ≤ Tmin

15
.

Once the ranges of the parameters are specified, parameter estimates should not only rely on

the parameter estimation algorithm, but also satisfy the requirements that they are constrained by

closed sets and the sum of all the coefficients should be equal to one. The initial values of those

coefficients are chosen from the specified closed sets, so the estimated parameters can be closer to

their real values, which will improve the performance of the adaptive control during the transient

process.

The difference equation (2.2) can be parameterized in the following compact form,

y(k) = φT (k)θ + β0u(k), (2.6)

where φ(k) and θ are defined as

φ(k) = [y(k − 1) y(k − 2) · · · y(k − n) u(k − 1) u(k − 2) · · · u(k −m+ 1)]T ,

θ = [α1 α2 · · · αn β1 β2 · · · βm−1]T .
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The feedback control u(k) is given as

u(k) = −φT (k)L(k),

where L(k) = [L1(k) L2(k) · · ·L2n−1(k)] is the feedback gain that satisfies the conditions of making

the system (2.6) stable.

We can adopt a least-squares algorithm to update θ̂(k) as follows [24],

P (k)=P (k−1)−P (k−1)φ(k)φT (k)P (k−1)

λ+ φT (k)P (k−1)φ(k)
,

θ̂(k)=θ̂(k−1)+β0(k)L(k)−β0(k−1)L(k−1)

+P (k)φ(k)[y(k)−φT (k)(θ̂(k−1)−β0(k−1)L(k−1))].

Also, based on the fact that the sum of all the coefficients equals to 1, it follows that [24], the

coefficient β̂0 can be updated as follows

β̂0(k) = β̂0(k−1)−θs+β̂0(k−1)−1

Ls+1
−MP (k)φ(k)

y(k)−φ(k)T [θ̂(k−1)−β̂0(k−1)L(k)]

Ls+1
,

where θs, Ls and M are given as

θs =
2n−1∑
i=1

θi(k − 1),

Ls =
2n−1∑
j=1

Lj(k),

M = [1 1 · · · 1︸ ︷︷ ︸
2n−1

0 0 · · · 0︸ ︷︷ ︸
n

].

The general all-coefficient adaptive control u(k) consists of a maintaining/tracking control um(k),

a golden-section feedback control uf (k), a logic differential control ud(k) and a logic integral control

ui(k) [8]. It can be written as

u(k) = um(k) + uf (k) + ud(k) + ui(k),
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where um(k), uf (k), ud(k) and ui(k) are respectively specified as

1. Maintaining/tracking control

um(k) =
yr(k)− φT (k)θ̂(k)

β̂0(k)
,

where yr(k) is the desired output;

2. Golden-section feedback control

uf (k) =
l1α̂1(k)ỹ(k) + l2α̂2(k)ỹ(k − 1)

β̂0(k)
,

where l1 = 0.382, l2 = 0.618, α̂1(k) and α̂2(k) are the estimates of α1 and α2, and ỹ(k) = yr(k)−y(k);

3. Logical differential control

ud(k) = k1
ỹ(k)− ỹ(k − 1)

T
,

k1 = kd

√√√√ N∑
i=1

[| ỹ(k −N + i)− ỹ(k −N + i− 1) |] ,

where kd is a positive constant;

4. Logical integral control

ui(k) = ui(k − 1) + k2ỹ(k),

k2 =


ki1, ỹ(k)[ỹ(k)− ỹ(k − 1)]− ψ ≤ 0,

ki2, ỹ(k)[ỹ(k)− ỹ(k − 1)]− ψ > 0,

where ki2, ki1 and ψ are all positive constants with ki2 > ki1 and ψ being a small number.

2.2 Golden-section Robust Control Method

The golden-section robust controller is based on the all-coefficient adaptive control theory. This

method brings the golden-section ratio (l1/l2 = 0.382/0.618) into the controller design. The golden-

section adaptive control aims to effectively control systems with unknown parameters. It is able to

make the closed-loop system stable with a simple control structure and it is very robust [28]. In this
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section, we will introduce the golden-section robust controller and analyze the closed-loop system

stability with a second order system.

Consider a dynamic system that can be described by the following second order differential

equation

ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t), (2.7)

whose transfer function is given as follows,

G(s) =
Y (s)

U(s)
=

b1s+ b0
s2 + a1s+ a0

=
k1

s+ p1
+

k2

s+ p2
, (2.8)

where k1 =
b0−

a1−
√
a21−4a0
2

b1√
a21−4a0

, k2 =
−b0+

a1+
√
a21−4a0
2

b1√
a21−4a0

, p1 =
a1−
√
a21−4a0
2 , and p2 =

a1+
√
a21−4a0
2 . Here

we have assumed that p1 6= p2.

Discretization of G(s) with a zero order hold results in

G(z) = Z

[
1− e−sT

s

k1

s+ p1

]
+ Z

[
1− e−sT

s

k2

s+ p2

]
=

[k1Tmax(1− e−T/Tmax) + k2Tmin(1− e−T/Tmin)]z−1

1− (e−T/Tmin + e−T/Tmax)z−1 + e−T/Tmine−T/Tmaxz−2

+
[k1Tmax(e−T/Tmax−T/Tmin − e−T/Tmin) + k2Tmin(e−T/Tmax−T/Tmin − e−T/Tmax)]z−2

1− (e−T/Tmin + e−T/Tmax)z−1 + e−T/Tmine−T/Tmaxz−2
,

(2.9)

where Tmax = 1/p1 and Tmin = 1/p2.

The discrete-time version of Eq. (2.7) can be written as

y(k + 2) = α1y(k + 1) + α2y(k) + β0u(k + 1) + β1u(k), (2.10)

and its transfer function can be obtained as follows,

Y (z)

U(z)
=

β0z + β1

z2 − α1z − α2
=

β0z
−1 + β1z

−2

1− α1z−1 − α2z−2
. (2.11)
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Comparing Eq. (2.9) with Eq. (2.11), we can find:

α1 = e−T/Tmin + e−T/Tmax , α2 = −e−T/Tmin−T/Tmax ,

β0 = k1Tmax(1− e−T/Tmax) + k2Tmin(1− e−T/Tmin),

β1 = k1Tmax(e−T/Tmax−T/Tmin − e−T/Tmin) + k2Tmin(e−T/Tmax−T/Tmin − e−T/Tmax).

Let the ratio between the sampling time and the minimum equivalent time constant η = T
Tmin

satisfy η ∈ [0, ηmax] and the ratio between the sampling time and the maximum equivalent time

constant satisfies T
Tmax

∈ [0, T
Tmin

]. For a second order system,

α1 ∈ [2e−T/Tmin , 2e−T/Tmax ],

α2 ∈ [−e−2T/Tmax ,−e−2T/Tmin ].

Assuming the plant is stable, then, by the Jury Test, we have

|α2| < 1, (2.12)

1− α1 − α2 > 0, (2.13)

1 + α1 − α2 > 0. (2.14)

Therefore, −1 < α2 < 1, α1 + α2 < 1, α2 − α1 < 1. For stable plants, it has been established in

[29] for the following results:



2e−ηmax≤α1 ≤ 2,

−1<α2≤ −e−2ηmax ,

2e−ηmax − e−2ηmax < α1 + α2≤1,

b0T 2

2

(
1−2ηmax

3

)
<β0<

b0T 2

2 ,

b0T 2

2

(
1−4ηmax

3 −−
5η2max

6

)
<β1<

b0T 2

2

(
1−η

2
max
24

)
,

(2.15)
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and for unstable plants, according to [29],



2 cos(ηmax

2 )≤α1 ≤ 2e
ηmax

2 ,

−eηmax<α2≤−1,

2e
ηmax

2 cos(ηmax

2 )− eηmax≤α1 + α2<1,

b0T 2

2 <β0<
b0T 2

2

(
1+ηmax

3 +η2max
12

)
,

b0T 2

2

(
1−η

2
max
24

)
<β1<

b0T 2

2

(
1+2ηmax

3 +7η2max
24

)
.

(2.16)

The definition of the minimum equivalent time constant can be specified as follows according to

the poles in Eq. (2.8):

• If p1 and p2 are real poles, p1 ≤ p2 < 0 or p1 < p2 ≤ 0, the minimum equivalent time constant

Tmin = − 1
p1

;

• If p1 and p2 are real poles, 0 < p1 ≤ p2, Tmin = 1
2p2

;

• If p1 and p2 are real poles, p1 < 0 < p2, Tmin = min
[
− 1

2p1
, 1

2p2

]
;

• If p1 and p2 are complex conjugate poles, p1 = σ + jω, p2 = σ − jω, Tmin = min
[
− 1
|2σ| ,

1
|2ω|
]

for σ 6= 0, Tmin = 1
|2ω| for σ = 0.

Now we need to summarize the ranges of α1, α2, β0 and β1. For stable plants, based on Eq. (2.15),

it can be observed that α1 → 2, α2 → −1, β0 → 0, β1 → 0 as T → 0. From a practical point of

view,


T

Tmin
∈ [ 1

10 ,
1
3 ],

T
Tmax

∈ [0, 1
10 ].
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For practical systems, β1 can be ignored [29]. When ηmax ≤ 1
3 , β0 = b0

a0
( T
Tmin

)2, b0
a0

= D ∈ (0.3, 3),

the ranges of α1, α2 and β0 can be calculated as

N1 =



α1 ∈ [1.4331, 1.9975],

α2 ∈ [−1,−0.5134],

α1 + α2 ∈ [0.9196, 1],

β0 ∈ [0.003, 0.3].

Based on Eq. (2.16), for unstable plants, it can be observed that α1 → 2, α2 → −1, β0 → 0, β1 → 0

as T → 0. Let


T

Tmin
∈ [ 1

10 ,
1
4 ],

T
Tmax

∈ [0, 1
10 ].

Then the ranges for the corresponding parameters can be calculated with ηmax ≤ 1
4 and D ∈ (0.3, 3)

[24],

N2 =



α1 ∈ [1.9844, 2.2663],

α2 ∈ [−1.2840,−1],

α1 + α2 ∈ [0.9646, 1],

β0 ∈ [0.00075, 0.047].

• For case when p1 < p2 = 0, the minimum equivalent time constant Tmin = − 1
p1

, η = −p1T ,



α1 = e−η + 1,

α2 = −e−η,

α1 + α2 = 1.
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• For case when p1 = p2 = 0,



α1 = 2,

α2 = −1,

α1 + α2 = 1.

2.2.1 Golden-section robust control for stable second order systems

Since a second order system is closely related to the characteristic modeling method and the ranges

of the system parameters have been specified, we will analyze the closed-loop stability of a second

order linear time-invariant (LTI) system under the golden-section robust control. A stable system

with unknown parameters is described as [29]

y(k + 2) = α1y(k + 1) + α2y(k) + β0u(k + 1), (2.17)

and the controller has the following structure

u(k) = yr(k + 1)/β̂0 − [l1α̂1y(k) + l2α̂2y(k − 1)]/β̂0, (2.18)

whose parameters are chosen from set N1, so α̂1 ∈ [1.4331, 1.9975], α̂2 ∈ [−1,−0.5134] and

β̂0 ∈ [0.003, 0.3].

According to [30], l1 = 1 and l2 = 1 for a general form adaptive controller. Since we are trying

to verify the golden-section robust control method, we will assume 0 < l1 ≤ 1, 0 < l2 ≤ 1.

Substituting Eq. (2.18) into (2.17), we have

y(k + 2) =

(
α1 −

β0

β̂0

l1α̂1

)
y(k + 1) +

(
α2 −

β0

β̂0

l2α̂2

)
y(k) +

β0

β̂0

yr(k + 2). (2.19)

The transfer function of the closed-loop system (2.19) can be obtained as follows,

Y (z)

R(z)
=

β0
β̂0
z2

z2 +

(
β0
β̂0
l1α̂1 − α1

)
z +

(
β0
β̂0
l2α̂2 − α2

) , (2.20)
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and the characteristic equation is given as

z2 +

(
β0

β̂0

l1α̂1 − α1

)
z +

(
β0

β̂0

l2α̂2 − α2

)
= 0. (2.21)

Based on the Jury Test, the closed-loop system is stable if

∣∣∣∣β0

β̂0

l2α̂2 − α2

∣∣∣∣ < 1, (2.22)

1 +

(
β0

β̂0

l1α̂1 − α1

)
+

(
β0

β̂0

l2α̂2 − α2

)
> 0, (2.23)

1−
(
β0

β̂0

l1α̂1 − α1

)
+

(
β0

β̂0

l2α̂2 − α2

)
> 0. (2.24)

From Eqs. (2.22) to (2.24), according to the coefficient ranges specified in the set N1 and

0 < β0
β̂0
≤ 2 [29], the following conditions can be derived to keep the closed-loop system stable:

l2 < 1.9196l1, (2.25)

l2 < 1.45− 2l1, (2.26)

l2 > 0. (2.27)

Therefore, the values of l1 and l2 satisfying the conditions above must lie in the triangle defined

by Eqs. (2.25), (2.26) and (2.27).

When α̂1 = α1, α̂2 = α2 and β̂0 = β0, the characteristic equation of the closed-loop system

becomes

z2 + (l1 − 1)α1z + (l2 − 1)α2 = 0. (2.28)

Note that α1 = e−T/Tmin +e−T/Tmax , α2 = −e−T/Tmine−T/Tmax , the open-loop poles zo1 = e−T/Tmin

and zo2 = e−T/Tmax . If l2 = 1− (1− l1)2, the closed-loop poles have the following relations with zo1
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and zo2:

zc1 =
−(l1 − 1)α1 +

√
(l1 − 1)2α2

1 − 4(l2 − 1)α2

2
= (1− l1)zo1, (2.29)

zc2 =
−(l1 − 1)α1 −

√
(l1 − 1)2α2

1 − 4(l2 − 1)α2

2
= (1− l1)zo2. (2.30)

For stable systems, |zo1| < 1 and |zo2| < 1, therefore,

|zc1| < (1− l1), (2.31)

|zc2| < (1− l1). (2.32)

Figure 2.1: Parameter graph for a stable second order system.

If we use the relation l2 = 1− (1− l1)2 and combine it with the triangle enclosed by Eqs. (2.25),

(2.26) and (2.27), some important relations can be obtained based on Fig. 2.1. At point P1, which

is the intersection of l2 = 1 − (1 − l1)2 and l2 = 1.9196l1, l1 = 0.403, l2 = 0.643. Because we

know any combination of l1 and l2 in the triangle can make the system closed-loop stable, we can

directly adopt the values of l1 and l2 at point P1 while preserving some stability margin. Therefore,
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l1 + l2 = 0.403 + 0.643 = 1.046 ≈ 1 and we can obtain l1 and l2 with l2 = 1− (1− l1)2:

l1 =
3−
√

5

2
= 0.382, (2.33)

l2 =

√
5− 1

2
= 0.618. (2.34)

It can be observed that at the point P2, l1 and l2 satisfy the golden-section ratio and the

closed-loop system is stable.

2.2.2 Golden-section robust control for unstable second order systems

We now consider an unstable second order LTI system

y(k + 2) = α1y(k + 1) + α2y(k) + β0u(k + 1). (2.35)

Let the controller have the following structure

u(k) = yr(k + 1)/β̂0 − [l1α̂1y(k) + l2α̂2y(k − 1)]/β̂0, (2.36)

whose parameters are chosen from set N2, that is, α̂1 ∈ [1.9844, 2.2663], α̂2 ∈ [−1.2840,−1],

β̂0 ∈ [0.00075, 0.047] and 0 < l1 ≤ 1, 0 < l2 ≤ 1.

By following similar steps as in Section (2.2.1), the following conditions are derived under which

the closed-loop system is stable:

l2 < 1.7512l1, (2.37)

l2 < 1.5516− 1.765l1, (2.38)

0.568 < l2 < 0.7788. (2.39)

We can formulate a similar graph as Fig. 2.1, as shown in Fig. 2.2, in which point P3 satisfying

the golden-section ratio with l1 = 0.382 and l2 = 0.618 lies in the stable region indicated by the

shaded triangular area.
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Figure 2.2: Parameter graph for an unstable second order system.

The parameters of an unstable second order system are also given by α1 = e−T/Tmin + e−T/Tmax ,

α2 = −e−T/Tmin−T/Tmax . When α̂1 = α1, α̂2 = α2 and β̂0 = β0, the characteristic equation of the

closed-loop system becomes the same as Eq. (2.28). When l1 = 0.382 and l2 = 0.618,

zc1 = 0.618e−T/Tmin , (2.40)

zc2 = 0.618e−T/Tmax . (2.41)

While T
Tmin
∈ [ 1

10 ,
1
4 ], we can derive

|zci| ≤ 0.618e0.1 < 0.683, i = 1, 2. (2.42)

2.3 Golden-section Adaptive Control

The golden-section robust control method is first analyzed by assuming the controller parameters to

be equal to unknown system parameters and the closed-loop stability is achieved. In this section, we

will introduce the adaptation algorithm into the golden-section control design and the closed-loop
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stability could be achieved even when the estimated parameters do not converge to the true values.

First, Eq. (2.35) is parameterized in the following form:

y(k) = φT (k)θp, (2.43)

where φ(k) and θ(k) are defined as

φ(k) = [y(k − 1) y(k − 2) u(k − 1)]T ,

θp = [α1 α2 β0]T ,

θ̂(k) is the estimate of the parameter vector θp and the estimation error ε(k) is given by

ε(k) = (θp − θ̂(k))Tφ(k) = y(k)− φT (k)θ̂(k).

We adopt the gradient adaptive law and a direct mapping approach to acquire θ̂(k),

θ̂u(k + 1) = θ̂(k) +
γφ(k)ε(k)

δ + φT (k)φ(k)
,

θ̂(k + 1) = π[θ̂u(k + 1)],

where δ ≥ 0, 0 < γ < 2, and π[x] is the projection of x into N1 or N2 [31].

The controller has the following structure

u(k) = yr(k + 1)/β̂0(k)− [l1α̂1(k)y(k) + l2α̂2(k)y(k − 1)]/β̂0(k), (2.44)

where l1 = 0.382, l2 = 0.618, β̂0(k), α̂1(k) and α̂2(k) are the estimates of β0, α1 and α2.

The direct mapping means if the estimated parameters are not in the data set N1 or N2, the

parameters α̂1(k), α̂2(k) and β̂0(k) will be assigned values that have the shortest distance between

the boundary points of set N1 or N2 and estimated values, so the identification results will always

remain in the set [31].
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The closed-loop system consisting of Eqs. (2.43) and (2.44) can be written as

y(k) =
β0

β̂0(k)
yr(k) + [α1 −

β0

β̂0(k)
l1α̂1(k)]y(k − 1) + [α2 −

β0

β̂0(k)
l2α̂2(k)]y(k − 2). (2.45)

If we assume yr(k) = 0 and let g1(k) = α1 − β0
β̂0(k)

l1α̂1(k) and g2(k) = α2 − β0
β̂0(k)

l2α̂2(k), we can

write the equation into a state space form,

x(k + 1) = A(k)x(k) +B(k)u(k),

y(k) = C(k)x(k),

(2.46)

where

A(k) =

 0 1

−g2(k + 1) −g1(k + 1)

 , B(k) =

0

0

 , C(k) =

[
1 0

]
, x(k) =

 y(k)

y(k + 1)

 .
Although the plant itself is time-invariant, when it is coupled with the adaptive controller, it

becomes time-varying. The stability of the closed-loop system 2.45 has been established in [27].

2.4 Simulation Studies

Given a second order system,

Gg(z) =
β0z

z2 − α1z − α2
. (2.47)

We will consider two different sets of plant coefficients: β0 = 0.05, α1 = 1.96, α2 = −1.06 and

β0 = 0.05, α1 = 2.26, α2 = −1.18. For both sets of coefficients, the plant is unstable.

Compared with the general form indirect adaptive controller (l1 = 1 and l2 = 1), the golden-

section adaptive controller does not show advantages in tracking reference input. However, it can

provide better performance in terms of stabilization and disturbance rejections, which is extremely

important in AMB control applications. The following simulations will demonstrate the capability

of golden-section adaptive controller in scenarios of rejecting external disturbance.
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In the first set of plant coefficients (β0 = 0.05, α1 = 1.96, α2 = −1.06), let the initial conditions

be chosen as β̂0(0) = 0.06, α̂1(0) = 1.92, α̂2(0) = −0.98. A sinusoidal signal with magnitude of

0.1 and frequency at 30 Hz is considered as the external disturbance. As shown in Fig. 2.3(a),

the golden-section adaptive control is able to effectively mitigate the disturbance and keep the the

output close to zero and all the estimated coefficients remain bounded.

For the second set of plant coefficients (β0 = 0.05, α1 = 2.26, α2 = −1.18), the initial conditions

are chosen as β̂0(0) = 0.1, α̂1(0) = 2, α̂2(0) = −1. As shown in Fig. 2.3(b), the golden-section

adaptive control is also able to effectively mitigate the disturbance and keep the the output close to

zero and all the estimated coefficients remain bounded.
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(a) Golden-section adaptive control (1st set of coefficients).
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Figure 2.3: Disturbance rejection and parameter estimates.
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Characteristic Modeling

For systems with simple dynamics, controllers such as PID can sufficiently fulfill the requirements.

Therefore, a modeling procedure might not be necessary. For systems with complex structure

or even involving nonlinear and time-varying features, although the current modeling method is

able to describe the system dynamics and internal information using a mathematical description,

the mathematical model might be very complicated. Under this situation, the control design

might become difficult. Even though the controller can be designed following the complex model,

the controller might have high order, making it difficult to be applied to practical engineering

applications. Other modeling approach involves approximating a high order model with a low

order model, and the controller design is based on the low order model. This approach reduces

the requirement of accurate dynamic analysis but it is not quite feasible for systems with flexible

structures [9].

Given the restrictions of conventional modeling methods, one of the most important concerns is

the balance between practicality and complexity. With the development of computer technology,

the implementation process becomes much easier, which motivates new methods for modeling of

complex dynamic systems with high order, time-varying and nonlinearity features. The characteristic

modeling method is among one of the options that achieve a good balance. Some preliminary

theoretical studies have provided a strong foundation for research and the results have demonstrated

its effectiveness and indicated it can significantly simplify controller designs for complex dynamic

systems. The characteristic modeling method focuses on the characteristics of the plant and

the control performance requirements instead of the precise system dynamics. It compresses the

30
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corresponding information of the high order plant into several characteristic parameters so that no

information is lost during the modeling process. Besides, the characteristic model remains a simple

structure but it closely represents the dynamics of the original system.

The basic principles of the characteristic modeling can be summarized as follows,

• Given the same input, the output of the characteristic model is the same as the output of the

actual plant.

• During the transient process, the output errors remain in a small range that can be ignored.

• The structure and order of the characteristic model is determined by the control requirement,

i.e., position tracking or speed tracking.

• Unlike truncated models, characteristic model closely represents the dynamics of a higher order

model and it is usually described in a second order slowly time-varying difference equation,

where being slowly time-varying means the coefficients of the equation satisfy αi(k) ≈ αi(k+1).

In this chapter, we will study the characteristic modeling method for the LTI system. Systems

will be analyzed and their characteristic models with certain prerequisites will be derived in two

cases. Case one focuses on systems with only distinct nonzero real poles. Case two focuses on

systems with poles at zero and repeated poles. Several simulation studies will be provided at the

end.

3.1 Characteristic Model of LTI Systems

Consider a linear time-invariant plant

G(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
, (3.1)

which can be decomposed as

G(s) =

v∑
i=1

kvi
si

+

m∑
i=1

ki
s+ λi

+

w∑
i=1

kωi
(s+ λωi)2

, (3.2)
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where kvi is a constant gain for the zero pole, ki is a constant gain for a nonzero real pole −λi, kωi

are constant gains for repeated real poles −λωi.

According to the characteristic modeling method [8], if a plant G(s) is given and the control

objective is position keeping or tracking, for a sufficiently small sampling period T that satisfies

the sampling theorem and guarantees the controllability requirement for the discretized system, its

characteristic model is a second-order time-varying difference equation,

y(k) = f1(k)y(k − 1) + f2(k)y(k − 2) + g0(k)u(k − 1) + g1(k)u(k − 2), (3.3)

where u(k) and y(k) are respectively the control input and the system output at the kth sampling

point, f1(k), f2(k), g0(k) and g1(k) are the characteristic parameters.

If G(s) is stable, its characteristic model possesses the following properties:

• Coefficients f1(k), f2(k), g0(k) and g1(k) are slowly time-varying.

• The ranges of these parameters can be decided a priori.

• In response to the same input, the outputs of the original model and the characteristic model

are identical at the sampling points.

• Assume that there are no poles at zero or repeated poles, if the static gain of the system is

D = G(0) =
b0
a0

= 1,

then the sum of all the coefficients approaches 1 in the steady state, i.e.,

f1(∞) + f2(∞) + g0(∞) + g1(∞) = 1.

• If there are poles at zero,

f1(∞) + f2(∞) = 1.
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3.2 Characteristic Model of Systems with Distinct Nonzero Poles

First we consider the system with only distinct nonzero poles. For distinct real poles, their output

terms yi have different signs, which is either yi > 0 or yi < 0. If we assume there are l distinct poles

that have their output terms yi > 0, i = 1, . . . l, and there are m− l distinct poles that have their

output terms yi < 0, i = l + 1, . . .m, we can assign two groups for the output yi, i = 1, . . .m as

follows,



dy1
dt + λ1y1 = k1u(t),

dy2
dt + λ2y2 = k2u(t),

...

dyl
dt + λlyl = klu(t);



dyl+1

dt + λl+1yl+1 = kl+1u(t),

dyl+2

dt + λl+2yl+2 = kl+2u(t),

...

dym
dt + λmym = kmu(t);

If we add both sides of the equations separately in the two columns above and rearrange them

into two groups based on yi > 0 and yi < 0, the following equations can be obtained,

dyp
dt

+ apyp = kpu(t), (3.4)

dyn
dt

+ anyn = knu(t), (3.5)

where

yp = y1 + y2 + · · ·+ yl,

kp = k1 + k2 + · · ·+ kl,

ap =
λ1y1 + λ2y2 + · · ·+ λlyl

yp
,

yn = yl+1 + yl+2 + · · ·+ ym,

kn = kl+1 + kl+2 + · · ·+ km,

an =
λl+1yl+1 + λl+2yl+2 + · · ·+ λmym

yn
.
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Then we can transform Eqs. (3.4) and (3.5) into difference equations with the Euler discretization

method,

yp(k + 1)− yp(k)

T
+ apyp(k) = kpu(k)⇒ yp(k + 1) = (1− Tap)yp(k) + Tkpu(k), (3.6)

yn(k + 1)− yn(k)

T
+ anyn(k) = knu(k)⇒ yn(k + 1) = (1− Tan)yn(k) + Tknu(k). (3.7)

According to engineering experience and the sampling theorem [9], the sampling time T is

selected so that

T ·max(λ1 max, λ2 max) ≤ 1

15
,

where

0 < λ1 min ≤ ap ≤ λ1 max,

0 < λ2 min ≤ an ≤ λ2 max.

In Eqs. (3.6) and (3.7), Tap < 0.1 and Tan < 0.1. T is usually chosen as 1
10 , so we can further

write the equations into the following forms

yp(k + 1) = αp(k)yp(k) + βp(k)u(k), (3.8)

yn(k + 1) = αn(k)yn(k) + βn(k)u(k), (3.9)

where αp(k) = 1− Tap, βp(k) = Tkp, αn(k) = 1− Tan and βn(k) = Tkn.

Because Tap < 0.1 and Tan < 0.1, the changes of ap and an are very small, which implies

that the changes of αp(k) and αn(k) are very small for every step. We can approximate that

αp(k) ≈ αp(k + 1) and αn(k) ≈ αn(k + 1) based on the simulation studies [9]. Because βp(k) and

βn(k) only rely on T , it can be observed that βp(k) = βp(k + 1) and βn(k) = βn(k + 1).

In order to maintain the observability after the discretization, one of the sufficient conditions is

that for all the poles that satisfy

Re(λi − λj) = 0, i, j = 1, 2, . . . , h, (3.10)
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the T needs to satisfy [32]

T 6= 2lπ

Im(λi − λj)
, l = 1, 2, . . . . (3.11)

From the analysis above, we add both sides of Eqs. (3.8) and (3.9) and shift the combined

equation one step forward to obtain

yp(k + 2) + yn(k + 2) = αp(k)yp(k + 1) + αn(k)yn(k + 1) + [βp(k) + βn(k)]u(k + 1). (3.12)

If we multiple Eq. (3.8) with αn(k) and Eq. (3.9) with αp(k) on both sides, the following

equations can be obtained

αn(k)yp(k + 1) = αn(k)αp(k)yp(k) + αn(k)βp(k)u(k), (3.13)

αp(k)yn(k + 1) = αp(k)αn(k)yn(k) + αp(k)βn(k)u(k). (3.14)

If we combine Eqs. (3.12), (3.13) and (3.14), let ỹ(k + i) = yp(k + i) + yn(k + i), and reorganize

all the components, we can obtain the following equation

ỹ(k + 2) = [αp(k) + αn(k)]ỹ(k + 1)− αp(k)αn(k)ỹ(k) + [βp(k) + βn(k)]u(k + 1)

− [αp(k)βn(k) + αn(k)βp(k)]u(k).

(3.15)

Based on the equation above, a second order time-varying difference equation can be described

as follows,

ỹ(k + 2) = f̃1(k)ỹ(k + 1) + f̃2(k)ỹ(k) + g̃0(k)u(k + 1) + g̃1(k)u(k), (3.16)

where

f̃1(k) = αp(k) + αn(k) = 2− T (ap + an),

f̃2(k) = −αp(k)αn(k) = T (ap + an)− 1− T 2apan,

g̃0(k) = βp(k) + βn(k) = T (kp + kn),

g̃1(k) = −[αp(k)βn(k) + αn(k)βp(k)] = T 2(apkn + ankp)− T (kn + kp).
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3.3 Characteristic Model of Systems with Repeated Poles

Now zero or repeated poles are also considered besides distinct nonzero poles. For simplicity while

not losing the generality for the expression, consider the case of v = 2. In this case, the outputs

resulting from the integral terms can be expressed as

Yv1(s)

U(s)
=
kv1

s
⇒ dyv1(t)

dt
= kv1u(t), (3.17)

Yv2(s)

U(s)
=
kv2

s2
⇒ d2yv2(t)

dt2
= kv2u(t), (3.18)

Eqs. (3.17) and (3.18) can be discretized with the Euler method as,

yv1(k + 1)− yv1(k)

T
= kv1u(k)⇒ yv1(k + 1) = yv1(k) + Tkv1u(k), (3.19)

and

yv2(k + 2)− 2yv2(k + 1) + yv2(k)

T 2
= kv2u(k)⇒ yv2(k + 2) = 2yv2(k + 1)− yv2(k) + T 2kv2u(k).

(3.20)

If we shift Eq. (3.19) one step forward and combine the shifted equation with (3.19), the

following equation can be derived

yv1(k + 2) = 2yv1(k + 1)− yv1(k) + Tkv1u(k + 1)− Tkv1u(k). (3.21)

Then we combine Eq. (3.21) with (3.20) so an expression in the form of yv(k + i) = yv1(k + i) +

yv2(k + i) for the zero poles can be obtained

yv(k + 2) = 2yv(k + 1)− yv(k) + Tkv1u(k + 1) + (T 2kv2 − Tkv1)u(k). (3.22)

For repeated poles, if we pick w = 1 without loss of generality, the output terms of the repeated

poles can be expressed as

Yω1(s)

U(s)
=

kω1

(s+ λω1)2
⇒ d2yω1(t)

dt2
+ 2λω1

dyω1(t)

dt
+ λ2

ω1yω1(t) = kω1u(t), (3.23)
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and the discretized form of Eq. (3.23) can be described as follows,

yω1(k + 2) = (2− 2Tλω1)yω1(k + 1) + (T 2λ2
ω1 − 1 + 2Tλω1)yω1(k) + T 2kω1u(k). (3.24)

According to engineering experience and the sampling theorem, the sampling time T is selected

so that [9]

T ·max(λ1 max, λ2 max, λω1) ≤ 1

200
.

So T ≤ 0.005 and T 2 → 0, we can approximate T 2λ2
ω1 − 1 + 2Tλω1 with 2Tλω1 − 1.

Once we combine Eq. (3.22) with Eq. (3.24) and rearrange the new equation in the form of

ȳ(k + i) = yv(k + i) + yω1(k + i), the following equation can be obtained

ȳ(k + 2) = 2(1− Tλω1)ȳ(k + 1) + (2Tλω1 − 1)ȳ(k) + Tkv1u(k + 1) + (T 2kv2 − Tkv1 + T 2kω1)u(k)

+ 2Tλω1(yv(k + 1)− yv(k)).

The term 2Tλω1(yv(k + 1) − yv(k)) represents the modeling error. Since 2Tλω1 ≤ 0.02 and

yv(k + 1)− yv(k) ≈ 0 in the steady state, 2Tλω1(yv(k + 1)− yv(k)) can be ignored. The simplified

equation can be written as follows,

ȳ(k + 2) = 2(1− Tλω1)ȳ(k + 1) + (2Tλω1 − 1)ȳ(k) + Tkv1u(k + 1) + (T 2kv2 − Tkv1 + T 2kω1)u(k).

(3.25)

By combining Eq. (3.16) with Eq. (3.25) in the form of y(k + i) = ỹ(k + i) + ȳ(k + i), the

following result can be obtained,

y(k + 2) = [αp(k) + αn(k)]y(k + 1)− αp(k)αn(k)y(k) + [βp(k) + βn(k) + Tkv1]u(k + 1)

− [αp(k)βn(k) + αn(k)βp(k)− (T 2kv2 − Tkv1 + T 2kω1)]u(k)

+ ε1(k)ȳ(k + 1)− ε2(k)ȳ(k),

(3.26)
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where

ε1(k) = 2(1− Tλω1)− [αp(k) + αn(k)] = T (ap + an − 2λω1),

ε2(k) = (1− 2Tλω1) + αp(k)αn(k) = T (ap + an − 2λω1)− T 2apan.

Since 2Tλω1 ≤ 0.01, T 2apan ≤ 0.0001, the difference between ε1(k) and ε2(k) is determined by

−T 2apan, which is quite small that can be ignored, so ε1(k) ≈ ε2(k). Besides, ȳ(k + 1)− ȳ(k) ≈ 0

in the steady state, so this modeling error ε1(k)ȳ(k + 1)− ε2(k)ȳ(k) can be ignored for the analysis.

Therefore, the final second order time-varying difference equation can be written as

y(k + 2) = f1(k)y(k + 1) + f2(k)y(k) + g0(k)u(k + 1) + g1(k)u(k), (3.27)

where

f1(k) = αp(k) + αn(k) = 2− T (ap + an),

f2(k) = −αp(k)αn(k) = T (ap + an)− 1− T 2apan,

g0(k) = βp(k) + βn(k) + Tkv1 = T (kp + kn + kv1),

g1(k) = T 2(kv2 + kω1)− Tkv1 − αp(k)βn(k)− αn(k)βp(k)

= T 2(kv2 + kω1 + apkn + ankp)− T (kv1 + kn + kp).

3.4 Simulation Studies

In this section, several simulation examples will be provided to illustrate how to acquire the

characteristic model from the original system. We will use a least-squares adaptive estimation

algorithm for the parameter estimates. The parameter estimation is important for the adaptive

control system design because all the characteristic parameter estimates will be directly used in the

controller. A standard characteristic model is given as follows,

y(k) = f1(k)y(k − 1) + f2(k)y(k − 2) + g0(k)u(k − 1) + g1(k)u(k − 2),
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and it can be parameterized as

y(k) = θT (k)φ(k), (3.28)

where

θ(k) = [f1(k) f2(k) g0(k) g1(k)]T , (3.29)

φ(k) = [y(k − 1) y(k − 2) u(k − 1) u(k − 2)]T . (3.30)

The least-squares algorithm is described as below

N(k) =
P (k − 1)φ(k − 1)

λ+ φT (k − 1)P (k − 1)φ(k − 1)
,

P (k) =
1

λ
[I −N(k)φT (k)]P (k − 1),

θ̂(k) = θ̂(k − 1) +N(k)[y(k)− φT (k − 1)θ̂(k − 1)],

where θ̂(k) are estimates of the parameter vector θ(k) and λ is the forgetting factor.

The estimation error is defined as

ε(k) = y(k)− φT (k − 1)θ̂(k − 1).

The least-squares parameter estimation algorithm guarantees the following properties [30]:

• P (k) = P T (k) > 0,∀k ∈ k0, k0 + 1, . . ., and P (k) is bounded;

• θ(k) and ε(k)
m̄(k) are bounded, where m̄(k) =

√
λ+ φT (k − 1)φ(k − 1);

• ε(k)
m(k) belongs to L2, where the signal space L2 = {x(t) ∈ Rn : ‖x(·)‖2 < ∞}, m(k) =√
φT (k − 1)P (k − 1)φ(k − 1); ε(k)

m̄(k) and θ(k)− θ(k − 1) belong to L2;

• There exist a constant matrix P∞ and a constant vector θ∞ such that limk→∞ P (k) = P∞

and limk→∞ θ(k) = θ∞.

The following reference input signals are used to compare the output of the original plant and

its characteristic model with a sampling time T = 0.001s:
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1. A step input r1(k) = 10u(k);

2. Sinusoidal input r2(k) = 10 sin(0.05πkT ) + 5 sin(2.5πkT ) + 0.8 sin(60πkT );

3. Random input r3(k) = 10u(k− 15) + 5u(k− 5) + 10u(k) + 10 sin(0.05πkT ) + sgn(sin(0.4πkT )).

3.4.1 Characteristic modeling of systems with distinct nonzero poles

The first plant G1(s) includes only distinct nonzero poles

G1(s) =
s3 + 11.5s2 + 29.5s+ 12

s6 + 29s5 + 1531s4 + 12479s3 + 35150s2 + 45450s+ 26500
,

which has three zeros z1 = −0.5, z2 = −3, z3 = −8, and six poles p1 = −2, p2 = −5, p3 = −1 + 1j,

p4 = −1− 1j, p5 = −10 + 35j, p6 = −10− 35j, and is a stable minimum phase system.

Its discrete-time transfer function can be described as follows,

G1(z) =
Y (z)

U(z)
=

10−10(1.659z5 + 1.649z4 − 13.17z3 + 13.12z2 − 1.637z − 1.627)

z6 − 5.97z5 + 14.85z4 − 19.71z3 + 14.71z2 − 5.856z + 0.9714
,

and its corresponding difference equation is given by

y(k)=5.97y(k−1)−14.85y(k−2)+19.71y(k−3)−14.71y(k−4)+5.856y(k−5)−0.9714y(k−6)

+10−10(1.659u(k−1)+1.649u(k−2)−13.17u(k−3)+13.12u(k−4)−1.637u(k−5)−1.627u(k−6)).

Based on the least-squares parameter estimation algorithm, we can perform the parameter

estimation and the initial values of the characteristic parameters need to satisfy the following

requirements:

• Given there are no zero poles, f1(k0) + f2(k0) + g0(k0) + g1(k0) = 1;

• The selection of all characteristic parameters should make the system stable, which can be

verified using the Jury test;

• According to the all-coefficient adaptive control method presented in Chapter 2, f1(k0) should

be close to 2 and f2(k0) should be negative but bigger than -1, both g0(k0) and g1(k0) should

be much smaller than 1.
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Therefore, the following set of initial values are selected:

f1(k0) = 1.996, f2(k0) = −0.999, g0(k0) = 1.7 ∗ 10−7, g1(k0) = 1.3 ∗ 10−7

for its characteristic model

y1(k) = f1(k)y1(k − 1) + f2(k)y1(k − 2) + g0(k)u(k − 1) + g1(k)u(k − 2).

By using three different reference inputs, the comparison between G1 and its characteristic

model GC1 are shown as follows,
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Figure 3.1: Model comparison with a step input signal.
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Figure 3.2: Model comparison with sinusoidal input signals.
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Figure 3.3: Model comparison with random input signals.

As shown in Fig. 3.1, a unit step signal is used as the referenced input. The characteristic model

is able to track the transient response and steady state response of the original plant and maintain

a small modeling error under 2× 10−5. In Fig. 3.2, the sinusoidal output of the characteristic model

is very close to the output of the original plant and the modeling error is below 1.5× 10−5. When

given a random input as shown in Fig. 3.3, even though there are many different transitions and no

steady state, the characteristic can still retain a tracking error under 6× 10−5.

3.4.2 Characteristic modeling of systems with repeated poles

The second plant G2(s) includes zero poles and repeated real poles besides the distinct nonzero

poles as in case 1

G2(s) =
s3 + 11.5s2 + 29.5s+ 12

s8 + 34s7 + 1676s6 + 20134s5 + 97545s4 + 221200s3 + 253750s2 + 132500s
,

which contains three zeros z1 = −0.5, z2 = −3, z3 = −8, and eight poles p1 = 0, p2 = −2,

p3 = −1 + 1j, p4 = −1− 1j, p5 = −10 + 35j, p6 = −10− 35j, p7 = p8 = −5 so it has one integral

component and one repeated pole.

Its discrete-time transfer function can be described as follows,

G2(z) =
Y (z)

U(z)
=

10−17(0.83z7 + 19.03z6 − 7.42z5 − 78z4 + 77.72z3 + 7.34z2 − 18.68z − 0.809)

z8 − 7.965z7 + 27.76z6 − 55.27z5 + 68.8z4 − 54.81z3 + 27.29z2 − 7.764z + 0.9665
,
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Figure 3.4: Model comparison with a step input signal.
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Figure 3.5: Model comparison with sinusoidal input signals.

and its corresponding difference equation can be obtained,

y(k)=7.965y(k−1)−27.76y(k−2)+55.27y(k−3)−68.8y(k−4)+54.81y(k−5)−27.29y(k−6)

+7.764y(k−7)−0.9665y(k−8)+10−17[0.83u(k−1)+19.03u(k−2)−7.42u(k−3)

−78u(k−4)+77.72u(k−5)+7.34u(k−6)−18.68u(k−7)−0.809u(k−8)].

According to the least-squares parameter estimation algorithm, using different reference inputs,

the comparison between G2 and its characteristic model GC2 are shown as follows,

As shown in Fig. 3.4, a unit step signal is used as the referenced input. Due to the zero pole, the

integral effect causes the system output to keep increasing while the characteristic model is able to
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Figure 3.6: Model comparison with random input signals.

track the response of the original plant. However, with time increasing, the modeling error will get

bigger and the model accuracy gets degraded. In Fig. 3.5, the sinusoidal output of the characteristic

model is very close to the output of the original plant and the modeling error is below 4× 10−5.

Given a random input as shown in Fig. 3.6, although the output of the characteristic model can

still track the original plant, the tracking error still keeps increasing and the characteristic model

will become less accurate.



Chapter 4

Characteristic Model Based ACAC on

AMBs

As shown in the previous chapters, the all-coefficient adaptive control method was applied to LTI

systems with unknown system parameters and we can achieve desired stabilization and disturbance

rejection performance. The characteristic modeling is able to capture the essential dynamics of

a high order time-invariant plant by using a second order time-varying difference equation. It

provides theoretical foundations for low order controllers to handle high order plants with unknown

parameters. Therefore, it is legitimate to consider combining those two methods for application to

systems with complex dynamics.

The characteristic model based ACAC method has been studied and applied to several industrial

applications [8, 9, 31, 33, 34]. Compared with conventional adaptive control, characteristic model

based ACAC has fewer coefficients to estimate and the controller structure is much simpler. It has

been shown the output of characteristic model is almost identical to that of the high order LTI

model when the sampling time is sufficiently small. The unknown coefficients can be identified

using either gradient or least-squares methods, and they are projected into the ranges specified

by the all-coefficient adaptive control method. Currently we will focus on the single input single

output (SISO) characteristic model and synthesize the maintaining/tracking, linear feedback, logical

differental/integral control algorithms so different control design scenarios can be achieved.

In this chapter, we will apply the characteristic model based ACAC method to stabilize a flexible

45
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rotor AMB test rig. First we will briefly describes the test rig and an existing µ-synthesis controller.

Then the concept of all-coefficient adaptive control mechanism based on characteristic model will be

introduced. Afterwards, we will show the characteristic modeling of the rotor AMB model, present

the implementation and show comprehensive simulation and experimental results at the end.

4.1 Test Rig and AMB Control

The AMB test rig [35] was designed and built as a research platform in the Rotating Machinery and

Controls (ROMAC) Laboratory at University of Virginia. The original purpose of this test rig is to

emulate an industrial centrifugal gas compressor and study control of the rotordynamic instability

as shown in Fig. 4.1. Disk 1 and disk 2 on our test rig simulate the wheels in a compressor and the

exciter AMB in the middle synthesizes the effect of a seal. When the speed increases, the disks will

generate the gyroscopic effect and that can drive the eigenvalues of rotor bending modes away from

the original locations. This model uncertainty could cause instabilities issues. The load-dependent

cross coupling stiffness (CCS) from the exciter AMB is another important control challenge because

the CCS can move the poles in the right half plane (RHP) even deeper to the right and move zeros

into the RHP, which also causes instability issues [36].

Figure 4.1: Design motivation.

Many experimental challenges have been encountered and solved during the design and con-

struction process. The original displacement sensors were sensitive to the inductive and capacitive

coupled noise and we improved the circuit design by adding an anti-aliasing filter and using the
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grounding/shielding technique. The sensor runout was also an issue and we improved the outer-

diameter (OD) grinding of all sensing planes and rotor laminations to solve the problem. The shaft

was originally driven by a timing belt and pulley system and that caused a misalignment issue.

We replaced it with a direct-drive transmission and high-speed motor to address the drive-line

misalignment. The foundation/substructure mode issues also needed to be addressed because our

operating speed would cross those frequencies and we needed to make sure they were within our

controller bandwidth. We solved the problem by tuning the sensor mounts and stiffening the bearing

pedestals.

The rotor is 1.23 m long and weighs around 44.9 kg. Four laminated steel journals are mounted

on the shaft for two radial support AMBs at the nondriven end (NDE) and driven end (DE), and

two radial disturbance AMBs at the middle and quarter span, which can be observed in Fig. 4.2.

Only the NDE and DE support AMBs are utilized for control. The first rigid body mode is around

2500 RPM (41.67 Hz) and the first bending mode is around 14800 RPM (246.67 Hz). There are also

two auxiliary ball bearings mounted at the support AMB locations to prevent damage to AMBs

when the rotor drops. A 3.7 kW Colombo RS-90/2, electric fan cooled, high speed motor with

variable frequency drive (VFD) is used to make the rotor run up to 18,000 RPM, and a 2.2 Nm

motor torque is also available for this speed.

Four amplifiers are installed for each radial magnetic bearing and each amplifier features a 25

kHz switching frequency. The maximum continuous current rates at 10 A, which gives each AMB

a static load capacity of 1450 N. The rotor motion is monitored by a 10 channel Kaman eddy

current sensor system and the displacement of each control axis is measured by a 1H/15N static

probe. The digital control system is based on the Innovative Integration M6713 PCI board and a

TI C6713B 32-bit floating point digital signal processing (DSP) chip is used for the implementation

of the digital control algorithm with an updating frequency around 12 kHz. There are 16 channels

of analog input and output to be simultaneously sampled and interfaced with the actuators and

sensors. A control station computer with custom graphic user interface is also designed to provide

the user with many functionalities. The entire AMB test rig is shown in Fig. 4.3.

Closed-loop feedback control is critical for the stabilization of an AMB system. The µ-synthesis

approach is applied to the AMB control design using Matlab function dksyn for D-K iteration

with 4 iterations to find a reasonable µ value [36]. A frequency domain weighting functions and
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Figure 4.2: Test rig assembly.

mixed-sensitivity optimizations are adopted to define the performance specification. Detailed designs

of the µ-synthesis controller can be referred to [36]. The final µ-synthesis design is a 48th order

controller with µ = 0.856 for the plant model of 36 states, which include models of the rotor

dynamics, AMBs, sensors, amplifiers and other components. In Simulink, it is implemented in a

state space form for the x and y axes of both DE and NDE [6]. This design is later implemented in

a DSP computer and the performance requirement and parametric uncertainties of the rotor-AMB

system have been well handled by the µ-synthesis control [36]. We will use the designed µ controller

as a baseline to compare the proposed characteristic model based ACAC method with.

4.2 Characteristic Model Based All-coefficient Adaptive Control

For a linear time-invariant plant that can be described as

G(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
, (4.1)

where m < n.

Its characteristic model is given as follows,

y(k) = f1(k)y(k − 1) + f2(k)y(k − 2) + g0(k)u(k − 1) + g1(k)u(k − 2). (4.2)

where f1(k), f2(k), g0(k) and g1(k) are the characteristic parameters.
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Figure 4.3: Test rig components.

The characteristic model can be parameterized as follows,

y(k) = φT (k)θ(k),

where φ(k) and θ(k) are defined as

φ(k) = [y(k − 1) y(k − 2) u(k − 1) u(k − 2)]T ,

θ(k) = [f1(k) f2(k) g0(k) g1(k)]T .

In order to specify the ranges of the parameters, we first analyze a second order time-invariant

difference equation as

y(k) = α1y(k − 1) + α2y(k − 2) + β0u(k − 1) + β1u(k − 2).
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It has been shown in Chapter 2 that the parameters follow

α1 = e−T/Tmin + e−T/Tmax ,

α2 = −e−T/Tmin−T/Tmax ,

β0 = k1Tmax(1− e−T/Tmax) + k2Tmin(1− e−T/Tmin),

β1 = k1Tmax(e−T/Tmax−T/Tmin − e−T/Tmin) + k2Tmin(e−T/Tmax−T/Tmin − e−T/Tmax).

where Tmax = 1/p1 and Tmin = 1/p2. p1 and p2 are the poles of the transfer function (2.8) and k1

and k2 are the constant gains.

Let the ratio between the sampling time and the minimum equivalent time constant η = T
Tmin

satisfy η ∈ [0, ηmax] and the ratio between the sampling time and the maximum equivalent time

constant satisfy T
Tmax

∈ [0, T
Tmin

]. It has been shown the parameters satisfy the following conditions

for unstable plants [29]:



2 cos(ηmax

2 )≤α1 ≤ 2e
ηmax

2 ,

−eηmax<α2≤−1,

2e
ηmax

2 cos(ηmax

2 )− eηmax≤α1 + α2<−1,

b0T 2

2 <β0<
b0T 2

2 (1+ηmax

3 +η2max
12 ),

b0T 2

2 (1−η
2
max
24 )<β1<

b0T 2

2 (1+2ηmax

3 +7η2max
24 ).

Based on the conditions above, it can be observed that α1 → 2, α2 → −1, β0 → 0, β1→0 and

α1 + α2 + β0 + β1 → 1 as T → 0. Let


T

Tmin
∈ [ 1

10 ,
1
4 ],

T
Tmax

∈ [0, 1
10 ].
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Then the ranges for the corresponding parameters can be calculated with ηmax = 1
4 [24],



α1 ∈ [1.9844, 2.2663],

α2 ∈ [−1.2840,−1],

α1 + α2 ∈ [0.9646, 1].

Because β0 and β1 are close to 0, we can choose some small positive numbers as initial values

for g0(k) and g1(k). For the initial values of the other parameter estimates, f1(k) and f2(k) are to

be chosen from

N = {(f1(k), f2(k)) | 1.9844 < f1(k) < 2.2663,−1.2840 < f2(k) < −1}.

Let θ̂(k) be the estimate of the time-varying parameter vector θ(k) and the estimation error ε(k)

is

ε(k) = y(k)− φT (k)θ̂(k) = (θ(k)− θ̂(k))Tφ(k).

We can adopt the gradient adaptive law and a direct mapping approach to acquire θ̂(k) as,

θ̂u(k + 1) = θ̂(k) +
γφ(k)ε(k)

δ + φT (k)φ(k)
,

θ̂(k + 1) = π[θ̂u(k + 1)],

where δ ≥ 0, 0 < γ < 2, and π[x] is the projection of x into N [31].

The characteristic model based all-coefficient adaptive control scheme uc(k) for the AMB control

is written as

uc(k) = uc1(k) + uc2(k) + uc3(k) + uc4(k),

where uc1(k), uc2(k), uc3(k) and uc4(k) are respectively specified as
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1. Maintaining/tracking control

uc1(k) =
yr(k)−f̂1(k)y(k)−f̂2(k)y(k − 1)−ĝ1(k)uc1(k − 1)

ĝ0(k) + λ1
,

where yr(k) is the desired output, λ1 is a positive constant, and ĝ0(k), f̂1(k), f̂2(k) and ĝ1(k) are

the estimates of g0(k), f1(k), f2(k) and g1(k), respectively;

2. Golden-section adaptive control

uc2(k) =
lc1f̂1(k)ỹ(k) + lc2f̂2(k)ỹ(k − 1) + ĝ1(k)uc2(k − 1)

ĝ0(k) + λ1
,

where ỹ(k) = yr(k)− y(k), lc1 = 0.382 and lc2 = 0.618;

3. Differential control

uc3(k) = d1
ỹ(k)− ỹ(k − 1)

T
,

where d1 is a positive constant;

4. Integral control

uc4(k) = d2

k∑
i=1

ỹ(i) = uc4(k − 1) + d2ỹ(k),

where d2 is a positive constant.

4.3 Characteristic Modeling of the Rotor-AMB System

The original flexible rotor AMB system has very complex dynamics and many components are

involved in the modeling process. For the rotor, a two dimensional rotor model is derived from

finite-element analysis by dividing the shaft length into 50 stations for the lateral rotordynamic

analysis. For the AMB, a linear magnetic circuit model as shown in the introduction was used. For

the sensor, anti-aliasing filter (AAF) and amplifier, they are described using transfer functions. A

P áde approximation is used to approximate the computational delay from DSP. The original model

has 452 element state vector. Because the higher modes beyond the third bending mode contribute
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negligible effect in the system dynamic response, they are truncated and the final reduced order

model possesses 36 element state vector with 4 inputs and 4 outputs for driven end x (DEX) axis,

driven end y (DEY) axis, non-driven end x (NDEX) axis and non-driven end y (NDEY) axis.

For the flexible rotor AMB system, its motion equation can be described as follows,

Mz̈ + (C +GΩ)ż +Kz = Fmag + Fm + Funb + Fw,

where

• M is the mass matrix, C is the damping matrix, G is the gyroscopic matrix and K is the

damping matrix, Ω is the rotating speed;

• z = [xd yd xnd ynd]
T , xd and yd are the radial displacements of shaft in the driven end,

xnd and ynd are the radial displacements of shaft in the non driven end;

• Fm = [0 mg 0 mg]T , m is the mass of the shaft;

• Funb = [meΩ2 cos(ωt) meΩ2 sin(ωt) meΩ2 cos(ωt) meΩ2 sin(ωt)]T , e is the residue dis-

tance, ω is the natural frequency of the unbalance force;

• Fmag = [kxxd + kiidx kxyd + kiidy kxxnd + kiinx kxynd + kiiny]
T , kx is the stiffness gain

and ki is the current gain;

• Fw are the disturbance force on each axis.

In order to analyze the input-output relation with all internal states, the entire rotor AMB

model can be described in the following matrix form,



ẋr

ẋs

ẋa

ż1

ż2

y


=



Ar +BrikxCsh 0 BrikiCa Brw 0

BsCr As 0 0 0

0 0 Aa 0 Ba

0 0 Ca 0 0

Cr 0 0 0 0

0 Cs 0 0 0





xr

xs

xa

w

u


,

where,
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• u: control inputs,

• w: disturbance inputs,

• xr: state vector of rotor node displacement,

• xs: state vector of sensor measurement,

• xa: state vector of amplifier voltage,

• z1: amplifier current outputs,

• z2: rotor displacement outputs,

• y: sensor measurement of shaft displacement;

• Ar, Bri, Brw, Cr come from the state space model of the rotor:

ẋr = Arxr +Brif +Brww,

z2 = Crxr;

• Aa, Ba, Ca come from the state space model of the amplifier:

ẋa = Aaxa +Bau,

z1 = Caxa;

• As, Bs, Cs come from the state space model of the sensor:

ẋs = Asxs +BsCrxr,

y = Csxs;

• f is the control force generated by AMB:

f = kxCshxr + kiCaxa.

A rotor AMB system diagram is shown in Fig. 4.4 and it can be observed that in order to find

the input-output relation of such a system, we need not only the modeling of the AMB, but also

many other components, which causes the entire model to be very complex and inconvenient for the

controller design. Compared with the original model, the characteristic model can be easily applied
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since the control objective is to attenuate the vibrations and keep shaft near the geometric center.

It is essentially a position control scenario. Because AMBs are open-loop unstable, a feedback

controller is required to keep them closed-loop stable. Based on the prerequisite presented earlier, a

second order time-varying difference equation can be adopted to fulfill the modeling requirement

for each axis and the four axes (DEX, DEY, NDEX, NDEY) are modeled using the characteristic

modeling method. We will select the initial values of the characteristic parameters so that they can

keep the second order system closed-loop stable. While f1(k0) is close to 2 and f2(k0) is negative but

bigger than −1, both g0(k0) and g1(k0) should be much smaller than 1 according to the all-coefficient

adaptive control method.

Figure 4.4: Rotor-AMB model diagram.

Based on the the characteristic modeling procedure shown in Chapter 3, a characteristic model

for the rotor-AMB system is given as follows,

y(k) = f1(k)y(k − 1) + f2(k)y(k − 2) + g0(k)u(k − 1) + g1(k)u(k − 2),

and it can be parameterized as

y(k) = θT (k)φ(k), (4.3)
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where f1(k), f2(k), g0(k), g1(k) are the characteristic parameters and

θ(k) = [f1(k) f2(k) g0(k) g1(k)]T , (4.4)

φ(k) = [y(k − 1) y(k − 2) u(k − 1) u(k − 2)]T . (4.5)

The least-squares parameter estimation algorithm is described as below

N(k) =
P (k − 1)φ(k − 1)

λ+ φT (k − 1)P (k − 1)φ(k − 1)
,

P (k) =
1

λ
[I −N(k)φT (k)]P (k − 1),

θ̂(k) = θ̂(k − 1) +N(k)[y(k)− φT (k − 1)θ̂(k − 1)],

where θ̂(k) are estimates of the parameter vector θ(k) and λ is the forgetting factor and the

estimation error is defined as

ε(k) = y(k)− φT (k)θ̂(k).

As shown in Fig. 4.5, a simulation scenario with the operation speed increasing from 0 to 18000

RPM is used to compare the original rotor AMB model with its characteristic model. The initial

values of the characteristic parameters are chosen as f1(0) = 1.982, f2(0) = −0.984, g0(0) = 0.001,

g1(0) = 0.001 and λ = 0.975, P (0) is a 4 × 4 diagonal matrix with the diagonal values of 10. A

robust control µ-synthesis is used to stabilize the rotor. During the simulation process, the rotor

needs to pass two rigid modes (3515 RPM and 5789 RPM) and one flexible mode (14631 RPM) to

reach 18000 RPM. By using the least-squares parameter estimation algorithm, the output of its

characteristic model for four control axes (DEX, DEY, NDEX, NDEY) are consistently close to

their original output for the entire speed range. Only when the speed surpasses the bending critical

speed, for the worst case (NDEY), the tracking error gets slightly increased to around 0.04 mils (1

mil = 2.54× 10−5 m) and remains below that level until 18000 RPM.
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(a) System output (DEX).
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(b) Modeling error (DEX).
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(c) System output (DEY).
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(d) Modeling error (DEY).
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(e) System output (NDEX).
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(f) Modeling error (NDEX).
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(g) System output (NDEY).
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(h) Modeling error (NDEY).

Figure 4.5: Output comparisons between rotor-AMB model and the characteristic model.
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4.4 Simulation and Experimental Results

In order to verify the proposed characteristic model based ACAC design, both simulation and

experimental studies have been conducted. The simulation is based on the Simulink model derived

for the entire rotor AMB system from [36], which includes all essential components of the test rig as

shown in Fig. 4.6.

Figure 4.6: Simulation with simulink blocks.

The µ-synthesis controller was initially used to stabilize the test rig and its performance serves as

a baseline for comparisons with our characteristic model based all-coefficient adaptive controller. In

Simulink, the µ-synthesis controller is represented in a state space form with 48 states and 4 inputs

and outputs. To verify the characteristic model based ACAC approach, the original µ-synthesis

controller is replaced by the ACAC mechanism in Fig. 4.6. For the x and y axes of both driven

and nondriven ends, characteristic model based ACAC with the same structure and controller

parameters are utilized. The s-function in Simulink is used to implement the control and parameter

estimation algorithms while the discrete-time controller has a sampling rate of 12 KHz. The sensor
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measurements and control signals for all channels are saved into the workspace and the parameter

estimates for entire characteristic parameters are also saved. In this simulation, we could adjust the

rotating speed from 0 RPM to 18000 RPM or select a certain speed range and inspect the control

performance in that speed range. In reality, the unbalance weight on our test rig disks could not be

calibrated very accurately, so the simulated unbalance weight can also be adjusted to accommodate

that limitation.

In the simulation, the initial values for the characteristic parameters are selected from the set

N, where 1.9844 < f1(k) < 2.2663, −1.2840 < f2(k) < −1, so f1(0) = 2.102, f2(0) = −1.104 and

g0(0) = g1(0) = 0.001. Note that according to the all-coefficient adaptive control method,

f1(0) + f2(0) + g0(0) + g1(0) = 1.

0 0.5 1 1.5 2

x 10
4

2.1015

2.102

2.1025

2.103

2.1035

2.104

2.1045

2.105

2.1055

2.106

rpm

P
ar

am
et

er
 V

al
ue

f1

 

 

NDX
DX
NDY
DY

0 0.5 1 1.5 2

x 10
4

−1.1045

−1.104

−1.1035

−1.103

−1.1025

−1.102

−1.1015

−1.101

−1.1005

−1.1

−1.0995

rpm

P
ar

am
et

er
 V

al
ue

f2

 

 

NDX
DX
NDY
DY

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

−3

rpm

P
ar

am
et

er
 V

al
ue

g0

 

 

NDX
DX
NDY
DY

0 0.5 1 1.5 2

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1

2
x 10

−3

rpm

P
ar

am
et

er
 V

al
ue

g1

 

 
NDX
DX
NDY
DY

Figure 4.7: Parameter estimations from 0 RPM to 18000 RPM.

The controller parameters are chosen as λ1 = 0.16, d1 = 0.0257, d2 = 0.01, δ = 3.5 and γ = 1.5.

The test starts with the rotating speed at 0 RPM and goes up to 18000 RPM, which passes the

first bending critical speed at around 14800 RPM. The parameter estimations for the entire speed

range are shown in Fig. 4.7, where with the change of the rotating speed, the controller parameters

also get updated accordingly and remain bounded to guarantee a stable control performance. The

parameter estimations for two operating speed cases at 9000 RPM and 14400 RPM are also shown
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in Figs. 4.8 and 4.9, respectively. It is observed that the parameter estimation results are different

for different operating speed cases. At 14400 RPM, the parameters converges within 0.5 seconds

and remain bounded, while for the speed case at 9000 RPM, it takes longer for the parameter

estimates to converge due to different system dynamics. It can be noticed that for different control

channels, the control signals of ACAC remain bounded and they are very similar due to the same

coefficient settings, while for the µ-synthesis, the control signals vary for different channels. In terms

of the vibrations at both driven and nondriven ends, it can be observed that the displacements of x

and y axes under control of ACAC remain bounded and they are much smaller than those using

µ-synthesis for most of the speed range, which demonstrates the advantages using the characteristic

model based ACAC controller. The simulation results are illustrated in Figs. 4.10 and 4.11.
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Figure 4.8: Parameter estimations at the operating speed of 9000 RPM.
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Figure 4.9: Parameter estimations at the operating speed of 14400 RPM.
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Figure 4.10: µ-synthesis simulation results (control inputs, shaft displacements and orbit size).
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Figure 4.11: ACAC simulation results (control inputs, shaft displacements and orbit size).

After satisfactory simulation results were acquired, the characteristic model based ACAC

algorithm was implemented on a DSP computer for the actual AMB test rig to verify the simulation

results. Besides the DSP, a Labview data acquisition console is also added to interface with the

computer for additional data logging. The data logging function is written in Labview 2010 and

its block diagram is shown in Fig. 4.12. In this block diagram, the sensor measurements and
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control outputs of all four control axes are saved at 6.4 KHz, which are much higher than the

logging function provided by the DSP graphic user interface. They are also converted from the

time domain response to the frequency domain response using the FFT block provided by Labview

so it is possible to precisely identify at which frequency the maximum vibration happens. The

rotating speed information is also logged at 6.4 KHz, so these information can be used to identify

the unbalance weight and estimate the rotor stiffness and damping.

Figure 4.12: Labview block digram.

The same initial conditions and controller parameters used in the simulation are applied to the

experiment. For practical implementation purposes, a first order low-pass filter combined with a

phase bump filter is designed for rolling off the high frequency gains and performance compensation

[37]. A notch filter is also added to attenuate the noise effect caused by the second bending mode
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[38], which is around 530 Hz. The original ACAC algorithm is converted to C++ code and replaces

the existing µ-synthesis algorithm. The recorded highest rotating speed is around 14400 RPM at

which the rotor remains stable. 14400 RPM is quite close to the first bending mode of our test rig at

14800 RPM. ACAC approach preserves reliable performance and is comparable to the µ-synthesis

in certain measures, as shown in Figs. 4.13 and 4.14.
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Figure 4.13: µ-synthesis experimental results (control inputs, shaft displacements and orbit size).
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Figure 4.14: ACAC experimental results (control inputs, shaft displacements and orbit size).

It can be observed that for both ACAC method and µ-synthesis, the control signals have several

peaks when the rotor passes through the rigid body modes at around 42 Hz and 83 Hz, the foundation

mode at around 150 Hz, and moves towards the first bending mode. The control voltage of the

µ-synthesis is smaller than the ACAC method and it also has a narrower bandwidth, which causes

the operation to be quieter. In terms of vibration attenuation, the ACAC method is more effective
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in both driven and nondriven ends by generating smaller rotating circles within 1.8 mils. When

the operating speed reaches the first bending mode, the vibration level gets significantly increased,

and the adaptation algorithm in the characteristic model based ACAC method cannot update the

parameters fast enough and the controller is insufficient to effectively keep up with the vibration

level increase. To address and overcome this limitation will be our future focus. Figs. 4.15 show the

screenshots of the DSP graphic user interface for µ-synthesis and characteristic model based ACAC

at the speed of 14400 RPM. It is shown that the orbit sizes for both driven end and nondriven

end under the control of ACAC is much smaller than those under the control of µ-synthesis. In

terms of controller outputs, the characteristic model based ACAC uses similar control voltage as

the µ-synthesis for the driven end while for the nondriven end, the µ-synthesis uses smaller control

voltage. The experimental results thus verify the performance of the characteristic model based

ACAC. Therefore, this new control method has shown its strong potential for future research.
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(a) µ-synthesis performance.

(b) Characteristic model based ACAC performance.

Figure 4.15: Experimental results at 14400 RPM.



Chapter 5

Conclusions

This thesis has presented the application of the characteristic model based all-coefficient adaptive

control on a flexible rotor AMB system. Flexible rotor AMB system raises many challenges for

control system designs. PID controller is simple and easy to implement but it is difficult to deliver

robust control performance. Robust control µ-synthesis is able to better handle the uncertainties and

to achieve reliable performance but it requires the plant and uncertainty models and the designed

controller usually has high order. In order to find a suitable solution for flexible rotor AMB controls,

the characteristic model based ACAC method is introduced. This method is able to provide robust

control performance on systems with complex dynamics while maintaining a simple structure and

not requiring the actual plant model.

In this thesis, the characteristic model based ACAC is used to stabilize a flexible rotor AMB

test rig with the operating speed increasing from 0 RPM to 14400 RPM in the experiment. The

all-coefficient adaptive control can guarantee not only the closed-loop stability but also sufficient

performance during the transient process. The proposed characteristic modeling process significantly

simplifies the modeling of a system with high order complex dynamics by analyzing its characteristics

and considering the control requirement. A second order time-varying difference equation is able to

model the rotor AMB system in a position tracking/keeping scenario. The characteristic model

based ACAC method has been compared with an existing µ-synthesis controller in both simulations

and experiments. The results verify the effectiveness of this new control method and show it is

comparable to the µ-synthesis in certain measures. Therefore, the characteristic model based ACAC

method has demonstrated its strong potential for future research.

68
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Theoretical studies of the all-coefficient adaptive control and characteristic modeling methods

will be the most important part in the future work. Addressing and resolving the performance

limitation at the bending critical speed and applying this method to other AMB related platforms

will be the focus for future work.
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