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Abstract 

 With recent improvements in the detection and treatment of cancer, the adverse side 

effects of chemotherapeutics, particularly cardiotoxicity, have become more apparent. Many 

chemotherapeutics are now associated with adverse cardiovascular events, however, there are 

no clinical measures to detect, limit, or prevent cardiotoxicity. Although research work has 

demonstrated that metabolites are good biomarkers of early cardiotoxicity, further work is needed. 

Here, we utilize genome-scale metabolic network reconstructions (GENREs) to identify new 

biomarkers of cardiotoxicity. First, we built a heart-specific GENRE and used the model with a 

novel approach, the Tasks Inferred from Differential Expression (TIDEs) approach, to identify 

shifts in metabolic functions in heart failure. Next, we collected paired transcriptomics and 

metabolomics data in primary rat neonatal cardiomyocytes exposed to three compounds (5-

fluoruracil, acetaminophen, and doxorubicin) to characterize in vitro cardiotoxicity. Finally, we 

integrated our collected data with a model of heart metabolism to identify shifts in metabolic 

functions, unique metabolic reactions, and shifts in metabolic reactions that are unique to 

cardiotoxicity. For each compound, we identified unique shifts in metabolism, confirming 

mechanisms of toxicity for doxorubicin and proposing new hypotheses for mechanisms of toxicity 

for 5-fluorouracil and acetaminophen. Given that our experiments are done in rats, future work is 

needed to address translatability in humans. To this end, finally, we highlight the utility of data-

driven and mechanistic modeling approaches in making cross-species comparisons.  
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Chapter 1 : Background and Significance 
 

1.1 Cardiotoxicity is a serious clinical problem that lacks appropriate diagnostic 

measures 

Recent advances in the detection and treatment of cancer have increased survival rates. 

However, with increased survival, the side effects of chemotherapeutics have become more 

evident, particularly the higher incidence of adverse cardiovascular events [1]. It is now well 

established that some chemotherapeutics are associated with several types of cardiovascular 

damage, ranging from acute myocarditis to left ventricular dysfunction and subsequent heart 

failure [1]. The most well-studied chemotherapeutic that is associated with an increased risk for 

cardiovascular damage is doxorubicin. Doxorubicin-induced cardiotoxicity often presents as left 

ventricular dysfunction that eventually progresses to heart failure [2]. The current clinical standard 

of care for preventing cardiotoxicity is limiting the overall drug dose and tracking left ventricular 

ejection fraction (LVEF) using echocardiography [2]. However, changes in LVEF indicate damage 

that has significantly decreased heart function and, in the case of cardiotoxicity, this damage is 

usually irreversible, highlighting the need for earlier biomarkers of changes in cardiac function.  

 Biomarkers, such as B-type natriuretic peptide (BNP) and cardiac troponins, are used as 

non-invasive, early measures of cardiac function [3] and have been explored as markers of 

cardiotoxicity [4–6]. In diagnosing myocardial infarction, BNP and cardiac troponins increase 

before a change in LVEF. However, since the release of BNP and cardiac troponins is associated 

with myocardial necrosis [7], increases in BNP or cardiac troponin still only indicate irreversible 

damage. More recently, changes in the uptake of metabolites have been used to identify 

subclinical dysfunction. For example, an increase in glucose uptake was measured before a 

decrease in LVEF in spontaneously hypertensive rats [8]. Similarly, an increase in glucose uptake 

has been measured both in mouse studies and in patients treated with doxorubicin [9,10]. 
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However, it is still unclear if this increase in glucose uptake predicts the development of 

cardiotoxicity. These changes in the uptake of metabolites suggest that metabolites and changes 

in metabolism are an opportunity for early markers of subclinical dysfunction in the heart.  

 Typical metabolomics studies to identify new metabolic biomarkers involve profiling patient 

serum or media from in vitro studies to identify significantly changed metabolites associated with 

a condition or disease. While this untargeted approach identifies potential biomarkers, it does not 

include a potential mechanism for the production of the metabolite. Additionally, an untargeted 

approach only measures metabolites that are defined in a panel a priori, and may therefore miss 

key biomarkers which either weren’t defined or cannot be measured using current metabolomics 

approaches.  

 

1.2 Genome-scale metabolic network reconstructions provide an opportunity to 

better understand metabolic shifts in cardiotoxicity 

Mechanistic models, such as genome-scale metabolic network reconstruction (GENREs) 

provide a computational approach for the systematic integration of experimental data to identify 

potential mechanisms driving a disease or condition of interest. GENREs represent: (a) the known 

metabolic reactions that an organism undergoes, (b) the stoichiometry of the metabolites that are 

converted in these reactions, and (c) the genes encoding for the proteins which catalyze these 

reactions [11]. GENREs have been used to identify metabolic markers of specific diseases or 

conditions [12–16], identify new drug targets [17,18], and predict pathways associated with drug 

side effects [19–21].   

Previous work from our lab has demonstrated the value of utilizing GENREs to integrate 

experimental omics datasets to predict metabolic biomarkers [22]. The Transcriptionally Inferred 

Metabolic Biomarker Response (TIMBR) algorithm has been used to integrate transcriptomics 

data to explore biomarkers of hepatotoxicity [22–24] and nephrotoxicity [25] but has not yet been 
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extended to cardiotoxicity. In the case of both hepatoxicity and nephrotoxicity, paired 

metabolomics data was collected and used to validate predictions of in vitro biomarkers of toxicity, 

providing both a validated biomarker and a mechanism for production. Further, while the TIMBR 

algorithm explored integrating transcriptomics data, no studies have explored the potential of 

integrating paired transcriptomics and metabolomics data with GENREs to predict potential 

biomarkers and mechanisms of toxicity.  

 Here, we explore the utility of GENREs to integrate experimental ‘omics data and identify 

new potential mechanisms and biomarkers of cardiotoxicity. Numerous models of human 

metabolism have been published [22,26–28] and serve as resources for all reactions that are 

catalyzed based on the human genome. However, not all reactions are catalyzed in every tissue. 

Therefore, we first need to identify an appropriate heart-specific model that contains only the 

reactions known to be catalyzed in the heart. Previous GENREs of heart metabolism are available 

but either only cover mitochondrial metabolism [29] and thus are limited in scope, or were built 

from older models of human metabolism [30,31] and do not adequately capture the current 

cumulative knowledge of the field, necessitating the generation of a new, heart-specific 

reconstruction.  

 

1.3 Building a new, heart-specific model of metabolism to integrate collected 

data to identify metabolic shifts in vitro cardiotoxicity 

 Given that rats are the organism of choice for toxicity studies, we have chosen to build a 

new heart-specific model from the recently published, paired models of general human and rat 

metabolism [22] (Chapter 2). Tissue-specific models are often built using publicly available data, 

such as transcriptomics or proteomics data. Extensive immunohistochemistry data for tissue-

specific protein expression is available for humans [v18.proteinstlas.org; [32]] but is not available 

for rats. Therefore, building from these paired models will facilitate both the integration of tissue-
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specific proteomics data that is available for humans and in vitro experimental cardiotoxicity data 

in rats. 

Tissue-specific models of metabolism have been developed for a range of tissues to 

explore a variety of questions [15,33–35]. A common theme amongst these studies is optimizing 

an objective function, which represents a hypothesis for the overall function of the tissue or cell-

type of interest. For many models, such as with the liver [22] or cancer [33,35], an objective 

function is developed that represents overall cell growth and production of key intermediate 

metabolites, such as bile acids in the liver. However, a healthy heart does not regenerate or 

synthesize key intermediate metabolites, making it difficult to identify one comprehensive 

objective function. Previous work has utilized the concept of metabolic tasks, which describe 

general metabolic functions, e.g. the generation of ATP from glucose, to validate metabolic 

models [22,28,36]. Here, we present a new method that utilizes metabolic tasks to identify 

metabolic functions that are significantly changed in a transcriptomics data set. First, we 

demonstrate the utility of the method by identifying common metabolic shifts in heart failure using 

publicly available data (Chapter 2), then we identify metabolic shifts in cardiotoxicity using our 

own collected data (Chapter 3).  

 For the case of heart failure, there are many publicly available microarray datasets 

collected from patients that are undergoing heart transplants. For cardiotoxicity, there is no 

publicly available data that thoroughly characterizes in vitro toxicity to allow for the systematic 

identification of new biomarkers. Therefore, we have collected paired transcriptomics and 

metabolomics data to characterize in vitro cardiotoxicity in primary rat neonatal cardiomyocytes 

exposed to three compounds: 5-fluorouracil, doxorubicin, and acetaminophen (Chapter 3). We 

chose these compounds based on the established cardiotoxicity for doxorubicin [2] and 5-

fluorouracil [37]. Acetaminophen, a compound with established hepatotoxicity [38] and 
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nephrotoxicity [39], served as a common compound with other studies that explored using 

transcriptomics data with GENREs to predict biomarkers [23–25].  

 Using our new heart-specific model of metabolism (Chapter 2), we integrate our 

experimentally paired transcriptomics and metabolomics data to yield insight into cardiotoxicity 

(Chapter 3). First, we identify metabolic functions that are significantly associated with 

differentially expressed genes (DEGs) for each of our three tested compounds, confirming known 

therapeutic mechanisms and identifying potential markers of cardiotoxicity. Second, we 

demonstrate the utility of integrating both transcriptomics and metabolomics data to identify new 

potential biomarkers of cardiotoxicity. For doxorubicin, we confirm known mechanisms of 

cardiotoxicity and propose new mechanisms for 5-fluorouracil and acetaminophen cardiotoxicity. 

 

1.4 Paired models of human and rat heart metabolism can facilitate cross-

species comparisons to identify shared markers of toxicity 

Here, we have utilized data collected from primary rat neonatal cardiomyocytes to yield 

insight into metabolic changes in in vitro cardiotoxicity. However, even though rats are often used 

as surrogates for human in toxicity studies, there are limitations to translating between both in 

vitro and in vivo models as well as between rats and humans [40,41]. In Chapter 4, we discuss 

some opportunities for utilizing large data sets and mechanistic models to facilitate cross-species 

comparisons [42]. Although large, comprehensive datasets are available for both in vitro and in 

vivo toxicity in the liver and kidney [40], comprehensive data for cardiotoxicity is not available.  

Our recently published paired models of rat and human metabolism [22] capture key 

differences in species-specific metabolism. Further, these models can facilitate cross-species 

comparisons to yield insight into shared mechanisms of toxicity between species. In Chapter 5, 

we discuss the possibilities for future integration of human-specific, in vitro cardiotoxicity data to 

identify shared mechanisms of toxicity between rats and humans for doxorubicin-induced 



6 
 
 

cardiotoxicity. Data is publicly available for doxorubicin treated human induced pluripotent stem 

cell-derived cardiomyocytes (iPSC-CMs) [43], but not for the other compounds studied here, 

necessitating future work to determine if the metabolic shifts identified in rats translate to humans. 

The observed identified metabolic shifts and proposed mechanisms of toxicity in this work provide 

an opportunity for identifying the role of metabolites to diagnose, or metabolic interventions to 

prevent or mitigate cardiotoxicity. 
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2.1 Summary 

The heart is a metabolic omnivore, known to consume many different carbon substrates in 

order to maintain function. In diseased states, the heart’s metabolism can shift between different 

carbon substrates; however, there is some disagreement in the field as to the metabolic shifts 

seen in end-stage heart failure and whether all heart failure converges to a common metabolic 

phenotype. Here, we present a new, validated heart-specific GEnome-scale metabolic Network 

REconstruction (GENRE), iCardio, and use the model to identify common shifts in metabolic 

functions across heart failure omics datasets. We demonstrate the utility of iCardio in interpreting 

heart failure gene expression data by identifying Tasks Inferred from Differential Expression 

(TIDEs) which represent metabolic functions associated with changes in gene expression. We 

identify decreased NO and Neu5Ac synthesis as common metabolic markers of heart failure 

across datasets. Further, we highlight the differences in metabolic functions seen across studies, 

further highlighting the complexity of heart failure. The methods presented for constructing a 

tissue-specific model and identifying TIDEs can be extended to multiple tissue and diseases of 

interest.  
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2.2 Introduction 

In order for the heart to maintain its function, it uses oxygen and various nutrients through 

metabolic pathways to maintain contractile proteins, synthesize necessary lipid species, and 

produce ATP as a fuel for muscle contraction. Metabolic changes, such as changes in substrate 

utilization, have been noted in many diseased states, such as left ventricular hypertrophy [1] and 

cardiotoxicity [2,3]. In some cases, changes in substrate utilization occur before functional and/or 

structural changes to the heart, suggesting that metabolism plays a key role in the downstream 

development of disease or could be a target to prevent disease [1,4]. However, it is not understood 

if changes in heart metabolism are the result of, a contributor to, or the cause of disease. 

Therefore, there is a need for a comprehensive, descriptive model of the metabolic function of the 

heart to interrogate the relationships between substrates and function.  

A common tool to interrogate relationships between metabolic substrates and metabolic 

function is a GEnome-scale metabolic Network REconstruction (GENRE). GENREs are 

mathematical representations of metabolism that use the enzymes encoded in an organism’s 

genome to define the biochemical metabolic reactions and associated metabolites that comprise 

that organism’s metabolism. Each metabolic reaction is associated with a gene-protein-reaction 

(GPR) rule relating genes to the proteins they encode and proteins to the reactions they catalyze. 

Human GENREs account for the function of the biochemical reactions that humans catalyze 

according to annotation of the human genome.  

However, not all genes are expressed in every tissue, necessitating the construction of 

tissue-specific models of metabolism. GENREs of human metabolism [5–11] have been used to 

generate tissue-, disease-, or cell-specific models for various analyses such as predicting drug 

targets [12–14], identifying biomarkers of disease [15,16], and understanding drug toxicity or side 

effects [5,17,18]. Tissue-specific models are built by integrating tissue-specific omics data, usually 

transcriptomic or proteomic data, with a human GENRE to obtain a tissue- or cell-type specific 
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model using various integration algorithms (some of which are summarized in [19,20]).  To date, 

there are two existing heart models [16,21], both of which were built from Recon1, the first human 

GENRE [7]. These models were used to examine the relationship between substrate utilization 

and efficiency of the heart [21] and to predict epistatic interactions in the heart and biomarkers of 

heart disease [16]. However, human models have been expanded since Recon1 to more 

comprehensively describe human metabolism. Our recently published human GENRE, iHsa [5], 

is more comprehensive than Recon1 (8336 reactions vs. 3311 reactions) and therefore offers the 

potential to generate a more comprehensive heart-specific model. A new heart-specific model 

can be used as a tool to interpret large data sets, such as transcriptomic data, to provide functional 

insight into how metabolism might change in a diseased state.  

Here, we present a new, validated, heart-specific metabolic model, iCardio, which was 

built using iHsa [5] with data from the Human Protein Atlas (HPA) [22]. The draft model was 

curated using metabolic tasks, which are mathematical descriptions of metabolic functions that a 

model should be able to perform. The metabolic tasks represent both previously published tasks 

[5] as well as newly developed, heart-relevant tasks. We validated the model qualitatively by the 

number of reactions covered by the metabolic tasks and quantitative ATP predictions for common 

carbon sources.  Finally, we demonstrate the utility of metabolic models in identifying functional 

changes in metabolism using a new method that identifies metabolic tasks associated with 

significant changes in gene expression, called Tasks Inferred from Differential Expression 

(TIDEs). TIDEs are a unique type of gene set enrichment analysis (GSEA) that take into account 

both the stoichiometric balance of reactions necessary to achieve metabolic functions by including 

transporter reactions between metabolic compartments as well as the complex relationship 

between genes, proteins, and the reactions they catalyze. Therefore, TIDEs offer biological insight 

into metabolic functions affected in a disease state that are not readily apparent from gene 
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expression data or gene set enrichment analyses alone. We use heart failure as a case study 

because of the critical role that metabolism plays in the progression and diagnosis of disease. 

 

2.3 Results 

2.3.1 Building and validating iCardio using metabolic tasks 

The CORDA algorithm was used to build the draft iCardio model from iHsa; CORDA 

removed 4203 reactions from iHsa to build a draft iCardio model that had a heart-specific task 

accuracy of 89% (Figure 1B-C, Supplemental File 2). The draft model was then curated using 

metabolic tasks to obtain the final iCardio model (Figure 2.1A).  To achieve 100% task accuracy, 

79 reactions were added to and 12 removed from the draft iCardio model (Figure 2.1A) based on 

literature and manual curation (Supplemental File 2). The 79 reactions that were added to iCardio 

are reactions that were removed from iHsa to build the iCardio draft model were added back to 

the iCardio model to ensure functionality. We can map the protein data from HPA using the 

associated GPR rules. Of the 79 reactions added back to iCardio, 73% (58) are associated with 

either high (1), medium (8), or low (16) protein evidence, no GPR rule (28), or no data (5); the 

remaining 21 reactions were associated with no protein evidence. As an example, the synthesis 

of nitric oxide was a metabolic task that originally failed but was curated to pass in the final iCardio 

 
Figure 2.1 Building a heart metabolic model (iCardio) by integrating protein data and curating with 
metabolic tasks.  
(A) The draft iCardio model was built by integrating protein data from the human protein atlas (HPA) with a human 
metabolic reconstruction (iHsa) using the CORDA algorithm. The draft iCardio model was curated using pre-
defined metabolic tasks, resulting in the final model, iCardio. (B) The CORDA algorithm removed 4203 from iHsa 
to produce a draft iCardio model that had a heart-specific task accuracy of 89%. (C) The superset of 421 
metabolic tasks represented metabolic tasks from a previous publication (Blais et al, 2017) with additional 
metabolic tasks that were curated from the literature based on cardiac metabolism. These tasks were used to test 
if the model could perform functions known to be present in the heart while removing metabolic functions not 
present in the heart. After curation, the final iCardio model has a 100% heart-specific task accuracy.  
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model. For this task to pass, three reactions were added back to the model, two reaction that 

were associated with proteins that were not detected and one that had no GPR rule (Supplemental 

File 2.2). All three isoforms of nitric oxide synthase (NOS), which catalyze the two reactions, were 

not detected in v18 of the HPA tissue data but two of the NOS isoforms, NOS1 and NOS2, are 

associated with low expression in v19, while NOS3 has significantly higher transcript counts in 

heart muscle in the RNA consensus tissue HPA data [22].  Of note, after curation, the final iCardio 

model contains approximately 50% of the reactions that are present in the iHsa network 

reconstruction. Using the complex GPR rules that are associated with each reaction, we can also 

identify the number of genes that are associated with a reaction in iHsa but are not associated 

with a reaction in the iCardio model; only 583 genes are associated with a reaction in iHsa but 

not included in iCardio, highlighting both the promiscuity of enzymes and the complex relationship 

between genes and metabolic functions (Figure 2.1B). Since metabolic tasks have been used as 

a metric for building iCardio, the number of reactions covered by this set of metabolic tasks 

provides a qualitative validation of the model. As has been done with other models [23], pFBA 

was used to determine the reactions that each passing metabolic task utilized in iCardio. The 216 

previously published heart-relevant tasks [5] covered 38% (1593/4200) of reactions in iCardio and 

the 93 passing new heart-relevant tasks covered 21% (874/4200) of reactions in iCardio (Figure 

2A). There is overlap between these two sets of reactions; in total, the two sets of tasks covered 

41% (1714/4200) of reactions in iCardio. It is important to note that although the tasks may cover 

the same reactions, they cover different combinations of reactions and pathways for each task. 

The two sets of tasks together may cover 1,700 reactions but in total over 20,000 reactions are 

used in different combinations to complete the tasks, indicating that a number of reactions are 

repeated between tasks. This result is to be expected, especially for reactions that involve central 

carbon metabolism and ATP production, such as ATP synthase. The maximum number of 

reactions covered by a given task was 788 reactions (1 task), the metabolic task that describes 
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the de novo synthesis of lipids from glucose and essential fatty acids, and the minimum number 

of reactions covered by a task was one reaction (24 tasks), metabolic tasks that describe 

transport. Overall, the reaction coverage of tasks demonstrates a qualitative validation of iCardio.  

To provide a quantitative validation of iCardio, ATP yields were predicted for a number of 

carbon substrates and amino acids and compared to another metabolic model, MitoCore [24]. 

The MitoCore model was chosen for comparison because of its focus on mitochondrial 

metabolism. For almost all carbon sources (other than methionine), iCardio predicted ATP yields 

within 10% of the values calculated with MitoCore [24] (Figure 2.2B). For methionine, the ATP 

prediction from iCardio matches the methionine prediction from Recon 2.2 [10]. It is important to 

note the difference in scope between the two models: MitoCore contains 342 reactions whereas 

iCardio contains 4200 reactions while still maintaining accurate ATP yields. This result highlights 

that, even with the increased size of iCardio, there are not infeasible energy-generating loops, 

which would artificially inflate ATP yield predictions and influence the reactions necessary for 

different metabolic tasks. Together, the qualitative and quantitative validation of iCardio 

demonstrate the ability of the model to accurately and more comprehensively represent heart 

metabolism. 

Figure 2.2 Validating iCardio (A) descriptively using the number of reactions covered my metabolic tasks and 
(B) quantitatively using ATP yields for common carbon substrates.  
(A) A descriptive validation of iCardio using the number of reactions covered using the different metabolic tasks. 
Together, the tasks account for almost half of the reactions in iCardio. The remaining reactions represent areas for 
future improvement of metabolic tasks. (B) A qualitative validation of iCardio using ATP yields for a variety of common 
carbon sources. The ATP yields for iCardio (y-axis) are compared to another recently published, but smaller, 
metabolic model, MitoCore (Smith et al., 2017), which contains 324 reactions. The agreement between the models 
demonstrates the lack of energy generating cycles and infinite loops in iCardio.  
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2.3.2 Identifying Tasks Inferred from Differential Expression (TIDEs) using iCardio for 

heart failure gene expression data 

Metabolic models provide an alternative approach for interpreting changes in gene 

expression to yield insight into metabolic shifts that may be contributing to a diseased state. Here, 

we use iCardio to identify metabolic tasks that were significantly associated with differentially 

expressed genes, called Tasks Inferred from Differential Expression (TIDEs), which represent 

metabolic functions that are shifted in an experimental versus control state (Figure 2.3). Heart 

failure is a complex disease, both in etiology and presentation, but heart failure is associated with 

a shift in metabolism [25]. Several different metabolic shifts have been noted in heart failure, such 

as decreased fatty acid utilization [25,26], increased ketone body utilization [27], and decreased 

utilization of branched chain amino acids [28]. However, there are still disagreements in the field. 

For example, one study noted an increase in fatty acid uptake in heart failure [29], while other 

studies reveal decreased fatty acid utilization [30]. iCardio provides an opportunity to 

contextualize gene expression data from end-stage heart failure patients to identify changes in 

Figure 2.3 Identifying functional metabolic changes from gene expression data using metabolic tasks.  
Metabolic tasks quantitatively describe metabolic functions that a tissue or organism is known to catalyze. iCardio 
was used to identify the reactions that are utilized in order to perform each of the previously defined metabolic 
tasks. Next, each reaction is assigned a reaction weight based on gene expression fold changes. A task score is 
calculated based on the weights for each reaction and represents an average gene expression value over reactions 
utilized in that metabolic task. In order to determine the statistical significance of this task score, the original gene 
expression data is shuffled over all genes with data and task scores are recalculated to give a distribution of task 
scores. A p-value is assigned based on where the original task score falls in the distribution of randomized data.  
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metabolic functions, such as those listed above, that are associated with significant changes in 

gene expression.  

To do this, we analyzed gene expression data from patients undergoing heart transplants 

for either advanced ischemic or idiopathic heart failure compared to healthy hearts. We integrated 

these differentially expressed genes (DEGs) and their associated log fold changes with iCardio 

to determine TIDEs, representing metabolic functions associated with a significant change in gene 

expression. When compared to healthy hearts, the ischemic hearts from GSE5406 had 2678 

DEGs; 392 of these DEGs were present in iCardio (Supplemental Table 2.3). After integrating 

these DEGs using iCardio and the TIDEs pipeline, 94 of the 307 metabolic tasks were designated 

as TIDEs (Figure 2.4), representing metabolic functions associated with significant changes in 

gene expression in these heart failure conditions. In the randomized data used to determine the 

statistical significance of each task, only 5 out of the 1000 random iterations had more than 94 

tasks identified as significantly changed, indicating that the identified TIDEs cannot be attributed 

to random changes in gene expression, but rather distinct and coordinated shifts in gene 

expression resulting in changes in specific metabolic functions. Across the 307 metabolic tasks, 

 

Figure 2.4 Distributions for model-predicted task scores from gene expression data for ischemic heart failure 
for each of the 307 tested tasks.  
Gene expression data for ischemic heart failure vs. healthy hearts from GSE5406 was integrated with iCardio to identify 
shifts in metabolic functions. The red dashed lines indicate the task score for the heart failure dataset and the black 
histograms are the distribution of randomized task scores. A red line to the right indicates a metabolic function 
associated with increased gene expression whereas a red line to the left indicates a metabolic function associated with 
decreased gene expression. The color of the background indicates if the metabolic function had a statistically significant 
(p-value < 0.05) increased (red) or decreased (blue) task score.  
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there are varied distributions in the underlying randomized task scores (Figure 2.4), representing 

the complex relationships between gene expression and metabolic function that are captured 

using iCardio and the TIDEs reaction-centric approach.  

Some general trends appear from the TIDEs identified from the ischemic heart failure data 

(Figure 4). First, metabolic tasks related to fatty acid degradation (41) were increased in the heart 

failure dataset compared to randomized data while metabolic tasks related to fatty acid synthesis 

(38) were decreased. Within tasks related to fatty acid synthesis, significant decreases were 

observed for saturated fatty acids but not for unsaturated fatty acids. Finally, metabolic tasks 

related to lipid membrane synthesis were decreased (6). Taken together, these metabolic shifts 

seem to support the common hypothesis of heart failure as a state of increased demand for ATP 

[31,32], seen through an increased degradation of fatty acids, while limiting other uses of ATP 

and carbon sources for other functions, such as synthesis of fatty acids and components of the 

lipid membrane. However, other previously reported metabolic signatures of heart failure, such 

as increased ketone body degradation [27], and decreased breakdown of branched chain amino 

acids [28], were not identified using this dataset and approach.  
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Next, we expanded the TIDE analysis to the two remaining studies (Supplemental Table 

2.3), including both idiopathic and ischemic heart failure. Here, there is no consistent TIDE across 

all 6 datasets (Figure 2.5A). However, there were a few frequently observed changes in TIDEs 

across the datasets. First, nitric oxide synthesis from arginine is decreased in 5 of the 6 datasets 

(excluding the ischemic heart failure data from GSE1869). Synthesis of long-chain, unsaturated 

fatty acids was decreased in 4 of the 6 datasets (excluding both ischemic and idiopathic heart 

failure data from GSE1869). De novo synthesis of Neu5Ac was decreased in 4 of the 6 datasets 

(excluding the ischemic and idiopathic heart failure data from GSE57345). The breakdown of 

valine to succinyl-CoA was increased in 2 of the 6 datasets (the idiopathic heart failure data from 

GSE1869 and GSE5406) and the breakdown of threonine to a Krebs cycle intermediate was 

increased in 2 of the 6 datasets (both ischemic and idiopathic heart failure in GSE57345). Finally, 

a metabolic task related to ketone body metabolism was increased in 3 of the 6 datasets, both 

Figure 2.5 TIDEs analysis identifies functional metabolic changes across different datasets (A) compared to 
results from a traditional GSEA analysis (B).  
(A) Three datasets that contained samples for ischemic, idiopathic, and healthy hearts were downloaded, analyzed, 
and integrated with iCardio using the TIDEs pipeline to identify shifts in metabolic functions. For each of the three 
datasets, both ischemic and idiopathic heart failure are shown. TIDEs cluster by study rather than type of heart 
failure. (B) The same three datasets were used with a traditional GSEA analysis with gene sets defined by KEGG 
pathways. The KEGG metabolic pathways are shown here and grouped similar to the TIDE groupings shown in (A).  
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ischemic and idiopathic heart failure data from GSE5406 and idiopathic heart failure from 

GSE57345.  Across the different datasets, the previously reported metabolic signatures of heart 

failure appear. However, they tend to appear within a study rather than across all studies or types 

of heart failure. Finally, rather than clustering by type of heart failure (ischemic vs idiopathic), the 

TIDEs results cluster by the study. 

 

2.3.3 Comparison of TIDEs with GSEA by KEGG pathway 

 Next, we wanted to compare the TIDEs analysis to a common gene-centric approach, 

gene set enrichment analysis (GSEA), using KEGG pathways to define the gene sets. Rather 

than taking a reaction-centric approach, GSEA takes a gene-centric approach and defines a 

group of genes for specific functions [33]. While KEGG includes many other pathways other than 

metabolism (Supplemental Figure 1), we have chosen to focus on a comparison of metabolic 

pathways. Using GSEA with the data from the studies cited above (Figure 2.5B), the most 

commonly changed metabolic pathways across the datasets were increased beta alanine 

metabolism in all datasets, increased propanoate metabolism in 5 of the 6 datasets, decreased 

selenoamino acid metabolism in 4 of the 6 datasets and increased valine, isoleucine, and leucine 

degradation in 3 of the 6 datasets. For the commonly cited metabolic shifts in heart failure, the 

GSEA analysis shows no change in fatty acid metabolism, one dataset with a decrease in genes 

associated with glycolysis, two studies that show increased oxidative phosphorylation, and 3 

datasets with increased valine, isoleucine, and leucine metabolism. For comparison with the 

metabolic tasks, the breakdown of propanoate and synthesis of beta-alanine were included as 

metabolic tasks task but showed no change across datasets. Selenoamino acids are included in 

the model but are not included as a metabolic task. Valine, isoleucine, and leucine metabolism 

cover six metabolic tasks in the model covering uptake and breakdown of each amino acid. Valine, 

isoleucine, and leucine were associated with decreased uptake in idiopathic heart failure for 
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GSE1869 and GSE57345. Breakdown of valine to succinyl-CoA was increased in idiopathic heart 

failure for GSE1869 and GSE5406 while the breakdown of isoleucine to acetyl-CoA and succinyl-

CoA was increased in idiopathic heart failure for GSE5406. 

 The difference in identified changes in metabolism highlight the differences between a 

reaction-centric approach, such as TIDEs, versus a gene-centric approach. GSEA KEGG 

metabolic pathways can cover more than one metabolic function, such as fatty acid metabolism, 

while the TIDEs approach allows for a distinction between the synthesis and degradation of 

different fatty acids. We can use iCardio for a similar approach by using the metabolic subsystems 

assigned to each reaction to identify a set of reactions. Using TIDEs, we can determine if the 

reactions in a given subsystem are associated with increased or decreased gene expression 

(Supplemental Figure 2.2). While this approach also reveals some interesting trends, such as a 

decrease in expression for reactions in the arachidonic acid metabolic subsystem, it fails to 

highlight changes in fatty acid metabolism or other smaller pathways, such as nitric oxide 

synthesis or ketone body degradation.   

Second, a GSEA approach includes every gene that can be present in the pathway even 

if the function is redundant, such as with isozymes. For example, take the metabolic task of 

synthesis of nitric oxide from arginine (Figure 2.6). Using the TIDEs approach with iCardio, this 

metabolic task covers 5 reactions, 4 of which are associated with GPR rules and therefore 

included in downstream analysis (Figure 2.6A). Two of these reactions can be catalyzed by one 

of three enzymes, NOS1, NOS2, or NOS3, which are known to have tissue-specific expression. 

The TIDEs reaction-centric approach uses the log-fold change of one gene to determine the 

reaction weight, which could differ between studies and across tissues. In this study, the two 

reaction weights for the transporters responsible for the import of arginine to and the export of 

citrulline from the cytosol are determined by different genes between the idiopathic heart failure 
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data in GSE5406 and GSE57345 (Figure 2.6C). However, the metabolic task of nitric oxide 

production from arginine was associated with decreased gene expression in both datasets. A 

similar GSEA analysis would have included all 6 genes rather than the 2-3 used in the TIDEs 

analysis.  

 

2.4 Discussion  

 Here, we present a new, validated model of heart metabolism, iCardio, with a method for 

analyzing changes in metabolic functions based on gene expression data. We present a new 

approach for building tissue-specific models using tissue-specific protein data from the HPA 

integrated with a general human reconstruction, iHsa, followed by manual curation with metabolic 

tasks to ensure general metabolic functionality. Using a task-driven approach for model curation 

demonstrated that the CORDA method produced a draft model that was more accurate with 

respect to performance of heart-specific metabolic tasks than other integration methods 

(Supplemental Table 2.2). It is interesting to note that the CORDA algorithm produced one of the 

 Figure 2.6 TIDEs analysis identifies differences in datasets for genes which catalyze the conversion of 
arginine to nitric oxide.  
(A) For the metabolic task of arginine to nitric oxide, the iCardio model uses four reactions, which cover the transport 
of arginine and citrulline into the cell and the conversion of arginine to the intermediate N-(omega)-hydroxyarginine 
and finally conversion to nitric oxide. (B) The model uses the GPR rules associated with each of these reactions to 
determine the reaction weight based off gene expression data, thereby assigning the expression of one gene to 
govern the reaction. (C) The gene whose gene expression was used in the analysis can therefore differ between 
different datasets while still producing the same result, as seen here with both datasets still showing a statistically 
significant decrease the metabolic function of conversion of arginine to nitric oxide.   
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smaller draft models while still maintaining the highest task accuracy. As noted, although the 

CORDA algorithm produced one of the smaller draft models and resulted in the final iCardio model 

that contained 50% of the reactions in iHsa, 75% of the genes in iHsa are still represented in the 

iCardio model. This result highlights the ability of the complex GPR rules to capture tissue-specific 

function. For example, the conversion of arginine to nitric oxide (NO) is an established mechanism 

for intracellular and extracellular signaling and the production of NO is mediated through tissue-

specific expression of different NOS isoforms (Figure 2.6). iCardio captures the complex 

relationship between gene expression and function through the complex GPR rules even though 

all of the isoforms were not detected in the original HPA dataset.  

The metabolic tasks used for benchmarking the integration algorithms and further manual 

curation cover 41% of the network while also identifying areas for future development of both 

general and tissue-specific metabolic tasks. Here, metabolic tasks were formulated agnostic to 

the gene expression data that was integrated with the resulting model. Additional tasks could 

serve as hypotheses for changes in metabolic functions of the heart that could then be tested with 

specific gene expression data sets. Finally, although not every reaction is covered by a metabolic 

task, these reactions represent metabolic functions with either evidence of protein expression in 

the HPA or pathway connectivity from the CORDA integration algorithm. These reactions and 

associated pathways further support the use of metabolic network reconstructions for generating 

hypotheses for important, tissue-specific metabolic functions.  

The pFBA approach assumes that the pathway for each metabolic task remains the same, 

independent of the data. This reaction-centric TIDE approach for determining significantly 

changed metabolic tasks emphasizes that (a) metabolic functions require multiple complex, 

stoichiometrically balanced reactions in order to proceed, and (b) some genes may 

disproportionately influence the completion of metabolic functions. For example, two metabolic 

tasks cover the synthesis of nitric oxide from arginine (Supplemental File 1). The first task 
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comprehensively covers the entire pathway, providing only arginine and other ions extracellularly 

as inputs while requiring the production of nitric oxide and the release of only metabolites that 

have transport reactions from the cytosol to the extracellular space. The second task only 

accounts for the central reactions for nitric oxide production, providing arginine and NADPH and 

require the production of nitric oxide. While both tasks cover the synthesis of nitric oxide from 

arginine, the first metabolic task uses 66 reactions and covers the entire pathway, including 

transport of metabolites between compartments, which are necessary to maintain the 

stoichiometric balance of the pathway.  However, because the second metabolic task covers 

mainly reactions in the cytosol, it requires only 5 reactions. While the first task was present in the 

original iHsa task, the second task was added because of the importance of the synthesis of nitric 

oxide in the heart and therefore covers the core reactions for nitric oxide synthesis. Together, 

these two tasks highlight the potential for both breadth and specificity in identifying shifts in 

metabolic functions. 

Second, reactions are associated with complex GPR rules, allowing for multiple genes 

representing different isozymes to catalyze the same reaction. By accounting for these complex 

relationships in the calculation of task scores, the expression values of individual genes can affect 

multiple functions. For example, fatty acid synthase, which catalyzes multiple reactions, can 

disproportionately influence a final task score. The associated fold change for fatty acid synthase 

may determine the reaction weight for multiple reactions in a metabolic task. In contrast, previous 

gene-centric approaches would have evenly weighted all genes in a specific pathway. The TIDEs 

analysis represents a reaction-centric approach that focuses on metabolic functions that can 

provide insight into broad metabolic changes that may not be immediately apparent using gene-

centric approaches.   

 The presented TIDEs pipeline offers an alternative, reaction-centric approach to interpret 

complex changes in gene expression data to identify non-obvious changes in metabolic functions. 
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In the case of heart failure, the TIDEs pipeline was able to identify some of the common shifts 

noted in heart failure in at least one of the three studies, such as increased fatty acid utilization, 

increased utilization of branched chain amino acids, and increased utilization of ketone bodies. 

The TIDEs analysis also revealed two changes that were common across more than one dataset: 

decreased synthesis of nitric oxide from arginine and decreased de novo synthesis of Neu5Ac. 

With an evaluation of all six data sets, decreased expression of NOS3, also referred to as eNOS, 

was driving the weight of two of the reactions in the metabolic task (Figure 2.6). Previous work 

has highlighted the important role of NO in cardiac function [34,35] and more recent work has 

suggested a role for increasing NO synthesis for the increasing efficacy of beta-blockers [36]. 

Neu5Ac is the most common sialic acid associated with multiple functional roles in the body. 

Studies have shown that increased Neu5Ac is associated with the development of atherosclerosis 

and synthesis of Neu5Ac has been suggested as a therapeutic target [37]. Using TIDEs, we can 

identify genes that are driving the change in the metabolic task, both genes that are shared across 

and are different between studies which can serve as a starting point for future work. However, 

more work is needed to identify the role that decreased synthesis of Neu5Ac may play in end-

stage heart failure. Both NO and Neu5Ac synthesis represent potential biomarkers of and targets 

for treating heart failure.  

 Although there were some common trends across datasets, no TIDEs could discriminate 

between ischemic and idiopathic heart failure across studies. This characteristic was also true for 

the KEGG GSEA results. Together, this result highlights the complexity of heart failure, both in 

etiology and presentation, suggesting that classifications such as ischemic and idiopathic may be 

insufficient to capture distinct metabolic changes. In addition, the datasets cluster within each 

study for both the TIDEs and GSEA KEGG metabolic pathway analysis, suggesting, again, that 

there is a large amount of heterogeneity in changes in gene expression for heart failure. However, 

it is important to note that changes in gene expression are not the only drivers of changes in 
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metabolic function. Other studies have noted the role of changing metabolic milieu in the blood 

as a driver of changes in the metabolic functions of the heart during heart failure [32]. Future work 

can integrate clinical measures, such as LVEF or FDG-PET glucose uptake measures, which 

could help to separate clusters of patients and more clearly identify the influence of metabolism 

in the progression of heart failure. 

Here, we provide a validated approach for constructing a tissue-specific metabolic model 

and demonstrate the utility of metabolic models to interpret changes in metabolic functions based 

on gene expression data. The model-building process can be extended to other cell- or tissue-

type specific models. The metabolic tasks provide a two-fold role for model validation and 

concrete metabolic functions to identify metabolic shifts in gene expression data. TIDEs represent 

a new, reaction-centric approach to identifying changes in metabolic functions and testing new 

hypotheses for changes in gene expression for metabolic functions. These new hypotheses can 

be formulated as metabolic tasks based on the current literature, based on reactions present in a 

metabolic model but not covered in the current list of metabolic tasks, or results from other gene-

centric approaches, such as GSEA. The method is not limited to use with iCardio but can be used 

with any published metabolic model that includes GPR rules. Further, the method can be used 

with either microarray or RNA-seq data. We demonstrate that a heart-specific model, iCardio, with 

the TIDEs pipeline was able to identify decreased NO synthesis and decreased Neu5Ac synthesis 

across different heart failure datasets that were not identified using conventional gene-centric 

approaches, such as gene set enrichment analysis.  

 

2.5 Methods 

2.5.1 Developing heart-relevant metabolic tasks 

Metabolic tasks describe metabolic functions that a tissue or organism is known to be able 

to catalyze. These metabolic tasks are represented as mathematical constraints on input and 



29 
 
 

output metabolites to the model, where a task is considered to “pass” if there is a feasible flux 

distribution through the model with the specified constraints. Metabolic tasks have been published 

with metabolic network reconstructions to demonstrate general metabolic function [5,11]. For 

example, iHsa was published with 327 metabolic tasks which describe both general metabolism, 

i.e. the generation of ATP from glucose, as well as liver specific metabolism, i.e. bile acid 

synthesis. To expand upon the general metabolic functions in the iHsa task list, we curated 94 

new, heart-relevant tasks, including 25 that quantitatively describe ATP generation from various 

carbon sources. Testing these new heart-relevant tasks with iHsa resulted in five changes to the 

network reconstruction (Supplementary Table 2.1), generating an updated human model which 

served as the starting point for building the heart-specific model, iCardio. Two notable changes 

were (a) the addition of reactive oxygen species (ROS) formation as 0.1% of the flux through 

Complex I of the electron transport chain (ETC) as has been done with another model [38] and 

(b) the change from 4 protons to 2.7 protons to generate one ATP molecule to be consistent with 

recently published data [39]. The heart-relevant and general metabolic tasks together represent 

421 metabolic tasks (Supplemental File 2.1) that cover a wide range of metabolic functions that 

both do and do not occur in the heart and therefore serve as a resource for curation of the draft 

iCardio model to ensure model functionality (Figure 2.1).  

 

2.5.2 Generating and curating a heart-specific metabolic model 

The general human model, iHsa, was able to pass all metabolic tasks successfully, but 

achieved a heart-specific task accuracy of 78% since iHsa was able to pass the metabolic tasks 

known to not occur in the heart. Since iHsa covers all human metabolism, it was necessary to 

prune reactions from iHsa that do not have evidence for presence in the heart. To do this, we 

integrated protein data from the HPA [22] with iHsa [5]. Various algorithms have been published 

to generate tissue-specific models from tissue transcriptomics or proteomics data. Here, we 
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implemented 5 of these algorithms [40–44] to generate draft heart-specific models. For GIMME, 

ATP production was used as the objective function. Data was integrated from the HPA, which 

contains tissue-specific protein expression where each protein is assigned either a high, medium, 

low, or no expression based on data from antibody-based immunohistochemistry [22]. Code for 

implementing each algorithm is available at https://github.com/csbl/iCardio. The CORDA 

algorithm was chosen from among the algorithms given its accuracy for the pre-defined list of 

heart-specific metabolic tasks (Supplemental File 2.1, Supplemental Table 2.2). 

The CORDA algorithm takes as an input user-defined high, medium, and negative 

confidence reactions to produce a model that is (1) consistent (i.e. all reactions can carry flux) 

and (2) maximizes high and medium confidence reactions while minimizing the number of 

negative confidence reactions. Proteins that corresponded with high, medium, or low/no 

expression in the heart as indicated in the HPA were included as high (n = 1005), medium (n = 

2168), or no confidence reactions (n = 5163) respectively based on the model’s GPR rules. 

Reactions without GPR rules (~2300 reactions) or reactions associated with no data were 

included in the negative confidence reactions.  

 

2.5.3 Validating iCardio using reaction coverage and ATP yields 

iCardio was validated qualitatively by determining the number of reactions covered by 

each metabolic task and quantitatively by comparing ATP yields for common carbon sources 

between iCardio and another metabolic model, MitoCore [24]. Parsimonious flux balance analysis 

(pFBA) [45] determines the lowest sum of fluxes, and therefore reactions, necessary to complete 

an objective. Here, pFBA was used to identify the reactions necessary for each metabolic task. 

Previous work has shown that, in most cases, pFBA produces more physiologically relevant flux 

distributions compared to flux balance analysis (FBA) or flux-based algorithms which incorporate 

data [46]. As a final, quantitative validation step, we calculated ATP yields for a variety of carbon 

https://github.com/csbl/iCardio
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sources in silico as the maximum flux through the ATP synthase reaction for one unit of each 

carbon source and compared the results to a smaller heart-specific model of mitochondrial 

metabolism [24].  

2.5.4 Analyzing transcriptomics data from heart failure patients 

Microarray data (Supplemental Table 2.3) [47–49] from patients undergoing heart 

transplants for advanced heart failure were downloaded from the Gene Expression Omnibus 

(GEO) database. Datasets were selected that (a) contained samples for both ischemic and 

idiopathic heart failure and (b) resulted in at least 50 differentially expressed genes for each type 

of heart failure. Since all the datasets had been background corrected using RMA, the limma 

package in R [50] was used to determine genes that were differentially expressed between 

healthy hearts and ischemic or idiopathic hearts. Genes corresponding to expression values with 

an FDR < 0.1 were considered to be differentially expressed and their corresponding fold change 

was used in subsequent analysis. 

 

2.5.5 Identifying Tasks Inferred from Differential Expression (TIDEs) using iCardio with 

expression data 

Metabolic tasks and their associated reactions, as identified using iCardio with pFBA, were 

used to identify metabolic functions that are significantly associated with differentially expressed 

genes in a condition of interest. This method is referred to as Tasks Inferred from Differential 

Expression (TIDEs) (Figure 2.3). A total of 307 metabolic tasks was used for this analysis, 

representing the tasks functionally present in iCardio from the original task list (Supplemental File 

2.1) that also contained at least one reaction with an associated GPR rule (Supplemental File 

2.3). Reactions that carry flux for each task are identified using a pFBA assumption without 

previous knowledge of the gene expression data (Figure 2.3a), as has been done with a related 

approach [51].  Gene expression log fold changes are overlaid onto reactions in the network using 
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the GPR rules to give each reaction a weight. GPR rules represent the proteins necessary to 

catalyze a specific reaction through AND or OR relationships. The AND relationships represent a 

protein complex where different genes encode unique protein subunits necessary for enzyme 

function while OR relationships represent isozymes. Reactions with complex GPR rules are 

assigned the maximum absolute fold change for OR relationships and the minimum fold change 

for AND relationships. For OR relationships where there is a disagreement in the direction of 

change, i.e. where there are genes associated with both a positive and negative fold change, the 

positive fold change is taken as the reaction weight. The assigned reaction weight values across 

all reactions in a task are averaged to calculate the task score (Figure 2.3b). To assign statistical 

significance to these task scores, the gene expression fold changes are randomized 1000 times 

amongst the genes measured in each dataset and task scores are recalculated based on the 

randomized data to create a distribution of task scores. The p-value for each task score that 

corresponded to the original data is calculated as the number of random task scores greater/less 

than the original data, depending on how the task score falls relative to the mean randomized 

task score (Figure 2.3c). TIDEs are identified as tasks with a p-value < 0.025. A p-value of 0.025 

was chosen over a p-value of 0.05 based on the use of a two-sided t-test for calculating 

significance. Finally, iCardio was also used to identify reactions that belonged to each metabolic 

subsystem in the model. These sets of reactions were also used with the TIDEs method to identify 

reaction subsystems that were significantly associated with changes in gene expression data. 

Code is available for re-producing this analysis in MATLAB https://github.com/csbl/iCardio.  

 

2.5.6 Gene set enrichment analysis 

The same gene expression datasets (GSE1869, GSE5406, GSE57345) were also 

analyzed using gene set enrichment analysis (GSEA) [33] using the pre-defined gene sets by 

KEGG pathways. To more closely replicate the TIDE analysis, genes were shuffled within a 

https://github.com/csbl/iCardio
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sample rather than shuffling across samples within each dataset.  Pathway enrichment scores 

with a nominal p-value < 0.05 were defined as statistically significant.  
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2.9 Data and Code Availability 

The code generated in this study is available at https://github.com/csbl/iCardio.   

 

2.10 Supplemental Tables, Figures, and Data 

 

Description Change Reactions affected Citation 

Directionality of 
DHAP reaction 

reverse reaction 
direction 

RCR21050 
 

Remove superoxide 
transport from the 
model 

Change reaction 
bounds to [0,0] 

RCR40428 
 

Include catalase 
reactions in the 
model 

Change reaction 
bounds to [0,1000] 

RCR10165, 
RCR10607, 
RCR11007, 
RCR11029, RCR14124 

 

Include superoxide 
production in 
Complex I 

Change reaction to 
consume 0.04 units of 
O2 and produce 0.04 
units of O2- 

RCR21048 Smith et al, 2011 

Change the number 
of protons 
necessary to 
generate one unit of 
ATP 

Change reaction to 2.7 
protons moved from 
the cytosol to the 
mitochondrial to 
produce 1 unit of ATP 

RCR20085 Watt et al, 2010 

Supplemental Table 2.1 Changes to the iHsa network reconstruction resulting from metabolic task curation.  

 

 

 

 

 

 

 

 

https://github.com/csbl/iCardio


35 
 
 

  

Reactions Metabolites 
Heart-specific 
task accuracy 
(%) 

Original model iHsa 8336 5627 -  

Integration 
algorithms 

CORDA 4133 2846 89% 

 
iMAT 4434 3074 82% 

 
FastCore (high, 
medium, low) 

4624 3215 55% 

 
GIMME 5526 5013 37% 

 
MBA (high, medium, 
low) 

3709 2630 37% 

 
FastCore (only high) 2671 2187 36% 

 
MBA (only high) 2510 2119 34% 

Supplemental Table 2.2 Evaluating integration algorithms for construction of draft iCardio models.  
Five different algorithms were used to integrate data from the Human Protein Atlas (HPA) with iHsa to produce draft 
iCardio models. Unless otherwise indicated, high and medium proteins, as indicated in the HPA, were used as an 
input to each algorithm. Heart-specific accuracy was evaluted based on completion of a list of metabolic tasks that 
covered both general and heart-relevant metabolism (Supplemental File 1). 
 
 
 
 
 

dataset type of HF # diseased # controls # DEGs 
# model 
DEGs 

total genes 
measured 

GSE1869 Ischemic 3 6 2162 278 8426 

GSE1869 Idiopathic 13 6 6974 896 8426 

GSE57345 Ischemic 95 136 5938 808 8839 

GSE57345 Idiopathic 82 136 5879 778 8839 

GSE5406 Ischemic 86 16 2678 392 8242 

GSE5406 Idiopathic 108 16 2571 398 8242 

Supplemental Table 2.3 Summary of DEGs for individual microarray studies. 
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Supplemental Figure 2.1 GSEA for all KEGG pathways.  
Results from the GSEA for all KEGG pathways, including pathways that were not metabolic. Pathways with that were 
not statistically different across any of the studies are not shown. As with the TIDEs and KEGG metabolic pathway 
analysis, results cluster within each dataset rather than by type of heart failure.  

 

Supplemental Figure 2.2 Subsystem-level analysis using iCardio with gene expression data.  
Using the reaction category assignments already in iCardio, reactions associated with each subsystem were 
determined and processed with the TIDEs pipeline. Subsystems that were significantly increased or decreased based 
on the gene expression data are shown here.  
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Supplemental File 2.1. Metabolic tasks used to evaluate draft iCardio models. Includes 

previously developed iHsa tasks and iCardio tasks indicating if the task should pass or fail.  

  

Supplemental File 2.2. Reactions added and removed from the model during manual curation.  

 

Supplemental File 2.3. Metabolic tasks used for TIDE analysis with results for each GSE study. 
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3.1 Abstract 

 Improvements in the diagnosis and treatment of cancer has revealed the long-term side 

effects of chemotherapeutics, particularly cardiotoxicity. Current clinical measures to track 

cardiotoxicity are insufficient to diagnose damage before it has been done, necessitating new, 

early biomarkers of cardiotoxicity. Here, we present paired transcriptomics and metabolomics 

data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and 

doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly 

affected pathways and metabolites but are not able to readily identify mechanisms of 

cardiotoxicity. Here, we integrate this paired data with a genome-scale metabolic network 

reconstruction (GENRE) of the heart to identify shifted metabolic functions, unique metabolic 

reactions, and changes in flux in metabolic reactions in response to these compounds. Using this 

approach, we are able to confirm known mechanisms of doxorubicin-induced cardiotoxicity and 

provide hypotheses for mechanisms of cardiotoxicity for 5-fluorouracil and acetaminophen.  
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3.2 Introduction 

 As the treatment of cancer improves, multiple chemotherapeutics have been identified as 

increasing the incidence of cardiovascular events in cancer patients [1]. This observation has 

prompted the exploration of potential mechanisms of chemotherapy-induced cardiotoxicity. It is 

now well-established that multiple chemotherapeutics are associated with adverse cardiovascular 

events, such as left ventricular dysfunction and chronic heart failure [1]. Current approaches to 

limit the development of chemotherapy-induced cardiotoxicity include limiting the dose of the 

chemotherapeutic, potentially decreasing the efficacy of treatment [2,3], and using clinical 

measures, such as left ventricular ejection fraction (LVEF), to monitor heart function [4,5]. 

However, LEVF only demonstrates a change after irreversible cardiac damage, highlighting the 

need for early and more sensitive markers of cardiotoxicity. Along these lines, changes in glucose 

uptake have recently been noted to precede clinical measures of heart dysfunction in both 

spontaneously hypertensive rats [6] and in doxorubicin models of cardiotoxicity [7,8], suggesting 

metabolites and changes in metabolism in the heart are an opportunity for early biomarkers of 

drug-induced cardiotoxicity.  

 Typical studies to predict new metabolic biomarkers rely on untargeted metabolomics. 

However, these methods lack mapping to a potential mechanism for the change in a metabolite 

and may miss key biomarkers since the panel of screened metabolites must be defined a priori. 

Genome-scale metabolic network reconstructions (GENREs) provide an opportunity to 

mechanistically connect changes in metabolomics with changes in transcriptomics, identifying 

potential mechanisms for biomarker production. GENREs provide a mechanistic representation 

of cellular metabolism, including the stoichiometric coefficients for metabolic reactions and the 

connectivity between genes and the individual reactions they govern. Previous studies have used 

transcriptomics data with metabolic network reconstructions to predict biomarkers of 

hepatotoxicity [9–12] and nephrotoxicity [13,14].  
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In the current study, we extend that work to integrate paired transcriptomics and 

metabolomics data with a heart-specific genome-scale metabolic network (GENRE) [15] to predict 

biomarkers of cardiotoxicity. We collect paired transcriptomics and metabolomics data for primary 

rat neonatal cardiomyocytes exposed to three compounds: 5-fluorouracil (5FU), acetaminophen 

(Ace), and doxorubicin (Dox). Both Dox and 5FU were selected based on their established 

cardiotoxicity [4,16] while Ace was chosen based on previous studies exploring hepatotoxicity 

and nephrotoxicity [9,13]. Furthermore, Dox has multiple hypothesized mechanisms of toxicity [4] 

whereas 5FU does not have established hypotheses for mechanisms of cardiotoxicity [16]. We 

demonstrate the utility of integrating multiple forms of omics data with functional models of human 

metabolism to yield unique insight into potential biomarkers of cardiotoxicity and their associated 

mechanisms.  Through this integrated approach, we confirm known mechanisms of Dox 

cardiotoxicity and propose new potential mechanisms for 5FU toxicity through increased 

metabolic stress from its primary chemotherapeutic mechanism of action and Ace cardiotoxicity 

through changes in phospholipid metabolism and the pentose phosphate pathway.  

 

3.3 Results 

3.3.1 Optimizing concentrations of compounds to characterize in vitro cardiotoxicity 

Given that most toxicity studies have limited rationale for chosen concentrations, we aimed 

to deliberately choose cardiotoxic concentrations that both elicited a measured change in cell 

metabolism and enable comparison across compounds. We determined cardiotoxic 

concentrations for our in vitro studies as concentrations that elicited a significant decrease in cell 

reducing potential without a concordant significant increase in cell death compared to controls at 

24 hours ( ). 10 mM 5FU and 2.5 mM Ace elicited a significant decrease in cell reducing potential 

at 24 hours without a significant increase in cell death. 1.25 µM Dox induced a significant decrease 

in cell reducing potential but also a significant increase in cell death (Figure 3.1). To confirm that 
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we had elicited a change in metabolism and not simply an increase in cell death, we performed a 

Seahorse mitochondrial stress test for which the measured OCR was normalized to live cell 

counts (Supplemental Figure 3.1). There was a significant increase in OCR for ATP production 

for 10 mM 5FU and 1.25 µM Dox and a significant increase in basal respiration for Dox. This 

confirms a metabolic stress on a per cell level, seen as an increase in the flux of oxygen being 

used for the electron transport chain (ATP production) and increase in the basal rate of oxygen 

consumption (basal respiration).  

As with previous studies [9,13], we profiled cell responses at both 6 (Supplemental Figure 

3.2) and 24 hours (Figure 3.1) after drug exposure to capture early and late toxicity. There was 

no significant increase in cell death for any compounds for our chosen concentrations at 6 hours. 

For cell reducing potential, we see a consistent decrease at our chosen concentration for Ace, 

Figure 3.1 Choosing cardiotoxic drug concentrations that elicited a change in metabolism without a 
significant increase in cell death.  
(A) Percent cell reducing potential with respect to controls was measured for a range of concentrations for the 
chosen compounds. The shapes represent different biological replicates. Black dots indicate a statistically 
significant change from the control condition, determined using Dunnett’s test with a p-value < 0.05. Boxes 
indicate the concentrations chosen for the experimental studies. (B) Percent cell death calculated using a 
PI/Hoescht stain. The shapes represent different biological replicates. The black dots indicate a statistically 
significant change from the control condition, calculated using Dunnett’s test with p-value < 0.05. 
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indicating that Ace has an early but sustained, negative effect on cell metabolism in 

cardiomyocytes (Supplemental Figure 3.2). 

 

3.3.2 Unsupervised machine learning of transcriptomics and metabolomics data 

highlights underlying drug-induced shifts in cellular activity 

In order to identify the largest sources of variability between our conditions, individual 

samples were clustered in an unsupervised fashion using Principal Component Analysis (PCA) 

(Figure 3.2). For reference, the 5FU condition is paired with the DMSO1 control and the Ace and 

Dox conditions are paired with the DMSO2 control (Methods). Analysis of normalized transcript 

counts for each gene shows separation in the first principal component by the Dox treatment and 

in the second principal component by time. For the other compounds, within each time point, the 

control conditions (DMSO1 and DMSO2) separate from the treatment groups (5FU and Ace) 

Figure 3.2 PCA of transcript counts (A) and scaled metabolite abundances (B) for the three compounds 
at 6 and 24 hours.  
(A) PCA of transcript counts separate by time and treatment condition, specifically the Dox treatment. (B) PCA of 
scaled metabolite abundances separate by time and treatment condition, specifically the 5FU treatment. (C) 
Quantification of the number of differentially expressed genes and differentially changed metabolites for each 
condition. DEGs were genes with an FDR < 0.01 and differential metabolites were metabolites with an FDR < 
0.1. 
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(perMANOVA for treatment vs control, p-value < 0.001). This separation is clearer at the 24-hour 

time point (perMANOVA for treatment vs control, p-value < 0.001) (Supplemental Figure 3.3A). 

The second principal component separates between the 6-hour and 24-hour samples, indicating 

a large change in the underlying cellular transcriptomics and metabolomic response. This 

separation may be a byproduct of the cells adapting to in vitro culture conditions. Given that two 

of the proposed chemotherapeutic mechanisms of action of Dox are intercalation with DNA and 

the inhibition of topoisomerase II [17], we would expect clear separation in the transcriptome for 

Dox-treated cells compared to the other compounds. A gene enrichment analysis for Hallmark 

pathways from the Molecular Signatures Database [18,19] using the top 100 genes in the first 

principal component identifies the p53 pathway as the only significantly enriched pathway, 

suggesting that Dox induces a unique DNA repair response compared to the other compounds. 

In contrast, a gene enrichment analysis for the top 100 genes in the second principal component 

identifies Myc targets as uniquely enriched, suggesting a transition between fatty acid oxidation 

and glucose utilization [20]. 

The PCA of log-scaled and median-centered metabolite abundances separates by time 

and, in the second principal component, by the 5FU treatment (Figure 3.2B). In agreement with 

the transcriptomics data, the clear separation by time point suggests a potential adaption of the 

primary cells to in vitro culture conditions. The bi-plot (Supplemental Figure 3.3B) of the top 10 

metabolites responsible for separation identifies erythritol, a derivative of glucose metabolism [21] 

and ethylmalonate, a branched chain fatty acid, for separation in the first principal component, 

again suggesting a change in glucose and fatty acid metabolism over time. However, in contrast 

to the transcriptomics results, there is no clear separation among any conditions, except for 5FU 

treatment. This lack of separation could result from the number and type of metabolites that were 

profiled or could suggest a more nuanced change between different conditions. Given that 5FU 

acts as an analogue for uracil and interferes with RNA synthesis [22], we would expect clear 
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separation in the metabolomics data for cells treated with 5FU. The bi-plot (Supplemental Figure 

3.3B) of the top 10 metabolites responsible for separation identifies uracil and 2-deoxyuridine, 

indicating changes in uracil synthesis, and phosphate, indicating a metabolic effect, as separating 

5FU from the other conditions. Finally, we can quantify the number of differentially expressed 

genes (DEGs) and changing metabolites for each treatment and time point (Figure 3.2C). As we 

would expect from the PCA, the Dox condition has the largest number of DEGs at both 6 and 24-

hours. The 5FU condition has the largest number of differentially changed metabolites at the 6 

and 24-hour conditions.   

 

3.3.3 Gene enrichment and metabolomics data identify common signatures of toxicity 

but cannot readily identify mechanisms of cardiotoxicity 

The large number of DEGs for each condition necessitates an enrichment approach to 

identify changed pathways across conditions and time points. We performed enrichment analysis 

using the Hallmark gene sets defined in the Molecular Signatures Database (MSigDB) [18,19] 

(Figure 3.3A). Given the large number of DEGs, it was necessary to use both a lower FDR cutoff 

Figure 3.3 Identifying biomarkers of toxicity from the transcriptomics and metabolomics data sets.  
(A) Enrichment analysis for genes with an FDR < 0.01 using the Hallmark gene sets from the Molecular Signatures 
database. A red box indicates enrichment with a p-value < 0.1. (B) Metabolites that were identified to be significantly 
changed in production between the treatment and control (Mann-Whitney, FDR < 0.1). The color represents the mean 
difference in normalized metabolites between the treatment and control, where a negative value indicates decreased 
production and a positive value indicates increased production. 
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and a higher p-value cutoff for enriched gene sets; genes with an FDR < 0.01 and gene sets with 

an adjusted p-value < 0.1 were identified as significantly changed. Consistent with their known 

mechanisms of chemotherapeutic efficacy, we see that the 5FU and Dox conditions are enriched 

for genes related to DNA repair at both the 6 and 24-hour timepoint. As with the PCA data, we 

see enrichment for genes for the p53 pathway for both Dox and 5FU. Finally, we see enrichment 

for genes related to oxidative phosphorylation, particularly at 6 hours, for both 5FU and Dox, 

confirming changes in cellular metabolism.  

Next, we identified metabolites that were significantly changed across all conditions within 

a timepoint (Figure 3.3B). We see increased production of phosphate for all three compounds, 

confirming a significant change in metabolism for the chosen concentrations. Further, we see a 

consistent increase in production of 2’-deoxyinosine for 5FU and Dox at the 24-hour timepoint, 

consistent with a response to reactive oxygen species (ROS) stress [23] as well as increased 

production of 2’-deoxyuridine in the 5FU condition, consistent as a by-product of DNA damage 

and uracil metabolism [24]. Further, we see differences in metabolites that are consumed between 

conditions (Supplemental Figure 3.4A) or metabolites that are ambiguously produced or 

consumed differentially between conditions (Supplemental Figure 3.4B). Any of these metabolites 

can serve as potential biomarkers of in vitro cardiotoxicity; however, a specific mechanism for the 

change in production or consumption is difficult to assess. Further, there are no available methods 

for connecting the list of DEGs and metabolites to confirm or identify mechanisms of 

chemotherapeutic toxicity or mechanisms of cardiotoxicity. Metabolic network reconstructions 

provide an opportunity to connect the measured changes in the transcriptome with the measured 

changes in the metabolome to identify potential mechanisms of toxicity.  
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3.3.4 Reconstruction of a rat-specific heart GENRE from an existing human-specific 

heart GENRE 

Before integrating our collected data, we needed to construct a rat-specific heart metabolic 

model. We started from the previously published human-specific heart model [15], which was built 

from a general human metabolic network developed in parallel with a general rat metabolic 

network [25]. These paired models are able to capture species-specific functions and species-

specific gene-protein-reaction (GPR) rules [25].  Given that the two original general models were 

generated simultaneously, we can directly map reactions included in the human-specific heart 

model to a rat-specific heart model using the common reaction IDs. After including these 

reactions, we added 13 rat-specific reactions from the general rat model that had literature 

evidence for expression in the heart (Supplemental File 3.1). Next, we utilized the metabolomics 

data to identify metabolites that were both measured in our dataset and included in the metabolic 

model. 121 metabolites mapped between the metabolomics dataset and metabolites in the model. 

75 of these metabolites had associated exchange reactions in the general rat model, indicating 

that the metabolite could be either consumed or produced in the model. From these exchange 

reactions, 37 were added to the rat-specific heart model from the general model to ensure that 

constraints could be placed for either production or consumption of that metabolite. Manual 

curation is often a time-intensive process and here we demonstrate the value of paired 

transcriptomics and metabolomics data in identifying new potential reactions that should be added 

to tissue-specific models of metabolism.  

Before integrating the transcriptomics and metabolomics data with the model, we first 

identified the number of DEGs and differentially changed metabolites that the model captures 

(Supplemental Figure 3.5A). Here, we see that the model captures ~10% of the DEGs across all 

treatments and time points and between 40-65% of the differentially changed metabolites. Next, 

in order to confirm that the metabolic genes captured in the model are still capturing the underlying 
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variability in the data (Figure3. 2A), we again used PCA to identify the largest sources of variability 

in the metabolic genes (Supplemental Figure 3.5B). As with the previous PCA (Figure 3.2), we 

see a similar distribution of data. Using a similar enrichment approach as above, both the 

glycolysis and hypoxia Hallmark pathways, among others, were enriched for the first principal 

component. For the second principal component, the Hallmark pathways of cholesterol 

homeostasis, glycolysis, oxidative phosphorylation, and fatty acid metabolism, among others, 

were enriched. Again, this result confirms a significant metabolic component in response to the 

drug treatment. However, as with the above analysis, general pathway level changes do not yield 

insight into potential mechanisms of cardiotoxicity.  

 

3.3.5 Integrating a rat-specific, heart GENRE and transcriptomics data predicts novel 

metabolic tasks altered in in vitro cardiotoxicity 

Gene enrichment analysis can be helpful in identifying broad changes in a data set. 

However, as noted above, it can be difficult to identify concrete mechanisms that may be related 

to a drug’s mechanism of action or mechanism of cardiotoxicity. Here, we apply the TIDEs 

approach [15] to identify metabolic functions that are associated with a significant change in gene 

expression using a rat-specific metabolic network reconstruction of the heart (Figure 3.4, 

Supplemental File 3.1). The TIDEs approach uses the complex GPR rules in a metabolic model 

to assign weights to individual reactions necessary to complete a metabolic task, such as 

production of ATP from glucose. Using this approach, we can identify metabolic tasks that are 

either associated with increased or decreased gene expression in response to each drug 

treatment. Statistical significance is calculated by randomizing gene expression values to create 

a distribution of task scores.  

We implemented this approach by overlaying metabolic DEGs with an FDR < 0.01 onto 

the rat-specific heart model developed for this study (Methods, Supplemental File 3.1). Metabolic 
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tasks with a p-value < 0.1 were identified as differentially changed. Through this approach, 

nucleoside triphosphates metabolism (NTPs) is increased in both the 5FU and Dox condition,  

whereas dNTP metabolism, precursors to DNA, are uniquely increased in the 5FU condition 

(Figure 3.4A). This result suggests that although the chemotherapeutic mechanism of action of 

Dox interferes with DNA synthesis, the metabolic stress induced by the drug mainly effects the 

metabolism of precursors to RNA metabolism and the general metabolic state of the cell. In the 

case of 5FU, we see changes in both NTP and dNTP metabolism, suggesting that 5FU has an  

effect on both DNA and RNA synthesis, which is confirmed in the metabolic tasks for DNA and 

RNA synthesis. In contrast to the gene enrichment analysis, the TIDEs approach uniquely 

identified UTP metabolism as altered at both 6 and 24 hours, and a highly significant increase in 

anaerobic rephosphorylation of UTP at 24 hours (p-value < 0.01) (Figure 3.4A), consistent with 

the known chemotherapeutic mechanism of action of 5FU.  

 Figure 3.4 TIDEs analysis reveals distinct changes in metabolic function across compounds.  
A red box indicates significantly higher gene expression and a blue box indicates significantly lower gene expression. 
Statistical significance is indicated for a p-value < 0.1 (*) and p-value < 0.01 (**). (A) Metabolic tasks related to DNA 
and RNA synthesis or nucleotide metabolism. (B) Metabolic tasks related to central carbon metabolism. (C) Metabolic 
tasks related to lipid membrane synthesis. (D) Metabolic tasks related to signaling metabolism. 
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Next, given that the Hallmark pathway of oxidative phosphorylation was enriched from the 

Hallmark gene set (Figure 3.3A), we examined changes in metabolic tasks related to central 

carbon metabolism (Figure 3.4B). Here, we see a significant number of tasks changed for the 

5FU condition at both timepoints, indicating an overall strong metabolic shift in response to 5FU. 

Of note, both the 5FU and Ace conditions are associated with decreased gene expression for the 

pentose phosphate pathway as 6 hours. In contrast, Dox shows increased gene expression for 

the pentose phosphate pathway, confirming the role of ROS production in cardiotoxicity. 

 Given that Ace is not a known cardiotoxic compound, we next identified that metabolic 

tasks related to lipid membrane synthesis were uniquely increased in the Ace condition (Figure 

3.4C). The TIDEs approach revealed early upregulation of metabolic tasks for a variety of 

phospholipids, specific to Ace compared to the other treatments. These metabolic tasks 

suggested a unique potential mechanism of action of Ace cardiotoxicity. Of particular interest, the 

metabolic task for cardiolipin synthesis, a key component of the mitochondrial metabolism, is 

significantly increased. One mechanisms of Ace hepatoxicity is associated significant lipid 

peroxidation in response to increased oxidative stress [26], suggesting a potential shared 

mechanism between hepatoxicity and cardiotoxicity. 

Finally, we identified metabolic tasks that were shared in at least four of the six conditions 

(Figure 3.4D). Here, we found a decrease in the synthesis of nitric oxide from arginine for five of 

the six conditions as well as differences in ROS detoxification between 5FU and Ace. Given the 

known role of Ace ROS production in Ace hepatotoxicity [26], it is interesting to see decreased 

gene expression for the metabolic task of ROS detoxification and the pentose phosphate 

pathway. Decreased synthesis of NO has been noted in heart failure [15,27,28], suggesting a 

shared metabolic marker of heart dysfunction. It is interesting to note that, overall, the Dox 

treatment condition has few significant metabolic tasks. For the metabolic task of arginine to nitric 

oxide and ROS detoxification, we can examine the underlying distribution of randomized task 
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scores used to determine statistical significance (Supplemental Figure 3.5). From these data, it is 

clear that Dox has a higher overall task score, indicating a higher overall average gene expression 

across reactions, but also has a wider spread for the underlying distribution of randomized task 

scores as a result of the large number of DEGs.  

 

3.3.6 Combined omics datasets predict novel biomarkers of toxicity through integrated 

network-based analysis 

Pathway-level analysis provides one point of view for interpreting changes in gene 

expression. However, pathways do not work independently, but rather in a coordinated effort to 

maintain cell function. GENREs are able to capture this relationship by determining flux through 

reactions in a model while meeting an objective function, which represents a hypothesis for cell 

function. Here, we utilized our transcriptomics data integrated with the rat-specific heart model 

using the RIPTiDe algorithm [29] to determine the reactions and fluxes that met the constraints 

provided by our metabolomics data and objective function. Objective functions for non-

proliferative cells are often hard to define so we used the objective function of ATP hydrolysis, 

representing the ATP generated for cardiomyocyte contraction, as well as requiring minimal 

synthesis of DNA and RNA (Methods). Using the condition-specific transcriptomics and 

metabolomics data, we generated condition-specific models for each condition, both treatment 

and control groups. The condition-specific constraints are contained in Supplemental Table 3.1 

while details for the condition-specific models are in Supplemental Table 3.2.  

 Each condition-specific model, with the exception of the 5FU 6-hour condition, had a 

significant correlation (p-value < 0.001) between the transcript data and the flux samples 

(Supplemental Table 3.2). This result indicates that the context-specific patterns of metabolism 

predicted with RIPTiDe are significantly correlated with the experimentally measured omics data, 

further supporting the validity of our predictions for the underlying biology. First, we identified 



57 
 
 

reactions that are unique to each condition (Figure 3.5A-B). We see expansion of the number of 

reactions that are included in all of the 24-hour condition models compared to the 6-hour condition 

models, suggesting an overall expansion in core metabolism. Given the separation observed in 

the PCA of the transcriptomics and metabolomics data (Figure 3.2A), it is not surprising to see 

this expansion in core metabolism. This expansion of reactions included reactions involved in 

central carbon metabolism, the pentose phosphate pathway, and metabolite transport or 

exchange. 

For the 5FU condition, at 6 hours we see unique reactions for pyrimidine synthesis that 

are included in all context-specific models at 24 hours. Across all the conditions, only the Dox 

condition has reactions that are unique at both 6 and 24 hours; these reactions utilize cysteine to 

oxidize glutathione, representing a potential mechanism of Dox cardiotoxicity. Most reactions that 

appear as unique in the 6-hour condition are included in all of the models in the 24-hour condition, 

Figure 3.5 Condition-specific models integrating the metabolomics and transcriptomics 24-hour data identify 
unique reaction biomarkers of cardiotoxicity.  
(A) VennDiagram of reactions that are shared and distinct between different condition-specific models. (B) NMDS of 
the 50 flux samples for each condition. For each flux sample, fluxes were only taken for the 112 reactions that are 
shared between all conditions. 
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with the exception of one reaction that appears in the 6-hour 5FU condition and all treated 

conditions (5FU, Ace, and Dox) in the 24-hour condition. This reaction is related to pyrimidine 

metabolism for DNA synthesis, highlighting a potential unique role of changes in pathways 

involved in DNA synthesis as a mechanism of shared toxicity. Finally, the unique reactions at the 

24-hour condition (Figure 3.5B) indicate potential mechanisms for late toxicity. For 5FU, we see 

unique reactions related to beta oxidation of fatty acids, suggesting a unique energy source, and 

for Ace, unique reactions for carbohydrate metabolism.  

 A non-metric multidimensional scaling (NMDS) was used to visually display the 50 flux 

samples for each condition in an unsupervised fashion (Figure 3.5C-D). For this approach, we 

can only plot fluxes for the 112 reactions that are shared amongst all conditions. At 6-hours, the 

5FU condition clearly separates from the other conditions. While at 24-hours, all treatment groups 

clearly separate from the control groups. Supervised machine learning with random forest feature 

selection was used to identify the reactions that most distinguish the active metabolism of 

treatment from the respective control conditions. This analysis highlighted that every treatment 

and time point contained at least one reaction involved in central carbon metabolism as highly 

distinguishing, suggesting unique divergent pathways for ATP production. For the 6-hour Dox 

condition, the reaction with the highest mean decrease in accuracy was involved in reducing 

thioredoxin, again confirming the role of ROS detoxification in the Dox condition. However, this 

reaction was not identified as separating in the 24-hour condition, suggesting an early, but no 

sustained increase in ROS detoxification. Surprisingly, for the 5FU condition, the highly ranked 

reactions were involved in central carbon metabolism, uracil exchange (24-hour time point), and 

purine metabolism, suggesting that although 5FU interferes with uracil metabolism, the same 

pathways are used as in the control condition. Finally, for Ace, reactions related to nucleotide 

metabolism and pyrimidine metabolism were highly ranked at 6 hours while reactions for the 

pentose phosphate pathway were highly ranked at 24 hours, suggesting a role for diverting flux 
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through the pentose phosphate pathway for either nucleotide metabolism or detoxification of 

intracellular ROS.   

 

3.4 Discussion 

Here, we present paired transcriptomics and metabolomics data characterizing in vitro 

cardiotoxicity for three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. In contrast to 

previous studies, we present rationally identified concentrations that induce a change in 

metabolism without a significant change in cell death for all three compounds. The desired 

metabolic disruption at the chosen concentrations for 5FU and Dox was indicated with results 

from a Seahorse assay to measure changes in oxygen consumption along the mitochondrial 

respiratory chain. The data provides the first, to our knowledge, paired transcriptomic and 

metabolic characterization of in vitro cardiotoxicity. We confirm our treatment using enrichment 

analysis, demonstrating significant enrichment for DNA repair in both 5FU and Dox, both of whose 

chemotherapeutic mechanisms of action target DNA or RNA synthesis. Additionally, we 

demonstrate metabolic changes through enrichment in oxidative phosphorylation and increased 

release of phosphate measured in the metabolomics data across all conditions.  However, the 

cardiotoxic mechanisms of these three compounds are not obvious from the transcriptomics and 

metabolomics data alone. Further, we cannot directly connect what changes in the transcriptome 

may be influencing changes seen in the metabolomics data.  

The chemotherapeutic mechanisms of action for 5FU and Dox are well understood [4,16]. 

However, the mechanisms by which these two compounds induce cardiotoxicity are not as well 

studied. There are multiple, well-established, hypothesized mechanisms of doxorubicin-induced 

cardiotoxicity, including increased ROS production and increased eNOS production [30,31]. 5-

fluouracil has no established mechanisms for cardiotoxicity. Standard enrichment analyses and 

measured changes in metabolites were insufficient to hypothesize mechanisms responsible for 
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the measured changes in metabolism and metabolites. Alternatively, by integrating 

transcriptomics and metabolomics data with a metabolic model of the rat heart, we provide 

multiple novel hypotheses for mechanisms behind the measured changes. 

Consistent with the enrichment analysis, integration of DEGs with the TIDEs approach 

specifically identified changes in metabolic tasks related to DNA/RNA synthesis but also 

specifically identifying the role of all nucleotides in both Dox and 5FU, particularly metabolism of 

UTP in 5FU. In the case of Ace, the TIDEs pipeline identified increased synthesis of multiple 

phospholipids as potential markers of cardiotoxicity. Lipid peroxidation of membrane 

phospholipids is one proposed mechanism of acetaminophen-induced hepatoxicity [26], but has 

not been proposed in cardiomyocytes. Nitric oxide synthesis and ROS detoxification were 

identified as common metabolic functions altered across conditions. Nitric oxide synthesis is a 

proposed mechanism of doxorubicin-induced cardiotoxicity [32] but has not yet been identified for 

5FU cardiotoxicity. Here, we demonstrate that decreased NO synthesis and changes in ROS 

detoxification can serve as early and shared markers of in vitro cardiotoxicity. Finally, it is 

important to note the difference in number of TIDEs identified between conditions, where the Dox 

24-hour condition has the lowest number of TIDEs. Given that there are the largest number of 

DEGs in the Dox condition, most genes that were included in the TIDEs analysis for the Dox 24-

hour condition were differentially expressed, meaning that a metabolic function had to have a 

large gene expression signature in order to be identified as different (Supplemental Figure 3.5).   

Although enrichment analyses are helpful in determining broad metabolic changes, it is 

important to view these changes in the context of the entire metabolic network. By incorporating 

constraints from the metabolomics data with a pre-defined objective, RIPTiDe was able to identify 

both the reactions necessary and the fluxes through those reactions that satisfied the given 

metabolomics and transcriptomics constraints. We were able to identify a reaction unique to the 

Dox condition that is related to ROS detoxification, again identifying a suggested mechanism of 
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cardiotoxicity. It is important to note that increased ROS production was not included for the Dox 

condition but can be explored in the future for a better understanding of how metabolism may 

adapt to an increased in ROS production. In addition, we identified a reaction common to all 

treatment conditions at the 24-hour time point which was related to pyrimidine metabolism for 

DNA synthesis, suggesting a unique mechanism for diverting flux in cardiotoxicity.  

Finally, random forest variable selection identified reactions that were shared among 

individual conditions but whose flux separated between conditions. These reactions represent 

changes in flux that are necessary either for ATP production, metabolite production, or DNA/RNA 

synthesis that differ between condition, indicating divergent pathways of flux. Across all three 

treatment groups, we see reactions for central carbon metabolism, indicating a baseline divergent 

flux for ATP production. Next, not surprisingly, the Dox condition again identified a reaction 

involved in ROS detoxification. For 5FU, we see most pathways related to central carbon 

metabolism, suggesting similar pathways for DNA and RNA synthesis as in the control condition. 

However, given the TIDEs results indicate increased gene expression for DNA/RNA synthesis, 

the increased flux through these pathways and their accompanying metabolic stress are potential 

mechanisms of cardiotoxicity. Finally, in the Ace treatment, we identified reactions related to the 

pentose phosphate pathway and cholesterol metabolism, and with the TIDEs analysis, suggest 

divergent pathways for nucleotide metabolism, cholesterol metabolism, and phospholipid 

metabolism as potential mechanisms of toxicity.   

In summary, we present an approach that identifies shifted metabolic functions and specific 

metabolic reactions that together point toward potential mechanisms of toxicity. Together, the 

paired transcriptomics and metabolomics data integrated with the rat-specific model of 

metabolism provide insight that was not clear from either set of data on its own. For Dox, we 

identified shifts in metabolic tasks related to nucleotide metabolism, ROS detoxication, and NO 

synthesis and reactions related to ROS detoxification as potential markers of toxicity, consistent 
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with previously published hypotheses for mechanisms of toxicity [33,34]. For 5FU, we identified 

shifts in metabolic tasks related to nucleotide metabolism, ROS detoxification, and NO synthesis 

and reactions related to central carbon metabolism, suggesting a mechanism of toxicity related 

to increased metabolic stress from the chemotherapeutic mechanism of action of 5FU. Finally, for 

Ace, we identified shifts in metabolic tasks related to lipid synthesis and reactions related to the 

pentose phosphate pathway as markers of toxicity.  

Future work is necessary to trace pathway fluxes to determine how fluxes through these 

individual reactions influence other parts of metabolism. In addition, the provided paired 

transcriptomics and metabolomics data provide a starting point for improvements to the present 

metabolic network reconstructions. A number of metabolites were measured as produced but 

could not be produced with the individual condition-specific models, either because of missing 

internal reactions or missing constraints. Future work can explore the use of additional objective 

functions that replicate proposed mechanisms of toxicity, such as increased ROS production or 

synthesis of key cellular proteins, which may provide further explanation for the measured 

changes in the metabolomics data. Finally, given the paired nature of the human model that has 

previously been developed [15], the presented approach and previous model can be used to 

integrate data from human-induced pluripotent stem cell cardiomyocytes exposed to doxorubicin 

[35] to confirm that the mechanisms identified here also translate to humans.  

 

3.5 Methods 

3.5.1 In vitro culture conditions  

Primary neonatal rat cardiomyocytes were isolated and cultured according to previously 

published protocols [36]. After the initial plating, cells were maintained for ~36 hours in plating 

media containing low glucose DMEM and M199 supplemented with L-glutamine, Penicillin-

Streptomycin, 10% horse serum and 5% FBS. Cells were serum starved overnight (~12 hours) 
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before running experiments in serum free, ITSS-supplemented plating media. Cells were 

observed to beat spontaneously within 24-48 hours after isolation, confirming metabolic activity 

and functionality.  

For experiments to determine optimal drug concentrations, cells were seeded in 96 well 

plates at a density of 100k cell/well. The initial range of concentrations used for 5FU, Dox, and 

Ace (Tocris) were selected based off previous studies for Dox [35,37,38], 5-FU [39,40], and Ace 

[41].  Drug stocks were prepared according to manufacturer’s instructions using sterile DMSO 

and were diluted in plating media before treatment. Concentrations that induced cardiotoxicity 

were determined using parallel measures of cell death and cell reducing potential (10 mM 5FU, 

2.5 mM Ace, 1.25 µM Dox). Cell death was determined as the number of propidium iodide (PI) 

positive cells divided by the total number of Hoescht positive cells. Fluorescence data from treated 

cells was background corrected using blank wells before using CellProfiler [42] to segment nuclei 

and measure fluorescence intensity for both PI and Hoescht. In the case of doxorubicin, which is 

fluorescent at overlapping wavelengths with PI, we used wells containing the respective 

concentrations of doxorubicin for background subtraction. Measures were aggregated from four 

fields of view for each drug concentration. Cell viability, which measures cell reducing potential 

and thus cell metabolism, was measured using the RealTime-Glo MT Cell Viability kit (Promega, 

Catalog #G9711). Both measures were repeated for three separate wells, representing three 

technical replicates for each condition, as well as on three separate days using different primary 

cell isolations, representing three biological replicates for each condition. Statistical significance 

was calculated using Dunnet’s t-test [43] which accounts for the dose-dependent nature of the 

data. A p-value < 0.05 was considered statistically significant.  

Oxygen Consumption Rate (OCR) for Mitochondrial Stress Test (MST) assay was 

measured using a Seahorse XF24 Extracellular Flux Analyzer [44,45]. Primary rat neonatal 
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cardiomyocytes were plated on Seahorse assay plates and cultured according to the protocol 

described above. MST media was an unbuffered, phenol-red free, serum-free media from above 

that was adjusted to a pH of 7.4 and filter-sterilized before use. For the MST assay, oligomycin, 

BAM15 (Cayman), and Rotenone and Antimycin A (Sigma) were injected to final concentrations 

of 1 µM, 10 µM, 1 µM and 2 µM respectively. The OCR for each measure was taken as the first 

measurement after injection with the inhibitor or the first measurement in the case of baseline. 

ATP production was defined as the OCR at baseline minus the OCR after the oligomycin injection. 

OCR for each well was normalized to well cell numbers which were collected using a PI/Hoescht 

stain prior to the assay.  

 

3.5.2 RNA isolation, sequencing, and analysis 

For the paired transcriptomics and metabolomics data, hearts were harvested in parallel 

from three litters of rats on the same day. After parallel digestion, cells were mixed from all 

isolations before plating in 12-well plates at a density of 1.2 million cells/well. For reference, two 

separate DMSO controls were run (DMSO1 at 1% DMSO for the 5FU condition; DMSO2 at 0.25% 

DMSO for the Ace and Dox conditions). Primary rat neonatal cardiomyocytes were exposed to 

the chemicals mentioned above at the chosen concentrations for either 6 or 24 hours. After 

exposure, as has been done in previous studies [9,13], the cells were lysed with Trizol to begin 

RNA extraction. Cell lysates were mixed with chloroform and spun in phase-lock gel tubes inside 

a cold room and the upper phase was then decanted into new tubes. Isopropanol and glycogen 

were added to the mixture, incubated overnight at -20C and spun again resulting in an RNA pellet, 

which was washed with 75% ethanol twice. DNA was removed using the TURBO DNA-free kit 

(Invitrogen, #AM1907) and then RNA was quantified using the QuBit RNA Broad Range detection 

kit (Invitrogen, #Q10210). RNA was sent to GeneWiz (https://www.genewiz.com/en) for PolyA 

selection, library construction, and sequencing. RNA was sequenced using 2x150bp paired-end 
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(PE) readings and fastq files were generated. Kallisto v 0.46.0 [46] was used to pseudo-align raw 

fastq files under default settings to the Rattus norvegicus Ensembl v96 transcriptome. Transcript 

abundances were then aggregated to the Entrez gene level in R v. 3.6.3 with the package tximport 

[47]. Genes with consistently low counts (< 10) across all samples were removed. Differentially 

expressed genes (DEGs) were determined using DESeq2 [48] with a significance threshold of 

FDR < 0.1.  

Principal component analysis (PCA) was performed using the variance stabilized gene 

counts [49] with the prcomp function in R. Statistical significance for the separation between 

treatment and control groups was calculated using adonis2 function in the Vegan package in R 

[50].  

 Following identification of DEGs, two approaches were used to identify pathways 

significantly changed in the data: enrichment using Hallmark gene sets from the Molecular 

Signatures Database [18,19] and Tasks Inferred from Differential Expression (TIDEs) for 

identifying differentially changed metabolic functions [15]. For the enrichment analysis, due to the 

large number of DEGs, enrichment was determined using genes with an FDR < 0.01 and 

pathways were defined as statistically significant with a p-value < 0.1 following Benjamini-

Hochberg (BH) correction [51]. For the TIDEs analysis, the subset of genes that mapped to the 

rat model and that had an FDR < 0.01 were used; pathways with a p-value < 0.1 when compared 

to randomly shuffled DEGs were defined as statistically significant.   

 

3.5.3 Collecting and analyzing metabolomics data 

As described above, primary rat neonatal cardiomyocytes were exposed to the 

compounds at the chosen concentrations. Before lysing the cells with Trizol, the cell supernatant 

was removed and sent to Metabolon for analysis (https://www.metabolon.com/). Raw area counts 
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were obtained for 181 named metabolites. Metabolites that had greater than 60% missing values 

(13 named metabolites) were removed from the data set. Next, missing values were imputed as 

half of the minimum raw area count within a metabolite. Values were then log-scaled and mean-

centered within a metabolite. The Mann-Whitney U-test was used to determine if a metabolite 

was produced or consumed relative to the blank media samples (n = 3) as well as differences 

between treatment and control conditions. Metabolites were considered to be significantly 

changed if the p-value < 0.1 following Benjamini-Hochberg correction [51].  

3.5.4 Building a rat-specific heart model from the human-specific heart model, iCardio  

The previously published human heart metabolic model, iCardio [15], was used to build a 

rat-specific heart metabolic model to contextualize changes in metabolites and DEGs. All 

reactions that were included in the human model were included in the rat model. The 6 updates 

that were made in the human model [15] were also made to the general rat model. Since each 

model contains species-specific reactions, we identified if each of the 23 rat-specific reactions 

should be included in the heart; 13 were included based on literature evidence [52] (Supplemental 

File 3.1).   

Further curation was necessary based on metabolites that were measured to be either 

produced or consumed in the metabolomics data. Metabolites were mapped between the 

metabolomics data and the metabolic model using compound identifiers from the KEGG 

database. Exchange reactions, which are reactions in the model that transport a metabolite into 

or from the extracellular compartment, were added from the general rat model to the heart model 

if a metabolite was measured to be either consumed or produced relative to blank media in the 

metabolomics data. These reactions were necessary in order for a metabolite to be modeled as 

either produced or consumed. Reactions added back to the heart model from the general rat 

metabolic network are summarized in Supplemental File 3.1.  
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To identify shifted metabolic functions with the TIDEs approach, we used the previously 

published list of metabolic tasks [15] with the developed rat-specific heart model. Only genes that 

mapped to the metabolic model were included in the analysis. For each metabolic gene, a weight 

was assigned based on the FDR where a gene with an FDR < 0.01 was assigned its log fold 

change as a weight and 0 otherwise. As with the previous publication, reaction weights were 

determined based on the weights for individual genes in the complex gene-protein-reaction (GPR) 

rules. Task scores for individual tasks were calculated as the average weight across reactions in 

that metabolic task. To establish statistical significance, the weights for each metabolic gene were 

randomly shuffled 1000 times and significance was determined by comparing the original 

metabolic task score to random data.  

 

3.5.5 Computationally predicting biomarkers of toxicity using TIMBR and RIPTiDe 

 We utilized the RIPTiDe algorithm [29] to integrate the metabolomics and transcriptomics 

data to identify the most likely flux distributions in the rat-specific heart model network for each of 

the 10 conditions, including both treatment and control groups at both time points. RIPTiDe 

identifies possible optimal flux distributions in a metabolic network given the cellular investments 

indicated by the transcriptomic abundance data. The metabolomics data was used to define 

constraints on each condition-specific model by allowing the consumption of metabolites that were 

measured to be consumed and forcing production of metabolites measured to be produced. Here, 

we defined the cellular objective function to be ATP hydrolysis, with an upper bound of 100 units 

of flux, and production of 1 unit of RNA and DNA, representing general cell maintenance. The 

exchange reactions for consumed metabolites were given a lower bound of -10, representing a 

theoretical overabundance of each metabolite for the given objective, while the exchange 

reactions for produced metabolites were given a lower bound of 1, representing minimal 

production. These constraints allow for metabolites to be consumed at a relatively high flux while 
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only forcing production at a low level of flux. The number of constraints placed on each condition-

specific model are summarized in Supplemental Table 3.1. Finally, the upper bound of internal 

reactions was set as 10e6 to ensure that internal fluxes were not constraining the solution space.  

 After applying these condition-specific constraints, condition-specific models were 

generated by integrating the median transcripts per million (TPM) for each gene within a condition 

using the RIPTiDe algorithm [29]. The RIPTiDe algorithm was run with a minimum fraction of 90% 

of the objective to ensure that differences in ATP flux were not the main determinants of 

differences between the condition-specific models. Each condition-specific model was flux-

sampled 50 times to obtain a range of possible flux distributions that satisfied the pFBA 

assumption.  

Following RIPTiDe analysis, flux samples for each condition were analyzed to identify both 

unique reactions for each condition and reactions whose flux separated between conditions [29]. 

Non-metric multidimensional scaling (NMDS) ordination of Bray-Curtis distances between flux 

samples, calculated using the Vegan package in R [50], was used to visualize differences for 

reactions that were shared between all conditions. Finally, random forest feature selection [53] 

was used to determine the reactions whose fluxes most separated between each treatment and 

control group.  

 

Code to reproduce this analysis is available at (https://github.com/csbl/Cardiotoxicity). Transcript 

data is available on GEO. Metabolomics data is available at Metabolights.  
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3.8 Supplemental Figures, Tables, and Data 

 

 

Supplemental Figure 3.1 Confirming changes in measures of cellular respiration for the chosen Dox 
concentration using the MST assay.  
The MST assay was performed using the chosen concentrations for each compound. Measures of respiration where 
there was a statistically significant difference across groups (ANOVA, p-value < 0.05) were followed by treatment vs 
control comparisons using the Wilcox rank-sum test for differences where ns is not significant, * is P-value < 0.05, 
and ** is p-value < 0.01. There were 5 experimental replicates per condition, except in the case of 5FU where one 
well did not respond. 
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Supplemental Figure 3.3 Additional PCA plots demonstrate (A) separation of treatment vs control groups and (B) 
the top 10 metabolites separating the PCA of the scaled metabolite abundances.  
(A) PCA with the Dox samples removed demonstrates separation between treated and control samples at both 6 and 24 
hours. (B) The top 10 metabolites show separation in both the first and second principal component. For the first principal 
component, ethylmalonate and erythritol have a strong influence, suggesting a phenotypic switch between fatty acid and 
glucose utilization over time, although the direction is unclear. For the second principal component, phosphate and uracil 
separate the 5FU condition. 
 

Supplemental Figure 3.2 Cell reducing potential and cell death measures following 6 hours of 
exposure to compounds.  
Shapes indicate different cell isolations. Black dots indicate a statistically significant change from the 
control condition (p-value < 0.05) calculated using Dunntt’s test. Black boxes indicate the chosen 
concentrations for cardiotoxicity characterization. (A) Percent cell viability for a range of concentrations 
of treatment following 6 hours of exposure. (B) Percent cell death measured using a Hoescht/PI stain. 
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Supplemental Figure 3.4 Metabolomics data shows differential production and consumption of metabolites across 
compounds and timepoints.  
(A) Metabolites that were consumed across different conditions. A grey box indicates a metabolite that was not consumed in either the 
treated or control condition. A red box indicates a metabolite that was increased in consumption compared to the DMSO control for that 
treatment. A blue box indicates a metabolite which decreased consumption compared to the DMSO control.  (B) Metabolites that were 
both consumed and produced across conditions. The red bar indicates the average metabolite abundance in the blank media samples. 
Black dots indicate a condition for which there was a statistically significant change in the metabolite abundance compared to the blank 
media. (C) Differences between treated and control conditions for metabolites that were produced or not changed across conditions. 
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Supplemental Figure 3.6 Distribution of random task scores for the metabolic tasks for arginine to nitric 
oxide and ROS detoxification demonstrate the underlying distribution of DEGs.  
A red background indicates a metabolic task associated with a significant increase in gene expression and a blue 
background indicates a metabolic task associated with a significant decrease in gene expression (p-value < 0.1). The 
red dashed line indicates the task score for the actual gene expression data whereas the black bars indicate the 
calculated task scores when the gene expression data is randomized. In this case, the distribution for the Dox data is 
significantly wider (i.e. larger range on the x-axis), indicating a larger overall absolute change in gene expression 
requiring a higher overall average gene expression for ROS production to be deemed significant and a lower overall 
average gene expression for arginine to nitric oxide to be deemed significant. 

 

 

Supplemental Figure 3.5 The rat-specific heart model captures changes in DEGs and metabolomics.  
(A) The number of DEGs (FDR < 0.1) and differentially changed metabolites (FDR < 0.1) that map to the rat-specific metabolic mode. 
(B) A PCA of the normalized gene counts that map back to the rat-specific heart model demonstrate clear separation, similar to the 
PCA of all gene counts (Figure 2), confirming that metabolism has a large determinant in separating conditions. 
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6 hours 24 hours 

 
Consumed Produced Consumed Produced 

5FU 11 12 13 14 

DMSO1 11 13 11 16 

Ace 11 11 15 15 

Dox 13 13 13 15 

DMSO2 13 13 12 16 

Supplemental Table 3.1 Constraints that were placed on individual metabolic models before RIPTIDE 

integration of transcript counts. 

 
 
 

 
6 hours 24 hours 

 
# reactions p-value # reactions p-value 

5FU 167 0.1741 216 0.0003 

DMSO1 199 0.0001 207 0.0000 

Ace 184 0.0002 206 0.0001 

Dox 190 0.0000 192 0.0000 

DMSO2 202 0.0000 214 0.0000 

Supplemental Table 3.2 RIPTiDe models after integration with metabolomics and transcriptomics data.  
The number of reactions included in each model and the p-value for the Spearman correlation between reaction flux 
and transcript abundance. In all cases, except the 5FU 6-hour condition, there was a statistically significant 
correlation between transcript abundance and flux through the model. 

 

 

Supplemental File 1. Reactions added to the rat heart model during manual curation.  

Supplemental File 2. All TIDEs results after integrating in vitro cardiotoxicity data with the rat-

specific heart model. 

 

 

 



74 
 
 

3.9 References 

1.  Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity 

of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl 

Cancer Inst. 2010;102: 14–25. doi:10.1093/jnci/djp440 

2.  Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with 

doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97: 2869–2879. 

doi:10.1002/cncr.11407 

3.  Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. 

Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16: 3267–3285. 

doi:10.2174/092986709788803312 

4.  Volkova M, Russell R. Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and 

Treatment. Curr Cardiol Rev. 2011;7: 214–220. doi:10.2174/157340311799960645 

5.  Avila MS, Siqueira SRR, Ferreira SMA, Bocchi EA. Prevention and Treatment of 

Chemotherapy-Induced Cardiotoxicity. Methodist DeBakey Cardiovasc J. 2019;15: 267–273. 

doi:10.14797/mdcj-15-4-267 

6.  Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, et al. Metabolic Changes in 

Spontaneously Hypertensive Rat Hearts Precede Cardiac Dysfunction and Left Ventricular 

Hypertrophy. J Am Heart Assoc. 2019;8: e010926. doi:10.1161/JAHA.118.010926 

7.  Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. 

Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of 

Cardiac Toxicity: A Translational 18F-FDG PET/CT Observation. J Nucl Med. 2017;58: 1638–

1645. doi:10.2967/jnumed.117.191122 

8.  Borde C, Kand P, Basu S. Enhanced myocardial fluorodeoxyglucose uptake following 

Adriamycin-based therapy: Evidence of early chemotherapeutic cardiotoxicity? World J Radiol. 

2012;4: 220–223. doi:10.4329/wjr.v4.i5.220 

9.  Rawls KD, Blais EM, Dougherty BV, Vinnakota KC, Pannala VR, Wallqvist A, et al. 

Genome-Scale Characterization of Toxicity-Induced Metabolic Alterations in Primary 

Hepatocytes. Toxicol Sci Off J Soc Toxicol. 2019;172: 279–291. doi:10.1093/toxsci/kfz197 

10.  Pannala VR, Wall ML, Estes SK, Trenary I, O’Brien TP, Printz RL, et al. Metabolic 

network-based predictions of toxicant-induced metabolite changes in the laboratory rat. Sci Rep. 

2018;8: 11678. doi:10.1038/s41598-018-30149-7 

11.  Pannala VR, Vinnakota KC, Rawls KD, Estes SK, O’Brien TP, Printz RL, et al. 

Mechanistic identification of biofluid metabolite changes as markers of acetaminophen-induced 

liver toxicity in rats. Toxicol Appl Pharmacol. 2019;372: 19–32. doi:10.1016/j.taap.2019.04.001 



75 
 
 

12.  Pannala VR, Estes SK, Rahim M, Trenary I, O’Brien TP, Shiota C, et al. Mechanism-

based identification of plasma metabolites associated with liver toxicity. Toxicology. 2020;441: 

152493. doi:10.1016/j.tox.2020.152493 

13.  Rawls KD, Dougherty BV, Vinnakota KC, Pannala VR, Wallqvist A, Kolling GL, et al. 

Genome-Scale Metabolic Model Predicts Changes in Renal Metabolism from Chemical 

Exposure. In prep.  

14.  Pannala VR, Vinnakota KC, Estes SK, Trenary I, OˈBrien TP, Printz RL, et al. Genome-

Scale Model-Based Identification of Metabolite Indicators for Early Detection of Kidney Toxicity. 

Toxicol Sci Off J Soc Toxicol. 2020;173: 293–312. doi:10.1093/toxsci/kfz228 

15.  Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA. Identifying 

functional metabolic shifts in heart failure with the integration of omics data and a 

cardiomyocyte-specific, genome-scale model. bioRxiv. 2020; 2020.07.20.212274. 

doi:10.1101/2020.07.20.212274 

16.  Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, et al. 5-fluorouracil 

and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10. doi:10.1177/1758835918780140 

17.  Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an 

extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. 2018;8: 13672. 

doi:10.1038/s41598-018-31939-9 

18.  Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The 

Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1: 417–

425. doi:10.1016/j.cels.2015.12.004 

19.  Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing 

Biological Themes Among Gene Clusters. OMICS J Integr Biol. 2012;16: 284–287. 

doi:10.1089/omi.2011.0118 

20.  Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A, et al. Myc controls 

transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to 

pathological stress in mice. J Clin Invest. 2010;120: 1494–1505. doi:10.1172/JCI38331 

21.  Schlicker L, Szebenyi DME, Ortiz SR, Heinz A, Hiller K, Field MS. Unexpected roles for 

ADH1 and SORD in catalyzing the final step of erythritol biosynthesis. J Biol Chem. 2019;294: 

16095–16108. doi:10.1074/jbc.RA119.009049 

22.  Zhang N, Yin Y, Xu S-J, Chen W-S. 5-Fluorouracil: Mechanisms of Resistance and 

Reversal Strategies. Molecules. 2008;13: 1551–1569. doi:10.3390/molecules13081551 

23.  Lee C-C, Yang Y-C, Goodman SD, Chen S, Huang T-Y, Cheng W-C, et al. 

Deoxyinosine repair in nuclear extracts of human cells. Cell Biosci. 2015;5. doi:10.1186/s13578-

015-0044-8 



76 
 
 

24.  Evans MD, Saparbaev M, Cooke MS. DNA repair and the origins of urinary oxidized 2’-

deoxyribonucleosides. Mutagenesis. 2010;25: 433–442. doi:10.1093/mutage/geq031 

25.  Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling GL, Ye P, et al. Reconciled rat and 

human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat 

Commun. 2017;8: 14250. doi:10.1038/ncomms14250 

26.  Jaeschke H, Ramachandran A. Oxidant Stress and Lipid Peroxidation in Acetaminophen 

Hepatotoxicity. React Oxyg Species Apex NC. 2018;5: 145–158.  

27.  Li M, Parker BL, Pearson E, Hunter B, Cao J, Koay YC, et al. Core functional nodes and 

sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun. 2020;11: 

2843. doi:10.1038/s41467-020-16584-z 

28.  Massion PB, Feron O, Dessy C, Balligand J-L. Nitric oxide and cardiac function: ten 

years after, and continuing. Circ Res. 2003;93: 388–398. 

doi:10.1161/01.RES.0000088351.58510.21 

29.  Jenior ML, Moutinho TJ, Dougherty BV, Papin JA. Transcriptome-guided parsimonious 

flux analysis improves predictions with metabolic networks in complex environments. PLoS 

Comput Biol. 2020;16. doi:10.1371/journal.pcbi.1007099 

30.  Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E. Chemotherapeutic 

Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. Oxid 

Med Cell Longev. 2018;2018: 7582730. doi:10.1155/2018/7582730 

31.  Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights 

into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 

2006;41: 389–405. doi:10.1016/j.yjmcc.2006.06.009 

32.  Bahadır A, Kurucu N, Kadıoğlu M, Yenilme E. The Role of Nitric Oxide in Doxorubicin-

Induced Cardiotoxicity: Experimental Study. Turk J Hematol. 2014;31: 68–74. 

doi:10.4274/Tjh.2013.0013 

33.  Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, et al. 

Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative 

Stress. Nutrients. 2017;9. doi:10.3390/nu9090966 

34.  Deidda M, Madonna R, Mango R, Pagliaro P, Bassareo PP, Cugusi L, et al. Novel 

insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. J 

Cardiovasc Med Hagerstown Md. 2016;17 Suppl 1 Special issue on Cardiotoxicity from 

Antiblastic Drugs and Cardioprotection: e76–e83. doi:10.2459/JCM.0000000000000373 

35.  Burridge PW, Li YF, Matsa E, Wu H, Ong S, Sharma A, et al. Human Induced 

Pluripotent Stem Cell–Derived Cardiomyocytes Recapitulate the Predilection of Breast Cancer 



77 
 
 

Patients to Doxorubicin–Induced Cardiotoxicity. Nat Med. 2016;22: 547–556. 

doi:10.1038/nm.4087 

36.  Ryall KA, Bezzerides VJ, Rosenzweig A, Saucerman JJ. Phenotypic screen quantifying 

differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte 

elongation. J Mol Cell Cardiol. 2014;72: 74–84. doi:10.1016/j.yjmcc.2014.02.013 

37.  Chen J-Y, Hu R-Y, Chou H-C. Quercetin-induced cardioprotection against doxorubicin 

cytotoxicity. J Biomed Sci. 2013;20: 95. doi:10.1186/1423-0127-20-95 

38.  Chao H-H, Liu J-C, Hong H-J, Lin J, Chen C-H, Cheng T-H. L-carnitine reduces 

doxorubicin-induced apoptosis through a prostacyclin-mediated pathway in neonatal rat 

cardiomyocytes. Int J Cardiol. 2011;146: 145–152. doi:10.1016/j.ijcard.2009.06.010 

39.  Lamberti M, Porto S, Marra M, Zappavigna S, Grimaldi A, Feola D, et al. 5-Fluorouracil 

induces apoptosis in rat cardiocytes through intracellular oxidative stress. J Exp Clin Cancer 

Res CR. 2012;31: 60. doi:10.1186/1756-9966-31-60 

40.  Lamberti M, Porto S, Zappavigna S, Addeo E, Marra M, Miraglia N, et al. A mechanistic 

study on the cardiotoxicity of 5-fluorouracil in vitro and clinical and occupational perspectives. 

Toxicol Lett. 2014;227: 151–156. doi:10.1016/j.toxlet.2014.03.018 

41.  Jin SM, Park K. Acetaminophen Induced Cytotoxicity and Altered Gene Expression in 

Cultured Cardiomyocytes of H9C2 Cells. Environ Health Toxicol. 2012;27. 

doi:10.5620/eht.2012.27.e2012011 

42.  McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, et al. 

CellProfiler 3.0: Next-generation image processing for biology. PLOS Biol. 2018;16: e2005970. 

doi:10.1371/journal.pbio.2005970 

43.  Hothorn T, Bretz F, Westfall P. Simultaneous Inference in General Parametric Models. 

Biom J. 2008;50: 346–363. doi:10.1002/bimj.200810425 

44.  Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA, et al. Identification 

of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab. 

2014;3: 114–123. doi:10.1016/j.molmet.2013.11.005 

45.  Nagdas S, Kashatus JA, Nascimento A, Hussain SS, Trainor RE, Pollock SR, et al. Drp1 

Promotes KRas-Driven Metabolic Changes to Drive Pancreatic Tumor Growth. Cell Rep. 

2019;28: 1845-1859.e5. doi:10.1016/j.celrep.2019.07.031 

46.  Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq 

quantification. Nat Biotechnol. 2016;34: 525–527. doi:10.1038/nbt.3519 

47.  Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level 

estimates improve gene-level inferences. F1000Research. 2015;4: 1521. 

doi:10.12688/f1000research.7563.2 



78 
 
 

48.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi:10.1186/s13059-014-0550-8 

49.  Anders S, Huber W. Differential expression analysis for sequence count data. Genome 

Biol. 2010;11: R106. doi:10.1186/gb-2010-11-10-r106 

50.  Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14: 

927–930. doi:10.1111/j.1654-1103.2003.tb02228.x 

51.  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57: 289–300.  

52.  NCBI Resource Coordinators. Database resources of the National Center for 

Biotechnology Information. Nucleic Acids Res. 2018;46: D8–D13. doi:10.1093/nar/gkx1095 

53.  Calle ML, Urrea V, Boulesteix A-L, Malats N. AUC-RF: a new strategy for genomic 

profiling with random forest. Hum Hered. 2011;72: 121–132. doi:10.1159/000330778 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 
 

Chapter 4: Systems biology approaches help to facilitate 

interpretation of cross-species comparisons 
 

 

Bonnie Dougherty and Jason A. Papin* 

*Corresponding author. Tel: +1 434 924 8195; Email: papin@virginia.edu; Address: Departments 

of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 

22908 

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA. 

 

 

 

 

 

 

 

 

 

 

 

 

The text included in this chapter has been published here:  

Dougherty BV, Papin JA. Systems biology approaches help to facilitate interpretation of cross-
species comparisons | Elsevier Enhanced Reader. [cited 5 Oct 2020]. 
doi:10.1016/j.cotox.2020.06.002 
 
 

mailto:papin@virginia.edu


80 
 
 

4.1 Abstract 

Translation of biological knowledge from animal models to humans is an important step in 

the development of therapeutics but there remain limitations for effective translation. Systems 

biology offers approaches to understand the limitations for translation between species through 

data-driven models, such as methods that rely on learning patterns from data, and mechanism-

driven models of biological processes, such as pharmacokinetic models. Here, we describe recent 

advances in both data-driven and mechanism-driven systems biology approaches to better 

understand limitations to translation from animal models to humans. Both approaches to modeling 

have their strengths and weaknesses but still provide key biological insight for translating between 

model systems and humans (Figure 4.1). The presented methods not only identify differences 

between different model organisms but also provide opportunities to identify shared biomarkers 

and unique biological insight. 
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4.2 Introduction 

Animal models are commonly used to understand the basic biology of human disease, 

identify new drug targets, and predict the toxicity of new drugs in humans. However, animal 

models have been shown to be both good [1] and poor [2–4] models of human biology, depending 

on the disease or model system. In order to facilitate better translation between model systems 

and humans, we need a better understanding of both the strengths and limitations of animal 

models. Systems biology is an approach that could help to articulate the limitations and 

opportunities for cross-species comparisons. For example, evidence of protein homology 

between model organisms and humans does not ensure direct translation due to inherent 

differences, such as levels of transcription and network structure. Consequently, systems biology, 

which enables the interpretation of large datasets such as transcriptomics, proteomics, or 

metabolomics, either with or without knowledge of the underlying biological mechanisms, can help 

to understand the drivers of these complex species-specific differences between genotype and 

phenotype to facilitate better translation to humans.  

Systems biology can involve both models driven primarily by relationships in the data, 

rather than integration of underlying biological knowledge, as well as models that utilize a priori 

Figure 4.1 Strengths and weaknesses of data- vs. mechanism-driven models. 
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mechanistic biological knowledge to gain insight into species-specific differences. In this review, 

we first discuss recent efforts using data-driven models, such as machine learning, to guide 

choosing appropriate model systems and predicting pathway and gene levels in humans based 

on model organism data. Second, we discuss recent efforts using mechanism-driven models of 

biological processes, such as pharmacokinetic models and genome-scale metabolic network 

reconstructions, to predict drug dosing in humans from animal studies and identify shared 

biomarkers of toxicity. Together, these methods highlight how big data and systems biology can 

facilitate translation between model organisms and humans while yielding key biological insights.  

 

4.3 Data-driven models 

One common form of data-driven modeling in systems biology is machine learning, which 

encompasses a broad range of computational methods that learn patterns from data to make new 

predictions. In order to learn these patterns, a large amount of data is needed. Recent efforts to 

centralize data storage in both general [5,6] and field-specific [7,8] databases have facilitated 

efforts to use systems biology to yield insights into species-specific differences. Here, we discuss 

how machine learning approaches have been used to (a) predict gene expression data in humans 

from model organism data and (b) rationally choose model systems to improve translation to 

humans.   

 

4.3.1 Machine learning 

Recent studies have utilized data-driven approaches to identify human differentially 

expressed genes from rat epithelial cells [9] and mouse models of human diseases [10], sepsis 

[11*], and immune responses [12]. These studies highlighted that data-driven approaches, such 

as machine learning methods, were better at predicting human differentially expressed genes 

than directly translating human gene expression from mouse data using only protein homology. 
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In addition to predicting human differentially expressed genes, Normand et al, 2019 identified new 

pathways relevant to human diseases by using predicted differentially expressed genes whose 

homologs were not differentially expressed in the mouse data. As results from animal models of 

sepsis have led to poor translation in the clinic [13,14], Brubaker et al, 2019 used different 

machine learning approaches to predict both human differentially expressed genes and pathway-

level changes. The authors were able to identify pathways that had a similar response in both 

mouse models and humans and could therefore serve as biomarkers for successful therapeutics 

for sepsis. Another targeted study, the IMPROVER toxicology challenge, identified common 

biomarkers of smoking between rat epithelial cells and humans using machine learning 

approaches [15*]. Although both studies were able to use machine learning to improve predictions 

of human gene expression through identification of new disease-relevant pathways and shared 

biomarkers, there were still significant gaps between predictions and human data. For example, 

although predictions of human differentially expressed genes were better than different homology-

based translation, the machine learning models had low F-scores, representing low accuracy for 

the models [11*]. Both studies acknowledged that more heterogeneous data that covers a wider 

range of mouse strains, mouse models, and human data may help to improve predictions.  

In addition to predicting human differentially expressed genes, machine learning has been 

used to identify the most appropriate model system for a specific disease in order to improve 

translation to humans. For example, a recent study utilized gene expression data from the 

Japanese Toxicogenomics Database [7] to determine what model system, either human or rat 

hepatocytes in vitro or the rat liver or kidney in vivo, best captured human adverse events reported 

in the literature [16]. The authors demonstrated that each model system captured different 

adverse events and that no adverse event was captured by all model systems. The results from 

this study could be used to rationally choose a model system depending on the adverse event 

that is being tested for [17].  
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4.3.2 Rationally choosing model organisms 

Similarly, McGary et al [18] described the use of “phenologs”, or model organisms with a 

specific phenotype whose genotype is similar to a human disease, as a way to rationally choose 

model organisms for human diseases. These phenologs do not share a common phenotype but 

a common genotype, through common orthologous genes, suggesting that the underlying biology 

driving the different phenotypes may be similar. These phenologs were more recently expanded 

upon using an approach that represents homologous proteins in a network to identify functional 

similarity [19]. The functional homology network was used to identify phenologs between model 

organisms and human diseases. Finally, another study used gene expression across various 

tissues and species to identify genes that are dominated by variance across tissues rather than 

species, suggesting that model organisms are appropriate for representing human diseases 

associated with these genes [20]. Together, these methods demonstrate approaches that utilize 

large data to make more informed decisions regarding model systems to facilitate translation from 

model organisms to humans.  

4.4 Mechanism-driven models 

Mechanism-driven models, another systems biology approach, are models that 

incorporate biological knowledge, such as interactions between proteins or biochemical reactions 

that a cell catalyzes, into a mathematical framework to interpret data. Given the biological 

knowledge incorporated into these models, the predictions generated can also lead to 

identification of mechanisms driving a specific phenotype of interest or driving differences 

between mouse models and humans. These models are usually built using an iterative process 

(Figure 4.2), incorporating biological knowledge, experimental data, and new predictions to 

continuously refine the model. The model building process itself can yield insight into mechanistic 
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differences between model systems and humans as well as parameters that inform differences 

between model systems and humans. Here, we discuss four groups of mechanistic computational 

models that have recently yielded insights into differences between model organisms and 

humans: pharmacokinetic models, genome-scale metabolic network reconstructions, signaling 

network models, and protein-protein interaction networks.  

 

4.4.1 Pharmacokinetic (PKPB) models 

Pharmacokinetic (PKPD) models are often ordinary differential equation (ODE) based 

models used to model the absorption, metabolism, and secretion of compounds. Thiel et al [21] 

used a PKPD model to explore how different parameterizations of the model affect the accuracy 

of translation from preclinical animal models to humans. The authors highlighted that even though 

the presence of orthologous genes in the model were highly correlated between mice and 

humans, the parameters for transporters and enzymes were not, highlighting the importance of 

species-relevant parameters. Other studies have also used PKPD models to explore the effects 

Figure 4.2 The iterative model building process. 
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of dose amount and scheduling on side effects with cancer therapeutics [22–24]. These models 

helped to identify appropriate dosing in humans from model organism data to minimize toxic 

events. While useful in this case, PKPD models require significant mechanistic information about 

the side effects of chemotherapeutics, which in the case of other compounds, is not readily 

available.  Similarly, a mathematical model of drug-induced liver injury (DILIsym) has been 

developed (https://www.simulations-plus.com/software/dilisym/) that models common 

mechanisms of liver injury and has been used to better predict differences in human and rat 

responses to compounds [25,26]. This model, along with data from rats and humans, was able to 

identify why one drug failed in pre-clinical models but was successful in the clinic [25] and why 

one drug failed in clinic after being successful in pre-clinical models [26]. By using a mechanistic 

model, the authors were able to identify the mechanisms that potentially caused the differences 

in toxicity, highlighting species-specific differences that are relevant for future toxicity profiling.  

4.4.2 Genome scale metabolic network reconstructions (GENREs) 

Genome-scale metabolic network reconstructions (GENREs) are mathematical 

representations of the genes and proteins, biochemical reactions that these proteins catalyze, 

and the metabolites converted in those biochemical reactions for an organism of interest [27]. 

These models allow for the systematic integration of large data sets to interpret metabolic shifts 

and predict downstream changes in metabolism. A model of paired rat and human metabolism 

was recently published to facilitate cross-species comparisons [28*]. The models were built using 

protein homology to translate proteins present in a human model of metabolism to a rat model. 

The model building process revealed key differences in the metabolic structure of humans and 

rats both at a reaction and gene-protein-reaction level. Further, the model was used to integrate 

transcriptomics data for both rat and human cells treated in vitro with a variety of compounds to 

predict biomarkers of chemical exposure. The authors demonstrated that rats, a model organism 

https://www.simulations-plus.com/software/dilisym/
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used for human toxicity studies, can respond differently to compounds compared to humans. The 

model and analytical framework allow for the identification of biological differences, either in 

network structure or transcriptomics data, which drive differences in responses between the two 

organisms. The models have been used with both in vitro [29] and in vivo [30,31] rat models of 

hepatoxicity to identify new biomarkers of toxicity as well as potential mechanisms for these 

biomarkers. Other models exist for model organisms frequently used in toxicity studies, such as 

the mouse [32], but need further curation to allow for comparisons with updated models of human 

metabolism. Finally, a database of species-specific essential reactions was recently published to 

allow for cross-species comparisons [33], which can be integrated with these network models to 

identify functional metabolic similarities and differences between species.  

4.4.3 Pathway-based models 

Pathway-based models, such as signaling network models, are often ODE 

representations of the dynamics of key signaling pathways. A recent paper [34*] used a signaling 

network model of the EGF, Wnt, and Notch pathways to explore how two Caenorhabditis species 

respond differently to perturbations in the signaling network. The authors showed that, even with 

a similar overall network structure, perturbations on 13 parameters in the network resulted in the 

differences seen in development in the two species. Together, this work highlights that even 

though two species may have similar overall network structure, responses can differ based on 

individual nodes in the network. These signaling networks require detailed knowledge of the 

individual signaling pathways which are often available for both model organisms and humans. 

However, the models also require either a large number of measured parameters or experimental 

data to inform model parameters.  

Protein-protein interaction (PPI) network models represent the interactions between 

proteins within the context of a cell to allow for identification of key network modules as well as 
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general network structure. These protein-protein relationships are often published in large 

databases and include interactions across species that can be utilized to build these models [35–

37]. A recent paper [38] explored differences in the overall network structure for cytochrome P450 

(CYP) enzymes, which have a major role in metabolizing drugs.  Overall, the authors 

demonstrated that there are network-level differences in PPI networks between rats, humans, 

and mice. This study was a first step in demonstrating key structural differences. Further work is 

needed to understand how changes at the network and structural level impact the differences 

between model organisms and the human response to perturbations, particularly in response to 

therapeutics and potential toxicity.  

Finally, an alternative method that uses the strengths of mechanistic-modeling, such as 

the incorporation of biological knowledge, and the strengths of data-driven modeling is using 

pathway-centric approaches. Previous studies have shown that pathway level activity is more 

translatable between model organisms and humans than homology-based translation of gene 

expression [10,11*,39]. A recent study expanded on this concept by using pathway databases to 

map from differentially expressed genes to transcription factors responsible for the observed 

changes. The authors used both mouse and human data to demonstrate that changes in 

transcription factor levels are indirectly conserved in species-specific responses [40*], suggesting 

that condensing species-specific gene expression changes to the pathway level may help to 

reconcile differences [41*]. Further, recently published pathway databases can help to consolidate 

links between molecular initiating events, such as a change in a specific transcription factor or 

pathway, and adverse toxicological outcomes to help predict if a chemical will elicit a specific 

adverse outcome [42,43]. These pathway-level approaches offer an alternative for reconciling 

known differences between model systems and humans, utilizing existing databases of biological 

knowledge, to more effectively translate between preclinical studies and the clinic.  
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4.5 Conclusions 

As described in this review, systems biology approaches can have significant value in 

delineating the strengths and weaknesses of cross-species comparisons for toxicology 

applications. The methods presented here have advantages and disadvantages (Figure 4.1). 

Machine learning applied to large biological datasets facilitated insights into species-specific 

differences through translation from model organisms to human gene expression and the rational 

selection of model systems. However, limitations of such approaches include: (1) the dependence 

on large amounts of data for both model organisms and humans, and (2) lack of a connection 

between the observed phenotypes and associated mechanisms.  

Mechanistic computational models offer a potential solution to interpret large data sets 

and that can map phenotypes to potential mechanisms. Such models have made progress in 

identifying key mechanisms that govern differences between model organisms and humans. 

However, these methods often require deep biological knowledge that may not be available for 

every disease or compound of interest. In addition, the connection between genotypic differences, 

network structure, and gene expression and the resulting differences in phenotypes is often quite 

complex and much work remains to sufficiently delineate the needed parameters and network 

structures. Together, the approaches presented here offer a myriad of ways to learn from the 

wealth of data and knowledge already published in the literature to gain biological insight on 

species-specific differences of relevance to toxicology. 
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Chapter 5: Discussion and Future Work 
 

5.1 Discussion 

In this dissertation, we provide insight into changes in heart metabolism in diseased states 

as well as novel approaches to integrate experimental data with genome-scale metabolic network 

reconstructions (GENREs). While the first GENREs were developed to study bacterial metabolism 

[1–3], more recent work has developed general models of human metabolism [4–7]. These 

models have been used to study a wide array of diseased states [8–11], identify new drug targets 

[12], and provide a mechanistic understanding of drug side effects [13]. In an attempt to 

disseminate the utility of GENREs to the general community, we have recently published a 

simplified metabolic network, iSIM, with associated methods and code for analyses [14]. Although 

the utility of GENREs has been demonstrated in both bacterial and human models, few studies 

have utilized GENREs to better understand metabolic shifts in the heart. To date, only two 

metabolic models of the heart have been published [15,16]. These models were used to examine 

the relationship between substrate utilization and efficiency of the heart [15], and to predict 

epistatic interactions in the heart and biomarkers of heart disease [16]. However, neither of these 

studies utilized updated, more-comprehensive models of human metabolism. Here, we develop 

new paired models of human- and rat-specific heart metabolism and demonstrate their utility in 

identifying metabolic shifts in both heart failure and in vitro cardiotoxicity.  

 

5.1.1 Identifying metabolic shifts in the context of heart failure and in vitro cardiotoxicity 

using metabolic models 

We built paired human- and rat-specific models of heart metabolism and demonstrated 

their utility in predicting shifted metabolic functions in the context of late-stage human heart failure 

and in vitro cardiotoxicity of primary rat neonatal cardiomyocytes. First, we built a human heart-
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specific model of metabolism using immunohistochemistry data from the Human Protein Atlas 

(HPA) (v18.proteinstlas.org; [17]) and metabolic tasks. Using this approach, we demonstrated the 

utility of the model building process in generating biological knowledge, e.g. through identification 

and addition of reactions related to nitric oxide (NO) synthesis (Chapter 2). Next, we used the 

model to interpret changes in microarray gene expression in late-stage heart failure using the 

novel Tasks Inferred from Differential Expression (TIDEs) approach. It is important to note the 

complexity of late-stage heart failure, both in etiology and progression of the disease. Here, we 

used publicly available datasets for ischemic and idiopathic heart failure to identify commonly 

shifted metabolic functions. As a result of this approach, we propose changes in NO synthesis 

and Neu5Ac synthesis as potential biomarkers of, or targets for, future clinical intervention for 

late-stage heart failure.  

In the context of in vitro cardiotoxicity, we developed a rat-specific heart model to identify 

shifted metabolic functions and reactions that are differentially active in the context of in vitro 

cardiotoxicity. We used paired transcriptomics and metabolomics data to characterize the 

response of primary rat neonatal cardiomyocytes to three compounds: 5-fluorouracil (5FU), 

acetaminophen (Ace), and doxorubicin (Dox). First, using our collected transcriptomics data 

integrated with the rat-specific heart model, we identified the effect of these compounds on 

specific metabolic functions using the TIDEs approach [18]. We identified that both Dox and 5FU 

shifted DNA/RNA synthesis and nucleotide metabolism, consistent with their known 

chemotherapeutic mechanisms of action. For Ace, we identified shifts in phospholipid metabolism, 

suggesting a potential mechanism for cardiotoxicity consistent with toxicity in the liver and kidney. 

The generation of oxidized phospholipids by NAPBQI, a toxic byproduct of Ace metabolism, is an 

established mechanism of Ace toxicity in both the liver and the kidney [19,20]. Across all 

compounds, we identified shifts in nitric oxide (NO) synthesis and ROS detoxification, suggesting 

common mechanisms of cardiotoxicity across compounds.  
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Finally, using a new approach, we integrated our paired transcriptomics and metabolomics 

data to identify shifts in active reactions for compounds. Common across all compounds, we found 

shifts in central carbon metabolism, suggesting unique and divergent pathways for ATP, DNA, 

RNA or biomarker production. For Dox, we confirmed changes in reactions related to ROS 

detoxification that were identified with the Tasks Inferred from Differential Expression (TIDEs) 

approach. For 5FU, we identified unique reactions in fatty acid oxidation and changes in reactions 

involved in central carbon metabolism and beta oxidation of fatty acids. It was surprising to see 

that no pathways related to pyrimidine synthesis were identified as either unique to the 5FU 

condition or different between the 5FU and control condition. However, this would suggest that 

the 5FU condition model utilized pathways for DNA synthesis similar to the control condition. 

Taken with the increased gene expression for metabolic tasks related to DNA and RNA synthesis, 

this suggests that the mechanism of action for 5FU cardiotoxicity is the metabolic stress placed 

on cells for DNA synthesis. Finally, for Ace, we identify unique reactions for carbohydrate 

metabolism and changes in reactions related to the pentose phosphate pathway and nucleotide 

metabolism, suggesting a divergent pathway for nucleotide metabolism or ROS detoxification.  

 

5.1.2 General utility of the Tasks Inferred from Differential Expression (TIDEs) 

approach in identifying shifted metabolic functions from transcriptomics data 

 While previous studies have highlighted the utility of pathway-based approaches [21,22] 

and metabolic tasks [23,24] in GENREs, no studies have used metabolic tasks as a basis for 

interpreting differentially expressed genes (DEGs). Given the complex gene-protein-reaction 

(GPR) rules that govern each metabolic reaction, GENREs provide the opportunity to interpret 

complex changes in gene expression to yield insight into changes in metabolic function in a 

diseased state. Gene enrichment approaches, e.g. gene set enrichment analysis (GSEA) [25], 

are already commonly used to interpret broad pathway-based changes in gene expression. These 
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approaches utilize a priori defined lists of genes describing either a specific pathway or general 

function. In contrast, the approach presented in this dissertation, the Tasks Inferred from 

Differential Expression (TIDEs) approach [18], utilizes an a priori defined list of metabolic 

reactions for different metabolic functions. In this way, complex changes in gene expression are 

distilled down to a weight for each reaction involved in a metabolic function. This approach 

represents a shift from a gene-centric view to a reaction-centric view. In this way, instead of 

weighting genes as equally contributing to a specific pathway or function, the TIDEs approach 

weights reactions as equally contributing to a specific pathway or function.  

Statistical significance for over-enrichment analyses are calculated using a 

hypergeometric distribution [26] while GSEA uses a random-walk approach [25]. In a reaction-

centric approach, such as TIDEs, neither of these statistical tests are appropriate since the log 

fold change of one DEG can determine the weight of more than one reaction. Therefore, rather 

than calculating a statistic directly from the weight of reactions, we compare the average weight 

across reactions in a metabolic task to a distribution of task scores calculated from randomized 

gene expression values (Chapter 2). In this way, we can identify metabolic functions that are 

significantly associated with either increased or decreased gene expression. Similar to an 

interpretation of gene enrichment results, the results from the TIDEs approach are interpreted as 

metabolic functions for which gene expression is higher/lower than would be expected given the 

underlying distribution of the data.  

As with other approaches, before integration of DEGs for analysis, a significance threshold 

is specified, either based on the FDR and/or a log fold change. In the case of the in vitro 

cardiotoxicity data presented here (Chapter 3), there are a large number of DEGs across 

conditions, complicating both the gene enrichment and TIDEs approaches. Given the rationale 

that a consistent change in DEG at a lower log fold change is still relevant [25], we instead chose 

to change the threshold for statistical significance. In the case of gene over-enrichment, we 
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decreased the significance threshold to define a DEG as an FDR < 0.01 and increased the 

significance threshold to defined a significantly changed pathway to a BH-adjusted p-value < 0.1. 

For GSEA, for a number of different combinations of FDR cutoffs, we were not able to identify any 

pathways that were significantly changed, highlighting the complexity of using data with a large 

number of DEGs. For the TIDEs analysis, we also decreased the significance threshold to define 

a DEG to an FDR < 0.01 and increased the significance threshold to define a statistically changed 

pathway to a p-value < 0.1. In this way, we were able to identify both enriched pathways and 

TIDEs. These results highlight the limitations of current approaches and the value of rationally 

interpreting p-values given the data and question.   

 

5.1.3 Difficulty in predicting biomarkers using transcriptomics data integrated with 

metabolic models 

 Here, we sought to use a previously developed algorithm, the TIMBR algorithm [22], to 

integrate transcriptomics data characterizing in vitro cardiotoxicity to predict new biomarkers that 

would be validated with the untargeted metabolomics data. The TIMBR algorithm was developed 

to integrate transcriptomics data in the form of the log fold changes of DEGs with GENREs to 

predict production of metabolites [22]. When we integrated our collected transcriptomics data with 

Figure 5. 1TIMBR predictions compared to measured changes in metabolites.  
(A) TIMBR predictions compared to measured changes in the metabolomic data for the 24-hour condition. The boxes in the upper left-
hand corner indicate the metabolomics data and the bottom right indicate the TIMBR predictions. A red box indicates a significant 
change in the metabolomics data (Mann-Whitney, FDR < 0.1) or the TIMBR predictions (absolute value of the production score > 1). (B) 
Precision and recall for all of the measured metabolomics data across all conditions and timepoints.   
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the rat-specific heart model to predict changes in metabolites, we had low precision and recall for 

predicting metabolites that were measured to be significantly increased or decreased in the 

metabolomics data (Figure 5.1). However, agreement between TIMBR predictions and 

metabolites measured to be changed does allow for the identification of potential pathways of 

production. For example, in the case of thymidine production, TIMBR correctly predicted a 

decrease in the production of thymidine for both Ace and 5FU at 24 hours. In addition, TIMBR 

provides predictions for all metabolites that the model can produce given the supplied media 

constraints. Predicted metabolites that were similar across conditions or were associated with 

scores that were high within a condition are optimal metabolites for more targeted validation in 

vitro. The heterogeneous precision and recall for differentially produced metabolites indicated that 

another approach for integrating the transcriptomics and metabolomics data may provide more 

tractable results in identifying potential biomarkers of cardiotoxicity.  

 Prior to implementing the approach presented in this dissertation (Chapter 3), we 

attempted other iterations around the central idea of the TIMBR algorithm. Each of these iterations 

was centered around a different hypothesis for the production of biomarkers. For example, (a) 

implementing TIMBR while placing constraints based on measured uptake in the metabolomics 

data (assuming that the metabolomics data would more accurately constrain the solution space), 

(b) implementing an alternative algorithm, RIPTiDe [27], to predict pathway utilization and 

pathway weights for biomarker production (assuming that DEGs lose information and RIPTiDe 

with transcript abundances could more accurately predict production), and (c) implementing 

RIPTiDe to generate one model producing a minimal amount of ATP while optimizing production 

of metabolites (assuming that biomarkers are produced in response to a central cell function). 

None of these iterations improved predictions.  

There are multiple reasons why the TIMBR algorithm, and these alternative approaches, 

did not capture changes in metabolite production. First, the metabolomics data captures mostly 
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central metabolites that may (a) be subject to higher levels of regulation, both transcriptionally 

and metabolically, (b) participate in more reactions, or (c) be produced by more than one pathway, 

making accurate predictions more difficult. Second, the large number of DEGs in the data set 

could have influenced the accuracy of the results, as we saw with the gene enrichment and TIDEs 

approaches. With a large number of DEGs and a large range of fold changes, small but concerted 

changes in individual pathways could fail to reach statistical significance. Finally, the original 

TIMBR algorithm utilized a well-defined objective function for hepatocyte function to make 

predictions for biomarkers [22]. Here, a more well-defined objective for the heart may help to 

improve predictions. Nonetheless, thoroughly probing these hypotheses was outside the scope 

of this dissertation. Given there are no other approaches to our knowledge that predict metabolite 

production with GENREs and transcriptomics data, we chose to develop a novel approach that 

would allow for the integration of our model with our paired transcriptomics and metabolomics 

data.  

Our novel approach was, again, based on the assumption that metabolic biomarkers are 

produced as a result of changes in the central function of the cell. For the heart, we chose to 

optimize ATP hydrolysis with a baseline production of DNA and RNA (Chapter 3). Here, we 

demonstrate the utility of integrating paired data in generating new predictions about reactions 

unique to specific condition and changes in reaction fluxes between treatment and control 

conditions, specifically in the case of in vitro cardiotoxicity. Through our results, we show the 

benefit in taking both a metabolic task-based approach through TIDEs and a systems-level 

approach by building condition-specific models using RIPTiDe. While we are able to identify 

changes in metabolic functions using metabolic tasks, these functions do not operate 

independently. The RIPTiDe approach emphasizes that these metabolic functions work together 

to achieve an end goal in the cell, and the approach highlights the additional insight that is gained 

by using this systems-level approach.  
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It is important to note the difficulty in integrating unitless metabolomics data with GENREs. 

Here, we rationally identified lower bounds for metabolites that were measured to be consumed 

or produced in a given condition. However, in the case of metabolites that were differentially 

produced between conditions, e.g. between a treatment and control, we placed no additional 

bounds due to the difficulty in identifying an appropriate bound for a measured statistical change 

in production.  

 

5.1.4 RIPTiDe models highlight the utility of integrating both transcriptomics and 
metabolomics data 

Here, as with previous studies [28,29], we have chosen to characterize in vitro 

cardiotoxicity using paired transcriptomics and metabolomics data. Given the size of the human 

model, it can be difficult to sufficiently constrain the solution space to identify concrete changes 

in metabolism. We see this clearly in the difficulty in predicting changes in metabolite production 

using transcriptomics data alone. Here, integrating the transcriptomics data alone or the 

metabolomics data alone with the RIPTiDe approach (Figure 5.2) demonstrates unique flux 

distributions. However, we see clear separation when we integrate both types of data together, 

highlighting the utility of both data types in constraining the solution space to capture differences 

in metabolism.  
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Figure 5.2 Integrating both metabolomics 
and transcriptomics data reveals unique 
metabolism compared to either alone.  
(A) NMDS of shared reactions fluxes for the 
50 flux samples for each condition after 
integrating only the transcriptomics data with 
the defined experimental media. (B) NMDS 
of shared reaction fluxes for the 50 flux 
samples for each condition after integrating 
only the metabolomics data as constraints on 
production and consumption of metabolites 
for each condition. In this case, RIPTiDe 
determines the most parsimonious route of 
flux. 

 

5.2 Future work 

5.2.1 Experimentally confirming 

identified shifts in toxicity 

Across all compounds, we identified a consistent shift in gene expression for NO synthesis 

and ROS detoxification, representing common biomarkers of in vitro cardiotoxicity. Future work 

will explore the use of fluorescent markers of ROS production in response to all three compounds. 

In the case of Ace, given the increased gene expression for phospholipid synthesis and the role 

of oxidized phospholipids in liver and kidney toxicity, specific markers of lipid peroxidation should 

be explored. Given that ROS production is an established mechanism for doxorubicin-induced 

cardiotoxicity, current methods for measuring ROS in vivo [30] can be directly translated to the 

clinic for both doxorubicin and 5-fluoruracil as potential early biomarkers of cardiotoxicity.   

Given that the RIPTiDe approach identified divergent reactions for central carbon 

metabolism, predictions of differences in flux for these pathways can be validated using carbon 

tracing to confirm the role that central carbon metabolism plays in response to the compounds 

[31,32]. Further, measurements of internal flux rates can help to further constrain the model to 

improve predictions. Finally, as has been done with other studies [33], select external flux uptake 

rates can confirm the carbon sources that the model predicts were utilized but were not measured 

in the metabolomics data for each context-specific condition. As with carbon tracing, these flux 
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measures will help to validate the flux distributions predicted with the RIPTiDe models and help 

to further constrain the solution space for more accurate predictions.  

Although we highlight the limitations of the TIMBR algorithm in this context, the 

metabolites that were predicted to be consistently increased across conditions are potential 

biomarkers that warrant further exploration. As highlighted previously, the metabolites measured 

in the metabolomics dataset may be particularly difficult to predict for a number of reasons. 

However, TIMBR provides predictions for both these central metabolites and more peripheral 

metabolites. Consistent changes in more peripheral metabolites across treatments are 

metabolites that should be investigated further. Finally, because TIMBR utilizes transcriptomics 

data for these predictions, we are able to identify both the pathway predicted for a change in 

production and the genes driving the reactions present in that pathway. Even for incorrect 

predictions, the TIMBR approach is a data-driven approach that is reflecting changes in the 

transcriptomics data that warrant future exploration.  

 

5.2.2 Developing a more comprehensive, heart-specific objective function to probe 

changes in metabolism 

As mentioned above, here we chose to use ATP production with minimal synthesis of RNA 

and DNA as an objective function. However, this objective function does not capture key features 

of heart metabolism, such as synthesis of key proteins and maintenance of phospholipids for both 

the cell membrane and mitochondria. In the case of Ace in vitro cardiotoxicity, we identified 

changes in metabolic functions related to phospholipid synthesis. However, given that 

phospholipid synthesis was not included in the objective function, the RIPTiDe models do not 

capture differences in this function in response to the compounds. An improved objective function 

could also help to improve some of the TIMBR predictions, assuming that biomarkers are 

produced as a result of general cell function.  
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In addition, future work should explore utilizing compound-specific objective functions. In 

the case of Dox, given that excessive ROS production is a mechanism of cardiotoxicity, ROS 

should be forced into the models to study the overall effect on metabolism. In the case of 5FU, 

the models should be required to synthesize either more DNA or RNA, or more specifically, UTP. 

Integration of these compound-specific objective functions would be evaluated using the 

Spearman correlation between reaction fluxes and transcript abundances produced by the 

RIPTiDe algorithm [27], where an increased correlation would signify that the given objective 

better captures the underlying biology. Recent updates to the RIPTiDe package employ a brute-

force approach in identifying the fraction of the objective value that best fit the data, and are 

therefore suited to answer these questions about the relationship between RNA or DNA synthesis 

and ROS production as mechanisms of toxicity.  

 

5.2.3 Integrating human-specific data to identify shared biomarkers of doxorubicin-

induced cardiotoxicity 

As has been highlighted previously (Chapter 4), there are limitations to translating 

biological discoveries between in vitro and in vivo studies as well as between model organisms 

and humans. The paired nature of the human and rat-specific heart models presented in this 

dissertation provide the opportunity to identify shared biomarkers of cardiotoxicity. Published 

transcriptomics data is available for human-induced pluripotent stem cell cardiomyocytes (hiPSC-

CMs) treated with doxorubicin [34] or trastuzumab [35], two compounds associated with 

cardiotoxicity [36,37]. While these studies only collected transcriptomics data, the presented 

approach can still help to highlight metabolic differences that are consistent with the in vitro rat 

cardiotoxicity data presented here. Shared metabolic reactions identified using the TIDEs 

approach or unique metabolic reactions identified using the RIPTiDe approach would indicate 
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specific transcripts, metabolites, or metabolic functions that warrant future study as translational 

biomarkers.  

5.2.4 Developing pathway tracing algorithms 

Here, we demonstrate the utility of integrating paired transcriptomics and metabolomics 

data to identify shifts in active reactions between treated and control conditions. However, the 

current state of the field is limited in tracing how changes in flux through a particular reaction 

propagate through the network. For example, we identify changes in active flux through reactions 

related to central carbon metabolism for all of our treatment groups. However, we cannot, at this 

point, determine the source or effect of that change in flux, i.e. changes in carbon source 

utilization, changes in pathways for nucleotide metabolism, or changes due to biomarker 

production. Future work should explore developing and using pathway tracing algorithms to 

identify what is influencing changes in one reaction in the network. Previous work has been done 

in developing pathway tracing algorithms [38,39]. However, none of these approaches have 

publicly available code.  

5.2.5 Implementing a transcript-based TIDEs approach 

The presented TIDEs approach uses an a priori defined list of reactions for each metabolic 

task [18]. For some metabolic tasks, such as synthesis of NO from arginine, there is only one 

pathway available in the model to complete the task. However, for others, such as synthesis of 

DNA, there are multiple parallel pathways available. In the current state, the TIDEs approach 

cannot capture these different pathways for completion of a metabolic task. However, the RIPTiDe 

algorithm provides the opportunity to integrate transcript abundances to identify the most feasible 

path of flux to meet these individual metabolic tasks. Future work should explore integrating the 

TIDEs approach with RIPTiDe to identify the most feasible path of flux for specific metabolic tasks. 

While many functions for implementing analyses with GENREs are available in both MATLAB 
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and Python, the functions for testing metabolic tasks are currently only available in MATLAB. 

Therefore, these functions will need to be extended and re-written in Python in order to utilize the 

TIDEs approach with the RIPTiDe algorithm. Further, integration of transcript abundances would 

complicate the current approach, which utilizes the average weight across reactions in a 

metabolic task to calculate a task score. Future work would need to explore statistical approaches 

for determining differences in metabolic tasks based on transcript abundances rather than log fold 

changes within a metabolic task. 

 

 

 

5.2.6 Future manual curation of the human and rat models using collected paired data 

The paired transcriptomics and metabolomics data presented here adds to other paired 

data that has been collected to characterize in vitro hepatoxicity [28] and nephrotoxicity [29]. 

Together, this paired data can enable extensive manual curation of the current general human 

reconstructions. For example, in the presented paired integration of the transcriptomics and 

metabolomics data (Chapter 3), a number of metabolites that were measured to be either 

produced or consumed in the metabolomics were either not included in the genera 

reconstructions or could not be produced or consumed in the heart-specific model given the 

constraints. These discrepancies provide opportunities for future curation to both the general 

models of human metabolism and the heart-specific models.  

 

5.3 Conclusion  

In conclusion, here we present new paired data characterizing in vitro cardiotoxicity and 

new methods for integrating experimental data with GENREs. We present new hypotheses for 
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mechanisms of compound-induced cardiotoxicity based on our collected data integrated with 

GENREs. These model generated hypotheses demonstrate the utility of GENREs in identifying 

metabolic changes in the heart and provide direction for future experimental validation. The 

methods presented here can be extended beyond the context of the heart and applied to other 

tissue-specific models and diseased states in humans as well as with microbial reconstructions. 

Finally, the identified biomarkers can, hopefully, eventually lead to clinical biomarkers to diagnose 

and prevent cardiotoxicity in the clinic.  
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