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Abstract

The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured

inclusive double polarization electron asymmetries on a proton target at the Continu-

ous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory

in Newport News Virgina. Polarized electrons were scattered from a solid 14NH3

polarized target provided by the University of Virginia target group. Measurements

were taken with the target polarization oriented at 80◦ and 180◦ relative to the beam

direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were

detected by a multi-component novel non-magnetic detector package constructed for

this experiment. Asymmetries measured at the two target orientations allow for the

extraction of the virtual Compton asymmetries Ap

1
and A

p

2
as well as the spin structure

functions gp
1
and g

p

2
. This work addresses the extraction of the virtual Compton asym-

metry A
p

1
in the deep inelastic regime. The analysis uses data in the kinematic range

from Bjorken x of 0.30 to 0.55, separated into four Q2 bins from 1.9 to 4.7 GeV2.
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Chapter 1

Introduction

Like curious children taking apart a watch, physicists over the years have broken up

the matter the universe is composed of into smaller and smaller pieces. As in disas-

sembling a watch, its not until we can see all the pieces individually that we begin

to suspect how the composite whole comes together to function. A child disassem-

bling a watch has the advantage of being able to tell when all the parts have been

deconstructed into their indivisible parts. Not so for physicists. Several times it was

thought that science had uncovered the basic building blocks of the universe.

In the 1800’s, science raced to construct a table of fundamental elements from

which all materials were composed. Upon closer inspection, to continue the watch

analogy, gears within gears appeared. The very structure of the periodic table sug-

gested that the atoms the elements were composed of could be broken down into

smaller units. Atoms were discovered to be composed of protons, neutrons, and elec-

trons. Later, it was discovered that even the tiny protons and neutrons possessed an

internal structure. The parton model was proposed to explain scattering phenomena

that indicated sub-nucleonic particles. Although the progression of the inquiry into

the nature of matter suggests an infinite regress– or perhaps ingress, for now science

has settled at the partonic level.

1
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Today the parton model has evolved into the quark model, in which the nucleons

are composed of quarks and gluons governed by color forces described by quantum

chromodynamics. The structure of the proton– how the quarks are organized and

move within the proton, is the topic of this work. That structure can be probed and

information about it inferred from the scattering of electrons from protons.

The experiment described in this thesis is just such a scattering experiment. The

experiment was labeled as E-07-003 and executed at the Jefferson Lab National Ac-

celerator Facility (JLAB). It is nicknamed and hereafter referred to as SANE– Spin

Asymmetries of the Nucleon Experiment. Herein is described the motivations, the

techniques, and the results of one of the analyses SANE was designed to facilitate–

namely the determination of the virtual Compton proton asymmetry, Ap
1.

1.1 Scattering Experiments

When conducting measurements, it is necessary to use a measuring tool on the scale

of that which is being measured. For example, one should use a yardstick to measure

the length of a bolt of cloth that is to be cut– not a jeweler’s caliper. One could

use a caliper, but it would be difficult and time consuming. As length (or energy)

scales of the object or phenomena being measured increase or decrease dramatically,

choosing the correct instrument of measurement becomes a necessity rather than a

convenience. To examine fingerprints, one needs a magnifying glass. The viewing of

immune cells and their inner workings requires a microscope.

Progressing to even smaller length scales requires one to consider not only the

measurement apparatus, but also the medium with which the apparatus functions.

Microscopes and magnifying glasses rely on the scattering of light off an object, and

the subsequent gathering of that light. If one wants to delve into smaller and smaller

length scales–into the worlds of crystalline structure, atoms, and nuclei, one needs to
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be aware that light will only resolve objects of a size that is on the order of the light’s

wavelength.

In 1911 the Rutherford backscatter experiment, overseen by Ernest Rutherford

and executed by Marsden and Geiger, determined that the size of the atomic nucleus

of gold is no larger than 10−14 m. The charge and weight of the nucleus was known;

so they postulated that the size of the individual charge carriers is on the order of

a femtometer, which is close to the contemporary measurement of 0.877 ± 0.007 fm

for the charge radius of the proton [2]. In order for light to resolve an object that

small, one would need wavelengths on the order of a femtometer or smaller. Light of

this wavelength has a frequency around 1022 Hz, and energy ten orders of magnitude

greater than that of x-rays.

Rather than attempt to harness such high energy light, nuclear physicists take

advantage of that fact that matter also has a wavelength associated with it. This

wavelength, called the de Broglie wavelength, is inversely proportional to the mo-

mentum of a particle:

λdeBroglie =
h

p
. (1.1)

Like light, a particle, when scattering from an object, resolves structure on the order

of its wavelength.

High energy particles can have extremely small de Broglie wavelengths, and charged

particles are much easier to generate and direct than photons. By using these high

energy particles in accelerator experiments, an experimentalist can choose the length

scale being probed by adjusting the parameters of the accelerator that determine the

particle energy and momentum.

Having an appropriately scaled measurement instrument is not enough. It is

necessary to have a functional theory of interaction to help one understand and to

put into context the quantities gleaned by one’s device: enter relativistic quantum

field theory (RQFT). RQFTs provide physicists a framework to think about and
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understand particle interaction. Consider quantum electro-dynamics (QED), which

is a subclass of the larger category of RQFTs. The QED electron-proton scattering

process can be represented by a diagram (Fig. 1.1). In the figure, an incoming

electron (e−) approaches the proton (p+) and emits a photon (γ) which changes the

electron’s energy, scattering it. The proton absorbs the photon; this changes the

proton’s direction as well.

Figure 1.1: Structureless electron-proton elastic scattering. An electron incoming
with momentum pµ scatters from proton with initial momentum P µ. The recoiling
particles have corresponding momenta p′µ and P ′µ; qµ = pµ − p′µ

.

In this model the electron does not interact directly with the proton. The electron-

nucleon interaction (and indeed according to QED any interaction via the electromag-

netic force) is mediated by a photon. The photon energy is determined by the change

of energy of the scattered electron, this in turn determines the resolving power of the

experiment. For an incoming electron of energy 5 GeV that scatters and is detected

with energy 1 GeV, one calculates the wavelength of the mediating photon to be of

order 10−17 m– small enough to resolve the proton within the nucleus and even small

enough to interact with whatever substructure the proton has. The change in energy

of the scattered electron gives the experimenter a dial to adjust what size features

of the proton one is probing. The scattering of a beam of mono-energetic electrons

from a target produces scattered electrons at a wide variety of angles and energies.
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By quantifying the rates of interaction (i.e. counting scattered electrons) at different

mediating photon energies, the experimenter can establish probability of interaction

at different length scales within the proton. This scale-dependent probability of inter-

action is effectively a roadmap of the features of the proton. The inclusive scattering

this work is concerned with uses the quantities shown in the Fig. 1.2 to describe the

measurement.

To first order in QED, the scattering of an electron off of a proton can be ap-

proximated by the differential Mott cross-section. The differential cross-section is a

function that describes the probability of an event that results in an electron being

detected at a particular energy and angle relative to the incoming beam. The Mott

formula in particular gives the cross section for the scattering of a spin 1/2 particle

interacting with a massive target through a Coulomb potential.

dσ

dΩ
=

α2

4E2

(1− β2 sin2 θ
2
)

sin4 θ
2

, (1.2)

The incident electron’s energy is E and β = v
c
is the ratio of the incoming electron

velocity to c, the speed of light. The fine structure constant, α, is related to the

strength of the interaction between the electron and proton. The scattering angles

are shown in Fig. 1.2. The above equation provides a quantification of the process

pictured by Fig. 1.1. In the limit that the particles being measured are highly rela-

tivistic, which is the case in high energy electron scattering experiments like SANE,

the Mott cross section can be written

dσ

dΩ
=

α2

4E2

cos2 θ
2

sin4 θ
2

. (1.3)

There is a single photon mediating the interaction, meaning that the interaction

between the two particles is strictly electromagnetic in nature. If one conducts an ex-

periment with low resolution (ie. the 4-momentum transfered by the virtual photon
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Figure 1.2: Depiction of the angles that describe the scattering direction. Polar angle
θ and azimuthal angle φ along with the z axis (initial direction of electron momentum)
define a scattering plane.

stays relatively low, and consequently probes only the gross features), an experi-

menter will find that the rates in her detectors match those predicted by the Mott

cross-section. As the resolution of the probe increases, the behavior of the scattered

particles will deviate from the Mott formula. These deviations are indicative of the

substructure of the nucleon, and require a more general treatment than a two vertex

QED calculation.

A vertex in which the nucleon absorbs a photon and changes momentum is clearly

an oversimplification. Two subjects need to be discussed in order to understand the

measurement SANE made. The first is how structure functions and form factors

are used to parameterize and describe unknown interactions. Structure functions are

used to generalize the photon-proton vertex to encompass more than a simple QED

photon exchange with a point-like particle. Secondly, one needs an understanding

of inclusive measurements and how the structure functions calculated from the data

relate to the nature of the nucleon. These issues are discussed in chapters 2 and 3.

Chapter 4 discusses the quantity Ap
1, the virtual photon asymmetry of the proton, the

measurement of which is the main topic of this thesis. The methods of measurement

are detailed in chapter 5. Following that are the chapters describing the data analysis,

results, and the conclusions that can be drawn from this body of work.



Chapter 2

Inclusive Lepton Scattering

Formalisms

2.1 Form Factors, Structure Functions, and Inclu-

sive Scattering

In QFT, the cross section for a process can be written as the product of phase space

factors, momentum and energy conserving delta functions, and what is called an in-

variant matrix element. All quantities are averaged over the appropriate momenta

and averaged(summed) over initial(final) spin states. The only part of the cross

section which is dependent on the physics of the process being examined is the in-

variant matrix element, M. Therefore, the discussion will focus on calculating M.

By knowing M, one can immediately obtain a cross section. The matrix element for

an electron scattering off of a heavy point-like fermion is

M = e2[ū(p′)γµu(p)]
1

q2
[ū(P ′)γµu(P )], (2.1)

7
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where u(k) is the Dirac spinor for a fermion with 4-momentum k. Using this matrix

element to calculate the cross section returns, as expected, the standard Mott cross

section. The first factor comes from the electron-photon vertex in Fig. 1.1, and the

second from the photon-proton vertex.

One might wonder if the interaction could take a different form. Consider only the

electron-photon vertex; one can think of it as the first order term in a perturbation

series. Including higher order terms in perturbation theory corresponds to including

more diagrams as shown in Fig. 2.1. Each extra diagram includes more virtual photon

exchanges in the e-γ vertex, and each new diagram introduces another factor of α,

the electromagnetic coupling constant. The coupling constant is α ≈ 1/137 < 1, so

each term in the series contributes less to the total sum.

Figure 2.1: Diagrams that contribute to the electron vertex correction in electron-
fermion scattering.

The right hand side of the equality in Fig. 2.1 can be written explicitly using the

Feynman rules for QED, if one picks an order in α at which to terminate the sum.

Or if one want to represent the sum over all orders, you can write the vertex on the

left hand side as an unknown function Γµ, writing the matrix element as

M = e2[ū(p′)Γµ(p, p′)u(p)]
1

q2
[ū(P ′)γµu(P )]. (2.2)

While one cannot explicitly calculate Γ(p, p′) without specifying an order in α, ar-

guments based on Lorentz invariance, parity, and the Ward identity can be used to
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show that it must be written in the following form:

Γµ = γµf1(q
2) +

iσµνqν
2m

f2(q
2). (2.3)

The functions, f1(q
2) and f2(q

2), are known as form factors. They are parameteriza-

tions of the unknown correction to the electron vertex. The experimenter can now

measure the q2 dependence of the cross section in order to extract f1 and f2 from

the data. Once data on f1 and f2 have been collected, one can use that data to cal-

culate electron properties. For example, f2(0) is related to the anomalous magnetic

moment of the electron, the precise calculation of which and subsequent experimental

verification is one of the great triumphs of 20th century physics.

The above example illustrates how one can express phenomenology due to un-

known processes or interactions as a general function of kinematics in the cross sec-

tion formula. In the case of electron scattering, this function can be calculated by

extending the QED calculation to higher orders of perturbation in α. For the nucleon,

the exact form of interaction (which is very complicated due to the composition of the

nucleon), is unknown, but the interaction can still be measured and explored through

the use of form factors because of their generality. The structure functions, which the

SANE data allow access to, are the inelastic analogs of the form factors and will be

explored later.

This chapter will discuss the basics of inclusive electron scattering. Inclusive in

this case means that the final state of the target is not detected, and consequently

the measurement includes all the different reactions of the electron with the target,

ep → e′X (where X is any final state). If one keeps the energy transfer low enough,

that energy is absorbed as a change in momentum; the final state is strictly determined

by the kinematics of the electron. That is, the electron and hadron are elastically

scattered off of one another. If the energy transfer is increased, it is possible to excite



10

nucleon resonances, induce pion production or a range of other processes. A scattering

process in which one of the latter reactions occur is referred to as being inelastic. In

either regime, data is commonly presented and analyzed using the inclusive variables

presented below. Refer to Fig 2.2 for a diagram of the reaction.

Let pµ be the incident electron’s four momentum, and p′µ be the detected scattered

electron’s four momentum. Take the z-axis to be in the direction of ~p (i.e. the z-

axis is parallel to the experiment’s electron beam). The angle between the scattered

electron’s 3-momentum and the z-axis is θ. The difference in the electron’s four

momenta is qµ = pµ − p′µ, and one uses the following definitions:

Q2 = −qµqµ, (2.4)

ν = E − E ′ ≡ p0 − p′0,

xbj =
Q2

2Mν
, and

W 2 = 2Mν +M2 −Q2.

The square of the momentum transfer, Q2, is the mass of the virtual photon that

interacts with the hadron. The photon is off-shell and not required to have Q2 = 0.

As the mass of the particle mediating an interaction is related to the range of the

interaction, Q2 indicates the length scale over which the probe is sensitive in the

hadronic system. As Q2 increases, the length scale of the interaction shrinks. The

energy transfer ν is the energy carried by the virtual photon and can be thought of as

the resolution of the virtual probe, much as the frequency of real light in microscopy is

related to the optical resolution of the device. The constructed variable xBj is called

the Bjorken x scaling variable. In this text x will be used interchangeably with xBj,

and it x will always refer to the Bjorken x variable unless otherwise specified. Bjorken

x will be shown later to be related to the momentum carried by the quarks within the
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hadron in the Bjorken scaling limit. W is the missing mass– i.e. the invariant mass of

the undetected final hadronic state, which can be calculated simply from 4-momentum

conservation, given the initial kinematics and the electron’s final momentum. When

W =M , the scattering is elastic–the final hadronic state is a recoiling proton. There

exists a hierarchy of resonances and hadronic states, such as the Roper resonances

and the ∆ states to which the nucleon can be excited. These particles and states,

when plotting scattering cross sections as a function of W , are seen as peaks centered

around their masses. The kinematic region in which these peaks exist is known as the

“resonance region.” As W increases, the resonance phenomena become less common,

and the cross section smooths as a continuum of reactions begin to contribute and the

proton breaks up during the reaction. The region in which this continuum of states

contribute and the resonances disappear is called the “deep inelastic scattering”(DIS)

region. Fig. 2.3 shows the behavior of the cross sections in the transitional region

between the resonances and the continuous DIS spectrum.

Figure 2.2: Inclusive scattering where the virtual photon interacts with the structure
of the proton.

The general form of the cross section for elastic scattering can be obtained from

factors in the same manner as in the first part of this chapter. For elastic scattering, it

is assumed that the first order electron vertex well describes that part of the interac-
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Figure 2.3: Data from SLAC illustrating the transition into deep inelastic scattering.
Beyond W = 2GeV peaks in the proton structure function F p

2 ∼ σp smooth out into
into a continuum. The fits to the data originate from Ref. [3].

tion. The unknown process that needs to be parameterized is the proton interaction

vertex represented as a blob in Fig 2.2. Using a similar matrix element as in Eq. 2.2,

M = e2[ū(p′)γµu(p)]
1

q2
[ū(P ′)Γµ(Q

2)u(P )], (2.5)

with the proton vertex

Γν = F p
1 (q

2)γν + F p
2 (q

2)iσνα qα
2M

. (2.6)

The functions F p
1 (q

2) and F p
2 (q

2) are the proton elastic form factors. Superscripts de-

note that the quantity describes the proton–analogous functions describe the neutron

and deuteron. Elastic scattering is commonly expressed in terms of the Sachs form

factors:

GE(Q
2) = F1(Q

2)− Q2

4M2
F2(Q

2) (2.7)



13

and

GM(Q2) = F1(Q
2) + F2(Q

2), (2.8)

where

τ =
Q2

4M2
. (2.9)

The differential electron proton elastic cross section in terms of the Sachs form factor

is:

dσ

dΩ
=

(

dσ

dΩMott

){

GE
2(Q2) + τG2

M(Q2)

1 + τ
+ 2τGM

2(Q2) tan2 θ

2

}

, (2.10)

which is known as the Rosenbluth formula. The form factors are called the “elec-

tric” and “magnetic” form factors respectively, because at Q2 = 0 the equalities

eGp,n
E (0) = qp,n and Gp,n

M (0) = µp,n are obtained. The charge of the proton(neutron)

is qp(n), µ is the magnetic moment, and e is the magnitude of the electron charge.

The Fourier transforms of these form factors furthermore yield the charge and mag-

netization density of the nucleons in the non-relativistic regime.

Figure 2.4: Illustration of the optical theorem.

Now, if the form factors Gp,n
E,M can provide a description of elastic scattering, what
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then of inclusive DIS? The difficulty in describing inclusive DIS is that the final state

is unknown. Without a known final state, one can’t write down a Feynman diagram,

and one has no framework to describe one’s measurements. In order to calculate the

cross section for inclusive DIS, one turns to the optical theorem. The optical theorem

relates the matrix element for a process a → b to the sum over possible final states,

f , of the product of matrix elements for a→ f and b→ f . Let a = b = γP (forward

Compton scattering), and the matrix element for a sum over all final states can be

related to the to the matrix elements for Compton scattering. This is illustrated in

Fig 2.4. See Greiner [4] or Peskin and Schroeder [5] for a more detailed discussion

on the use of the optical theorem. This particular application of the optical theorem

gives

|M(ep→ e′X)|2 = e4

q4
LµνW

µν , (2.11)

where Lµν = ū(k′)γµu(k)ū(k)γνu(k
′) is the leptonic tensor, W µν is given by the

hadronic part of the foward Compton matrix element (right hand side of Fig 2.4),

and X indicates the inclusion of all final states. Summing over final and averaging

over intitial lepton spin states, one has

Lµν = 2[pµp
′

ν + p′µpν − gµνp · p′]. (2.12)

The hadronic tensor is, for unpolarized forward Compton scattering, of the form

Wµν =

(

−gµν +
qµqν
q2

)

W1(Q
2, ν) +

(

Pµ − qµ
P · q
q2

)(

Pν − qν
P · q
q2

)

W2(Q
2, ν)

M2
,

(2.13)

where W1 and W2 are functions of the Lorentz invariant Q2 and the energy transfer

ν. This is completely general, and all of the unknown interactions are parameterized

in W1,2, which are known as the structure functions for inclusive unpolarized lepton-
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nucleon scattering. The cross section for inclusive scattering can be written explicitly

in terms of the structure functions:

d2σ

dE ′dΩ
= 4E ′2 α2

(Q2)2

(

2 sin2

(

θ

2

)

W1(Q
2, ν) + cos2

(

θ

2

)

W2(Q
2, ν)

)

. (2.14)

The tensors in equations 2.13 and Eq. 2.12 describing unpolarized scattering

include an implicit average over the initial spin state. If one allows for the possibility

of a definite initial spin state, the average can be removed, and

Lµν = 2[pµp
′

ν + p′µpν − gµνp · p′ + iǫµναβs
αqβ]. (2.15)

The first part of Eq. 2.15 is the same as Eq. 2.12 and the imaginary term is anti-

symmetric in µ and ν. Since Eq. 2.12 is symmetric in µ and ν one can break up

Lµν

Lµν = LS
µν + LA

µν , (2.16)

where S and A indicate symmetric and anti-symmetric terms respectively. The

hadronic tensor, without the initial spin average, breaks down similarly into

Wµν = W S
µν +WA

µν , (2.17)

with W S
µν the same as equation 2.13 and the antisymmetric part

WA
µν = iǫµναβq

α

[

G1(ν,Q
2)Sβ +

G2(ν,Q
2)

M2
(SβP · q − P βS · q)

]

. (2.18)

Then for polarized scattering, the cross section is proportional to LA
µνW

A
µν +LS

µνW
S
µν .

The part symmetric in µ and ν is the same as in Eq. 2.14. The part anti-symmetric in

µ and ν is only accessible in polarized scattering, and involves the structure functions

G1 and G2. Usually when describing polarized DIS, one uses the spin structure
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functions g1 and g2 defined as

g1(x,Q
2) =M2νG1(ν,Q

2), and (2.19)

g2(x,Q
2) =Mν2G2(ν,Q

2). (2.20)

Since the symmetric part of the cross-section is insensitive to the target and lepton

spin, in a calculation of the difference in cross sections for a spin flip on the target, the

symmetric terms cancel out. By measuring difference in cross sections or asymmetries,

it is possible to extract the spin structure functions g1 and g2. The cross section

difference between reactions that have electron spin ~s and proton spin ~S and reactions

that have electron spin −~s and proton spin ~S is

∆σ =
8mα2E ′

q4E

[

(q · S)(q · s) +Q2(s · S)
]

MG1

+
8mα2E ′

Q

2

[(s · S)(P · q)− (q · S)(P · s)] G2

M
. (2.21)

A cross section difference of this type can be measured by an experiment in which

there is a rapid beam helicity flip (as exists at Jefferson Lab). Events can be sorted

by the helicity state of the beam, and the two cross sections calculated using the two

sets of events then subtracted. However, measuring a cross section difference only

gives a linear combination of the structure functions. If one wants to extract them

separately, one can take another cross section difference measurement after rotating

the target spin 90◦. With the relative angle between the target spin and electron

spin changed, the factors multiplying the structure functions in 2.21 change. The

structure functions can then be calculated via linear combinations of the two cross

section difference measurements. A similar method can be used with cross section

asymmetry measurements, and is described in detail in section 6.1.



17

To reiterate: the spin structure functions and the unpolarized structure functions

contain all the “interesting physics” of the interaction. The “interesting physics” be-

ing the part of the scattering process that is inexpressible in terms of formal Feynman

diagrams because the precise structure of the nucleon is unknown. The behavior of

the functions gives one a window into the sub-structure of the proton. The interpre-

tation of the structure functions in terms of the constituent quark model will be given

in the next chapter.



Chapter 3

Quark Parton Model

Early SLACmeasurements of the structure functions led to the postulation that nucle-

ons are composed of partons– point-like particles. Measurements of the dimensionless

structure functions

F1(x,Q
2) =MW1(ν,Q

2) (3.1)

and

F2(x,Q
2) = νW2(ν,Q

2) (3.2)

revealed that, in the limit of ν → ∞ and Q2 → ∞ but x = Const, they depended

only on x. This limit is known as the Bjorken scaling limit, and in that limit the

structure functions have no Q2 dependence. Fig. (3.1) shows the available data for

F p
2 and illustrates the scaling phenomena. Weak Q2 dependence is indicative of QCD

interaction. Recalling that Q2 provides the scale of the spatial interaction, it was sug-

gested that if DIS scattering is independent of the length scale, then whatever object

the virtual photon is probing has no extent and behaves like a free point-like particle.

The scaling behavior of the nucleon structure functions was predicted earlier in the

late 1960’s by Bjorken in Ref. [6]. Scaling and its experimental confirmation provided

the impetus to create the parton model. This model suggests that the nucleon is

18
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composed of point-like free particles with momentum parallel to the proton’s. These

particles are what absorb the virtual photon during scattering. In the scaling limit,

we can write the structure functions, F1(Q
2, x) and F2(Q

2, x), as their corresponding

asymptotic value in this limit, F1(x) and F2(x).

Figure 3.1: F p
2 (x,Q

2), the proton unpolarized structure function. Graphic taken from
Ref [2]. See reference for data sources. The data shown is collected into groups with
common xbj values, which is indicated by a label next to the group. The structure
function F2 shows only a very weak dependence on Q2 for each xbj value.

In addition to the discovery of scaling, new baryons and resonances of the nucleon

were being found and cataloged at the time. These degrees of freedom of the nucleon
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implied by the family of nuclear resonances and the limitations imposed by the Pauli

exclusion principle led to the development of the quark model– quarks being a type

of parton. The resonances and particles produced from scattering experiments (eN ,

π+N , etc.) in the resonance region can be explained by assuming that the observed

baryons are composed of 3 particles (now called quarks) each with spin 1/2 and

fractional charge. Each baryon is a different 3 particle combination of three quark

types– u(up), d(down), or s (strange). Tables of the known baryons and the quarks

are shown below in Figs. 3.2, 3.3, and 3.4.

Figure 3.2: Baryon decuplet (angular momentum 3/2): Arrows indicate directions of
increasing strangeness (S), isospin (I3), and charge (Q).

The existence of certain baryons, if the quark model is correct, necessitates a new

property to be assigned to quarks. For example, the ∆− of charge −e and spin 3/2

is composed of three down quarks. The only quantum number that the quarks have

to distinguish themselves is spin, and the total spin of the system (3/2) requires that
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Figure 3.3: Baryon octet (angular momentum 1/2): Arrows indicate directions of
increasing strangeness (S), isospin (I3), and charge (Q).

the quarks it is made up of have aligned spins. Since the quarks are fermions, this

violates the exclusion principle, as each fermion is in an identical quantum state. In

order to allow this state to exist, it was postulated by Gell-Mann that quarks have

the property of color. Each quark has a color assignment of R, R̄,G, Ḡ, B, or B̄, with

the bar indicating the corresponding anti-color state. (RGB stands for red, green,

and blue respectively)

The quarks interact via the weak and electromagnetic force. However, a model of

the proton requires some other mechanism for explaining the interaction that forms

nucleonic bound states. A theory of a force that interacts through color charge was

developed in order to explain quark-quark interactions: quantum chromodynamics

(QCD). QCD is a field theory based on SU(3) color symmetry. While important to

quark interactions, the strong nuclear force (the name given to the force described

by QCD and which mediates interaction between color charged particles) becomes
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Figure 3.4: Elementary particles, consisting of leptons, quarks, and gauge bosons.
Masses, charges, and spins are given. Anti-particles exist for each of the fermions.
(attribution of graphic unknown)

weaker the closer particles are to one another; so at some small length scales, the

strong force is negligible. This phenomenon is call asymptotic freedom. Because of

the inverse relationship between the strength of quark color interation and length,

there are some regimes in which QCD plays very little role in scattering. These QCD

interactions show up only as a small Q2 dependent correction. Much success has

been had in explaining the nucleon using a constituent quark model (CQM) with free

quarks in the so called impulse-approximation, which ignores the strong interaction

altogether.
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The picture painted by the CQM is that the nucleon is made up of three con-

stituent quarks (uud for proton and udd for neutron), and a sea of quark anti-quark

pairs (uū, dd̄, and ss̄). The scaling property of the structure functions implies that

the scattering process involves only a parton and the incident virtual photon. One

wonders why this is a justifiable picture, considering something must be holding the

partons together. It turns out that DIS occurs in a regime in which interactions

take place “on the light cone.” The participants in the process are separated by a

light-like interval, and are thus isolated from one another. This means that the DIS

scattering effectively takes a snapshot of the proton fast enough that the quark-quark

interactions are negligible. An exposition of this idea follows:

The definition of the hadronic tensor can be written down as

W µν =
1

4M

∑

σ

∫

d4ξ

2π
eiq·ξ〈p, σ |

[

Jem
µ (ξ), Jem

ν (0)
]

| p, σ〉, (3.3)

where [Jem(ξ), Jem
ν (0)] is the commutator of the electromagnetic current between the

two space time points ξ and 0. Eq. 3.3 can be expressed in terms of light-cone

variables. Let a set of light cone variables a+ and a− be constructed from a variable

a by a± = (a0 ± a3)/
√
2. The 4 momentum light-cone variables are then re-written

q+ = −Mx√
2

(3.4)

q− =
(2ν +Mx)√

2
. (3.5)

In the Bjorken limit, q+ remains the same, but q− →
√
2ν, since the energy

transfer grows while x = Q2/2Mν, remains constant. So in the Bjorken limit, q− →

∞. This implies that

ξ+ → 0 (3.6)

|ξ−| <
√
2

Mx
. (3.7)
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Writing Eq. (3.3) in terms of the light cone variables,

Wµν =

∫

dξ−eiq
+ξ−
∫

dξ+d2ξT e
iq−ξ+〈p, σ |

[

Jem
µ (ξ), Jem

ν (0)
]

| p, σ〉. (3.8)

The above integral vanishes except for contributions due to singularities of the in-

tegrand. The integrand is singular at ξ+ = 0, and therefore DIS is dominated by

ξ+ ≃ 0. See Ref. [7] for a detailed argument; the length scale which DIS is probing

in the Bjorken limit is not that of physics of small length scales but rather physics at

ξ2 = 0 space time intervals. That is, physics on the light cone. Events lying on a light

cone can obviously not affect one another without violating causality, and so in the

impulse approximation, we assume that the virtual photon is sampling a collection

of free non-interacting partons.

Figure 3.5: Graph for the interaction of a photon (momentum q) with a parton
carrying momentum k inside a nucleus with momentum p.

The tensor for the interaction of a photon with a free parton is easy to write down.

From Fig 3.5 it is

Wνµ(q, p) =
∑

i

∑

s

∫

d4kf i
s(p, k)w

i
µν(q, k)δ[(k + q)2] (3.9)



25

The sum is over quark flavors, i, and helicties, s, and where f is the corresponding

quark momentum distribution. Using the substitution xi = k+/p+, so that xi is the

fraction of proton light cone momentum carried by the struck quark, and expanding

the photon-quark electromagnetic vertices, wi
µν , one has

Wµν(q, p) =
∑

i e
2
i

∫

d4k
2Mν

[f i
+(p · k) + f i

−
(p · k)]δ(xi − x)

×[2kµkν + kµqν + qµkν − gµνk · q].
(3.10)

Going to the proton rest frame and setting ν = µ = 2, one gets from eq. (2.13)

W22 = W1. Using the differential d4k = π
2
dx
x
dk2dk2T the structure function F1(x) can

be calculated in terms of the quark momentum distributions functions:

F1(x) = 1
2

∑

i e
2
i qi(x)

= 1
2
[4
9
(u(x) + ¯u(x)) + 1

9
(d(x) + d̄(x)) + 1

9
(s(x) + s̄(x))]

(3.11)

where

qi(x) =
π

4

∫

dk2T [f
i
+(p · k) + f i

−
(p · k)]. (3.12)

The distribution function qi(x) is the probability of finding a quark of flavor i with

momentum fraction x (the quark has 3-momentum |~k| = x|~p|).

Most measurements cannot accesses particular quark distribution functions. Since

the quarks are inextricable from one another, measurements sample quantities that

are sums of the distribution functions, like F1. The integral over these quantities

can be predicted based on known or presumed facts about nucleon structure, and

the integrals can be calculated from data, given a measurement over a wide enough

kinematic range. For example, since the proton(neutron) has 2(1) up quarks and 1(2)

down quark, an integral over F1 should give the following:

2

∫ 1

0

dxF
p
1 (x) = 2

4

9
+ 1

1

9
+ 0

1

9
= 1, and (3.13)



26

2

∫ 1

0

dxFn1 (x) = 2
1

9
+ 1

4

9
+ 0

1

9
=

2

3
. (3.14)

The spin structure functions also have interpretations in the quark model. The

first SSF is the sum over the helicity differences of each quark flavor:

g1(x) =
∑

i

e2i (q
+
i (x)− q−i (x)). (3.15)

At momentum fraction x, g1(x) is the probability of finding a positive helicity quark

minus the probability of finding a negative helicity quark weighted by the quark

charge. So if at high x in the proton the quark distribution functions are dominated by

completely polarized up quarks (which experiments suggests [8]), then the polarized

structure function would approach eu(1−0) = 2/3e as x→ 1. The second unpolarized

structure function can be obtained using the Callan-Gross relationship:

F2(x) =
∑

i

e2ixqi(x). (3.16)

This is all assuming that one can model the nucleon as bunch of co-linear free

partons. Notice that QCD principles were not invoked during the above discussion.

Measuring the structure functions and their moments and seeing where the predictions

of the CQM break down sheds light on the regimes in which QCD plays a part in the

structure of the proton. This is usually seen as additional Q2 dependence that violates

scaling. That the free quark model works even a little is dependent on the phenomena

of aymptotic freedom. That is that the strong force becomes weaker on short length

scales, and negligible at small enough length scales. The second polarized structure

function g2 does not have an interpretation in the CQM. Indeed, the data from g2,

unlike the data for the unpolarized structure function, on which flavor decomposition

has been performed [9] [10], the quark distribution functions cannot be explained

outside the framework of the strong interaction. Additionally there has been much
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work in trying to explain these structure functions with what is called the operator

product expansion (OPE : see most texts on QFT for treatment [5], [8], or [11]) as

well as perturbative quantum chromodynamics (pQCD) [12] [13] [14].

The data from SANE is used herein to extract the asymmetry Ap
1(x), discussed

in more detail in the next chapter. The shape of the asymmetry is connected to the

shape of the quark distribution functions. Much work has been done to extract the

individual flavor distribution functions [9] [10], but Ap
1(x) can provide information on

the quark behavior without resorting to the model dependent extractions. Conse-

quently, Ap
1(x) and in particular its limit as x→ 1 can be used as a test of the CQM

and the current understanding of the composition of the proton.



Chapter 4

Spin Asymmetry A
p
1

4.1 Definition

Consider a polarized electron scattering from a polarized proton. Form the asymmetry

between opposite spin orientations for the proton:

A =

d2σ⇑↑

dΩdE ′

− d2σ⇓↑

dΩdE ′

d2σ⇑↑

dΩdE ′

+
d2σ⇓↑

dΩdE ′

. (4.1)

The ⇑ indicates positive orientation of the nucleon along a chosen spin axis, and ⇓

indicates a negative orientation. The denominator is simply twice the unpolarized

cross section. The numerator depends on the scattering behavior for the different

relative spin orientations. The analysis section shows how one can use the measured

asymmetries A80◦ and A∦ (∦ is being used to denote anti-parallel or 180◦) to obtain

the virtual photon asymmetries Ap
1 and Ap

2.

The asymmetries Ap
1 and Ap

2 are analogous to the cross section asymmetry in

Eq. 4.1, and are formed by using the different angular momentum states in virtual

Compton scattering instead of electron angular momentum states. Break the Feyn-

man diagrams from inclusive electron scattering into two separate processes: 1. An

28
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electron emits a virtual photon with 4-momentum qµ, 2. the nucleon absorbs a vir-

tual photon. Thinking of the scattering process in that way, one can factor the cross

section into two terms: the cross section is the product of the probability that an

electron emits a virtual photon with kinematics described by ν and Q2, and the prob-

ability that a nucleon will absorb a photon in that kinematic range. The measured

quantities describing those processes are the virtual photon flux, Γ(ν,Q2), and the

absorption cross section for a virtual photon, σ(γ), respectively.

The virtual flux and photon absorption cross section depend on the polarization

state of the virtual photon. Massless particles are allowed to have angular momentum

number values of m = 1,−1, that is spin only aligned or anti-aligned with their

momentum. These states represent transverse polarization states for photons. In the

case of a virtual photon, its invariant mass need not be zero, which means longitudinal

m = 0 states are also allowed. The inclusive cross section can be decomposed into

dσ

dΩdE ′

= ΓTσT (γ) + ΓLσL(γ), (4.2)

where L and T indicate the longitudinal or transverse photon polarization state re-

spectively. The ratio of transverse to longitudinal photon flux is given by the kine-

matics of the electron, ΓL = ǫΓT with

ǫ =
1

1 + 2(1 + ν2

Q2 ) tan
2 θ
2

. (4.3)

Looking at only the virtual photon and its interaction with the target, A1 can be

defined as the asymmetry between the photo absorption cross section for scattering

with transverse photons that are either aligned or anti aligned with the target spin.

Ap
1(γ) =

σ
1/2
T − σ

3/2
T

σ
1/2
T + σ

3/2
T

. (4.4)
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An asymmetry can similarly be formed using the interference term between the T

and L states:

Ap
2(γ) =

σTL

σT
. (4.5)

The subscripts on σ indicate that the photon angular momentum is oriented along

its direction of motion (T), or perpendicular to the direction of motion (L). The target

nucleon polarization is measured along the same axis as the photon momentum, and

the superscripts indicate the total angular momentum of the system. Unlike the

electron cross section asymmetry given in Eq. 4.1, the expression for Ap
1 makes its

dependence on the angular momentum of the final state manifest. If the final state is a

quark or proton, angular momentum conservation requires that σ
3/2
T = 0, which means

A1 = 1. If the final state is a ∆, since the ∆ has spin 3/2, both σ
3/2
T and σ

1/2
T are non-

zero. The relative probability between producing a ∆ with |S = 3/2, Sz = 3/2 >

from a |s1 = 1/2, s1z = 1/2, s2 = 1, s2z = 1 > state and producing a ∆ with

|S = 3/2, Sz = 1/2 > from a |s1 = 1/2, s1z = 1/2, s2 = 1, s2z = −1 > state is

1/3. So given σ
1/2
T = 1

3
σ
3/2
T , we have Ap

1 = −1/2 for that particular reaction. This

example shows that the asymmetry is related to the spin interaction between the

target and the probe. However, Ap
1 is not defined for a particular process; it is an

inclusive absorption cross section asymmetry and kinematic dependent. The actual

calculation and prediction of Ap
1(x,Q

2) is not so simple.

4.2 Measurements and Models

The spin asymmetry A1(from here out, A1 and all other asymmetries and structure

functions will be assumed to refer to the asymmetry associated with the proton unless

otherwise stated) can be extracted from electron asymmetry measurements as long

as the photon flux can be calculated in the kinematic region of interest.

The asymmetry in the absorption cross section for the different helicities arises
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from the spin dependent interactions of the photons with the structure of the proton.

The structure functions that describe the spin dependent behavior of proton scattering

are the spin structure functions first appearing in Eq. 2.18. The virtual photon

asymmetry is, in terms of the SSFs,

A1 =
g1
F1

− Q2g2
ν2F1

. (4.6)

As mentioned in chapter 2, the structure functions can be accessed via measurements

of cross section asymmetries at target polarizations ninety degrees apart– say A
‖

(with target spin aligned with the beam helicity) and A⊥. Data that gives one the

structure functions can be used to calculate a linear combination of the two, and the

exact expression of A1 in terms of the measured asymmetries A
‖
and A⊥ can be found

in section 6.1.2.

Performing a measurement with a target polarization perpendicular to the beam

helicity is technically challenging, and for many experiments, [15], [16], [17], and [18],

A1 has been approximated using the relationship

A1 ≈
g1
F1

≈ DA
‖
, (4.7)

where D is a known quantity depending on kinematic variables (see section 6.1). This

approximation is good as long as the perpendicular asymmetry is small in that region.

The existing measurements of A⊥ indicate that this is the case, and its contribution

is further suppressed by a small kinematic factor (see section 6.1). Experimental

measurements of g2 and A⊥ [19], [20], [21], [22] suggest that this approximation is

reasonable.

Only three previous experiments have collected data that allow for the direct

determination of A1 using A⊥ [23] [22] [24]. The data from SANE includes perpen-

dicular and parallel asymmetries; a direct calculation of A1 will be shown later. Such
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a calculation of A1 and a measurement of the contribution of A⊥ is necessary as most

models and interpretations of A1 assume that equation 4.7 is a good approximation.

If Eq. 4.7 holds, A1 can be written as a ratio of the sums of polarized and unpolarized

quark distribution functions. If in some region of x the contribution of A⊥ becomes

large, most models of A1(x) will break down.

The existing world data for A1 provides fairly good coverage of the Bjorken x

region up to 0.5. The asymmetry being Q2 independent is also very well supported

by these data. It has been suggested that there is a weak 1/ln(Q2) dependence, but

a review on the subject of polarized DIS [11] argues that the data are inconclusive at

present. A collection of world data is shown in figure 4.1. Marked on the plot is the

A1 = 5/9 line, which is predicted by the naive CQM. If A1 is approximately g1/F1,

then we can write A1 in the CQM model as

A1 =
4
9
∆u+ 1

9
∆d

4
9
u+ 1

9
d

(4.8)

by using Eq. 3.15 and Eq. 3.11. Consider the anti-symmetrized wave function of

a nucleon composed of 3 spin half particles–two with identical flavor, and one gets

∆u = 4/3 and ∆d = −1/3. Counting two up quarks and one down quark gives

ACQM
1 =

5

9
. (4.9)

The CQM does not predict the x- dependence of A1, but as we move toward higher

x, the effects of sea quarks become less pronounced. The valence quarks become

the most prominent contributors to the quark distributions functions. Based on the

CQM, A1 might eventually flatten out and approach 5/9. The current high x data

set does not appear to be approaching this limit.

Perturbative QCD calculations predict a limiting value of 1 for A1 as x → 1 [12]

[13] [14]. There has also been work done in trying to explain the behavior of A1 and
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the quark distribution functions u(x), d(x), etc. in terms of a more complex quark

model that takes into account relativistic effects and interactions like quark hyperfine

splitting. One prediction for A1 by N. Isgur [25] is shown in Fig 4.1 as a band, the

width of which represents the variation available in the model due to the adjustment

of tuning parameters.

The limit A1(x→ 1) = 1, which is by now assumed by most in the field, has been

a guideline used by many theories attempting to model nucleon structure. However,

that limit has not been confirmed by experiment. SANE’s data pushes well past the

x = 0.5 mark with much higher statistics than any of the previous experiments with

model independent extractions.

Figure 4.1: World data for A1, CQM prediction of 5/9, and the RCQM bounds from
Ref. [25]. Data from SMC: [20] [26] EMC: [15] [27] HERMES: [16] CLAS: [17] [28]
E155: [24] E143: [19] [22].

Flavor decompositions have been performed on data including deuteron and pro-

ton targets by taking advantage of isospin symmetry. These decompositions allow for

the calculation and modeling of the individual quark distribution functions or combi-
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nations of the functions. The ratio of the neutron and proton unpolarized structure

function F2(x) in the quark model is

F n
2

F p
2

=
1 + 4dp(x)/up(x)

4 + dp(x)/up(x)
. (4.10)

Data for this ratio is plotted in Fig. 4.2 from Ref. [29] and [30]. The ratio approaches

the limit of 1/4 as x→ 1, which is indicative of a negligible down quark contribution

to the composition of the proton. If A1(x) approaches 1 at high x, then the scattering

process is dominated by high momentum up quarks with angular momentum aligned

with that of the proton.

Figure 4.2: Data from the the BCDMS collaboration, SLAC, and the NMC collabo-
ration. Plot from BCDMS paper [29]. Newer data at Ref. [31].



Chapter 5

Experimental Methods

5.1 Overview

SANE was an inclusive measurement of electron scattering off of a polarized ammonia

target. The quantity being measured is the asymmetry between beam helicities at

two different target orientations. The calculation of A1 requires asymmetry (Eq. 4.1)

data for parallel and near perpendicular target polarization. The most basic needs for

performing such a measurement are a polarized target that can change orientation,

a polarized beam, and a detection apparatus. The SANE experiment was performed

at Thomas Jefferson National Laboratory (JLab) in Hall C of the Continous Elec-

tron Beam Accelerator Facility(CEBAF). The facility provides a polarized electron

beam. The University of Virginia furnished a polarized solid ammonia target that

was oriented such that the target protons were polarized anti-parallel to the beam

direction and at 80◦ with respect to the beam direction. (The geometry of the coils

prevented the target field from being rotated to exactly 90◦, as the coils would block

the acceptance of the detectors)

A new detector package was constructed for this experiment. The new device

is called BETA, Big Electron Telescope Array. BETA is a large acceptance multi-

35
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detector apparatus for electron detection. The standard Hall C magnetic spectrometer

was also used for parasitic data collection and for measurements necessary for dilution

factor calculation and calibration of BETA. The measurement was broken into four

configurations–different combinations of beam energy and target polarization (see

section 6.2.1).

Figure 5.1: Picture of BETA from the side. In this picture, the beam dump is to the
left.

The apparatus is described in order from the target out: BETA is composed of

a plastic scintillator hodoscope(Norfolk State U.), a nitrogen gas Cerenkov detector

(Temple U.), a lucite hodoscope (NC A&T Stat U.), and a large lead glass calorimeter

(GEP III collab.). The calorimeter is divided into roughly 4 cm × 4 cm glass blocks,

each with a photomultiplier tube to detect the light from electromagnetic showers.

This apparatus is sufficient for establishing the angle and energy of a scattered par-
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ticle. The hodoscope and tracker provide additional position information for more

precise tracking. The Cerenkov detector provides particle identification. Use of the

Cerenkov detector as one half of the data acquisition (DAQ) trigger ensures that

BETA is only collecting data from electrons (or positrons) scattered from the target.

The detector was positioned such that the central scattering angle is at 40◦, and its

coverage extends from about 30◦ to 50◦ in the horizontal plane at beam height. These

systems will be described in more detail along with the target and beamline in this

chapter.

Figure 5.2: Graphical overhead view of the experiment. The beam line is depicted
coming from the left, passing through the target, and then through the helium bag.
BETA is shown in red and positioned at a scattering angle of 40◦. The Hall C
spectrometer was positioned at various angles on the opposite side of the beam. The
electrons are polarized aligned or anti-aligned with the electron momentum. The
magnet coils, which determine the target proton polarization, can be rotated so that
their axis is parallel or near perpendicular(shown here) to the beamline (80◦). (Image
used with permission from [32])
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Figure 5.3: Jefferson Lab accelerator and experimental halls.

5.2 TJNAF

The Thomas Jefferson National Accelerator Facility (TJNAF) is home to a high

intensity electron accelerator, CEBAF: continuous electron beam accelerator facility.

It is capable of providing a continuous beam of polarized electrons to three separate

experimental halls. The accelerator is designed with a footprint similar to that of a

racetrack, with acceleration taking place along the straightaways. The electrons are

re-circulated and accelerated again with each pass through the beam line. Jefferson

lab can supply different currents to each hall, and different but correlated energy to

each hall.

The polarized electrons are produced and provided with their initial acceleration

and polarization direclty at the injector. Infrared light excites electrons from a pho-

tocathode, which are then accelerated in a DC field, focused, and pre-accelerated

in rf cavities on their way to the main linacs. Once in the main accelerator track,
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the electrons are accelerated through a series of rf cavities along the linear stretch of

the Jlab accelerator complex. After the initial trip through the linac, the electrons

are separated vertically by energy, and magnetically guided through the turns in the

accelerator, after which they are sent through the second linac. The electrons are cir-

culated through the accelerator up to five times. Each circulation gains an electron

up to 1.2 GeV. Once accelerated to their final energy, they are separated magnetically

from the main beam and routed to an experimental hall.

5.2.1 Injector

The polarized electron source is a DC photogun with a mechanically strained gal-

lium arsenide photocathode. In a DC photogun style electron source, a laser pulse

excites electrons from a metal or semi-conductor via the photoelectric effect. The

photocathode from which the electrons are excited sits at a large constant negative

electric potential. The electrons, once free of the photocathode, accelerate away from

the photocathode and thereafter can be prepared for injection into the accelerator.

Because the photocathode is at a very high potential, positively charged particles or

ions will accelerate back towards the photocathode. Ionization can occur when the

laser light or electrons come into contact with air molecules or the material com-

ponents of the injector. The ensuing impingement of the ions on the photocathode

can significantly reduce the life of the photocathode, and it is therefore necessary to

operate the photogun in a hard vacuum.

The excitation of electrons from the gallium arsenide wafer occur when electrons

are excited out of the valence band of the material and up into the conduction band

by photons from a laser beam. In gallium arsenide, the energy level of the conduction

band actually sits above the energy of an electron in the vacuum, and so conduction

band electrons escape from the material and accelerate away from the photocathode.

The transition being excited is that from the conduction band’s P state into the
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Figure 5.4: Top: electron energy levels in GaAs. Solid lines indicate transitions
due to positive helicity photons, and dashed lines mark transitions inducable by
negative helicity photons. The numbers in circles indicate the relative probability of
a transition. Bottom: electron levels in a strained GaAs wafer. Here the mechanical
straining of the substrate lifts the degeneracy in the P states. Image from reference
[33].

valence band S state. The P3/2 and P1/2 states are degenerate, and when the gallium

arsenide is illuminated with polarized light of the appropriate helicity, the electrons

from the P3/2(m = −3/2) state are excited to the S1/2(m = −1/2) state and the

P1/2(m = −1/2) state to the S1/2(m = 1/2) state. The coupling of the angular

momentum of the states makes the P3/2(m = −3/2) to S1/2(m = −1/2) transition

three times more likely. The coupling of angular momentum states leads to an ejected

electron polarization of no more than 50%. By eliminating the degeneracy between the

P3/2 and the P1/2 states, one can preferentially excite the P3/2 transitions, populating

only the S1/2(m = −1/2) state (or m = −1/2, depending on the light helicity).

Mechanically straining a gallium arsenide lattice lifts the degeneracy of these

states, and JLab achieves close to 90% polarization at the injector site by using

circularly polarized light from fiber lasers with a wavelength of 780 nm incident on a
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strained gallium arsenide wafer.

Three separate diode laser systems are used simultaneously for electron produc-

tion. The diode laser oscillators are rf gain-switched to produce an optical pulse train.

The pulses from the three lasers are out of phase by 120◦ and have a frequency of 499

MHz. The result is a train of electron bunches accelerating away from the cathode

at a frequency of 1497 Mhz, which is the operational frequency of the accelerator.

Every third electron bunch is produced by the same laser and sent to the same hall at

the end of the accelerator. In this manner the polarization and current delivered to a

particular hall can be adjusted by changing the polarization and intensity of a single

laser. The relationship between the intensity of light and the number of electrons

ejected at the photocathode is given by the quantum efficiency (QE):

I =
γ

124
P ·QE. (5.1)

The current in mA of the ejected electrons, I, is dependent on the wavelength, γ, in

nanometers; the power, P , in Watts; and the quantum efficiency, QE. The quantum

efficiency degrades over time and varies with the incident wavelength.

The helicity of the beam is flipped pseudo-randomly using a Pockels cell that

changes the helicity of the incident laser light at a rate of 30 Hz. A halfwave plate

can be inserted to induce an overall helicity swap. The pseudo-random helicity or-

dering and the halfwave plate are used as controls to check for systematic effects in

experiments like SANE that require polarized electrons.

5.2.2 Accelerator

The linear accelerator portion of the JLab electron beam line is composed of a series

of superconducting radio frequency resonator cavities. The cavities are designed to

oscillate at a frequency of 1497 MHz. The electrons to be accelerated enter the cavities
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in bunches at this frequency, and the phase of the field oscillation is fixed such that the

electric field in the cavity peaks for maximum acceleration when an electron bunch is

present in the cavity. The cavities are part of a larger accelerator component called

a “cryomodule”. Each cryomodule is composed of 8 cavities that together provide

about 30 MeV of energy to the electrons. Each cryomodule is connected to a dedicated

5 kW klystron that provides a 1497 Mhz rf driving signal to the cryomodule. The

straightaways on the Jlab track each have 20 cryomodules for a total of 1.2 GeV of

energy gained upon one circulation (normally referred to as a “pass”).

Groups of electrons with differing energies can be accelerated at the same time

in a linac. Once the electrons leave the injector, they are already highly relativistic.

Changes to their energy produce virtually no change in their velocity. This allows

electrons to be re-circulated through the linacs, to remain in phase with electrons

of different energies, and continue to be accelerated at the accelerator operating fre-

quency. There is a separate arc beamline for each of the five possible electron energies

in the beamline. The electrons are steered magnetically around the accelerator arc

after being separated by a spreader magnet into the component energies.

At the southern end of the linac, the beam is extracted and separated by an rf

separator. Based on the phase of an electron bunch within the 499 Mhz cycle, that

bunch is deflected from the beamline to one of the three experimental halls.

Beam quality tests and measurements are performed by the accelerator crew be-

fore the beam enters the hall. In addition to the measurements made in the accel-

erator beamline, each hall has its own dedicated beam diagnostics. In particular:

current, beam position, beam polarization, and beam energy measurements can be

accomplished post main beamline separation.
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5.2.3 Beam Current Measurement

During normal operation, the so-called “Beam Current Monitors” (BCM1 and BCM2)

are used to measure the current of the beam entering the hall. These devices both

use the same measurement technique. They are rf cavities constructed to oscillate

at 1/3 of the accelerator operational frequency. Specifically, their TM010 mode of

oscillation is the same as the electron bunch frequency in the Hall C beam. A pickup

antennae and accompanying electronics convert the signal caused by the excitation

of the cavity to a DC voltage. That voltage signal is then sent through a voltage-to-

frequency converter and then to a scaler that is read out by the DAQ system every

two seconds. The cavity was designed so that the TM010 mode is the operational

frequency of the accelerator, because the cavity response at this mode is insensitive

to the beam position.

The BCMs have a gain that drifts slowly over time. Consequently, it is necessary

to recalibrate them periodically to ensure that accuracy of real-time measurement

of the current. In order to calibrate the BMCs, a third beam current measurement

device is used. An Unser style current monitor with a stable gain was used to obtain

an absolute measurement of current and calculate the correct gain for the BCMs. The

Unser has an unstable zero offset, which makes it unsuitable for real time monitoring

of the beam. Periodic calibrations are performed using the Unser in order to check

the gain of the BCMs. The Unser is a parametric current transformer and is described

in Ref. [34].

5.2.4 Beam Postion Monitoring

The beam position is monitored using rf cavities similar to the BCMs. Four antennae

are attached to the cavity, and the position of the beam within the cavity can be cal-

culated from the signal from the four antennae. Using this technique, the position of

the beam at a BPM can be determined to within 1 mm. A more precise measurement
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of the beam position along the hall beam line can be determined using the superharp

system–a set of two vertical and one horizontal wires strung on a frame that can be

scanned across the beam. The signal induced in the wires as the frame moves them

across the beam path can be used to calculate the position of the beam to within

20 µm [35]. More information on the the BPMs can be found at [36].

5.2.5 Beam Energy Measurement

The measurement of the energy of the electrons entering the hall is accomplished by

using the beamline itself as a magnetic spectrometer. The beam being sent to Hall

C is magnetically guided along an arc from the rf separator into the experimental

hall. During an energy measurement, the magnetic components within the Hall C

arc that adjust the beam profile and focus are switched off, and only the dipole

magnets used for steering are left functional. Superharp position monitors placed at

the beginning and end of the arc can determine the beam’s position pre- and post-

deflection. The precise beam position and knowledge of the magnetic field integral

along the path of the beam allow for an accurate calculation of the beam momentum.

Once this momentum measurement is complete, the quadrupoles and sextupoles can

be switched on. Another BPM in the midpoint of the arc can then measure the

fluctuation of the beam’s position about a central point, and that fluctuation can

be related via the absolute calibration to the electrons fluctuation about the central

energy. The precision of this energy measurement is ≈ 5 × 10−4 (δp/p). A more

detailed description of the energy measurement procedure can be found at [37].

5.2.6 Beam Polarization Measurement

Theoretically the polarization of the electrons ejected from the photocathode can be

determined solely from the diode laser polarization. However the polarization of the

beam entering the experimental hall is affected by spin precession and by inefficiencies
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in the beamline during circulation. The electron precesses during its trip around the

accelerator, and the final polarization at the hall depends on a complex combination

of the number of passes, the Wien filter angle, and the acceleration per pass to each

of the halls. Consequently it is necessary to have an accurate measurement of the

polarization in the Hall C beamline. A Møller polarimeter was constructed for this

purpose [38].

Møller scattering is the scattering of two electrons from one another (e− + e− →

e− + e−). Its cross section is easily calculable, as it is a pure QED process between

two leptons. If one introduces a polarization to the target and incident electrons that

is collinear with the incident electron momentum, the cross section for the process is

dσ

dΩ
=

[

α(4− sin θ2)

2meγ sin θ2

]2

[1 + PbPtAzz(θ)] (5.2)

in the center of mass frame. The beam and target polarization is Pb and Pt respec-

tively. The factor in square brackets is the unpolarized cross section. The second term

contains the polarization dependent effects. Azz(θ) is called the analyzing power and

is a function of the scattering angle θ. It is a maximum at θ = 90◦. Clearly the cross

section asymmetry for scattering with parallel and anti-parallel target spins is equal

to the product of the analyzing power, the target polarization, and the beam polar-

ization. The analyzing power is determined solely by the scattering angle. The target

is an iron sheet passively polarized by using a 4 T magnetic field, and the polarization

of the target is consequently well understood and quantifiable. Thus by measuring

the cross section asymmetry, the beam polarization can be easily calculated.

Møller data was taken periodically throughout the experiment. One cannot as-

sume that during an experimental run that the beam polarization is that of the most

recent Møller measurement. The beam energy drift can cause a significant change in

the beam polarization. Dave Gaskell performed a fit to all of the good Møller data
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for the experiment. So for a given number of passes, the beam polarization can be

expressed as a function of beam energy, Wien angle, and the quantum efficiency as re-

ported by the accelerator. The fit, documentation for the fit, and a talk on the Møller

polarimeter can be found in the SANE wiki [39]. The polarization measurements by

experimental run are shown in Fig 5.5.

Figure 5.5: Per run beam polarization as given by a fit to the Møller data.

5.2.7 Raster System

Experiments that use solid polarized target require a raster system to disperse the

beam over the target’s beam-facing surface area. The the standard JLab raster

spreads the beam over 2 mm × 2 mm. The target, which will be discussed in detail

later, is a cylinder of frozen ammonia beads with a diameter of approximately 2.5

cm. The coil that serves as a pickup for the polarization measurement is a single loop
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about a half inch in diameter, embedded directly in the target material. The coil of

thin tubing samples the polarization in a region around it. The beam damages the

target material as it passes through. This damage to the material causes depolariza-

tion of the material over time. Spreading the beam out with a wider raster reduces

the radiation induced depolarization rate. Spreading the beam uniformly over most

of the target ensures that the coil is embedded in the material being impinged upon

by the beam. The spread of the beam is accomplished using two deflecting magnets

driven by three signal generators to create a spiral pattern that maintains a constant

beam flux over the area it sweeps out. This spiraled raster pattern fills a circle of

diameter 2 cm.

Figure 5.6: Run 72832 events
binned by slow raster ADC y vs
x values. This run was to con-
firm target ladder location. One
can see in the image the top of the
microwave horn, 10mm hole, and
8mm hole in the aluminum frame.

Figure 5.7: Left: Target ladder Top Right: Close-
up of the of the 10mm and 8mm holes Bottom
Right: Events binned by slow raster ADC values.
The beam spot location for this image is circled on
the picture above.

The signals driving the magnets are sent to ADCs and recorded by CODA (section

5.4). The raster signal data allows for the calculation of the beam position within the

raster given a time stamp. Plotting the x versus y position of the raster for events

in the main detector produces an effective photograph of the target. The width of
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the slow raster can be checked by imaging a 10mm hole in the aluminum frame of

the target at low current. The picture in Fig. 5.6 shows the histogram of slow raster

ADC signals for a run targeting the 10 mm hole in the target ladder for location

confirmation. The histogram was also sliced and profiled in order to obtain a direct

measurement of the raster width.

More details on the slow raster design and set up can be found in [40].

5.2.8 Chicane and Helium Bag

The magnetic field of the target is strong enough to change the trajectory of the beam.

For unpolarized targets or when the magnet is aligned with the beam direction, the

unscattered (or shallowly scattered) particles continue through the target in a straight

line to the beam dump. The beam dump is designed to absorb these particles, and

it is shielded from the rest of the hall in order to minimize the radiation exposure in

the hall. Exposure of any other part of the hall to the beam would create a radiation

hazard. For the 80◦ field configuration, an electron approach from the beam line

would result in its deflection in the target field such that for some beam energies the

electrons would never hit the target and the beam would be deflected into the floor.

When the target is oriented such that the field is parallel or anti-parallel to the

beam line, no change in the beam’s trajectory occurs (~v × ~B = 0). When the target

field is oriented 80◦ relative to the beam, the beam is bent downward. The target was

installed and kept for the entire experiment at the same level as the beamline. Two

dipole magnets were placed in the hall along the beam line just upstream from the

target. The first dipole was positioned so that it bent the beam downwards, and the

second so that it bent the beam upwards towards the target. The approach of the

electrons to the target was changed so that as they entered the target field from below

and were deflected, the angle of approach became horizontal just at the center of the

target. A low current dump was constructed to absorb the deflected beam in the 80◦
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Beam Energy BE
∫

Bdl BZ
∫

Bdl Target
∫

Bdl
4.7 GeV 1.002 Tm 0.513 Tm 1.521 Tm
5.9 GeV 1.002 Tm 0.519 Tm 1.521 Tm

Table 5.1: Chicane Settings for different beam energies. BZ is the label for the first
magnet and BE the label for the dipole magnet closest to the target.

configurations. The field settings for the chicane magnets is shown in table 5.1.

To prevent hazardous ionization and activation of the air in the hall, the beam

passing through the hall must be shielded from the surrounding atmosphere. Nor-

mally this is accomplished with an evacuated beam pipe similar to what is upstream

of the target. Rather than build different evacuated housings for each energy setting

(as would be required because of the energy dependent deflection in the target field),

a large, nearly conical mylar bag filled with helium encompassed the beam’s path to

the beam dump.

5.3 Target

5.3.1 Introduction

The SANE target was a frozen ammonia target provided by the UVA solid polarized

target group. The system is composed of several subsystems. A large superconducting

magnet provides the field in which the protons in the target material are polarized.

A refrigeration system maintains the temperature necessary for polarization of the

material. The technique used to polarize the material uses microwaves to induce spin

flips. An NMR system measures the polarization of the target in real time.

Ammonia (14NH3) was used as the target material. Only events from the hydrogen

nuclei in ammonia are relevant for SANE analysis, so one might wonder why not use

molecular hydrogen in order to avoid dilution due to the inclusion of the nitrogen
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nuclei. Molecular hydrogen, when cooled, devolves into a magnetically inert state with

spin zero, and is therefore unpolarizable. Hence, one must look elsewhere to molecules

containing hydrogen. Ammonia has a high free proton density, good polarization

characteristics, and good resistance to radiation damage. These characteristic will

be discussed as they relate to the experiment in the following sections. First the

mechanism used to polarize the target will be described.

5.3.2 Dynamic Nuclear Polarization

The application of a magnetic field to particles with magnetic moments splits the

existing energy states into additional Zeeman energy levels. If we assume the particles

themselves are weakly interacting, the ratio of the populations of these states within

a field of strength B, and a temperature T is given for spin 1/2 particles by the

Boltzmann distribution:

N↑

N↓

= exp

(−µB
kBT

)

(5.3)

where N
↑(↓) is the number of particles in the aligned(anti-aligned) state. The polar-

ization as typically defined by

A =
N↑ −N↓

N↑ +N↓

(5.4)

is then given by

P = tanh
µB

2kBT
. (5.5)

For a 5 T field and a refrigeration system that can keep the system at 1 K, the thermal

equilibrium polarization is approximately 0.3% for the protons and 93% for electrons–

the difference being due to the much weaker magnetic moment of the proton. Clearly

a mechanism other than brute force polarization is needed for increasing the proton

polarization to a value at which spin asymmetries are detectable. Dynamic Nuclear

Polarization(DNP) can accomplish this by driving transitions that transfer electron

polarization to the nuclear species in the material. There are two mechanisms that can



51

effect this transfer. The first, the solid state effect, is the dominant process in materials

with low electron density and discrete energy levels. It works through the driving of

otherwise forbidden transitions. DNP in materials with a high electron density is

more accurately described by the heating and cooling of thermal spin reservoirs.

Both mechanisms will be described below. The solid state mechanism is a straight-

forward intuitive way to think about DNP, and is most often valid for chemically

doped substances. The polarization of materials such as NH3 and LiD, which are

irradiated in order to create paramagnetic centers, proceeds through the equal spin

temperature mechanism.

5.3.3 Solid State Effect

Figure 5.8: Zeeman energy levels for electron spin states and coupled electron-proton
spin states. Filled arrows denote electron orientation. Open arrows denote electron
spin states. The microwave driven transition is indicated by the wavy lines, and the
dashed line shows the decay via phonon exchange with the lattice. Graphic from
Ref. [1].

The application of a magnetic field to target material splits an electron or proton

energy level into two Zeeman energy levels. The electron and proton populations are
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split between the new states with their spins aligned or anti-aligned with the magnetic

field. The distribution of the population between these states is given by equation

5.3 for thermal equilibrium. In order to polarize the protons in the material, one

could attempt to drive the NMR transition between the Zeeman levels, flipping the

proton spin. Such an attempt would actually result in zero polarization, because the

transition probability for a proton to move between the Zeeman levels when excited

by a field at that frequency is equal for either direction.

In addition to Zeeman energy levels, hyperfine splitting occurs when electrons

couple to protons. This splitting, which results in four different levels for a coupled

electron-proton pair, is shown in figure 5.8. If one drives a transition that flips both

spins of the coupled pair (Fig. 5.8), the electron will quickly decouple and relax back

into its previous state, leaving the proton behind in its new spin state. The electron is

then free to couple to another proton and repeat this process, gradually populating the

proton Zeeman level. This mechanism relies on the difference in proton and electron

relaxation times. The proton has a relaxation time of about 30 minutes at 1 K [1]. The

electron has a relaxation time on the order of seconds. Thus the rate of population

decay of a proton state is much lower than the population increase rate, which is only

limited by the much shorter electron transition timescale. Thus the population of a

given proton Zeeman state decays slowly towards the thermal equilibrium value, while

at a much higher rate relatively small number of paramagnetic electrons continue to

couple and facilitate the transition of other protons within the material to the desired

spin state. Using this mechanism also allows for reversal of proton polarization simply

by adjusting the microwave frequency to drive the other double spin-flip transition,

without the need to adjust any other system parameters (such as the magnetic field).

Figure 5.8 shows the two sets of transitions associated with positive and negative

polarization.

Protons are polarized in a region local to the free electrons. The polarization
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spreads across the material through a mechanism called ”spin diffusion” [1]. Protons

coupled to each other via the material lattice can undergo an energy conserving

double spin flip. Thus, neighboring particles can swap polarization states, and the

polarization achieved in the region local to the free electron can diffuse through the

material.

5.3.4 Equal Spin Temperature Theory

Figure 5.9: Illustration of the population of the electron energy levels with various
spin-spin reservoir temperatures. In all graphs TL = TZe. Left: The spin-spin reser-
voir is in thermal equilibrium with the latice, TL = Tss Middle: Positive spin-spin
reservoir temperature with Tss > TL Right: Negative spin-spin reservoir temperature
with Tss < TL. Graphic from Ref. [1].

In the Solid State Effect model described above, polarization is transferred from

the electrons to the protons via a hyperfine coupling and the driving of a transition

whose energy level is determined by the magnetic moment of the species involved.

This model predicts that if there were more than one spin species in the material (say a

nucleus), then that species would reach maximum polarization only when irradiated

by the frequency corresponding to the energy gap between the states bridged by

the spin-flip. In materials with a high electron density, this is found not to be the

case. For example, in ammonia the polarization of the nitrogen nuclei is observed to

be dramatically increased while driving the transition that polarizes the proton [1].
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The equal spin temperature theory describes a different mechanism through which

polarization occurs and predicts the simultaneous polarization of species with different

magnetic moments.

With high concentrations of electrons, the spin-spin interactions, while weak, can-

not be ignored, as they result in a smearing out of each of the Zeeman levels of the

electron as shown Fig. 5.9. Rather than a discrete state, there is around each Zee-

man level a band of energy levels occupied by the electrons. The distribution of states

resulting from the spin-spin interaction are described by a Hamiltonian, Hss, and a

characteristic temperature Tss. Writing down the Boltzmann distribution for these

bands, one obtains exp(−Hss/kBTss), which is illustrated in figure 5.9. Similarly the

proton(electron) distribution between two Zeeman levels is described by a character-

istic temperature TZp(e) and Hamiltonian µp(e)B. Given enough time for relaxation

and no excitation from radiation, these three thermal reservoirs will fall into thermal

equilibrium with the lattice of temperature TL; the temperatures will equalize, giving

the thermal equilibrium polarization from the first part of this section– equation 5.5

with T being the lattice temperature.

During DNP, the microwave radiation is absorbed by the electron spin-spin reser-

voir, and thermal contact between it and the proton Zeeman reservoir leads to po-

larization. Specifically, energy h(νe −∆) is absorbed from the microwave field. The

energy hνe transitions an electron between Zeeman energy levels, while a h∆ quanta

is absorbed by the spin-spin interaction(SSI) reservoir. The absorption of ∆ by the

SSI resevoir leads to a heating or cooling of the reservoir depending on the sign of

∆. The spin temperature Tss shifts accordingly as the population redistributes itself

within the bands, and this can lead to positive or negative Tss.

Thermal contact between the SSI reservoir and the proton Zeeman reservoir leads

to the equalization of Tss and TZp. The process that causes the heat exchange between

the two reservoirs is a spin flip of two electrons of opposite spins. This spin flip does
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not change the energy of the electron Zeeman reservoir, but the spatial rearranging of

the electrons leads to an energy loss (or gain) by the spin-spin interaction reservoir.

This exchanged energy is absorbed by the proton Zeeman reservoir, changing the spin

populations accordingly. Thus the energy exchange between the reservoirs brings TZp

to Tss. Tss is determined by the microwave cooling, and so the microwave cooling is

a direct handle on the polarization of the proton. Furthermore higher intensity mi-

crowaves increase the polarization rate, provided the refrigeration system can handle

the increased thermal load.

If there is any process that provides thermal contact between the spin-spin in-

teraction reservoir and another Zeeman reservoir, the spin species associated with

that reservoir will be polarized as well. Evidence for this contact has been seen in

frozen ammonia where nitrogen polarization occurs during the driving of transitions

to polarize the hydrogen nuclei. Polarization for any body with a magnetic moment

giµi in the material is given by

P = tanh
giµiB

2kBTss
. (5.6)

The final polarization is given by that specie’s magnetic moment and the SSI temper-

ature. Hence in ammonia, once the proton’s polarization is determined, the spin-spin

temperature can be calculated, and the nitrogen nucleus polarization determined.

The observed nitrogen polarization data fits this model neatly and can be seen in

reference [1].

5.3.5 Target Cryogenic and Microwave Setup

An Oxford made 5 T magnet provided the target field for polarizing the target. The

magnet is a super-conducting Helmholtz style magnet with a cryostat that serves as

a liquid helium supply for the target refrigeration system. The cryostat liquid helium
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and nitrogen was supplied by the JLab Central Helium Liquefier. Helium from the

magnet cryostat was siphoned into the 4He refrigerator to cool the target.

Figure 5.10: Cross Section schematic of the UVA target used for SANE

The refrigerator is a 4He evaporation fridge with cooling power of about 2 W

and an operating temperature around 1 K. This cooling power is needed to remove

heat from the beam (about 0.45 W at 80 nA) and heat from the microwaves used

for DNP (about 1 W). The removal of the evaporated helium is accomplished with

a set of mechanical pumps and roots blowers. The target material sits in a pool of

liquid helium that is cooled by evaporation. The helium removed from the target nose

reservoir is replenished by drawing helium from the cryostat and sending it through

a series of heat exchangers and then into the nose. The heat exchangers are cooled

by the gas being pumped out of the refrigerator, so that the 4 K helium drawn out

of the magnet cryostat and condensed in the separator of the fridge is cooled before
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it gets to the 1K reservoir in the nose wherein sits the target material.

Through the central shaft of the refrigerator is the “target insert.” The target

insert houses connections for the NMR, the microwaves, thermometry, and heater

wire. At the bottom of the insert is an aluminum ladder that holds target cups.

Figure 5.11 shows the target ladder for one of the inserts. The target cups are

cylinders 1.145 inches deep with a diameter of 1.12 inches, containing beads of frozen

ammonia. A cross section of the target setup is shown in Fig. 5.10

The microwave transmission horns can be seen above each of the target cups.

Inside of each cup is a loop of wire used as NMR pickup antennae. A carbon cell is

used for collecting data for calculation of packing fractions. The bottom cell can be

empty, or it can contain wire cross hairs for use in positioning. The 10mm and 8mm

holes can similarly be used in positioning, see 5.2.7. Platinum and chip resistors on the

side of the target cups and thermocouples inside of the cups are used for temperature

measurement. Details on the construction of the insert and the instrumentation used

can be seen in the UVA target group’s internal documentation [41].

The microwave energy used in polarization is carried to the target through waveg-

uides in the target insert. The microwaves were generated in an Extended Interaction

Oscillator (EIO) tube at a frequency around 140 GHz and can be tuned using a me-

chanical bellows by ±2 GHz in order to drive the positive or negative polarization

transition. The EIO tube and accompanying microwave equipment were placed on a

platform just above the cryostat and controlled and monitored remotely during the

experiment. The microwave frequency and power were monitored during the running

by a target operator. The frequency at which optimal polarization is achieved shifts

while polarization is building up and while beam is being applied to the target. The

local field around the nuclei and free radicals is affected by the free radical density.

The density changes as the beam damages the target material. The changing local

field causes a shift in optimal microwave frequency for polarization. It is necessary
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Figure 5.11: Target ladder.

to monitor the polarization and continually adjust the microwave frequency in order

maintain maximum polarization. An adjustment of a few megahertz approximately

every half hour was sufficient to prevent unnecessary decay in polarization.

5.3.6 Polarization Signal Processing

The measurement of the polarization was accomplished by measuring a nuclear mag-

netic resonance signal at the Larmor frequency of the proton at 5 T. The NMR

measurement was taken using a Q-meter connected to a resonant circuit (Fig. 5.12).

The inductor of the circuit is a coil placed directly in the target material. If the
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Figure 5.12: NMR circuit including the LRC components and the Q-meter used for
polarization measurement [1].

NMR coil has inductance LC and resistance rC , then the impedance of the coil will

be ZC = rC + iωLC(1 + 4πηχ(ω)). The inductance of the coil is modified by a

factor ηχ(ω), with η being the filling factor and χ(ω) the susceptibility of the mate-

rial. The susceptibility can be broken down into an absorptive and dispersive term:

χ(ω) = χ′(ω) − iχ′′(ω). The integral over the absorptive part of the impedance is

proportional to the polarization of the material:

P ∼
∫

∞

0

χ′′(ω)dω. (5.7)

An RF signal is sent to the LRC circuit, and the response of the circuit measured

by the Q-meter. The RF signal’s frequency is modulated about the Larmor frequency

of the proton. The absorptive part of the output signal is isolated by a phase sensitive

detector that uses the input RF as a phase reference. The output signal has Q-

curve contribution from the Q-meter circuit itself. This Q-curve contribution can be
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separated out by measuring the circuit response with the Larmor frequency shifted

outside the range of the modulation by lowering the magnetic field. Once the Q-curve

is measured, it can be subtracted out, and the result should be the integral from eq

5.7 times a calibration constant that depends on the state of the NMR circuit. The

calibration constant can be determined by doing a polarization measurement while

the material is at a known polarization. A signal measurement while the system is at

thermal equilibrium, provides this. The polarization is determined by the temperature

and field (Eq. 5.5).

During the production runs, the material is measured about every thirty seconds

by the NMR system. The coils in the material carry a frequency modulated signal

with a central frequency of 213 MHz (The Larmor frequency of a proton in a 5 T

field) and sweep range of 400 kHz on either side. The frequency sweep is linear in

time with a period of 1 ms. The NMR output signal is the sum of the Q-curve and

the frequency dependent response of the circuit due to the polarized target material,

Eq. 5.7. Figure 5.13 shows the Q-curve; the raw NMR signal from which the Q-curve

is subtracted, and the polynomial fit to the signal ends. The polynomial signal is

necessary, as during the run the signal can gain a dc-offset and the Q-curve may

change slightly due to temperature variations in the circuit. In order to process the

averaged signal from a 30 s sweep, the baseline is subtracted, a fit is performed to

the ends of the signal, and the resulting curve is subtracted from the signal to remove

any DC offset or slight changes to the Q-curve. The result is a processed signal

like that shown in Fig. 5.14. The integral is taken over the filled in area from Fig.

5.14, and the polarization is calculated by multiplying the area by the calibration

constant obtained in the most recent thermal equilibrium measurement. Polarization

measurements are taken on intervals at about 30 s to 60 s depending on the noise

in the signal. For the analysis, a beam charge weighted average of the polarization

is taken for each run. That run is then assigned a target polarization value equal to
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Figure 5.13: Stages of NMR signal processing. The area under the peak in the center
of the raw NMR signal is the quantity of interest. The curve the raw signal sits on is
the ”baseline curve” plus the ”poly fit” curve. These two curves are subtracted from
the raw signal to obtain a curve that is proportional to the absorptive term in the
material’s magnetic susceptibility.

that average. A cut on beam current was placed at 60 nA when including data in

the average. The polarizations assigned to each run are binned in Fig. 5.15. A plot

of the charge averaged polarization for each run used in the data analysis is shown in

Fig. 5.16. The average for the entire experiment is 68%.

5.3.7 Error Estimate

When measureing the constant relating the NMR signal area to the polarization, one

must be sure that the system has reached thermal equilibrium (TE). Failing to wait

for thermalization before taking the measurement, or fluctuations in temperature

during the measurement, will cause the calibration constant to be incorrect by some

amount, depending on how close the system was to TE at the measurement time or the
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Figure 5.14: Processed NMR signal. The integral of shaded region is proportional to
the right-hand side of Eq. 5.7.

magnitude the fluctuation. The sample spread over an individual measurement gives

about a 3% error in the polarization calculation. Those uncertainties are generally

smaller than the variation between different TE measurements for the same material.

Looking at the calibration constants (see Fig. 5.17), one can see that for a single

target load there can be a significant spread in the TE measurement. This spread

is the primary source of uncertainty in the calculation of the proton polarization.

The variation between TE measurements results can be due to a number of things:

shifting of target material near the coils, taking a measurement away from thermal

equilibrium, or a large change in the Q-meter circuitry temperature. The error in the

polarization is estimated to be the error propagated from the calibration constants.

An error in each target load calibration constant is taken to be either the statistical

error of the measurement when only one TE measurement exists or the standard

deviation of the points where there are multiple TE measurements for single loads.
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Figure 5.15: A histogram of all run polarization values. Negative and positive polar-
izations are distinguished by color.

The calibration constant used is the error weighted average of all TE measurements

for a load. An overall conservative error is used and estimated to be the average of

the standard deviations of the target load TE measurements. This gives a relative

error estimate in calibration constant of 4.1%, which is adopted as a conservative

relative error for the polarization.

5.3.8 Lifespan of a Target Load

The beam damages the target material during the experiment through spallation and

ionization. The damage inhibits DNP processes, and lowers the maximum achievable

polarization with the available cooling power and microwave power. The inhibition of

DNP occurs because the damage produces a variety of radicals that interact with the

protons and increase their relaxation rate. As damage occurs over a series of runs, the

number of these radicals continues to increase. It is possible to rid the target material
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Figure 5.16: Polarization assigned to each run in the analysis.

of these radicals in a process called “annealing.” During an anneal, the temperature

of the material is raised to slightly above liquid nitrogen temperatures. Heating the

material for about 30 minutes at 90-100 K decreases the inhibiting radical density

and lowers the relaxation rate of the protons in the material, thus raising the possible

maximum polarization back to essentially its starting value. The depolarization rate

per charge is also slightly increased. Consequently, the material must be changed

once the depolarization rate is high enough to cause the time cost of more frequent

anneals to be greater than the time cost of uninstalling the insert from the fridge,

swapping in new material, and reinstalling the insert. An in depth look at radiation

damage can be found in [42], and [1] gives a description of the damage mechanism

and a comparison of damage in various materials.

The life time of target load all the target loads is shown in Appendix A. The target

polarization continually decreases while the beam is on. The beam heating interferes

with the polarization process, and during the beam down times, the lowered target
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Figure 5.17: Calibration constants plotted by the target load index. The errors
shown are the statistical error in the TE measurement. The separate measurements
are shown along with a point represented the error weighted average when multiple
measurements exist for a single target load.

temperature allows an increase in polarization. Rises in polarization during a run run

is indicative of beam down time or beam trips. The microwaves were tuned by hand,

as the optimal polarization frequency shifts with the radiation dose on the target.

Gradual rise or unexpected fall of the target polarization during the experiment run-

time is due to sub-optimal tuning of the microwaves. In a few cases, the polarization

of the material drops off suddenly, and that is due to the loss of helium in the target

cavity. The beam and microwave heating immediately destroys the polarization in

the absence of refrigerant.

5.4 Data Acquisition System

Data collected during the experiment consisted of several different classes of infor-

mation: Detector signals that had been processed using ADCs and TDCs; target in-
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formation, which was collected by an independent DAQ computer; scaler quantities,

which are used to keep track of trigger and helicity counts; and EPICS (Experimental

Physics and Industrial Control System) data, which contains information pertaining

to beam and accelerator operation such as BPMs, BCMs, and magnet currents.

Read Out Controllers(ROCs) read in information from the various data sources

above and prepare them for read out by the Event Builder. The Event Builder accepts

information from all the ROCs and organizes the data from the same trigger into an

”event” in a data file for post processing. EPICS information was collected every

thirty seconds, and the scaler information every 2 seconds, consequently subsequent

events may contain redundant scaler or EPICS data. The triggering of the read write

process by the Event Builder was controlled by the Trigger Supervisor.

The raw event files are stored on long term storage tape and copied to disk for

processing. For higher level analysis, the event files are decoded, and relevant infor-

mation is selected and written to ZEBRA data files that can be accessed with PAW

and HBOOK routines.

5.4.1 Triggers

The Trigger Supervisor (TS) has several trigger inputs. When one of them reads a

positive logical signal, the ROCS are directed to dump the data from the memory

bank correlated in time with the logical signal received by the TS. The Event Builder

also receives a signal from the TS, indicating with which trigger type that event

should be marked. The TS input can be any discriminated or logical combination

of discriminated detector signals as required by the experiment. See reference [43]

for a complete description of the TS and any early Hall C thesis (J. Arrington’s for

example; citation [44] gives the url for JLAB Hall C’s theses list) for a more complete

description of the Hall C data acquisition set up and CODA (CEBAF Online Data

Acquisition System).
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For the SANE data, a coincidence between the calorimeter and the Cerenkov

detector was primarily used as the main analysis trigger. Multiple other triggers

exist as well. The relevant trigger types are described below.

• BETA1 : an above threshold signal in one of the calorimeter’s groups of 64

PMTs. This trigger does not include particle discrimination, and events from

this trigger could be any particle depositing energy in the calorimeter

• BETA2 : an above threshold signal in one of the calorimeter’s groups of 64

PMTs and an above threshold signal from the sum of the 8 PMTs in the

Cerenkov Detector. The calorimeter signal was used as a timing gate for receiv-

ing the Cerenkov detector signal to ensure coincidence. This trigger is intended

to catch only electrons (or positrons) emitting Cerenkov radiation in the nitro-

gen tank and then depositing energy in the calorimeter.

• PION : an above threshold signal in two of the calorimeter’s groups of 64 PMTs.

One must be from the bottom half of the detector and one must be in the top

half. A hit registering in the top and bottom half was required in order to

ensure that only events with adequate cluster separation were recorded.

• HMS : a hit registered in the Hall C high momentum spectrometer– 3/4 scin-

tillators and a cerenkov signal.

• HMS & BETA1: a coincidence between the two triggers described above. This

trigger is intended to record the proton and electron from an ep elastic event.

An analysis of these events is being performed by another collaborator.

5.5 Front Tracker

The front tracker was composed of three planes of plastic scintillators (Bicron BC-

408) placed 55 cm away from the target cell. From nearest the target to furthest,
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Figure 5.18: Close up of tracker location. The Cerenkov Detector (red) is to the left.
On the side opposite of the Cerenkov Detector is the target scattering chamber. The
actual tracker planes are hidden in the photo by the Cerenkov Detector entrance.

the planes are composed of 73, 128, and 129 side by side 3× 3mm2 strips. The first

plane contains strips running vertically for horizontal tracking. The second and third

are offset vertically from one another by 1.5 mm, and the strips run horizontally for

vertical tracking of particles. Light produced upon the passage of a particle through

one of the strips is carried by a fiber optic cable attached to the end of each of the

bars to multi-channel PMTs.

The tracker was intended to discriminate electrons and positrons by detecting the

vertical deflection caused by the target field (see figure 5.19). The extremely high

rates caused by low energy background circulating through the target field makes the

tracker data difficult to use. Since the positron dilution is only a very small correction,

the full analysis of the tracker data was deferred until later.
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Figure 5.19: Sketch of intended function of the front tracker. View is from the side of
the detector package. The black line is extrapolated by connecting the beam location
for an event and the reconstructed particle hit in the calorimeter. The blue line is the
path an electron would take when scattered and deflected by the field before impacting
the calorimeter. The red line is that of a positron striking the same position on big
cal. The sketch is not to scale and used only to illustrate the detection of the vertical
deflection of electrons and protons by the front tracker.

5.6 Cerenkov Detector

Next in order, moving away from the target, was the entrance window to the nitrogen

tank of the Cerenkov detector. The index of refraction of the pure nitrogen environ-

ment at atmospheric pressure was n = 1.000297. Cerenkov radiation is emitted when

the speed of a particle exceeds the speed of light in the medium it is traveling in,

cn = c/n. The energies at which a Cerenkov radiation would occur in the detector

tank are given in Table 5.2. With a maximum beam energy of 5.9GeV, only scat-

tered electrons and positrons reach the threshold energy required to emit Cerenkov

radiation.

The emission of Cerenkov radiation occurs at an angle θ = cos−1 (cn/v) for a par-

ticle traveling at speed v. The electrons detected will all be traveling close enough to

the speed of light that the argument of cos−1 is 1/n, and so the Cerenkov radiation

will be emitted almost parallel (θ = 1.4◦) to the flight of the particle. Taking advan-
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tage of this fact, eight mirrors were designed such that each mirror will reflect every

ray traced from the target to the mirror’s surface to a PMT dedicated to that mirror.

Hence there are 8 PMTs in the detector.

Half of the mirrors were toroidal and half of the mirrors were spherical, and each

was tested prior to construction to ensure the light gathered from the target location

would be focused on the dedicated PMT’s photocathode. The mirrors were coated

to reflect 150 to 250nm light. Theoretically, with mirrors capable of reflected light

within that wavelength range and a gas radiator length of 125cm, relativistic electrons

should emit somewhere near one hundred photo-electrons as they travel through the

gas tank [45]. The PMT detection efficiency peaks at about 330 nm, and so the

production rate is much smaller. During calibration using a photodiode, the one

photoelectron peak was clearly visible above and distinct from the ADC pedestal.

During operation, a PMT averaged around 12 photoelectrons per event with as many

as 60 being detected for some events.

Since each PMT only receives light from one of the mirrors and each mirror cov-

ers a unique solid angle, an ADC signal from one of the Cerenkov detector’s eight

PMTs is correlated with one of eight regions on the calorimeter. The requirement

of a correlation of an energy deposition in a calorimeter region with a matching the

active Cerenkov PMT eliminates background coincidentals (see the Section on event

selection: 6.2.2).

The distribution of hits in the calorimeter with cuts on particular mirrors are

shown in figure 5.21. The binned events are one cluster BETA2 triggers with energy

higher than higher than 1.3 GeV with correlational cuts on the mirror number and

cluster location. Because of the mirror design, correlating the mirror signal and bigcal

location ensures that the event was an electron or positron that came from the target.
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Figure 5.20: Temple University fabrication diagram of the cerenkov detector.

Particle Ec

e± 21.64MeV
π± 5.91GeV
p± 39.7GeV

Table 5.2: Table of critical energies for Cerenkov emission in the detector tank (N2

at 1 atm).
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Figure 5.21: Events binned by Big Cal cluster location with different cuts on activated
cerenkov PMT. The mirrors selected here are the even numbered ones which are the
mirrors closest to the beam (smaller scattering angles).
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5.7 BigCal

The calorimeter, nicknamed BigCal, is a segmented lead glass calorimeter ten radia-

tion lengths deep capable of absorbing all of the energy of an incident electron and

determining its hit location based on the energy distribution among its segments.

The face of BigCal was positioned 335 cm from the target for a coverage of 235 msr.

It was composed of 1722 lead glass blocks in two section. The bottom part is a 32×32

array of 38×38×450mm3 blocks. The top part is a 30×24 array of 40×40×400mm3

blocks. The electron radiation length in lead glass is 2.74cm, meaning the calorime-

ter will absorb 100% of the electrons energy while bremsstrahlung is the dominant

energy loss mechanism–which is down to about 15MeV. Each block was wrapped in

a light tight sheath (aluminized mylar), and coupled in the back to a photomultiplier

tube. There was an aluminum absorber in front of the blocks to prevent low energy

photon impingement, reducing background rates. When a high energy electron hits

the calorimeter, it causes an electromagnetic shower within the block. The electron

scatters at small angles within the glass, emitting bremsstrahlung radiation. These

photons pair convert, and Cerenkov radiation is emitted by the resulting positrons

and electrons. These electron and positrons in turn scatter, creating more photons

and more e+e− pairs. The amount of Cerenkov light emitted by the shower is propor-

tional to the amount of energy deposited in the lead glass [45]. The photomultiplier

tube coupled to the rear of each block collects this light, and the signal from it is

used to determine the energy deposited in that block.

One half of the analysis’ primary trigger, BETA2 (see section 5.4), was a composite

signal from BigCal. The signal from each PMT was sent to a bank of ADCs. Sums of

ADC signals from eight rows of eight contiguous blocks are added to form sums of 64

blocks. These sum of 64 signals are discriminated and the discriminated signal split:

one logic signal branch was used for triggering; the other is sent to a TDC for timing

measurement. The DAQ and wiring for BigCal was identical to that in GEP-III, and
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a complete description of the electronics and hardware associated with BigCal can be

found in its documentation [46] or A. Puckett’s thesis [47].

The Moliere radius (within which 90% of the particles energy is deposited) of lead

glass is 4.7 cm, so a shower from an electron will span several calorimeter blocks.

Event data from the calorimeter consists an ADC signal from each block and hit

times associated with the groups of 64 blocks in which the hit was registered. To

make sense of this data, several tasks must be completed:

(a) clustering

(b) position reconstruction

(c) energy reconstruction

(d) scattering angle determination.

5.7.1 Clustering

Clustering refers to the grouping of signals from individual blocks. For an event,

each cluster should include only signals caused by the energy deposited by a single

particle. This means differentiating nearby electron hits and avoiding including low

energy background, while not excluding signals associated with a DIS electron.

Clustering is performed by software on an event by event basis after the run data

file has been generated. A list of block indices with corresponding ADC values is

given for each event. All blocks with less than 10 MeV deposited are rejected in order

eliminate background events and noise from pedestals. The block ADC signals are

ranked in descending order of the energy deposited for that event. The top of the

list is taken as the center of the first cluster (that would be the block with a 1.2 GeV

signal in the middle of the blue region of Fig. 5.22). All blocks in the list within a

5× 5 grid centered on the first block are added to the first cluster and removed from

the list. If there are still blocks in the list, the top one in the truncated list is assigned
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Figure 5.22: Cluster selections for a manufactured event. Red squares are blocks with
energy deposits written in GeV. Blue is the region within which blocks are categorized
in cluster 1. Purple is the region within which blocks are categorized in cluster 2.

to be the the starting block for the second cluster. Once again, all blocks within a

5×5 grid centered on the top block in the list are added to the second cluster (purple

region in figure 5.22). This process is repeated until there are no blocks above the

threshold set for starting a cluster (100 MeV). All data not included in a cluster is

discarded as background.

Since the Moliere radius for an electron(positron) shower is 4.7cm, the entirety of

a shower will fall well within the clustering routine’s 5× 5 grid. It is possible for two

showers to occur within one trigger and for those showers to overlap. In that case, the

first cluster may include signals from the lower energy particle shower. The cluster

routine does not allow overlapping 5× 5 grids, and the first cluster takes priority, so

the second cluster’s energy will be underestimated and the first, overestimated. For

this analysis, only single cluster events are used, so such overlap is of no consequence.

For analyses that include two cluster events, a cut will exclude events with less than
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four block widths separating the cluster centers, thus avoiding the events with possible

overlapping clusters.

There are other more complicated cluster routines, using cellular growth models

or nearest-neighbor procedures, but they are useful only when categorizing clusters

created from different particles or when accurate separation of nearby clusters is

necessary [48]. In SANE, the Cerenkov half of the trigger is already cutting protons

and mesons out of the data, and multi-cluster events only account for about 10% of

the data. Later analysis can increase statistics slightly by sorting through the multi-

cluster events for usable data. And the calorimeter segmentation is fine enough that

nearby clusters are rare, so a more complicated routine is unnecessary.

5.7.2 Position Reconstruction

For the purpose of analysis, BigCal is assigned its own coordinate system. Unless

otherwise noted, if the variables x or y are used, the coordinate system being referred

to is BigCal’s. When events are described in the lab frame, Cartesian coordinates

are eschewed, and instead scattering angles and energies are used. In the case that

the symbols x or y are used to describe something in the lab frame, the coordinate

system to which they refer is stated explicitly.

BigCal’s coordinate frame has the xy plane coplanar with the front face of the

calorimeter. The origin is in the geometrical center of the calorimeter face, with the

positive y axis pointing up, and the positive x axis being horizontal and pointing away

from the beam. Position reconstruction is executed in BigCal’s coordinate frame.

The electrons impinging on BigCal strike the face with an angle of incidence close

to perpendicular. For these electrons the majority of its energy is deposited in the

first block it strikes. Since the block the electron struck is easily identifiable, the

problem in determining the hit location of a particle on the face of the calorimeter

is, “How far off from the center of the block of maximum energy deposition did the
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particle strike?” A neural network was set up and trained to accurately calculate

the answer to that question using the the cluster data. Without the target field, the

point of incidence is a function of the cluster’s energy-weighted horizontal and vertical

moment and the location of the cluster on the calorimeter’s face. With the target

field on, the problem gains momentum dependence and an additional scattering angle

dependence due to the field and its spatial variation.

The complexity of the problem lent itself to a solution via a neural network. The

basics of neural networks will be described here along with the composition of the

one used to correct the hit position for clusters.

A neural network is a complicated function with inputs chosen based on what

the desired output is expected to depend on. During the training process, function

parameters are adjusted to minimize a user-defined error function. A linear fit to data

can be viewed as a simple neural network. Performing a linear fit can be thought of as

training a neural network with one input node (the abscissa), one bias node (the y-axis

intercept), and an output node (the ordinate). A graphic depicting this network can

be seen in Fig. (5.23). In a linear fit, one is trying to estimate a linear trend in a set of

data points, {xti, yti}. An error function can be written down: Err =
∑

i (y
t
i − y(xi))

2,

and one looks for a set of parameters, w12 and w02, that minimizes Err for the function

y(x) = w12x+w02. One then procedes iteratively, choosing for each iteration a set of

parameters shifted from their previous value in such a way as to reduce Err.

The general construction and training of a neural network proceeds through similar

steps. A neural network method is usually chosen to reproduce behavior exhibited

in a data set when the dependencies of the data set on the inputs are expected but

not well understood. For example, one may have set of stock prices that vary over

time. Assume one has good reason to expect them to depend on housing prices,

currency exchange rates, and market indexes, but one does not know what form

that dependence might take. A neural network does not need a presumed functional
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Figure 5.23: A graph of a simple neural network. It consists of one bias node, one
input node, and one output node. The output of the network is y = w12x+ w02.

form for the dependence of output (stock prices over time) on the inputs (indexes,

exchanges etc.), which is what makes it a valuable numerical method for complicated

problems.

To proceed in constructing a network (refer to Fig. 5.24 for the graphic layout),

first a set of inputs are chosen, represented by a series of nodes at the top of the graph.

The set of inputs includes a bias node, which is left implicit. Second, some number

of “hidden” nodes are placed in a layer between the input and output layer. These

nodes represent sigmoidal activation functions. A line with a corresponding weight

is drawn from each input node to each of the hidden nodes. These lines indicate a

value sent from the preceding layer, weighted by the coefficient, wij, associated with

the line. If there are multiple lines coming from the preceding layer, the values from

each connected node are summed. The hidden node then takes the weighted sum

from the previous layer’s connnected nodes and applies its activation function. A

common activation function is hyperbolic tangent, and therefore the value sent to the
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next layer from a hidden node is the hyperbolic tangent of the weighted sum of the

node’s inputs. The hidden nodes effectively act as switches, controlling which inputs

are being combined with which and how they are applied to the output.

Any number of hidden layers may be inserted with any number of hidden nodes.

Once this step is finished, an output layer is added. The output is composed of only

as many nodes as needed to represent the data one is attempting to predict. Once

again, weighted lines from each preceding node is drawn to each of the output nodes.

Fig. (5.24) gives a general neural network and an example three layer network as an

example to illustrate the input and output rules. In Fig. 5.24 the outputs would be

Figure 5.24: Left: An example network composed of an input layer with two nodes,
xa and xb, a hidden layer with three nodes, and an output layer with two nodes, ya
and yb. Right: A general neural network graph. It can be composed of one input
layer with any number of inputs, any number of hidden layers with any number of
hidden nodes on each layer, and one output layer with any number of outputs. In
both cases a bias node exists and is implicit.

given by

ya =
5
∑

i=3

wi6 tanh (w1ixa + w2ixb + w0i) (5.8)
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where w0i is the bias node weight and yb is given by a similar equation with wi6 → wi7.

The wij’s are shifted iteratively to minimize the error function using a back prop-

agation algorithm. It is beyond the scope of the thesis to describe the algorithm in a

detailed manner. A more complete treatment of the subject of neural networks can

be found in a book by R. Rojas [49].

The neural network trained to process the BigCal data and return the particle hit

location relative to the center of the block of maximum energy deposition used 27

input nodes: the calorimeter coordinate of the center of the block of maximum energy

deposition, and the energy deposited in the 25 blocks in a square grid centered on

that point. Three output nodes are returned by the network: a shift in the horizontal

and vertical position of the hit, and a shift in the energy of the cluster. The shift in

energy is the estimated light lost– that is, the light not picked up by the calorimeter

PMTs.

The network was trained using data generated in the SANE GEANT3 monte carlo

simulation. Once the network was sufficiently trained, it was ported as a FORTRAN

routine to the analysis code. The network architecture is shown in Fig. 5.25.

An estimate of the position resolution using the network was obtained in the simu-

lation the network was trained on. The difference in the actual particle hit coordinate

and the position predicted by the trained network is shown in Fig. 5.26. The work on

the neural network was done by H. Baghdasaryan, and it gives a resolution of ±1cm

for the particle hit position on the calorimeter.

5.7.3 Energy Calibration

The signal from a PMT in the calorimeter is proportional to the amount of energy

deposited by the particle in that block. Initial gain matching using cosmic events

adjusted the high voltage on the PMTs, so that each ADC channel roughly corre-

sponded to about 1 MeV– that is, a hit in a block that registered in ADC channel
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Figure 5.25: SANE neural network for calculating electron point of incidence and
energy correction. It is composed of twenty seven input nodes, ten nodes in a single
hidden layer, and three outputs. Boldness of lines indicates the magnitude of the
weight between nodes. Diagram from Ref. [50]

1000 corresponds to about 1 GeV being deposited in that block. The precise factor

that relates the ADC value to the energy deposited in the block must be calculated

using well understood events. Elastic electron proton scattering can be detected in

coincidence measurements using the HMS to detect protons and BigCal to detect

electrons. Since the HMS is well understood, the energy of electron events in BigCal

from ep → ep scattering could have been calculated using the HMS data. The gain

constants for BigCal’s PMTs could have been then adjusted accordingly. The elastic

calibration run plan was interrupted by hardware trouble. Target magnet malfunc-

tions delayed operations long enough that there was no time to complete an eleastic

calibration. SANE was forced to look elsewhere for a calibration method.

Neutral pion decay is another process that is well understood, and, once identified

in the data, provides information about the energy of the showers in BigCal. Using

meson decays to calibrate detectors has been done before [51].

Neutral pions decay 98.8% of the time through π → 2γ [2]. This decay can be

detected by the single arm of BETA detector. Pion production occurs in the target,
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Figure 5.26: ∆ξ, where ξ is some experimental quantity, is the difference between
the reconstructed value for ξ and the simulation’s actual value for ξ. The histograms
from left to right are the difference in the vertical position coordinate, the horizontal
position coordinate, and the particle energy. The blue histograms are obtained with-
out the neural network, using the central coordinate value of the block of maximum
deposition. The red histograms are obtained with the fully trained neural network.
Plots from reference [50].

and since the π0 has a very short lifetime (8 × 10−17s), the decay occurs while the

pion is still in the target cup. The resulting photon pair leaves the target, separated

by some angle θπ, and deposits energy in the calorimeter in two distinct clusters

without triggering the Cerenkov. Consequently, these events are easily identifiable as

two cluster events without a Cerenkov trigger (BETA1 2 clusters or PION trigger).

Once a two cluster event has been identified, the angle between the two clusters can

be computed. The calorimeter gives an uncalibrated reconstructed energy for the two

clusters of E1 and E2. The invariant mass of the decay products should be equal to

the mass of the neutral pion, 135 MeV. One can calculate this:

minv =
√

2E1E2(1− cos θπ). (5.9)

Calculating this for all pion events will produce a minv distribution. Due to the

initial approximate calibration of the calorimeter, the peak of the distribution will
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be broad and in the region of mπ. In order to achieve a calibration, an iterative

adjustment of gains was used that attempts an asymptotic approach to an ideal

distribution of minv. First, a sample of events that are assumed to be due to neutral

pion decays are selected from similar runs. For the beam energy SANE uses, we expect

the most probable separation angle for the pion decay products to give a separation

of 20 cm to 80 cm at Big Cal, and so a cut is placed to limit the minimum distance

between clusters. A cut is also placed on cluster energy in order to reduce low energy

background. With a set of events that are tentatively labeled as pion events, a block

in BigCal is chosen for calibration. All events containing a cluster that includes the

chosen block and for which at least 80% of the energy for that cluster is contained

in the chosen block are selected. A distribution of minv is created from the selected

events. Fitting the peak of that distribution gives some centroid m′

π0 . The difference

between the actual π0 mass and m′

π0 gives some measure of the how far off the gain

of that block’s PMT is. A calibration constant is then assigned to that block with

the value

Ci =

(

mπ0

m′

π0

)

C ′

i, (5.10)

where C ′

i is the previous calibration constant. This process is repeated for each block,

establishing an initial set of calibration constants. Once a full set of Ci’s is found, the

procedure is repeated, using the new calibration constants to calculate the energy in

a block i in MeV from it’s ADC value, Ai, as

Ei = CiAi. (5.11)

A single iteration will not give the correct calibration. CiAi will not be exactly the

energy deposited because Ci was calculated using the uncalibrated signals from the

surrounding blocks. Multiple iterations are required to bootstrap all the calibration

constants up toward their ideal value.
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5.7.4 Energy Resolution

The energy resolution of the calorimeter is determined by examination of neutral pion

decays following a work by R.T. Jones et al [51]. The energy spectra of neutral pion

decays are examined and used to calculate the energy dependent resolution of the

calorimeter. The overall energy resolution will first be determined. Then a brief look

into how that resolution varies across the face of the calorimeter will follow.

If one could select calorimeter clusters of known energy, binning the difference of

the true energy and the energy as measured by the calorimeter would give a spectrum,

the width of which is the average energy resolution of BigCal. Further narrowing those

events to be within a small absolute energy range would give one the calorimeter

resolution within that energy range. As mentioned previously, SANE was not able to

avail itself of a source of scattered particles of known energy.

In order to estimate the energy resolution, one needs to have some preexisting

knowledge of the energy of the particles in a subset of detector events. One does

not know anything about the energy of the individual photon energies from a neutral

pion decay, but one does know of a functional relationship between the two ener-

gies and the opening angle between the two photons. That relationship is that the

invariant mass of the two particle system should be the rest mass of the pion or

mπ0 =
√

2E1E2(1− cos θ), where E1,2 are the energies of the photons.

Supposing a set of pion decay events, pick an energy and energy range E1 and ǫ1,

and cut all pion decay events that don’t have a photon cluster within (E1−ǫ1, E1+ǫ1).

Next, choose an energy E2 for the second photon from the decay, but do not cut on

the second cluster energy. The relationship between the separation angle, the cluster

energies, and the pion mass is used to calculate the expected angle of separation for

pion decay products with energies E1 and E2:

α(E1, E2) = cos −1

(

1−m2
π0

2E1E2

)

. (5.12)
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Cutting on the angle between the clusters to within the range (α− δα, α + δα) leaves

a subset of pion decay events, and the energy spectrum of the second cluster contains

a peak around the chosen energy, E2. The width of that peak is the quadratic sum

of the energy resolutions at E1 and E2 for the calorimeter. Fitting the peak with

a Gaussian curve, one gets σ =
√

(δE1)2 + (δE2)2. By looking at symmetric pion

decays in which E1 = E2, the resolution, at energies where enough symmetric decay

statistics exist, can be calculated. Asymmetrical decays are more common, and once

one has a set of resolutions calculated using symmetric decays, one can extend the

analysis to other energies, provided decays are examined in which either E1 or E2 are

known.

A separate resolution calculation was performed for each of the experimental set-

tings (see Table 6.1). This was done because of concerns about how the re-oriented

field might affect the calorimeter PMTs. The target field significantly changes the

gain on the calorimeter PMTs, and therefore there was a separate energy calibration

performed at each setting, necessitating a new resolution calculation.

5.7.5 Resolution Calculation Results

A sample of events was selected for the resolution calculation. All two cluster events

with both cluster coordinates satisfying−54cm < x < 54cm and−106cm < y < 106cm

and with cluster energies each greater than 500MeV made it through the first cut.

Using the separation angle between the clusters for each event to calculate the invari-

ant mass of the two particle system yields a clear peak at the pion mass on top of a

broad background. This spectrum for the 80◦ field and 5.9GeV beam energy runs is

shown in figure 5.27

In order to clean the background out of the sample, a cut was placed on the pion

energy(E1+E2) versus separation angle distribution. The cut is shown in Fig. (5.28),

and was determined by looking at the most probable separation angles at different
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Figure 5.27: Invariant mass spectrum of 2 cluster events after initial event selection.
The events are taken from good ammonia and carbon runs from 72417 to 72795. Total
number of events is indicated in the legend. The histogram has been normalized so
that the maximum of the peak is equal to one.

pion energies. The most probable separation angle versus energy was calculated from

0.2 GeV to 2.5 GeV, and fit with a curve of the form a/(E2+ b)+ c. The distribution

in Fig. 5.28 follows that curve. Events between the curves

θhi =
16.54

E2
π0 + 0.36

+ 6.52 and θlo =
11.97

E2
π0 + 0.22

+ 3.33 (5.13)

were used; θhi and θlo are the bounds on the separation angles at pion energy E. The

upper and lower bounds were chosen by fitting points offset from the most probable

separation curve in energy by an amount determined by the width of the of the peak

in a slice in theta of the distribution shown in the left of Fig. 5.28.

The mass spectrum shown in Fig. 5.29 is the final set of events used in the energy

resolution calculation. The spectrum for each experiment configuration are shown

before and after the cuts, and a fit is given for the pion mass peak plus background.

Using the method described in the previous sections, the intial energy cut on the

first cluster was within 8% of the E1. The separation angle between the two clusters
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Figure 5.28: The pion decay product separation angle vs the parent pion energy. Left:
Distribution for all events from the same set as figure 5.27 Right: The events selected
by the cut between the curves in Eq. 5.13.

was required to be less than 4% away from the angle indicated by the chosen energy

E2 (Eq. 5.12). The spectrum of E2 was fit with a gaussian curve on top of a wide

and offset background gaussian. An example of the fit can be seen in Fig. 5.30.

Symmetric decays with E1 = E2 were examined, and the resolution at E1 was given

by σ/
√
2 of the fit to the E2 spectrum peak. The error in the resolution calculation

was taken to be the error in the fit parameter σ. Asymmetric pion decays in which

the resolution at E1 is known from the symmetric decay sample, were examined and

the resolution at E2 is given by δE2 =
√

σ2 − δE1
2. The resolution at a given energy

can be calculated using different combinations of E1 and E2, and the final resolution

estimate is taken to be the error weighted average of all calculations done for a single

energy. Plots of the calorimeter energy resolution as a function of cluster energy are

shown for each experimental configuration in figure 5.32. The table below (Table 5.3)

shows the fits to the plots in figure 5.32, which are expected to be of the form A/
√
E,

where A is the % is the resolution of the calorimeter at energy E [45]. The calibration

at all experimental settings yielded about a 10%/
√
E resolution. Scattered energies

of less than 1.3GeV were not used in the analysis. The energy resolution for a cluster
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at 1.5GeV is 8.25% or 124MeV.

Target Orientation Beam Energy % Res

80◦ 5.9GeV (9.62± 0.36)/
√

E(GeV))

80◦ 4.7GeV (10.89± 1.27)/
√

E(GeV)

180◦ 5.9GeV (9.72± 0.25)/
√

E(GeV)

180◦ 4.7GeV (10.19± 1.33)/
√

E(GeV)

Table 5.3: Percent Energy Resolution for each Experimental Setting.

5.7.6 Tracking through the field

The electrons scattering from the target experience a Lorentz force due to the target

field, bending their path. This complicates the assignment of scattering angles to hits

in BigCal. Given a hit position on BigCal, the apparent angle (angle determined by

the ray traced from the cluster position to the target: see Fig. 5.19) differs from the

scattering angle by an amount that depends on the momentum of the particle and

the particle’s path through the non-uniform fringe target field. The magnet field has

been mapped and extrapolated out to 100cm. Beyond 20cm, the field is weak enough

that the scattered electrons above 0.5GeV experience no observable bending, so the

coverage of the extended field map is more than enough to calculate the path of a

particle through the field, given its charge and initial momentum vector.

The change in angle can be calculated using

∆θ ≈ e

p

∫

dlB, (5.14)

where p is the particle’s momentum, B is the field strength perpendicular to the

particle’s path, and dl is the infinitesimal line length along the particle path.

Calculating the particles path numerically on an event by event basis in order to

determine the the initial scattering angle costs too much processing time to implement

at that level of the analysis. The SANE GEANT3 monte carlo simulation contains
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the field map and a routine for tracking through the field, so it can be used to generate

a set of data on which a fit can be performed to use in predicting scattering angles

given BETA data. A set of electron tracks were collected and a fit performed to the

monte carlo data using the function

θ = θr + (a1 + a2θr + a3φr + a4θ
2
r + a5φ

2
r + a6θrφr)

× (a7 + a8
1
Er

+ a9
1
E2

r

)

× (a10 + a11srx + a12sr
2
x)

× (a13 + a14sry + a15sr
2
y).

(5.15)

The result is used in the analysis code to correct the scattering angle θ based

on the reconstructed variables: where θr and φr are the angles of a ray traced from

BigCal’s cluster to the target in the lab frame, (srx, sry) are the slow raster positions,

and the reconstructed particle energy is Er. The parameters ai were adjusted to

minimize the error on the predicted scattering angle θ (or φ) when compared to that

recorded by the simulation. A similar fit for φ was performed using

φ = φr + (b1 + b2θr + b3φr + b4θ
2
r + b5φ

2
r + b6θrφr)

× (b7 + b8
1
Er

+ b9
1
E2

r

)

× (b10 + b11srx + b12sr
2
x)

× (b13 + b14sry + b15sr
2
y).

(5.16)
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Figure 5.29: Overlay of the selected events (black) over all two cluster events (blue).
A fit is also shown here to the mass peak and the adjascent background. The fit is

P1 exp (− (x−P2)2

2P3
2 ) + P4 + P5x

2 + P6x
3 Top Left: 5.9GeV and 80◦. Top Right: 4.7GeV

and 80◦. Bottom Left: 5.9GeV and 180◦. Bottom Right: 4.7GeV and 180◦.
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Figure 5.30: Energy spectrum of the sec-
ond cluster after appropriate energy and
angle cuts. The fit is the sum of two gaus-
sians curves. The chosen cluster energies
were E1 = 1.5 and E2 = 1.0. The already
determined resolution at 1.0GeV, and the
width of the peak can be used to calculate
the resolution at 1.5GeV.

Figure 5.31: Two curves, the sum of
which were used to fit the spectrum in
figure 5.30. The width of the curve fit
to the 2nd cluster spectrum is needed
for the resolution calculation. Fits:
2nd clust peak = 4.2 exp(− (E−0.98)2

2(0.17)2
) ,

Background = 3.3 exp(− (E−0.35)2

2(0.25)2
).
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Figure 5.32: Energy resolution curves for each configuration Top Left: 5.9 GeV and
80◦. Top Right: 4.7 GeV and 80◦. Bottom Left : 5.9 GeV and 180◦. Bottom Right :
4.7 GeV and 180◦.



Chapter 6

Asymmetry Analysis: A
p
1

6.1 Calculation of A1 from Asymmetries

The following is the calculation of A1 in terms of the measured double spin asym-

metries, starting from the cross section difference for opposite proton or beam spins.

This calculation is for an inclusive process. That process is represented by Fig. 6.1,

on which is labeled the incoming momenta, k and P , the outgoing momentum, k′,

and the spins for each state. The final state of the proton is undetected. Capital

variables refer to the nucleon (proton in our case) and lower case to the electron.

Primes denote variables for outgoing particles.

The calculation’s starting point is the cross section difference for the same process

but with opposite initial beam helicities. The sum is over outgoing electron spin

states, since the detector makes no distinction. The cross section difference is

∆σ =
∑

s′

[

d2σ

dΩdE ′

(k, s, P, S; k′, s′)− d2σ

dΩdE ′

(k, s, P,−S; k′, s′)
]

. (6.1)

Since these are polarized cross sections, the difference will be expressible in terms

of the kinematic variables and the polarized structure functionsG1(x,Q
2) andG2(x,Q

2)

(refer to Eq. 2.18). Expanding the sum, one gets

93
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Figure 6.1: Diagram of inclusive scattering. Electron with 4 momentum k scatters
from a nucleon. The detected scattered electron has momentum k′ and the undetected
final nucleon state is marked as X. The inital nucleon momentum is P . Spin 4-vectors
are marked with s, s′, and S.

∆σ =
8mα2E ′

q4E

[

(q · S)(q · s) +Q2(s · S)
]

MG1

+
8mα2E ′

Q

2

[(s · S)(P · q)− (q · S)(P · s)] G2

M
. (6.2)

The nucleon mass is written here as M . The 4-momentum transferred to the

nucleon is qµ, and the negative of its invariant square is Q2. In the lab frame, using

the coordinate frame from Fig. 6.2 and neglecting the mass of the electron, we can

write the vectors from Eq. 6.2 as follows:

kµ = E(1, 0, 0, 1) and k′µ = (E ′, ~k′) where

~k′ = E ′(cosφ sin θ, sinφ sin θ, cos θ),

Sµ = (0, cos β sinα, sin β, sinα, cosα),
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sµ =
E

m
(1, 0, 0, 1), and

P µ = (M, 0, 0, 0).

Figure 6.2: z is in the beam direction. x points to the left of the beam, which is
toward Big Cal. y is up in the lab.

The necessary products for completing the calculation are:

qµ = kµ − k′µ,

k · S = −E cosα,

k′ · S = −E ′ cosΘ,

q · S = E ′ cosΘ− E cosα,

k · s = E2

m
,

q · s = EE ′

m
(1− cos θ),

s · S = −E
m

cosα,

P · q =M(E − E ′), and

P · s = M

m
E.
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Then one can write down the difference explicitly in terms of angles and momenta

measured in the lab

∆σ =
8mα2E ′

q4E

{[

(E ′ cosΘ− E cosα)(−EE
′

m
(1− cos θ)) + (−Q2E

m
cosα)

]

MG1

+ Q2

[

(−E
m

cosα)M(E − E ′)− M

m
E(E ′ cosΘ− E cosα)

]

G2

M

}

.

(6.3)

Simplifying and collecting terms in cosα and cosΘ, one gets

∆σ =
−4α2E ′

Q2E
[(E cosα + E ′ cosΘ)MG1 + 2EE ′(cosΘ− cosα)G2]. (6.4)

It is necessary to express Θ in terms of scattering angles. If one has an arbitrary

set of two vectors, ~A and ~B, which are expressible as

~A = | ~A|(sin θA cosφA, sin θA sinφA, cos θA) (6.5)

and

~B = | ~B|(sin θB cosφB, sin θB sinφB, cos θB); (6.6)

one can write the cosine of the angle between them as sin θA sin θB cos (φA − φB) +

cos θA cos θB. So cosΘ is

cosΘ = sin θ sinα cos (φ− β) + cos θ cosα. (6.7)

Now in case where the target spin is aligned with the beam direction

Ŝ ‖ ẑ : α = β = 0, cosΘ = cos θ, cosα = 1, (6.8)

and the case where the target spin is aligned with the x axis, perpendicular to the
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beam direction:

Ŝ ‖ x̂ : α = 90◦, β = 0, cosΘ = sin θ cosφ, cosα = 0. (6.9)

The above configurations represented by equations 6.8 and 6.9 would result in the

cross section differences ∆σ
‖
and ∆σ⊥ respectively

∆σ
‖
=

−4α2E ′

Q2E
[(E + E ′ cos θ)MG1 −Q2G2] (6.10)

∆σ⊥ =
−4α2E ′2

Q2E
sin θ cosφ(MG1 + 2EG2). (6.11)

By doing a general calculation of the cross-section difference without specifying the

angle of the target spin vector, but assuming it is in the xz plane one can calculate it

to be a linear combination of the perpendicular and parallel cross section differences:

∆σ∠ = ∆σ
‖
cosα +∆σ⊥ sinα. (6.12)

Equation 6.12 allows one to take measurements of cross section difference at α angles

different than 90◦ and still obtain ∆σ⊥. This fact was taken advantage of when

planning SANE. Data was taken at 80◦ and the relation above will be used to calculate

higher level quantities requiring ∆σ⊥.

6.1.1 Unpolarized Cross-Section

The form of the measured asymmetries of interest is

A =

d2σ⇑↑
dΩdE′ − d2σ⇓↑

dΩdE′
d2σ⇑↑
dΩdE′ +

d2σ⇓↑
dΩdE′

, (6.13)
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where the arrows indicate that the spin of the target has been flipped. We have

already an expression for the numerator, and the denominator is simply twice the

unpolarized cross-section, 2σunp. From Eq. 2.14, one has in terms of unpolarized

structure functions, W1(Mν,Q2) and W2(Mν,Q2),

d2σunp

dΩdE ′

=
4α2E ′2

q4

[

2W1 sin
2 θ

2
+W2 cos

2 θ

2

]

. (6.14)

One can express the ratio of W2 to W1 using another structure function R– the

ratio of longitudinal to transverse cross sections,

W2

W1

=
1 +R

1 + ν2

Q2

. (6.15)

Using this relation and factoring out a Q2, one has

d2σunp

dΩdE ′

=
2α2E ′

Q2E
W1

[

1 +
1 +R

2(1 + ν2

Q2 tan
2 θ
2
)

]

. (6.16)

This can be expressed more compactly by using the substitutions

ǫ =
1

1 + 2(1 + ν2

Q2 ) tan
2 θ
2

(6.17)

and

D′ =
1− ǫ

1 + ǫR
(6.18)

to get

σunp ≡ d2σunp

dΩdE ′

=
2α2E ′

Q2E

W1

D′

, (6.19)

and the asymmetries are

A∠ =
∆σ∠
2σunp

, (6.20)

where the target angle at which the asymmetry is calculated is left unspecified.
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6.1.2 Asymmetries and Structure Functions

For SANE, one needs the asymmetries for the target polarization anti-parallel to the

beam and for the target polarization to be aligned 10◦ off from the x-axis in the xz

plane. Remember, this is a coordinate system in which the z-axis points along the

beamline towards the beam dump, the y-axis points up, and the x-axis is horizontal

pointing towards the Big Cal side of the beamline. The asymmetry associated with

the near-perpendicular configuration is obtained from Eqs. 6.12 and 6.19

A80◦ =
−D′

W1

{[(E + E ′ cos θ) cos 80◦ + E ′ sin θ cosφ sin 80◦]MG1

+(2EE ′ sin θ cosφ sin 80◦ −Q2 cos 80◦)G2}.
(6.21)

The asymmetry associated with a target spin directed anti-parallel to the electron

beam is −∆σ
‖
/2σunp, which using Eqs. 6.19 and 6.11 is

A∦ = −D′

W1

[(E + E ′ cos θ)MG1 −Q2G2]. (6.22)

One can find linear combinations of A∦ and A80◦ that yield the structure functions.

These are

MG1

W1

= −A∦(Q
2 cos 80◦ − 2EE ′ sin θ cosφ sin 80◦) +Q2A80◦

D′E ′ sin θ cosφ sin 80◦[2E(E + E ′ cos θ) +Q2]
, and (6.23)

G2

W1

= − [(E + E ′ cos θ) cos 80◦ + E ′ sin θ cosφ sin 80◦]A∦ + (E + E ′ cos θ)A80◦

D′E ′ sin θ cosφ sin 80◦[2E(E + E ′ cos θ) +Q2]
.

(6.24)

The spin asymmetries are given by the following (see Ref. [52]):

A1 = ν
MG1

W1

−Q2G2

W1

, and (6.25)

A2 =
√

Q2

(

MG1

W1

+ ν
G2

W1

)

. (6.26)
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Doing the substitution gives

A1 =
Q2(E + E ′ cos θ − ν)(cos 80◦A∦ + A80◦) + E ′(2νE +Q2) sin θ cosφ sin 80◦A∦

D′E ′ sin θ cosφ sin 80◦[2E(E + E ′ cos θ) +Q2]

(6.27)

and

A2 = −
√

Q2
(ν − 2E)E ′ sin θ cosφ sin 80◦A∦ + [Q2 + ν(E + E ′ cos θ)](A80◦ + cos 80◦A∦)

D′E ′ sin θ cosφ sin 80◦[2E(E + E ′ cos θ) +Q2]

(6.28)

The above expressions simplify greatly :

A1 =
1

D′

(

E − E ′ cos θ

E + E ′

A∦ +
E ′ sin θ cos 80◦

(E + E ′) cosφ sin 80◦
A∦ +

E ′ sin θ

(E + E ′) cosφ sin 80◦
A80◦

)

(6.29)

and

A2 =

√

Q2

2D′E

(

A∦ −
(E − E ′ cos θ) cos 80◦

E ′ sin θ cosφ sin 80◦
A∦ −

E − E ′ cos θ

E ′ sin θ cosφ sin 80◦
A80◦

)

(6.30)

Equations 6.29 and 6.30 will be used for calculating A1 and A2 from the measured

asymmetries. The selection of data which is to be used in the calculation of A80◦ and

A∦, and the calculation of coefficients in the kinematic bins requires care and will be

discussed later.

6.2 Calculation of

Physics Asymmetries A∦ and A80◦

Equation 6.29 shows how A1 is calculated given the double spin asymmetries A80◦

and A∦. The asymmetries A80◦ and A∦ are obtained from the event per helicity count

after charge normalization, trigger live time correction, application of the dilution

factor for those kinematics, and the application of the beam and target polarizations.

Radiative corrections need to be applied to the asymmetries as well. When writing the
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dependency on these factors out explicitly, the asymmetry for either target orientation

takes the form:

A =
1

fPbPt

N+
c −N−

c

N+
c +N−

c

(6.31)

where the N±

c are the corrected event counts for events generate by the indicated

beam helicity. In order for N±

c to reflect the rate of the reaction at that helicity, it

must be normalized by the amount of charge put on the target at that helicity C±,

and be corrected for the possibly different helicity deadtimes l± . So the corrected

counts are N±

c = N±/C∓/l±, where N± are the raw counts.

Eq. 6.31 will need to be calculated for each target field orientation as well as at

different values of x and Q2. The charge per helicity, C±; livetime per helicty (livetime

will be used here instead of deadtime), l±; and the target and beam polarizations,

Pt and Pb, are independent of the kinematic variables and will have global values

assigned to them on a run by run basis. The dilution factor, f , is different for each

target load, and is a function of the kinematics. Therefore, f will be calculated on a

bin by bin basis for each target load.

6.2.1 Binning

The count asymmetry, which is calculated using many events, can only be calculated

in bins with a finite width. On a run by run basis the DIS electron events are sorted

by the beam helicity signal, whether positive or negative, and by what kinematic bin

they fall into. The kinematic bins are constructed in Bjorken x and Q2 according to

the minumum width that can be resolved by the energy resolution of the detector

system. The Q2 bins were (1.89, 2.55),(2.55, 3.45), and (3.45, 4.67). Data at higher

Q2 is outside of the DIS region. In order to construct the bins for each data set,

a central Q2 value is chosen, and a starting high value of xi is picked based on the

kinematic coverage for that data set. The starting xi value corresponds to a unique
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scattering energy, E ′

i = Ebeam − Q2/2Mxi. This E ′

i value is the center of the first

E ′ bin. The bounds of the E ′ bin are determined by the calorimeter resolution–

(E ′

i − δE ′

i, E
′

i + δE ′

i), where δE
′

i = Eres(%) ×
√

E ′

i. Table 5.3 shows the resolution

coefficients for the diffent energy settigns. Once the bounds on the E ′ bin have been

obtained, corresponding bounds for the x bin can be calculated. The width of an xi

bin is
Q2

M(ν2 − δE ′

i
2)
. The next x(i−1) bin can be calculated using the lower bound

on the current bin as the upper bound on the (i − 1)th bin and solving for the new

E ′

(i−1) bin center. Simple kinematic relations can be used to calculate bins in θ, W ,

ν, etc. once the x and E ′ bins are constructed.

A set of bins for each data set is constructed. When sets need to be combined, the

bins of the set with the largest bin width is adopted. In the case when one data set’s

bins extend past the other’s, the more extensive one’s bins are used past the region

of common binning.

So each kinematic bin has some number of positive and negative helicity counts,

N+ and N−, which can then be used to calculate N+
−N−

N++N−
. The statistical accuracy

of the count asymmetry calculation is approximately 1/
√
N when N− ≈ N+. The

kinematic coverage of all events in their initial minimal bins is shown in figures 6.3

and 6.4. These are simply histogrammed DIS events, with no regard to the helicity.

Bins in x can be combined in later analyses in order to improve the accuracy of the

calculation of values within that region of x.

The analysis was separated in to four data sets (table 6.1). Each data set was

treated and binned separately and combined at the end in order to calculate the final

physics quantities.

The establishment of values for Pb and Pt on a run by run basis was already

treated in sections 5.2.6 and 5.3.6 repectively. Below, the remainder of the steps of

the analysis will be filled in:

• event selection: the criteria used to obtain good DIS electron events for the
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calculation of the count asymmetry

• charge per helicity and the beam asymmetry

• livetime calculations (non trivial due to a DAQ setup error)

• dilution factor calculation

• combining the data sets from the different run settings

Start Run End Run Target Orientation Beam Energy Star Date End Date
72417 72795 80◦ 5.9GeV 02/10/2009 02/25/2009
72815 72890 80◦ 4.7GeV 02/27/2009 03/04/2009
72912 72961 180◦ 5.9GeV 03/05/2009 03/09/2009
72970 73042 180◦ 4.7GeV 03/12/2009 03/16/2009

Table 6.1: Experiment Settings Date and Run Breakdown

Figure 6.3: Bins in x and Q2. All data is
shown from both energy settings with the
target polarization anti-parallel to the in-
coming electron momentum. The number
of selected events that fall within each bin
is indicated by the logarithmic color scale.
The curve is the W = 2 line that sepa-
rates the deep inelastic scattering region
from the resonance region

Figure 6.4: Bins in x and Q2. All data is
shown from both energy settings with the
target polarization at 80◦ relative to the in-
coming electron momentum. The number
of selected events that fall within each bin
is indicated by the logarithmic color scale.
The curve is the W = 2 line that sepa-
rates the deep inelastic scattering region
from the resonance region
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6.2.2 Event Selection

Several cuts and restrictions are placed on the event population before they are avail-

able for binning and further analysis. Only events with trigger type BETA2 (section

5.4.1) were used, which is a coincidence of an above threshold ADC signal in the

Cerenkov and a cluster in the calorimeter. Only single cluster events were used (see

section 5.7.1). These two cuts identified the particle as an electron or positron, and

eliminated ambiguity as to which cluster corresponds to the particle that caused the

Cerenkov signal. An additional Cerenkov mirror dependent cut was placed on the

cluster position, eliminating rare coincidences between simulataneous background hits

in the Cerenkov detector and the calorimeter. Eight regions on the calorimeter are

defined, each corresponding to a mirror in the Cerenkov, and a cluster in the region

matching the mirror ADC that fired is required for an event to pass this cut (shown

in Fig. 6.5). A cut was also placed on the time between the BigCal and Cerenkov

detector signals.

The energy of a cluster was required to be above 1.3 GeV before being included

in the data. Positron background dilutes the low energy data, and the 1.3 GeV cut

avoids much of the region where positron dilution is significant.

A cut of W > 2 GeV so that only data from the deep inelastic region is being

analyzed.

Because of the nature of the calorimeter calibration, its edges are not well cal-

ibrated. Events were discarded if their reconstructed calorimeter coordinate was

within 10cm of the edge of the calorimeter.

Runs were included in the analysis if there were no problems reported in the exper-

imental log during that run, and if the run had a charge averaged target polarization

greater than 50%. Runs with frequent beam trips, ROC crashes, or suspected mis-

management of the target were flagged and not used in this analysis. Those runs are

being saved for more careful processing and may be included for additional statistics
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Figure 6.5: Regions in BigCal used for the correlation cut. The mirror number labels
the region where a cluster must appear if an event was triggered off of that mirrors
PMT. Mirrors 1 and 2 cover vertical range on the calorimeter -110cm to -47cm,
mirrors 3 and 4 cover -81cm to 21cm, mirrors 5 and 6 cover -33cm to 97cm, and
mirrors 7 and 8 cover 27cm to 105cm. The band around the edge is the 10cm edge
cut on the calorimeter cluster position.

once it has been ascertained that the data from those runs are reliable.

6.2.3 Beam Charge

As mentioned in the accelerator chapter, the helicity of the beam is indicated by a

signal from MCC to Hall C. The helicity signal is used to gate two scalers (one for

positive helicity and one for negative) that record the BCM signal. The helicity gated

BCM scalers are read out every two seconds with the other scalers and recorded in the

data stream. The total accumulated charge per helicity is stored in the run reports

and used as C+ and C− for the normalization of the counts in equation 6.31.

The beam charge per helicity asymmetry is small. Before run 72800 the beam

charge per helicity asymmetry averaged 0.123%, and afterwards 0.0132%. The change

in average helicity asymmetry occurred after a beam energy change.

There was a documentation error, and it was not recorded which scaler records
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Figure 6.6: Charge per helicity asymmetry as a function runs. Averages for the
different regions are indicated by a black line, with the shaded area covering one
standard deviation on either side. The jump is due to a change in the accelerator
after a beam energy change around run 72814. Labels on either side of the jump give
the average asymmetry for that series of runs.

positive helicity charge and which negative helicity charge. In order to determine

which scaler was recording which helicity, the low energy 0.5GeV < E ′ < 0.8GeV

events in the near perpendicular target data set were used to calculate a raw count

asymmetry for each run:

Araw =
1

PbPt

N+/C+ −N−/C−

N+/C+ +N−/C−

, (6.32)

where no attention is paid to the kinematics of the events, and the charge normal-

ization is presumed. In this energy region there are farily high statistics for each

run, and there is a measurable raw asymmetry. Calculating the asymmetry across

runs twice with both possible charge normalization possibilities reveals which scaler
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is counting which helicity.

For the near perpendicular target data set examined, the raw asymmetry is posi-

tive. To see what effect switching the charge normalization will have on the calculated

asymmetry, suppose that the amount of positive helicity charge put on the target per

run is greater than the negative helicity charge amount (this is in fact the case). The

counts per helicity divided by the charge per helicity, if the helicity signs are correct,

is proportional to the rate for that helicity. If the charge normalization is correct,

the count asymmetry will have a constant value across all run. If charge normaliza-

tion is incorrect, the positive helicity rates will appear lower than their true value.

The runs over which the asymmetries are being calculated have different polarization

signs, so the PbPt product switches signs, and the value of the rates for positive and

negative helicity events are swapped when this occurs. With the correct charge nor-

malization, the change in sign in PbPt matches the sign change in N+/C+ −N−/C−,

and the asymmetry is unchanged. If the charge per helicity is misassigned, then

N+/C+ → N+/C− and the rates for positive helicity events are enhanced. This

would lead to an enhancement and suppression of the count asymmetry that matches

the target polarization sign flip.

This is indeed what is seen in Fig. 6.7, and so the normalization assignment that

produced Fig. 6.8 was taken to be correct.

6.2.4 Livetime Correction

There are scalers, which are read out and stored in the event files, that count triggers

per helicity as they are sent to the Trigger Supervisor regardless of whether the

DAQ ends up recording that event. A calculation of the livetime is simply the DAQ

recorded positive or negative helicity events divided by the scaler recording triggers of

that helicity. Unfortunately, this could only be done for the negative helicity scalers,

as the positive helicity scaler was not connected to the DAQ system.
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Figure 6.7: Count asymmetries from runs 72400 to 72800 with no Cerenkov Detector
cut, E ′ cuts below 0.5GeV and above 0.8GeV, one cluster only and BETA2 trigger.
Here the incorrect charge normalization is used, and the asymmetry value can be seen
to clearly depend on the target polarization sign.The product PbPt is plotted on the
right axis to indicate the target sign for each run.

However, data was stored from a scaler that counted all triggers, be they positive,

negative, or unpolarized. The positive helicity scaler counts can be recovered from

the total scaler count and the negative scaler count. The number of events for which

there is no helicity signal is small, but the uncertainty in that number is larger than

the difference between the helicity scalers. Consequently, approximating the positive

helicity scaler count as the total scalers minus the negative scalers is inadequate for

the purpose of determining the livetime.

The total number of scalers can be expressed as

Sall = κ · (S+ + S−), (6.33)

where κ is close to one and corresponds to the live time fraction of the all-triggers

scaler. During runs with the carbon target, the physics asymmetry is zero. Con-
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Figure 6.8: Count asymmetries from runs 72400 to 72800 with no Cerenkov Detector
cut, E ′ cuts below 0.5GeV and above 0.8GeV, one cluster only and BETA2 trigger.
Here the correct charge normalization is used, and the asymmetry value can be seen
to be independent of the target polarization sign. The product PbPt is plotted on the
right axis to indicate the target sign for each run.

sequently, any rate would be due to the asymmetry in the beam charge, and we

have

S+

S−

=
C+

C−

, (6.34)

which is to say that the ratio of the scalers should be equal to the charge helicity

ratio. Calculating

κ =
Sall

S−(1 + C+

C−
)

(6.35)

for a series of carbon target runs, an average value of 0.988 ± 0.002 was obtained.

This resultant κ comes from the fact that there is zero physics asymmetry for the

carbon runs.

One can also calculate the value for κ by assuming the livetime for a helicity is a

function only of the rate of events for that helicity– in other words the supposition is

that the electronics recording and counting either helicity were behaving identically.
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Figure 6.9: Recorded triggers versus scaler counts for both positive and negative
helicities and the corresponding projection onto the trigger axis. The top is the
negative helicity scalers versus triggers. The bottom is the positive helicity scalers
versus triggers, using the reconstructed positive scalers counts.

The dependence of the number of recorded triggers on the scaler trigger count should

be the same for each helicity. For several 14NH3 runs the positive helicity scalers were

reconstructed using κ values ranging from 0.96 to 1.0. The reconstructed scalers for

run 72795 can be seen in Fig. 6.9. Linear fits to the recorded trigger versus scaler

plots were made for both helicities (the reconstructed scalers being used for positive

helicities). The difference between the resultant fit was characterized by the area

between the lines is shown in Fig. 6.10 and also by the χ2 over the number of degrees

of freedom in Fig. 6.11 where the expected value is taken to be the negative helicity
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Figure 6.10: Difference in area between fit
lines (y-axis) as κ (x-axis) varies.

Figure 6.11: χ2 (y-axis) of the positive
scaler fit as κ (x-axis) varies

fit and the observed value taken to be the positive helicity fit. In both cases, the

characterized difference between the lines was minimized clearly at a κ of 0.985.

The livetime correction work was done by collaborator Hoyoung Kang. Further

information available in Ref. [53].

6.2.5 Radiative Corrections

Bremsstrahlung was mentioned when discussing the calorimeter and how energy is

deposited in an electromagnetic shower. The radiation of energy by the electron

through the bremsstrahlung process is not restricted to the calorimeter. The electron

can radiate energy in any of the materials before or after the target. The radiation

of energy before or after the target by the electron has the effect of shifting the

energies E ′ and Ebeam at which the scattering process takes place away from the

values measured by the detector and the beam line respectively. Bremsstrahlung

prior to the target means that the scattering takes place with a lower energy than the

measured beam energy. Radiation of energy after scattering has taken place means
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that the scattered particle’s energy was higher than that measured in the calorimeter.

The acceleration of the electron during the scattering process results in Bremsstrahlung

radiation, meaning that in addition to energy radiated away in the material prior and

post-target, there are radiative effects that derive from the scattering process being

measured. These are referred to as “internal” radiative effects, and the previously

discussed phenomena are called “external” radiative effects. The internal radiative

effects are treated as a correction to the Feynman diagram describing the scattering.

An additional photon vertex is added to the electron leg before or after it emits the

virtual photon that interacts with the proton.

The radiative effects act on the data in such a way as to shift the true kinematics at

which the interaction takes place away from the measured kinematics. The spreading

out of the elastic events in the W spectrum is pronounced enough that the data can

have significant contributions from elastic events, despite the cut at W > 2GeV.

Figs. 6.12 and 6.13 show how radiation of a photon can shift the W spectrum. States

at lower W can affect the measurements at higher invariant mass. Notably, it is

necessary to calculate and subtract out the radiative tail of the proton elastic peak,

as it extends into the SANE data range. Discussion of the sizeable effect of the

radiative tail from the elastic and quasielastic region can be found in reference [54].

The radiative effects come into play for the inelastic region as well, but to a lesser

extent. This analysis will not include corrections for inelastic radiative corrects, and

they will be considered as part of the systematic error. This analysis only includes a

subtraction of the elastic contribution. The subtraction proceeds as follows.

The charge normalized measured asymmetry, corrected for beam and target po-

larization and dilution factor, is Ar
T , where r indicates that the quantity has not been

corrected for radiative effects, and T indicates that it is the total measured quantity.

Rather than Ar
T , the quantity of interest is Ar

in, which contains only contributions

from the inelastic region. The superscript r will be surpressed henceforth, as the full
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Figure 6.12: Invariant mass,W (GeV), as a
function of beam energy, E(GeV), at fixed
scattering angle and scattered energy. The
radiative effects, which cause the scatter-
ing to take place at an energy lower than
the measured beam energy, skew phenom-
ena towards higher W .

Figure 6.13: Invariant mass, W (GeV), as
a function of scattering energy, E ′(GeV),
at fixed scattering angle and beam energy.
The radiative effects cause the scattered
particle to have a lower energy when de-
tected than what it had immediately af-
ter scattering, thus skewing phenomena to-
wards higher W .

radiative corrections will not be applied until a later analysis. Ain will be understood

to be the radiated asymmetry from only inelastic processes.

AT =
∆T

ΣT

=
∆in +∆el

Σin + Σel

, (6.36)

where the subscripts denote whether the quantity is a contribution from elastic or

inelastic processes. The Σ’s are total unpolarized cross sections, and the ∆’s are

polarized cross sections differences. The inelastic asymmetry can be written as

Ain =
∆T −∆el

Σin

=
ΣTAT −∆el

Σin

(6.37)

=
1

frc
AT − Arc,

where

1

frc
=

ΣT

Σin

and Arc =
∆el

Σin

. (6.38)

The inelastic asymmetry, with the elastic contribution removed, can be expressed
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in terms of the total measured asymmetry, AT , and the factors frc and Arc. Previous

analysis were reffered to in order to obtain the quantities necessary to calculate frc

and Arc. Small modifications related to the polarization angles were made to the

code used to subtract the elastic radiative tail in the JLab experiment E06-001; the

technote [55] goes into detail on the code.

In general, the code calculates the various cross sections necessary to for the

correction factors defined above. The radiative corrections to the elastic cross section

were calculated based on models in Refs. [54] and [56]. These models require as input

the total thickness of material before and after the target in radiation lengths. The

resulting calculations combined with existing data for unpolarized inelastic scattering

give the ΣT factor. The calculation of the radiated elastic polarized cross sections for

obtaining ∆el is covered in Refs. [57] and [58]. A list of radiation lengths before and

after the target can be found in Table 6.2. The correction factors from the elastic tail

calculation are separated by Q2 bin and shown in Figs. 6.14 - 6.19. Most of the work

done on the radiative tail subtraction was accomplished by collaborator J. Maxwell.

The calculation of the inelastic polarized radiative corrections has not begun. The

the correction is expected to be small. The radiative corrections in the inelastic region

for E143 [19] are quite small, less than 1% to the asymmetry. The uncertainty in the

radiative correction depends on the accuracy of the model used to represent the data

in the inelastic region, and on the accuracy of the structure functions in the region of

interest for the elastic tail subtraction. A thorough investigation into the systematic

uncertainty of the radiative corrections have yet to be performed, but for the purpose

of this document, the estimate of E143 will be adopted, as the kinematic region

they took their measurement at is similar to SANE’s. Their estimate in addition

to an expected approximate 1% correction in the inelastic region gives a 3% error

contribution from the radiative corrections.
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Figure 6.14: Correction factor frc for the
first Q2 bin.

Figure 6.15: Correction factor Arc for the
first Q2 bin.

Figure 6.16: Correction factor frc for the
second Q2 bin.

Figure 6.17: Correction factor Arc for the
second Q2 bin.

6.2.6 Background Events

Any particle that can masquerade as an electron that resulted from deep inelastic

scattering is a background contaminant in the data. Positrons and electrons produced

from neutral pion decay are the primary source of such particles. Neutral pions decay

either into γe+e− (1.2%) or γγ (99%). The photons then have a chance to pair

convert in the target or the tracker in time to trigger the Cerenkov detector. If the

pion energy was high enough for the decay product to reach the 1.3 GeV threshold,

the resulting BETA4 trigger event appears to the detector system to be a good event.

To express the effect of background dilution and background asymmetry, suppose



116

Figure 6.18: Correction factor frc for the
third Q2 bin.

Figure 6.19: Correction factor arc for the
third Q2 bin.

Material Thickness (mg/cm2) Rad. Lengths(%)
Target Ammonia 14NH3 1561 3.82
Target Helium LHe 174 0.18
NMR Coil Cu 13 0.10
Target Cell Lid Al 10 0.04
Fridge Window Al 27 0.12
4K Radiation Sheild Al 7 0.03
Nitrogen Radiation Shield Al 10 0.04
Vacuum Chamber Entrance Be 94 0.14
Vacuum Chamber Exit Al 139 0.58

Table 6.2: Material thicknesses that contribute to radiative effects. The last columns
gives the thickness of the particular material in percents of a radiation length.

in a run there are a number of measured events, Nm, with a contamination of Nb

background events. The background has an asymmetry Ab associated with it. The

true asymmetry (leaving the polarization, dilution, and other corrections implicit) is

A =
N+ −N−

N
=
N+

m −N−

m − (N+
b −N−

b )

Nm +Nb

, (6.39)

where the absence of a subscript indicates that the quantity only includes DIS elec-

trons. If one rewrites the asymmetry in terms of the measured asymmetry, Am, and
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the background asymmetry, Ab, one gets

A =
Am − fbAb

1− fb
, (6.40)

where fb is the ration of background events to total measured events, Nb/Nm. There

are two effects here – one: the dilution due to the presence of a background, and two:

the apparent enhancement of the asymmetry due to the presence of a background

asymmetry.

During the run time of the experiment eg1b in Hall B at JLab, the positron dilution

was measured at kinematics within the range of SANE’s. One of the collaborators

of eg1b, V. Dhamawardane, parameterized the dilution at scattering angles of 34.7◦

and 41.1◦ with E ′ from 0− 3.6 GeV and found

fb = 4.122e−2.442E′

(6.41)

to match the data well within that region. The CLAS data exhibited no angular

dependence from 32◦ to 40◦. The background in SANE will be higher because of the

additional radiator length for pair conversion between the target and the Cerenkov.

The ratio of radiator lengths of SANE to eg1b is 2.14, and an increase in the back-

ground by the same factor is expected. There was also a measurement of the parallel

asymmetry of the positron background with the CLAS detector, which gave an asym-

metry of about 20% of the measured asymmetry.

Efforts are currently being made to estimate the pion asymmetry in SANE’s data.

Some estimate of the positron background will be made using data from the forward

tracker in the near future. For the purpose of this analysis, the paramaterization of

the background from eg1b will be used, and an estimate of the background asymmetry

to be 20% of the measured asymmetry will be made. Large conservative systematic

uncertainties will be assigned to these values until better measurements of them can



118

be made.

The contribution to the error due to the uncertainty in background and back-

ground asymmetry is

(

∂A

∂fb

)2

(δfb)
2 +

(

∂A

∂Ab

)2

(δAb)
2, which using the above esti-

mates is

f 2
b

(1− fb)2
(0.2)2(Am)

2 +
(.4fb − 1.2)2

(1− fb)4
A2

m(δfb)
2. (6.42)

The both terms contribute an error on the order to 10%Am at 1.3GeV and then tail

off sharply at higher E ′. A table of the error contribution is given in Table 6.3

E ′(GeV) (∂A/∂Ab)
2(δAb/ADIS)

2 (∂A/∂fb)
2(δfb/ADIS)

2

1.3 (0.145)2 (0.132)2

1.5 (0.073)2 (0.054)2

1.8 (0.030)2 (0.020)2

2.3 (0.009)2 (0.006)2

Table 6.3: The contribution to the systematic error from the positron background.
The contribution depends on the size of the DIS asymmetry, as the background
asymmetry is estimated as a fraction of ADIS.

6.2.7 Packing Fraction and Dilution Factor

The experiment’s production target is not composed of pure protons. The target

cavity contains liquid helium, nickel, copper, aluminum, and ammonia. Only the

electron interactions with the polarized hydrogen nuclei in the ammonia molecules is

of interest. It is necessary to estimate the rates coming from objects other than the

free polarized protons.

The rate of events from positive and negative beam helicities, R+ and R−, can be

written down in terms of NA, the number of scattering nuclei with atomic number A;

the corresponding polarized cross sections for electron-nuclei scattering, σ
+/−
A ; and a

factor involving the beam current and detector acceptances, Φ:

R+ = Φ

(

N14σ
+
14 +N1σ

+
1 +

∑

i

Niσi

)

. (6.43)
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The sum over i includes all non polarized materials. The polarized cross section for

nitrogen (σ+
14) is shown above, but the contribution to the rates from the nitrogen

nucleus is mostly in the form of unpolarized nucleon scattering. The DNP process

causes the parasitic polarization of the nitrogen nuclei in the ammonia molecule. The

magnitude of the polarization achieved in the nitrogen is only a small fraction of that

created in the hydrogen atom population. Furthermore, the number of polarized nu-

cleons in the nucleus is small, and Ref. [59] estimates the polarization of the nucleons

in the nitrogen to be about 2%. The effects of polarized DIS scattering from nucleons

within the nitrogen will be ignored in the main analysis and included as a systematic

error.

The polarized cross section for the hydrogen can be rewritten in terms of the

unpolarized cross section and the asymmetry, σ
+/−
1 = σ1(1 ± PbP1Ap), where Ap is

the proton asymmetry and Pb(1) is the beam (hydrogen) polarization. So we have

R± = Φ

(

N1σ1(1± PbP1Ap) +
∑

i

Niσi

)

, (6.44)

and the raw counts asymmetry uncorrected for target and beam polarization would

be

Araw =
R+ −R−

R+ +R−

=
PbP1N1σ1Ap

N14σ14 +N1σ1 +
∑

iNiσi
, (6.45)

where the nitrogen contribution is pulled out of the sum and stated explicitly. Fac-

toring N1σ1 allows one to express the measured asymmetry as the product of two

terms:

Araw = fPbP1Ap , with f =
N1σ1

N14σ14 +N1σ1 +
∑

iNiσi
. (6.46)

The term f is known as the dilution factor, and relates the measured asymmetry

to the proton asymmetry. The dilution factor is a ratio between the rates due to

scattering from hydrogen nuclei and the rate due to scattering from all nuclei in the
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target inclusive. The measured rates are radiated, and therefore any model Born

cross sections must be radiated to match the measured quantities. The ratio of rates

depends on the kinematics of the measurement, and it also depends on the packing

fraction of the target. The ammonia production targets are cylindrical cups filled

with beads of frozen ammonia in a bath of liquid helium. The fraction of the target

cup’s volume that is ammonia is not reproducible with more than 10% accuracy. This

means that the relative rates of scatter between helium and ammonia change from

target load to target load. A dilution factor must be calculated for each ammonia

target load separately, and this factor depends on the volume fraction, which is called

the “packing fraction”. The packing fraction must be extracted from the data first

before the dilution factor can be calculated.

The number density in equation 6.46 can be written in terms of material and target

properties : Ni = N0ρizi/Mi, N0 being Avogadro’s number, ρi, zi, and Mi being the

ith specie’s density, effective thickness, and molar mass respectively. Expressing the

number density dependence on thickness explicitly, the dilution factor is

f =

3ρNH3
zNH3

MNH3

σ1
3ρNH3

zNH3

MNH3

σ1 +
ρNH3

zNH3

MNH3

σ15 +
3ρHezHe

MHe

σ4 +
ρHez

′

He

MHe

σ4 +
ρAlzAl

MAl

σ27
. (6.47)

The primed zHe indicates the thickness of the helium external to the target cell and

the unprimed zHe is the thickness of the helium in the target cell. The aluminum

thickness (the target cell lid) and external helium thickness are determined by the

geometry of the target. The interior of the target is treated as being composed of solely

ammonia and helium-4. The NMR coil is ignored, as its contribution to scattering

is negligible. The packing fraction is defined as the percentage of the target cavity’s

volume that is filled by ammonia, so zNH3
= ltpf and zHe = lt(1− pf) where lt is the

target length.

The denominator of Eq. 6.47 is the total scattering rate. It is expressible as a linear
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function of the packing fraction. By accurately reproducing rates in a simulation,

the parameters for the linear function Y = m · pf + b can be determined, and the

experimental packing fraction determined from the rates in the data. With a beam

current I and detector acceptance α, the yield (rate) is

Y = I · α
{[

lt(3σ1 + σ14)
ρNH3

MNH3

− ltσ4
ρHe

MHe

]

pf + (lt + z′He)σ4
ρHe

MHe

+ σ27
ρAlzAl

MAl

}

= m · pf + b.

(6.48)

The HMS simulation “mc hms single.f” was used by collaborator H. Kang to de-

termine the packing fraction. In order to ensure correlation between the simulation

and the experiment, Carbon target runs, for which the target thickness was known,

were simulated. When calculating packing fractions, the constant that normalized the

carbon data to the experimental data was used for ammonia runs in closest temporal

proximity. A comparison of carbon data to simulated data can be seen in figure 6.20.

The simulation’s correspondence to the data varies with the invariant mass, suggest-

ing the simulations model for the cross section might have inaccuracies or that the

detector’s acceptance over W may be imperfectly modeled.

Simulated ammonia target yields for each load were obtained at two packing

fraction values YMC(pf = 50%) and YMC(pf = 60%). These two points give slope

intercept parameters that solve linear Eq. 6.48. The line interpolated or extrapolated

from the two points in the simulation can be used along with experimental yields to

solve for the packing fraction of ammonia target load. Example data and packing

fractions are seen in Table 6.4. The table contains a sample of 5 runs with ammonia

targets. Two simulation yields are given at packing fractions of 50% and 60%. The

runs are taken from parts of the experiment with different field orientations and beam

energy settings, and the HMS was moved during the experiment. This means that

the yields collected were at different W and Q2 values depending on the beam energy

and HMS angle. This is why the yields in Table 6.4 differ despite having the same
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Figure 6.20: HMS Data and HMS Monte Carlo simulation for carbon run# 72977.
Monte Carlo data is in color and the real data is in black. Top left: energy spec-
trum (GeV) Top Right: Scattering angle (degrees) of detected particles Bottom Left:
Missing mass (GeV) Bottom Right: Ratio of events (Data/MC) binned.

packing fraction. The m and b columns are the slope y-intercept extrapolated from

the simulation yield values. The packing fraction, which is found by locating Y (data)

on the extrapolated line, is shown in the last column.

A complete list of packing fractions can be found in Table. 6.5. Using these, a

dilution factor can be calculated. For each target load, the Monte Carlo simulation of

BETA was run with corresponding experimental settings and packing fraction. The

cross sections used in the simulation are Born cross sections, and the rates obtained

from it need to be radiated to match the measured rates (see section 6.2.5). The

source of each event in the simulated detector was tracked, and the ratio of the rates
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Run C dat/MC Y (data) Y MC (50%) Y MC (60%) m b pf
72379 0.97206 133370.0 118640.0 134367.0 157270.0 40005.0 0.594
72385 0.97206 128262.0 111123.0 125853.0 147300.0 37473.0 0.616
72828 0.97206 135042.0 144639.0 163812.0 191730.0 48774.0 0.450
72957 1.03010 156509.0 137516.0 154615.0 170990.0 52021.0 0.611

Table 6.4: Packing fractions and simulated and experimental yield for sample ammo-
nia runs.

due to hydrogen and the ratio of rates due to all nuclear species were binned in W ,

ala equation 6.46. Thus the W dependent dilution factor is obtained.

The dilution factor calculation is not yet complete. The packing fractions have

been calculated, but work on the BETA simulation is still underway. In order to

calculate preliminary asymmetries, an approximation is being used. The packing

fraction given by Eq 6.47 can be written in terms of atomic weights, densities, and

the ratios of cross sections. The ratio of the helium cross section to the proton cross

section can be approximated in terms of the structure functions F n,p
2 and the number

of neutrons and protons in the helium nucleus:

σ4
σ1

= 2 + 2
F n
2

F p
2

, (6.49)

and similarly for the other materials. Fits of SLAC DIS data [60] for the proton and

deuteron are used to calculate the structure function ratios over the DIS region. For

the preliminary asymmetries shown in this work, this dilution factor approximation

based on the ratio of cross sections is used, rather than that calculated with simulated

yields. The dilution factors for SANE’s kinematical range are shown in Fig 6.21,

using a nominal 50% packing fraction. In the DIS region, the dilution factor is a very

slowly varying function of x. The final dilution factors will have an error associated

with them driven by the statistics in the simulation. This systematic error will be

around 2.5%. Some additional error in the preliminary asymmetry calculation will

be assumed due to the usage of this approximation.
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Run Target Cup Run Range PF(%) PF error(%)
72213 Top 72213-72233 70.1 5.16
72247 Bottom 72244-72256 68.2 5.12
72278 Top 72271-72280 49.2 4.19
72281 Bottom 72281-72286 57.9 4.59
72379 Bottom 72378-72379 70.1 5.16
72385 Bottom 72383-72389 72.3 5.97
72658 Bottom 72657-72668 64.4* 5.30*
72672 Top 72669-72676 62.0* 4.94*
72790 Bottom 72783-72792 60.2 4.98
72795 Top 72793-72801 56.9 4.81
72828 Bottom 72824-72831 62.6 4.50
72957 Bottom 72956-72958 60.6 4.68
72959 Top 72959-72962 59.7 4.38
72984 Bottom 72984-72985 73.7* 4.86*
72991 Top 72986-72992 68.0* 4.08*
73014 Top 73013-73018 56.6 4.17
73019 Bottom 73019-73020 58.9 4.45

Table 6.5: The packing fractions calculated for various runs. The run span over which
that packing fraction applies. Asterisks(*) mark packing fractions calculated with a
yeild to Monte Carlo ratio of 1, because there were no good nearby carbon runs.
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Figure 6.21: Dilution factors calculated using the SLAC structure function fits with
a nominal 50% packing fraction. These dilution factors are used in this works pre-
liminary asymmetry calculations (with the correct packing fraction).

6.3 Combining Data Sets

Something rather disingenous was done in section 6.1.2. Here it is shown that the

sleight of hand was a matter of convenience, and that the assumptions swept under

the rug are justified. In combining equations 6.21 and 6.22 in order to obtain the

structure functions in terms of the asymmetries A∦ and A80◦ , it was assumed that

one is combining two functions of x and Q2 in order to obtain another function of the

two variables (don’t mind the E ′s and functions of θ as they can all be expressed in

terms of x and Q2). This is not what is being done at all. A∦ and A80◦ are measured

quantities that have average values within bins of finite width. No longer dealing

with continuous real functions on R2, one is forced to make the swap

A80◦(xi, Q
2
i ) → {〈A〉|(xi−δxi,xi+δxi),(Q2

i
−δQ2

i
,Q2

i
+δQ2

i
)}80◦data (6.50)
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and similarly for the anti-parallel data. The 〈〉 indicate that an average over the

width of the x and Q2 bin is being taken on the value of the asymmetry. The set of

data used in the average is the 80◦ target data. The x and Q2 points associated with

this data point are not xi and Q
2
i but rather the average of the x or Q2 distribution

within those bins. Likewise if one wants the E ′ or θ value associated with that data

point, it is necessary to examine the average of the bin distribution for those variables

as well.

Treating A∦ and A80◦ as sets of averaged values rather than functions means that

in order to proceed from equation 6.21 and 6.22 to equation 6.23 one needs to use bin

averaged values. So when one multiplies by a common factor and cancels terms from

the A80◦ equality with “identical” terms from the A∦ equality, the common terms are

the bin averaged values from distinct data sets; thus, and they may not be “common”

at all.

Indeed the proper way to perform this extraction of A1 would be to proceed from

equations 6.21 and 6.22 on a bin by bin bases, calculating averages as one goes, and

to do this for the 4.7GeV and 5.9GeV data sets separately. Below in section 6.3.1,

the bin averaged values of the kinematic quantities for each data set, bin by bin is

presented. The variable average values for the 180◦ and 80◦ data sets at the same

energy are the same within one standard deviation. This fact is relied on in order to

justify the algebra used to obtain equations 6.29 and 6.30 for the final calculation.

This is not true of the data sets taken at different beam energies. The two target

orientation data sets at the same energy will be combined using equations 6.29 and

6.30 to produce A1 and A2 for each of the x and Q2 bins. The different beam energy

results will be compared and averaged together afterwards for each bin.

Events were binned as described in section 6.2.1. Histograms for the event’s

calculated x, Q2, E ′, θ,W 2, and φ values were created for each x and Q2 bin. For

each bin 6 separate histograms are generated–one for each variable of import.
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An aside on φ: the φ dependence in any of the formulas originates from the

perpendicular component of the target polarization, and the φ value used in the

calculation will be the bin averaged value from the 80◦ data set.

6.3.1 Bin Averaged Kinematics

The equation used for calculating A1 and A2 from the measured asymmetries A80◦

and A∦ has been framed as a function of E, E ′, θ, and φ. On a run by run basis,

the average of E, E ′, θ, and φ kinematic variables was calculated within each x and

Q2 bin. This average and the standard deviation of the distribution was stored, and

then an average over the runs performed, weighting by the count asymmetry error.

This average was performed on both the bin distribution’s average and its standard

deviation. The variance over the runs was generally much smaller than the average

of the distribution’s standard deviation. The run averaged values were separated by

the Q2 bin to which they belonged and plotted against the x bin from which they

came. Bars were assigned to each data point– their size equal to the quadratic sum

of the variance of the average over runs and the run averaged standard deviation of

the bin distribution. These bars are not error bars, but rather reflect the variance of

the kinematic variable within the bin.

Examining Fig. 6.24, the Q2 distributions overlap quite well, and the x distri-

butions over lap precisely for the data sets with the same beam energy. This means

that the point at which A1(x,Q
2) is being evaluated within a bin is similar for each

target orientation data set. Distributions for other kinematic variables are shown in

Figs. 6.22 through 6.25
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Figure 6.22: Bin distribution averages of scattered electron energy (E ′) for 4.7 and
5.9GeV data. Perpendicular and parallel data appear on the same plot. Each plot is
a different Q2 bin. Bars indicate the average width of the distribution.
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Figure 6.23: Bin distribution averages of polar scattering angle (θ) for 4.7 and 5.9
GeV data. Perpendicular and parallel data appear on the same plot. Each plot is a
different Q2 bin. Bars indicate the average width of the distribution.
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Figure 6.24: Bin distribution averages of Q2 for 4.7 and 5.9 GeV data. Perp and
parallel data for each beam energy appear on the same plot. Each plot is a different
Q2 bin. Bars indicate the average width of the distribution.
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Figure 6.25: Bin distribution averages of W for 4.7 and 5.9 GeV data. Perp and
parallel data for each beam energy appear on the same plot. Each plot is a different
Q2 bin. Bars indicate the average width of the distribution.
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6.4 Calculation of A1

The calculation of the virtual Compton asymmetries proceeds as follows. Once detec-

tor calibration and position and angle reconstruction are complete, medium level data

files are created with the reconstructed scattering angle and calibrated reconstructed

energy for the cluster inserted into each event along side of the lower level data (such

as ADC and scaler data). The amount of data stored for each event in these medium

level data files is fairly large. As an intermediary step towards the calculation of the

virtual photon asymmetries, the data for each run is looped over event by event, and

trimmed down HBOOK files are made for each run. The event selection criteria are

applied to the events, and only those that pass the cuts described in section 6.2.2 are

written to the new file. The data that are necessary for the present analysis include

beam helicity, polar scattering angle, azimuthal scattering angle, the scattered parti-

cle’s energy. Along with these data, quantities D′ (see section 6.1.1), xbj, Q
2, and the

missing mass squared, W 2 are calculated for each event and written to file. Creating

a new file with only the events that passed the event selection criteria, and only the

quantities necessary for the analysis, greatly accelerates the processing of the data.

At this step the information is still stored on the event level and separated by run.

In order to calculate D′ for an event, the particle energy and scattering angle

need to be reconstructed, and the structure function R(W,Q2) must be known at

that kinematic point. An empirical fit to the inelastic cross section data in the

region of SANE’s data was performed in reference [61]. The authors of the work

and V. Mamyan released a FORTRAN routine containing their fits; this routine was

embedded in the analysis code for the calculation of R(W,Q2).

Each run is looped over, and for each bin in Q2 a table like Table 6.6 is con-

structed. Since there are 3 Q2 bins, that meanse there are 3 × (# of runs) tables.
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The asymmetry for each table entry is calculated along with the statistical error:

A =
1

PbPtf

N+
c −N−

c

N+
c +N−

c

and (6.51)

δA =
1

PbPtf
× 2

√

N+
c N

−

c

(N+
c +N−

c )
2
. (6.52)

The beam and target polarizations for each run are stored in a look-up table along

with the per helicity charge; the table is accessed when processing each run’s set of

data tables. The dilution factor is stored as run-dependent function of W , and a

routine is called, returning f for each line in the table, using that line’s 〈W 2〉i.

Treating the data set from each target orientation and beam energy combination

separately, the individual bins are averaged together run by run for each table entry,

ψ, to obtain the run averaged value for that bin:

〈ψ〉 =
∑

i ψi/δA
2
i

∑

i 1/δA
2
i

. (6.53)

The error in the asymmetry is used for weighting the average, and the sum index,

i, is over all run numbers for a particular experimental configuration. The ψ can be

any quantity except N±

c from Table 6.6. The asymmetry as calculated in equation

6.51 is similarly averaged over runs. The error on the asymmetry average value is

δ〈A〉 =
√

1
∑

i 1/δA
2
i

. (6.54)

Once the runs have been averaged over, the asymmetries can be looked at as a

function of x. The parallel asymmetries are shown for beam energy 4.7GeV and 5.9

GeV in figures 7.3 and 7.4 respectively. The perpendicular asymmetries are shown

in 7.1 and 7.2. There are a few aberrant values from bins with low statistics towards
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Run #
xcent N+ N− 〈x〉 σ2

x 〈Q2〉 σ2
Q2 〈θ〉 σ2

θ 〈φ〉 σ2
φ ...

xcent1 N+
1 N−

1 〈x〉1 (σ2
x)1 〈Q2〉1 (σ2

Q2)1 〈θ〉1 (σ2
θ)1 〈φ〉1 (σ2

φ)1 ...

xcent2 N+
2 N−

2 〈x〉2 (σ2
x)2 〈Q2〉2 (σ2

Q2)2 〈θ〉2 (σ2
θ)2 〈φ〉2 (σ2

φ)2 ...

xcent3 ... ... ... ... ... ... ... ... ... ... ...
xcent4 ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ...

Table 6.6: Data table structure for run-level data processing. A table like this is
made for each Q2 bin. The table continues with entries for E ′, W 2, and D′, but they
are not displayed here in order to make the graphic legible.

either end of the x range for a given Q2.

The asymmetries are ready to be combined using equations 6.29 and 6.30. Call the

coefficients of A80◦ and A∦ in equation 6.29 α, β, and γ . Equation 6.29 is re-written

as

A1 = αA∦ + βA∦ + γA80◦ , with (6.55)

α =
E − E ′ cos θ

D′(E + E ′)
, (6.56)

β =
E ′ sin θ cos 80o

D′(E + E ′) cosφ sin 80o
, and (6.57)

γ =
E ′ sin θ

D′(E + E ′) cosφ sin 80o
(6.58)

The coefficients are calculated in bins at the run level, and averaged over the

runs like the other kinematic variables. The coefficients in Eq. 6.55 are taken from

different data sets. The α coefficient is taken from the parallel data set, and the β

and γ coefficients were constructed using the 80o data set. With the exception of

these coefficients are shown in figure 6.26. One can see that the largest contribution

to A1 comes from A∦. The contribution from A80o is small, as the near-perpendicular

asymmetry magnitude is significantly less than that of the parallel data, and it is

surpressed by γ, which is around 5 times smaller than α.

The 5 GeV and 6 GeV data sets have been individually processed, and A1 is

calculated for each x and Q2 bin, using Eq. 6.55. Bins which are empty for either
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A80◦ or A∦ are discarded. The statistical error on A1 is

δA1 =
√

α2(δA∦)2 + β2(δA∦)2 + γ2(δA80◦)2. (6.59)

So for each bin there are now two calculations for A1– one for each beam energy data

set. The final value for A1 is taken to be

A1 =
{A1}4.7GeV /{(δA1)

2}4.7GeV + {A1}5.9GeV /{(δA1)
2}5.9GeV

1/{(δA1)2}4.7GeV + 1/{(δA1)2}5.9GeV

. (6.60)

Now the second virtual photon asymmetry A2 can also calculated using a different

set of coefficients for combining the parallel and near-perpendicular asymmetries:

A2 = α2A∦ + β2A∦ + γ2A80◦ , with (6.61)

α2 =

√

Q2

2D′E
, (6.62)

β2 =
−
√

Q2(E − E ′ cos θ) cos 80o

2D′EE ′ sin θ cosφ sin 80o
, and (6.63)

γ2 =
−
√

Q2(E − E ′ cos θ)

2D′EE ′ sin θ cosφ sin 80o
. (6.64)

The results and an estimate of the systematic error will be given in the next

chapter.
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Figure 6.26: The coefficients are neatly separated vertically on the plot and labeled.
The Q2 bin to which each data point belongs is indicated by the legend.



Chapter 7

Results and Discussion

7.1 Systematic Error

Most of the contributions to the systematic error have already been mentioned in

previous chapters. Here they will be summarized, and those errors that have not

been dealt with previously will be discussed. A final estimatation of the systematic

errors will have to wait for a study of the background contribution to complete and

more work is to be done on the dilution factors and the inelastic radiative corrections.

Below are some conservative bounds on the error based on the current state of the

analysis.

The error in the target polarization was discussed in section 5.3.7, and is esti-

mated at 4% based on the fluctuations of the calibration constants between thermal

equilibrium measurements.

The statistical error on an individual Møller measurement is about 1%. The fit

to the experiment’s Møller data that was used to extrapolate the beam polarization

at any Wien angle and beam energy contributes at most a 0.5% uncertainty to the

beam polarization. See section 5.2.6 for details.

The dilution factor calculation is described in section 6.2.7. The error in the

137
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dilution factor along with the uncertainty due to neglecting the nitrogen polarization

was estimated at 3%.

The dilution due to background positrons and electrons is sizable at low scatter-

ing energies. An analysis to directly measure parts of this background is currently

being performed. Once the background is better understood, the uncertainty in the

dilution due to the background can be more accurately estimated. Estimates based

on simulations and measurements taken by other experiments at similar kinematics

are offered in section 6.2.6.

The model of R(W,Q2) (see section 6.1.1 and Ref. [61]) used in the calculation of

the unpolarized cross section adds an additional uncertainty of 1.5%.

The elastic tail subtraction contributes another 1.5% uncertainty to the asymme-

try.

7.2 A1 Results

The runs selected for analysis are shown in Figs. 7.1 - 7.4. These plots show the

count asymmetry for each run with corrections for livetime, charge, and beam and

target polarization. On a run-by-run basis the asymmetries exhibit a statistical fluc-

tuation about the mean. The by-run asymmetries were used to check for systematic

consistency and proper application of the corrections used to calculate the electron

asymmetry from the count asymmetry. Most notably, larger than expected fluctua-

tions or trends in the asymmetry over a series of runs indicated target polarization

analysis problems and livetime helicity misassignment, which were immediately cor-

rected.

As described in the previous section, the events from the runs are separated and

binned by their kinematics. The asymmetries binned in x and Q2 for these data sets

are shown in Figs. 7.5 - 7.8. These are the DIS electron asymmetries, A180◦ and A80◦ ,
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used to calculate the virtual Compton asymmetry A1.

Combining the data sets to form the virtual Compton asymmetry yields the results

shown in Fig. 7.9. In the plot, color distinguishes which Q2 bin the data belongs to.

The results in Fig. 7.9 are decomposed into contributions from A
‖
asymmetry and

A⊥, and shown in Fig. 7.10. The contribution from the term originating from the

perpendicular asymmetry remains below 10% of the parallel asymmetry term for

almost all of the SANE data. A band at the bottom of the plot shows the parallel to

perpendicular asymmetry ratio, with a line at the perpendicular constribution’s 10%

point.

The results of this experiment are plotted alongside the world’s data in Fig. 7.11

The current stage of the analysis is enough to suggest that SANE’s data are consis-

tent with previous measurements. The systematic errors discussed in section 7.1 are

shown as an orange band on the plot. It amounts to about 6% relative error on A1.

In addition to this error, there is an uncertainty associated with the background di-

lution and the background asymmetry, discussed in section 6.2.6. Assuming that the

background and its asymmetry can be estimated as given in that section, the additive

correction that would need to be applied to A1 is shown as a pink band behind the

systematic error band. A discussion of the results follows.
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Figure 7.1: Count asymmetries for each run. The mean is noted in the legend. This
plot is from the near-perpendicular 4.7GeV beam energy data set. The product PbPt

is also plotted. Error bars are statistical.

Figure 7.2: Count asymmetries for each run. The mean is noted in the legend. This
plot is from the near-perpendicular 5.9GeV beam energy data set. The product PbPt

is also plotted. Error bars are statistical.
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Figure 7.3: Count asymmetries for each run. The mean is noted in the legend. This
plot is from the parallel 4.7GeV beam energy data set. The product PbPt is also
plotted. Error bars are statistical.

Figure 7.4: Count asymmetries for each run. The mean is noted in the legend. This
plot is from the parallel 5.9GeV beam energy data set. The product PbPt is also
plotted. Error bars are statistical.
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Figure 7.5: The run averaged physics asymmetries binned in x and Q2. The target
orientation is anti parallel to the beam, and the beam energy is 4.7GeV. Error bars
are statistical.

Figure 7.6: The run averaged physics asymmetries binned in x and Q2. The target
orientation is anti parallel to the beam, and the beam energy is 5.9GeV. Error bars
are statistical.
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Figure 7.7: The run averaged physics asymmetries binned in x and Q2. The target
orientation is anti perpendicular to the beam, and the beam energy is 4.7GeV. Error
bars are statistical.

Figure 7.8: The run averaged physics asymmetries binned in x and Q2. The target
orientation is anti perpendicular to the beam, and the beam energy is 5.9GeV. Error
bars are statistical.
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Figure 7.9: Virtual Compton asymmetry A1 separated by color into Q2 ranges.

Figure 7.10: Contributing terms to A1 from the parallel and perpendicular proton
asymmetries. The solid squares are the values of the term due to the parallel asym-
metries, and the open squares are those due to the perpendicular asymmetries. The
absolute value of the ratio of the two terms is shown on the bottom as a filled curve.
A line is drawn where the ratio would reach 10%.
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Figure 7.11: Result from this work alongside the world’s data for A1 (CLAS g1/F1

measurements excluded). Systematic uncertainty is shown as an orange band at the
bottom of the plot. The pink band is an estimate of the correction to the A1 value
due to the positron background: see section 6.2.6 for details.
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7.3 Discussion

The results in Fig 7.9 display display a wide variation in A1 values for similar values

of x. This can be traced back to the disparate plots in Figs 7.5 and 7.6, which

show the parallel asymmetries for the different beam energy data sets. It is possible

to reconcile these two data sets by applying a pion background that is dependent

on ν rather than E ′, as described in section 6.2.6. That is, the exponent in Eq 6.41

becomes−2.442×(5.7GeV−ν). Applying a correction of this form yields the A1 values

shown in Fig 7.12. While applying a correction of this form produces a compelling

Figure 7.12: Results with a nu dependent background dilution corrections. Compare
to Fig 7.9, which has no background correction applied.

reconcilliation of the data sets from the different beam energies (which improves if one

uses a larger background than given in section 6.2.6), not very much work has been

done to justify this. More investigation into the CLAS measurement of the positron

background is needed. It is unclear whether the quoted E ′ dependence was measured

at only one beam energy or two (in which case the correction would be E ′ and not ν
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dependent). Very preliminary work on extracting background from the SANE data

has also suggested a scattering angle dependence in the background events. A careful

study of the background has to be completed before the collaboration is capable of

quoting results with good accuracy.

The ultimate goal of this analysis is to find better constraints on A1(x) as x→ 1.

To this end we will adopt as an empirical model of A1(x) the function

A
emp
1 (x) = xa(b+ cx2), (7.1)

where a, b, and c are parameters to be deterimined by a fit to the data. Refer to Fig.

7.13 and its caption to see the results of the fit. The preliminary results for the SANE

A1 analysis are mostly consistent within error with the world data. A fit of A
emp
1 (x)

was performed both to the world data alone as well as to the world data with SANE’s

preliminary results included. The SANE preliminary results have a rather flat trend

compared to the world data, and consequently predict a lower A(x→ 1) value.

These results are very preliminary, and the fit is performed on data to which an

untested background correction has been applied. Once the analysis is finished, the

results from this work will play a significant role in distinguishing between different

quark interaction models. For example, should the trend of the SANE results persist

in the final analysis as they do in 7.13, it would seem unlikely that the PQCD pre-

diction is correct. However, it is not possible to make that distinction at the current

stage of the analysis.

Accurate background corrections and better dilution factors are being worked on

currently. Internal radiative corrections and corrections to the inelastic spectrum are

still pending. Once the effects of these corrections are well understood, the neighbor-

ing x bins may be combined for better statistical precision.

While preliminary, the results shown here are an indication that experiment was
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Figure 7.13: SANE preliminary results alongside other A1 measurements. The prelim-
inary background corrections have been applied. A fit of the form A1(x) = xa(b+cx2)
was made to the world data shown and to the world data and SANE inclusive. Dashed
lines indicate the world fit, the thin dashed lines marking the upper and lower error
to the fit. The solid line shows the fit to the SANE and world data with the error
depicted as a red band.

a success. The detector package used was unique and mandated a completely novel

approach to the analysis. The presence of a strong target field provided additional

challenges. The experiment was able to gather data over a wide kinematic range in

a span of time far shorter than that possible had a magnetic spectrometer had been

used. The collection of perpendicular target polarization data not only allows for a

true measurement of A1, but it also allows the extraction of the sparsely measured

spin structure function g2. This has significant implications for the study of the role

of QCD in DIS. The coverage of the DIS portion of the experiment analyzed here will

be extended using the resonance data. Using duality, the average results for A1 in the

resonances can be used to extend the measurement of the DIS A1 values in Bjorken

x.
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Furthermore, a more precise knowledge of A1 at high x is crucial to the un-

derstanding of the polarized parton densities [9] [62]. There are perturbative QCD

models that predict the value A1(x = 1) [12] [13] , and models that use the presumed

value of A1(x = 1) as a parameter [25]. Relevant A1(x = 1) values are shown for two

models in 7.13. All of the groups in this field will benefit from the constraints on high

x values of A1 that this analysis will provide.
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Target Lifetimes
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Figure A.1: Target Load 1 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.2: Target Load 2 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.3: Target Load 3 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.4: Target Load 4 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.5: Target Load 5 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.6: Target Load 6 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.7: Target Load 7 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.8: Target Load 8 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.9: Target Load 9 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.10: Target Load 10 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.11: Target Load 11 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.



156

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6

A
b
so

lu
te

 P
o
la

ri
za

ti
o
n

Charge Accumulated (1015 e-/cm2)

Material #12 Polarization Lifetime

Positive Polarization

Negative Polarization

Figure A.12: Target Load 12 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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Figure A.13: Target Load 13 lifespan. Shown is the offline calculated polarization as
a function of incident beam charge on the target. Anneals are marked with yellow
vertical bars.
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