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Abstract

Modern machine learning (ML) models have shown strong empirical performance across a wide range

of domains. However, they tend to use spurious correlations between target labels and non-essential

spurious attributes for predictions, leading to right predictions for the wrong reasons. For example,

an image classifier may identify objects based on frequently co-occurring backgrounds rather than

the defining features of the objects. This phenomenon, known as spurious bias, can significantly de-

grade model performance under distribution shifts, where the learned spurious correlations no longer

hold, limiting the model’s reliability and generalizability in real-world scenarios. This dissertation

focuses on spurious bias mitigation for learning ML models that can generalize reliably and robustly

in new environments with unknown or known distribution shifts. We propose novel methods tai-

lored for out-of-distribution generalization and generalization under subpopulation shifts, addressing

unknown and known distribution shifts, respectively. For out-of-distribution generalization, where

target data distributions are unknown during training, we propose to synthesize spurious attributes,

such as novel image styles, to explore new data distributions. We design learning algorithms that

integrate data exploration into the learning of robust and generalizable features, and demonstrate

their effectiveness in challenging settings such as few-shot learning and single domain generalization.

Under subpopulation shifts, where proportions of certain data groups are known to vary between

training and testing but group annotations are not generally accessible, models may inadvertently

rely on spurious attributes in certain data groups for predictions. To address this, we propose

multimodal-assisted methods to detect and mitigate spurious bias using pre-trained vision-language

models. We further propose fully self-guided methods that leverage internal states of a model for

automatic spurious bias detection and mitigation. By directly addressing spurious bias, this disser-

tation advances the development of robust and trustworthy ML models that make right predictions

for the right reasons, improving their reliability across diverse environments.
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Chapter 1

Introduction

1.1 Spurious Correlations

Modern machine learning (ML) models have shown strong empirical performance in many application

areas. However, this may be achieved by exploiting spurious correlations [2, 3, 4, 5] in the input

data. Spurious correlations are brittle associations between spurious attributes of input samples and

the corresponding target labels. Figure 1.1 illustrates a spurious correlation between the target Y

of an input X and the spurious attribute A determined by a hidden environment variable E. For

example, in an environment E where images show a cow on a grassland, the target Y=cow and the

attribute A=grassland formulate a spurious correlation, and the correlation will break in a new

environment E′ where all images show the correlation between Y=cow and A′=beach [2, 6]. The

attributes grassland and beach are spurious as they are non-essential to the label cow and are not

truly predictive of cows in all possible images.

Figure 1.1: Illustration of a spurious correla-
tion between the target Y and the spurious
attribute A.

Spurious correlations are prevalent in real-world

learning scenarios and tend to be learned by ML

models as their decision shortcuts. Common exam-

ples include identifying a cow in an image by sim-

ply detecting the grassland background in the image

rather than the cow itself [2, 6], or detecting pneumo-

nia by only identifying hospital-specific metal tokens

in chest X-ray scans [7]. The tendency of using spu-

rious correlations in predictions, known as spurious bias, can result in high overall performance
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Figure 1.2: Overview of our contributions. We propose to mitigate spurious bias to improve models’
generalization under distribution shifts. We consider out-of-distribution generalization (left) and
generalization under subpopulation shifts (right), covering unknown and known distribution shifts,
respectively. We propose to explore new data distributions by synthesizing spurious attributes
to mitigate spurious bias for models generalizing to new domains and new classes with a few la-
beled samples. To mitigate spurious bias for generalizing under subpopulation shifts, we propose
multimodal-assisted and self-guided methods to automatically detect and mitigate spurious biases
in models.

when the test data is similar to the training data. However, the bias can also lead to poor general-

ization under distribution shifts where the spurious correlations do not hold, such as the chest X-ray

scans with new metal tokens. Consequently, the non-robustness caused by spurious bias can pose

significant risks, especially in critical domains.

Mitigating spurious bias is crucial for obtaining robust and generalizable models under dis-

tribution shifts, ensuring that the models are reliable and trustworthy. In this dissertation, we

design a suite of spurious bias mitigation methods to improve model generalization under a wide

range of distribution shifts. In particular, we consider out-of-distribution generalization and

generalization under subpopulation shifts, covering unknown and known distribution shifts,

respectively.

1.2 Out-of-Distribution Generalization

For out-of-distribution generalization, we consider two common settings: (1) generalizing to novel

domains [8, 9, 10, 11] and (2) generalizing to novel classes with a few labeled samples [12, 13, 14,

15, 16].
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Generalizing to Novel Domains. In this setting, the goal is to train a model on a source domain

that can directly generalize (without any fine-tuning) to novel domains that differ in styles but share

the same targets as the source domain, such as the images of horse and guitar in the left part of

Figure 1.2. Spurious bias is often developed from the model’s strong reliance on domain-specific

features and can be revealed by a significant performance drop of the model on samples without

those features, i.e., samples from novel domains. However, since samples from novel domains are

inaccessible during training, it is challenging to reveal spurious bias and then mitigate it accordingly.

A common and practical solution is to produce potential domain shifts through data augmentation

and mitigate the model’s reliance on domain-specific features [17, 18, 19, 20, 21]. However, existing

approaches often produce limited domain shifts or the produced domain shifts do not benefit model

generalization, resulting in suboptimal mitigation of spurious bias.

Generalizing to Novel Classes. In this setting of out-of-distribution generalization, the goal is to

quickly adapt a base model to recognize novel classes with a few labeled samples from these classes

(e.g., one sample per class) [22, 23, 12]. Spurious bias often arises from the complex interaction

between the prior knowledge in the pre-trained base model and the learning from a few samples of

novel classes during the adaptation process. For example, the prior knowledge in the base model

may bias the adaptation process so that the adapted model recognizes novel objects in images by

solely identifying backgrounds in the images, thereby hindering the generalization to novel classes.

Existing approaches [22, 24, 25, 23, 12, 26, 15] mainly focus on training a base model that works

well with a specifically designed adaptation method so that a few labeled samples can be effectively

used to learn novel classes. However, since only a few labeled samples of novel classes are available

for adapting the base model during testing, it is challenging to identify and then mitigate the

spurious biases developed during the adaptation process. Therefore, generalization to novel classes

may be limited. In such a case, data augmentation [27] remains an effective and practical approach

to produce new data distributions and mitigate the reliance on spurious correlations. However,

the existing approach [27] adopts a manual design of data augmentation strategies and does not

consider data augmentation and spurious bias mitigation in tandem, limiting the generalization to

out-of-distribution data.
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1.3 Generalization under Subpopulation Shifts

Subpopulation shifts [28, 29] are known a priori compared with distribution shifts induced by novel

classes or domains. They refer to changes in the proportion of certain subpopulations or groups of

data between training and testing. For instance, as shown in the right part of Figure 1.2, images

of cows on grass fields constitute 90% of the training data but only 10% of the test data, while

images of cows on beaches become the majority, comprising 90% of the test data. Models trained

in this setting tend to exploit the spurious correlations in the majority data for predictions and

achieve high overall performance on the data with a distribution similar to that of the training data.

However, these models tend to perform poorly overall on the test data with subpopulation shifts, or

equivalently, on certain subpopulations of the test data.

To improve model generalization under subpopulation shifts, mitigating spurious bias is crucial.

Unlike the out-of-distribution generalization, this setting generally assumes that the training data

contains all spurious correlations that may occur in the test data, which allows detection of spurious

biases in models and design of targeted mitigation strategies during training. However, annotations

of spurious correlations are typically required [3, 30]. Each annotation, also known as a group

label, is a tuple of a class label and a spurious attribute. In practice, acquiring group labels is a

significant barrier as it requires costly and labor-intensive human annotations. Recent approaches

relax the requirement on group labels of the training data by using proxy signals such as prediction

losses [31, 32], misclassification [33], or inferred group labels [34, 35], or by fine-tuning on a small

portion of validation set with ground truth group labels [4]. Nevertheless, all existing approaches

are not completely annotation-free as they still require a validation set with such annotations to

select robust models during training.

1.4 Dissertation Contributions and Organization

As depicted in Figure 1.2, we propose three categories of methods: synthesizing spurious attributes,

multimodal-assisted, and self-guided methods, addressing unique challenges of spurious bias miti-

gation under unknown and known distribution shifts. The contributions and organization of the

dissertation are summarized as follows:

• Synthesizing Spurious Attributes (Chapter 3). We propose to generate out-of-

distribution data by synthesizing spurious attributes for improving model generalization

to novel domains [36] in Chapter 3.1 and to novel classes [37] in Chapter 3.2. We synthesize

4



spurious attributes via data augmentations optimized for a given model, producing diverse

spurious attributes and effectively reducing the model’s reliance on specific ones, in particular

low-level spurious attributes such as certain pixels or orientations of images. In Chapter 3.3,

we propose to synthesize spurious attributes via a dictionary of learnable latent features which

represent high-level spurious attributes such as certain background objects, for generalizing to

novel classes [38].

• Multimodal-Assisted Methods (Chapter 4). Vision-language models (VLMs) [39, 40,

41] have demonstrated a strong multimodal understanding capability in detecting high-level

attributes of images, such as gender or background objects. In Chapter 4.1, we demonstrate

that the detected attributes from a VLM can be used to create challenging subpopulation shifts

in various classification tasks [42]. With the assistance of VLMs, we propose to automatically

detect and mitigate spurious biases in trained models via fine-grained classification on both

class labels and detected spurious attributes [5] in Chapter 4.2 and via meta-learning [43]

in Chapter 4.3. With pre-trained VLMs, our proposed methods can effectively build models

robust to spurious bias and improve their generalization under subpopulation shifts without

costly spurious correlation annotations.

• Self-Guided Methods (Chapter 5). We propose self-guided methods for spurious bias

mitigation by probing the latent space of a model. In Chapter 5.1, we propose to probe the

latent representations in a model to detect prediction shortcuts and use them to regularize

the model for enhanced robustness to subpopulation shifts [44]. In Chapter 5.2, we propose to

identify latent dimensions affected by spurious bias and mitigate their contributions to final

predictions [45]. In Chapter 5.3, we further extend our efforts to mitigate spurious bias in

multimodal models by leveraging the similarities between vision and text representations to

select prompts for mitigating spurious bias in zero-shot classification. Exploiting models’ latent

representations is free from requiring spurious correlation annotations and can be applied to

different data modalities.

Our research advances the development of robust and trustworthy ML models that make right

predictions for the right reasons, improving their reliability across diverse environments.
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Chapter 2

Related Work

Spurious correlations describe superficial associations between spurious, non-essential attributes and

targets in data [46], and they can be used by machine learning models as shortcuts [47, 6, 48, 49]. This

shortcut learning phenomenon in machine learning models results in spurious bias — the tendency

to use spurious correlations in data for predictions. Spurious bias may surface in various learning

scenarios and affect how models generalize to different test data distributions. In this chapter, we

discuss related works on training models that can generalize to novel domains (Chapter 2.1), to

novel concepts with a few labeled samples (Chapter 2.2), and to subpopulation shifts (Chapter 2.3)

from the perspective of spurious bias mitigation.

2.1 Generalizing to Novel Domains

Generalizing to novel domains requires models to learn robust and domain-invariant features. Ma-

chine learning models tend to spuriously associate their predictions with domain-specific attributes

from source domains, such as associating the predictions on digit images from MNIST [50] with digit

size or with the black-and-white image style. Domain generalization methods [8, 9, 10, 11] aim to

address this problem. They do not require samples from target domains during training; however,

they typically use training samples from multiple source domains instead of one to facilitate learning

domain-invariant features. In this dissertation, we consider a more practical scenario, i.e., single do-

main generalization (SDG), where there is only one single source domain for training and no access

to target distributions.

Existing methods on SDG aim to perturb or generate samples with spurious and out-of-domain

attributes to improve generalization to novel domains. These methods can be broadly classified into
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the following three categories. First, methods that use standard data augmentation [17, 18, 19, 20,

21] can be used to augment the source domain data for out-of-distribution generalization, but they

are not very effective in generating samples with large distribution shifts. Second, adversarial data

augmentation methods typically augment the source domain data by generating samples either in the

pixel space [51, 52] or via perturbing latent feature statistics [53, 54], but these methods also struggle

to produce samples with diverse spurious attributes. Third, generative modeling methods [55, 56, 57]

use generative models to produce diverse training samples. However, since generative models are

also learned from the source domain, the styles of the generated samples are still related to those in

the source domain.

To produce samples with large domain shifts for generalizing to novel domains, semantics trans-

formations [58] are proposed to manipulate certain kinds of semantics of an image, such as hue and

saturation [59] or color and texture [60]. These transformations are used to produce “unrestricted”

perturbations [60] in adversarial samples, which are traditionally generated by finding imperceptible

perturbations under a norm ball constraint [60]. Semantics transformations have also been used to

improve few-shot generalization [37] via meta-learning [22, 25, 26]. However, these methods cannot

be directly adopted in our problem setting since they focus on performing adversarial attacks, while

our goal is to improve a model’s SDG performance.

Our proposed method, termed adversarial semantics transformations (AdvST) [36], mitigates a

model’s over reliance on spurious and domain-specific attributes by synthesizing diverse spurious

attributes using semantics transformations (Chapter 3.1). AdvST is motivated from the success of

standard data augmentation methods, such as rotation, scale, and color jittering, in training robust

models. It repurposes these augmentation methods as semantics transformations with learnable

parameters, generating samples with large domain shifts from the source domain. Compared with

a similar method, Adversarial AutoAugment [61], which adversarially learns augmentation poli-

cies to improve in-domain generalization performance, AdvST uses semantics transformations to

manipulate the semantics of an image, such as the hue or rotation degree, that is independent of

the source domain, allowing us to inject external styles to the generated samples. Moreover, Ad-

vST directly generates worst-case samples to improve out-of-domain generalization performance. A

parallel work [62] uses a pre-defined set of linguistic transformations, such as negation and para-

phrasing, to augment text data for improved vision-language inference performance. However, these

transformations do not have learnable parameters and cannot be fine-tuned into different ones.
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2.2 Generalizing to Novel Classes

Generalizing to novel classes or concepts with a few labeled examples is a key aspect of human-

like intelligence, as humans can quickly learn new concepts with minimal supervision. However,

modern machine learning models typically require large amounts of training data to achieve high

performance. With a few labeled samples for learning novel classes, models often overfit to spurious

correlations in those samples and struggle to generalize to out-of-distribution data of the novel

classes [22, 63, 42].

Few-shot classification [23, 12, 64, 65, 66, 67] serves as a practical and representative task for

studying this learning scenario and has received great attention recently. Existing methods tackle

few-shot classification by designing data augmentation methods or data-efficient learning algorithms.

Existing approaches that design learning algorithms can be broadly categorized into meta-

learning and transfer learning. The transfer learning approach [64, 66] first trains a robust em-

bedding model on a base dataset and then fine-tunes it with a few labeled samples from novel

classes. In contrast, meta-learning, which is the dominant approach in few-shot classification, lever-

ages a learning-to-learn paradigm, where models are trained across multiple tasks to learn to extract

robust and non-spurious features so that they can generalize to unseen tasks using limited data. A

task is designed to have a support set and a query set. The support set is used in the inner loop

of meta-learning for adapting a model’s parameters to novel classes. The query set is used in the

outer loop of meta-learning to update the model for better adaptation to the novel classes. Many

meta-learning algorithms can be further divided into optimization-based and metric-based methods.

Optimization-based methods [22, 24, 25] use gradient descent to update part or all model parame-

ters in the inner loop to learn a good model initialization that can be fast adapted to a new task

within a few gradient descent steps. In contrast, metric-based methods [23, 12, 26, 15] learn a shared

embedding network for different tasks with specialized metric functions for classification, such as

an SVM classifier [14], a prototype-based classifier with Euclidean distance [12], or a classifier with

Earth Mover’s distance [68].

Some recent works [27, 69, 70] propose to increase the diversity of tasks in meta learning via data

augmentations to mitigate reliance on spurious correlations. By default, many meta-learning algo-

rithms adopt simple data augmentation operations on images in meta-training. A recent work [27]

analyzed how support, query, task, and shot augmentations affect the performance of various meta-

learning algorithms. Then, they proposed a set of manually designed augmentation policies for

meta-learning. However, these policies are manually designed and not directly optimized for meta-
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learning. Instead of focusing on the input space, some recent works [69, 70] propose feature mixing

and task interpolation to increase the diversity of tasks and mitigate overfitting for gradient-based

meta-learning.

We propose the following two methods that improve model generalization to out-of-distribution

data from novel classes:

• Learn to learn task transformations (L2TT) [37] (Chapter 3.2): a data augmentation method

that leverages differentiable image operations to construct a learnable task transformation

layer that can be directly integrated into existing meta-learning frameworks. Compared with

automatic data augmentation [71, 72, 73] which finds augmentation policies, differentiable data

augmentation [74, 75, 76] is a promising paradigm for data augmentation without resorting

to expert knowledge and greatly reduces the cost of searching for optimal data augmentation

policies via differentiable image operations. Different from existing differentiable data aug-

mentation methods which often rely on an adversarial loss [75] or an extra reward signal [71]

to learn augmentation policies, our method does not have this limitation thanks to the bi-level

learning structure of meta-learning. Moreover, instead of simply creating diverse data sam-

ples, our proposed L2TT layer optimally transforms training tasks for different meta-learning

settings to reduce reliance on spurious correlations in a few labeled samples and improve gen-

eralization to new concepts with limited data.

• Knowledge-guided semantics adjustment (KGSA) [38] (Chapter 3.3): a metric-based meta-

learning method that leverages a model’s latent and semantically meaningful representations

to synthesize and mitigate spurious features. Different from existing metric-based methods [23,

12, 26, 15], our method meta-learns a dictionary of spurious features which are adaptively

combined and then mitigated from input samples of novel classes. In comparison with the

work [77] which obtain classifier weights from external sources, such as class attributes, our

work obtains classifier weights only from the training data and adjusts them to mitigate reliance

on non-essential features. Additionally, unlike the work in [78] where a shallow network is used

to linearly combine memory features and class centroids for a long-tailed recognition problem,

our work stores a set of spurious and class-agnostic semantic features that are meta-learned

from the training data.

9



2.3 Generalizing under Subpopulation Shifts

Subpopulation shifts are changes in the proportion of certain subpopulations or groups of data be-

tween training and testing [28, 29]. A model with spurious bias tends to have degraded performance

on data with shifts in spurious correlations where the learned spurious correlations no longer exist

or dominate in data. For example, in the training data, the majority of cow images have grass fields

and images of a cow at a beach are the minority; but in the test data, images of a cow at a beach

are the majority while images of a cow on a grass field become the minority.

It is critical to mitigate spurious bias for improving a model’s robustness to subpopulation shifts.

Oracle methods exploit ground truth group labels during training to mitigate the reliance on specific

spurious correlations. Here, group labels, specified by class labels and spurious attributes, indicate

the presence of spurious correlations in subsets of the training data. Some existing methods [79, 80,

81] use group labels to balance data distributions during training, to formulate a distributionally

robust optimization objective [3], or to progressively expand group-balanced training data [30].

Although these methods achieve remarkable success in spurious bias mitigation, the reliance on

group labels becomes a barrier in practice, as obtaining such labels often requires domain knowledge

and labor-intensive annotation efforts.

To alleviate the dependency on group labels during training, existing approaches propose inferring

group labels through various means, such as identifying misclassified samples [31], clustering hidden

representations [35], employing invariant learning techniques [82], or training group label estimators

using a few samples with group labels [34]. Nevertheless, group labels in the validation data are

still needed to specify which biases to address and to select models robust to these biases. Recent

last-layer retraining methods [4, 83] leverage group-balanced validation data to fine-tune the last

layer of a model.

Without group labels, directly detecting spurious bias typically requires domain knowledge [84,

85] and human annotations [86, 87]. For example, previous works exploit domain knowledge to

discover that object backgrounds [49] and image texture [48] could be spuriously correlated with

target classes and severely bias the predictions of deep learning models. Recent works [88, 89] use

model explanation methods to detect spurious features. Neurons in the penultimate layer of a robust

model are also exploited for spurious feature detection with limited human supervision [90, 91].

To automatically detect and effectively mitigate spurious bias in models without group labels or

human annotations, we propose multimodal-assisted and self-guided methods.
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For multimodal-assisted methods, we propose to exploit the prior knowledge in pre-trained

vision-language models (VLMs) and their multimodal understanding capabilities to automatically

detect spurious attributes in interpretable text format. We show that these detected attributes can

be used to construct various challenging classification tasks with subpopulation shifts [42] (Chap-

ter 4.1). A recent work [92] proposes to use a pre-defined concept bank as an auxiliary knowledge

base for spurious attribute detection. In contrast, we propose a fully automatic spurious attribute

detection method leveraging pre-trained VLMs. We further propose self-debiasing algorithms that

mitigate the reliance on detected spurious attributes via fine-grained classification on both classes

and the detected attributes [5] (Chapter 4.2) and via meta-learning [43] (Chapter 4.3). Our pro-

posed mitigation algorithms can effectively use the extracted attributes for spurious bias mitigation

without requiring group labels.

For self-guided methods, we propose to leverage the latent representations in a model for ex-

tracting signals related to spurious bias and mitigating it accordingly. Specifically, we propose

ShortcutProbe [44] which leverages a probe set of data to derive shortcut vectors in a model’s la-

tent space that represent spurious bias and uses these vectors as regularization to mitigate spurious

bias (Chapter 5.1). We further propose NeuronTune [45], a fine-grained mitigation strategy by de-

tecting neurons that are affected by spurious bias via the distributions of their activation values

(Chapter 5.2). These approaches are modality-agnostic and do not require group labels. Finally,

we extend our effort to multimodal models and propose to use the similarities between latent rep-

resentations for vision and text inputs to guide the selection of prompts to mitigate spurious bias

in multimodal models in zero-shot classification (Chapter 5.3). Debiasing in the zero-shot setting

targets at the multimodal spurious bias developed in the pre-training phase, where text represen-

tations of targets tend to be misaligned with spurious features that frequently co-occur with target

objects in images [93]. Methods for mitigating multimodal spurious bias without downstream data

typically exploit easily obtained text data. Chuang et al. [94] generates text prompts with known

spurious attributes to debias the weights of a zero-shot classifier constructed from a pre-trained con-

trastive language-image pre-training (CLIP) model. Adila et al. [95] leverage large language models

(LLMs) to obtain spurious and core attributes of class labels and use these attributes to enhance

image representations from a pre-trained CLIP model. While our work also focuses on the zero-shot

setting, we propose a self-adaptive spurious bias mitigation method that explores prompts provided

with pre-trained CLIP models, without requiring external assistance, such as relying on LLMs or

specific knowledge about downstream tasks.
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Chapter 3

Synthesizing Spurious Attributes

for Out-of-Distribution

Generalization

In out-of-distribution generalization, target data distributions are unknown during model training.

Machine learning models with spurious bias may fail to generalize to out-of-distribution target data

since the learned spurious attributes in the training data may not exist in the test data. Our strat-

egy is to synthesize spurious attributes via data augmentations to explore new data distributions,

encouraging models to learn robust and generalizable features. In this chapter, we consider few-

shot learning and single domain generalization as the two challenging settings of out-of-distribution

generalization. In few-shot learning, models may use the spurious correlations captured from the

large set of training data for learning novel classes from a few labeled samples, resulting in inferior

few-shot generalization performance. In single domain generalization, models may use the spurious

correlations captured in the source domain for predictions, resulting in degraded performance on tar-

get domains where the learned spurious correlations no longer exist. In this chapter, we first propose

an adversarial data augmentation framework to adaptively generate data with challenging spurious

attributes for single domain generalization in Chapter 3.1. Then, in Chapter 3.2, we propose a meta-

learning framework with adaptive data augmentations to synthesize various spurious attributes using

training data for improved few-shot generalization. In Chapter 3.3, we propose a knowledge-guided
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semantics adjustment meta-learning framework to synthesize and mitigate spurious features in the

latent space of few-shot classifiers.

3.1 AdvST: Adversarial Learning with Semantics Transfor-

mations

3.1.1 Introduction

Domain generalization [8, 96, 97, 9] aims to learn a model that can generalize well to target (test)

domains with unknown distribution shifts using multiple source (training) domains. These source

domains contain various spurious attributes, allowing the model to learn robust decision rules against

spurious attributes. However, having diverse domains for training is a strong assumption due to vari-

ous practical considerations, such as data collection budgets or privacy issues. A realistic alternative

is single domain generalization (SDG) [52, 97], which only requires data from a single source domain

for model training. SDG is challenging for deep image classifiers. Although they have achieved im-

pressive performance on benchmarks, they strongly hinge on the implicit assumption that training

and test data follow the same distribution. Their performance can drop significantly when they use

spurious correlations for predictions and there are shifts between training and test data distributions

caused by, for example, changes in object appearance or data collection methods.

Data augmentation is an effective approach to SDG. It augments the source domain data with

various spurious attributes to expand the coverage on the unseen target domain during model train-

ing. Methods of data augmentation include using adversarial learning [51, 52, 55] or using generative

models [55, 56, 57] to generate diverse data samples. The utility of standard data augmentations,

such as scale, or CutOut [17], has not been fully exploited in SDG. In practice, these augmentation

methods have been widely used in model training for in-distribution generalization. However, their

applications in SDG are limited. In most cases, they serve as a part of the data preprocessing pro-

cedure in other SDG methods [51, 52, 55]. Although it is intuitive that applying multiple standard

data augmentations to the source domain data can generate diverse samples and hence improve a

model’s SDG performance, we lack a principled approach to fully realize the benefit brought from

multiple standard data augmentations.

Therefore, in this section, we revisit standard data augmentations for SDG and develop methods

that make them a strong competitor in SDG. We consider the composition of several standard data

augmentation as a semantics transformation which can manipulate certain kinds of semantics of

13



a sample, such as the brightness and hue of an image. Normally, standard data augmentations

have pre-specified and fixed parameters. Here, we make these parameters learnable in a semantics

transformation so that we can tune these parameters to produce semantically significant variations

and bring new spurious attributes, such as different styles, that are different from the source domain

data. With semantics transformations, we can transform data in the source domain to a fictitious one

which has large domain shifts from the source and possibly covers data in target domains, yielding

favorable SDG performance.

To learn semantics transformations for SDG, we propose AdvST, an adversarial learning frame-

work that trains a robust model and generates challenging data samples iteratively with mini-max

optimization. In the maximization phase, we learn the parameters of semantics transformations

so that the samples transformed by semantics transformations maximize the prediction loss of the

model. To avoid learning a trivial solution where the information in the source domain samples is

completely lost after semantics transformations, we additionally regularize the distance between the

source domain samples and the transformed ones in the deep feature space of the model to keep the

core features of the source domain data. In the minimization phase, we train the model with the

new samples generated by semantics transformations.

We theoretically show that the learning objective of AdvST connects to that of distributionally

robust optimization (DRO) [98, 99]. DRO trains a robust model using the worst-case distribution

that leads to the worst model performance on an uncertainty set—a set of neighboring distributions

with a predefined value of distributional shifts from the training data. Increasing the coverage of the

uncertainty set on the target domain data can improve the model’s SDG performance. AdvST can

be considered as a special form of DRO whose uncertainty set consists of semantics-induced data

distributions which are generated by applying semantics transformations to samples from the source

distribution. We demonstrate that AdvST can produce samples in the uncertainty set that expand

the coverage on the target domain data.

Our method, despite being a simple method utilizing standard data augmentations, is surprisingly

competitive in SDG. AdvST consistently outperforms existing state-of-the-art methods in terms of

the average SDG performance on three benchmark datasets.
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3.1.2 Methodology

Semantics Transformation

We define a semantics transformation as a composition of several standard data augmentation func-

tions that manipulate certain kinds of semantics of a sample. For example, we can perturb both

the hue and brightness of an image x with τ(x;ω) = oh(ob(x;ωb);ωh), where oh is the function that

changes the hue of x, ob changes the brightness of x, and ω = ωb ∪ωh denotes the set of parameters

for τ . We construct a set of M semantics transformations T = {τi(·;ωi), i = 1, . . . ,M} by randomly

composing L(1 ≤ L ≤ Lmax) unique standard data augmentation functions (Table 3.1).

Intuitively, a semantics transformation with a large L can produce diverse samples with various

spurious attributes. However, depending on the target domain data, the semantics transformations

that produce more diverse samples are not necessarily better than those producing less diverse

ones. Since we have no knowledge about target domains in SDG, we first uniformly choose the

length for semantics transformations and then uniformly choose a semantics transformation with

the selected length. Thus, we derive the distribution over M semantics transformations as G(τL) =

1
MLLmax

, where τL denotes a semantics transformation with L standard augmentations, Lmax is the

maximum number of standard augmentations in τL, and ML is the total number of τL and satisfies

M =
∑Lmax

L=1 ML.

Learning Objective of AdvST

SDG aims to train a model that is robust to unseen domain shifts with the training samples from a

single source domain. The robustness of the trained model to unseen domain shifts depends on how

much the training data covers target domains. Therefore, with semantics transformations, we aim

to generate new data samples that have large domain shifts from the source domain, increasing the

chance of covering data samples from unseen target domains.

A key property of the samples from target domains is that they often yield a high average

prediction loss because of their large domain shifts from the source. This motivates AdvST, an

adversarial learning framework that learns semantics transformations to generate challenging samples

with significant semantics variations for model training.

Given a model fθ with parameters θ, a set of source domain samples DS = {(xn, yn)}Nn=1 with

N pairs of training sample xn and its label yn, and a distribution G over a set of M semantics
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Algorithm 1 Adversarial learning with semantics transformations (AdvST)

Input: Source dataset DS , extended training set D with K domains, distribution over M semantics
transformations G, initial model weights θ0, number of training epochs E, batch size B, number of
batches per epoch NB , and number of updates in the maximization procedure Tmax

Output: learned weights θ

1: θ ← θ0, D.add(DS)
2: for e = 1, . . . , E do
3: //Minimization procedure
4: for b = 1, · · · , NB do
5: Get a batch of B samples B from D
6: Update θ with Equation (3.4)
7: end for
8: //Maximization procedure
9: Initialize an empty De

10: for (xn, yn) ∈ DS do
11: Sample τ from G and initialize its parameters ω0

n

12: for t = 1, · · · , Tmax do
13: Generate a sample xtn = τ(xn;ω

t−1
n )

14: Update ωtn with Equation (3.3)
15: end for
16: Append (τ(xn, ω

Tmax
n ), yn) to De

17: end for
18: D.add(De)
19: end for
20: return θ

transformations {τi(·;ωi)}Mi=1, we express the learning objective of AdvST as:

θ∗ = min
θ∈Θ

max
ψ∈Ψ

E
τ∼G

E
ξ∼DS

[
ℓ(θ; ξ′)− λdθ(ξ′, ξ)

]
, (3.1)

where ξ = (x, y) denotes a tuple of a sample x and its label y, ξ′ = (τ(x;ω), y) is the tuple of the

same label y and a new sample obtained by applying the semantics transformation τ to x, ℓ(θ; ξ) is

the prediction loss for ξ = (x, y), Θ denotes the set of all possible values of θ, ψ = ∪Mi=1ωi denotes the

union of the parameters of M semantics transformations, Ψ is the set of all possible values of ψ, λ is

a nonnegative regularization parameter, and dθ is the squared Euclidean distance function between

ξ and ξ′ in the deep feature space of the model fθ, i.e., dθ(ξ, ξ
′) = ∥v − v′∥22 with the embeddings v

and v′ of x and x′, respectively.

The objective in (3.1) aims to train a robust model with the challenging samples generated from

the samples in the source domain while maintaining the core features of the original data. The

novel part of (3.1) is that instead of generating images in the pixel space, we adversarially learn

the parameters of semantics transformations, exploiting the domain knowledge in standard data

augmentations to generate diverse images.
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Learning Algorithm

We adopt an iterative optimization algorithm [51, 52] to solve (3.1). Specifically, the algorithm

consists of a minimization and a maximization optimization procedures.

Maximization Procedure. We generate worst-case samples via optimized semantics transfor-

mations. Specifically, we first sample a semantics transformation τ from G. Then, we sample an

example xn from DS . We solve the inner maximization problem in (3.1) by applying Tmax steps of

stochastic gradient ascent to the parameters of the sampled semantics transformation τ . To facilitate

generating diverse samples, we add a maximum entropy regularizer [52] during the optimization. In

the tth (1 ≤ t ≤ Tmax) iteration, we have the following steps:

xtn = τ(xn;ω
t−1
n ) (3.2)

ωtn = ωt−1
n + β∇ωt−1

n

(
ℓ(θ;xtn, yn)− λdθ((xtn, yn), (xn, yn)) + ϵlent(θ;x

t
n, yn)

)
, (3.3)

where ωtn denotes the learnable parameters of τ for the n-th data sample at iteration t, lent(θ;x
t
n, yn)

is an entropy regularization term to further promote learning diverse samples, ϵ is a nonnegative

regularization parameter, and β denotes the learning rate in this procedure. We repeat the above

steps until all samples in DS have been processed. The synthetic data points {(τ(xn;ωTmax
n ), yn)}Nn=1

are treated as a new domain of data. We add these generated samples to the extended training set

denoted as D, which is initialized as DS .

Minimization Procedure. We use samples generated from the maximization step to train a

robust model θ against unseen distribution shifts. To avoid model forgetting, at each iteration, we

sample a batch of B samples B from the extended training set D to also use previously generated

samples. We add a regularizer ℓreg(θ;B) consisting of standard supervised contrastive [100] and

entropy loss [52] terms to facilitate learning robust representations. At each iteration, we update

the model parameters θ using mini-batch stochastic gradient descent as follows

θ ← θ − α∇θ
( 1

B

∑
(x,y)∈B

ℓ(θ;x, y) + ℓreg(θ;B)
)
, (3.4)

where “←” denotes value assignment, and α denotes the learning rate.

The complete algorithm is shown in Algorithm 1. We further analyze the space and time com-

plexities of the algorithm with practical considerations in the following.

Space Complexity. In the iterative optimization, we keep adding the generated samples to the

extended training set D. The size of D increases with the iteration number, which is not scalable
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when the initial training set DS or the iteration number is large. Therefore, we implement D as a

domain pool that only stores the generated samples from the most recent K runs of the maximization

procedures. In practice, depending on the size of DS , we set K in the range of 2 to 5 to ensure that

we have sufficient samples for training without incurring the scalability issue.

Time Complexity. The time complexity of each iteration of the optimization is NBCµ +

TmaxCGNB , where Cµ denotes the complexity of updating the model, CG denotes the complexity

of updating the parameters of semantics transformations, and NB denotes the number of training

batches. Generally, we have CG ≈ Cµ because CG and Cµ both include back-propagating the

gradients throughout the whole model, and the number of parameters in semantics transformations

is negligible compared to the number of model parameters. Therefore, the time complexity is

O(ETmaxNB), where E is the total iterations (epochs). In practice, to reduce the impact of Tmax,

we could perform the maximization on different batches in parallel or do early stopping when the

difference in loss between consecutive maximization steps is lower than a given threshold.

3.1.3 Theoretical Analysis: Connection to DRO

DRO Formulation

The learning objective of SDG can be expressed via DRO [99] since it does not rely on the notion

of a known target distribution. Specifically, DRO chooses a set of probability distributions U called

uncertainty set, and then finds a decision θ from Θ that provides the best hedge against U by solving

the following mini-max problem:

min
θ∈Θ

max
Q∈U

Eξ∼Q[ℓ(θ; ξ)], (3.5)

where ℓ(θ; ξ) is the prediction loss with the data-label pair ξ = (x, y), Θ denotes the set of all possible

model parameters, and U contains distributions that are at most δ-distance away from the source

distribution P . The uncertainty set, U = {Q|D(P,Q) < δ}, depends on a distance metric D(·, ·) and

a predefined threshold δ > 0. The objective in (3.5) finds an optimized model under the worst-case

distribution Q∗ found in U that maximizes the prediction loss.
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Semantics-Induced Distribution

Given a set of M semantics transformations, a semantics-induced distribution Qψ(ξ
′) is defined as

follows

Qψ(ξ
′) =

∑
τi

G(τi)

∫
ξ

p(ξ′|τi, ξ, ωi)dP, (3.6)

where ξ′ = (x′, y′), ξ = (x, y) is a sample from the source distribution P , ψ = ∪Mi=1ωi denotes

the parameters of M semantics transformations, and p(ξ′|τi, ξ, ωi) is the probability of obtaining ξ′

from ξ and the ith semantics transformation τi with parameters ωi. We require that transformed

samples are still assigned with their original labels. Therefore, we have p(ξ′|τi, ξ, ωi) = 0 if y′ ̸= y.

Moreover, if τi is a deterministic transformation, then p(ξ′|τi, ξ, ωi) = 1 when τi(x;ωi) = x′ and

y′ = y and p(ξ′|τi, ξ, ωi) = 0 otherwise. If τi is a stochastic transformation, then p(ξ′|τi, ξ, ωi)

follows the distribution of τi(x;ωi). A sample ξ′ from Qψ can be obtained by first sampling ξ from

P with y = y′ and τi from G, and then obtaining x′ = τi(x;ωi). Given G and P , Qψ fully depends

on ψ. We denote the set of all semantics-induced distributions as QΨ = {Qψ|ψ ∈ Ψ}, where Ψ is

the set of all possible parameters ψ.

Uncertainty Set of AdvST

The uncertainty set of AdvST consists of semantics-induced distributions Qψ around the source dis-

tribution P to simulate unseen target distributions. These distributions should not deviate too much

from the source to avoid hedging against noisy distributions that are not learnable. Hence, we need

a proper distance metric D(·, ·) to control the distribution shifts. Since semantics transformations

create new data samples, we use Wasserstein distances (Definition 3.1) as the metric D to allow a

data distribution Qψ to have a different support from that of P .

Definition 3.1. (Wasserstein distances [101, 102, 103] ) Let Ξ be a measurable space. Given a

transportation cost function c : Ξ × Ξ → [0,∞), which is nonnegative, lower semi-continuous, and

satisfies c(ξ, ξ) = 0, for probability measures Q and P on Ξ, the Wasserstein distance between Q

and P is

Wc(Q,P ) = inf
J∈

∏
(Q,P )

E(ξ,ξ′)∼J [c(ξ, ξ
′)], (3.7)

where
∏
(Q,P ) denotes all joint distributions with marginal distributions being P and Q.
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We define the transportation cost function c in the deep feature space [52, 51] to include distribu-

tions whose samples have large style variations since these samples may still be close to the samples

from the source distribution in the deep feature space. To exclude noisy distributions whose data

samples change their original labels in the source domain after transformations, we design the cost

of moving a source distribution sample to such a sample as infinity. Specifically, the cost function

of moving ξ = (x, y) ∼ P to ξ′ = (x′, y′) ∼ Qψ given the model θ is defined as follows

cθ((x, y), (x
′, y′)) := ||v − v′||22 +∞ · 1{y ̸= y′}, (3.8)

where v and v′ are the model-dependent embeddings for x and x′, respectively. Therefore, the

uncertainty set that we consider in AdvST is

UΨ = {Q|Q ∈ QΨ,Wc(Q,P ) < δ}, (3.9)

where δ (δ > 0) denotes the predefined distance threshold between the source P and the semantics-

induced distributions QΨ.

DRO Learning Objective for AdvST

Directly solving Equation (3.5) with U = UΨ is intractable since it requires searching over the infinite

dimension space of distribution functions. We consider the following Lagrangian relaxation with the

penalty parameter λ:

min
θ∈Θ

max
Q∈QΨ

{E(x,y)∼Q[ℓ(θ;x, y)]− λWc(Q,P )}. (3.10)

However, Equation (3.10) is still hard to compute. For the inner maximization term of Equation

(3.10), Proposition 3.1 provides a tractable form which only requires the source distribution P and

the distribution over semantics transformations G.

Proposition 3.1. Let ℓ : Θ × X × Y → [0,∞) denote the loss function which is upper semi-

continuous and integrable. The transportation cost function c : Ξ× Ξ→ [0,∞) with Ξ = X × Y is

a lower semi-continuous function satisfying c(ξ, ξ) = 0 for ξ ∈ Ξ. Let G denote the distribution over
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M semantics transformations {τi|i = 1, . . . ,M}. Then, for any given P and λ ≥ 0, it holds that

sup
Q∈QΨ

{EQ[ℓ(θ;x, y)]− λWc(Q,P )}

= Eτi∼GEP
[
sup
ξ∈Ξi

(ℓ(θ; ξ)− λcθ(ξ, (x, y)))
]
.

(3.11)

where QΨ is a set of distributions induced by M semantics transformations parameterized by ψ,

Ξi = {(x′, y)|x′ = τi(x;ωi), ξ ∈ Ξ0, ωi ⊂ ψ}, and Ξ0 ⊆ Ξ is the support of P .

The proof of Proposition 3.1 (see Appendix A.1) includes taking the dual reformulation of Equa-

tion (3.10) and considering a semantics-induced distribution Q as a mixture of M distributions. We

observe that the objective in (3.1) actually minimizes the empirical version of (3.11) with P and cθ

being replaced by DS and dθ, respectively.

3.1.4 Experiment

Experimental Settings

Datasets. We use the following three benchmark datasets in the experiments and arrange them in

increasing order of difficulty. (1) Digits is used for digit classification and contains five datasets:

MNIST [50], MNIST-M [104], SVHN [105], SYN [104], and USPS [106]. Each dataset has the same

10 digits ranging from 0 to 9. We use MNIST as the source domain and the other four as the test

domains. (2) PACS [96] is a collection of four domains, namely, Art, Cartoon, Photo and Sketch.

The four domains share seven common object categories and differ in the styles of their images.

We use one domain as the source domain and the other three as the unseen target domains. (3)

DomainNet [107] is a large-scale dataset which has 345 object classes and contains six domains,

namely Real, Infograph, Clipart, Painting, Quickdraw, and Sketch. We use Real as the source

domain and the remaining five as the test domains. This is the most challenging dataset in our

experiments due to the large number of classes and the high variability of domains.

AdvST implementations. We used 12 standard augmentations commonly used in image trans-

formations (Table 3.1), such as Rotate and Translate, to construct semantics transformations. Most

augmentation functions have specific learnable parameters controlling the magnitude of the trans-

formations. We designed a semantics transformation as a composition of at most Lmax = 3 stan-

dard augmentations since more augmentations bring marginal gains. We used the differentiable

library [108] to implement these transformations. We denote our method as AdvST when ϵ = 0 in

Equation (3.3) and AdvST-ME when ϵ > 0.
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Standard transformations Description
Number of
Parameters

HSV Perturb in the HSV color space 3
Contrast Perturb the contrast of an image 1

Invert
Invert pixel values at a
given threshold

1

Sharpness
Perturb the sharpness
of an image

1

Shear
Shear an image in horizontal
and vertial directions

2

Translate
Move an image in horizontal
and vertial directions

2

Rotate Rotate an image 1
Scale Change the size of an image 1

Solarize Reverse the tone of an image 1

Equalize
Improve global contrast of
an image via equalization

None

Posterize
Reduce the number of bits
for each color channel

None

Cutout Produce occlusions in an image None

Table 3.1: Standard data augmentations used in experiments.

Config. Semantics Contrastive Entropy Avg.

1 59.3±1.5
2 ✓ 77.0±0.4
3 ✓ ✓ 77.8±0.2
4 ✓ ✓ 78.8±0.2
5 ✓ ✓ ✓ 80.0±0.4

Table 3.2: Ablation study on the Digits dataset. We report average classification accuracy over the
four target domains.

Ablation Studies

We conducted ablation studies on AdvST-ME using the Digits dataset. We evaluated how semantics

transformations (Semantics), the contrastive regularizer (Contrastive), and the entropy regularizer

(Entropy) affect the average SDG performance. We observe from Table 3.2 that semantics transfor-

mations can significantly boost the average classification accuracy by 17.7% (Configurations 1 and

2). The contrastive and entropy regularizers can further boost the performance of Configuration 1

by 0.8% (Configuration 3) and 1.8% (Configuration 4), respectively. Our method (Configuration 5)

achieves the highest average classification accuracy with all three components.

We further compared the coverage of generated samples on target domain data between our

methods, AdvST and AdvST-ME, and their pixel-level counterparts, ADA [51] and ME-ADA [52],

which directly generate images in the pixel space. We visualized how the samples generated by

ADA, ME-ADA, and our methods distribute in the embedding space in Figure 3.1. We color the

samples from the source domain MNIST orange and the samples from the four target domains gray.
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(a) ADA (b) AdvST (c) ME-ADA (d) AdvST-ME
Source Synthetic Target

Figure 3.1: Visualization of how samples from the source domain, target domains, and synthetic
domains distribute in the embedding space. We compare AdvST and AdvST-ME with their non-
semantics counterparts ADA and ME-ADA.

We give details for obtaining the figure in Appendix A.1. From Figure 3.1(a) and (c), we observe

that most of the synthetic samples distribute very close to the source domain data and have little

coverage on the target domains. In contrast, the synthetic samples in Figure 3.1(b) and (d) deviate

from the source domain and have broad coverage on the target domains.

We provide analyses on the sensitivity of λ and the effect of different semantics transformations

in Appendix A.1.

Comparison on Digits

Baselines. We included ADA, ME-ADA, and the following methods for comparison: ERM, which

trains a model only using the standard cross-entropy loss; CCSA [109], which aligns samples from

different domains to improve generalization; d-SNE [110], which minimizes the maximum distance

between sample pairs of the same class and maximizes the minimum distance among sample pairs

of different categories; JiGen [111], which is a multi-task learning method that combines the target

recognition task and the Jigsaw classification task; M-ADA [55], which uses generative models and

meta-learning [22, 112, 113] to improve ADA; AutoAug [114] and RandAug [20], which augment

data based on the searched augmentation policies; RSDA [115], which randomly searches image

transformations to train a robust model; and PDEN [57] and L2D [56], which use generative models

for data augmentation.

Results. We observe from Table 3.3 that our methods, AdvST and AdvST-ME, significantly

improve the performance of the pixel-level adversarial data augmentations, ADA and ME-ADA,

across the four target domains and achieve a maximum gain of 25.5% in average classification

accuracy. Regarding per-domain performance, our methods achieve the best performance on all the

target domains except the MNIST-M domain. It is common to observe that a method does not
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Method SVHN MNIST-M SYN USPS Avg.

ERM 27.8 52.7 39.7 76.9 49.3
CCSA 25.9 49.3 37.3 83.7 49.1
d-SNE 26.2 51.0 37.8 93.2 52.1
JiGen 33.8 57.8 43.8 77.2 53.1
ADA 35.5 60.4 45.3 77.3 54.6

ME-ADA 42.6 63.3 50.4 81.0 59.3
M-ADA 42.6 67.9 49.0 78.5 59.5
AutoAug 45.2 60.5 64.5 80.6 62.7
RandAug 54.8 74.0 59.6 77.3 66.4
RSDA 47.7 81.5 62.0 83.1 68.5
L2D 62.9 87.3 63.7 84.0 74.5

PDEN 62.2 82.2 69.4 85.3 74.8

AdvST 67.5±0.7 79.8±0.7 78.1±0.9 94.8±0.4 80.1±0.5
AdvST-ME 66.7±1.0 80.0±0.5 77.9±0.7 95.4±0.4 80.0±0.4

Table 3.3: Classification accuracy (%) results on the four target domains SVHN, MNIST-M, SYN,
and USPS, with MNIST as the source domain. Best results are in bold font.

Target MixUp CutOut ADA ME-ADA AugMix RandAug ACVC L2D AdvST AdvST-ME

Art 52.8 59.8 58.0 60.7 63.9 67.8 67.8 67.6 69.2±1.4 67.0±1.1
Cartoon 17.0 21.6 25.3 28.5 27.7 28.9 30.3 42.6 55.3±2.0 53.2±1.1
Sketch 23.2 28.8 30.1 29.6 30.9 37.0 46.4 47.1 67.7±1.5 67.2±2.2
Avg. 31.0 36.7 37.8 39.6 40.8 44.6 48.2 52.5 64.1±0.4 62.5±0.8

Table 3.4: Classification accuracy (%) comparison on the PACS dataset. Best results are in bold
font.

perform the best on all the target domains. For example, PDEN performs better than L2D on SYN

but worse than L2D on MNIST-M. We reason that the knowledge that helps a model generalize

in one domain does not necessarily work for the other. To demonstrate this, we trained models on

one of the five domains and evaluated their generalization performance on each of the remaining

domains. From the accuracy heatmap in Figure 3.2, we see that the learned knowledge for MNIST-

M cannot transfer well to SYN and vice versa, which explains the performance tradeoff between

Figure 3.2: Accuracy heatmap for models trained individually on the five domains from the Digit
dataset using ERM.
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Target MixUp CutOut CutMix ADA ME-ADA RandAug AugMix ACVC AdvST AdvST-ME
Painting 38.6 38.3 38.3 38.2 39.0 41.3 40.8 41.3 42.3±0.1 42.4±0.2
Infograph 13.9 13.7 13.5 13.8 14.0 13.6 13.9 12.9 14.8±0.2 14.9±0.1
Clipart 38.0 38.4 38.7 40.2 41.0 41.1 41.7 42.8 41.5±0.4 41.7±0.2
Sketch 26.0 26.2 26.9 24.8 25.3 30.4 29.8 30.9 30.8±0.3 31.0±0.2

Quickdraw 3.7 3.7 3.6 4.3 4.3 5.3 6.3 6.6 5.9±0.2 6.1±0.2
Avg. 24.0 24.1 24.2 24.3 24.7 26.3 26.5 26.9 27.1±0.2 27.2±0.1

Table 3.5: Classification accuracy (%) comparison on the DomainNet dataset. Best results are in
bold font.

MNIST-M and SYN when comparing AdvST with AdvST-ME or AdvST with L2D. Nevertheless,

our methods achieve the best average classification accuracy over the four target domains among all

the methods.

Comparison on PACS

Baselines. We compared our methods AdvST and AdvST-ME with ADA, ME-ADA, MixUp [116],

CutOut [17], CutMix [117], RandAug [20], AugMix [18], and L2D [56]. We also included ACVC

[118], which applies attention consistency to learning from augmented samples.

Results. We used Photo as the source domain and evaluated models on the Art, Cartoon, and

Sketch domains. Generalizing raw images to artificial images is the most challenging SDG setting

in the PACS dataset since the domain shift between the source and target domains is substantial.

Results in Table 3.4 show that our methods significantly improve the performance of pixel-level

adversarial data augmentations, ADA and ME-ADA, in all three domains. Moreover, our method

AdvST performs the best on the three target domains and achieves the best average classification

accuracy over the three domains. AdvST-ME performs the second best in this setting, indicating

that maximizing output entropy to further encourage generating diverse samples does not help the

generalization from a natural domain to an artificial one.

Comparison on DomainNet

Baselines. We compared our methods AdvST and AdvST-ME with ADA, ME-ADA, MixUp [116],

CutOut [17], CutMix [117], RandAug [20], and AugMix [18].

Results. Table 3.5 shows our results in the most challenging SDG setting, DomainNet, which has

345 classes and significant domain shifts from the source domain, such as Real to Infograph and

Real to Quickdraw. Under this challenging setting, our methods outperforms pixel-level adversarial

data augmentations, ADA and ME-ADA, and complex data augmentations, such as RandAug and

AugMix.
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Figure 3.3: Average classification accuracy under different ratios of available training data.

Learning with Limited Source Data

We further demonstrated the utility of our methods by evaluating the average classification accuracy

of our methods on target domains with limited training data. We used the Art dataset from PACS

as the source domain and the remaining three datasets in PACS as the target domains. We used

partial training data of the Art domain and reported the average classification accuracy over the

three target domains in Figure 3.3. We observe that under different ratios of available training data,

our methods, AdvST and AdvST-ME, consistently outperform ADA and ME-ADA, respectively.

The gains are significant when the ratio is small, demonstrating the effectiveness of our method

when there is a lack of available training data.

3.1.5 Conclusion

We revisited data augmentation for SDG and focused on leveraging the domain knowledge in stan-

dard data augmentations. We conceptualized a composition of several standard data augmenta-

tions as a semantics transformation with learnable parameters and proposed AdvST, an adversarial

learning framework that aims to train a robust model with samples with diverse spurious attributes

generated by semantics transformations. We theoretically showed that AdvST optimizes a DRO

objective with semantics-induced distributions. Although built on standard data augmentations,

AdvST is surprisingly competitive. It achieves the best average domain generalization performance

on three benchmark datasets and is effective with limited source data.
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3.2 Learning to Learn Task Transformations for Improved

Few-Shot Classification

3.2.1 Introduction

Learning new concepts with a small amount of data is recognized as a hallmark of human intelligence

[22]. In contrast, modern deep neural networks typically are trained with a large amount of labeled

data. Meta-learning, which learns a meta-model that can quickly generalize to new concepts with a

few labeled examples and adaptation steps, has recently attracted tremendous interest [12, 13, 14,

15, 16]. A widely used test bed for meta-learning algorithms is few-shot image classification where

classifications are performed on new image categories after learning a few labeled training examples

for each category.

In few-shot image classification, existing meta-learning algorithms [12, 13, 14, 15, 16] often adopt

data augmentation methods in their implementations for performance improvement. These data

augmentation methods produce samples with diverse spurious attributes to facilitate the learning

of robust features. However, these methods are often manually designed as a sequence of fixed

image transformation functions, ignoring the training dynamics of meta-learning. As the training

progresses, the meta-model could gradually memorize the seen tasks. Despite that a fixed augmenta-

tion strategy is applied, the augmented tasks along with the spurious attributes could be memorized

by the meta-model at a certain training stage, and thus the meta-model may lack the ability to gen-

eralize to new tasks. We need to provide harder tasks with images containing more diverse spurious

attributes than existing ones. However, this is not possible with fixed augmentation strategies.

Moreover, existing data augmentation methods are often designed to be agnostic to various meta-

learning settings specified by meta-model architectures and meta-learning algorithms. Hence, the

difference between various meta-learning settings is ignored, resulting in tasks that are suboptimal

for certain meta-learning settings. For example, if the same augmented tasks are provided to a deep

and shallow meta-models, the deep one may simply remember the provided tasks, leading to severe

overfitting. Similarly, as will be shown later, each algorithm also has its own level of task difficulty

at which the algorithm is most effective in training a meta-model that generalizes well to unseen

tasks.

To address the above challenges, we aim to construct tasks with task difficulty levels optimized

for a certain meta-learning setting and at each training stage. Direct optimization of the task con-

struction is infeasible in practice since we need to search all possible combinations of examples in a
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training set to obtain optimal tasks. To circumvent this, instead of constructing tasks from scratch,

we propose to learn to transform given training tasks to get transformed ones with optimized task

difficulty. The task difficulty depends on the spurious attributes synthesized by the learned trans-

formations. From the information theoretic perspective [119], the information shared between the

meta-model input and the corresponding output is reduced when the input goes through additional

transformations. By transforming an input task, we control the amount of information flowing from

the input to the output. With less information provided to the meta-model, it becomes more chal-

lenging to learn new concepts from the input task. Therefore, learning to transform tasks provides

a feasible way to provide tasks with optimized task difficulties during meta-training.

Inspired by the above idea, we propose to add a task transformation layer between a training

task and a meta-model. The layer transforms a training task by applying learnable transformation

functions to all the examples in the task. We design a task transformation function as a sequence

of differentiable image operations with learnable transformation magnitudes. This design has two

benefits: 1) the image operations, such as changing brightness and rotating an image, are label-

preserving, and can avoid the change of labels and unwanted biases in the transformed task caused

by an arbitrary task transformation function which may distort the semantics of images in the

task; 2) differentiable image operations allow us to back propagate through a specific meta-learning

setting, enabling efficient optimization of the task transformation functions. To add the flexibility

in how a training task can be transformed, the task transformation layer is designed as a stochastic

function which follows a learnable distribution containing a set of transformation functions with

learnable probabilities. During meta-training, the layer is jointly optimized with the meta-model,

allowing the transformed tasks to co-adapt with the meta-model.

We summarize our contributions as follows:

• We propose a new meta-learning framework with a task transformation layer that mediates

the discrepancy between training tasks and meta-learning settings specified by meta-model

architecture and meta-learning algorithms, and controls task difficulty in accommodation to

training dynamics.

• We design the task transformation layer as a differentiable and stochastic function for efficient

optimization. As a benefit of such design choice, we get a new metric indicating the overall

task difficulty required for training on a specific dataset in a certain meta-learning setting.
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• We show that our method can consistently improve the few-shot generalization performance of

various meta-models trained with different meta-learning algorithms, meta-model architectures

on two benchmark datasets.

3.2.2 Preliminaries

The goal of meta-learning is to learn a meta-model that can quickly generalize to unseen but related

tasks with only a handful of labeled examples per task. The meta-model is meta-trained on a

sequence of training tasks under a meta-learning algorithm. A meta-learning algorithm E can be

specified by the inner loop learning algorithm A and the outer loop learning algorithm B, i.e.,

E = {A,B}. A typical meta-learning setting can be specified with the meta-learning algorithm E

and the meta-model fθ parameterized by θ. The meta-learning framework under this setting is

formulated as:

fθ∗ = B
(
ET ∼p(T )L(T )

)
(3.12)

s.t. L(T ) = 1

nQ

∑
(x,y)∈Q

ℓ(fθ̂(x), y), (3.13)

fθ̂ = A(fθ,S), (3.14)

where T = {S,Q} is a training task and consists of a support set S = {(xi, yi)}nSi=1 and a query

set Q = {(xj , yj)}
nQ
j=1 containing nS and nQ sample-label pairs, respectively; A is the inner loop

algorithm, which fine-tunes the meta-model fθ with the training data in S from task T , and outputs

the adapted model fθ̂ = A(fθ,S); and B is the outer loop algorithm that outputs an optimized

meta-model fθ∗ considering all the training tasks from the task distribution p(T ). Typically, p(T )

describes the distribution of training tasks that are constructed randomly from a training dataset.

To construct an N -way K-shot task, we first randomly sample N image categories from the training

dataset, and then randomly sample K images for each of the N categories for the support set S. For

the query set Q, we sample Kq images for each category so that nQ = N ·Kq. The task loss L(T ) is

calculated on the query set Q with the adapted model fθ̂ and the cross-entropy loss function ℓ(·, ·).

The above formulation subsumes a wide range of meta-learning algorithms. For gradient-based

algorithms, both A and B are certain kinds of optimizers. For example, in MAML [22], A and B are

designed as a stochastic gradient descent optimizer and an Adam optimizer [120], respectively. For

metric-based algorithms, B is commonly designed as an optimizer, such as SGD with momentum

[121], and A is designed as a classification method with a certain metric, such as ridge regression in
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R2D2 [13], and an SVM classifier in MetaOptNet [14]. Hence, our analysis based on the general meta-

learning framework can be applied to many meta-learning algorithms that follow this framework.

Problem Definition. From Equation (3.12) to Equation (3.14), we observe that under a given

meta-learning setting specified by the meta-learning algorithm E and the meta-model fθ with a

certain architecture, the only factor that affects the performance of the optimized meta-model fθ∗

is the task distribution p(T ). In practice, tasks are randomly sampled from the training set for

different meta-learning settings, and p(T ) represents the random task distribution. However, this

ignores the difference between various meta-learning settings as they require different levels of task

difficulties. Moreover, the training dynamics is also not considered when the meta-model parameter θ

is continuously updated during training with a fixed p(T ). To achieve improved few-shot performance

under a specific meta-learning setting, it is critical to construct tasks with optimized task difficulties

that fit specific meta-learning algorithms and meta-models during training.

3.2.3 Methodology

To address the mismatch between p(T ), E , and fθ, an ideal approach is to learn to construct tasks

with optimized task difficulties for the considered meta-learning setting. However, this approach

is challenging in practice since we need to search combinatorially in the whole training dataset

which is computationally prohibitive. To circumvent this, we propose to dynamically control task

difficulty by introducing a learnable task transformation layer which can be jointly optimized with

the meta-model during training.

Task Transformation Layer

We add a task transformation layer between an input task and a meta-model to control the task

difficulty. The layer perturbs the task with learnable transformation functions to optimize the

task difficulty at a certain training stage in a certain meta-learning setting. Based on the data

processing theorem from information theory [119], additional transformations to the input reduce

the information shared between the meta-model input and the corresponding output. Therefore,

we optimize a task difficulty by controlling the amount of information flowing from the input to

the output via transforming an input task. With less information provided to the meta-model, it

becomes more challenging to learn new concepts from the input task.

To add the flexibility in how a task can be transformed by the task transformation layer, we design

the layer as a stochastic function which samples a task transformation function τ for each task from
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the distribution pτ (τ ;ω) parameterized by ω. Intuitively, using multiple task transformations at a

time can create many diverse distributions to increase the chance of producing p̃(T ′) optimal for a

given meta-learning setting. The goal of the layer is to transform a population of training tasks such

that they follow a task distribution p̃(T ′) optimized at a certain training stage in a specific meta-

learning setting. In practice, since p̃(T ′) =
∫
τ,T p(T

′|T , τ)pτ (τ ;ω)p(T ), the task transformation

layer first samples a τ from pτ (τ ;ω) and then transforms a training task T from p(T ) via p(T ′|T , τ).

We design p(T ′|T , τ) to be a distribution over T ′ calculated as follows,

T ′ = τ(T ) = {x′|x′ = τ(x), x ∈ T }, (3.15)

where x′ and x have the same dimension, and the sampled task transformation τ is either a deter-

ministic mapping or a stochastic one. In other words, T ′ is obtained by transforming all the samples

in task T with the same function τ . Although τ is applied sample-wise, we still recognize it as a

task transformation function since it is learned from a population of training tasks. In practice, our

design enjoys fast convergence and small memory consumption. In addition to the above method,

we could transform all the samples in a task with a single transformation, transform each sample in

a task with an individual transformation, or other methods in between. We leave more sophisticated

designs of transforming a task as our future work.

Task Transformation Functions

The task transformation function τ used by the task transformation layer needs to satisfy certain

constraints. With an arbitrary τ , the semantics of images in a task may be distorted, leading to

change of labels and unwanted biases in the transformed task. We also require τ sampled from

pτ (τ ;ω) to be differentiable so that ω can be directly optimized. Inspired from differentiable data

augmentation [74], we design a task transformation function as a sequence of differentiable and

label-preserving image operations, such as changing brightness and rotating an image, with learnable

transformation magnitudes.

Specifically, given L as the length of a task transformation τ , we have τ(·) = OL ◦ · · · ◦ O1(·),

where ◦ denotes function composition, and O1, . . . , OL are differentiable image operations. We

denote each image operation as O(·) = g(·;m), where g ∈ G is an image operation in the set of

candidate image operations G, m ∈M is a learnable transformation magnitude for g, andM is the

set of all possible magnitudes. In general, each image operation has its own range of transformation

magnitude. For example, a rotation operation has the magnitude in degrees ranging from −180◦
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to 180◦, while a contrast operation has the magnitude in pixel intensity ranging from 0 to 1. We

normalize these magnitudes in different ranges to the same interval to stabilize the learning of task

transformations. We setM = [0, 1] such that givenm ∈M, for a function g with the transformation

range [mg
min,m

g
max], the actual magnitude is m · (mg

max − mg
min) + mg

min. In other words, when

m = 0, g(x;m) gives the original input x; when m = 1, g(x;m) gives the most transformed image.

For example, O(·) could be a rotate-90◦ operation with g being the rotate function and m = 0.75

(m ∈ [0, 1] corresponds to a degree in [−180◦, 180◦]).

Sampling Strategy

The task transformation layer samples a task transformation function τ from the distribution pτ (τ ;ω)

which can be factored as the product of L conditional probability distributions, i.e.,

pτ (τ ;ω) =

L∏
l=1

p(Ol|O1, . . . , Ol−1), (3.16)

where L is a hyperparameter denoting the length of τ , and p(Ol|O1, . . . , Ol−1) is a conditional

distribution supported on |G| operations with learnable magnitudes, where | · | denotes the size of a

set. The previous operations O1, . . . , Ol−1 are sampled from the support of p(Ok|O1, . . . , Ok−1) with

1 ≤ k < l. A task transformation function with length L is constructed by sampling an operation Ol

from p(Ol|O1, . . . , Ol−1) with l staring from 1 to L. In summary, we design pτ (τ ;ω) to be a learnable

distribution over the |G|L task transformation functions with ω including all learnable magnitudes

and probabilities of image operations.

It is straightforward to directly sample Ol from p(Ol|O1, . . . , Ol−1), but this sampling process is

not differentiable with respect to the parameters in p(Ol|O1, . . . , Ol−1) which is a categorical distri-

bution by design. To address this, we apply a differentiable relaxation on p(Ol = O|O1, . . . , Ol−1)

via Gumbel-Softmax reparameterization [122]. Concretely, in the forward pass, we select Ol =

argmaxO∈OLl
(pO+rO), where pO = p(Ol = O|O1, . . . , Ol−1), OLl is the support of p(Ol|O1, . . . , Ol−1)

and by design |OLl | = |G|, rO = − log(− log(u)), and u ∼ Uniform(0, 1). In the backward pass, we

have all the operations involved as Ol(·) =
∑
O∈OLl

sOO(·), where sO is calculated as

sO =
exp((pO + rO)/ϵ)∑

O∈OLl
exp((pO + rO)/ϵ)

,∀O ∈ OLl , (3.17)
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where ϵ is the temperature of the softmax function, and it controls the sampling uncertainty: a larger

ϵ will generate a task distribution with more randomly sampled task transformation functions. To

sample diverse task transformation functions during training, we set ϵ to a large number, e.g. ϵ = 20.

Discussion. To sample the l-th operation for a task transformation function, we need O(|G|l)

parameters to specify p(Ol|O1, . . . , Ol−1), and a total of O(|G|L) parameters to determine the whole

distribution pτ (τ ;ω). Although the additional parameters needed in our method is exponential with

respect to L, the value of L is usually very small in practice. We find that using L ≤ 5 is sufficient to

achieve good performance. Moreover, |G| is usually in the order of tens or less. Hence, the number

of additional learnable parameters induced by our method is negligible when it is compared with

that of a meta-model.

Learning Objective

Our proposed new meta-learning framework, termed learning to learn task transformations (L2TT),

optimizes a training task distribution by transforming randomly constructed tasks with a set of

learnable task transformation functions. Given pτ (τ ;ω) and the distribution of randomly constructed

tasks p(T ), the learning objective of our proposed method L2TT is:

fθ∗ , ω
∗ = B

(
ET ′∼p̃(T ′)L(T ′)

)
(3.18)

s.t. p̃(T ′) =

∫
τ

∫
T
p(T ′|T , τ)p(T )pτ (τ ;ω), (3.19)

L(T ′) =
1

nQ

∑
(x,y)∈Q′

ℓ(fθ̂(x), y), (3.20)

fθ̂ = A(fθ,S
′), (3.21)

where p(T ′|T , τ) denotes the distribution of the transformed task T ′ given T and τ . By providing the

transformed support set S ′ and the query setQ′ in T ′ to the inner and outer loop learning procedures,

respectively, we naturally embed task transformations in the learning to learn framework and can

jointly optimize them with the meta-model. Equation (3.19) shows the new task distribution p̃(T ′)

depends on pτ (τ ;ω). By optimizing ω, we equivalently optimize the task distribution such that it is

well tuned with the underlying model architecture and the meta-learning algorithm.

One of the learning outcomes is the optimized task transformation function distribution p(τ ;ω∗).

If we average all the learned magnitudes with the corresponding probabilities over all the transfor-

mation functions, we obtain a new metric called the average task transformation magnitude (AvgM-
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TT). This metric indicates the overall task difficulty required by training a given meta-model with the

provided meta-learning algorithm and the training dataset. As shown in the experiments, AvgM-TT

provides a quantitative way of comparing between different meta-learning algorithms, meta-model

architectures, and training datasets.

3.2.4 Experiments

We conduct experiments to answer the following research questions (RQs). RQ1: Is our L2TT meta-

learning framework effective for different meta-learning algorithms and meta-model architectures?

RQ2: How our method compares with other methods that can also change images in a task? RQ3:

How the learned task transformations differ for various combinations of meta-learning algorithms

and meta-model architectures? We also show the results of different designs of task transformations

in ablation study.

Experimental Setup

Datasets. CIFAR-FS [13] is a lightweight yet challenging few-shot image classification bench-

mark, and it allows fast prototyping. The dataset consists of all 100 classes from CIFAR-100 [123],

and the classes are split into 64, 16, and 20 for meta-training, meta-validation, and meta-testing

respectively. There are 600 images of size 32× 32 in each class. miniImageNet [124] is a challeng-

ing few-shot classification benchmark without demanding computational resources. It contains 100

classes with each having 600 images. Each image is down sampled to have the size of 84 × 84. We

follow the dataset split from [124] and divide the dataset into three non-overlapping sets of classes,

forming meta-training, meta-validation, and meta-testing sets. The class numbers in the three sets

are 64, 16, and 20, respectively.

Baseline Methods. For RQ1 and RQ3, we select four meta-learning algorithms, including three

metric-based meta-learning algorithms: R2D2 [13], MetaOptNet [14], and ProtoNet [125], and one

gradient-based meta-learning algorithm MAML [22]. We select ResNet12 and CNN64 (4 64-filter

convolutional layers) as the meta-model architectures. We follow the implementations in [27] and give

the implementation details in Appendix A.2. For RQ2, the most related methods for comparison

are data augmentation methods. We only consider augmentation in the input pixel space for fair

comparison since the image operations that we use all work in this space. Specifically, we include

SimpleAug, AutoAugment [71], and MetaDA [27] in the experiments. SimpleAug uses the following

transformation RandomCrop→ ColorJitter→RandomHorizontalFlip to transform each sample in a

34



Architecture
Meta-learning
algorithm

Meta-learning
framework

CIFAR-FS miniImageNet
1-shot 5-shot 1-shot 5-shot

ResNet-12 R2D2
Standard 72.53±0.11 84.16±0.08 60.59±0.10 75.90±0.08
L2TT 75.96±0.11 86.72±0.08 63.56±0.11 78.25±0.08

ResNet-12 ProtoNet
Standard 70.42±0.12 83.25±0.08 58.28±0.10 75.82±0.08
L2TT 73.63±0.11 85.76±0.08 60.82±0.11 78.16±0.08

ResNet-12 MetaOptNet
Standard 71.56±0.12 84.03±0.08 60.51±0.10 76.34±0.08
L2TT 74.34±0.11 86.19±0.08 62.50±0.10 78.17±0.08

CNN64 ProtoNet
Standard 61.10±0.12 79.28±0.09 47.43±0.10 70.55±0.08
L2TT 63.73±0.11 81.06±0.09 49.12±0.10 71.57±0.08

CNN64 MAML
Standard 55.81±0.11 75.50±0.09 42.38±0.10 64.64±0.09
L2TT 58.50±0.11 76.16±0.09 47.70±0.10 64.75±0.09

Table 3.6: Performance comparison between our proposed L2TT and the Standard meta-learning
frameworks under different meta-learning algorithms and meta-model architectures on the CIFAR-
FS and miniImageNet datasets.

task, and it is the default augmentation method in many meta-learning algorithms [12, 13, 14, 15, 16].

AutoAugment contains sets of augmentation policies optimized for specific datasets, e.g., CIFAR-100

and ImageNet. Each policy is a chain of image operations. MetaDA [27] manually designed a set of

augmentation policies which augment a task by transforming the samples in the support set, in the

query set, or in the whole task. Since MetaDA adopts CutMix [126] to change the query samples

(called QC), the training objective changes from predicting the labels to additionally predicting the

areas of the two image patches in a mixed image created by Cutmix. For fair comparison, we apply

QC to SimpleAug, AutoAugment, and our method and get SimpleAug-QC, AutoAugment-QC,

L2TT-QC, respectively.

Results

For RQ1, we evaluate our proposed L2TT framework on the CIFAR-FS and miniImageNet datasets

in five meta-learning settings specified by meta-model architectures and meta-learning algorithms.

The Standard meta-learning framework from Equation (3.12) to Equation (3.14) is the default

meta-learning framework for the five meta-learning settings, and we use SimpleAug as the data

augmentation method. The 5-way few-shot classification accuracies with 95% confidence intervals

are reported in Table 3.6, and the best results are highlighted in bold fonts. Compared with the

Standard framework, our proposed L2TT framework achieves consistent performance improvement

on the two datasets across all the five meta-learning settings with different meta-model architecture

and meta-learning algorithms. This universal improvement verifies the effectiveness of our method

in different meta-learning settings. Moreover, it also implies that the mismatch between training

tasks, meta-learning algorithms, and meta-model architectures, is prevalent in many meta-learning

settings. By learning to learn task transformations, we can optimize the training task distribution
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Architecture
Meta-learning
algorithm

Data augmentation
method

CIFAR-FS miniImageNet
1-shot 5-shot 1-shot 5-shot

ResNet-12 R2D2

SimpleAug-QC 76.01±0.11 86.21±0.08 64.24±0.11 78.42±0.08
AutoAugment-QC 76.36±0.11 86.86±0.08 64.93±0.11 78.82±0.08

MetaDA 76.00±0.11 87.25±0.08 63.78±0.10 78.96±0.08
L2TT-QC 77.40±0.11 87.76±0.08 65.82±0.10 80.36±0.08

ResNet-12 ProtoNet

SimpleAug-QC 75.04±0.11 86.29±0.08 60.69±0.11 76.43±0.09
AutoAugment-QC 75.51±0.11 86.57±0.08 61.94±0.11 77.41±0.09

MetaDA 75.00±0.11 87.06±0.08 60.63±0.11 78.13±0.08
L2TT-QC 76.52±0.11 87.12±0.08 63.07±0.11 78.79±0.08

ResNet-12 MetaOptNet

SimpleAug-QC 73.20±0.12 86.29±0.08 64.71±0.11 79.03±0.08
AutoAugment-QC 73.37± 0.11 86.45±0.08 65.19±0.10 79.47±0.08

MetaDA 73.97±0.11 86.98±0.08 64.00±0.10 79.43±0.08
L2TT-QC 76.65±0.11 87.84±0.08 65.60±0.10 80.99±0.08

CNN64 ProtoNet

SimpleAug-QC 63.26±0.12 80.63±0.08 49.95±0.10 71.39±0.08
AutoAugment-QC 62.74±0.12 79.87±0.09 49.90±0.10 69.53±0.09

MetaDA 63.07±0.12 80.86±0.08 49.67± 0.10 71.39±0.08
L2TT-QC 63.75±0.11 81.41±0.08 50.67±0.10 71.76±0.08

CNN64 MAML

SimpleAug-QC 58.80±0.12 76.67±0.10 48.57±0.10 66.03±0.09
AutoAugment-QC 55.82±0.12 72.16±0.10 47.08±0.10 63.59±0.09

MetaDA 60.20±0.12 77.36±0.09 47.51±0.10 66.79±0.09
L2TT-QC 61.20±0.12 78.12±0.09 48.91±0.10 66.90±0.08

Table 3.7: Performance comparison between various data augmentation methods for different meta-
learning algorithms and meta-model architectures on the CIFAR-FS and miniImageNet datasets.

for a give meta-model architecture and a meta-learning algorithm to provide further performance

improvement. The performance gains achieved by our method are larger when we use deeper meta-

model architectures, e.g., the gains achieved with ResNet-12 are larger than those with CNN64.

In our method, a task transformation function is designed to have several image operations. This

design choice relates our method to the widely used data augmentation methods and gives rise to

RQ2. Although the goal of our method is different from a typical data augmentation method which

aims to generate diverse samples, our method of learning to learn task transformations generates

diverse samples like a typical data augmentation method does. We compare our method with three

data augmentation methods: SimpleAug-QC, AutoAugment-QC, and MetaDA. For fair comparison,

we also include QC in our method and denote the new method as L2TT-QC. Table 3.7 shows the 5-

way few-shot classification accuracies with 95% confidence intervals of the five meta-models trained

with these methods. We highlight the best results in bold fonts in Table 3.7. From the data

augmentation perspective, we observe that L2TT-QC performs the best in all the five meta-learning

settings and on the two datasets.

Moreover, among the methods compared in Table 3.7, MetaDA is a competitive method. It is

specifically designed for meta-learning and has 9 augmentation policies manually designed with the

expert knowledge about meta-learning, such as considering the support-query structure of a task in

designing the policies. However, MetaDA does not consider the difference in various meta-learning

settings. In contrast, our method learns task transformations which can be automatically optimized
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Figure 3.4: AvgM-TTs for different meta-learning algorithms and meta-model architectures on the
miniImageNet and CIFAR-FS datasets.

for a specific meta-learning setting. Additionally, MetaDA shows a tendency to overfit to the 5-

shot setting since it outperforms AutoAugment-QC in almost all the 5-shot cases but is inferior to

AutoAugment-QC in more than half of the 1-shot cases, especially in those with the miniImageNet

dataset. Since all the models are meta-trained in the same 5-way 5-shot setting, the results show

that MetaDA cannot generalize well to a low-shot setting where the number of labeled samples in

the support set of a task is small. Our method does not have the above limitation.

For RQ3, we calculate AvgM-TT for the five meta-learning settings and show the results in

Figure 3.4. By design, a higher magnitude indicates a more aggressive transformation on the images

in a task. Among the first four metric-based settings in Figure 3.4, we observe that the AvgM-

TTs for the miniImageNet dataset are higher than those for the CIFAR-FS dataset. This indicates

that we generally need “harder” tasks for the larger and complex miniImageNet dataset than those

for the smaller and simple CIFAR-FS dataset. However, for the gradient-based setting CNN64-

MAML, the two AvgM-TTs on the two datasets are very similar, indicating that MAML is not very

sensitive to training data with varying complexities. The two values are also larger than those in the

four metric-based settings. This indicates that MAML is easier to suffer from overfitting than the

three metric-based algorithms and needs “harder” tasks in training. We also observe that deeper

meta-model architectures require “harder” tasks, as shown by the higher AvgM-TTs of ResNet12-

ProtoNet than those of CNN64-ProtoNet on respective datasets. Overall, AvgM-TT indicates the

overall complexity involving training datasets, model architectures, and meta-learning algorithms.

Ablation Studies

Task transformations are constructed by sampling from a distribution of task transformations. Dif-

ferent design choices affect the overall performance. We study two important hyperparameters L
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L Shot
ϵ

10 20 ∞

1
1-shot 73.08±0.12 73.73±0.12 73.65±0.12
5-shot 84.03±0.08 84.39±0.08 84.25±0.08

2
1-shot 75.30±0.11 75.92±0.11 72.65±0.11
5-shot 86.05±0.08 86.30±0.08 84.87±0.08

3
1-shot 74.75±0.11 75.96±0.11 75.03±0.11
5-shot 85.74±0.08 86.72±0.08 85.97±0.08

4
1-shot 75.11±0.11 72.04±0.11 73.44±0.11
5-shot 86.16+-0.08 84.60±0.08 85.36±0.08

Table 3.8: Analysis on different design choices for task transformation functions. We study various
length-L task transformation functions sampled with different levels of sampling uncertainty con-
trolled by τ . We use R2D2 with ResNet-12 on the CIFAR-FS dataset.

and ϵ of the distribution. The function length L controls the number of image operations in a task

transformation. The temperature ϵ controls the uncertainty during the sampling of a task transfor-

mation. A larger ϵ will produce more random sampling results. We use ϵ =∞ to denote the uniform

sampling of image operations. In other words, all possible task transformations have equal chance of

being selected during training. We use ResNet-12 and R2D2 in our L2TT framework with different

Ls and ϵs. The results are show in Table 3.8. We observe improved performance for each ϵ when L

increases from 1 to 3. A larger L increases the representation power of a task transformation and

offers more flexibility in how a training task distribution can be transformed. However, as shown by

the results when L = 4, a too large L hurts the performance. We also note that uniformly sampling

image operations will result in suboptimal performance, as shown by the results when ϵ =∞. This

inferior performance with ϵ = ∞ indicates that task transformations are not of equal importance,

and this also justifies our probabilistic modeling of task transformations.

3.2.5 Conclusion

We introduced a task transformation layer to address the mismatch between training tasks and a

given meta-learning setting specified by the meta-model architecture and the meta-learning algo-

rithm during meta-training. The added layer adjusts the difficulty of an input task by transforming

the task to control the information flowing from the meta-model input to its output. We imple-

mented the task transformation layer as a stochastic function with differentiable image operations as

its building blocks. Experimental results demonstrated the effectiveness of our method in improving

the generalization performance of various meta-learning algorithms on different model architectures

and datasets.
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3.3 Knowledge-Guided Semantics Adjustment for Improved

Few-Shot Classification

3.3.1 Introduction

The ability of learning from few examples is attractive for deep learning models since it can greatly

alleviate the need of the labor-intensive process of collecting many labeled examples for training.

However, because of their large hypothesis space [65], widely used off-the-shelf deep learning models

have difficulty in generalization when trained on few labeled examples. To systematically analyze and

address this challenge, novel few-shot learning settings have been developed. Few-shot classification

[127, 23, 12, 128, 64] is one example of such pursuit.

In few-shot classification, tasks are constructed such that each task consists of a support set and

a query set. For each task, a model learns from the support set, which only has very few labeled

examples per class, and predicts examples in the query set. In practice, the labels provided in each

task, such as Class 1 and Class 2, carry no semantic meanings. Without any prior knowledge, it is

challenging for a deep neural network to correctly infer the actual class from few images especially

when they have multiple objects. Without substantial labeled data, the network may capture spu-

rious features, e.g., any of the objects or a combination of them, from an image as the class object

that distinguishes the image from other images in different classes. This is illustrated in Figure 3.5,

where we fine-tune and evaluate a well-trained meta-learning model proposed in [26] on a challenging

2-way 1-shot testing task. The task is constructed with two classes representing two breeds of dogs,

but the provided labels do not contain such information. Each class has one labeled image in the

support set. We use class activation map (CAM) [1] as the visualization tool to show important

areas contributing to predictions made by the model. For the support set images, we observe that

in Class 2, the helmet, although being unrelated to the true class, is considered as important. As a

result, the model tends to treat the task as distinguishing dogs with or without helmets, and thus

the query image from Class 2 is misclassified as Class 1 since there is no helmet in the image.

It should be noted that even for humans, without any prior knowledge or context about the

task, there is still a possibility that the query image is considered as Class 1. However, with the

prior knowledge that for many tasks, dogs are more probable to be an object of interest than other

objects in an image, we tend to treat this task as to classify two breeds of dogs, and we will focus

on the dogs instead of the helmet or other spurious features when making predictions since the

helmet is not of interest according to our prior knowledge. To mimic such human-level behavior in
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Figure 3.5: Illustration on how class-unrelated objects in an image affects model prediction. Im-
portant areas contributing to the correct predictions made by the model are highlighted by CAM
[1] with warmer colors representing higher importance. The helmet is considered important by the
model for correctly recognizing Class 2 but it is unrelated to dogs.

the existence of prior knowledge to improve the performance of a few-shot classifier, we propose to

learn semantically meaningful features along with their relative importance as the prior knowledge

in few-shot classification. These features represent common patterns found in many images from

many few-shot tasks, and we use them by first detecting the strengths of these features in each image

and adjusting the strengths to suppress unimportant and spurious ones which are not of interest as

compared to others.

More specifically, we propose a knowledge-guided semantics adjustment module (KGSA), which

contains a set of learnable semantic features and a learnable importance kernel. Each of the semantic

features represents a common pattern found in many images, such as the shape of dogs or some

spurious features. The KGSA detects these semantic features in each image embedding and uses

the importance kernel to determine which features are to be suppressed. Moreover, since an image

embedding is obtained from a nonlinear feature extractor, it contains complex correlations between

the objects in the input image, hindering the ability of KGSA in detecting and suppressing class-

unrelated patterns in the image. To circumvent this, we propose a simple and effective sampling-

based image representation decomposition (IRD) module to mitigate the coupling between objects

in image embeddings. With the incorporation of IRD, spurious and class-unrelated patterns can be

effectively detected and suppressed by KGSA in an image embedding, and class-related patterns can

be captured by the model to infer the true class of the image.

In summary, the main contributions of this section are:

• We propose to learn the prior knowledge on important objects for object recognition in few-

shot classification by proposing a KGSA module which consists of a set of semantic features

and an importance kernel. The KGSA can detect interested object patterns using the semantic
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features and suppress spurious and class-unrelated ones synthesized from the importance kernel

to help a model infer the class of a given image.

• We propose a simple and effective IRD module to improve the effectiveness of the KGSA

module by mitigating the coupling between objects in an image embedding.

• We meta-train the KGSA on many randomly sampled few-shot classification tasks for improved

few-shot classification performance. We analyze and validate the effectiveness of our method

on two benchmark datasets [124, 128]. Our method achieves the best few-shot classification

performance among all the relevant state-of-the-art approaches and shows superiority in dealing

with extremely low-shot tasks.

3.3.2 Problem Definition

In few-shot classification, a few-shot task T contains a support set S = {(xi, zi)}nSi=1 and a query

set Q = {(xj , zj)}
nQ
j=1, where xi and xj are the examples, zi and zj are the corresponding labels,

nS denotes the size of the support set, and nQ denotes the size of the query set. Typically, S has

N -way K-shot examples with nS = N ·K, i.e., there are N classes with K examples per class in the

set. In Q, there are nQ = N ·Kq examples with the same N classes as in S and Kq examples per

class. A model in few-shot classification has an embedding network fθ(·) parameterized by θ and a

classifier ℓϕ(·) parameterized by ϕ. The embedding network maps an example x to its embedding

e = fθ(x) ∈ RD×1 with D denoting the embedding dimension. The classifier takes e as its input and

predicts its class membership. The objective in few-shot classification is to learn a model that can

quickly adapt to an unseen task using its support set data, i.e., θ∗,ϕ∗ = A(θ,ϕ,S), where θ∗,ϕ∗ are

task-specific weights, A represents a learning algorithm which uses S, θ and ϕ as inputs. Unlike the

transductive setting, where θ∗,ϕ∗ = A(θ,ϕ,S,Q), we focus on the inductive learning setting since

θ∗ and ϕ∗ only depend on S. Moreover, following the common setting in meta-learning [22, 15, 68],

we assume the task distributions in meta-training and meta-testing are similar, i.e., tasks are all

sampled from the same dataset so that knowledge transfer is possible.

Challenges. Without enough data in S and the proper context (since the provided labels carry

no semantic meanings), θ∗ and ϕ∗ tend to fit to S with spurious patterns. As illustrated in Figure

3.5, Class 2 may be inferred as any dog with a helmet, but it actually represents a specific breed

of dogs. Hence, the fitted model will generalize poorly on the query set Q since the wrong class is

inferred.
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Figure 3.6: The overview of our proposed method. Our method includes IRD and KGSA as the two
key components.

3.3.3 Methodology

Method Overview

Figure 3.6 illustrates the framework of the proposed method which consists of two components.

KGSA detects the strengths of certain patterns represented by the semantic features and adjusts

the strengths of these features to get the final embedding of an image such that class-unrelated

patterns in the image are suppressed. IRD is introduced to improve the effectiveness of KGSA by

decomposing an image embedding into a set of embeddings. Each embedding represents an area of

interest of the image. In this way, we decouple complex correlations between objects induced by the

nonlinearity of the embedding network, facilitating KGSA in detecting object patterns and adjusting

their contributions to the image embedding. The set of embeddings from IRD are processed and

averaged by KGSA to get the final embedding for the input. We explain each component in detail

in the following sections.

Image Representation Decomposition (IRD)

Due to the nonlinearity of the embedding network, multiple objects in an image are coupled in the

image embedding, making it difficult to detect and suppress class-unrelated object patterns. To

address this, we introduce an IRD module to decompose an image embedding into a set of patch

embeddings. Ideally, each image patch represents a region of interest, containing an object to be

recognized by the KGSA. However, in practice, it is hard to find regions of interest from an image

such that each region contains a meaningful object. We could use region proposal networks [129] to

find such regions, but training them in the few-shot setting is a separate and challenging problem.
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Therefore, we design a simple random sampling approach in the IRD module and leave more complex

implementations of the IRD module as our future work.

In our method, we randomly sample M regions, {ri|i = 1, . . . ,M}, from a given image x. Then

the new embedding for the image x is hMθ (x) = [fθ(r1), . . . , fθ(rM )], where hMθ (x) ∈ RD×M is the

embedding matrix for the input x. Note that each ri is resized such that its embedding dimension

is D. In the trivial case when M = 1, the IRD will output the original image embedding fθ(x).

One potential limitation of the random sampling strategy is that we may miss or cut out some

objects in an image. However, this is not critical in both training and testing phases. In the

training phase, the imperfectly sampled image patches that contain only part of objects will act as

a regularization, avoiding remembering specific objects. In the testing phase, we can sample more

image patches than those in the training to ensure sufficient coverage of all meaningful objects in

the image without incurring large computational overhead. Although the sampling method is often

used for data augmentation, in our method, it serves as a simple and effective method to decouple

complex relations between objects.

Knowledge-Guided Semantics Adjustment (KGSA)

KGSA consists of a set of learnable semantic features W and a learnable importance kernel κψ(·)

with parameters ψ. We denote KGSA as gω(·) with ω = {W,ψ}. Then, for each vm = hMθ (x)[m]

from the m-th element of the IRD output hMθ (x), KGSA outputs adjusted embedding um for each

vm by subtracting from vm the spurious feature synthesized from the semantic features W =

[w1, . . . ,wL] ∈ RD×L with certain suppression weights, i.e.,

um = gω(vm) = vm −Ws(vm,W),m = 1, . . . ,M, (3.22)

where s(vm,W) ∈ RL×1 denotes the suppression weight vector dependent on vm and W. Finally,

all the M adjusted vectors {um|m = 1, . . . ,M} are averaged to get the adjusted embedding u for

the input x, i.e.,

u = 1/M ·
M∑
m=1

um. (3.23)

In our design of KGSA, calculation of the weights follows the detection-and-adjustment procedure

due to its flexibility in imposing constraints on the semantic features and its low computational

complexity.
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Detection

KGSA first detects the strengths of semantic features W in the embedding vm by calculating the

strength vector λm = [λ1,m, . . . , λL,m]T , a sparse decomposition of vm in terms of W. Specifically,

λm is obtained via solving the following problem:

λm = argmin
λ
∥Wλ− vm∥22 + γ∥λ∥22, (3.24)

where γ is a non-negative hyperparameter controlling the magnitude of λm, i.e., ∥λm∥2. The solution

λm quantifies the similarities of these semantic features to the embedding vm. The advantage

of introducing Equation (3.24) is that we can impose an explicit sparse constraint on λm and

consequently enforce these semantic features to be as general as possible to cover many similar

objects. Moreover, we can get the closed form solution for λm as λm = (WTW + γI)−1WTvm,

where I ∈ RL×L is an identity matrix. Note that γ not only controls the magnitude of λ, hence the

representation capability of W, but also makes sure the inverse operation is not ill-conditioned. In

practice, we find that our method is not sensitive to γ in terms of few-shot classification performance,

so we set γ = 1.

Adjustment

Then, KGSA adjusts λm using the importance kernel κψ(·) since KGSA could detect two semantic

features that have large λs and needs to determine which one should be suppressed. For example, if

the two semantic featuresw1 andw2 correspond to head covering and the shape of dogs, respectively,

then we expect to suppress w1 while preserving w2 for images in Figure 3.5, since we need to focus

on dogs according to the prior knowledge. The importance kernel is proposed to learn the relative

importance of all the semantic features such that only class-unrelated ones are suppressed. We

implement the importance kernel as an L-input L-output neural network. As a result, the output

may contain negative numbers. Subtracting features with negative weights will strengthen them in

vm, adding class-unrelated noise in vm since the semantic features are designed to be class-agnostic.

Hence, we calculate the suppression weight vector as

s(vm,W) = max(κψ(λm),0), (3.25)

where max(·, ·) is an element-wise maximum operator, and 0 is a length-L all-zero column vector.
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Learning Objective

In essence, KGSA is designed to highlight class-related objects in a dataset by suppressing unrelated

ones so as to improve the few-shot classification performance of a model on the dataset. Specifically,

we use the adjusted embedding vectors of the support set data to build a prototype-based few-shot

classifier which adopts the nearest-neighbor classification rule used in many few-shot classification

literature [12, 130, 15, 26]. In an N -way K-shot task, each of the N class prototypes is calculated

as follows,

µc =
1

|Fc|
∑
u∈Fc

u, c = 1, . . . , N, (3.26)

where | · | denotes the size of a set, Fc = {u|u = 1/M
∑M
m=1 gω(h

M
θ (xs)[m]),xs ∈ Sc}, and Sc is the

set of support examples from class c. The N class prototypes will instantiate a prototype-based clas-

sifier p(·|xq,µ1, . . . ,µN ) whose prediction for a query example xq ∈ Q is ĉ = argmaxc=1,...,N p(y =

c|xq,µ1, . . . ,µN ), where p(y = c|xq,µ1, . . . ,µN ) = exp(τd(uq,µc))/
∑
c′ exp(τd(uq,µc′)), d(·, ·) de-

notes a similarity metric function, uq is the embedding for the query example xq obtained from the

KGSA, and τ controls the softness of the output probability distribution. In the following, we use

cosine similarity as the metric function thanks to the good generalization performance it brings to

few-shot classification [26], and we choose τ via hyperparameter selection.

Overall Objective. To train KGSA with IRD, we minimize the risk function L = ET ∼p(T )LT

with respect to θ and ω on tasks sampled from p(T ) as follows,

θ∗,ω∗ = argmin
θ,ω

ET ∼p(T )LT , (3.27)

where the task loss LT is defined as LT = − 1
|Q|

∑
(x,z)∈Q log p(y = z|x,µ1, . . . ,µN ), T = {S,Q}, z

is the label for x, and µ1, . . . ,µN are obtained from the support set S following Equation (3.26). The

true risk L is hard to obtain since p(T ) is unknown; hence, we calculate the empirical risk of B tasks

as LE = 1
B

∑B
b=1 LTb with Tb sampled from the training data. Then, we use gradient descent with a

learning rate β to minimize LE each time after sampling B tasks as (θ,ω) = (θ,ω)−β∇θ,ωLE . The

above iteration will terminate when the validation accuracy stops increasing. Due to our specific

implementation, no learnable parameters are required for the IRD module.

Discussion. In our method, two important hyperparameters affect the effectiveness of KGSA:

the number of sampled regions M in IRD and the number of semantic features L in KGSA. With

a larger M , IRD can provide more accurate object information to KGSA. However, a larger M
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Method Backbone
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot
TADAM [130] ResNet-12 58.50± 0.30 76.70± 0.30 - -
ProtoNet [12] ResNet-12 60.37± 0.83 78.02± 0.57 65.65± 0.92 83.40± 0.65
Shot-Free [131] ResNet-12 59.04± 0.43 77.64± 0.39 66.87± 0.43 82.64± 0.43
LEO [25] WRN-28-10 61.76± 0.08 77.59± 0.10 66.33± 0.05 81.44± 0.09
MetaOptNet [14] ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53
CAN [132] ResNet-12 63.85± 0.48 79.44± 0.34 69.89± 0.51 84.23± 0.37
MTL [133] ResNet-12 61.20± 1.80 75.50± 0.80 65.62± 1.80 80.61± 0.9
Meta-Baseline [26] ResNet-12 63.17± 0.23 79.26± 0.17 68.62± 0.27 83.29± 0.18
Neg-Cosine [134] ResNet-12 63.85± 0.81 81.57± 0.56 - -
DSN-MR [135] ResNet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.85± 0.56
FEAT [15] ResNet-12 66.78± 0.20 82.05± 0.14 70.80± 0.23 84.79± 0.16
DeepEMD [68] ResNet-12 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58
MELR [136] ResNet-12 67.40± 0.43 83.40± 0.28 72.14± 0.51 87.01± 0.35
CPLAE [137] ResNet-12 67.46± 0.44 83.22± 0.29 72.23± 0.50 87.35± 0.34
Our method ResNet-12 70.34± 0.45 85.27± 0.28 74.30± 0.50 87.58± 0.33

Table 3.9: Performance comparison to prior works on the miniImageNet and tieredImageNet
datasets. Results with citations are reported from the literature with “-” representing “not re-
ported”. The best performance is in the bold font.

will take more time and memory to run the optimization in Equation (3.27). The effectiveness of

KGSA on many unseen tasks also depends on L. For a small and simple dataset which contains

a small number of classes, the KGSA with a large L will overfit to the dataset, capturing features

corresponding to many specific objects. On the other hand, for a large dataset with many classes,

we expect L to be larger. In practice, we will use a held-out validation set to select the best values

of L.

3.3.4 Experiments

Experimental Setup

Dataset. We use miniImageNet [124] and tieredImageNet [128] in the experiments. For miniIma-

geNet, we follow the dataset split from [124], resulting in 64, 16, and 20 classes in the meta-train,

meta-validation, and meta-test sets. The tieredImageNet dataset has 608 classes which are divided

into 351, 97, and 160 classes for meta-training, meta-validation, and meta-testing, respectively. All

images are resized to 84× 84.

Evaluation. All the experiments are conducted in the inductive setting. The statistics in the batch

normalization layers are fixed to avoid knowledge sharing between tasks. We randomly sample 2000

N -way K-shot tasks from the test split of a dataset and report the mean accuracy and the standard

deviation with a 95% confidence interval over those tasks.
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Model
miniImageNet

1-shot 5-shot
Base 65.78± 0.46 82.07± 0.31
Base+KGSA 67.05± 0.45 82.64± 0.31
Base+IRD 67.34± 0.46 82.02± 0.31
Base+KGSA+IRD 68.67± 0.45 83.67± 0.30

Model
tieredImageNet

1-shot 5-shot
Base 71.76± 0.52 85.41± 0.35
Base+KGSA 71.88± 0.52 86.00± 0.35
Base+IRD 72.19± 0.51 85.60± 0.35
Base+KGSA+IRD 72.76± 0.52 86.74± 0.35

Table 3.10: Ablation study on KGSA and IRD (M = 5 in both training and testing). Results on
5-way tasks are reported.

Results on Benchmark Datasets

Table 3.9 shows the performance comparison on 5-way few-shot tasks. For fair comparison, we only

consider methods using inductive learning and supervised learning since our method does not use

additional unlabeled data. We observe from Table 3.9 that our method achieves the best performance

among all the listed baseline methods in both 1- and 5-shot settings with significant performance

gains achieved in 1-shot settings. Moreover, from the perspective of additionally added parameters,

the overhead of our method is negligible compared to the embedding network, since according to

our experiment setting, the number of added parameters equals L × D + 2L × H, which is the

combination of numbers from the semantic features and the importance kernel in KGSA.

Ablation Studies

Contributions of IRD and KGSA. According to the discussion in the Learning Objective section,

we setM to 5 in both training and testing to speed up evaluation and to best showcase the advantage

of KGSA when low quality image embeddings are provided by the IRD with smallM . We denote the

model [26] whose embedding network is pre-trained and then fine-tuned with a few-shot classifier as

the “Base” model, and we follow the training procedures in [15]. We add a KGSA module to “Base”

to get “Base+KGSA”, and an IRD module to “Base” to get “Base+IRD”. Finally, we add both the

KGSA and the IRDmodules to “Base” and obtain “Base+KGSA+IRD”. We observe from Table 3.10

that with KGSA alone, the performance of “Base+KGSA” is on par with some recent works [15, 68].

Adding IRD can improve the performance of “Base” and “Base+KGSA”, with a bigger improvement

from the latter. For example, on the miniImageNet dataset, the performance gains for adding IRD
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Adjusting
Strength Vectors

Shot
L

1 5 10 50 100

Importance kernel
1-shot 66.42 66.85 67.05 66.97 66.62
5-shot 82.29 82.64 82.55 82.54 82.34

Linear transform
1-shot 66.30 66.32 66.29 66.13 65.83
5-shot 82.35 82.52 82.48 81.19 81.15

Table 3.11: Classification accuracy of the “Base+KGSA” model configured with different Ls and
different methods for adjusting strength vectors.

to “Base” and “Base+KGSA” in the 1-shot case are 1.56% and 1.62%, respectively; for the 5-shot

case, IRD can improve the accuracy of “Base+KGSA” by 1.03%, while being ineffective for “Base”.

Semantic Features and Importance Kernel in KGSA. We study how the number of semantic

features L affects the effectiveness of KGSA and analyze the necessity of importance kernel in KGSA.

Table 3.11 shows the classification accuracies of the “Base+KGSA” model on the miniImageNet

dataset with L ∈ {1, 5, 10, 50, 100} and two different methods of adjusting the strength vector defined

in Equation (3.24). The baseline is “Linear transform” which scales each strength value with a

learnable parameter, while “Importance kernel” represents feed forward neural networks proposed

in our method. We observe that models adopting importance kernels perform better than those

adopting linear transforms as L increases, and we see a significant performance drop on the latter

when L ∈ {50, 100}. This is because the importance kernel is context dependent: it compares

strength values of different semantic features in an image embedding and adjusts these values jointly

instead of transforming them separately. Hence, an importance kernel is necessary in KGSA. We also

observe that in different settings, the optimal L is different; a larger shot setting generally requires a

smaller L. Moreover, models with L = 1 have competitive performance. However, it is not the result

of introducing additional parameters since adding an additional layer to the embedding network will

get inferior performance with classification accuracies on miniImageNet being 63.14 ± 0.46 and

79.57 ± 0.33 for 1-shot and 5-shot, respectively. Instead, when L = 1, we observe that the learned

semantic feature represents many noisy background objects, and models can benefit by suppressing

it in image embeddings.

Number of Sampling Times in IRD. We compare the performance of “Base+IRD” with

that of “Base+KGSA+IRD” when IRD is configured with different Ms. Since a higher M in

training requires more GPU memory, we train the models with M = 5 and evaluate them with

M ∈ {5, 10, 15, 25, 50}. Table 3.12 shows classification accuracies on the miniImageNet dataset. We

observe consistent performance improvement on both shot numbers as M increases, and the perfor-

mance increment saturates when M is large. Moreover, we show performance gains of our method,
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M
Base+IRD Base+KGSA+IRD

1-shot 5-shot 1-shot 5-shot
5 67.34 82.02 68.67 (+1.33) 83.67 (+1.65)
10 67.90 82.57 69.31 (+1.41) 84.43 (+1.86)
15 68.16 82.86 69.65 (+1.49) 84.59 (+1.73)
25 68.41 83.02 69.75 (+1.34) 84.86 (+1.84)
50 68.63 83.07 70.34 (+1.71) 85.27 (+2.20)

Table 3.12: Classification accuracy comparison between “Base+IRD” and “Base+KGSA+IRD” with
IRD configured with different Ms on the miniImageNet dataset.

“Base+KGSA+IRD”, over the “Base+IRD” model in parentheses following the accuracy numbers.

We observe that when M increases, the KGSA module benefits more from the IRD module than

the “Base” model does, indicating the necessity of IRD in providing high-quality image embeddings

for KGSA.

3.3.5 Conclusion

We introduced KGSA which consists of a set of learnable semantic features representing spurious

attributes shared by many similar objects and a learnable importance kernel encoding the relative

importance of the features. The KGSA follows the detection-and-adjustment procedure to suppress

spurious and class-unrelated attributes in image embeddings. To improve the effectiveness of KGSA,

we proposed an IRD module to decouple the potential correlations between objects in the image

embedding due to the nonlinearity of the embedding network. We meta-trained the KGSA with

IRD on many few-shot tasks. Our method outperforms the state-of-the-art methods in two few-shot

benchmark datasets and shows superiority in dealing with extremely low-shot tasks.
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Chapter 4

Multimodal-Assisted Spurious Bias

Mitigation under Subpopulation

Shifts

Subpopulation shifts refer to changes in the distribution of specific data groups between the training

and test sets. For example, in the training set, waterbirds appearing against water backgrounds

may constitute the majority, while those with land backgrounds are the minority. In contrast, the

test set may reverse this distribution, with waterbirds on land backgrounds becoming the majority

and those on water backgrounds the minority. Models with spurious bias heavily rely on spurious

attributes in certain data groups for predictions, resulting in poor generalization in other data groups

where the learned spurious attributes do not exist. Although changes in the proportions of data

groups are generally known, group annotations are typically unknown or hard to acquire, making it

challenging to learn robust models against subpopulation shifts. In this chapter, we propose to use

pre-trained vision-language models (VLMs) to automatically detect spurious attributes for spurious

bias detection and mitigation. In Chapter 4.1, we demonstrate that a benchmark system with

pre-trained VLMs can effectively generate challenging classification tasks with subpopulation shifts

for learning novel concepts in a few-shot classification setting. In Chapters 4.2 and 4.3, we design

two mitigation methods focusing on spurious-attribute-aware classification and spurious-attribute-

agnostic representation learning, respectively, to mitigate spurious bias detected via VLMs.
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4.1 Benchmarking Spurious Bias Using Vision-Language

Models

4.1.1 Introduction

In the traditional learning setting [138, 139, 140], deep learning models tend to rely on spurious

correlations as their prediction shortcuts or exhibit spurious bias, where spurious correlations [48,

141, 47, 6, 139, 142, 143] are the brittle associations between classes and spurious attributes —

attributes of inputs non-essential to the classes. For example, models that predict classes using the

associated backgrounds [49] or image textures [48] may experience significant performance drops

when the associated backgrounds or textures change to different ones. To reveal spurious bias, it is

important to create evaluation tasks with subpopulation shifts. In this section, we aim to generate

subpopulation shifts for detecting spurious bias and comprehensively evaluate our proposed method.

To this end, we focus on the few-shot classification [12, 13, 14, 15, 16] (FSC) setting as this setting

requires generating multiple classification tasks for evaluation which aligns well with our goal.

In FSC, few-shot classifiers can transfer the knowledge learned from base classes to recognize

novel classes with a few labeled samples. However, they face potential risks when deployed in the

real world, such as data distribution shifts [144, 145] and adversarial examples [146, 147]. In the

low-data regime, spurious bias becomes more evident. For example, in Figure 4.1, the correlation

between the class bird and the attribute tree branch in the support (training) image may form

a shortcut path from tree branch to predicting the image as bird and hinder the learning of the

desired one that uses class-related attributes, such as head, tail, and wing. The shortcut will fail

to generalize in the query (test) image where no tree branch can be found. In general, few-shot

image classifiers are susceptible to spurious bias.

Learned path Desired prediction path Non-existing path

tree branch

class 1 (bird)

class 2

class 0

query image

...

✗
other feature

(e.g., grass     )

class 1 (bird)

tree branch

tail
head

wing

class 2

class 0

support image

...

✓

Figure 4.1: Exploiting the spurious correlation between the class bird and the spurious attribute
tree branch to predict bird leads to an incorrect prediction on the test image showing birds on a
grass field. For clarity, we only show the case for one class.

51



However, there lacks a dedicated benchmarking framework that evaluates the robustness of few-

shot classifiers to spurious bias. The standard benchmarking procedure in FSC trains a few-shot

classifier on base classes from a training set with ample samples and evaluates the classifier on FSC

test tasks constructed from a test set with novel classes. The problem with this procedure is the lack

of explicit control over the spurious correlations in the constructed FSC tasks. Each FSC test task

contains randomly sampled support and query samples. Thus, spurious correlations in the majority

of the test set samples can be demonstrated in these tasks, providing unfair advantages for few-shot

classifiers with high reliance on the spurious correlations.

In this section, we propose a systematic and rigorous benchmark framework, termed Few-Shot

Tasks with Attribute Biases (FewSTAB), to fairly compare the robustness of various few-shot clas-

sifiers to spurious bias. Our framework explicitly controls spurious correlations in the support and

query samples when constructing an FSC test task to reveal the robustness pitfalls caused by spuri-

ous bias. To achieve this, we propose attribute-based sample selection strategies that select support

and query samples with biased attributes. These attributes together with their associated classes

formulate spurious correlations such that if the support samples induce spurious bias in a few-shot

classifier, i.e., the classifier learns the spurious correlations in the support samples as its prediction

shortcuts, then the query samples can effectively degrade the classifier’s performance, exposing its

non-robustness to spurious bias.

Our framework exploits the spurious attributes in test data for formulating spurious correlations

in FSC test tasks. Some existing datasets [139, 148, 149] provide spurious attribute annotations.

However, they only have a few classes and cannot provide enough classes for training and testing.

Many benchmark datasets for FSC do not have annotations on spurious attributes, and obtaining

these annotations typically involves labor-intensive human-guided labeling [86, 87]. To address this,

we further propose to use a pre-trained vision-language model (VLM) to automatically identify

distinct attributes in images in the high-level text format. Our attribute-based sampling methods

can use the identified attributes to simulate various spurious correlations. Thus, we can reuse any

existing FSC datasets for benchmarking few-shot classifiers’ robustness to spurious bias, eliminating

the need for the manual curation of new datasets.

The main contributions of our work are summarized as follows:

• We propose a systematic and rigorous benchmark framework, termed Few-Shot Tasks with

Attribute Biases (FewSTAB), that specifically targets spurious bias in few-shot classifiers,
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demonstrates their varied degrees of robustness to spurious bias, and benchmarks spurious

bias in varied degrees.

• We propose novel attribute-based sample selection strategies using a pre-trained VLM for

constructing few-shot evaluation tasks, allowing us to reuse any existing few-shot benchmark

datasets without manually curating new ones for the evaluation.

• FewSTAB provides a new dimension of evaluation on the robustness to spurious bias along

with a new design guideline for building robust few-shot classifiers. We demonstrate the

effectiveness of FewSTAB by applying it to models trained on three benchmark datasets with

ten FSC methods.

4.1.2 Related Work

In Chapter 2.2, we have reviewed related works on generalizing to novel classes with a few labeled

samples. In this section, we provide detailed discussions on few-shot classification and the associated

robustness issues, as well as methods for discovering spurious attributes and revealing spurious biases.

Few-Shot Classification. Few-shot classification [23, 12, 64, 65, 66, 67] has received vast attention

recently. Few-shot classifiers can be trained with meta-learning or transfer learning on base classes

to learn the knowledge that can be transferred to recognize novel classes with a few labeled samples.

The transfer learning approaches [64, 66] first learn a good embedding model and then fine-tune

the model on samples from novel classes. The meta-learning approaches can be further divided

into optimization-based and metric-based methods. The optimization-based methods [22, 150, 24,

151, 152] aim to learn a good initialized model such that the model can adapt to novel classes

efficiently with a few gradient update steps on a few labeled samples. The metric-based methods

[23, 125, 25, 14, 130, 13, 15, 68] aim to learn a generalizable representation space with a well-defined

metric, such as Euclidean distance [12], to learn novel classes with a few labeled samples. Recently,

large vision-language models [41, 153, 154] are used for few-shot classification. However, they have

completely different training and inference pipelines from the models that we consider in this section.

Robustness in Few-Shot Classification. There are several notions of robustness for few-shot

classifiers. The common one requires a few-shot classifier to perform well on the in-distribution sam-

ples of novel classes in randomly sampled FSC test tasks. The robustness to adversarial perturbations

further requires a few-shot classifier to perform well on samples with imperceptible perturbations

[146, 147]. Moreover, the cross-domain generalization [155, 67, 156] aims to test how robust a few-

shot classifier is on samples from novel classes with domain shifts, which are typically reflected by the
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changes in both image styles and classes. In contrast, we focus on a new notion of robustness: the

robustness to spurious bias. There is a lack of rigorous evaluation methods on the topic. We provide

a new evaluation method that specifically targets spurious bias and can systematically demonstrate

few-shot classifiers’ varied degrees of vulnerability to spurious bias, which has not been addressed in

the existing literature.

Benchmarks for Spurious Bias. There are some existing datasets [139, 148, 149] that are designed

to benchmark spurious bias in image classifiers. However, these datasets are only applicable to the

traditional learning setting [138, 139, 140] since the classes in them are not sufficient for the training

and testing of few-shot classifiers. Existing benchmarks in few-shot classification are not tailored

for benchmarking spurious bias in few-shot classifiers. A recent work [157] creates a large-scale

few-shot classification benchmark dataset with spurious-correlation shifts. In contrast, we propose

a benchmark framework that can reuse existing few-shot classification datasets and provide a new

dimension of evaluation.

Discovering Spurious Attributes. A spurious attribute is non-essential to a class and only

exists in some samples. Early works on discovering spurious attributes [86, 87] require a predefined

list of spurious attributes and expensive human-guided labeling of visual attributes. Recent works

[158, 159, 160, 91] greatly reduce the need for manual annotations by using the neurons of robust

models to detect visual attributes. However, they still need humans to annotate the detected visual

attributes. We automate this process by using a pre-trained VLM to obtain distinct attributes as

words. Instead of discovering spurious correlations, we simulate them via attribute-based sampling

for benchmarking.

4.1.3 Preliminary

Few-Shot Classification Tasks. A typical FSC task T has a support set S for training and a

query set Q for testing. In this task, there are C classes (c = 1, . . . , C) with NS (a small number)

training samples and NQ test samples per class in S and Q, respectively. The task is called a C-way

NS -shot task.

Few-Shot Classifiers. A few-shot classifier fθ with parameters θ aims to classify the samples in

Q after learning from S with a learning algorithm O in a few-shot task T . Here, O could be any

learning algorithms, such as the optimization method [22] or a prototype-based classifier learning

method [12, 26]. To acquire a good few-shot learning capability, fθ is typically meta-trained or pre-
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Symbol Meaning

T An FSC task
S Support (training) set in T
Q Query (test) set in T
c A class in T
C Number of classes per task
NS Number of samples (shots) per class in S
NQ Number of samples per class in Q
O A few-shot adaptation algorithm
ψ An attribute detector
Ω An automatic word selector
Dtrain The base training set
Dval The validation set for selecting a few-shot classifier
Dtest The test set for evaluating a few-shot classifier
Ctrain Classes in Dtrain
Ctest Classes in Dtest
Dc A set of all samples belonging to class c
a A text-format attribute
A A set of text-format attributes

Table 4.1: Meanings of major symbols used in the section.

trained [161] on a base training set Dtrain = {(xn, yn)|yn ∈ Ctrain, n = 1, . . . , Ntrain} with Ntrain

sample(x)-label(y) pairs, where Ctrain is a set of base classes.

Performance Metrics. The performance of a few-shot classifier is typically measured by its average

classification accuracy over NT C-way NS -shot tasks randomly sampled from Dtest = {(xn, yn)|yn ∈

Ctest, n = 1, . . . , Ntest} where Ntest sample-label pairs from novel classes Ctest do not appear in

Dtrain, i.e., Ctrain ∩ Ctest = ∅. We denote this metric as standard accuracy Acc(fθ), i.e.,

Acc(fθ) =
1

NT

NT∑
t=1

C∑
c=1

Mc(Tt; fθ,O), (4.1)

where Mc(Tt; fθ,O) denotes the classification accuracy of fθ on the query samples from the class

c in Tt after fθ is trained on S with O. The metric Acc(fθ) in Equation (4.1) only shows the

average learning capability of fθ over C randomly selected novel classes. To better characterize the

robustness of fθ to spurious bias, we define the class-wise worst classification accuracy over tasks as

wAcc(fθ) =
1

NT

NT∑
t=1

min
c=1,...,C

Mc(Tt; fθ,O). (4.2)

A larger wAcc(fθ) indicates that fθ is more robust to spurious bias.
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Figure 4.2: FewSTAB overview. (a) Extract distinct attributes using a pre-trained VLM. (b) Gen-
erate an FSC task for the evaluation of spurious bias in few-shot classifiers.

Spurious Correlations. A spurious correlation is the association between a class and an attribute

of inputs that is non-essential to the class, and it only holds in some samples. We formally define

it as follows.

Definition 4.1. Let Dc denote a set of sample-label pairs having the label c, and let ψ : X → BA

be an attribute detector, where X is the set of all possible inputs, BA denotes all possible subsets

of A, and A is the set of all possible attributes. The class c and an attribute a ∈ A form a spurious

correlation, denoted as ⟨c, a⟩, if and only if the following conditions hold:

1. There exists (x, c) ∈ Dc that satisfies a ∈ ψ(x), and

2. There exists (x′, c) ∈ Dc that satisfies a /∈ ψ(x′).

We define a as the spurious attribute in ⟨c, a⟩.

Definition 4.1 specifies that all the spurious correlations are based on Dc. In the remainder of

the section, we define Dc = {(x, c)|∀(x, c) ∈ Dtest} with c ∈ Ctest as we focus on evaluating the

robustness to spurious bias.

We list major symbols in the section alongside their meanings in Table 4.1.

4.1.4 Methodology

Attribute-Based Sample Selection

We first propose two attribute-based sample selection methods to reveal spurious bias in a few-shot

classifier. Consider a training set S in a few-shot test task T , which has C classes with each class
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c ∈ Ctest associating with a unique spurious attribute a ∈ A. We aim to discover samples that

can exhibit a classifier’s spurious bias on ⟨c, a⟩ induced from S. Motivated by existing findings

[139, 143, 162] that classifiers with high reliance on ⟨c, a⟩ tend to perform poorly on samples without

it, we propose an attribute-based sample selection strategy below.

Intra-Class Attribute-Based Sample Selection. Given Dc and the training set S having the

spurious correlation ⟨c, a⟩, we generate a set I⟨c,a⟩ of sample-label pairs which have class c but do

not contain attribute a, i.e.,

I⟨c,a⟩ = {(x, c)|∀(x, c) ∈ Dc, a /∈ ψ(x)}. (4.3)

The above proposed method demonstrates a few-shot classifier’s robustness to individual spurious

correlation ⟨c, a⟩ and does not consider a multi-class classification setting where spurious attributes

from some other class c′ exist in samples of the class c. In this case, these attributes may mislead

the classifier to predict those samples as the class c′ and severely degrade the performance on the

class c. For example, consider using the spurious correlations ⟨vase, blue⟩ and ⟨bowl, green⟩ for

predicting vase and bowl, respectively. An image showing a vase in green is more effective in

revealing the robustness to ⟨vase, blue⟩ as it is more likely to be misclassified as bowl than other

images. Motivated by this, we propose the inter-class attribute-based sample selection below.

Inter-Class Attribute-Based Sample Selection. Given Dc and the training set S with the

spurious correlations ⟨c, a⟩ and ⟨c′, a′⟩, where c′ ̸= c and a′ ̸= a, we generate a set I⟨c
′,a′⟩

⟨c,a⟩ of sample-

label pairs which have class c, do not contain attribute a, but contain attribute a′ from another class

c′:

I⟨c
′,a′⟩

⟨c,a⟩ = I⟨c,a⟩ ∩ {(x, c)|∀(x, c) ∈ Dc, a′⟨c′⟩ ∈ ψ(x)}, (4.4)

where a′⟨c′⟩ denotes a
′ in ⟨c′, a′⟩, and I⟨c,a⟩ is defined in Equation 4.3.

Considering that there are C classes in the training set S with each class associating with a

unique spurious attribute a, to effectively demonstrate the reliance on the spurious correlation ⟨c, a⟩

with the inter-class attribute-based sample selection, we consider all the spurious correlations in S.

Specifically, we apply the above selection strategy to all the C − 1 spurious correlations in S other

than ⟨c, a⟩ and obtain IC⟨c,a⟩ as the union of the C − 1 sets as follows:

IC⟨c,a⟩ =
⋃

⟨c′,a′⟩∈C\c

I⟨c
′,a′⟩

⟨c,a⟩ , (4.5)
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where C\c denotes all the spurious correlations in S other than ⟨c, a⟩.

The inter-class attribute-based sample selection is built upon the intra-class attribute-based

sample selection. In the remainder of the section, we use the inter-class method as our default

sample selection strategy, which is more effective empirically (Chapter 4.1.5, Ablation Studies). In

certain cases, however, where there are not enough desired samples during task construction, we

resort to the intra-class sample selection strategy (Chapter 4.1.5, Implementation details).

In the following, we introduce FewSTAB, a benchmark framework that uses the proposed selec-

tion strategies to construct FSC tasks containing samples with biased attributes for benchmarking

spurious bias in few-shot classifiers.

FewSTAB (Part 1): Text-Based Attribute Detection

Our attribute-based sample selection methods require knowing the attributes in images, which typ-

ically involves labor-intensive human labeling. To make our method scalable and applicable to few-

shot classifiers trained on different datasets, we adopt a pre-trained VLM to automatically identify

distinct attributes in images in text format, which includes the following two steps.

Step 1: Generating Text Descriptions. We use a pre-trained VLM [40, 39] ϕ to automatically

generate text descriptions for images in Dtest. The VLM is a model in the general domain and can

produce text descriptions for various objects and patterns. For example, for the current input image

in the vase class in Figure 4.2(a), besides the class object vase, the VLM also detects the vase’s

color green, and another object table with its material wooden.

Step 2: Extracting Informative Words. From the generated text descriptions, we extract nouns

and adjectives as the detected attributes via an automatic procedure Ω. The two kinds of words

are informative as a noun describes an object, and an adjective describes a property of an object.

All the detected attributes form the candidate attribute set A. We realize the attribute detector ψ

defined in Definition 4.1 as ψ(x) = Ω(ϕ(x)).

Remark 1: A VLM in general can extract many distinct attributes from the images. On some

images, the VLM may detect non-relevant attributes, such as detecting a duck from a bird image.

A more capable VLM could warrant a better attribute detection accuracy and benefit individual

measurements on few-shot classifiers. Although being a VLM-dependent benchmark framework,

FewSTAB can produce consistent and robust relative measurements among all the compared FSC

methods, regardless the choice of VLMs (Chapter 4.1.5, Ablation Studies).

Remark 2: The candidate set A constructed with all the extracted words may contain attributes

that represent the classes in Dtest. However, during our attribute-based sample selection, these
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attributes will not be used since they always correlate with classes and therefore do not satisfy the

definition of spurious attributes in Definition 4.1. We provide details of ϕ and Ω in Chapter 4.1.5.

FewSTAB (Part 2): FSC Task Construction

Constructing a C-way NS -shot FSC task T for benchmarking spurious bias in few-shot classifiers

involves constructing a support (training) set S and a query (test) Q with biased attributes.

Constructing the Support Set. The support set contains the spurious correlations that we aim

to demonstrate to a few-shot classifier. As a fair and rigorous benchmark system, FewSTAB makes

no assumptions on the few-shot classifiers being tested and randomly samples C classes from Ctest.

For each sampled class, it randomly selects a spurious correlation ⟨c, a⟩ in Dtest with a ∈ A . To

effectively demonstrate the spurious correlation ⟨c, a⟩ to a few-shot classifier, we select samples of the

class c such that (1) they all have the spurious attribute a and (2) do not have spurious attributes

from the other C − 1 spurious correlations. We construct Sc with NS samples for the class c that

satisfy the above two conditions. Thus, the spurious attribute a becomes predictive of the class c in

Sc. We take the union of all C such sets to get S = ∪Cc=1Sc. Figure 4.2(b) demonstrates the case

when C = 3. Note that we have no requirements for other non-selected attributes in A to ensure

that we have enough samples for Sc.

Constructing the Query Set. To evaluate the robustness to the spurious correlations formulated

in S, we first construct a candidate set IC⟨c,a⟩ in Equation (4.5) for each spurious correlation ⟨c, a⟩ in S.

Since we have no requirements on the non-selected attributes that are not used to formulate spurious

correlations in S, a few-shot classifier may predict query samples via some of these attributes, e.g.,

the yellow blocks in Figure 4.2(b), bypassing the test on the formulated spurious correlations in S.

To address this, we propose query sample selection below.

Query sample selection: We select query samples from IC⟨c,a⟩ that are least likely to have non-selected

spurious attributes, such as the ones enclosed with red boxes in Figure 4.2(b). To achieve this, we

first calculate the fraction of sample-label pairs in IC⟨c,a⟩ that have the attribute a as

pa = |{x|a ∈ ψ(x),∀(x, c) ∈ IC⟨c,a⟩}|/|I
C
⟨c,a⟩|, (4.6)

where | · | denotes the size of a set, a ∈ Ã, and Ã contains all non-selected attributes. A larger

pa indicates that the attribute a occurs more frequently in data and is more likely to be used in

formulating prediction shortcuts. We then calculate the likelihood score for each (x, c) ∈ IC⟨c,a⟩ as

s(x) =
∑
a∈ψ(x),a∈Ã pa, i.e., the summation of all pa of non-selected attributes in x. The likelihood
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VLM
Unique attributes Avg. attributes per class

miniImageNet tieredImageNet CUB-200 miniImageNet tieredImageNet CUB-200
ViT-GPT2 1111 2532 159 190.40 230.94 25.78

BLIP 2032 6710 247 254.40 310.40 29.74

Table 4.2: Statistics of detected attributes in Dtest by two VLMs.

score will be zero if there are no non-selected attributes in x. A large s(x) indicates that the image

x can be predicted via many non-selected attributes. Therefore, we select NQ samples from IC⟨c,a⟩
that have the lowest likelihood scores to construct Qc. Then, we have Q = ∪Cc=1Qc, which contains

samples for evaluating the robustness of a few-shot classifier to the spurious correlations in S.

Complexity Analysis. The text-based attribute detection only needs to use VLMs once to extract

attributes for each test set of a dataset. For the task construction, in a nutshell, we analyze the

attributes of samples from each of the C classes and do the sampling. Thus, the computational

complexity is O(NT CNcNA), where Nc is the maximum number of samples per class in test data,

NA is the number of extracted attributes. We only need to run the process once and use the

generated tasks to benchmark various models.

4.1.5 Experiments

Experimental Setup

Datasets. We used two general datasets, miniImageNet [124] and tieredImageNet [128], and one

fine-grained dataset, CUB-200 [163]. Each dataset consists of Dtrain, Dval, and Dtest for training,

validation, and test, respectively (see Appendix A.3). All images were resized to 84× 84.

FSC Methods. We trained FSC models with ten algorithms covering three major categories. For

gradient-based meta-learning algorithms, we chose ANIL [164], LEO [25], and BOIL [165]. For

metric-based meta-learning algorithms, we chose ProtoNet [12], DN4 [166], R2D2 [13], CAN [132],

and RENet [167]. For transfer learning algorithms, we chose Baseline++ [64] and RFS [66]. See

Appendix A.3 for more details. Any backbones can be used as the feature extractor. For fair

comparisons between different methods, we used the ResNet-12 backbone adopted in [130].

Text-Based Attribute Detection. We used a pre-trained VLM named ViT-GPT2 [40] to generate

text descriptions for images in Dtest. After that, we used Spacy (https://spacy.io/) to extract

nouns and adjectives from these descriptions automatically. We also used another pre-trained VLM,

BLIP [39], to test whether FewSTAB can produce consistent results. The statistics of the detected

attributes are shown in Table 4.2.
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Figure 4.3: A 5-way 1-shot task constructed by our inter-class attribute-based sample selection
using samples from the miniImageNet dataset. Note that due to the limited capacity of a VLM, the
attributes may not well align with human understandings.

Implementation Details. We trained FSC models with the implementation in [161]. Each model

was trained on Dtrain of a dataset with one of the ten FSC methods. For each meta-learning

based method, we trained two models using randomly sampled 5-way 1-shot and 5-way 5-shot tasks,

respectively. All the tasks have 15 samples per class in the query set. We saved the model that

achieves the best validation accuracy on Dval for evaluation. For FewSTAB, if we do not have

enough desired samples to construct a support set, we redo the construction from the beginning.

If there are not enough desired samples to construct a query set, we first try to use the intra-class

attribute-based sample selection; if the desired samples are still not enough, we redo the construction

from the beginning. We created 3000 tasks for model evaluation. All experiments were conducted

on the NVIDIA RTX 8000 GPUs.

Visualization of a Constructed Task

We show a 5-way 1-shot task constructed by FewSTAB in Figure 4.3. Each class in the support set

correlates with a unique spurious attribute. The query samples of a class do not have the spurious

attribute correlated with the class and some of them have spurious attributes associated with other

classes in the support set. For example, the query samples of the class lion do not have the spurious

attribute water, and some of them have spurious attributes from other classes in the support set,

such as man and green. FewSTAB introduces biased attributes in the task so that query samples can

be easily misclassified as other classes by a few-shot classifier that relies on the spurious correlations

in the support set.
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Shot Method
miniImageNet tieredImageNet CUB-200

wAcc-A (↑) wAcc-R (↑) wAcc-A (↑) wAcc-R (↑) wAcc-A (↑) wAcc-R (↑)

1

ANIL 10.38±0.30 14.36±0.33 11.21±0.30 15.63±0.36 13.78±0.40 16.94±0.43
LEO 14.26±0.46 21.35±0.54 16.00±0.55 29.63±0.71 28.29±0.80 40.22±0.87
BOIL 12.48±0.23 14.93±0.24 12.27±0.21 14.13±0.23 19.15±0.29 22.50±0.29
ProtoNet 14.03±0.49 21.96±0.58 14.50±0.50 27.13±0.69 34.62±0.85 46.61±0.89
DN4 12.37±0.46 19.28±0.56 11.99±0.47 23.62±0.65 35.22±0.86 47.26±0.88
R2D2 18.05±0.53 26.50±0.60 16.41±0.54 30.41±0.71 36.70±0.90 48.82±0.88
CAN 17.37±0.53 25.96±0.60 18.84±0.60 36.29±0.78 22.74±0.72 31.95±0.78
RENet 19.10±0.57 28.85±0.65 18.83±0.61 35.70±0.78 32.43±0.81 43.98±0.81
Baseline++ 15.30±0.48 23.18±0.56 17.51±0.54 31.62±0.71 9.17±0.47 14.59±0.58
RFS 18.00±0.53 27.12±0.61 18.35±0.60 35.24±0.77 32.45±0.80 44.49±0.82

5

ANIL 14.83±0.40 25.37±0.52 13.72±0.39 30.60±0.51 31.63±0.55 45.47±0.53
LEO 26.31±0.59 41.33±0.59 29.49±0.72 57.22±0.72 46.62±0.82 59.76±0.77
BOIL 13.09±0.22 15.21±0.23 14.90±0.22 18.55±0.24 19.17±0.28 21.33±0.27
ProtoNet 32.07±0.58 51.95±0.52 30.95±0.70 62.53±0.62 60.06±0.74 75.68±0.50
DN4 27.60±0.58 42.68±0.62 16.07±0.62 40.63±0.81 59.25±0.77 73.58±0.56
R2D2 35.37±0.59 50.84±0.55 31.12±0.72 61.08±0.65 58.66±0.82 75.20±0.54
CAN 36.44±0.65 54.23±0.55 31.17±0.76 64.19±0.62 41.31±0.74 61.61±0.58
RENet 36.19±0.63 56.52±0.58 30.27±0.76 63.49±0.64 52.93±0.82 71.82±0.56
Baseline++ 29.52±0.57 44.94±0.57 30.01±0.72 59.06±0.67 16.86±0.52 29.84±0.69
RFS 36.85±0.64 55.66±0.55 31.15±0.76 62.71±0.67 54.98±0.81 74.33±0.53

Table 4.3: Comparison between wAcc-R and wAcc-A with 95% confidence interval on the miniIm-
ageNet, tieredImageNet, and CUB datasets. Numbers in the Shot column indicate that the models
are both trained (if applicable) and tested on 5-way 1- or 5-shot tasks. Darker colors indicate higher
values.
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Figure 4.4: Accuracy gaps (wAcc-R minus wAcc-A) on the 5-way 1-shot and 5-way 5-shot tasks
from the (a) miniImageNet, (b) tieredImageNet, and (c) CUB-200 datasets.

Effectiveness of FewSTAB

FewSTAB Can Effectively Reveal Spurious Bias in Few-shot Classifiers. We show in Table

4.3 the wAcc (Equation (4.2)) on 5-way 1/5-shot test tasks that are randomly sampled (wAcc-R) and

are constructed with FewSTAB (wAcc-A), respectively. FewSTAB generates FSC test tasks only

based on the class-attribute correlations in data. In each test setting, the FSC methods in Table 4.3

are evaluated with the same FSC tasks. We observe that wAcc-A is consistently lower than wAcc-R

on the three datasets and on two test-shot numbers, showing that FewSTAB is more effective than

the standard evaluation procedure (random task construction) in exhibiting the spurious bias in
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various few-shot classifiers. We additionally show that FewSTAB also works on the most recent

FSC methods and can reflect the improvement made to mitigate spurious bias (see Appendix A.3).

Dataset 1-shot 5-shot

miniImageNet 0.96 0.95

tieredImageNet 0.96 0.90

CUB-200 1.00 0.94

Table 4.4: Spearman’s rank correlations
between wAcc-A and wAcc-R in Table
4.3.

FewSTAB Reveals New Robustness Patterns

among FSC Methods. In Table 4.4, we calculate the

Spearman’s rank correlation coefficients [168] between the

values of wAcc-R and wAcc-A from Table 4.3. The coef-

ficients are bounded from 0 to 1, with larger values indi-

cating that the ranks of FSC methods based on wAcc-R

are more similar to those based on wAcc-A. In the 1-shot

setting, it is not effective to control the spurious correla-

tions since we only have one sample per class in the support set. Hence, the coefficients are large,

and the ranks based on wAcc-A are similar to those based on wAcc-R. In the 5-shot cases, we have

more samples to demonstrate the spurious correlations. The coefficients become smaller, i.e., the

ranks based on wAcc-A show different trends from those based on wAcc-R. In this case, FewSTAB

reveals new information on FSC methods’ varied degrees of robustness to spurious bias.

FewSTAB Can Benchmark Spurious Bias in Varied Degrees. As shown in Figure 4.4, the

accuracy gap, defined as wAcc-R minus wAcc-A, in general, becomes larger when we switch from

5-way 1-shot to 5-way 5-shot tasks. Compared with the random task construction, FewSTAB creates

more challenging tasks in the 5-shot case for demonstrating spurious bias in few-shot classifiers. In

other words, with a higher shot value in the constructed test tasks, FewSTAB aims to benchmark

spurious bias in a higher degree.

A New Dimension of Evaluation and a New Design Guideline

Acc (%)

w
A

cc
-A

 (
%

)

Figure 4.5: Acc versus wAcc-A of the
ten FSC methods tested on 5-way 5-shot
tasks from miniImageNet.

FewSTAB creates a new dimension of evaluation on the

robustness to spurious bias. We demonstrate this with

a scatter plot (Figure 4.5) of Acc (Equation (4.1)) and

wAcc-A of the ten few-shot classifiers. FewSTAB offers

new information regarding different few-shot classifiers’

robustness to spurious bias as we observe that Acc does

not well correlate with wAcc-A. A high wAcc-A indicates

that the classifier is robust to spurious bias, while a high

Acc indicates that the classifier can correctly predict most
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Figure 4.6: Accuracy gaps of few-shot classifiers tested on 1-shot, 5-shot, and 10-shot tasks con-
structed from (a) miniImageNet, (b) tieredImageNet, and (c) CUB-200 datasets.

of the samples. With the scatter plot, we can view tradeoffs between the two metrics on existing

few-shot classifiers. A desirable few-shot classifier should appear in the top-right corner of the plot.

FewSTAB Enables Designs for Varied Degrees of Robustness

As demonstrated in Chapter 4.1.5, FewSTAB can benchmark spurious bias in varied degrees, which

in turn enables practitioners to design robust few-shot classifiers targeted for different degrees of

robustness to spurious bias. The reason for differentiating designs for varied degrees of robustness

is that the same design choice may not work under different robustness requirements. For example,

increasing shot number in training tasks is a common strategy for improving the few-shot general-

ization of meta-learning based methods. We trained few-shot classifiers with 5-way 5-shot and 5-way

1-shot training tasks randomly sampled from Dtrain, respectively. We then calculated the accuracy

gap defined as the wAcc-A of a model trained on 5-shot tasks minus the wAcc-A of the same model

trained on 1-shot tasks. A positive and large accuracy gap indicates that this strategy is effective

in improving the model’s robustness to spurious bias. In Figure 4.6, on each of the three datasets,

we give results of the eight meta-learning based FSC methods on the 5-way 1-, 5-, and 10-shot

FewSTAB tasks which are used to demonstrate the strategy’s robustness to increased degrees of

64



Attribute-based
sample selection

Query sample
selection

Avg. drop (%)

Intra-class Inter-class

✓ 5.13
✓ ✓ 13.30
✓ ✓ ✓ 15.05

Table 4.5: Comparison between different tech-
niques used by FewSTAB for constructing FSC
tasks.

Dataset 1-shot 5-shot

miniImageNet 0.98 1.00
tieredImageNet 1.00 0.99
CUB-200 1.00 0.98

Table 4.6: Spearman’s rank correlation co-
efficients between wAcc-A obtained using
ViT-GPT2 and BLIP.

spurious bias. This strategy does not work consistently under different test shots. For example, in

Figure 4.6(a) this strategy with CAN only works the best on the 5-way 5-shot FewSTAB tasks.

Ablation Studies

Techniques Used in FewSTAB. We analyze how different sample selection methods affect the

effectiveness of FewSTAB in Table 4.5. With only intra-class attribute-based sample selection, we

randomly select query samples from Equation (4.3). For inter-class attribute-based sample selection

and intra-class attribute-based sample selection (automatically included by Equation (4.4)), we

randomly select query samples from Equation (4.5). FewSTAB uses all the techniques in Table 4.5.

We define accuracy drop as wAcc-R minus wAcc-A, and we use the drop averaged over the ten

FSC methods tested on 5-way 5-shot tasks from the miniImageNet dataset as our metric. A larger

average drop indicates that the corresponding sample selection method is more effective in reflecting

the spurious bias in few-shot classifiers. We observe that all proposed techniques are effective and

the inter-class attribute-based sample selection is the most effective method.

Choice of VLMs. Although our main results are based on the pre-trained ViT-GPT2 model [40],

we show in Table 4.6 that when switching to a different VLM, i.e., BLIP [39], the relative ranks

of different few-shot classifiers based on wAcc-A still hold with high correlations. In other words,

FewSTAB is robust to different choices of VLMs.

Detection Accuracy of VLMs. A VLM may miss some attributes due to its limited capacity,

resulting in a small detection accuracy. However, the detection accuracy of a VLM has little impact

on our framework. To demonstrate this, we adopt a cross-validation strategy, i.e., we use the outputs

from one VLM as the ground truth to evaluate those from another VLM, since assessing the detection

accuracy of a VLM typically requires labor-intensive human labeling. On the CUB-200 dataset, we

observe that the detection accuracy of ViT-GPT2 based on the BLIP’s outputs is 70.12%, while the

detection accuracy of BLIP based on the ViT-GPT2’s outputs is 59.28%. Although the two VLMs
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differ significantly in the detected attributes, our framework shows almost consistent rankings of the

evaluated FSC methods (Table 4.6).

Additional results are presented in Appendix A.3.

4.1.6 Conclusion

In this section, we propose attribute-based sample selection strategies with a pre-trained VLM to

select samples with subpopulation shifts for revealing spurious bias in models. These strategies have

been proven effective in FSC, where we designed a systematic and rigorous benchmark framework

called FewSTAB for evaluating the robustness of few-shot classifiers to spurious bias. FewSTAB

adopts these sample selection strategies to construct FSC test tasks with subpopulation shifts so

that the reliance on spurious correlations can be effectively revealed. FewSTAB can automatically

benchmark spurious bias in few-shot classifiers on any existing test data thanks to its use of a pre-

trained VLM for automated attribute detection. With FewSTAB, we provided a new dimension of

evaluation on the robustness of few-shot image classifiers to spurious bias and a new design guideline

for building robust few-shot classifiers. FewSTAB can reveal and enable designs for varied degrees of

robustness to spurious bias. In the following sections, we will exploit these strategies for automatic

spurious bias mitigation.

4.2 Learning Robust Classifiers with Self-Guided Spurious

Correlation Mitigation

4.2.1 Introduction

Deep neural classifiers have shown strong empirical performance in many application areas. However,

some of the high performance may be credited to their strong reliance on spurious correlations

[3, 33, 34], which are brittle associations between non-essential spurious attributes of inputs and

the corresponding targets in many real-world datasets. For example, a deep neural classifier trained

with empirical risk minimization (ERM) can achieve a high accuracy of predicting cow by just

detecting the grassland attribute of images, given that cow correlates with grassland in most

images. However, the correlation is spurious as the grassland attribute is not essential for the class

cow, and the classifier exhibits severe performance degradation on images showing a cow at a beach

[6, 2].
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Mitigating the reliance on spurious correlations is crucial for obtaining robust models. Existing

methods typically assume that spurious correlations are known (1) fully in both the training and

validation data for model training and selection [169, 30] or (2) only in the validation data for model

selection [31, 82, 4, 170]. However, obtaining annotations of spurious correlations typically requires

expert knowledge and human supervision, which is a significant barrier in practice.

In this section, we tackle the setting where annotations of spurious correlations are not available.

To train a classifier robust to spurious correlations without knowing them, we propose a novel

self-guided spurious correlation mitigation framework that automatically detects and analyzes the

classifier’s reliance on spurious correlations and relabels training data tailored for spurious correlation

mitigation.

Our framework exploits the classifier’s reliance on individual attributes contained in multiple

training samples. To this end, we first propose to automatically detect all possible attributes from a

target dataset based on a pre-trained vision-language model (VLM). The VLM learns the mapping

between real-world images and their text descriptions. Thus, it is convenient to extract informative

words from the descriptions as the attributes which summarize similar input features that could be

exploited by a classifier for predictions.

The detected attributes and class labels formulate all possible correlations that the classifier

might exploit for predictions. The classifier may exploit some of the correlations for predictions and

be invariant to others. To measure the classifier’s reliance on these class-attribute correlations or

their degrees of spuriousness, we propose a spuriousness metric to quantify how likely the classifier

relies on the correlations in a set of data. Given a class-attribute correlation, a large value of

the metric shows the classifier’s strong reliance on the correlation and a significant impact of the

correlation on the classifier’s performance.

With the spuriousness values for all the possible correlations, the prediction behaviors of the

classifier on samples naturally emerge. The spuriousness values of all the class-attribute correlations

relevant to a sample collectively characterize the classifier’s prediction behavior on the sample, i.e.,

how likely those correlations are exploited by the classifier for predicting the class label of the sample.

Therefore, we can discover diverse prediction patterns of the classifier. For example, some of the

prediction behaviors are frequently used on many samples while some are not.

To mitigate the classifier’s reliance on spurious correlations, we demonstrate to the classifier that

multiple prediction behaviors for samples in the same class are different but should lead to the same

class label. In this way, the classifier is not only aware of multiple attributes leading to the same class,

but also encouraged to discover more robust features for predictions. To achieve this, we relabel the
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training data with fine-grained labels so that the classifier is trained to distinguish samples from

the same class with different prediction behaviors. Moreover, considering the imbalanced sample

distributions over different prediction behaviors, we adopt a balanced sampling approach to train

the adapted classifier for improved robustness against spurious correlations.

We consolidate the detection and mitigation methods in an iterative learning procedure since it

is possible that mitigating certain spurious prediction behaviors may increase the reliance on others.

Our method, termed as Learning beyond Classes (LBC), has the following contributions:

• We completely remove the spurious correlation annotation barrier for learning a robust clas-

sifier by proposing an automatic detection method that exploits the prior knowledge in a

pre-trained vision-language model.

• We mitigate a classifier’s reliance on spurious correlations by diversifying its outputs to recog-

nize different prediction behaviors and balancing its training data.

• Our method debiases a biased classifier with a new self-guided procedure of iteratively iden-

tifying and mitigating the classifier’s spurious prediction behaviors. We demonstrate that

LBC achieves the best performance on five real-world datasets where spurious correlations are

unknown or unavailable.

4.2.2 Problem Formulation

We focus on an ERM-trained classifier fθ with parameters θ learned from a training dataset Dtr =

{(xn, yn)}Nn=1 of N pairs of image xn ∈ X and label yn ∈ C, i.e.,

θ = argmin
θ′

E(x,y)∈Dtr
ℓ(fθ′(x), y), (4.7)

where X is the set of all input samples, C is the set of classes, and ℓ(·, ·) is the cross-entropy loss

function. Before we introduce the problem regarding the classifier, we describe the following concepts

we use in this section.

Group Labels. A group label ⟨c, a⟩ is a fine-grained label that uniquely annotates a group of

samples which are in the class c and have the attribute a.

Spurious Attributes. A spurious attribute a describes non-predictive conceptual features of in-

puts. For example, the spurious attribute a = water may describe different water backgrounds in

images.
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Figure 4.7: Method overview. (a) Detecting attributes with a pre-trained VLM. (b) Quantifying the
spuriousness of correlations between classes and detected attributes. (c) Clustering in the spurious-
ness embedding space for relabeling the training data. (d) Diversifying the outputs of the classifier
and training the classifier with balanced training data.

Spurious Correlations. A spurious correlation is the association between a spurious attribute a

and a class c that exists only in some samples of class c. We use ⟨c, a⟩ to denote both a group label

and a spurious correlation if a is spurious.

A real-world dataset can be partitioned into several groups with different group labels. Typically,

a classifier fθ can perform well on in-distribution data. However, if the group labels are imbalanced

over the dataset, the classifier will excessively learn from the spurious correlations in the majority

groups and potentially ignore those in the minority groups. This phenomenon exposes a robustness

issue of the classifier, especially when it is deployed in an environment where data distributions are

more shifted towards the minority groups.

Existing problem formulations assume the availability of group labels in both the training and

validation data for model training and selection, respectively, or in the validation data only, where

the annotations of the group labels are often expensive to obtain. Here, we consider the novel setting

where no group labels are available, which completely removes the barrier of human annotation

in existing methods.

4.2.3 Methodology

Automated Spurious Correlation Detection

Without knowing what spurious correlations to be mitigated, we propose an automated and scalable

method to discover all potential spurious correlations in a target dataset. Our method exploits the
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prior knowledge in a pre-trained vision language model (VLM) and consists of automatic attribute

detection and quantifying the spuriousness of correlations between detected attributes and classes.

Automatic Attribute Detection

The detection procedure has the following two steps.

1. Generating Text Descriptions. We use a pre-trained VLM ϕ to automatically generate text

descriptions of images without human supervisions. Since the model is general-purposed and is

not specifically fine-tuned on the target dataset, it can discover general objects and patterns. For

example, in Figure 4.7(a), besides the class object bird, the model also detects tree branch.

2. Extracting Informative Words. We detect attributes by identifying nouns and adjectives from text

descriptions as these types of words are informative in representing objects and patterns in images.

We use an automatic procedure ψ (Chapter 4.2.4) to extract these informative words from the text

descriptions obtained in the first step. For example, we extract bird, top, and tree branch from

the description as shown in Figure 4.7(a). We add the detected attributes to a set A as the set of

all attributes detected from the images.

Remark: It is possible that the pre-trained VLM may generate inaccurate text descriptions for

some images due to its inductive bias learned during pre-training. For example, it may describe a

lemon on a tree as a yellow bird. However, in this case, we observe that bird is still informative

as it refers to any object with a tree background with similar attributes. Therefore, although some

extracted words may not be self-explanatory in representing certain kinds of features, they can still

be representative of many similar samples.

Quantifying Spuriousness

Not all detected attributes in A may form a spurious correlation with a class since some correlations

may not have corresponding images, or some attributes are not spurious and represent class objects.

More importantly, not all correlations are exploited by a classifier. To quantify the likelihood of a

class-attribute correlation being spurious and used by a classifier, i.e., spuriousness of the correlation,

we propose a novel metric, termed spuriousness score, that unifies the above cases.

Our spuriousness score for ⟨c, a⟩ is motivated by the observation that the classifier fθ will gener-

alize poorly on samples of class c without the attribute a if fθ excessively relies on a for predicting

the class c. Intuitively, the score will be higher if fθ has a larger performance discrepancy on images

with and without a and vice versa. We formally define our spuriousness score for ⟨c, a⟩ as follows.
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Definition 1 (Spuriousness Score): Given a class c ∈ C, an attribute a ∈ A, and a classifier fθ

trained on Dtr, the spuriousness of ⟨c, a⟩ is calculated as follows,

γ(a, c; fθ,Dtr) = tanh
(
Abs(log

M(D⟨c,a⟩
tr ; fθ)

M(D⟨c,â⟩
tr ; fθ)

)
)
, (4.8)

with γ(a, c; fθ,Dtr) = 0 when D⟨c,â⟩
tr = ∅ or D⟨c,a⟩

tr = ∅, where D⟨c,a⟩
tr ⊂ Dtr denotes the subset of all

training samples from class c with the attribute a, D⟨c,â⟩
tr ⊂ Dtr denotes the subset of all training

samples from class c without the attribute a, M(·; fθ) denotes the classification accuracy of fθ

on a given set of samples, and Abs(·) denotes taking the absolute value. Moreover, the division

can produce larger values than the simple difference between the two accuracies, making different

correlations more distinctive. Using log(·) avoids encountering extreme values from the division, and

tanh(Abs(·)) bounds the score in the range from 0 to 1. Figure 4.7(b) gives an example.

Remark: When D⟨c,â⟩
tr = ∅, a is always associated with c in Dtr, e.g., a is a class object. When

D⟨c,a⟩
tr = ∅, a and c are not associated, i.e., no samples correspond to the association between a

and c. In both cases, the spuriousness score is zero as they do not fit in our description of spurious

correlations. We exclude such attributes from A. Moreover, the Abs(·) operator implies that when

the fraction in Equation (4.8) is lower than 1, i.e., a leads to incorrect predictions other than c

and results in a small nominator, ⟨c, a⟩ still has a high spuriousness score as it also represents a

robustness pitfall.

With the spuriousness score, we can measure how likely the detected attribute a and the class c

form a spurious correlation that is exploited by the classifier fθ. The lower the spuriousness score,

the less fθ relies on attribute a in its prediction, thus the more robust the classifier is.

Spuriousness-Guided Training Data Relabeling

Applying our spuriousness score (Equation (4.8)) to all the possible correlations between the classes

and the detected attributes, we can holistically characterize the spuriousness of images by showing

how likely correlations relevant to an image are exploited by the classifier in predicting the image’s

class label. To analyze the spuriousness of all the training images and pinpoint the robustness pitfalls

of the classifier, we propose spuriousness embedding, which is defined as follows.

Definition 2 (Spuriousness Embedding): Given an image x with label y, a classifier fθ, the

detected attribute set A with NA attributes, a VLM ϕ, an attribute extraction procedure ψ, and

the training set Dtr, we design the spuriousness embedding for (x, y), denoted as SE(x, y), as a
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NA-dimensional vector, whose ia-th element is defined as follows,

SE(x, y)[ia] = γ(a, y; fθ,Dtr) · 1a∈ψ(ϕ(x)), a ∈ A, (4.9)

where a denotes an attribute of x, ia denotes the dimension index of SE(x, y) that corresponds to

a, and 1{·} is the indicator function that equals one if the condition in the subscript is true and

equals zero otherwise.

With spuriousness embeddings, we embed all images in Dtr in the spuriousness embedding space.

Each point in the space represents both an image and a vector characterizing an individual spurious

prediction behavior of fθ in using relevant class-attribute correlations to predict the image.

In the ideal scenario, a robust classifier produces all zero vectors in the space; practically, we

expect to observe a dispersed distribution of points as the classifier does not excessively rely on

specific spurious prediction behaviors. In contrast, a biased classifier tends to produce an uneven

distribution of points from the same class. We demonstrate in Figure 4.7(c) with two clusters of

similar prediction behaviors frequently used in predictions, i.e., using the water or land attributes.

The partition based on the spuriousness of the images separates same-class samples unevenly, ex-

posing potential prediction failure modes of the classifier, such as predicting a waterbird image with

a land background as a landbird.

Therefore, we cluster images into K clusters in the spuriousness embedding space across different

classes to capture potential failure modes in classification. Here, K is a hyperparameter and is

controlled by our design choice. Formally, we represent the above process as follows,

pK(x, y) = CLU(SE(x, y);Dtr,K),∀(x, y) ∈ Dtr, (4.10)

where pK(x, y) is the cluster label for (x, y), and CLU denotes a clustering algorithm. In the

following, we use KMeans as CLU . Now, pK(x, y) denotes a super-attribute that covers similar

detected attributes that may be used to predict the class label y. For example, the blue cluster in

Figure 4.7(c) represents the water super-attribute which may cover relevant attributes such as pond

and river.

We use the cluster labels pK(x, y) to guide the debiasing of the classifier by relabeling train-

ing data with fine-grained labels formulated with pK(x, y) and y, which we unify as one symbol

gK(x, y) = pK(x, y) + (y − 1) ·K.
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Learning beyond Classes

The spuriousness-guided training data relabeling provides fine-grained training labels defined by the

cluster labels and classes. To effectively use the relabeled training data for robust classifier learning,

we propose two novel strategies along with training and inference procedures in the following.

Diversifying Outputs of the Classifier

The constructed training labels instruct the classifier that multiple prediction behaviors for the same

class should lead to a correct and consistent prediction outcome. To achieve this, we diversify the

outputs of the classifier from predicting class labels to distinguishing between different prediction

behaviors for the same class. In this way, the classifier is not only aware of other attributes leading

to the same class, but also encouraged to discover more robust features for predictions.

Specifically, we separate fθ into a backbone eθ1 and a C-way classification head qθ2 , i.e, fθ =

qθ2 ◦ eθ1 , where C is the number of classes, and the parameters θ = θ1 ∪ θ2. Then, we replace qθ2

with hθ3 which is a (K · C)-way classification head, resulting in a transformed model f̃θ̃ = hθ3 ◦ eθ1

with θ̃ = θ3 ∪ θ1. Each output of f̃θ̃ corresponds to a combination of class c and cluster label k.

Figure 4.7(d) gives an example with K = 2 and C = 2. In this example, instead of predicting two

classes, i.e., waterbird and landbird, we replace the classification head of the ERM model with a

new classification head on the correlations: (waterbird-water), (waterbird-land), (landbird-water),

and (landbird-land).

Balancing Training Data

As discussed in Chapter 4.2.3, different prediction behaviors may correspond to uneven numbers

of samples, which may bias the predictions of the adapted classifier. To address this, we consider

within-class and cross-class balancing strategies.

Within-Class Balancing. We sample K equal-sized training sets Bkc ⊆ Gkc with images from class c

and K different clusters, where Gkc is defined as

Gkc = {(x, y)|y = c, pK(x, y) = k,∀(x, y) ∈ Dtr}. (4.11)

In this way, we assign equal importance to predicting the K clusters within the class c.

Cross-Class Balancing. Considering that predictions for different classes may show varied reliance

on spurious correlations, we additionally balance the size of Bc = ∪Kk=1Bkc . Specifically, for each

class c, we calculate the variance of cluster sizes within class c, i.e., σc = V ar({|Gkc | |k = 1, . . . ,K}),

where | · | denotes the size of a set, and V ar(·) denotes calculating the variance of a set of numbers.

The variance measures the degree of imbalanced prediction behaviors for class c. We control the
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size of Bc based on σc such that we sample more training data for a class that exhibits a larger

degree of imbalanced prediction behaviors. Concretely, given the batch size B, we set |Bc| = B · ρc,

|Bkc | = B · ρc/K, where ρc = log(σc)/
∑C
c=1 log σc, and we use log(·) to avoid encountering extreme

values.

Training and Inference

The overall learning objective is as follows,

θ̃∗ = argmin
θ̃

EB∼DtrE(x,y)∈Bℓ(f̃θ̃(x), gK(x, y)), (4.12)

where B = ∪Cc=1Bc.

It is possible that after training on Equation (4.12), the model develops reliance on other spurious

correlations. Therefore, we iteratively update the spuriousness scores based on the updated model

and perform the mitigation procedure again. We call this method learning beyond classes (LBC).

The whole procedure is listed in Algorithm 1 in Appendix A.4.1.

Model Selection. Given a validation set Dval without group labels, we develop a selection metric

called pseudo unbiased validation accuracy Accpseudounbiased to select the best model during training.

Specifically, we group the validation data based on the existence of the detected attribute a, i.e.,

Daval = {(x, y)|(x, y) ∈ Dval, a ∈ ψ(ϕ(x))}. (4.13)

Then, we calculate Accpseudounbiased as the average over the accuracy on Daval as follows,

Accpseudounbiased =
1

|A|
∑
a∈A

M(Daval; f̃θ̃). (4.14)

During inference, the predicted label is calculated as ĉ = ⌈(argmaxc f̃θ̃(x))/K⌉, where ⌈c⌉ denotes

taking the smallest integer greater than or equal to c.

4.2.4 Experiments

Datasets

Waterbirds. Waterbirds [3] is a dataset for recognizing waterbirds and landbirds. It is generated

synthetically by combining images of the two birds from the CUB dataset [163] and the backgrounds,

water, and land, from the Places dataset [174], producing (waterbird, water), (waterbird, land),

(landbird, land), and (landbird, water) groups.
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Method Backbone
Group information CelebA Waterbirds

Train Validation Worst(↑) Average(↑) Gap(↓) Worst(↑) Average(↑) Gap(↓)
GroupDRO [3] ResNet-50 ✓ ✓ 88.9 92.9 4.0 91.4 93.5 2.1

LfF [33] ResNet-50 ✗ ✓ 78.0 85.1 7.1 78.0 91.2 13.2
CVaR DRO [171] ResNet-50 ✗ ✓ 64.4 82.5 18.1 75.9 96.0 20.1
JTT [31] ResNet-50 ✗ ✓ 81.1 88.0 6.9 86.7 93.3 6.6
DFR [4] ResNet-50 ✗ ✓ 69.4±1.4 93.3±0.1 23.9±1.3 80.2±2.3 92.1±0.6 11.9±2.7

LBC (Ours) ResNet-50 ✗ ✓ 87.4±1.8 92.4±0.3 5.0±2.1 88.1±1.4 94.1±0.3 6.0±1.7

ERM ResNet-50 ✗ ✗ 45.7 95.5 49.8 66.4 90.2 23.8
LfF [33] ResNet-50 ✗ ✗ 24.4 85.1 60.7 44.1 91.2 47.1
CVaR DRO [171] ResNet-50 ✗ ✗ 36.1 82.5 46.4 62.0 95.2 33.2
JTT [31] ResNet-50 ✗ ✗ 40.6 88.0 47.4 62.5 93.3 30.8
DivDis [172] ResNet-50 ✗ ✗ 55.0 90.8 35.8 81.0 90.7 9.7
MaskTune [173] ResNet-50 ✗ ✗ 78.0±1.2 91.3±0.1 13.3±1.3 86.4±1.9 93.0±0.7 6.6±2.6

DFR [4] ResNet-50 ✗ ✗ 46.0 95.8 49.8 77.4 92.1 14.7
LBC (Ours) ResNet-50 ✗ ✗ 81.2±1.5 92.2±0.3 11.0±1.8 87.3±1.8 93.2±0.9 5.9±2.7

Table 4.7: Worst-group and average accuracy (%) comparison with state-of-the-art methods on the
CelebA and Waterbirds datasets. The ResNet-50 backbones are pretrained on ImageNet. Group-
DRO reveals the theoretically best performance given all the group information in worst-group
results and performance gaps. The best worst-group results and performance gaps are in boldface.

CelebA. CelebA [149] is a large-scale image dataset of celebrity faces. The task is to identify hair

color, non-blond or blond, with gender as the spurious attribute. There are four groups in the

CelebA dataset: (blond, male), (blond, female), (non-blond, male), (non-blond, female).

ImageNet-9. ImageNet-9 [49] comprises images with different background and foreground signals,

which can be used to assess how much models rely on image backgrounds. This dataset is a subset

of ImageNet [175] containing nine super-classes. This dataset helps learn the robustness of vision

models to their dependence on the backgrounds of images.

ImageNet-A. ImageNet-A [176], is a dataset of real-world images, adversarially curated to test the

limits of classifiers such as ResNet-50. While these images are from standard ImageNet classes [175],

their complexity increases the challenge, often causing misclassifications in multiple models. We use

this dataset to test the robustness of a classifier after training it on ImageNet-9.

NICO. The NICO dataset [148] is designed for non-independent and identically distributed and out-

of-distribution image classification, simulating real-world scenarios where testing distributions differ

from training ones. It labels images with both main concepts and contexts (e.g., ’dog on grass’),

enabling studies on transfer learning, domain adaptation, and generalization. NICO contains two

superclasses: Animal and Vehicle, with 19 classes, 188 contexts, and nearly 25,000 images in total.

Experimental Setup

Spurious Attribute Detection. We generate text descriptions for images using a pre-trained

vision-language model [40], which has an encoder-decoder structure where the encoder is a vision
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Class Attributes

Landbird
pool , boat , building , pond ,

surfboard , sandy , beach , water ,
body, frisbee

Waterbird
stream , forest , building , pile, front,

middle, animal, photo, tree , branch

Table 4.8: Top-10 detected attributes selected based on their spuriousness scores for each class in
the Waterbirds dataset. We highlight several attributes that are relevant to water backgrounds in
blue and those that are relevant to land backgrounds in orange.

transformer [177] and the decoder is the GPT-2 [178] language model. We set the maximum length of

the sequence to be generated as 16 and the number of beams for beam search to 4. After generating

text descriptions for test images, we use Spacy (https://spacy.io/) to extract nouns and adjectives

from the descriptions automatically. We additionally filter out words with frequencies less than 10

to remove potential annotation noise. In our experiments, we only need to do this procedure once

for each dataset.

Training Settings. We use ResNet-50 and ResNet-18 as the backbone networks. For each dataset,

we first train an ERM model, which is first initialized with ImageNet pre-trained weights, for 100

epochs. We set the learning rate to 0.001 which decays following a cosine annealing scheduler and

use an SDG optimizer with 0.9 momentum and 10−4 weight decay. Then, we use the ERM-trained

models as the initial models for our LBC training. For all the datasets, we fix the learning rate to

0.0001 and the batch size to 128. We sample 20 batches per epoch and train for 50 epochs. The

cluster size K is set to 3. We report our results averaged over 5 runs. We provide training details

in the Appendix A.4.3. All experiments are conducted on NVIDIA RTX A6000 GPUs.

Evaluation Metrics. We adopt different evaluation metrics on different datasets. For a dataset

with group labels defined by classes and biased attributes, we partition the test data into groups.

Average accuracy measures the overall performance of a classifier on the test data; however, it may

be dominated by the majority group of samples with certain biases that the classifier may heavily

rely on for predictions. Therefore, we mainly focus on the worst-group accuracy which is a widely

accepted robustness measure that gives the lower-bound performance of a classifier on various dataset

biases. To measure the tradeoff between the average and worst accuracy, we additionally calculate

the gap between the two metrics. For datasets without group labels, we report different kinds of

average accuracies on specifically designed test sets, which we will explain in the respective sections.
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Method
Spurious

attribute label
ImageNet-9 ImageNet-A

Validation(↑) Unbiased(↑) Test(↑)
StylisedIN [179] ✓ 88.4±0.5 86.6±0.6 24.6±1.4

LearnedMixin [84] ✓ 64.1±4.0 62.7±3.1 15.0±1.6

RUBi [180] ✓ 90.5±0.3 88.6±0.4 27.7±2.1

ERM ✗ 90.8±0.6 88.8±0.6 24.9±1.1

ReBias [181] ✗ 91.9±1.7 90.5±1.7 29.6±1.6

LfF [33] ✗ 86.0 85.0 24.6
CaaM [182] ✗ 95.7 95.2 32.8
SSL+ERM [183] ✗ 94.18±0.07 93.18±0.04 34.21±0.49

LWBC [183] ✗ 94.03±0.23 93.04±0.32 35.97±0.49

LBC (Ours) ✗ 96.97±0.17 96.03±0.12 40.63±1.79

Table 4.9: Validation, Unbiased, and Test metrics (%) evaluated on the ImageNet-9 and ImageNet-A
datasets. All methods use ResNet-18 as the backbone. The best results are in boldface.

NICO
Method

Spurious
attribute label Validation(↑) Test(↑)

RUBi [180] ✓ 43.86 44.37
IRM [138] ✓ 40.62 41.46

ERM ✗ 43.77 42.61
CBAM [184] ✗ 42.15 42.46
ReBias [181] ✗ 44.92 45.23
LfF [33] ✗ 41.83 40.18
CaaM [182] ✗ 46.38 46.62
SSL+ERM [183] ✗ 55.63±0.54 52.24±0.27

LWBC [183] ✗ 56.05±0.45 52.84±0.31

LBC (Ours) ✗ 68.26±2.15 65.34±2.54

Table 4.10: Validation and Test metrics (%) evaluated on the NICO dataset. All methods use
ResNet-18 as the backbone pretrained on ImageNet. The best results are in boldface.

Effectiveness of Spuriousness Score

We calculated the spuriousness scores for the correlations between all the detected attributes and

classes in the Waterbirds dataset and selected the top-10 attributes with the highest spuriousness

scores for each class. Table 4.8 shows that these attributes are mostly relevant to water and land

backgrounds, which are spurious by design. Interestingly, our spuriousness score can find attributes

in one class that are heavily exploited to predict some other class. For example, pool from landbird

is detected in images of landbird with a pool, but it tends to bias the predictions toward waterbird

since it is relevant to water backgrounds. As discussed in Chapter 4.2.3, this arises from the Abs

operator in our definition of spuriousness score in Equation (4.8): when the nominator term is much

smaller than the denominator term, e.g., when a=pool and c=landbird, the spuriousness score is

still high. Examples from other datasets are shown in Appendix A.4.4.
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(a) landbird, ERM (b) waterbird, ERM (c) ERM

(d) landbird, LBC (e) waterbird, LBC (f) LBC

waterbird
landbird

waterbird
landbird

Figure 4.8: (a) and (b): Spuriousness scores for the attributes detected from landbird and waterbird
based on an ERM model. (d) and (e): Spuriousness scores based on our LBC model. (c) and (f):
Spurious embeddings of the images in the Waterbirds dataset based on the ERM and LBC model,
respectively.

LBC Reduces Reliance on Spurious Correlations

We have shown that our spuriousness score can effectively reflect a model’s reliance on spurious

correlations. To show the efficacy of our LBC method in learning a robust model to spurious

correlations, we calculated the spuriousness scores for the class-attribute correlations based on an

ERM and our LBC-trained models. Comparing the results between Figure 4.8(a) and Figure 4.8(d),

as well as between Figure 4.8(b) and Figure 4.8(e), we observe that LBC significantly reduces the

spuriousness scores of the correlations between the detected attributes and the two classes. Moreover,

the spuriousness embeddings, which represent images with different prediction behaviors, become

more dispersed in Figure 4.8(f) than in Figure 4.8(c). This indicates that LBC successfully mitigates

the ERM classifier’s reliance on certain prediction behaviors and diversifies the prediction behaviors

for different classes.

Comparison with Existing Methods

Datasets with Group Labels. We first compare our method with baselines in Table 4.7 on

the CelebA and Waterbirds datasets, which provide group labels of all the data samples. In the

first setting where only the group labels of the validation data are used, our method achieves the

best worst-group accuracies and the best gaps between the average and the worst-group accuracies

on the two datasets, striking a favorable balance between the robustness of the classifier and its
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overall performance. Our worst-group accuracies are also close to the upper bounds established by

GroupDRO, while our average accuracies are competitive or better than those of GroupDRO. In

our main setting where no group labels are available, our method outperforms the baselines with

the best worst-group accuracies and worst-average gaps. More significantly, our method is the most

robust in terms of the least drops in worst-group accuracy when switching from the first setting

to the second one. This shows the effectiveness of our designed model selection metric in selecting

robust models.

Datasets with Texture Biases. Experiments on ImageNet-9 and ImageNet-A test how much a

classifier relies on the spurious texture bias. In Table 4.9, texture group labels [181, 183] are used

as the spurious attribute labels. The “Validation” denotes the average accuracy on the validation

set, “Unbiased” denotes the average accuracy over several texture groups, and “Test” denotes the

average accuracy on the ImageNet-A dataset which contains misclassified samples by an ImageNet-

trained model. Our method outperforms other methods on the three metrics, showing that our

method is effective in mitigating a classifier’s reliance on texture biases and correcting its failure

modes in classification.

Dataset with Object-Context Correlations. The NICO dataset is created to evaluate a clas-

sifier’s reliance on object-context correlations. In Table 4.10, “Validation” denotes the average

accuracy on the validation data which contains the same object-context correlations as in the train-

ing data, and “Test” denotes the average accuracy on the test data which contain not only existing

object-context correlations but also unseen ones. Our method effectively mitigates the reliance on

object-context correlations and achieves the best on the two metrics.

Ablation Studies

We first analyzed the effectiveness of the four proposed components: (1) predicting prediction be-

haviors (PPB), (2) within-class balancing (WCB), (3) cross-class balancing, and (4) spuriousness

embeddings (SE). We remove one component and observe the worst-group accuracies achieved by

the remaining ones. In Figure 4.9(a), \PPB denotes that we keep the original classifier to predict

classes, \WCB denotes that we randomly sample from the same class, \CCB denotes that we equally

sample images with different identified prediction behaviors, and \SE denotes that we use binary

attribute embeddings for images. We observe that all four components positively contribute to our

method since removing any one of them results in reduced accuracy. Among the four components,

balanced data sampling (WCB and CCB), especially WCB, is most critical to our method. Figure

4.9(b) shows that a large K exceeding 10 has suboptimal worst-group accuracies and that when
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K = 2, it limits the discovery of diverse prediction behaviors. Typically, K = 3 works for most of

the cases. More results are shown in Appendix A.4.
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(a) Proposed components (b) Number of clusters K

Figure 4.9: Worst-group accuracy comparison of (a) leave-one-out study on the four proposed com-
ponents and (b) analysis on the number of clusters K on the Waterbirds dataset.

4.2.5 Conclusion

We completely removed the barrier of expert knowledge and human annotations for spurious corre-

lation mitigation by proposing a self-guided framework. Our framework incorporates an automated

approach empowered by a VLM to detect attributes in images and quantifies their spuriousness

with class labels. We formulated a spuriousness embedding space based on the spuriousness scores

to identify distinct prediction behaviors of a classifier. We trained the classifier to recognize the

identified prediction behaviors with balanced training data. Experiments showed that our frame-

work improves the robustness of a classifier against spurious correlations without knowing them in

the data.

4.3 Spuriousness-Aware Meta-Learning for Learning Robust

Classifiers

4.3.1 Introduction

Spurious correlations are prevalent in real-world datasets. They are brittle associations between

certain input attributes and the corresponding target variables. For example, the class cow is

correlated with grassland when most training images show a cow on a grassland, but the correlation

breaks when a cow is at a beach [2, 6]. The grassland feature is spurious as it does not always correlate

with the label cow and is not truly predictive for all cow images. Deep image classifiers often use

spurious correlations as their prediction shortcuts [2], such as inferring an image as representing a
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cow by focusing on the grassland background of the image. Although this shortcut learning strategy

can achieve high overall performance when the majority of samples have spurious correlations, it

generalizes poorly on samples where spurious correlations do not hold. Thus, mitigating the reliance

on spurious correlations is crucial for obtaining robust image classifiers.

Existing approaches require annotations of spurious correlations or group labels, which separate

data into multiple groups with each containing samples of the same class and sharing the same

attribute. For example, a group label (cow, grass field) represents all cow images with grass fields

as the background. The group labels are used to formulate new optimization objectives [3] or used

for model selection and/or model fine-tuning [34, 33, 4, 170]. However, knowing the group labels in

data requires expert knowledge and costly human annotations, which cannot scale to large datasets.

Completely removing the requirement for group labels while learning robust classifiers is also a

challenging task since we have no knowledge about what spurious correlations we need to mitigate.

In this paper, we propose a novel learning framework to train an image classifier to be robust

to spurious correlations without the need of group labels. We design our framework to iteratively

detect and mitigate the spurious correlations that the classifier heavily relies on for predictions. To

achieve this, we first propose an automatic spurious attribute detection method empowered by a

pre-trained vision-language model (VLM). The VLM enables us to detect text-format attributes

which represent many similar pixel-level features and are interpretable to humans. These attributes

together with class labels can formulate various class-attribute correlations which we may find to be

spurious in data, and these correlations can cover many potential scenarios where an image classifier

fails to generalize because of its reliance on one or multiple of these spurious correlations. Therefore,

to train a robust classifier against spurious correlations in general without the guidance of group

labels, we focus on mitigating the classifier’s reliance on the detected correlations.

However, it is not efficient to mitigate all of them with equal importance, since among the

detected correlations, some are trivial for the classifier as the classifier is robust to them, while some

may pose a great risk to the robustness of the classifier. Thus, we propose a novel spuriousness

metric to quantify the spuriousness of the correlation between a detected attribute and a class label,

which measures a classifier’s reliance on these class-attribute correlations for predictions, with a

larger value indicating a greater reliance on the correlation. With the spuriousness metric, we can

identify harmful spurious correlations.

To train a robust classifier, we propose a SPUriousness-aware MEta-learning (termed SPUME)

strategy. Unlike the classical settings where only a few spurious correlations are known and needed

to be mitigated, our setting has numerous correlations established by the detected attributes and
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class labels, especially when the dataset that we use has rich features. Using meta-learning, we

can distribute the detected spurious correlations with high spuriousness values into multiple meta-

learning tasks by carefully curating the data in those tasks. We exploit the support (training) and

query (test) sets in a meta-learning task so that samples in the support and query sets have different

spurious correlations. Such a task simulates a challenging learning scenario where the classifier will

perform poorly on the query set when it has a high reliance on the spurious correlations in the

support set. By meta-training the classifier on these spuriousness-aware meta-learning tasks, our

classifier can learn to be invariant to the spurious correlations.

Our contributions are as follows:

• We propose an automatic method to detect spurious correlations in data, which exploits the

prior knowledge contained in a pre-trained VLM and extracts spurious attributes in inter-

pretable text format.

• We tackle the problem of mitigating the reliance on spurious correlations with a novel meta-

learning strategy.

• We propose a novel spuriousness metric to guide the construction of meta-learning tasks with

the detected spurious attributes.

• We demonstrate that a classifier with high average accuracy does not necessarily have high

worst-group accuracy which is commonly used for measuring the robustness to spurious corre-

lations. Our method, termed as SPUrious-aware MEta-learning (SPUME), can train classifiers

robust to spurious correlations on five benchmark datasets without knowing the spurious cor-

relations a priori.

4.3.2 Problem Formulation

Consider a training dataset Dtr = {(xn, yn)}Nn=1 with xn ∈ X , yn ∈ Y, where X denotes the input

space containing all possible inputs, Y denotes the set of K classes. In real-world scenarios, a sample

xn in Dtr typically has spurious attributes and these attributes have spurious correlations with the

label yn. We describe the two important concepts below.

• Spurious Attributes: A spurious attribute a ∈ A describes some common patterns in the input

space X and spuriously correlates with some label y ∈ Y, where A denotes all possible spurious

attributes. In other words, a can be in samples of multiple classes or only in some samples of a class,

and therefore is not essential to any of the classes. For example, the “land background” attribute
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Figure 4.10: Overview of SPUME. (a) Detect attributes from training data and measure their spuri-
ousness in three steps. “\green” denotes without the attribute “green”. (b) Construct spuriousness-
aware meta-learning tasks guided by the spuriousness scores of the detected attributes. (c) Meta-
train a robust feature extractor using the constructed tasks.

can exist in images of waterbird and landbird classes [3], and “land background” is non-essential to

either of the classes.

• Spurious Correlations: A spurious correlation, denoted as ⟨y, a⟩, describes the brittle association

between the spurious attribute a and the label y. The spurious correlation ⟨y, a⟩ does not always

hold in the sense that a can be associated with multiple y’s or y can correlate with other attributes

in some samples. Knowing all the spurious correlations in Dtr, we can divide Dtr into multiple data

groups Dgtr, g ∈ G, where g = (y, a) denotes the group label for samples with the label y and having

the spurious attribute a, and G = Y ×A denotes the set of all group labels.

Given a deep neural classifier fθ with parameters θ, we train it with empirical risk minimization

(ERM) on the training set Dtr and obtain the optimized classifier fθ∗ as follows:

θ∗ = argmin
θ

E(x,y)∈Dtr
ℓ(fθ(x), y), (4.15)

where ℓ(·, ·) is the cross-entropy loss function.

The problem occurs when data groups {Dgtr|g ∈ G,D
g
tr ⊂ Dtr} in Dtr are imbalanced in sizes or

the inductive bias of the classifier fθ favors particular data groups. For example, a majority group

Dgtr with the group label g = (y, a) in Dtr, which has significantly more samples than other groups,

may bias the optimization in Equation (4.15) towards favoring the data in Dgtr having the spurious
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correlation ⟨y, a⟩, i.e.,

θ∗ ≈ argmin
θ

E(x,y)∈Dgtrℓ(fθ(x), y), (4.16)

with |Dgtr| ≫ |D
g′

tr |, where g, g′ ∈ G and g ̸= g′, and | · | denotes the size of a set. As a result,

the classifier fθ∗ , instead of utilizing the core features in samples to predict y, may superficially

learn the mapping from a to y, which is non-robust when the correlation between a and y breaks.

More specifically, since a is a spurious attribute, there may exist ⟨y′, a⟩ in samples from class y′

with y ̸= y′. Then, it is very likely that fθ∗ will wrongly predict these samples as y instead of y′.

For example, when fθ∗ learns to use water backgrounds (a) to predict waterbirds (y), it fails to

recognize landbirds (y′) with water backgrounds. Similarly, when the inductive bias in fθ∗ favors

certain spurious correlations, the classifier will encounter the same generalization problem.

Spurious correlations pose a great challenge to the robustness of machine learning models. To

address this, typically, all or partial group labels of the training data is required for various purposes,

such as formulating the group robustness objective [3], reweighting the training data, or selecting

models [31]. However, acquiring group labels for a dataset typically involves human-guided annota-

tions, which is costly and not scalable, especially when the dataset is large. In the following, without

the need of group labels, we propose a novel spuriousness-aware meta-learning framework to train a

classifier to be robust to spurious correlations.

4.3.3 Spuriousness-Aware Meta-Learning

We give the overview of our framework in Figure 4.10, where we first detect spurious attributes

with a pre-trained VLM (Figure 4.10(a)). To effectively use the detected spurious attributes for

spurious correlation mitigation, we propose a novel meta-learning strategy and provide details on

how to construct spuriousness-aware meta-training tasks (Figure 4.10(b)) and meta-learn robust

representations (Figure 4.10(c)).

Automatic Spurious Attribute Detection

To automatically detect spurious attributes in a target dataset without human-guided annotations,

we propose to exploit the prior knowledge in a pre-trained VLM. Our method detects spurious

attributes in text format and consists of the following three steps.
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Step 1: Generate Text Descriptions. We generate a text description for each image using a

pre-trained VLM ϕ, which is capable of generating text descriptions of images at scale. Moreover,

since the model is trained on massive data and is not specifically fine-tuned on the target dataset, it

can discover general objects and patterns. For example, in Figure 4.10(a), besides the class object

vase, the VLM also detects the vase’s color green and a background object table with its material

wooden.

Step 2: Extract Informative Words as Attributes. We extract informative words from the

text descriptions of images as attributes. We select nouns, which describe objects, and adjectives,

which describe certain properties of objects, as the informative words. For example, we extract

green, vase, top, wooden, and table from the description in Figure 4.10(a). We instantiate the

attribute extractor ψ with an automatic procedure (Section 4.3.4) to extract these informative words

from the text descriptions obtained in the first step. Then, these extracted words are added to the

attribute set A as the possible spurious attributes.

Remark. VLMs can detect general objects and patterns. However, due to the inductive bias learned

during pre-training, VLMs may generate text descriptions for some images that are not aligned

with human understandings, such as describing a red-and-green background as a “Christmas tree”.

Although “Christmas tree” is not self-explanatory in this case, it is still a valid and useful attribute,

representing samples having similar red-and-green backgrounds. This also highlights the benefit

of using VLMs: they can detect patterns that are not easily perceived by humans. A limitation

of such a VLM-based detection approach is that VLMs may struggle on describing images from

domain-specific tasks where, for example, slight changes in orientation of objects or variations in

geographies are important for robust predictions. Nevertheless, our proposed spurious attribute

detection approach is not restricted to a specific VLM, and it can be improved if more capable

VLMs are available.

Step 3: Measure Spuriousness. To know whether a detected attribute a ∈ A is spurious, we

need to consider it in the correlation with a class label y, since among all the correlations between

the attributes in A and class labels, some of them may be vacuous — they do not exist in the

training data (e.g., a only exists in images of the class y′ with y′ ̸= y), and some of them are not

spurious (e.g., the attribute a is detected exclusively in all the images of the class y). Moreover, we

are interested in identifying spurious correlations that are likely to be exploited by a classifier for

predictions as these correlations directly affect the robustness of the classifier.
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To unify the above cases, we propose a metric to quantify the likelihood of the correlation ⟨y, a⟩

being spurious and used by a classifier, i.e., spuriousness of the correlation. The metric γ considers

y, a, the training data Dtr, and the classifier fθ, and maps them to a finite value, which we call

spuriousness score. We defines γ as follows.

Definition 4.2 (Spuriousness Metric). Given a class label y ∈ Y, an attribute a ∈ A, and a classifier

fθ trained on D with θ ∈ Θ, the spuriousness metric for ⟨y, a⟩ is a mapping γ : Y×A×D×Θ→ [α, β],

where D denotes a set of sample-label pairs, Θ denotes the set of all possible θ, and [α, β] denotes

the output value range of γ, with α being the lowest and β being the highest. When the data group

size |D(y,a)| = 0 or |D(y,â)| = 0, where â denotes all attributes in A other than a, the mapping γ

outputs α.

Given the training set Dtr, |D(y,a)
tr | = 0 and |D(y,â)

tr | = 0 correspond to that ⟨y, a⟩ does not exist

in Dtr and that ⟨y, a⟩ exists exclusively in samples of class y, respectively. For both cases, the

spuriousness of ⟨y, a⟩ should be the smallest.

Then, we specifically design γ based on the performance of the classifier fθ. The motivation is

that the classifier fθ will generalize poorly on samples of the class y without the attribute a if fθ

excessively relies on a for predicting the label y. Therefore, as demonstrated in Figure 4.10(a), the

spuriousness will be higher if fθ has a larger performance discrepancy on images with and without

a and be lower when the performance discrepancy is smaller. We formally define our spuriousness

metric for ⟨y, a⟩ as follows,

γ(y, a;Dtr, fθ) = tanh
(
abs

(
log

J(D(y,a)
tr ; fθ)

J(D(y,â)
tr ; fθ)

))
, (4.17)

with γ(y, a;Dtr, fθ) = 0 when D(y,â)
tr = ∅ or D(y,a)

tr = ∅, where D(y,a)
tr ⊂ Dtr denotes the subset

of all training data from the class c with the attribute a, D(y,â)
tr ⊂ Dtr denotes the subset of all

training data from the class c without the attribute a, J(·; fθ) denotes the classification accuracy of

fθ on a given set of samples, and abs(·) denotes taking the absolute value. The division in Equation

(4.17) aims to produce larger values than the simple difference between the two accuracies, making

different correlations more distinctive. Moreover, using log(·) avoids encountering extreme values

from the division, and tanh(abs(·)) bounds the score in the range from 0 to 1. Other designs of γ

are possible, and we have shown in our experiments that our method proposed in the following is

robust to different choices of spuriousness metrics.
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Discussion. With the detected attributes and our spuriousness metric, we can identify spurious

correlations that are likely to be used for predictions by a classifier and thus pose a potential risk

to the robustness of the classifier. To improve the robustness to spurious correlations, we need to

mitigate the classifier’s reliance on those spurious correlations. Since there are multiple spurious

correlations, mitigating all of them at once is a challenging task. To address this, we formulate the

problem in a novel meta-learning [22, 23, 12, 26] setting, where we construct meta-learning tasks

with each task containing some potentially harmful spurious correlations. Now, our goal is to learn

a good classifier that performs well across all these tasks with various spurious correlations.

In the following, we first introduce how to construct meta-learning tasks with the identified

spurious correlations. Then, we give the details of using the constructed tasks for meta-learning.

Spuriousness-Aware Task Construction

To mitigate spurious correlations via meta-learning, we first create meta-learning tasks which will be

used in meta-training. A meta-learning task typically consists of a support (training) set S providing

training samples for learning novel concepts and a query (test) set Q containing test samples for

the evaluation of the learning outcome. We use the two sets to simulate spurious correlations in

meta-learning tasks so that these spurious correlations can be effectively mitigated via meta-learning.

As illustrated in Figure 4.10(b), for each class yk with k = 1, . . . ,K, we first sample two attributes

ak and a′k from A based on their spuriousness scores, where ak ̸= a′k. Specifically, we normalize the

scores as probabilities, and an attribute with a higher spuriousness score will be more likely to be

selected than another attribute with a lower spuriousness score. In this way, we target the spurious

correlations that pose a high risk to the robustness of the classifier.

Then, the two sampled attributes formulate two spurious correlations with yk, i.e., ⟨yk, ak⟩ and

⟨yk, a′k⟩, based on which, we get two data groups, D(yk,ak)
tr and D(yk,a

′
k)

tr , from the training set Dtr.

These two groups of data together represent a shift in the correlation between the two spurious

attributes and the class label. If the classifier learns to rely on the spurious correlation in one

group of data for predictions, then it will fail on the other group of data with a different spurious

correlation. Thus, crafting such a shift facilitates learning a robust classifier.

Next, for efficient training, we randomly sample NS data points per class from the two data

groups to construct the non-overlapping support set Sk and the query set Qk, i.e.,

Sk =

NS⋃
i=1

{
(xi, yk)|(xi, yk) ∈ D̃(yk,ak)

tr

}
, (4.18)
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Algorithm 2 SPUME

Input: A training dataset Dtr, a feature extractor hθ1 , a pre-trained VLM ϕ, an attribute
extractor ψ, a spuriousness metric γ, the number of tasks per epoch NT , the number of classes K,
and the number of training epochs E.
Output: Learned weights θ∗1

1: Build the attribute set A = ∪(x,y)∈Dtrψ(ϕ(x))
2: for e = 1, . . . , E do
3: Generate class centroids using Equation (4.20) with S = Dtr
4: Generate spuriousness scores using Equation (4.17)
5: Set T (Dtr,A, γ, θ1) as an empty set
6: for t = 1, . . . , NT do
7: Sample K pairs of attributes from A for each class
8: Construct a spuriousness-aware meta-learning task T using Equation (4.18) and (4.19)
9: Add T to T (Dtr,A, γ, θ1)

10: end for
11: Set θ1 = θ∗1 using Equation (4.23)
12: end for
13: return θ∗1

and

Qk =

NS⋃
i=1

{
(xi, yk)|(xi, yk) ∈ D̃

(yk,a
′
k)

tr

}
, (4.19)

where D̃(yk,ak)
tr = D(yk,ak)

tr − D(yk,a
′
k)

tr and D̃(yk,a
′
k)

tr = D(yk,a
′
k)

tr − D(yk,ak)
tr are sets of elements unique

to D(yk,ak)
tr and D(yk,a

′
k)

tr , respectively. Taking the above set difference ensures that the two spurious

correlations won’t appear in the same set since some samples may have both the attributes ak and

a′k.

After constructing the two sets for each class, we obtain the constructed task T = {S,Q} with

S = ∪Kk=1Sk and Q = ∪Kk=1Qk. If K is large, we can randomly select a subset of K classes to

construct T . The constructed task T demonstrates to the classifier that the spurious correlations in

T are highly risky for it, and that the classifier should be invariant to them in order to perform well

on this task. Importantly, the construction of meta-learning tasks also ensures that biases in VLMs

won’t be passed down to the classifier as the construction process effectively decorrelates biased

attributes from VLMs with prediction targets.

Meta-Learning Robust Representations

To train a robust classifier using the constructed tasks, we modify fθ so that it fits in with the

meta-learning paradigm. Specifically, we discard the last linear classification layer of fθ and keep
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its feature extractor hθ1 : X → RD, where θ1 ⊂ θ and D is the number of dimensions in the feature

extractor’s outputs. Thus, learning a robust classifier is equivalent to learning robust representations.

As illustrated in Figure 4.10(c), for the t’th task, we use the representations of the samples in the

support set S provided by hθ1 to generate (learn) a centroid-based classifier with K class-centroids

W = {w1, . . . ,wK} calculated as follows

wk =
1

NS

NS∑
n=1

hθ1(xn), (xn, yk) ∈ S. (4.20)

Next, we evaluate whether the classifier depends on the spurious correlations in S by testing it on

the query set Q where the spurious correlations in S do not hold. The output probability of the

classifier on yk is calculated as follows

p(yk|xn, θ1,S) =
exp(τd(wk, hθ1(xn)))∑K

k′=1 exp(τd(wk′ , hθ1(xn)))
, (4.21)

where d(·, ·) denotes the cosine similarity between two embedding vectors, and τ denotes a scaling

hyperparameter. Then, the task loss ℓT on T = {S,Q} is as follows

ℓT (θ1) = E
(xn,yn)∈Q

− log p(yn|xn, θ1,S). (4.22)

A high loss indicates that the classifier, and in turn the feature extractor hθ1 , rely on the spurious

correlations in the support set and cannot generalize well on the query set.

Learning Objective. We minimize the loss in (4.22) over tasks constructed with various spurious

correlations to find a feature extractor hθ∗1 that is robust to multiple spurious correlations, i.e.,

θ∗1 = argmin
θ1

ET ∈T (Dtr,A,γ,θ1)ℓT (θ1), (4.23)

where T (Dtr,A, γ, θ1) denotes all possible meta-learning tasks constructed from Dtr based on the

detected attributes A, the spuriousness metric γ, and the feature extractor θ1.

To solve (4.23), we adopt an iterative optimization procedure. We first fix θ1 and construct

a set of meta-training tasks based on A, θ1, and γ. Then, we update θ1 using the constructed

tasks. The above steps are iterated until some stop criterion is met. We name our method as

SPUriousness-aware MEta-Learning (SPUME) and give the training details in Algorithm 2.

Complexity Analysis. VLMs do not incur training cost because they are only used for data

preparation. Extracting attributes (Line 1, Algorithm 2) is a onetime offline process, and empirically,
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its time cost scales linearly with the dataset size. Spuriousness measurement (Line 4, Algorithm 2)

is performed periodically during training, and its time complexity grows linearly with the amount

of data it uses. The total training cost is O(E(Cm + Cs)), where E is the number of training

epochs, Cm and Cs are the time cost of meta-learning a classifier and obtaining spuriousness scores

per epoch, respectively, with Cm ≫ Cs, since the latter only requires forward passes through the

classifier. Moreover, using a metric-based meta-learning technique (Equation (4.20)) leads to Cm

being comparable to training a standard classifier. Therefore, our method does not incur significant

training cost compared with the ERM training.

Model Selection. We divide the validation data Dval into groups based on the detected attributes

A and calculate the average accuracy over these groups as follows,

Accpu =
1

|A| · |Y|
∑
a∈A

∑
y∈Y

J
(
D(y,a)

val ;hθ1
)
. (4.24)

We call this metric pseudo-unbiased accuracy, which fairly measures the performance of the classifier

on various groups inferred with the detected attributes in A.

Inference. We first create a centroid-based classifier using Equation (4.20) with all the data in Dtr.

Then, given a test sample x, the prediction is ŷ = argmaxy∈Y p(y|x, θ1,Dtr).

4.3.4 Experiments

Datasets

We tested our method on five image classification datasets with various types of spurious correlations,

which are introduced below. Detailed dataset statistics are give in Table A.4.1 in Appendix A.5.

Waterbirds [3] contains waterbird and landbird classes. It is a synthetic dataset generated by com-

bining images of the two kinds of birds from the CUB dataset [163] with water and land backgrounds

from the Places dataset [174], producing (landbird, land), (landbird, water), (waterbird, land), and

(waterbird, water) groups.

CelebA [149] is a large-scale image dataset of celebrity faces. It contains images showing two hair

colors, non-blond and blond, which are spuriously correlated with gender. There are four groups in

the CelebA dataset: (non-blond, female), (non-blond, male), (blond, female), and (blond, male).

ImageNet-9 [185] is a subset of ImageNet [175] and contains nine super-classes. It is known to

have correlations between object classes and image textures. We followed the setting in [183] and

[181] to prepare training and validation data.
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Dataset

Number of
detected attributes

Average number of
attributes per image

BLIP ViT-GPT2 BLIP ViT-GPT2

Waterbirds 160 144 3.301 4.314
CelebA 683 345 3.913 4.291
NICO 239 199 3.104 3.995

ImageNet-9 540 442 3.276 4.311

Table 4.11: Statistics of the attributes detected from the Waterbirds, CelebA, NICO, and ImageNet-
9 datasets.

ImageNet-A [176] is a dataset of real-world images, adversarially curated to test the limits of

classifiers such as ResNet-50. While these images are from standard ImageNet classes [175], they

are often misclassified in multiple models. We used this dataset to test the robustness of a classifier

after training it on ImageNet-9.

NICO [148] is designed for out-of-distribution image classification, simulating real-world scenarios

where testing distributions differ from training ones. It labels images with both main concepts (e.g.,

cat) and contexts (e.g., at home). We used the Animal super-class in NICO and followed the setting

in [186, 187] for data preparation.

Experimental Setup

Spurious Attribute Detection. We used two pre-trained VLMs, ViT-GPT2 [40] and BLIP [39]

to generate text descriptions for images. ViT-GPT2 has an encoder-decoder structure with a vision

transformer [177] as the encoder and the language model GPT-2 [178] as the decoder. BLIP has

a multimodal mixture of encoder-decoder architecture. After generating text descriptions, we used

Spacy (https://spacy.io/) to extract nouns and adjectives from the descriptions automatically.

We additionally filtered out words with frequencies less than 10 to remove potential annotation noise

and to ensure that we have enough samples to construct a meta-learning task with selected spurious

attributes. We give the statistics of the detected spurious attributes in the four datasets (ImageNet-

A is not included as it is only used for testing) in Table 4.11. BLIP detects more attributes than

ViT-GPT2 overall but less attributes for each image. Based on the two VLMs, our method has two

variations, namely SPUME-BLIP and SPUME-ViT-GPT2. In the following experiments, we

report the results of both methods.

Training Settings. We set NS = 10 for sampling each class of images for both the support and

query sets of a task. Following existing settings [3, 183, 187], we used ResNet-50 as the feature
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extractor for the experiments on the Waterbirds and CelebA datasets, and used ResNet-18 on the

ImageNet-9 and NICO datasets. All models were initialized with weights pre-trained on ImageNet.

We used a stochastic gradient descent (SDG) optimizer with a momentum of 0.9 and a weight decay

of 10−4 during meta-training. We trained a model for 100 epochs and used the cosine annealing

scheduler to control the decay of learning rate. Without any group labels, our method used the

pseudo-unbiased accuracy on the validation set defined in Equation (4.24) for model selection, while

other methods used the average validation accuracy. We repeated each experiment three times and

calculated the averaged results with standard deviations. We provide additional training details in

Appendix A.5. All experiments were conducted on NVIDIA A100 GPUs.

Baselines. We compare our methods with state-of-the-art methods on mitigating spurious cor-

relations and provide descriptions of the baseline methods in Appendix A.5. For fair comparison,

the same feature extractor was used for methods compared on each dataset. Group labels were not

used for model training and selection for all the compared methods. Note that we did not include

VLMs as baselines, as they were exclusively used for extracting attributes from training data in

our method. Moreover, directly using VLMs requires a completely different design, e.g., designing

proper input prompts for classification.

Evaluation Metrics. To evaluate the robustness to spurious correlations on the Waterbirds and

CelebA datasets, which provide group labels, we adopted the widely accepted robustness metric,

worst-group accuracy, that gives the lower-bound performance of a classifier on the test set with

various dataset biases. We also calculated the accuracy gap between the standard average accuracy

and the worst-group accuracy as a measure of a classifier’s reliance on spurious correlations. A high

worst-group accuracy with a low accuracy gap indicates that the classifier is robust to spurious

correlations and can fairly predict samples from different groups. We adopted average accuracy

for the evaluations on the NICO, ImageNet-9, and ImageNet-A datasets as the these datasets are

specifically constructed to evaluate the robustness to distributional shifts.

Visualization of a Spuriousness-Aware Task

We show a spuriousness-aware meta-learning task constructed from the Waterbirds dataset with

NS = 5 in Figure 4.11. For images in the same class, their backgrounds differ significantly in the

support and query sets. Specifically, the landbird images selected based on the attribute “horse” in

the support set have land backgrounds, while the same-class images selected based on the attribute
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Figure 4.11: A meta-learning task with NS = 5 constructed from the Waterbirds dataset. Images
in the support set differ significantly from images in the query set in terms of their backgrounds.

“ocean” in the query set mainly have water backgrounds. Similarly, the query images of waterbird

selected based on the attribute “group” have backgrounds filled with a group of people, while the

corresponding support images selected based on the attribute “grass field” have grass backgrounds

without irrelevant objects.

The constructed task creates a challenging learning scenario for classifiers that rely on spurious

correlations for predictions. For example, a classifier that learns to use the land backgrounds to

predict landbird from the support set will fail to predict landbird images with water backgrounds

in the query set. Optimizing a classifier’s performance on these spuriousness-aware tasks facilitates

the classifier to learn to be invariant to spurious correlations.

SPUME Mitigates Reliance on Spurious Correlations

We calculated the spuriousness scores for all the detected class-attribute correlations before and

after applying SPUME-BLIP to a classifier with the ResNet-50 backbone initialized with ImageNet

pre-trained weights. We sorted the scores in the “before” scenarios and kept the order in the

corresponding “after” scenarios. From Figures 4.12(a), 4.12(c), 4.12(e), and 4.12(g), we observe that

the initial classifiers exhibit high reliance on the detected class-attribute correlations which have high
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(a) landbird (before) (b) landbird (after) (c) waterbird (before) (d) waterbird (after)

(e) non-blond (before) (f) non-blond (after) (g) blond (before) (h) blond (after)
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Figure 4.12: Spuriousness scores for all the class-attribute correlations before and after applying
SPUME-BLIP to a classifier. The horizontal axes represent the indexes of detected attributes or
class-attribute correlations, and the vertical axes represent the spuriousness scores. (a)-(d) Spuri-
ousness scores on the Waterbirds dataset with landbird and waterbird classes. (e)-(h) Spuriousness
scores on the CelebA dataset with non-blond and blond classes.

spuriousness scores. After applying SPUME-BLIP to the classifiers on the Waterbirds dataset, we

observe from Figures 4.12(b) and 4.12(d) that the reliance on most of class-attribute correlations

are mitigated and these correlations all have low spuriousness scores. On the CelebA dataset, which

has more class-attribute correlations than the Waterbirds dataset, it becomes more challenging to

mitigate the reliance on all these correlations. As observed from Figures 4.12(f) and 4.12(h), some

correlations, which have low spuriousness scores initially, become highly spurious. Nevertheless,

SPUME-BLIP can still mitigate the reliance on most of the class-attribute correlations having high

spuriousness scores. Moreover, since spuriousness scores are not directly incorporated into our

optimization objective in (4.23), the decrease in spuriousness scores demonstrates the effectiveness

of our spuriousness-aware meta-learning strategy in mitigating the reliance on spurious correlations.

Quantitative Evaluation

We compared our methods with prior methods on mitigating spurious correlations on the five

datasets. On each of the datasets, we show the reported results of these methods when they are

available and give the details of these methods in Appendix A.5.
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Method Worst-group acc. (↑) Acc. gap (↓)
ERM 66.4 23.8
LfF [33] 44.1 47.1
CVaR DRO [171] 62.0 33.2
JTT [31] 62.5 30.8
DFR [4] 77.4 14.7
DivDis [172] 81.0 9.7

SPUME-ViT-GPT2 85.9±0.2 6.9±0.8
SPUME-BLIP 85.7±0.2 6.1±0.4

Table 4.12: Comparison of worst-group accuracy (%) and accuracy gap (%) on the Waterbirds
dataset. All methods do not have access to ground-truth group labels.

Method Worst-group acc. (↑) Acc. gap (↓)
ERM 45.7 49.8
LfF [33] 24.4 60.7
CVaR DRO [171] 36.1 46.4
JTT [31] 40.6 47.4
DFR [4] 46.0 49.8
DivDis [172] 55.0 35.8
MaskTune [173] 78.0 13.3

SPUME-ViT-GPT2 84.4±1.2 5.9±0.7
SPUME-BLIP 86.0±1.0 4.1±1.0

Table 4.13: Comparison of worst-group accuracy (%) and accuracy gap (%) on the CelebA dataset.
All methods do not have access to ground-truth group labels.

For experiments on the Waterbirds and CelebA datasets, we aimed to simulate a more realistic

learning scenario and thus did not provide group labels during model training, even though the two

datasets provide group labels. During testing, we used the group labels to formulate the worst-group

accuracy and calculated the accuracy gap as the standard average accuracy minus the worst-group

accuracy. The two metrics measure a classifier’s robustness to specific spurious correlations specified

by the group labels, and our goal is to train the classifier to be robust to these spurious correlations

without knowing them.

Our methods, SPUME-ViT-GPT2 and SPUME-BLIP achieve the best worst-group accuracy

and the best accuracy gap on the Waterbirds and CelebA datasets (Tables 4.12 and 4.13), suggest-

ing that our trained classifiers have strong and balanced prediction capability across different data

groups. Note that the spurious attribute detection process proposed in Section 4.3.3 could introduce

biases present in VLMs into the detected spurious attributes. More specifically, biases in different

VLMs result in different sets of attributes. Consequently, SPUME simulates different sets of spurious

correlations during meta-training. However, this wouldn’t be a significant concern. Since our spuri-

ous attribute detection process can detect many distinctive attributes with well-established VLMs,
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Method Accuracy (↑)
ERM 75.9
REx [188] 74.3
Group DRO [3] 77.6
JiGen [111] 85.0
Mixup [189] 80.3
CNBB [148] 78.2
DecAug [186] 85.2
SIFER [190] 86.2±0.9
SPUME-ViT-GPT2 88.2±1.1
SPUME-BLIP 89.2±0.4

Table 4.14: Comparison of average accuracy (%) on the NICO dataset. Most of the methods
(DecAug, DRO, etc) use group information for training, while we do not use it.

SPUME can mitigate many potential spurious correlations. Thus, biases in VLMs won’t signifi-

cantly affect the effectiveness of our framework. We demonstrate this by showing that SPUME with

two well-established VLMs are effective and have comparable performance across different datasets

(Tables 4.12 and 4.13). Moreover, SPUME-BLIP performs much better than SPUME-ViT-GPT2 on

the CelebA dataset where BLIP detects approximately twice as many attributes as ViT-GPT2 does

(Table 4.11), suggesting that detecting more attributes benefits SPUME in training more robust

classifiers.

The NICO dataset provides object-context correlations and aims to evaluate the out-of-

distribution generalization capability of a classifier by testing it in new contexts. We did not

use the provided correlations during training and calculated the standard average accuracy on the

test set with new object-context correlations. SPUME-ViT-GPT2 and SPUME-BLIP outperform

previous methods with higher average accuracies (Table 4.14).

For the experiments on the ImageNet-9 which does not provide information on spurious correla-

tions, we trained and tested our methods on the ImageNet-9 dataset. We also tested our methods on

the ImageNet-A dataset which contains images representing various failure prediction modes in an

ImageNet pre-trained classifier. The accuracy gap is calculated as the average validation accuracy

on the ImageNet-9 dataset minus the average accuracy on the ImageNet-A dataset. Our methods

achieve the best on ImageNet-A while well balancing between different prediction modes with the

lowest accuracy gaps (Table 4.15).
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Method ImageNet-9 (↑) ImageNet-A (↑) Acc. gap (↓)
ERM 90.8±0.6 24.9±1.1 65.9
ReBias [181] 91.9±1.7 29.6±1.6 62.3
LfF [33] 86.0 24.6 61.4
CaaM [182] 95.7 32.8 62.9
SSL+ERM [183] 94.2±0.1 34.2±0.5 60
LWBC[183] 94.0±0.2 36.0±0.5 58
SIFER [187] 97.8±0.1 40.0±0.8 57.8

SPUME-ViT-GPT2 95.3±0.5 44.3±0.8 51.0±1.1
SPUME-BLIP 95.5±0.2 42.5±0.8 53.0±0.7

Table 4.15: Comparison of average accuracy (%) and accuracy gap (%) on the ImageNet-9 and
ImageNet-A datasets.

Method Worst-group acc (↑) Acc. gap (↓)
ERM 66.4 23.8

ERM-Cosine 75.5 17.5

SPUME-Random 78.7±0.9 10.5±0.8
SPUME-BLIP 85.7±0.2 6.1±0.4

SPUME-ViT-GPT2 85.9±0.3 6.9±0.8

Table 4.16: Worst-group accuracy and accuracy gap comparisons between meta-learning based
methods with spuriousness-aware (SPUME-BLIP and SPUME-ViT-GPT2) and random (SPUME-
Random) task constructions, and ERM-trained models on the Waterbirds dataset.

Ablation Study

Spuriousness-Aware Task Construction. To evaluate the effectiveness of using VLMs to guide

the construction of meta-learning tasks, we compared SPUME with SPUME-Random which uses

randomly constructed tasks during training. We also included the classical ERM model and the

ERM-Cosine model that uses cosine distance for predictions to compare with the meta-learning

based approaches. We observe from Table 4.16 that switching to the cosine-distance-based classifier

increases the robustness to spurious correlations. Moreover, SPUME-Random outperforms ERM

by 12.3% in the worst-group accuracy and improves the accuracy gap by 13.3%, demonstrating

that meta-learning is a promising approach to improve the robustness to spurious correlations.

Additionally, using spuriousness-aware meta-learning tasks constructed with the VLMs (BLIP and

ViT-GPT2) can further improve robustness to spurious correlations. Specifically, SPUME-BLIP

achieves 7.0% and 4.4% increments over SPUME-Random in the worst-group accuracy and accuracy

gap, respectively, and SPUME-ViT-GPT2 achieves 7.2% and 3.6% increments in the two metrics.

Different Designs of the Spuriousness Metric. We have given our design of spuriousness

metric in Equation (4.17). Here, we explore other possible design choices shown in Table 4.17, where
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Metric Worst-group acc. (↑) Acc. gap (↓)
tanh(abs(log(η))) 85.7±0.2 6.1±0.4
abs(δ) 85.5±0.2 6.3±0.3
Constant 85.1±0.2 6.7±0.3
tanh(log(η)) 84.8±0.2 7.3±0.4
δ 84.5±0.5 7.4±0.9

Table 4.17: Analysis on different designs of spuriousness metrics. We tested SPUME-BLIP on the
Waterbirds dataset.
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Figure 4.13: Worst-group accuracy and accuracy gap comparisons between SPUME-BLIP with
different τ ’s on Waterbirds.

δ = J(D(y,a)
tr ; fθ)−J(D(y,â)

tr ; fθ), η = J(D(y,a)
tr ; fθ)/J(D(y,â)

tr ; fθ), J(·; ·) is the accuracy measure used

in Equation (4.17), and “Constant” represents that we assign the same score for all the detected

attributes. Our method SPUME-BLIP works well with different spuriousness metrics and still

outperforms the baselines we compared in Table 4.12. Moreover, our method works well with non-

negative spuriousness metrics as SPUME with tanh(abs(log(η))) or abs(δ) performs better than with

the other two metrics.

Scaling Parameter of the Centroid-Based Classifier. We analyzed how the scaling parameter

τ of the centroid-based classifier (Equation (4.21)) affects the performance of SPUME. Figure 4.13

shows the worst-group accuracies and accuracy gaps of SPUME-BLIP with different τ ’s on the

Waterbirds dataset. A very large or small τ , e.g., τ = 100 or τ = 1, harms to robustness of the

trained classifiers. In practice, we set τ to be in the range from 5 to 50.

Effects of Using VLMs. Although SPUME uses VLMs for data preprocessing, the robustness

does not directly come from the outputs of VLMs. To show this, we added an additional layer

after the backbone to predict detected attributes for each image, acting as a regularization. We

then fine-tuned the whole model on the Waterbirds and CelebA datasets, respectively. The worst-
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group accuracies on the two datasets are 71.7% and 47.2%, respectively, which are close to ERM

trained models. Therefore, the attributes themselves do not provide useful regularization on the

robustness of the classifier. Moreover, directly using VLMs for predictions requires a completely

different inference pipeline and is not as effective as our proposed SPUME. Details are provided in

Appendix A.5.

4.3.5 Conclusion

We proposed a novel framework to train a classifier to be robust against spurious correlations in

settings where spurious correlations are not known or specified. We first adopted a pre-trained VLM

to automatically extract text-format attributes from a target dataset. Then, we quantified the spuri-

ousness of the correlations between detected attributes and class labels using a spuriousness metric.

To effectively mitigate multiple detected spurious correlations, we adopted a meta-learning strategy

which iteratively meta-trains a classifier on multiple meta-learning tasks constructed to represent

various class-attribute correlations with high spuriousness values. Our framework, SPUME, miti-

gates many highly spurious correlations in training samples and performs the best under different

robustness measures on five benchmark datasets. In the future, we aim to explore more capable

VLMs and combine other approaches, e.g., customized data augmentations, for mitigating a model’s

reliance on a wider range of spurious correlations.
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Chapter 5

Self-Guided Spurious Bias

Mitigation under Subpopulation

Shifts

In the previous chapter, we propose multimodal-assisted methods to address spurious bias without

requiring group annotations. However, those approaches require a relatively long data preprocessing

step to extract spurious attributes from training data, depend on specific choices of vision-language

models (VLMs), and are limited to the vision modality. In this chapter, we propose fully self-guided

methods that probe the latent space of a trained model, allowing direct spurious bias mitigation with

any data modalities. In Chapter 5.1, we propose to detect prediction shortcuts in the latent space

of a model via a probe set and regularize the retraining of the model via the detected prediction

shortcuts. In Chapter 5.2, we propose to suppress the contributions from neurons that are identified

as primarily encoding spurious features for spurious bias mitigation. In Chapter 5.3, we extend the

idea of these latent-space methods to improve the robustness of zero-shot classification of a VLM by

selecting prompts that minimize the correlations between spurious features and prediction targets

using the similarities between image and text embeddings.
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5.1 ShortcutProbe: Probing Prediction Shortcuts for Learn-

ing Robust Models

5.1.1 Introduction

Deep learning models have shown remarkable performance across domains, but this success is often

achieved by exploiting spurious correlations [139, 31, 29, 83, 46, 42] between spurious attributes or

shortcut features [2] and targets. For example, models have been found to use correlations between

textures and image classes [48] for object recognition instead of focusing on defining features of

objects. This issue becomes even more problematic in high-stakes domains like healthcare. For

instance, models predicting pneumonia were shown to rely on correlations between metal tokens in

chest X-ray scans from different hospitals and the disease’s detection outcomes [7], rather than the

pathological features of pneumonia itself. The tendency of using spurious correlations is referred

to as spurious bias. Models with spurious bias often fail to generalize on data groups lacking

the learned spurious correlations, leading to significant performance degradation and non-robust

behaviors across different data groups. This robustness issue can have severe social consequences,

especially in critical applications.

Mitigating spurious bias is crucial for robust generalization across data groups with varying

spurious correlations. Existing methods on mitigating spurious bias [139, 4] rely on group labels.

Group labels represent spurious correlations with class labels and spurious attributes. For example,

(waterbirds, water) [139] represents a spurious correlation between waterbirds and water back-

grounds in the images of waterbirds with water backgrounds. Using group labels specifies explicitly

the spurious correlations that a model should avoid. However, obtaining group labels requires ex-

pert knowledge and labor-intensive annotation efforts. Moreover, group labels fail to capture subtle

spurious biases, such as using certain pixels in images for predictions.

In this section, we propose a post hoc approach that can automatically detect and mitigate

potential spurious biases in a model rather than relying on group labels. Our key innovation is

reframing the task of identifying and mitigating spurious biases as detecting and leveraging pre-

diction shortcuts in the model’s latent space. Prediction shortcuts are latent features derived from

input embeddings and predominantly contribute to producing the same prediction outcome across

different classes. In essence, prediction shortcuts represent non-defining features of certain classes

that the model heavily uses for predictions. By operating in the model’s latent space, our approach

101



leverages the expressiveness of latent embeddings, enabling direct identification of spurious biases

across diverse input formats without requiring group labels.

We present our post hoc approach as a novel framework called ShortcutProbe, which first identifies

prediction shortcuts in a given model and leverages them to guide model retraining for spurious

bias mitigation. ShortcutProbe utilizes a probe set without group labels, typically containing a

diverse mix of features, to uncover potential prediction shortcuts. These shortcuts are identified as

latent features extracted from sample embeddings belonging to different classes but producing the

same prediction outcome. By optimizing these features to maximize the model’s confidence in their

corresponding predictions, ShortcutProbe effectively encodes spurious attributes in non-generalizable

prediction shortcuts that the model overly relies on for predictions.

With the identified prediction shortcuts, ShortcutProbe mitigates spurious biases by retraining

the model to be invariant to these shortcuts, as they are irrelevant to true prediction targets. This

invariance is achieved by applying regularization during retraining, which ensures that the identified

prediction shortcuts no longer contribute to the model’s predictions of the true targets.

We theoretically demonstrate that when the spurious attributes in the training data are new

to the model as reflected by the high prediction loss, the tendency of using spurious attributes for

predictions is high after training on the data. Our method aims to revert the process of learning

spurious attributes by retraining the model so that the learned spurious attributes induce high

prediction losses, effectively unlearning the spurious attributes and reducing the influence of spurious

correlations.

In summary, our contributions in this section are as follows:

• We introduce ShortcutProbe, a novel post hoc framework for mitigating spurious bias without

requiring group labels. ShortcutProbe identifies prediction shortcuts and leverages them as a

form of regularization for training robust models.

• We provide a theoretical analysis revealing that our spurious bias mitigation approach effec-

tively unlearns spurious attributes.

• Through extensive experiments, we show that our method successfully trains models robust

to spurious biases without prior knowledge about these biases.

5.1.2 Preliminary

A spurious correlation is the correlation between a spurious attribute present in the training samples

and a prediction target. For example, the class waterbird and the attribute water background
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Figure 5.1: Illustration of ShortcutProbe. (a) The framework uses a set of probe data Dprob to iden-
tify prediction shortcuts by learning a shortcut detector to extract similar features from samples of
different classes i and j that are all predicted as the same class j. Feature extractor eθ1 and classifier
hθ2 are frozen during this stage. (b) ShortcutProbe then retrains the classifier with the probe data
(the loss of the probe data Lori) while using the identified prediction shortcuts as regularization (the
loss of the prediction shortcuts Lspu).

might form a spurious correlation in the images of waterbird, where some of them have water

backgrounds, e.g., pond or river, and some do not. Spurious attributes are not truly predictive of

the targets. A group label, e.g., (waterbird, water background), consists of a prediction target

and a spurious attribute.

Consider a model fθ : X → R|Y| with parameter θ trained on a training dataset Dtr =

{(xi, yi)}Ni=1 with N sample-label pairs, where xi ∈ X denotes a sample in the input set X , yi ∈ Y

denotes a label in the label set Y, and | · | denotes the size of a set. The model fθ = eθ1 ◦ hθ2 can

be considered as a feature extractor eθ1 : X → RD followed by a classifier hθ2 : RD → R|Y|, where

θ = θ1 ∪ θ2, hθ2 is the last layer of the model, and D denotes the number of dimensions.

Due to the existence of spurious attributes in Dtr, the model can exploit them for predictions,

such as recognizing waterbirds by detecting the existence of water backgrounds [3]. This presents a

challenge: It is hard to determine whether a high-performing model is truly robust or simply “right

for the wrong reasons”, i.e., relying on spurious attributes. Although models with spurious biases

typically exhibit degraded performance when the learned spurious attributes are absent from input

data, e.g., a waterbird on a land background, it remains challenging to identify the specific spurious

attributes encoded by the model without group labels, which hinders the development of effective

spurious bias mitigation strategies.

5.1.3 Methodology

Method Overview

We introduce ShortcutProbe, a post hoc framework that automatically detects and mitigates pre-

diction shortcuts without requiring group labels to specify which spurious biases to address. The
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framework comprises two key steps: (1) Prediction shortcut detection, where a probe set is used

to identify prediction shortcuts, and (2) Spurious bias mitigation, where the identified shortcuts

are used in retraining the model to mitigate spurious biases in the model.

We provide an overview of our framework in Figure 5.1. The process begins with a set of probe

data Dprob, which typically contains samples with various spurious attributes that reflect a model’s

non-robustness to spurious correlations. These samples are mapped to the latent embedding space

of the model fθ through its feature extractor eθ1 , allowing us to model any prediction shortcuts

the model might use for predictions. This strategy bypasses the need to explicitly define spurious

correlations through group labels, a task that is especially challenging for subtle features, such as

specific pixels in images. More concretely, as shown in Figure 5.1(a), we first train a shortcut detector

that extracts potential prediction shortcuts from samples of different classes but having the same

prediction. The identified prediction shortcuts encode spurious attributes shared across classes and

capture the model’s non-robustness across different data groups. Next, in Figure 5.1(b), the model

is retrained with Dprob to mitigate spurious biases by unlearning the identified prediction shortcuts.

Prediction Shortcut Detection

Given a model fθ and a probe set Dprob, we aim to detect prediction shortcuts by learning a

shortcut detector gψ : RD → RD to identify prediction shortcuts from input embeddings. Intuitively,

prediction shortcuts can be identified from samples of different classes but having the same prediction

outcome, an indication that similar features exist in these samples but are irrelevant to classes. In

other words, prediction shortcuts can be shared among samples from different classes, necessitating

a shared representational space to encode diverse prediction shortcuts. We formalize this intuition

in the following definition.

Definition 5.1 (Prediction shortcuts). Given input sample-label pairs (x, y) and (x′, y′), where

y ̸= y′, a trained model fθ = eθ1 ◦ hθ2 , sample embeddings v = eθ1(x) and v′ = eθ1(x
′) for x and x′,

respectively, a vector space V ⊂ RD spanned by K base column vectors in A ∈ RD×K , prediction

shortcuts sx ∈ V and sx′ ∈ V for the two samples satisfy the following conditions:

• Pred
(
hθ2(eθ1(x)

)
= y, Pred

(
hθ2(sx)

)
= y, and

• Pred
(
hθ2(eθ1(x

′)
)
= y, Pred

(
hθ2(sx′)

)
= y,

where Pred(fθ(x)) = argmaxY fθ(x), sx = PAv, sx′ = PAv′, and

PA = A(ATA)−1AT (5.1)
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is the projection matrix such that the prediction shortcut sx is the best estimate of v in the vector

space V in the sense that the distance ∥sx − v∥22 is minimized.

In Definition 5.1, we define a prediction shortcut as a projection of a sample embedding. It exists

in the vector space V shared by samples of different classes with K degrees of freedom. Here, K

governs the complexity of the vector space representing prediction shortcuts. A smaller K results in

a less expressive vector space that may fail to adequately capture prediction shortcuts. Conversely,

a larger K provides greater flexibility in representing prediction shortcuts but may encode irrelevant

information. The optimal value of K depends on the complexity of the probe data; values that are

too small or too large can impede learning and lead to suboptimal performance. We treat K as a

tunable hyperparameter.

By representing prediction shortcuts as vectors, we can in theory capture any spurious bias,

even the intricate ones. For instance, a vector s might correspond to features of water backgrounds

that are used to predict waterbirds in any image with water backgrounds, revealing a spurious bias

in the model. Alternatively, s could represent a specific feature corresponding to certain pixels in

input images, capturing the prediction shortcut based on low-level pixel values—an aspect that is

challenging to articulate through group labels.

Learning the Shortcut Detector. Based on the definition of the prediction shortcut, we design

the shortcut detector gψ as a function that implements the projection operation defined in Equa-

tion (5.1) with the learnable parameter ψ = A ∈ RD×K , that is for a sample embedding v ∈ RD,

gψ(v) = PAv. Learning gψ essentially learns a shared vector space spanned by A that could cover

prediction shortcuts in samples in the probe set.

To effectively learn gψ, for each class y, we first collect samples from the probe set Dprob to

formulate two non-overlapping sets Dycor and Dypre, i.e.,

Dycor = {(x, y)|(x, y) ∈ Dprob,Pred(fθ(x)) = y}, (5.2)

and

Dypre = {(x′, y′)|(x′, y′) ∈ Dprob,Pred(fθ(x
′)) = y ̸= y′}, (5.3)

where Dycor and Dypre contain samples that are correctly and incorrectly predicted as y. The two

sets together demonstrate a possibility that certain features shared across classes are incorrectly
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associated with prediction targets, allowing us to extract these features as potential prediction

shortcuts.

Next, we propose the following objective to identify prediction shortcuts:

Ldet = E
y∈Y

E
(x,y)∈Dycor∪Dypre

ℓ
(
hθ2(gψ(v)), y

)
, (5.4)

where ℓ : R|Y| × Y → R is the loss function, ψ = A, and v = eθ1(x). To ensure that prediction

shortcuts are relevant to the given samples, we regularize the semantic similarity between gψ(v) and

v as follows,

Lreg = E
y∈Y

E
(x,y)∈Dycor∪Dypre

∥gψ(v)− v∥22. (5.5)

The overall learning objective for ψ is

ψ∗ = argmin
ψ
Ldet + ηLreg, (5.6)

where η > 0 represents the regularization strength. The objective in Equation (5.6) aims to encode

the properties of prediction shortcuts in Definition 5.1 into the shortcut detector gψ while maintaining

the relevance of the prediction shortcuts to input samples. Training gψ is lightweight as there are

only DK learnable parameters. With gψ, we can identify multiple prediction shortcuts from samples

in Dprob.

Spurious Bias Mitigation

Mitigating spurious biases in a model requires that the spurious attributes captured during training

are no longer predictive of the targets. Although identifying spurious attributes can be challenging,

the shortcut detector introduced in the previous section identifies prediction shortcuts as potential

spurious attributes utilized by the model, providing valuable guidance for addressing spurious biases.

In the following, we formulate an optimization objective that incorporates the above constraint

to learn a robust model using the probe set Dprob. First, a general requirement is that the trained

model should produce correct and consistent predictions on training samples. To this end, for each

class y, we sample from Dycor and Dymis, where Dycor is the set of correctly predicted sample-label

pairs defined in Equation (5.2), and Dymis is defined as follows,

Dymis = {(x
′, y)|(x′, y) ∈ Dprob,Pred(fθ(x

′)) ̸= y}, (5.7)
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representing misclassified sample-label pairs from the class y. Then, the training objective Lori is as

follows,

Lori(Dprob; θ) = E
y∈Y

E
(x,y)∈Dycor∪Dymis

ℓ(fθ(x), y), (5.8)

which mitigates potential spurious biases by ensuring consistent predictions in Dymis and Dycor.

Moreover, to ensure that the training targets at mitigating the spurious biases in the model,

we further formulate a regularization term using the prediction shortcuts identified by our shortcut

detector to guide the training process. Specifically, as the identified prediction shortcuts are not

predictive of the targets, we aim to maximize the loss on the prediction shortcuts defined as follows,

Lspu(Dprob; θ) = E
y∈Y

E
(x,y)∈Dycor∪Dymis

ℓ(hθ2(gψ(v)), y), (5.9)

where v = eθ1(x).

We incorporate the above two loss terms into the overall training objective as follows,

θ∗2 = argmin
θ2

λLori/Lspu, (5.10)

where λ > 0 is the regularization strength. Here, we retrain only the final classification layer of the

model while keeping the feature extractor frozen. This approach significantly reduces computational

complexity and allows us to reuse the previously learned sample embeddings. Details of the training

algorithm are provided in Appendix A.6.

Choice of the Probe Set

The probe set plays a crucial role in both detecting prediction shortcuts and mitigating spurious

biases. To achieve the full potential of ShortcutProbe, we use a held-out dataset—unseen by the

model—to construct the probe set Dprob. This choice is essential because the model may have memo-

rized the training samples, making it difficult to identify prediction shortcuts based on discrepancies

in predictions for samples of the same class. Moreover, we select samples with high predication confi-

dence (measured by output entropy) from the held-out dataset to construct Dprob so that prediction

shortcuts can be easily detected from these samples. Details of constructing Dprob and results on

different choices of Dprob are provided in Section 5.1.4.
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Theoretical Analysis

We theoretically demonstrate that minimizing the proposed objective Lori/Lreg effectively unlearns

the spurious correlations between spurious attributes and their associated targets captured in the

model. Without loss of generality, we analyze this in the context of a general linear regression setting.

Consider an input sample x ∈ X , a prediction target y ∈ Y, and a spurious-only sample x̃ that lacks

any defining features in x related to y. Let x1, . . . , xN denote N training samples, φ : X → RD be

a generic feature map, and Jw(x) = φ(x)Tw represent a generalized linear regression model with

parameters w ∈ RD.

We denote the correlation between the model output for a spurious-only sample x̃ and a prediction

target y as ρ(Jw(x̃), y). The following lemma [191] gives an upper bound on the correlation.

Lemma 5.1. The correlation between the model output for the spurious-only sample x̃ and the

prediction target y is upper bounded as follows:

ρ(Jw(x̃), y) ≤ γφσY
√
RX , (5.11)

where RX is the generalization error, σY is the standard deviation of prediction targets, and

γφ = Ex̃,x
[φ(x̃)TOφ(x)
∥Oφ(x)∥22

]
, (5.12)

where O = I−VT (VVT )−1V is the orthogonal projection matrix, and V = [φ(x1), . . . , φ(xN )]T ∈

RN×D is the feature matrix.

Given that RX and σY are independent of x̃, the spurious-only sample x̃ affects the correlation

upper bound via the feature alignment term γφ between the spurious attribute of x̃ and the original

feature of x. We further interpret this term in the following proposition.

Proposition 5.1. The feature alignment term γφ is the ratio between the expected prediction error

on the spurious sample x̃ and the expected prediction error on the original sample x:

γφ = Ex̃,x
[φ(x̃)TOφ(x)
∥Oφ(x)∥22

]
=

Ex̃[∥Oφ(x̃)∥2]
Ex[∥Oφ(x)∥2]

. (5.13)

The term ∥Oφ(x)∥2 in Equation (5.13) denotes the error term for the sample x, while ∥Oφ(x̃)∥2

denotes the error term for the spurious sample x̃. Since x and x̃ are independent, the feature

alignment term γφ is the ratio between the loss on spurious-only samples and the loss on the original

samples. We provide a detailed proof in Appendix A.6.
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Method
Waterbirds CelebA CheXpert

WGA (↑) Average (↑) Gap (↓) WGA (↑) Average (↑) Gap (↓) WGA (↑) Average (↑) Gap (↓)
ERM [193] 80.3±3.1 93.3±0.4 13.0 45.6±2.9 95.2±0.2 49.6 22.0±1.6 90.8±0.1 68.8

JTT [31] 86.7±1.0 93.3±0.2 6.6 40.6±1.2 88.6±0.2 48.0 60.4±4.9 75.2±0.8 14.8
DFR [4] 90.3±2.1 95.0±1.3 4.7 72.2±2.0 92.9±0.1 20.7 72.7±1.5 78.7±0.4 6.0
AFR [32] 88.7±4.2 95.0±1.0 6.3 77.8±1.5 91.0±0.4 13.2 72.4±2.0 76.8±1.1 4.4

ShortcutProbe (Ours) 90.8±0.6 95.0±0.3 4.2 83.4±0.9 91.4±0.1 8.0 75.0±0.7 79.0±0.2 4.0

Table 5.1: Comparison of worst-group accuracy (WGA) and average accuracy (%) with baseline
methods on the Waterbirds, CelebA, and CheXpert datasets. The best results are highlighted in
boldface. All bias mitigation methods use the same half of the validation set.

The prediction shortcuts obtained by our shortcut detector approximate the spurious-only fea-

tures. Thus, the loss Lspu approximates the nominator of the regularization term in Equation (5.13).

Moreover, Lori approximates the denominator in Equation (5.13). Note that Lemma 1 gives the up-

per bound of the spurious correlation before learning it. The objective in Equation (5.4) trains the

shortcut detector to learn the correlation by minimizing γϕ. In the mitigation step, the objective in

Equation (5.10) unlearns the correlation by maximizing γϕ.

5.1.4 Experiments

Datasets

Image Datasets. Waterbirds [3] contains waterbird and landbird classes selected from the CUB

dataset [163]. The two bird classes are mixed with water and land backgrounds from the Places

dataset [174]. CelebA [149] is a large-scale image dataset of celebrity faces. Images showing two

hair colors, non-blond and blond, are spuriously correlated with gender. CheXpert [192] is a chest

X-ray dataset containing six spurious attributes from the combination of race (White, Black, Other)

and gender (Male, Female). Two diagnose results, i.e., “No Finding” (positive) and “Finding”

(negative) are the labels. ImageNet-9 [185] is a subset of ImageNet [175] and contains nine super-

classes. It is known to have correlations between object classes and image textures. We prepared

the training and validation data as in [183] and [181]. ImageNet-A [176] is a dataset of real-world

images, adversarially curated to test the limits of classifiers such as ResNet-50. While these images

are from standard ImageNet classes [175], they are often misclassified in multiple models. We used

this dataset to test the robustness of a classifier after training it on ImageNet-9. NICO [148] is

designed for out-of-distribution image classification, simulating real-world scenarios where testing

distributions differ from training ones. It labels images with both main concepts (e.g., cat) and

contexts (e.g., at home). We used the Animal super-class in NICO and followed the setting in

[186, 187] for data preparation.
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Method
MultiNLI CivilComments

WGA (↑) Average (↑) Gap (↓) WGA (↑) Average (↑) Gap (↓)
ERM [193] 67.0±0.4 82.2±0.2 15.2 58.5±1.3 92.2±0.1 33.7

JTT [31] 71.6±0.8 80.7±0.4 9.1 68.3±0.9 89.0±0.3 20.7
DFR [4] 72.6±1.7 81.8±0.4 9.2 76.6±0.8 85.8±0.5 9.2
AFR [32] 66.6±0.3 82.2±0.2 15.6 74.6±5.1 84.7±2.5 10.1

ShortcutProbe (Ours) 74.3±0.7 82.6±0.3 8.3 79.9±0.6 88.5±0.2 8.6

Table 5.2: Comparison of worst-group accuracy (WGA) and average accuracy (%) with baseline
methods on the MultiNLI and Civilcomments datasets. Best results are highlighted in boldface.
All bias mitigation methods use the same half of the validation set.

Text Datasets. MultiNLI [194] is a text classification dataset with 3 classes: neutral, contra-

diction, and entailment, representing the natural language inference relationship between a premise

and a hypothesis. The spurious feature is the presence of negation, which is highly correlated

with the contradiction label. CivilComments [195] is a binary text classification dataset aimed

at predicting whether a comment contains toxic language. Spurious features involve references to

eight demographic identities: male, female, LGBTQ, Christian, Muslim, other religions, Black, and

White.

Experimental Setup

Constructing the Probe Set. From the chosen data source, such as the training or validation

set, we sorted the samples within each class by their prediction losses and divided them into two

equal halves: a high-loss set and a low-loss set. This approach approximates the incorrectly and

correctly predicted samples, respectively, while ensuring that the incorrectly predicted set is non-

empty, even when all samples are correctly classified. Within each set, we then selected the top r%

of samples with the highest prediction confidence (i.e., those with the lowest output entropy).

Training Details. We first trained a base model initialized with pretrained weights using empirical

risk minimization (ERM) on the training dataset. Then, we retrained the model on half of the

validation set using various bias mitigation methods. For our method, we first constructed the

probe set using the same half of the validation set and used the probe set for shortcut detection and

mitigation. The remaining half of the validation set was used for model selection and hyperparameter

tuning. For experiments on the Waterbirds, CelebA, and CheXpert datasets, we used ResNet-50 as

the backbone network, and we used ResNet-18 on the ImageNet-9/A and NICO datasets to ensure

a fair comparison with baseline methods. For text datasets, we used a pretrained BERT model

[196]. We trained models using each method three times with different random seeds and reported
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the average results as well as their standard deviations. Detailed training settings are provided in

Appendix A.61.

Evaluation Metrics. Without group labels, we used the worst-class accuracy [29] for model selec-

tion, which is defined as the worst per-class accuracy on an evaluation set. For performance evalua-

tion on the Waterbirds, CelebA, CheXpert, MultiNLI, and Civilcomments datasets, we adopted the

widely accepted metric, worst-group accuracy, which is the lowest accuracy among multiple groups

of the test set with each group containing a certain spurious correlation. We also calculated the

accuracy gap defined as the standard average accuracy minus the worst-group accuracy to mea-

sure the degree of a classifier’s spurious biases. A high worst-group accuracy with a low accuracy

gap indicates that the classifier is robust to spurious biases and can fairly predict samples from

different groups. We adopted average accuracy for the evaluations on the NICO, ImageNet-9, and

ImageNet-A datasets as these datasets are specifically constructed to evaluate the robustness against

distributional shifts.

We give the full details of our experimental setup in Appendix A.6. We report our results

averaged over 3 runs. All experiments are conducted on NVIDIA RTX 8000 GPUs.

Analysis of Probe Set

Our method relies on a probe set for detecting prediction shortcuts and mitigating spurious bias.

A good probe set can be used to effectively reveal and mitigate spurious biases in a model, such

as those curated with group labels [3]. Here, we show that our method, ShortcutProbe, performs

effectively without group labels when a probe set is carefully selected from readily available sources,

such as the training data and held-out validation data.

To demonstrate, we constructed a probe set as described in Experimental Setup, using the train-

ing set or half of the validation set (with the other half reserved for model selection) as the data

source. For each data source, we varied the proportion r% from 20% to 100%. This adjustment

created different probe sets, ranging from those containing only samples with highly confident pre-

dictions (small r) to those including all samples from the selected data source (r = 100).

Fig. 5.2(a) shows the performance of ShortcutProbe measured by worst-group accuracy (WGA)

under different probe sets, while Fig. 5.2(b) presents the sizes of these probe sets. Compared to

ERM models, we observe that using the training data for retraining results in minimal improvement

1Code is available at https://github.com/gtzheng/ShortcutProbe.

111

https://github.com/gtzheng/ShortcutProbe


(a) Worst-group accuracy (b) Number of samples

Figure 5.2: Analyses on different probe sets constructed from the Waterbirds dataset. (a) Worst-
group accuracy comparison between models trained with training data and half of the validation
data. (b) Numbers of samples in respective probe sets.

on the Waterbirds dataset. This is because most of the training data can be correctly predicted by

the model, resulting in a probe set that is not informative for learning prediction shortcuts.

In contrast, by leveraging a relatively small amount of the held-out data compared to the size

of the training data, our method demonstrates a significant improvement in robustness to spurious

biases. Additionally, our approach benefits most from samples with high prediction confidence, i.e.,

when r is small. However, as shown in Fig. 5.2(a), setting r too small results in an insufficient

number of training samples, leading to suboptimal WGA performance. In the following, unless

otherwise specified, we use half of the validation set to construct the probe set and treat r as a

tunable hyperparameter.

Main Results

We focus on a challenging and practical setting where group labels are unavailable in both the

training and validation data. This scenario requires detecting and mitigating spurious biases using

only the data and models available in a standard ERM training setup. As baselines, we selected

state-of-the-art last-layer retraining methods DFR [4] and AFR [32], as well as JTT [31], which

retrains the entire model. For DFR, which typically requires group labels, we used class labels

instead. All baseline methods listed in Tables 5.1 and 5.2 utilized half of the validation data for

training. Similarly, our method employed the same half of the validation data to construct a probe

set, derived as a subset of this portion. The remaining half of the validation data was reserved for

model selection.

As shown in Tables 5.1 and 5.2, our method achieves the highest WGA and the smallest accu-

racy gap between average accuracy and WGA, indicating its ability to strike a strong balance across
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Method Accuracy (↑)
ERM 75.9
REx [188] 74.3
Group DRO [3] 77.6
JiGen [111] 85.0
Mixup [189] 80.3
CNBB [148] 78.2
DecAug [186] 85.2
SIFER [190] 86.2
ShortcutProbe (Ours) 90.5±0.6

Table 5.3: Comparison of average accuracy (%) on the NICO dataset.

different data groups. Methods that achieve high average accuracy, such as DFR on the CelebA

dataset, prioritize learning spurious features in the probe set. Although maintaining good predic-

tivity on average, DFR still suffer from the prediction shortcuts, as shown by its low WGA. Our

method remains effective on larger backbone networks beyond ResNet-50, such as ResNet-152 and

ViT (see Appendix A.6). Unlike other baseline methods, our method uses only a portion of available

data for training, highlighting the effectiveness of the probe set in detecting and mitigating spurious

biases. Notably, when we applied the same probe set with baseline methods, this led to degraded

performance in both WGA and accuracy gap, underscoring the unique advantages of our approach.

We further tested the out-of-distribution generalization of our method on the NICO dataset.

Images of each class in the test set are associated with an unseen context. Our method achieves the

best classification accuracy without using group labels (Table 5.3), demonstrating its effectiveness in

mitigating the reliance on contexts. We present additional results on the ImageNet-9 and ImageNet-

A datasets in Appendix A.6 to demonstrate our method’s effectiveness in combating distributional

shifts and the capability of achieving good tradeoff between in-distribution and out-of-distribution

performance.

Ablation Studies

Prediction Shortcuts. We evaluated the effectiveness of prediction shortcuts in Figure 5.3(a).

We began by using a randomly initialized shortcut detector to optimize the objective in Equa-

tion(5.10). Additionally, we tested the performance without the spurious bias regularization term

Lspu, represented as λ = 0 in Figure 5.3(a), as well as for λ values of 1, 10, and 50. Our results

indicate that the model performs the worst when prediction shortcuts are not used as regulariza-

tion. Interestingly, our method still demonstrates effectiveness even when the prediction shortcuts
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(a) Prediction shortcuts

random shortcut 
detector

(c) Number of base vectors(b) Semantic regularization

Figure 5.3: Analyses on how (a) prediction shortcuts as well as their regularization strength λ, (b)
semantic regularization strength η, and (c) number of base vectors K affect a model’s robustness to
spurious biases. We report the worst-group accuracy on the CheXpert dataset.

are random. As λ increases, the regularization strength decreases. The model achieves optimal

performance when an appropriately balanced λ is selected.

Semantic Regularization. We analyzed the impact of the semantic regularization strength η

defined in Equation (5.5). Figure 5.3(b) shows that incorporating this regularization with a moderate

value of η enhances the model’s robustness.

Number of Base Vectors. The number of base vectors, K, determines the representational

capacity of the shortcut detector. A value of K that is too small will limit the detector’s ability to

identify spurious attributes effectively, while an excessively large K may lead to overfitting on the

probe data. Notably, as shown in Figure 5.3(c), the optimal value of K is 6, which coincides with

the true number of spurious attributes in the CheXpert dataset.

5.1.5 Conclusion

In this work, we proposed a novel post hoc framework to mitigate spurious biases without requiring

group labels. Our approach first learns a shortcut detector in the latent space of a given model via

a diverse probe set. To mitigate spurious biases, we retrained the model to be invariant to detected

prediction shortcuts using a novel regularized training objective. We theoretically demonstrated that

this objective effectively unlearns the spurious correlations captured during training. Experiments

confirmed that our method successfully mitigates spurious biases and enhances model robustness

to distribution shifts. Future work may explore constructing a more diverse probe set to further

enhance the detection and mitigation of spurious biases.
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5.2 NeuronTune: Towards Self-Guided Spurious Bias Miti-

gation

5.2.1 Introduction

Deep neural networks trained using empirical risk minimization (ERM) often develop spurious bias:

a tendency to rely on spurious correlations for predictions. A spurious correlation refers to a non-

causal relationship between a class and an attribute that is not essential for defining the class,

commonly referred to as a spurious attribute [46]. For example, the class of waterbird and the

background of the water can form spurious correlations in the predictions of waterbird [3], as the

background of the water is a spurious attribute. In contrast, core attributes, such as bird feathers,

causally determine a class. A model with spurious bias may achieve a high prediction accuracy

[6, 48, 2, 49, 42] even without core attributes, such as identifying an object only by its frequently co-

occurring background [2]. However, the model may perform poorly on the data lacking the learned

spurious correlations, which poses a great challenge to robust model generalization.

Existing methods [3, 4, 197] that mitigate spurious bias are mostly at the sample level, using

a curated set of samples with annotations of spurious correlations called group labels to retrain a

biased model. A group label (class, spurious attribute) annotates a sample with a spurious attribute

and its class label, representing a spurious correlation. However, group labels are difficult to acquire

and often require costly human-guided annotations. To circumvent this, group label estimation [34]

and various sample reweighting mechanisms [33, 31, 183, 32, 83] are adopted using the idea that

spurious bias can be identified through the misclassification of bias-conflicting samples.

Despite significant progress in spurious bias mitigation, existing sample-level methods that rely

on group labels or sample reweighting offer limited and indirect control over how spurious bias is

addressed. On the one hand, group labels are data annotations that are external to a model and

may not accurately reflect the specific spurious bias developed in the model. On the other hand,

sample reweighting does not directly target the internal mechanisms that give rise to spurious bias.

This highlights the need for a self-guided approach that directly intervenes in a model’s

decision process, providing more targeted and model-relevant signals for mitigating spurious bias

than sample-level approaches.

To this end, we focus on developing self-guided methods that directly analyze the internal pre-

diction mechanism of a model to identify components of the model that are affected by spurious

bias and then mitigate their influence to final predictions. We take a step towards this goal by
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proposing a novel method termed NeuronTune, which systematically reduces spurious bias in

deep neural networks. NeuronTune first probes in the latent embedding space of a trained model

to identify dimensions (neurons) of sample embeddings affected by spurious bias, termed biased di-

mensions—those where spurious attributes predominantly contribute to prediction errors [198, 90].

Those dimensions can be identified when high activation magnitudes are strongly associated with in-

correct predictions, indicating that features represented by those dimensions are not truly predictive

of target classes. Importantly, rather than attempting to explicitly distinguish dimensions repre-

senting spurious and core attributes, an inherently challenging task given the complex entanglement

of features in deep networks, NeuronTune instead identifies biased dimensions and suppresses the

contributions of the these dimensions to final predictions. This intervention encourages the model

to discover robust decision rules and mitigates spurious bias in the model.

Compared with the existing sample-level methods for spurious bias mitigation, NeuronTune

provides direct intervention at the neuron level, allowing for more precise and targeted control over

the mitigation of spurious bias during model tuning. Unlike approaches that rely on sample-level

annotations such as group labels, NeuronTune enables the model to self-debias without external

supervision. This makes it applicable in standard ERM training settings, where no additional

annotations beyond class labels are available. As a result, NeuronTune serves as a practical and

effective post hoc tool for mitigating spurious bias.

We theoretically demonstrate that neuron activations coupled with their final prediction out-

comes provide self-identifying information on whether the neurons are affected by spurious bias.

Our theoretical findings further suggest a practical metric for identifying biased dimensions and

proves that NeuronTune can bring a model closer to the unbiased one. Experiments on vision and

text datasets with different model architectures confirm the effectiveness of our method.

5.2.2 Preliminaries

We consider a standard classification problem. The training set Dtrain = {(x, y)|x ∈ X , y ∈ Y}

typically contains data groups Dtr
g with Dtrain = ∪g∈GDtr

g , where x denotes a sample in the input

space X , y is the corresponding label in the finite label space Y, g := (y, a) denotes the group label

defined by the combination of a class label y and a spurious attribute a ∈ A, where A denotes

all spurious attributes in Dtrain, and G denotes all possible group labels. Sample-label pairs in the

group Dtr
g have the same class label y and the same spurious attribute a.
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For each neuron from 1 to M:

Figure 5.4: Practical implementation of NeuronTune. (a) Extract latent embeddings v1, . . . ,vN and
prediction outcomes (blue for correct and red for incorrect predictions) from an ERM-trained model
using the identification data DIde. (b) Identify biased neurons (dimensions) utilizing the statistics
Mmis and Mcor derived from neuron activations for correct (blue) and incorrect (red) predictions
from Equation (5.18). (c) Retrain the last prediction layer on DTune while keeping the feature
extractor frozen and suppressing identified biased dimensions.

Our Scenario. We consider unsupervised spurious bias mitigation, where no group labels are

available, resembling a standard ERM training. A commonly used performance metric is the worst-

group accuracy (WGA), which is the accuracy on the worst performing data group in the test set

Dtest, i.e., WGA = ming∈G Acc(f,Dte
g ), where Dte

g denotes a group of data in Dtest with Dtest =

∪g∈GDte
g , and f denotes a trained model. Typically, data in Dtrain is imbalanced across groups, and

the model f tends to favor certain data groups, resulting in a low WGA. Improving WGA without

knowing group labels during training is challenging.

We propose NeuronTune, a self-guided method for mitigating spurious bias without requiring

group labels. NeuronTune identifies neurons (dimensions) affected by spurious bias in a model’s

latent space and tunes the model while suppressing the identified neurons. In Section 5.2.3, we

present an analytical framework that outlines the design principles and theoretical properties of

NeuronTune. Section 5.2.4 introduces a practical implementation for mitigating spurious bias in

real-world settings.

5.2.3 NeuronTune: An Analytical Framework

At the core of NeuronTune is the identification of neurons that are affected by spurious bias. We

establish an analytical framework to (1) elucidate the principle of neuron selection, (2) derive a

selection metric that follows the principle of neuron selection, and (3) reveal the mechanism of

NeuronTune in mitigating spurious bias.
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Data and Prediction Models

Data Model. We design a data generation process that facilitates learning spurious correlations.

Following the setting in [138, 199], we model a sample-label pair (x, y) in Dtrain as:

x = xcore ⊕ xspu ∈ RD×1, y = βTxcore + εcore, (5.14)

where xcore ∈ RD1×1 is the core component, ⊕ denotes the vector concatenation operator, and

the spurious component xspu ∈ RD2×1 with D1 + D2 = D is associated with the label y with the

following relation:

xspu = (2a− 1)γy + εspu, a ∼ Bern(p), (5.15)

where (2a−1) ∈ {−1,+1}, a ∼ Bern(p) is a Bernoulli random variable, and p is close to 1, indicating

that xspu is mostly predictive of y but not always. In (5.14) and (5.15), β ∈ RD1×1 and γ ∈ RD2×1

are coefficients with unit L2 norm, and εcore ∈ R and εspu ∈ RD2×1 represent the variations in the

core and spurious components, respectively. We set εcore and each element in εspu as zero-mean

Gaussian random variables with the variances η2core and η2spu, respectively. We set η2core ≫ η2spu to

facilitate learning spurious correlations [3].

Prediction Model. We adopt a linear regression model with two linear layers [199] defined as

f(x) = bTWx, where W ∈ RM×D denotes the embedding matrix simulating a feature extractor,

b ∈ RM×1 denotes the last layer, and M is the number of embedding dimensions. The model f(x)

can be further expressed as follows,

f(x) =
M∑
i=1

bi(x
T
corewcore,i + xTspuwspu,i)

= xTcoreucore + xTspuuspu,

(5.16)

where wcore,i ∈ RD1×1, wspu,i ∈ RD2×1, wT
i = [wT

core,i,w
T
spu,i] ∈ R1×D is the i-th row of

W, ucore =
∑M
i=1 biwcore,i, and uspu =

∑M
i=1 biwspu,i. The training objective is ℓtr(W,b) =

1
2E(x,y)∈Dtrain

∥f(x)− y∥22.

Remark: To better understand our data and prediction models, consider that a in Eq. (5.15)

controls subpopulations in data, e.g., when a = 1, it may represent a group of waterbirds on water,

and when a = 0, it may represent a group of waterbirds on land. The probability p controls the

severity of imbalance in subpopulations. When p is close to one, the data is severely imbalanced in
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subpopulations. After training with ERM, the model minimizes the training loss, i.e., maximizes

the average-case accuracy, but obtains a large nonzero weight on the spurious feature (Lemma 1 in

Appendix) and is away from the optimal model (Corollary 1 in Appendix). For example, the model

may focus on correctly classifying waterbirds on water, at the expense of its ability to recognize

waterbirds on land.

Principle of Neuron Selection

NeuronTune aims to identify neurons that reflect spurious bias. Proposition 5.2 specifies the principle

of NeuronTune in terms of what neurons are to be identified and suppressed during model tuning.

Proposition 5.2 (Principle of NeuronTune). Given the model f(x) = bTWx trained with

the data specified in (5.14) and (5.15), it captures spurious correlations when γTwspu,i < 0, i ∈

{1, . . . ,M}. The principle of NeuronTune is to suppress neurons containing negative γTwspu,i.

If γTwspu,i ≥ 0, the model handles the spurious component correctly. Specifically, when a = 1,

the spurious component xspu positively correlates with the core component xcore and contributes to

the output, whereas when a = 0, its correlation with xcore breaks with a negative one and has a

negative contribution to the output. The relations reverse when γTwspu,i < 0, i.e., the model utilizes

xspu even when the correlation breaks, demonstrating a strong reliance on the spurious component

instead of the core component. The proof is in Appendix A.7.2.

Metric for Neuron Selection

Guided by the principle of NeuronTune in Proposition 5.2, the following theorem gives a practical

metric to select neurons that are affected by spurious bias.

Theorem 5.1 (Metric for Neuron Selection). Given the model f(x) = bTWx, we cast it to

a classification model by training it to regress y ∈ {−µ, µ} (µ > 0) on x based on the data model

specified in (5.14) and (5.15), where µ = E[βTxcore]. The metric δyi defined in the following can

identify neurons affected by spurious bias when δyi > 0:

δyi = Med(V̄yi )−Med(V̂yi ),

where V̄yi and V̂yi are the sets of activation values for misclassified and correctly predicted samples

with the label y from the i-th neuron, respectively; an activation value is defined as xTcorewcore,i +

xTspuwspu,i, and Med(·) returns the median of an input set of values.
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We show in Appendix A.7.2 that the theorem establishes the approximation δyi ≈ −2µγTwspu,i,

which confirms that neurons selected by the metric defined above follow the principle in Proposition

5.2. Adopting medians in the metric makes the metric robust to outlier values.

Let Mmis = Med(V̄yi ) and Mcor = Med(V̂yi ). Intuitively, a high Mmis indicates that high

activations at the i-th dimension contribute to misclassification when predicting the class y. A low

Mcor implies that the i-th dimension has little effect in correctly predicting the class y. Thus, a

large difference betweenMmis andMcor, i.e., a large δyi , indicates that the i-th dimension represents

features that are irrelevant to the class y. In other words, with a high likelihood, the dimension is

affected by spurious bias. In contrast, a negative δyi highlights the relevance of the i-th dimension

for predictions as most correctly predicted samples have high activation values in this dimension,

and most incorrectly predicted samples have low activation values.

Remark: Proposition 5.2 and Theorem 5.1 state that when a spurious correlation breaks, neurons

that continue to positively contribute to mispredictions will be selected. For example, in the case

of waterbird with water and land backgrounds, neurons that cause misclassification on images of

waterbird appearing on land will be identified.

Mechanism of NeuronTune

NeuronTune mitigates spurious bias by retraining the last layer while suppressing (zeroing out) the

identified neurons. The following theorem shows that this improves model robustness and explains

how it achieves this.

Theorem 5.2 (NeuronTune Mitigates Spurious Bias). Consider the model f∗(x) = xTu∗

trained on the biased training data with p ≫ 0.5, where u∗T = [u∗T
core,u

∗T
spu]. Under the mild

assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M , then applying NeuronTune to f∗(x) produces

a model that is closer to the unbiased one.

The assumption βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M generally holds for a biased model, as

the model has learned to associate spurious attributes with core attributes. The proof is in Ap-

pendix A.7.2. Denote the NeuronTune solution by u†
core and u†

spu. Our finding reveals that retrain-

ing the last layer does not alter the weight on the spurious component, i.e., u†
spu = u∗

spu, which is

the optimal solution achievable by last-layer retraining methods (see Lemma 3 in Appendix A.7.2).

However, it does adjust u†
core to be closer to the optimal weight on the core component, β. Over-

all, NeuronTune brings the model parameters closer to the optimal, unbiased solution compared to

the parameters of the original biased model. Therefore, NeuronTune is guaranteed to outperform
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the ERM-trained model. Further discussion on the connection to last-layer retraining methods is

provided in Appendix A.7.3.

Remark: Our findings suggest that our approach makes a slight trade-off in average-case accuracy

to achieve improved worst-group accuracy. For example, our method may slightly reduce the model’s

ability to classify waterbird on water due to a relative decrease in reliance on the water feature, while

significantly enhancing its ability to classify waterbird on land.

5.2.4 NeuronTune: Practical Implementation

For real-world spurious bias mitigation, we consider a well-trained ERM model fθ where θ =

argminθ′ E(x,y)∈Dtrain
ℓ(fθ′(x), y), and ℓ denotes the cross-entropy loss function. The model fθ =

eθ1 ◦hθ2 consists of a feature extractor eθ1 : X → RM followed by a linear classifier hθ2 : RM → R|Y|,

whereM is the number of dimensions of latent embeddings obtained from eθ1 , ◦ denotes the function

composition operator, and θ = θ1 ∪ θ2.

NeuronTune aligns best with our theoretical analysis when implemented as a last-layer retraining

method where the feature extractor eθ1 is fixed and the last layer is linear and tunable. Figure 5.4

gives an overview of NeuronTune which mainly includes identifying affected neurons and model

tuning with identified neurons.

Identifying Affected Neurons

As shown in Figure 5.4(a), we use a set of identification data DIde, which typically contains a set of

diverse features not seen by the model, to identify dimensions (neurons) affected by spurious bias in

the model’s latent space. We first extract latent embeddings and prediction outcomes for samples

of class y in DIde, i.e.,

Vy = {(v, o)|v = eθ1(x),∀(x, y) ∈ DIde}, (5.17)

where o = 1{argmax fθ(x) == y}, v ∈ RM is an M -dimensional latent embedding of x, and o is

the corresponding prediction outcome with 1 being an indicator function.

Identification Criterion. As shown in Figure 5.4(b), for each embedding dimension i, we

separate Vy into two sets V̂yi and V̄yi , representing values at the i-th embedding dimension from

Vy, contributing respectively to correct and incorrect predictions, i.e.,V̂yi = {v[i]|(v, 1) ∈ Vy}, and

V̄yi = {v[i]|(v, 0) ∈ Vy},∀i = 1, . . . ,M, y ∈ Y, where v[i] denotes the i-th dimension of v. We

propose a spuriousness score δyi to measure the spuriousness of the i-th dimension when predicting
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the class y. Following the insight from Theorem 5.1, we define δyi as follows:

δyi =Mmis −Mcor, (5.18)

whereMmis = Med(V̄yi ) andMcor = Med(V̂yi ).

Theorem 5.1 assumes that each dimension of input embeddings consists of a linear combination

of spurious and core components. While it generally holds that each dimension represents a mixture

of spurious and core components, in real-world scenarios, the combination is typically nonlinear. To

account for this, we introduce λ as a threshold and identify dimensions using the following criterion:

S = {i|δyi > λ,∀i = 1, . . . ,M, y ∈ Y}. (5.19)

We set λ to 0 by default, as it works well in practice.

In the following, we refer to a dimension as a biased dimension when δyi > λ and unbiased

dimension otherwise. A biased (unbiased) dimension does not imply that the dimension exclusively

represents spurious (core) attributes. In practice, an unbiased dimension exhibits high activation

values for target classes, whereas a biased dimension shows high activation values for undesired

classes. Visualizations of several identified biased and unbiased dimensions on real-world datasets

are provided in Appendix A.7.9.

We include the dimensions identified for all the classes into the set S since an identified biased

dimension for one class cannot serve as a core contributor to predicting some other class in a well-

defined classification task. For example, consider that the dimension representing “blue color” is

biased for the “rectangle” class while being unbiased for the “blue color” class. This happens when

we have a blue rectangle as the input, which makes the classification ambiguous.

Additionally, while our approach may resemble traditional variable selection such as ℓ1 regular-

ization, it goes further by specifically addressing spurious bias—a factor often ignored in traditional

methods. Notably, our method operates in an unsupervised setting without requiring group labels.

Further details on its advantages are provided in Appendix A.7.6.

Model Tuning with Identified Neurons

As illustrated in Figure 3.6(c), we tune the last prediction layer while suppressing the signals from

the identified biased dimensions. In this way, we explicitly intervene the internal decision process of

the model to discover robust decision rules beyond using spurious correlations.
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Learning Objective. Concretely, given a model tuning dataset DTune, we optimize the following

objective,

θ∗2 = argmin
θ2

E
B∼DTune

E
(x,y)∈B

ℓ(hθ2(ṽ), y), (5.20)

where B contains class-balanced sample-label pairs from DTune, addressing that the classifier may

favor certain classes during model tuning, and ṽ is the latent embedding after zeroing-out activations

on the biased dimensions in S. Unless otherwise stated, we use Dtrain as DTune.

Model Selection. Without group labels, it is challenging to select robust models [31, 29]. We

address this by designing a novel model selection metric, termed spuriousness fitness score (SFit),

which is the sum of magnitudes of spuriousness scores across dimensions and classes, i.e., SFit =∑M
m=1

∑
y∈Y Abs(δym), where Abs(·) returns the absolute value of a given input. The score holistically

summarizes whether biased and unbiased dimensions in the model are distinguishable. A low SFit

indicates that the model tends to memorize samples. Empirically, we find that a high SFit effectively

selects a robust model.

NeuronTune is highly efficient as it only requires tuning the last layer of the model. We use (5.19)

and (5.20) to iteratively perform the biased dimension detection and model tuning while using SFit

for model selection.

5.2.5 Experiments

Datasets

We tested NeuronTune on four image datasets and two text datasets, each with different types of

spurious attributes. (1) Waterbirds [3] is an image dataset for recognizing waterbird and landbird.

It is generated synthetically by combining images of the two bird types from the CUB dataset [163]

and the backgrounds, water and land, from the Places dataset [174]. (2)CelebA [149] is a large-scale

image dataset of celebrity faces. The task is to identify hair color, non-blond or blond, with male or

female as the spurious attribute. (3) ImageNet-9 [49] is a subset of ImageNet [175] containing nine

super-classes. It comprises images with different background and foreground signals and can be used

to assess how much models rely on image backgrounds. (4) ImageNet-A [176] is a dataset of real-

world images, adversarially curated to test the limits of classifiers such as ResNet-50. We used this

dataset to test the robustness of a classifier after training it on ImageNet-9. (5) MultiNLI [194] is a

text classification dataset with three classes: neutral, contradiction, and entailment, representing the

natural language inference relationship between a premise and a hypothesis. The spurious attribute
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is the presence of negation. (6) CivilComments [195] is a binary text classification dataset aimed

at predicting whether an internet comment contains toxic language. The spurious attribute involves

references to eight demographic identities. The dataset uses standard splits provided by the WILDS

benchmark [28].

Experimental Setup

Training Details. We first trained ERM models on each of the datasets. We used ResNet-50

and ResNet-18 [200] models pretrained on ImageNet for experiments on the Waterbirds and CelebA

datasets, and on the ImageNet-9 and ImageNet-A datasets, respectively. For text datasets, we used

the BERT model [196] pretrained on Book Corpus and English Wikipedia data. We followed the

settings in Izmailov et al. [170] for ERM training, with the best models selected based on the average

validation accuracy. For our NeuronTune training, unless otherwise stated, we used the validation

data as DIde and the training data as DTune. We took the absolute values of neuron activations before

the identification process, ensuring that high activation magnitudes reflect strong contributions to

predictions. We ran the training under five different random seeds and reported average accuracies

along with standard deviations. We provide full training details in Appendix A.7.8. Code is available

at https://github.com/gtzheng/NeuronTune.

Evaluation Metrics. To evaluate the robustness to spurious bias, we adopt the widely accepted ro-

bustness metric, worst-group accuracy (WGA), that gives the lower-bound performance of a classifier

on the test set with various dataset biases. We also focus on the accuracy gap between the standard

average accuracy and the worst-group accuracy as a measure of a classifier’s reliance on spurious

correlations. A high worst-group accuracy and a low accuracy gap indicate that the classifier is

robust to spurious correlations and can fairly predict samples from different groups.

Synthetic Experiment

We considered an input v = [vc, vs, vϵ] ∈ R3 that has three dimensions: a core dimension with the

core component vc ∈ R, a spurious dimension with the spurious component vs ∈ R, and a noise

dimension with the noise component vϵ. We generated training and test sets with sample-label pairs

(v, y), where y ∈ {−1,+1}. The core component in v is a noisy version of the label y in both sets.

The spurious component in the training set is a noisy version of the spurious attribute a = 0 in 95%

(5% for a = 1) of samples with y = −1 and in 5% (95% for a = 1) of samples with y = +1. The noise

component is an independent zero-mean Gaussian variable. In the test set, for each label, we reduced

the 95% group to 10%, effectively reversing the majority and minority group roles. We adopted a
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During Training: 
Acc: 95.4%, WGA: 66.2% 

(a) Original Model

(b) Identify Spurious Dimensions

During Testing: 
Acc: 70.7%, WGA: 67.8% 

Dimension 1 Dimension 2

(c) After Neuron Tuning

During Training: 
Acc: 90.7%, WGA: 87.6% 

During Testing: 
Acc: 90.6%, WGA: 89.1% 

Figure 5.5: Synthetic experiment. (a) Training and test data distributions along with the decision
boundaries of the trained model. (b) Value distributions of the correctly (blue) and incorrectly (red)
predicted samples at the first (left) and second (right) dimensions of input embeddings, with the
second dimension identified as a biased dimension. (c) NeuronTune improves WGA. Data groups
(y = +1, a = 1): red dots; (y = +1, a = 0): orange dots; (y = −1, a = 0): blue dots; (y = −1, a = 1):
green dots.

logistic regression model ϕw̃(v) = 1/(1 + exp{−(wTv + b)}) with w̃ = [w, b]. The model predicts

+1 when ϕw̃(v) > 0.5 and −1 otherwise. We trained ϕw̃ on the generated training data and tested

it on the corresponding test data. Details of the data generation are provided in Appendix A.7.1.

Figure 5.5 illustrates spurious bias and how NeuronTune mitigates it. First, we observe that the

decision boundary of the trained model tends to separate the majority groups of training samples.

This leads to a high average accuracy but a small WGA on the training set (Figure 5.5(a), left)
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Algorithm
Group annotations Waterbirds CelebA

Train Val WGA (↑) Acc. (↑) Acc. Gap (↓) WGA (↑) Acc. (↑) Acc. Gap (↓)
ERM [193] - - 72.6 97.3 24.7 47.2 95.6 48.4

JTT [31] No Yes 86.7 93.3 6.6 81.1 88.0 6.9
SELF† [83] No Yes 93.0±0.3 94.0±1.7 1.0 83.9±0.9 91.7±0.4 7.8
CNC [35] No Yes 88.5±0.3 90.9±0.1 2.4 88.8±0.9 89.9±0.5 1.1
BAM [201] No Yes 89.2±0.3 91.4±0.4 2.2 83.5±0.9 88.0±0.4 4.5
AFR [32] No Yes 90.4±1.1 94.2±1.2 3.8 82.0±0.5 91.3±0.3 9.3
DFR† [4] No Yes 92.4±0.9 94.9±0.3 2.5 87.0±1.1 92.6±0.5 5.6

BPA [202] No No 71.4 - - 82.5 - -
GEORGE [203] No No 76.2 95.7 19.5 52.4 94.8 42.4
BAM [201] No No 89.1±0.2 91.4±0.3 2.3 80.1±3.3 88.4±2.3 8.3
NeuronTune No No 92.2±0.3 94.4±0.2 2.2 83.1±1.1 92.0±0.5 8.9
NeuronTune† No No 92.5±0.9 94.5±0.3 2.0 87.3±0.4 90.3±0.5 3.0

Table 5.4: Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%)
on the image datasets. † denotes using a fraction of validation data for model tuning. The best
result in each group of methods is in boldface.

and poor performance on the test set (Figure 5.5(a), right). Then, Figure 5.5(b) demonstrates

the value distributions of the first (core) and second (spurious) dimensions of the input samples

with y = −1. NeuronTune identified the second dimension as a biased dimension, which indeed

represents spurious attributes. Next, Figure 5.5(c) shows that NeuronTune significantly improves

WGA on both the training and test sets by suppressing the contributions from biased dimensions.

Finally, independent of how NeuronTune works, there exists a tradeoff between average accuracy

and WGA due to complexity of input samples, as demonstrated in the left parts of Figures. 5.5(a)

and 5.5(c).

Comparison with Existing Approaches

We evaluated NeuronTune on both image and text datasets to showcase its effectiveness and ver-

satility in handling different data modalities and model architectures. Our primary comparisons

were with methods specifically designed for unsupervised spurious bias mitigation, where no group

labels are available for bias mitigation. To provide additional context, we also included methods for

semi-supervised spurious bias mitigation, which leverage group labels in the validation set to select

robust models.

Results in the lower parts of Tables 5.4 and 5.5 were obtained in the unsupervised spurious

bias mitigation setting. In this setting, our method achieves the highest worst-group accuracies

and smallest accuracy gaps across the datasets, highlighting its effectiveness in enhancing models’

robustness to spurious bias and balancing performance across different data groups. Results in the

upper parts of Tables 5.4 and 5.5 were from methods in the semi-supervised spurious bias mitigation
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Algorithm
Group annotations MultiNLI CivilComments

Train Val WGA (↑) Acc. (↑) Acc. Gap (↓) WGA (↑) Acc. (↑) Acc. Gap (↓)
ERM [193] - - 67.9 82.4 14.5 57.4 92.6 35.2

JTT [31] No Yes 72.6 78.6 6.0 69.3 91.1 21.8
SELF† [83] No Yes 70.7±2.5 81.2±0.7 10.5 79.1±2.1 87.7±0.6 8.6
CNC [35] No Yes - - - 68.9±2.1 81.7±0.5 12.8
BAM [201] No Yes 71.2±1.6 79.6±1.1 8.4 79.3±2.7 88.3±0.8 9.0
AFR [32] No Yes 73.4±0.6 81.4±0.2 8.0 68.7±0.6 89.8±0.6 21.1
DFR† [4] No Yes 70.8±0.8 81.7±0.2 10.9 81.8±1.6 87.5±0.2 5.7

BAM [201] No No 70.8±1.5 80.3±1.0 9.5 79.3±2.7 88.3±0.8 9.0
NeuronTune No No 72.1±0.1 81.1±0.6 9.0 82.4±0.2 89.2±0.1 6.8
NeuronTune† No No 72.5±0.3 80.3±0.6 7.8 82.7±0.4 89.4±0.2 6.7

Table 5.5: Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%)
on the text datasets. † denotes using a fraction of validation data for model tuning. The best result
in each group of methods is in boldface.

Method ImageNet-9 ImageNet-A Acc. Gap (↓)
ERM [193] 90.8±0.6 24.9±1.1 65.9

StylisedIN [179] 88.4±0.5 24.6±1.4 63.8
RUBi [180] 90.5±0.3 27.7±2.1 62.8
ReBias [181] 91.9±1.7 29.6±1.6 62.3
LfF [33] 86.0 24.6 61.4
CaaM [182] 95.7 32.8 62.9
SSL+ERM [183] 94.2±0.1 34.2±0.5 60.0
LWBC [183] 94.0±0.2 36.0±0.5 58.0
NeuronTune 93.7±0.1 37.3±0.5 56.4

Table 5.6: Average accuracy (%) and accuracy gap (%) comparison on the ImageNet-9 and
ImageNet-A datasets. ResNet-18 was used as the backbone. The best results are in boldface.

setting. Methods in this setting benefit from group labels for selecting robust models. Despite this

advantage, NeuronTune demonstrates strong self-debiasing capabilities, competing favorably with

methods such as AFR and DFR that rely on group labels. When a half of the validation set was

used in training, NeuronTune achieved better WGAs and accuracy gaps on three out of four datasets

than DFR and SELF that exploited the same set of data for training.

Notably, compared with sample-level last-layer retraining methods, such as AFR, NeuronTune

manipulates the neurons within a model, providing more targeted control on how spurious bias is

mitigated. Hence, NeuronTune in theory can achieve better robustness to spurious bias (Appendix

A.7.3). In general, NeuronTune compares favorably with AFR in terms of WGA and accuracy gap,

with larger gains achieved when AFR models were selected without group labels (Appendix A.7.4).

We further used the ImageNet-9 [183, 181] and ImageNet-A [176] datasets to evaluate Neuron-

Tune’s robustness to distribution shifts, which are challenging to depict in group labels. We first

trained an ERM model from scratch using ImageNet-9 and then fine-tuned its last layer with Neu-

127



DIde DTune NT Waterbirds CelebA MultiNLI CivilComments

Dtrain Dtrain Yes 78.0±2.3 58.5±1.2 42.0±10.5 80.0±10.5

Dval Dtrain Yes 92.2±0.3 83.1±1.1 72.1±0.1 82.4±0.2

Dval Dtrain No 82.7±0.4 53.9±0.0 63.4±0.7 81.5±0.5

Dval/2 Dval/2 Yes 92.5±0.9 87.3±0.4 72.5±0.3 82.7±0.4

Table 5.7: Comparison of worst-group accuracy (%) between different choices of DIde and DTune as
well as neuron-based tuning (NT) on the four datasets. The best results are in boldface.

ronTune. In Table A.6.7, NeuronTune achieves the best accuracy on the challenging ImageNet-A

dataset, which is known for its natural adversarial examples. While this improvement comes with a

slight trade-off in in-distribution accuracy on ImageNet-9, NeuronTune maintains the smallest accu-

racy gap between the two datasets, making it a robust method for out-of-distribution generalization.

Finally, in Tables 5.4, 5.5, and A.6.7, we observe a common trade-off between average accuracy

and WGA that exists across many spurious bias mitigation methods. For NeuronTune, this trade-off

primarily occurs when samples sharing the same spurious attribute but belonging to different classes

are difficult to separate in the latent space, as illustrated in Figure 5.5. While improving sample

embeddings could help alleviate this issue, it often demands substantial computational resources.

In contrast, NeuronTune, as a post hoc method, efficiently mitigates spurious bias by tuning only

the last layer with low computational complexity (Appendix A.7.5) while still achieving a favorable

balance between WGA and overall performance.

Ablation Studies

In Table 5.7, we compare NeuronTune’s performance between different choices of the identification

dataset DIde and the model tuning dataset DTune. Additionally, we demonstrate the effectiveness of

neuron-based tuning on the identified biased dimensions (denoted as NT).

When using DIde = Dtrain, we observe a relatively low performance across datasets. After

switching to a held-out validation data Dval, we observe significant performance improvements.

This highlights the advantage of using a new and independent dataset to identify biased dimensions,

as models may have already memorized patterns in Dtrain. By default, NeuronTune adopts Dval as

DIde. It is important to note that using Dval to identify biased dimensions is analogous to using it

for model selection. Hence, Dval is not directly used for updating model weights.

Next, we disabled NT during model tuning (NT=No), which effectively reduces NeuronTune

to class-balanced model tuning. We observe consistent performance degradation across the four

datasets, which validates the effectiveness of NT across datasets.
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Masking value 0 0.2 0.4 0.6 0.8 1.0
WGA (↑) 87.3±0.4 71.5±1.5 72.2±1.2 72.9±1.5 73.1±1.5 73.0±1.2

Acc. (↑) 90.3±0.5 93.8±0.2 93.8±0.3 93.8±0.2 93.8±0.2 93.9±0.2

Table 5.8: Analysis of the impact of partial suppression (masking value > 0) and full suppression
(masking value = 0) on the performance of NeuronTune†, evaluated on the CelebA dataset.

Moreover, inspired by the success of DFR [4], which uses a half of the validation data for model

tuning, we divided Dval into two equal halves: one half (denoted as Dval/2) was used as DIde,

while the other half served as DTune. Unlike DFR, our method does not rely on group labels in

the validation data. This strategy leads to further performance improvements on datasets such as

CelebA and MultiNLI, demonstrating the advantage of using separate and independent datasets for

bias identification and model tuning. Identifying the optimal choice for DIde and DTune remains an

avenue for future research.

Finally, we analyze different strategies for handling the identified biased dimensions, as shown

in Table 5.8. Our default approach, described in Section 5.2.4, fully suppresses the activations on

the biased dimensions by multiplying the activations with a masking value of zero. To explore the

effect of partial suppression, we varied the masking value from 0.2 to 1.0, where 1.0 corresponds to

no suppression. As shown in Table 5.8, on the CelebA dataset, only the full suppression strategy

(masking value = 0) led to an improvement in WGA. This highlights that while partial suppression

may reduce the loss in average accuracy, its impact on spurious bias is similar to no suppression

at all. With nonzero masking values, models can still adjust their weights using biased activations,

resulting in persistent spurious bias.

5.2.6 Conclusion

We proposed a self-guided spurious bias mitigation method that directly intervenes the prediction

mechanisms within a model without using group labels. Our method exploits distinct patterns of

neuron activations in a model’s latent space to identify biased dimensions and suppresses signals

from these dimensions while tuning the remaining model. We theoretically validated our neuron

identification method and proved that our method can bring a model closer to an unbiased one than

its ERM counterpart. Experiments validated our theoretical findings and showed that our method

is a lightweight post hoc bias mitigation method that can work across different data modalities and

model architectures. Future work may explore different choices of identification and model tuning

data to enhance spurious bias mitigation.
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5.3 Self-Adaptive Prompt Exploration for Zero-Shot Spuri-

ous Bias Mitigation in Vision-Language Models

5.3.1 Introduction

Zero-shot models hold promising potential for making predictions on any set of classes without

requiring data collection or training. Pre-trained vision-language models (VLMs) [41, 204, 205,

206, 207] such as contrastive language-image pre-training (CLIP) models [41] have demonstrated a

strong zero-shot prediction capability across diverse downstream tasks. They typically consist of a

pre-trained image and a text encoder from which vision and text representations are aligned in a

shared joint embedding space. Thus, the zero-shot prediction for an image can be simply achieved

by finding the description from a set of candidate descriptions whose representation is most similar

to the image representation.

However, recent studies [208, 95, 209] have found that pre-trained CLIP models often develop

an undesirable tendency to use spurious correlations between spurious, non-essential features and

targets across modalities for making predictions in a certain modality. For instance, as shown in

Figure 5.6, there is a misalignment between features from vision and language modalities, i.e., the

class label “landbird” is misaligned with a land background due to their strong spurious correlation

in the pre-training data. Then, a CLIP model may use the image background to infer the object’s

label (“waterbird”) as “landbird”, resulting in misclassification. Such a biased prediction behavior,

termed as multimodal spurious bias, severely limits the zero-shot generalization capability of pre-

trained CLIP models on out-of-distribution data where cross-modal spurious correlations captured

during pre-training no longer hold in downstream tasks, e.g., the correlation between “landbird”

and a land background no longer holds in Figure 5.6.

Mitigating multimodal spurious bias is essential for ensuring robust generalization across various

downstream tasks. Existing methods differ significantly on tackling this problem. Some methods

[162, 208, 210, 209] adopt fine-tuning approaches, which focus on biases specific to downstream

tasks and require a set of fine-tuning data. Although these methods achieve impressive improve-

ments in robustness to multimodal spurious bias over the vanilla zero-shot approach on multiple

downstream tasks, they require labeled data and do not tackle the problem in the zero-shot setting.

A recent method [95] tackles multimodal spurious bias within the language modality and does not

require training data. But it typically requires specifying potential spurious attributes acquired by

prompting a large language model (LLM) regarding a downstream task.
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Figure 5.6: Illustration of multimodal spurious bias in a CLIP model. The text representation of
“a photo of a landbird” is misaligned with the image representation because of the spurious land
background feature, resulting in misclassification.

In this paper, we propose a zero-shot, self-adaptive framework for mitigating multimodal spurious

bias, requiring no training data or prior knowledge of the bias. We first formally define multimodal

spurious bias, establishing a theoretical foundation for analyzing its impact on zero-shot classifi-

cation. Our theoretical insights reveal a connection between the strength of multimodal spurious

bias and the similarity between input image representations and text representations of class labels,

which can be influenced by different prompt templates.

Building on this insight, our approach leverages the prompt templates recommended for pre-

trained CLIP models [41], such as “a drawing of a [CLASS]” and “a photo of the [CLASS]”, where

[CLASS] is a placeholder for class labels. These prompts serve as candidate descriptions for images by

substituting actual class labels. A key observation motivating our approach is that different prompts

exhibit varying degrees of robustness to multimodal spurious bias, suggesting that prompt selection

significantly impacts how multimodal spurious bias affects zero-shot classification performance.

Our proposed framework, termed Self-Adaptive prompt Exploration (SAVE), adaptively selects

prompts according to an input image and constructs robust zero-shot classifiers based on selected

prompts. SAVE is fine-tuning free and does not rely on prior knowledge about spurious biases

such as annotations or spurious attributes obtained through external means like LLMs. Extensive

experiments and in-depth analyses on four benchmarks across six models validate the effectiveness

of our method in mitigating multimodal spurious bias and improving model generalization.
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Figure 5.7: Method overview. (a) Illustration of multimodal spurious bias, where c2 denotes a class
label, v denotes an image representation, us denotes a textual spurious feature, u1 and u2 denote
text representations for the class c1 and c2 respectively. (b) Self-adaptive prompt exploration finds a
prompt for each class from a set of candidate prompts that minimizes multimodal spurious bias. (c)
Zero-shot classification using an ensemble of zero-shot classifiers constructed with prompts selected
from the previous step.

5.3.2 Methodology

We first theoretically analyze the multimodal spurious bias in VLMs. Based on the insights gained in

the analysis, we propose a self-adaptive prompt exploration method to mitigate multimodal spurious

bias.

Preliminary

A CLIP [41] model is trained to align the representation of an image x from its vision encoder ϕ

and the representation of a text description t from its text encoder ψ in a joint embedding space

when the text description t matches with the image x. Specifically, let v = ϕ(x) ∈ RD denote the

vision representation for the image x and u = ψ(t) ∈ RD be the text representation for the text

description t, where D is the number of embedding dimensions. Then, the CLIP training objective

[41] essentially aims to maximize the probability of v given u and the probability of u given v over

all training image-text pairs, i.e.,

ϕ, ψ = argmax
ϕ′,ψ′

Ep(x,t)
(
p(v|u) + p(u|v)

)
, (5.21)

where p(x, t) denotes the joint distribution of matching image-text pairs in the training set. For

example, a CLIP model may learn to align the embeddings of an image of landbird and a text

description “a photo of a landbird” while pushing embeddings of unrelated images and texts away

from each other, such as an image of waterbird and “a photo of a landbird”. Ideally, for a matching

image-text pair (x, t), we will obtain p(v|u) ≈ p(u|v) after training.
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Zero-Shot Classification. Given an image x belonging to one of K classes {ck}Kk=1, zero-shot

classification first constructs K text descriptions by inserting each class name into a predefined text

template, such as “a photo of a [CLASS]”. Each description is then encoded into a text representation

uk for each class ck. Then, the zero-shot prediction k̂ is:

k̂ = argmax
k

p(uk|v) = argmax
k

vTuk
∥v∥2∥uk∥2

, (5.22)

where v is the vision representation for the input image x, ∥ · ∥2 is the Euclidean norm of a vector,

and p(uk|v) is defined to be proportional to vTuk.

Multimodal Spurious Bias

In practice, a given text description tmay not fully describe the content in x. For example, x could be

an image depicting a landbird with a land background, and t could simply be “a photo of a landbird”,

which only describes the primary object in the image. When a CLIP model learns to align many

such image-text pairs where land backgrounds spuriously correlate with the target “landbird”, then

the model may inadvertently learn to align the representation of “a photo of a landbird” with the

representation of land backgrounds, instead of the defining features of landbirds. The misalignment

causes a multimodal spurious bias in the model, which tends to use land backgrounds in images to

infer their descriptions. As illustrated in Figure 5.6, due to the misalignment, an image of waterbird

with a land background is incorrectly paired with the description “a photo of a landbird”.

To formally define multimodal spurious bias, we introduce u′
s ∈ RD to represent a latent textual

spurious feature, such as the missing “land background” in the description “a photo of a landbird”.

With u′
s, we can conveniently expand p(v|u) and p(u|v) in (5.21) as the marginalization over all

possible textual spurious features, i.e.,

p(v|u) =
∫
u′
s

p(v|u,u′
s)p(u

′
s|u)du′

s, (5.23)

and

p(u|v) =
∫
u′
s

p(u|v,u′
s)p(u

′
s|v)du′

s. (5.24)

In the pre-training data, if the majority of images with their text representation u have a spurious

feature represented by us, then a CLIP model may learn the strong correlations between the spurious

feature us and the image representation v as well as the text representation u. As a result, the

133



model will develop a multimodal spurious bias and we will have p(us|u) ≈ 1 and p(us|v) ≈ 1. We

formally define multimodal spurious bias in the following.

Definition 5.2 (Multimodal Spurious Bias). Consider a pre-trained CLIP model consisting of a

vision encoder ϕ and a text encoder ψ. Given an image-text pair (x, t) and a latent spurious feature

us, a multimodal spurious bias in the model relevant to us satisfies the following conditions:

p(v|u) ≈ p(v|u,us), (5.25)

and

p(u|v) ≈ p(u|v,us), (5.26)

where v = ϕ(x) and u = ψ(t).

The above conditions indicate that p(us|u) ≈ 1 and p(us|v) ≈ 1 based on Equation (5.23)

and Equation (5.24), and the pre-trained model tends to align v and u with us. This indicates a

misalignment between the vision representation v and the text representation u. When the pre-

trained model is tested on the data with p(us|u) ≪ 1 and p(us|v) ≪ 1, i.e., the spurious features

in the test data no longer have strong correlations with input images and the corresponding text

descriptions compared to the training data, such as the waterbird image with a land background

in Figure 5.6 where a land background is no longer associated with landbird, then the model may

struggle on most of the test data, showing degraded zero-shot classification performance.

Theoretical Insights

We first theoretically analyze how multimodal spurious bias affects zero-shot classification. The

insights derived from our analysis will guide the design of our multimodal spurious bias mitigation

method in the following section.

Without loss of generality, we consider a zero-shot classification task with two classes, c1 and

c2. Given a prompt template, we can obtain text representations for the two classes as u1 and u2.

Consider an image representation v from class c2 with an unknown spurious feature described by

the text representation us. The zero-shot prediction k̂ can be obtained as follows,

k̂ = arg max
k∈{1,2}

p(uk|v) (5.27)
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We assume a multimodal spurious bias between u1, v, and us, as indicated by the dashed arrows

in Figure 5.7(a). Then, the zero-shot prediction may be biased towards the class label c1, instead of

the true class label c2, as supported by the following theorem.

Theorem 5.3. Consider a pre-trained CLIP model from which we obtain two text representations

u1, u2 for the class c1 and c2, respectively, an image representation v with the class label c2, and

a textual spurious feature us related to v. Assume u1, v, and us formulate a multimodal spurious

bias. Then, the model is biased towards predicting v as c1 instead of its true class label c2.

Proof. We first follow Equation (5.24) to expand p(u1|v), i.e.,

p(u1|v) =
∫
u′
s

p(u1|v,u′
s)p(u

′
s|v)du′

s (5.28)

≈ p(u1|v,us)p(us|v) (5.29)

= p(us|u1)p(u1) (5.30)

where the approximation in (5.29) uses the definition of multimodal spurious bias in Definition 5.2,

and Equation (5.30) can be derived via Bayes’ theorem, i.e.,

p(u1|v,us) =
p(u1,us|v)
p(us|v)

=
p(us|u1)p(u1)

p(us|v)
, (5.31)

where the last equality follows the fact that p(u1,us|v) = p(u1,us), i.e., us and u1 do not depend

on v, as depicted in Figure 5.7(a). Therefore, we have the following inequality:

p(u1|v)
p(u2|v)

≈ p(us|u1)p(u1)

p(u2|v)
> 1, (5.32)

where the inequality follows from the condition that u1, v, and us formulate a multimodal spurious

bias, i.e., p(us|u1) ≈ 1, p(u2|v) ≈ 0 given that p(us|v) ≈ 1, and p(u1) > 0 is a constant. Therefore,

the model’s prediction on v is biased towards the incorrect label c1.

The above theorem proves that strong multimodal spurious biases in a pre-trained CLIP model

significantly affect its zero-shot performance. Although the analysis is based on a two-class task,

the conclusion generally holds with multiple classes when p(uk|v),∀k > 1 is a small number. An

important observation from Theorem 5.3 is that when p(u1|v) becomes smaller, i.e., the similarity

between u1 and v decreases, then p(us|u1) also becomes smaller. In other words, the multimodal

spurious bias can be mitigated.
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Self-Adaptive Prompt Exploration

Based on the previous analysis, mitigating multimodal spurious bias can be achieved by minimizing

p(u1|v), which, by definition, is proportional to uT1 v—the similarity between an image embedding

v and its spuriously associated text representation u1. However, u1 is typically unknown and uT1 v

cannot be minimized via fine-tuning since downstream task data is inaccessible in the zero-shot

setting.

To address these challenges, we first observe that different prompts produce varying zero-shot

predictions [41]. This indicates that text representations for different prompt templates differ in their

alignment with spurious features. For example, a post hoc analysis on the Waterbirds dataset [3]

using CLIP-ViT-L/14 reveals that the template “a drawing of a [CLASS]” is more robust to multi-

modal spurious bias than “a photo of a [CLASS]”, which suggests that the former is less aligned with

spurious features. Therefore, prompt selection can be an effective approach to mitigate multimodal

spurious bias. However, identifying optimal templates in a zero-shot setting remains challenging.

To address this, we introduce a novel self-adaptive prompt exploration method below.

Specifically, given a set of N prompt templates T = {Ti}Ni=1, for a K-way zero-shot classification

task with K class labels c1, . . . , cK , we construct N text descriptions for the k’th class ck as Dk =

{Ti(ck)}Ni=1, where Ti(ck) denotes the i’th prompt template filled with class ck. For example, as

illustrated in Figure 5.7(b) with K = 2 and N = 3, when c1 is “landbird”, T1(c1) could be “a photo

of a landbird”. We forward Dk to the text encoder ψ to obtain the corresponding text representations

{uki }Ni=1, where uki = ψ(Ti(ck)).

Prompt Exploration. Following the insights from the previous section, to mitigate a multimodal

spurious bias for the current input image, we aim to minimize the similarity between the image

representation v and u1, which denotes the text representation of a class associated with the bias.

Since the exact class linked to the bias is unknown, we explore prompts for all classes. For instance,

as shown in Figure 5.7(b), for the landbird class, we identify Prompt 1 as the most distant from

v among the three prompts in the joint embedding space, while for the waterbird class, we select

Prompt 3. Formally, for the input image representation v, we select the desired prompt template

T k∗ for the class ck as follows,

T k∗ = arg min
Tki ∈Dk

vTuki
∥vT ∥2∥uki ∥2

, k = 1, . . . ,K. (5.33)
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The above process is self-adaptive because it relies on v, and given v, the selected template T k∗

is entirely determined by the model. By considering prompts across all classes, we ensure effective

multimodal spurious bias mitigation tailored to the input image. Furthermore, a prompt that

reduces the similarity between the image and text representations for one class generally also reduces

similarity with others, which is beneficial for mitigating multimodal spurious biases associated with

other classes.

Enhanced Zero-Shot Classification. Then, for each T k∗ , ∀k = 1, . . . ,K, we construct a zero-

shot classifier with K weights {wk
j }Kj=1, where wk

j = ψ(T k∗ (cj)). For example, in the zero-shot

classification step shown in Figure 5.7(c), we construct two zero-shot classifiers with the selected

prompts. The final prediction ĵ is obtained from the classification results averaged over K zero-shot

classifiers, i.e.,

ĵ = argmax
j

1

K

K∑
k=1

vTwk
j

∥vT ∥2∥wk
j ∥2

. (5.34)

Our method, termed Self-AdaptiVe Prompt Exploration (SAVE), adaptively selects prompts

for each input image from a set of candidates to mitigate multimodal spurious biases in a zero-shot

setting. A key advantage of SAVE is that it operates without requiring additional task-specific data

or prior knowledge of multimodal spurious biases.

5.3.3 Experiments

Datasets

We experiment on two datasets with fine-grained spurious correlations, where each class is

correlated with certain spurious features, such as backgrounds and gender.

• Waterbirds [3] is an image dataset for recognizing waterbirds and landbirds. It is generated

synthetically by combining images of the two kinds of birds from the CUB dataset [163] and

the backgrounds, water and land, from the Places dataset [174].

• CelebA [149] is a large-scale image dataset of celebrity faces. The task is to identify hair

color, non-blond or blond, with male and female as the spurious attributes.

We also experiment on two datasets with coarse-grained spurious correlations where classes

are associated with domain-specific features.
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• PACS [211] is a domain generalization dataset that includes four visually different styles:

Photo, Art Painting, Cartoon, and Sketch. The task is to identify object categories (dog,

elephant, giraffe, guitar, horse, house, person).

• VLCS [212] is a domain generalization benchmark composed of four datasets: PASCAL VOC

2007 [213] (V), LabelMe [214] (L), Caltech101 [215] (C), and SUN09 [216] (S). It contains five

overlapping classes (bird, car, chair, dog, and person) drawn from each dataset. The main

challenge is to learn invariant features that generalize across these distinct domains.

Experimental Setup

Evaluated Methods. For performance comparison in zero-shot classification, we adopt ZS, which

represents standard zero-shot classification, and ROBOSHOT [95], a state-of-the-art method that

leverages LLMs to identify spurious attributes and mitigate multimodal spurious bias. In addition

to our proposed method, SAVE, we also consider its variant, SAVE-All. Unlike SAVE, which

selects prompt templates that best mitigate multimodal spurious bias, SAVE-All utilizes all available

templates. Specifically, given K classes and N templates, SAVE-All constructs K × N zero-shot

classifiers, whereas SAVE constructs only K classifiers.

Models. We use six CLIP-like models with different sizes and architectures, i.e., CLIP-RN-50,

CLIP-ViT-B/32, CLIP-ViT-L/14, CLIP-ViT-H/14 [41], ALIGN [204], and AltCLIP [217]. For our

method, we use the 80 prompt templates provided by CLIP models [41] and list them in Table A.8.1

in Appendix A.8.

Evaluation Metrics. We evaluate the zero-shot classification performance of a model using average

accuracy (AVG), which measures accuracy across all test samples, and worst-group accuracy (WGA),

which reflects the lowest accuracy among different test groups (as defined in Table A.8.2 in the

Appendix A.8). A model with strong multimodal spurious bias may achieve a high AVG if most test

samples contain the spurious correlations the model has learned, but it may achieve a low WGA

when these correlations are absent. A robust model should exhibit both high AVG and high WGA.

Main Results

We evaluate the effectiveness of our methods, SAVE and SAVE-All, in mitigating multimodal spuri-

ous biases at both the fine-grained level, where each class is correlated with specific spurious features,

on the Waterbirds and CelebA datasets (Table 5.9), and the coarse-grained level, where classes are

associated with broader domain-specific features, on the PACS and VLCS datasets (Table 5.10). For
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Dataset Model
ZS ROBOSHOT

Ours

SAVE-All SAVE

AVG(↑) WGA(↑) AVG(↑) WGA(↑) AVG(↑) WGA(↑) AVG(↑) WGA(↑)

Waterbirds

CLIP-RN-50 88.7 41.0 72.1 27.6 92.6 48.8 91.9 40.0
CLIP-ViT-B/32 80.4 27.5 74.2 39.3 93.0 32.2 91.3 43.6
CLIP-ViT-L/14 88.6 27.6 79.8 48.1 93.3 37.7 92.8 49.7
CLIP-ViT-H/14 89.0 44.5 76.9 52.5 90.0 37.2 88.7 42.7
ALIGN 72.3 50.0 52.6 38.3 81.6 47.2 79.8 51.2
AltCLIP 90.3 37.2 78.5 54.2 88.6 33.6 89.1 45.2

Average 84.9 38.0 72.4 43.3 89.9 39.5 88.9 45.4

CelebA

CLIP-RN-50 81.6 75.2 81.6 74.9 76.2 72.5 76.4 71.2
CLIP-ViT-B/32 78.3 68.9 82.1 75.2 77.5 73.9 79.9 75.5
CLIP-ViT-L/14 80.5 74.0 85.3 82.2 79.1 75.3 83.2 80.4
CLIP-ViT-H/14 83.3 79.7 82.7 76.9 78.1 71.5 81.9 77.5
ALIGN 82.4 78.2 87.0 84.8 83.3 81.0 80.1 74.4
AltCLIP 82.9 80.2 86.1 80.6 84.4 79.4 83.0 79.7

Average 81.5 76.0 84.1 79.1 79.8 75.6 80.8 76.5

Table 5.9: Performance on Waterbirds and CelebA with fine-grained spurious correlations. The best
worst-group accuracy (WGA) in each model is in boldface.

Dataset Model
ZS ROBOSHOT

Ours

SAVE-All SAVE

AVG(↑) WGA(↑) AVG(↑) WGA(↑) AVG(↑) WGA(↑) AVG(↑) WGA(↑)

PACS

CLIP-RN-50 91.8 63.3 92.3 72.4 94.0 69.8 93.4 70.2
CLIP-ViT-B/32 96.6 82.1 96.6 83.5 97.9 82.5 97.6 83.1
CLIP-ViT-L/14 98.1 79.8 98.0 81.3 98.3 87.4 97.8 85.2
CLIP-ViT-H/14 98.9 90.8 98.7 89.1 98.9 89.1 98.6 87.8
ALIGN 95.8 69.6 94.7 63.2 97.2 82.3 95.9 76.7
AltCLIP 98.5 82.5 98.8 89.4 98.8 88.4 98.7 85.4

Average 96.6 78.0 96.5 79.8 97.5 83.3 97.0 81.4

VLCS

CLIP-RN-50 75.5 34.1 77.6 37.6 80.6 31.5 79.4 24.3
CLIP-ViT-B/32 75.4 20.5 77.1 35.2 79.3 27.3 78.5 30.7
CLIP-ViT-L/14 72.4 4.1 70.9 12.2 80.2 27.3 79.6 36.1
CLIP-ViT-H/14 70.3 4.2 70.4 13.0 80.0 29.5 80.2 34.1
ALIGN 78.5 34.1 77.4 39.8 80.6 41.0 78.7 39.0
AltCLIP 78.8 22.0 78.3 25.7 81.7 30.1 81.0 21.3

Average 75.2 19.8 75.3 27.3 80.4 31.1 79.6 30.9

Table 5.10: Performance on PACS and VLCS with coarse-grained spurious correlations. The best
worst-group accuracy (WGA) in each model is in boldface.

each dataset, we tested six models and reported the average results across these models to assess

the overall effectiveness of each method.

On three out of four datasets (Waterbirds, PACS, and VLCS), our method SAVE, achieves higher

average AVGs and WGAs than ROBOSHOT, a state-of-the-art zero-shot debiasing method. This

highlights the strong zero-shot debiasing capability of SAVE. Notably, while improving WGAs over

ROBOSHOT, SAVE does not compromise AVG. In fact, on the Waterbirds dataset, SAVE outper-
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Figure 5.8: Ablation study on the effect of varying prompt numbers in different Models with our
proposed method. Standard deviations are marked with dark vertical bars.

forms ROBOSHOT by 16.5% in average accuracy, demonstrating its ability to mitigate multimodal

spurious biases in specific data groups without degrading overall predictive performance. Further-

more, SAVE does not require specialized prompt design, making it a convenient, out-of-the-box

solution for use with pre-trained CLIP models.

On the CelebA dataset, we observe that ROBOSHOT achieves the highest AVG and WGA

scores. We attribute this to the specialized nature of CelebA compared to Waterbirds, PACS, and

VLCS, as it consists exclusively of celebrity face images. In zero-shot classification using a pre-

trained CLIP model, accurately inferring hair color requires prompts that closely align with the

dataset. For example, ROBOSHOT employs prompts such as “a person with dark hair,” which are

more semantically relevant than generic alternatives like “a photo of dark hair.” The latter may

struggle to align text descriptions with input images, even in the absence of biases. This highlights

the importance of effective prompt design for robust classification on this dataset. Nevertheless,

despite relying on a fixed set of 80 templates from Table A.8.1, our method, SAVE, still achieves a

higher overall WGA than ZS, which explicitly adopts more aligned prompts.

For mitigating fine-grained multimodal spurious biases on the Waterbirds and CelebA datasets,

selectively choosing prompt templates is more effective than ensembling all available templates, as

evidenced by the higher average WGAs achieved by SAVE compared with SAVE-All (Table 5.9).

However, for mitigating coarse-grained multimodal spurious biases on the PACS and VLCS datasets,

SAVE-All slightly outperforms SAVE on average. This suggests that using multiple prompt tem-

plates per class is beneficial, as most templates contribute positively to mitigating coarse-grained

multimodal spurious biases. Nonetheless, SAVE-All comes with higher computational complexity,

requiring the construction of K×N zero-shot classifiers instead of K, given that there are K classes

and N available prompt templates.
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Ablation Studies

By default, our method explores all the prompt templates. Intuitively, more prompt templates

provide more diverse representations for class labels, which enables our method to explore more

broadly and thus to more effectively mitigate multimodal spurious bias. In the following, we analyze

how different numbers of prompt templates affect the effectiveness of our method.

We began by randomly sampling 20, 40, 60, and 80 (all) prompt templates from the full set of

available templates (Table A.8.1 in Appendix A.8). We then evaluated our method on the Water-

birds and PACS datasets using these sampled templates. For each sample size, we conducted ten

independent runs with different random seeds.

Figure 5.8 shows the average worst-group accuracies (WGAs) along with standard deviations

across ten runs. Overall, we observe that exploring a larger number of prompt templates tends

to improve WGA on the Waterbirds dataset (Figure 5.8, left panel). This improvement is more

significant for smaller models, such as CLIP-RN-50 and CLIP-ViT-B/32, whereas larger models,

such as CLIP-ViT-H/14, exhibit minimal gains as the number of prompts increases. We hypothesize

that this is due to the stronger language understanding capabilities of larger models. As a result,

the text representations for the same class label remain more consistent across different prompt

templates, reducing the effectiveness of prompt selection in mitigating multimodal spurious bias.

In contrast, on the PACS dataset (Figure 5.8, right panel), we observe that most models achieve

similar WGAs regardless of the number of prompt templates used, with significantly lower variance

in WGA due to random sampling compared to the Waterbirds dataset. This indicates that our

method effectively mitigates multimodal spurious bias at a coarse-grained level (i.e., by addressing

classes associated with domain-specific features) as long as a sufficient number of prompt templates

are explored. Additionally, the low variance in WGA across different template counts suggests that

most prompts contribute positively to bias mitigation. This highlights the potential of an ensemble

approach that incorporates all available templates to construct zero-shot classifiers for robust bias

reduction, as further validated in Table 5.10. Finally, increasing the number of prompt templates

proves particularly effective for CLIP-RN-50, which is more biased than other models (Table 5.10)

and thus benefits from a broader range of templates for improved bias mitigation.

Analysis on the Selected Prompt Templates

Our proposed method, SAVE, is designed to adaptively selects prompt templates for each input

image. We aim to understand what prompt templates are most frequently selected by our method
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Figure 5.9: Most frequently selected prompt templates for each class by our method with CLIP-
ViT-B/32 in the Waterbirds dataset.

and how are the selected prompt templates differ across classes. In Figure 5.9, we show the top-10

frequently selected prompt templates along with their selection frequencies for the landbird and

waterbird classes in the Waterbirds dataset.

We observe that our method frequently selects the prompt templates “a black and white photo

of a [CLASS]” and “a doodle of a [CLASS]” for both the waterbird and landbird classes. This

suggests that our method identifies these templates as the most effective for mitigating multimodal

spurious biases. The best WGA achieved by our method, as shown in Table 5.9, further validates

the effectiveness of this selection strategy. A closer examination of the two templates reveals that

the words they contain primarily describe out-of-distribution images. For instance, all images in the

Waterbirds dataset are color images. By using ”black and white” in the prompt, the corresponding

text representation is shifted away from the input image representation, thereby effectively mit-

igating potential multimodal spurious bias, as discussed in Section 5.3.2. This also suggests that

incorporating out-of-distribution words into templates could be a useful approach when constructing

customized prompt templates.
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Additionally, our method selects distinct prompts within each class (e.g., “a blurry photo of

the [CLASS]” for landbird and “a tap of the [CLASS]” for waterbird). This demonstrates that

our method is capable of adaptively selecting appropriate prompts to mitigate multimodal spurious

biases.

5.3.4 Conclusion

In this paper, we addressed the challenge of mitigating multimodal spurious biases in pre-trained

CLIP models for zero-shot classification. We first provided a theoretical definition of multimodal

spurious bias and analyzed its impact on zero-shot classification. Based on these insights, we pro-

posed a self-adaptive prompt exploration method that enhances robustness to such biases. Our

approach operates out-of-the-box with CLIP models, requiring no additional training data or prior

knowledge of biases. It is broadly effective across various model sizes, architectures, and types

of spurious correlations. Moreover, it achieves a strong balance between average and worst-group

zero-shot classification accuracy, highlighting its practical utility in zero-shot predictions.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this dissertation, we focus on learning robust machine learning (ML) models via spurious bias

mitigation. Spurious biases arise when ML models inadvertently learn to use spurious attributes in

the training data for predictions and can be revealed when we deploy ML models in new environments

with distribution shifts where the learned spurious attributes no longer exist. Based on the available

knowledge about distribution shifts, we proposed targeted spurious bias mitigation methods to

improve models’ out-of-distribution generalization and generalization under subpopulation shifts.

Out-of-distribution generalization requires a model to generalize to new data distributions, such

as to novel classes or novel domains, which are not known to the model during training. In this sce-

nario, we proposed to explore new data distributions during model training by synthesizing spurious

attributes via data augmentations. In Chapter 3.1, we proposed an adversarial data augmentation

and invariant learning framework that synthesizes challenging samples with new spurious attributes,

such as images with different rotations, and regularizes the model for learning robust and gener-

alizable features. We showed that the proposed framework significantly improves a model’s single

domain generalization performance. In Chapter 3.2, we proposed to meta-learn a task transfor-

mation layer which transforms samples in an input task to mitigate the risk of learning spurious

attributes in the task and to improve generalization to novel concepts with a few labeled samples.

This approach can be applied to any meta-learning algorithms to improve few-shot classification

performance. In Chapter 3.3, we proposed to meta-learn a dictionary of spurious features with data

augmentations and then to mitigate the spurious features synthesized from the learned ones in the
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latent space of a model when learning novel classes. We demonstrated that this method outperforms

previous baselines in few-shot classification.

Generalization under subpopulation shifts requires a model to perform reliably across data groups

with varying spurious attributes, especially when the proportions of these groups differ between train-

ing and testing. Models may learn from data groups with the majority of training samples and ignore

the information from other data groups. Balancing model performance across data groups is essen-

tial; however, it is challenging to acquire group annotations due to costly human annotation efforts.

In Chapter 4.1, we proposed to use pre-trained vision language models (VLMs) to detect spurious

attributes in images and demonstrated that the extracted attributes are effective in generating chal-

lenging classification tasks with subpopulation shifts for evaluating few-shot classifiers. Motivated

by the success of using VLMs to extract spurious attributes, in Chapter 4.2, we proposed a fine-

grained spurious-attribute-aware classification using the extracted attributes to decouple prediction

targets from spurious attributes. In Chapter 4.3, we further proposed to learn spurious-attribute-

agnostic representations via meta-learning on the classification tasks with simulated subpopulation

shifts based on the spurious attributes extracted from VLMs. These multimodal-assisted approaches

improve model robustness against subpopulation shifts without group annotations.

Multimodal-assisted approaches require a relatively long data preprocessing step to extract spu-

rious attributes using pre-trained VLMs. Moreover, the extracted spurious attributes depend on

choices of VLMs. In Chapter 5.1, we proposed to probe the latent space of a model to identify

prediction shortcuts and use them to regularize model retraining. In Chapter 5.2, we proposed a

direct spurious bias mitigation method by suppressing the influence of neurons identified as primar-

ily encoding spurious features. These latent space probing methods are fully self-guided and do not

require group annotations. Experiments demonstrated that these methods can effectively improve

model robustness against subpopulation shifts. In Chapter 5.3, we extended the idea of latent space

probing and proposed prompt selection methods based on their latent representations to improve

the zero-shot generalization performance of VLMs under distribution shifts.

6.2 Future Directions

Constructing Diverse Probe Sets. In our experiments, the held-out validation set of a dataset

is often used as the probe set for detecting and mitigating spurious biases in a model. In general,

any set can be used as the probe set as long as it contains samples with diverse spurious attributes

representing distribution shifts from the data used to train the model. Future works may focus
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on data-centric approaches to design probe sets that can be used to optimally detect and mitigate

spurious biases in a trained model.

Spurious Bias in Large Language Models. Large language models (LLMs), though being

powerful, have demonstrated various shortcut learning behaviors, such as using lexical overlap,

subsequence, negation, or style for predictions [218, 219, 220, 221]. These shortcut learning behaviors

undermine the robustness and generalization capabilities of LLMs. In future works, we may extend

our proposed benchmarking system based on images to revealing spurious biases in LLMs using

text data. With the data generated from the benchmark system, we may design novel mitigation

methods or extend our latent space methods such as NeuronTune to efficiently debias LLMs.

Spurious Bias in Vision-Language Models. Although VLMs have shown strong vision and

language understanding, there may exist misalignments between vision and language modalities,

such as aligning spurious features in the vision modality with text descriptions for classification,

demonstrating multimodal spurious biases in VLMs. We have proposed a spurious bias mitigation

method that adaptively selects prompts based on input images to minimize the reliance on spuri-

ous attributes in zero-shot classification. In the future, we may analyze spurious biases in other

tasks beyond classification, such as visual-question answering [222], and explore spurious mitiga-

tion strategies beyond prompt selection, such as efficient fine-tuning, prompt learning, and modality

alignment.
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Appendix

A.1 AdvST: Adversarial Learning with Semantics Transfor-
mations

A.1.1 Proof of Proposition 1

We first show that the inner maximization in Equation (3.10) satisfies strong duality condition [98]
and that the dual problem involves optimization over a one-dimensional dual variable. Lemma A.1
gives the useful result for any distribution Q satisfying Wc(Q,P ) ≤ δ. We omit the proof since it is
a minor adaptation of Proposition 1 in [98].

Lemma A.1. Let ℓ : Θ×X ×Y → [0,∞) denote the loss function which is upper semi-continuous
and integrable. The transportation cost function c : Ξ × Ξ → [0,∞) with Ξ = X × Y is a lower
semi-continuous function satisfying c(ξ, ξ) = 0 for ξ ∈ Ξ. For any distribution Q and any δ ≥ 0, let
sλ(θ; (x, y)) = supξ∈Ξ(ℓ(θ; ξ)− λc(ξ, (x, y))). Then, for any given P and δ > 0, it holds that

sup
Q∈Q

EQ[ℓ(θ;x, y)] = inf
λ≥0
{λδ + EP [sλ(θ; (x, y))]} (A.1)

and for any λ ≥ 0, we have

sup
Q∈Q
{EQ[ℓ(θ;x, y)]− λWc(Q,P )} = EP [sλ(θ; (x, y))]. (A.2)

where Q = {Q :Wc(Q,P ) ≤ δ}.

Note that in our AdvST framework, the distribution Q is semantics-induced and is defined as a
mixture ofM distributions as shown in Equation (3.6). To get a tractable learning objective through
Lemma A.1, let Qi =

∫
ξ
p(ξ′|τi, ξ, ωi)dP , and we have the following

EQψ [ℓ(θ;x, y)]− λWc(Qψ, P ) (A.3)

= Eτi∼G
[
EQi

(
ℓ(θ;x, y)

)]
− λEτi∼G[Wc(Qi, P )] (A.4)

= Eτi∼G
[
EQi

(
ℓ(θ;x, y)

)
− λWc(Qi, P )

]
(A.5)

= Eτi∼GEP
[
sup
ξ∈Ξi

(ℓ(θ; ξ)− λcθ(ξ, (x, y)))
]
, (A.6)

where Equation (A.6) is the result of applying Lemma A.1 to the inner term of Equation (A.5),
and Ξi = {(x′, y)|x′ = τi(x;ωi), ξ ∈ Ξ0, ωi ⊂ ψ} is the support of Qi with Ξ0 being the support of
P . Finding the supreme over Ξi that maximizes the inner term in Equation (A.6) is equivalent to
finding ωi.

A.1.2 Experimental Details

Semantics Transformations. The semantics transformations used in the experiments are con-
structed from the 12 standard image transformations described in Table A.1.1. These standard
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transformations are designed with domain knowledge about image transformations. Each standard
transformation manipulates a particular kind of semantics of an image with a few learnable param-
eters controlling the transformation magnitude. For example, HSV perturbs an image in the HSV
color space with three learnable parameters, and Translate changes an object’s position in an image
with two learnable parameters. Some standard transformations do not have any learnable parame-
ters because they do not need any parameters, such as Equalize, or they are just non-differentiable
functions, such as Posterize. For the latter case, we randomly sample values for parameters from their
valid ranges and treat the corresponding function as an identity function during back-propagation.
We design a semantics transformation as the concatenation of Lmax (Lmax = 3 in the experiments)
standard transformations to manipulate multiple kinds of semantics in an image.

Standard transformations Description
Number of
Parameters

HSV Perturb in the HSV color space 3
Contrast Perturb the contrast of an image 1

Invert
Invert pixel values at a
given threshold

1

Sharpness
Perturb the sharpness
of an image

1

Shear
Shear an image in horizontal
and vertial directions

2

Translate
Move an image in horizontal
and vertial directions

2

Rotate Rotate an image 1
Scale Change the size of an image 1

Solarize Reverse the tone of an image 1

Equalize
Improve global contrast of
an image via equalization

None

Posterize
Reduce the number of bits
for each color channel

None

Cutout Produce occlusions in an image None

Table A.1.1: Standard data augmentations used in experiments.

Contrastive Regularizer. The regularizer uses a contrastive loss to facilitate learning domain-
invariant features from samples in D, which stores generated samples. The loss ensures that samples
with the same label are moved close to each other, and those with different labels are moved away
from each other. Concretely, we denote the index of a sample in a batch as i, the set of all indexes
as IB, the index set excluding i as IB(i) = IB\{i}, and the indexes of samples with label yi as
P(i) = {p ∈ IB(i)|yi = yp}. Then, our contrastive regularizer is given as follows:

ℓsc(θ;B) =
∑
i∈IB

−1
|P(i)|

∑
p∈P(i)

log
exp(uTi up)∑

a∈IB(i) exp(u
T
i ua)

, (A.7)

where ui = ϕ(vi) is the projection of the embedding vi of the input xi with vi = fθ(xi), and ϕ is a
projection function. Choices of ϕ are given in the experimental details for specific datasets.

Entropy Regularizer. The regularizer uses output entropy to penalize overly confident pre-
dictions and to learn good decision boundaries that benefit model generalization. Specifically, it
calculates the average output entropy for a batch of samples B as follows

ℓent(θ;B) =
1

|B|
∑
i∈IB

C∑
j=1

−pij log pij , (A.8)
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where IB is the index set of samples in B, C is the number of classes/outputs, pij is the jth element
of pi = softmax(fθ(xi)). By definition, a confident prediction, which has a very high value on a
particular class, has a low output entropy; while a less confident prediction has a larger output
entropy. For a single sample, we have lent(θ;xi, yi) =

∑C
j=1−pij log pij .

The regularizer used in the minimization (Equation (3.4)) ℓreg(θ;B) is defined as the combina-
tion of a contrastive and entropy loss terms, i.e., ℓreg(θ;B) = ℓsc(θ;B) − ηℓent(θ;B), where η is a
nonnegative regularization parameter.

Experiments on Digits. The backbone network (i.e., the whole model except the last classifica-
tion layer) has two 5×5 convolutional layers. The two layers have 64 and 128 channels, respectively.
Each convolutional layer is followed by a 2×2 max pooling layer. After the two convolutional layers,
there are two fully-connected layers with a size of 1024. The classification layer is a linear layer with
1024 inputs and 10 outputs. To calculate the contrastive loss, we design the projection function ϕ
in Equation (A.7) as a linear layer (1024 inputs and 128 outputs) followed by a normalization layer.
Specifically, ϕ first projects the embeddings from the backbone network and then normalizes the
projections to have a unit length. We set η = 10 and ϵ = 10. To speed up training, we adopt early
stopping in the maximization procedure, i.e., if the difference between the previous loss and current
loss is smaller than 0.1, then we exit the maximization procedure.

Experiments on PACS. We use a ResNet-18 [200] as the backbone network. To facilitate
knowledge transfer, we pre-train the network on ImageNet and fix the batch normalization statistics
of all its batch normalization layers during fine-tuning. The classification layer is a linear layer with
512 inputs and 7 outputs. To calculate the contrastive loss, we design the projection function ϕ in
Equation (A.7) as a linear layer with 512 inputs and 128 outputs followed by a normalization layer.
We set η = 0.1 and ϵ = 1. We adopt the same early stop technique in the maximization procedure
as in the Digits experiments.

Experiments on DomainNet. We use a ResNet-18 [200] as the backbone network. To speed up
training, we use a ResNet-18 network pre-trained on ImageNet as the initialization for the backbone
network. The classification layer is a linear layer with 512 inputs and 345 outputs. To calculate the
contrastive loss, we design the projection function ϕ in Equation (A.7) as a linear layer with 512
inputs and 128 outputs followed by a normalization layer. We set η = 10 and ϵ = 10. We adopt the
same early stop technique in the maximization procedure as in the PACS experiments.

Method for Obtaining Figure 3.1. We first train a model using ERM on the MNIST domain.
The backbone (all layers before the last classification layer) of the trained model will be used to
get embeddings of all the sampled images. Then, we sample 1000 images from the source domain
MNIST, the four target domains, and the generated images obtained by a DRO-based method,
respectively. We get the embeddings of all the samples using the backbone network. To visualize the
embeddings, we use UMAP [223] with n neighbors=100 and min dist=0.9 to get two-dimensional
representations of the embeddings.

A.1.3 Additional Experimental Results

Sensitivity Analysis on λ

The parameter λ in Equation (3.1) controls the size of the uncertainty set. A small λ allows the
uncertainty set to have distributions with large distributional shifts from the source. With semantics
transformations, the average performance of a AdvST-trained model does not change too much under
different values of λ on the Digits (a maximum drop of 1.94% in Figure A.1.1 (a)) and the PACS (a
maximum drop of 1.47% in Figure A.1.1 (b)) datasets. In practice, using a small λ, e.g., λ = 1 or
λ = 10, works well.
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Figure A.1.1: Sensitivity analysis on λ. We train models with AdvST under different values of λ.
For each λ, we report average classification accuracy (blue bars) and its standard deviation (vertical
black bars) over all target domains for each dataset.

MNIST

Target domains

Source domain

SVHN
SYN
MNIST-M
USPS

Figure A.1.2: Examples of the Digits dataset.

Semantics Transformations

We analyze how the 12 standard transformations, which are used to construct semantics trans-
formations, affect the generalization performance of a model on target domains. We adopt the
leave-one-out strategy to evaluate the contribution of each standard transformation. Specifically,
we remove only one standard transformation at a time and train the model using the semantics
transformations constructed with the remaining 11 standard transformations. Then, we calculate
the difference in classification accuracy on target domains between the model and the model trained
using all 12 standard transformations.

We use AdvST-ME and the Digits dataset in this experiment and obtain the heatmap of classi-
fication accuracy change in Figure A.1.3. We observe that removing any standard transformation
results in a drop in performance. In particular, without Translate, the model has the most drop in
average accuracy due to the significant performance drop in the SYN domain, indicating that trans-
lational invariance is important for generalizing to the SYN domain. However, removing Translate

benefits generalizing to the MNIST-M domain. The contradictory effect of Translate in MNIST-M
and SYN domains explains the performance tradeoff between AdvST and AdvST-ME on the two
domains observed in Table 3.3. We also observe a similar contradictory effect of Scale in SVHN
and USPS domains and the corresponding performance tradeoff on the two domains in Table 3.3.
Moreover, we identify that Contrast, HSV, Translate, and Scale are the most important standard
transformations for generalizing to the SVHN, MNIST-M, SYN, and USPS domains, respectively.
For example, Scale is beneficial for generalizing to the USPS domain since digits in this domain are
enlarged compared to those in the MNIST domain (see examples in Figure A.1.2).
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The above analysis highlights the key advantage of our method: semantics transformations can
bring domain knowledge, such as translational invariance or scale invariance, that benefits generaliza-
tion on unseen target domains. Adding more semantics transformations could benefit generalization
on target domains; however, it may also bring undesired semantics transformations that have adverse
effects on specific target domains.

In-Distribution Accuracy

We show the in-distribution accuracy comparison between ERM and our methods on three datasets
in Table A.1.2 below. Our approach does not hurt the nominal accuracy and slightly improves it.

Method MNIST Photo (PACS) Real (DomainNet)
ERM 98.8 98.5 76.0

AdvST (ours) 99.0 99.7 76.7
AdvST-ME (ours) 98.9 99.9 76.5

Table A.1.2: In-distribution accuracy comparison. Models are trained and tested in the same domain.
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Figure A.1.3: Heatmap of classification accuracy change on the four target domains and average
accuracy change after removing one standard transformation (shown as column name).

Figure A.1.4: Visualization of the images generated by AdvST for the MNIST domain.

Visualization of Generated Samples

We visualize the images generated by AdvST. Figure A.1.4 shows the images generated for the
MNIST domain. Figure A.1.5 shows the images generated for the four domains in the PACS dataset.
Figure A.1.6 shows the images generated for the Real domain in the DomainNet dataset. From the
three figures, we observe diverse variations in the generated images. For example, images from the
Sketch domain in the PACS dataset all have white background and black strokes, while the generated
images have various background and stroke colors.
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Figure A.1.5: Visualization of the images generated by AdvST for the four domains in the PACS
dataset.

Figure A.1.6: Visualization of the images generated by AdvST for the Real domain in the DomainNet
dataset.

Experiments on OfficeHome

We evaluate our two implementations, AdvST and AdvST-ME on OfficeHome [224] which contains
four domains (Art, Clipart, Product,and Real) with 65 classes. This is one of the canonical domain
adaptation/generalization benchmarks. We use a ResNet-18 [200] as the backbone network which is
pre-trained on ImageNet. The classification layer is a linear layer with 512 inputs and 65 outputs.
To calculate the contrastive loss, we design the projection function ϕ in Equation (A.7) as a linear
layer with 512 inputs and 128 outputs followed by a normalization layer. We set η = 0.01 and ϵ = 1.
Other settings are the same as in the PACS experiments. The SDG results are shown in Table A.1.3.
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Source ADA ME-ADA L2D AdvST AdvST-ME

OfficeHome

Art 48.3 49.5 52.1 52.1±0.5 51.6±0.3
Clipart 46.1 46.9 51.2 52.3±0.3 52.0±0.3
Product 43.9 44.3 49.4 49.6±0.3 49.2±0.3
Real 53.6 54.6 58.2 60.1±0.2 59.9±0.4
Avg. 48.0 48.8 52.7 53.5±0.1 53.2±0.2

Table A.1.3: Single domain generalization results on OfficeHome. We report the average classification
accuracy over the remaining domains when one domain is used as the source domain.
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A.2 Learning to Learn Task Transformations for Improved
Few-Shot Classification

A.2.1 Meta-Learning Settings

Meta-Learning Algorithms. We use three metric-based meta-learning algorithms and one
gradient-based meta-learning algorithm in the experiments. A metric-based algorithm first uses
a feature extractor to get the embedding of each sample, and then learns a specifically designed
classification head to classify samples based on their embeddings. A gradient-based algorithm uses
gradient descent to learn a new classifier to classify samples. The four algorithms are described as
follows:

• ProtoNet[12] is a metric-based meta-learning algorithm. It first calculates a class prototype
from the support set of a task by averaging embeddings of the samples with the same label.
Then, it searches the nearest class prototype for each sample in the query set and predicts the
sample to have the same class label as the nearest class prototype.

• R2D2 [13] is the abbreviation for Ridge Regression Differentiable Discriminator, and it is a
metric-based meta-learning algorithm. It adopts ridge regression as the classification head
which is differentiable and has closed form solutions.

• MetaOptNet [14] is a metric-based meta-learning algorithm. It adopts an SVM classifier as
the classification head in few-shot classification.

• MAML [22] is a gradient-based meta-learning algorithm. It aims to learn a model that can
quickly generalize to new concepts with a few gradient descent steps.

Meta-Model Architectures. We call the meta-model architectures and backbones interchange-
ably. Essentially, they are feature extractors that convert inputs to their vector representations. In
the experiments, we use the ResNet-12 backbone adopted in [130] and the four-layer convolutional
backbone (CNN64) with 64 filters in each layer adopted in [12].

A.2.2 Implementation Details

Meta-Learning. We follow the implementations in [27] to implement the above meta-learning
algorithms and the backbones. Similar to [130], we adopt a learnable scaler to scale the outputs of
each of the classification heads from the three metric-based meta-learning algorithms. For MAML,
we adopt its first-order approximation in the experiments to achieve a good tradeoff between com-
putational complexity and few-shot classification performance. Moreover, we use a 5-step gradient
descent (10 steps in evaluation) with a learning rate of 0.01 in the inner loop of MAML, an Adam
optimizer with a learning rate of 0.001 in the outer loop of MAML, and a cosine annealing scheduler
with the minimum learning rate of 1× 10−5 to control the learning rate in the outer loop.

Differentiable Image Operations. The image operations/functions used in our method are
listed in Table A.2.1. Each function has its description in the “Description” column and its own
transformation magnitude listed in the “Magnitude” column. We implement each image operation
as a differentiable function in the sense that its output is differentiable with respect to the input.
However, for functions that are not inherently differentiable, e.g., the posterize function, we use the
straight-through estimator [74, 225] to approximate the corresponding gradient. Specifically, given
an operation O(x) = g(x;m) with an input x and a transformation magnitude m, we implement
the operation as O(x) = StopGrad(g(x;m) − x −m) + x +m, where StopGrad is a stop gradient
operation and treats its operand as a constant in the backward pass. We find that this method is
simple and works well in our experiments.

L2TT Algorithm. The details of L2TT are shown in Algorithm 3.
Data Augmentation Methods. We describe the two data augmentation methods used in our

experiments: AutoAugment [71] and MetaDA [27].
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Function Magnitude Description Function Magnitude Description

Shift r [0,1] Change red channel value Shift x [0,0.5] Shift horizontally

Shift g [0,1] Change green channel
value

Shift y [0,0.5] Shift vertically

Shift b [0,1] Change blue channel
value

Scale [0.1,10] Scale images

Brightness [-1,1] Change brightness Self mix None Self-mix up an image

Contrast [1,10] Change contrast Posterize [0,8] Reduce number of bits for
each color channel

Solarize [0,1] Invert pixels under a
threshold value

Equalize None Equalize the histogram of
an image

Hflip None Horizontally flip Cutout fixed1 [0,1] Cutout 8 regions with a
random size in an image

Vflip None Vertically flip Cutout fixed2 [0,8] Cutout random number
of regions with fixed size

Rotate [-180,180] Rotate an image Sample pairing [0,1.0] Combine two different
images with random
weights

Table A.2.1: Image operations used in our method.

Algorithm 3 L2TT

Input: training tasks distribution p(T ), parameters of the task transformation distribution ω, a
meta-learning algorithm E = {A,B}, a meta-model fθ
Output: θ

1: //Outer loop
2: while in algorithm B do
3: Randomly construct a task T such that T ∼ p(T )
4: Sample τ from pτ (x;ω)
5: T ′ = {x′|x′ = τ(x), x ∈ T }
6: Split T ′ such that T ′ = {S ′,Q′}
7: //Inner loop
8: fθ̂ = A(fθ,S

′)
9: //Task loss

10: L(T ′) = 1
nQ

∑
(x,y)∈Q′ ℓ(fθ̂(x), y)

11: Use B to jointly optimize θ and ω with respect to L(T ′).
12: end while
13: return θ, ω

• AutoAugment. There are 25 policies optimized for a selected dataset. Each policy is a se-
quence of transformations. In AutoAugment, each policy is designed to have 2 transformations.
For meta-models trained on the CIFAR-FS dataset, we use the set of policies optimized for
CIFAR-10. For meta-models trained on the miniImageNet dataset, we use the set of policies
optimized for ImageNet [226]. To use AutoAugment in training, we first apply the sequential
transformation RandomCrop→RandomHorizontalFlip to an image. Then, we randomly sam-
ple a policy from the selected set of AutoAugment policies and apply it to the transformed
image. Finally, we apply Cutout [17] with 16x16 pixels [71] to the image obtained from the
previous step.

• MetaDA. There are four basic augmentation functions in MetaDA: SelfMix, Cutmix, random
erase, and rotation. SelfMix [227] replaces a patch of an image with another patch from the
same image. Cutmix [126] cuts an image patch from one image and pastes the patch to another
image to construct a mixed image with the ground truth labels of the two original images mixed
proportionally to reflect the area of the image patch in the mixed image. Rotation rotates an
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image with a degree which is a multiple of 90. Random erase (RE) randomly erases patches
from an image. For each task, the augmentation functions can be applied to the support set
(S), the query set (Q), or the whole task (T). We use the large-size pool defined in [27] as
the set of augmentation policies. These policies are: Q-cutmix, Q-RE, S-RE, T-Rotation, Q-
cutmix→T-rotation, Q-RE→T-Rotation, Q-RE→S-RE, Q-cutmix→Q-RE, Q-cutmix→S-RE.

Note that MetaDA includes Q-cutmix (QC) in the set of augmentation policies. Since QC changes
the learning objective from minimizing classification loss to additionally predicting the area of an
image patch in a mixed image, we cannot directly compare MetaDA with AutoAugment. For fair
comparison, we append QC to the end of the policy sampled from AutoAugment.

Hyperparameter Settings. In Table A.2.2, we give the settings for the two important hy-
perparameters L and ϵ used in different meta-learning settings listed in Table 3.6. We select the
optimal values for each meta-learning setting based on the validation performance. For metric-based
meta-learning algorithms, we observe that L is larger for the settings with a ResNet-12 backbone
than the one with a CNN64 backbone. In general, a task transformation with a large L indicates
large variations in the images of a transformed task, and the transformed task can be considered as a
“hard” task. Moreover, we observe that for MAML with the same CNN64 backbone, the optimal L
is even larger than those for the metric-based algorithms with the deeper ResNet-12 backbone. This
indicates that MAML is easier to suffer from overfitting when compared with the three metric-based
meta-learning algorithms. For training MAML on the miniImageNet dataset, we set ϵ = ∞ which
means uniformly sampling task transformations. This is because the task transformation distribu-
tion pτ (τ ;ω) tends to concentrate its probability mass on certain trivial task transformations that
make little change to the images in a task, resulting in inferior performance. Hence, we set ϵ to
infinity to circumvent this problem in this meta-learning setting.

For the experiments in Table 3.7, because of the introduction of QC, we find that setting L = 1
works well for all the meta-learning settings.

Architecture
Meta-learning
algorithm

CIFAR miniImageNet
L ϵ L ϵ

ResNet-12 R2D2 3 20 3 20
ResNet-12 ProtoNet 3 20 3 20
ResNet-12 MetaOptNet 3 20 3 20
CNN64 ProtoNet 2 20 2 20
CNN64 MAML 5 40 4 ∞

Table A.2.2: The values of L and ϵ used in Table 3.6.

A.2.3 Additional Results

Meta-Learned Task Transformations

At the end of meta-training, we show the most probable task transformation with different lengths
for ProtoNet-CNN64 and ProtoNet-ResNet12 meta-trained on the CIFAR-FS dataset. The results
are shown in Table A.2.3. These task transformations reflect the difference between different meta-
learning settings. For the shallow network CNN64, the meta-learned task transformations are not
as diverse as the ones meta-learned with the deep network ResNet-12. For example, when L = 1,
the maximum probability of sampling an operation is 0.09 in the ProtoNet-CNN64 setting, while
the value decreases to 0.07 in the ProtoNet-ResNet12 setting. Since the probabilities of all the
operations add up to 1, this means that operations other than Equalize are more likely to be sampled
in the ProtoNet-ResNet12 setting than those in the ProtoNet-CNN64 setting. We observe the same
trend for other values of L. With more operations involved in a task transformation, we can create
“harder” tasks with more variations in the images of the tasks. From the meta-learned most probable
task transformations, we can conclude that in order to obtain a well-trained meta-model, we need
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“harder” tasks for meta-training in the ProtoNet-ResNet12 setting than in the ProtoNet-CNN64
setting.

Architecture
Meta-learning
algorithm

L
Task Transformation

(· · · →Operation(Probability, Magnitude)→ · · · )

CNN64 ProtoNet
1 Equalize(0.09,N/A)
2 Equalize(0.10,N/A)→RandomContrast(0.06,0.24)
3 Equalize(0.10,N/A)→RandomContrast(0.06,0.32)→Equalize(0.06,N/A)

ResNet-12 ProtoNet
1 Equalize(0.07,0.50)
2 Equalize(0.08,N/A)→Posterize(0.06,0.50)
3 Equalize(0.09,N/A)→Posterize(0.06,0.44)→Posterize(0.06,0.50)

Table A.2.3: Meta-learned task transformations with different lengths. We describe a task trans-
formation as a sequence of operations. Each operation has a probability and a magnitude. For
operations that do not have magnitudes, such as Equalize and Hflip, we set their magnitudes to
“N/A”.

Performance Comparison on 10-way Tasks

We evaluate how well our method (L2TT-QC) generalizes to a high-way setting by comparing the
performance of L2TT-QC, AutoAugment-QC, and MetaDA on 10-way tasks generated from the
CIFAR-FS and miniImageNet datasets. We exclude the results of MAML since it learns a fixed-way
classifier during meta-training, and it cannot be directly evaluated in this setting. All the models
are meta-trained on 5-way 5-shot tasks. The few-shot classification accuracy results are shown in
Table A.2.4. We observe that our method generalizes well to this challenging setting and achieves
the best performance in all the testing cases.

Architecture
Meta-learning
algorithm

Data augmentation
method

CIFAR-FS miniImageNet
1-shot 5-shot 1-shot 5-shot

ResNet-12 R2D2
AutoAugment-QC 63.01±0.08 76.66±0.06 48.16±0.07 65.11±0.06

MetaDA 62.46±0.08 77.27±0.06 47.52±0.07 65.33±0.05
L2TT-QC 63.78±0.08 77.36±0.06 51.07±0.07 68.64±0.05

ResNet-12 ProtoNet
AutoAugment-QC 62.08±0.08 76.33±0.06 45.25±0.07 63.12±0.06

MetaDA 61.74±0.08 77.01±0.06 44.68±0.07 64.40±0.06
L2TT-QC 62.66±0.08 77.22±0.06 46.42±0.07 64.79±0.06

ResNet-12 MetaOptNet
AutoAugment-QC 59.41±0.08 76.20±0.06 48.41±0.07 65.73±0.05

MetaDA 59.54±0.08 77.00±0.06 47.23±0.07 66.08±0.05
L2TT-QC 62.61±0.08 77.48±0.06 48.70±0.07 67.84±0.05

CNN64 ProtoNet
AutoAugment-QC 48.35±0.08 67.55±0.06 34.34±0.06 54.45±0.06

MetaDA 48.74±0.08 69.09±0.06 34.25±0.06 56.75±0.06
L2TT-QC 49.28±0.08 69.11±0.06 34.90±0.06 57.46±0.05

Table A.2.4: Few-shot classification accuracy comparison on 10-way tasks.

A.2.4 Visualization of Transformed Images

Figure A.2.1 shows three sets of images obtained by applying three task transformations with variable
numbers of image operations to the original images in a sampled task. With more image operations,
the obtained images show more variations than those obtained with less image operations.

A.2.5 Visualization of Task Embeddings

We visualize the original tasks and their transformed versions using t-SNE. We obtain each task
embedding by averaging all the embeddings of the images in the same task. We sample 2000
original tasks from the training split of the CIFAR-FS dataset. For each task, we transform it with
a task transformation sampled from pτ (τ ;ω). We use the backbone network meta-trained in the
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Equalize Equalize→Posterize(0.5)

Equalize→Posterize(0.5)→Cutout_fixed2 (0.5)

Original 

Figure A.2.1: Visualization of three task transformations with variable numbers of image operations.

ProtoNet-CNN64 setting on the CIFAR-FS dataset to extract image embeddings. The visualization
is shown in Figure A.2.2. We see that the meta-learned task transformations can generate not only
tasks that are close to the original ones, but also tasks that are distant in the embedding space.

Figure A.2.2: Visualization of original and transformed tasks via t-SNE.
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A.3 Benchmarking Spurious Bias Using Vision-Language
Models

The appendix in this section is organized as follows: we introduce the ten FSC algorithms adopted
in the paper in Chapter A.3.1. Then, we give the details of the evaluation metrics used in the
main paper in Chapter A.3.2. In Chapter A.3.3, we show statistics of the datasets used in this
paper along with detailed training settings. In Chapter A.3.4, we analyze different methods for
constructing the support and query sets in a FewSTAB task (Chapter A.3.4), show the scatter
plots of wAcc-A versus Acc from all the training settings (Chapter A.3.4), present more results
on the effectiveness of FewSTAB (Chapter A.3.4), and demonstrate the robustness of FewSTAB
with different VLMs (Chapter A.3.4). Finally, we give more examples of the tasks constructed by
FewSTAB in Chapter A.3.5.

A.3.1 Few-Shot Classification Algorithms

ANIL (Almost No Inner Loop) [164]: ANIL is an optimization-based meta-learning method
and follows a similar optimization procedure to MAML [22] whose few-shot adaptation algorithm
O is to update the whole model using gradient descent with a few learning samples. ANIL does not
update the whole model and instead only updates the classifier in the last layer.
BOIL (Body Only update in Inner Loop) [165]: BOIL is another optimization-based meta-
learning method. Its adaptation algorithm O freezes the update of the classifier and only updates
the embedding backbone.
LEO (Latent Embedding Optimization) [25]: LEO is similar to MAML. But instead of directly
optimizing high-dimensional model parameters, its adaptation algorithm O learns a generative dis-
tribution of model parameters and optimizes the model parameters in a low-dimensional latent
space.
ProtoNet (Prototypical Networks) [12]: ProtoNet is a metric-based meta-learning method. Its
adaptation algorithm O first calculates a prototype representation for each class as the mean vector
of each support class, and then uses a nearest-neighbor classifier created with the class prototypes
and the Euclidean distance function to predict a query image.
DN4 (Deep Nearest Neighbor Neural Network) [166]: DN4 is a metric-based meta-learning
method, which does not use attributes after pooling for classification. Instead, DN4 uses the local
attributes before pooling and employs a local descriptor based image-to-class measure for classifica-
tion.
R2D2 (Ridge Regression Differentiable Discriminator) [13]: R2D2 is a metric-based meta-
learning method and adopts ridge regression as the few-shot adaptation algorithm O. The advantage
of R2D2 is that ridge regression enjoys a closed-form solution and can learn efficiently with a few
training samples.
CAN (Cross Attention Network) [132]: CAN is a metric-based meta-learning method and
calculates the cross attention between each pair of class and query features so as to exploit and learn
discriminative features for predictions.
RENet (Relational Embedding Network) [167]: RENet is a metric-based meta-learning
method. It uses a self-correlational representation module and a cross-correlational attention
module to learn relational patterns within and between images, respectively.
RFS (Rethinking Few-Shot) [66]: RFS is a transfer learning method. It first trains an embedding
network using base classes. Then, instead of fine-tuning the last fully-connected classification layer,
it learns a new logistic regression classifier with L2-normalized feature vectors from a few samples
of novel classes.
Baseline++ [64]: Baseline++ is a transfer learning method. It first pretrains an embedding
network using samples from base classes. Then, it fine-tunes the last fully-connected layer with a
few samples of novel classes but replaces the standard inner product with a cosine distance between
input features and the weight vectors of the layer.
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A.3.2 Evaluation Metrics

Standard Accuracy (Acc): Acc measures on average how a few-shot classifier generalizes to
different tasks with novel classes not seen before. We define Acc as follows,

Acc =
1

NT

NT∑
t=1

C∑
c=1

Mc(Tt; fθ,O), (A.9)

where NT is the number of test tasks, C is the number of classes per task, Tt is the t-th C-way NS-
shot task with NQ query samples per class, fθ is a few-shot classifier, O is the few-shot adaptation
algorithm associated with fθ, Mc denotes the classification accuracy on the query samples of the
class c. This metric is used in Figure 4.5.
Class-Wise Worst Classification Accuracy (wAcc): wAcc characterizes the performance limit
of fθ in learning novel classes, and we calculate wAcc as the average of the smallest per-class
classification accuracy on query samples over NT tasks, i.e.,

wAcc =
1

NT

NT∑
t=1

min
c=1,...,C

Mc(Tt; fθ,O). (A.10)

Depending on what kinds of tasks are used for evaluation, we have the following two types of wAcc:

• wAcc-R: If the test tasks are randomly sampled in Equation (A.10), then we get wAcc-R on
NT randomly sampled tasks. This metric is used in Table 4.3 as a baseline for highlighting
the effectiveness of our FewSTAB in revealing the spurious bias in few-shot classifiers.

• wAcc-A: If the NT test tasks in Equation (A.10) are constructed by our FewSTAB, then we
get wAcc-A, which characterizes the robustness of a few-shot classifier to spurious bias. This
metric is the main metric used in the experiments.

Accuracy Gap between wAcc-R and wAcc-A: We obtain the wAcc-R and wAcc-A of a model
by testing it with tasks randomly sampled and with tasks constructed by FewSTAB, respectively.
The accuracy gap is calculated as the wAcc-R minus the wAcc-A. A large gap indicates the effec-
tiveness of FewSTAB in revealing the robustness of a few-shot classifier to spurious bias. This metric
is used in Figure 4.4 and Table 4.5.
Accuracy Gap between wAcc-A of Models Trained with Different Shots: We train a few-
shot classifier with C-way (e.g. 5-way) 5-shot and 1-shot training tasks from Dtrain, respectively.
Then, we test the obtained two classifiers with the same tasks created by FewSTAB and calculate
the accuracy gap as the wAcc-A of the model trained with 5-shot tasks minus the wAcc-A of the
model trained with 1-shot tasks. A large accuracy gap indicates that increasing training shots can
improve a few-shot classifier’s robustness to spurious bias. This metric is used in Figure 4.6.

Split miniImageNet tieredImageNet CUB-200
Dtrain 64 (38.4k) 351 (448.7k) 130 (7.6k)
Dval 16 (9.6k) 97 (124.3k) 20 (1.2k)
Dtest 20 (12k) 160 (206.2k) 50 (3.0k)

Table A.3.1: Numbers of classes along with numbers of samples (in parentheses) in each split of the
three datasets.

A.3.3 Experimental Settings

We conducted experiments using three datasets: miniImageNet, tieredImageNet, and CUB-200.
Each of these datasets has training (Dtrain), validation (Dval), and test (Dtest) sets. Numbers of
classes and samples in the three sets of the three datasets are shown in Table A.3.1.
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Method Mode Learning rate LR scheduler Optimizer Epochs Training episodes Episode size

ANIL
T (5w1s) 0.001 - Adam 100 2000 4
T (5w5s) 0.001 - Adam 100 2000 4

LEO
T (5w1s) 0.0005 CosineAnnealingLR Adam 100 2000 1
T (5w5s) 0.001 CosineAnnealingLR Adam 100 2000 1

BOIL
T (5w1s) 0.0006 - Adam 100 2000 4
T (5w5s) 0.0006 - Adam 100 2000 4

ProtoNet
T (5w1s) 0.001 StepLR(20, 0.5) Adam 100 200 1
T (5w5s) 0.001 StepLR(20, 0.5) Adam 100 2000 1

DN4
T (5w1s) 0.001 StepLR(50, 0.5) Adam 100 2000 1
T (5w5s) 0.001 StepLR(50, 0.5) Adam 100 2000 1

R2D2
T (5w1s) 0.1 CosineAnnealingLR SGD 100 2000 4
T (5w5s) 0.1 CosineAnnealingLR SGD 100 2000 4

CAN
T (5w1s) 0.1 CosineAnnealingLR SGD 100 2000 8
T (5w5s) 0.1 CosineAnnealingLR SGD 100 2000 4

RENet
T (5w1s) 0.1 CosineAnnealingLR SGD 100 300 1
T (5w5s) 0.1 CosineAnnealingLR SGD 100 300 1

Baseline++ B (128) 0.01 CosineAnnealingLR SGD 100 - -
RFS B (64) 0.05 MultiStepLR([60, 80], 0.1) SGD 100 - -

Table A.3.2: Training configurations and hyperparameters for training on the miniImageNet dataset.
“-” denotes not applicable.

Method Mode Learning rate LR scheduler Optimizer Epochs Training episodes Episode size

ANIL
T (5w1s) 0.001 - Adam 100 5000 4
T (5w5s) 0.001 - Adam 100 5000 4

LEO
T (5w1s) 0.0005 CosineAnnealingLR Adam 100 5000 1
T (5w5s) 0.001 CosineAnnealingLR Adam 100 5000 1

BOIL
T (5w1s) 0.0006 - Adam 100 5000 4
T (5w5s) 0.0006 - Adam 100 5000 4

ProtoNet
T (5w1s) 0.001 StepLR(20, 0.5) Adam 100 5000 1
T (5w5s) 0.001 StepLR(20, 0.5) Adam 100 5000 1

DN4
T (5w1s) 0.001 StepLR(50, 0.5) Adam 200 5000 1
T (5w5s) 0.001 StepLR(50, 0.5) Adam 200 5000 1

R2D2
T (5w1s) 0.1 CosineAnnealingLR SGD 100 5000 4
T (5w5s) 0.1 CosineAnnealingLR SGD 100 5000 4

CAN
T (5w1s) 0.1 CosineAnnealingLR SGD 100 2000 4
T (5w5s) 0.1 CosineAnnealingLR SGD 100 2000 4

RENet
T (5w1s) 0.1 MultiStepLR([60, 80], 0.05) SGD 100 1752 1
T (5w5s) 0.1 MultiStepLR([40, 50], 0.05) SGD 60 1752 1

Baseline++ B (128) 0.01 CosineAnnealingLR SGD 100 - -
RFS B (128) 0.1 CosineAnnealingLR SGD 100 - -

Table A.3.3: Training configurations and hyperparameters for training on the tieredImageNet
dataset. “-” denotes not applicable.

We trained eight meta-learning based FSC methods with the ResNet-12 backbone using 5-way
1-shot or 5-way 5-shot tasks from each Dtrain of the three datasets, resulting in a total of 48 models.
For the two transfer learning based methods, RFS and Baseline++, we trained them on each Dtrain
of the three datasets using mini-batch stochastic gradient descent. As a result, we trained a total of
54 models.

To facilitate reproducibility and further research, the training configurations and hyperparame-
ters are provided in Tables A.3.2, A.3.3, and A.3.4 for training on the miniImageNet, tieredImageNet,
and CUB-200 datasets, respectively. We closely followed the settings in [161] to train these models.
In the “Mode” column of these tables, “T(5w1s)” denotes that we trained the corresponding model
using 5-way 1-shot tasks, “T(5w5s)” denotes that we trained the corresponding model using 5-way
5-shot tasks, and “B (128)” denotes that we trained the corresponding model using mini-batch
stochastic gradient descent with a batch size of 128. In the “LR scheduler” column, “CosineAnneal-
ingLR” denotes a cosine annealing learning rate scheduler, “StepLR(20, 0.5)” denotes a learning
rate scheduler which decreases the learning rate after every 20 epochs by multiplying it with 0.5,
and “MultiStepLR([60, 80], 0.1)” denotes a learning rate scheduler which decreases the learning rate
after 60 epochs and 80 epochs by multiplying it with 0.1 each time. The “Training episodes” column

177



Method Mode Learning rate LR scheduler Optimizer Epochs Training episodes Episode size

ANIL
T (5w1s) 0.001 - Adam 100 2000 4
T (5w5s) 0.001 - Adam 100 2000 4

LEO
T (5w1s) 0.0005 CosineAnnealingLR Adam 100 2000 4
T (5w5s) 0.001 CosineAnnealingLR Adam 100 2000 1

BOIL
T (5w1s) 0.0006 - Adam 100 2000 4
T (5w5s) 0.0006 - Adam 100 2000 4

ProtoNet
T (5w1s) 0.001 StepLR(20, 0.5) Adam 100 2000 1
T (5w5s) 0.001 StepLR(20, 0.5) Adam 100 2000 1

DN4
T (5w1s) 0.001 StepLR(50, 0.5) Adam 100 2000 1
T (5w5s) 0.001 StepLR(50, 0.5) Adam 100 2000 1

R2D2
T (5w1s) 0.1 CosineAnnealingLR SGD 100 2000 4
T (5w5s) 0.1 CosineAnnealingLR SGD 100 2000 4

CAN
T (5w1s) 0.01 - Adam 100 100 4
T (5w5s) 0.01 - Adam 100 100 4

RENet
T (5w1s) 0.1 CosineAnnealingLR SGD 100 300 1
T (5w5s) 0.1 CosineAnnealingLR SGD 100 600 1

Baseline++ B (128) 0.01 CosineAnnealingLR SGD 100 - -
RFS B (64) 0.05 MultiStepLR([60, 80], 0.1) SGD 100 - -

Table A.3.4: Training configurations and hyperparameters for training on the CUB-200 dataset. “-”
denotes not applicable.

miniImageNet tieredImageNet CUB-200
wAcc-A/Acc. gap wAcc-A/Acc. gap wAcc-A/Acc. gapMethod

wAcc-R
SC1 SC2 SC3

wAcc-R
SC1 SC2 SC3

wAcc-R
SC1 SC2 SC3

19.69 15.64 14.83 19.55 14.53 13.72 38.73 32.39 31.63
ANIL 25.37

5.68 9.73 10.54
30.60

11.05 16.07 16.88
45.47

6.74 13.08 13.84
34.33 28.02 26.31 40.28 30.23 29.49 48.04 43.07 46.62

LEO 41.33
7.00 13.31 15.02

57.22
16.94 26.99 27.73

59.76
11.72 16.69 13.14

13.88 13.46 13.09 15.82 15.11 14.90 18.42 17.84 19.17
BOIL 15.21

1.33 1.75 2.12
18.55

2.73 3.44 3.65
21.33

2.91 3.49 2.16
43.37 33.40 32.07 44.23 31.61 30.95 67.12 59.72 60.06

ProtoNet 51.95
8.58 18.55 19.88

62.53
18.30 30.92 31.58

75.68
8.56 15.96 15.62

36.74 28.62 27.60 24.32 16.50 16.07 66.07 58.32 59.25
DN4 42.68

5.94 14.06 15.08
40.63

16.31 24.13 24.56
73.58

7.51 15.26 14.33
44.01 36.47 35.37 43.34 31.79 31.12 65.12 56.88 58.66

R2D2 50.84
6.83 14.37 15.47

61.08
17.74 29.29 29.96

75.20
10.08 18.32 16.54

46.66 37.82 36.44 45.53 32.23 31.17 53.91 44.91 41.31
CAN 54.23

7.57 16.41 17.79
64.19

18.66 31.96 33.02
61.61

7.70 16.70 20.30
47.48 37.60 36.19 44.23 31.04 30.27 63.03 53.27 52.93

RENet 56.52
9.04 18.92 20.33

63.49
19.26 32.45 33.22

71.82
8.79 18.55 18.89

37.70 30.47 29.52 40.95 30.74 30.01 24.21 19.55 16.86
Baseline++ 44.94

7.24 14.47 15.42
59.06

18.11 28.32 29.05
29.84

5.63 10.29 12.98
48.17 38.33 36.85 44.35 31.94 31.15 64.54 54.41 54.98

RFS 55.66
7.49 17.33 18.81

62.71
18.36 30.77 31.56

74.33
9.79 19.92 19.35

Average drop - 6.67 13.89 15.05 - 15.75 25.43 26.12 - 7.94 14.83 14.72

Table A.3.5: Comparison between different techniques used by FewSTAB for constructing the sup-
port sets in 5-way 5-shot FSC test tasks. Values in the shaded areas are the accuracy gaps defined
as wAcc-R minus wAcc-A. Average drop is the average of accuracy gaps over the ten FSC methods.
“-” denotes not applicable.

in these tables denotes the number of tasks used in each epoch. The “Episode size” column of these
tables denotes the number of tasks jointly used to do a model update.

A.3.4 Additional Experimental Results

Ablation Studies

Support Set Construction Methods. To construct the support set in an FSC test task, Few-
STAB randomly selects samples that havemutually exclusive spurious attributes across the randomly
selected classes, which is illustrated in Figure 4.2(a) and formally described in Chapter 4.1.4. To
further show the effectiveness of this construction method, we keep the techniques for constructing

178



miniImageNet tieredImageNet CUB-200
wAcc-A/Acc. gap wAcc-A/Acc. gap wAcc-A/Acc. gapMethod

wAcc-R
QC1 QC2 QC3

wAcc-R
QC1 QC2 QC3

wAcc-R
QC1 QC2 QC3

21.61 16.37 14.83 21.95 14.00 13.72 39.77 32.58 31.63
ANIL 25.37

3.76 9.00 10.54
30.60

8.65 16.60 16.88
45.47

5.70 12.89 13.84
36.04 28.36 26.31 46.94 31.93 29.49 56.73 48.21 46.62

LEO 41.33
5.29 12.97 15.02

57.22
10.28 25.29 27.73

59.76
3.03 11.55 13.14

14.57 13.70 13.09 17.61 15.37 14.90 20.49 19.85 19.17
BOIL 15.21

0.64 1.51 2.12
18.55

0.94 3.18 3.65
21.33

0.84 1.48 2.16
44.28 34.17 32.07 49.58 33.56 30.95 70.33 61.81 60.06

ProtoNet 51.95
7.67 17.78 19.88

62.53
12.95 28.97 31.58

75.68
5.35 13.87 15.62

39.25 28.91 27.60 28.28 17.63 16.07 70.37 60.61 59.25
DN4 42.68

3.43 13.77 15.08
40.63

12.35 23.00 24.56
73.58

3.21 12.97 14.33
45.68 36.99 35.37 48.96 33.83 31.12 69.78 60.34 58.66

R2D2 50.84
5.16 13.85 15.47

61.08
12.12 27.25 29.96

75.20
5.42 14.86 16.54

47.83 38.16 36.44 50.58 33.63 31.17 54.32 42.88 41.31
CAN 54.23

6.40 16.07 17.79
64.19

13.61 30.56 33.02
61.61

7.29 18.73 20.30
49.80 38.31 36.19 49.86 32.76 30.27 64.26 54.48 52.93

RENet 56.52
6.72 18.21 20.33

63.49
13.63 30.73 33.22

71.82
7.56 17.34 18.89

39.51 31.26 29.52 47.08 31.86 30.01 27.47 18.62 16.86
Baseline++ 44.94

5.43 13.68 15.42
59.06

11.98 27.20 29.05
29.84

2.37 11.22 12.98
48.87 39.48 36.85 49.99 33.64 31.15 67.60 56.60 54.98

RFS 55.66
6.79 16.18 18.81

62.71
12.72 29.07 31.56

74.33
6.73 17.73 19.35

Average drop - 5.13 13.30 15.05 - 10.92 24.19 26.12 - 4.75 13.27 14.72

Table A.3.6: Comparison between different techniques used by FewSTAB for constructing the query
sets in 5-way 5-shot FSC test tasks. Values in the shaded areas are the accuracy gaps defined as
wAcc-R minus wAcc-A. Average drop is the average of accuracy gaps over the ten FSC methods.
“-” denotes not applicable.

the query set in an FSC test task, and report in Table A.3.5 the results of two alternatives for con-
structing the support set: randomly selecting samples of the selected classes (SC1) and randomly
selecting samples with targeted attributes for selected classes with no further constraints on the
selected samples (SC2). We also include the results of the proposed one: randomly selecting sam-
ples with mutually exclusive targeted attributes across the selected classes (SC3) in Table A.3.5. A
larger average drop in Table A.3.5 indicates that the corresponding support set construction method
is more effective in revealing robustness of few-shot classifiers to spurious bias. We observe that the
third technique SC3, which is used by FewSTAB, achieves the largest average accuracy drop among
the techniques compared on the miniImageNet and tieredImageNet datasets and achieves a compa-
rable drop to SC2 on the CUB-200 dataset due to the limited number of detected attributes in this
dataset.
Query Set Construction Methods. There are three techniques used by FewSTAB to construct
the query set in a task: the intra-class attribute-based sample selection (QC1), the inter-class
attribute-based sample selection (QC2), which is a special case of the intra-class attribute-based
sample selection, and the query sample selection (QC3). We have done an ablation study on the
effectiveness of the three techniques in Table 4.5 using the miniImageNet dataset. Here, we include
the results on all the three datasets in Table A.3.6. We observe that all the three proposed techniques
in FewSTAB are effective with positive accuracy drops for all the ten FSC methods on the three
datasets. Moreover, using the inter-class attribute-based sample selection significantly improves the
average drops of the intra-class attribute-based sample selection, with 8.17%, 13.26%, and 8.52%
absolute gains on the miniImageNet, tieredImageNet, and CUB-200 datasets, respectively.

Scatter Plots of wAcc-A versus Acc

We show the scatter plots of wAcc-A versus Acc (standard accuracy) of the ten FSC methods
when they are tested with FewSTAB and randomly constructed FSC test tasks, respectively, on
the three datasets in Figure A.3.1 (exact values are shown in Table A.3.7). We observe that an
FSC method having a higher Acc does not necessarily have a higher wAcc-A. For example, in
Figure A.3.1(a), BOIL has a higher Acc but a lower wAcc-A than ProtoNet, LEO, and Baseline++.
Moreover, we observe that in Figures A.3.1(b) and A.3.1(d), for methods that achieve high standard
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accuracies, e.g., for the top-5 methods in terms of Acc, their relative increments in wAcc-A are small
(with differences smaller than 1%) compared with their relative increments in Acc. In other words,
methods with higher standard accuracies do not necessarily learn more robust decision rules, since
their wAcc-A values remain comparable to those with lower Acc values.

The values of Acc and wAcc-A on the fine-grained dataset CUB-200 in Figures A.3.1(e) and
A.3.1(f) show a different pattern from those in Figures A.3.1(c) and A.3.1(d). More specifically,
methods that achieve high Acc values, e.g., R2D2, ProtoNet, DN4, RENet, and RFS, tend to have
comparable relative increments in wAcc-A compared with their relative increments in Acc. This
indicates that on a fine-grained dataset, which does not have many spurious attributes, an FSC
method with a higher Acc also tends to have a higher wAcc-A or improved robustness to spurious
bias.

In summary, our framework, FewSTAB, reveals new robustness patterns of FSC methods in
different evaluation settings.
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(e) CUB-200, 5-way 1-shot (f) CUB-200, 5-way 5-shot

(c) tieredImageNet, 5-way 1-shot (d) tieredImageNet, 5-way 5-shot

(a) miniImageNet, 5-way 1-shot (b) miniImageNet, 5-way 5-shot

Figure A.3.1: Scatter plots of wAcc-A versus Acc of the ten FSC methods tested with 5-way 1/5-shot
FewSTAB and randomly constructed tasks from the miniImageNet, tieredImageNet, and CUB-200
datasets, respectively. All methods are trained and tested with the same shot number.
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Shot Method
miniImageNet tieredImageNet CUB-200

Acc wAcc-A Acc wAcc-A Acc wAcc-A

1

ANIL 51.75±0.39 10.38±0.30 55.00±0.45 11.21±0.30 67.32±0.45 13.78±0.40
LEO 54.27±0.38 14.26±0.46 64.73±0.46 16.00±0.55 73.68±0.42 28.29±0.80
BOIL 58.43±0.39 12.48±0.23 64.60±0.43 12.27±0.21 77.42±0.39 19.15±0.29
ProtoNet 57.60±0.38 14.03±0.49 62.85±0.44 14.50±0.50 77.73±0.39 34.62±0.85
DN4 57.45±0.36 12.37±0.46 60.79±0.42 11.99±0.47 78.39±0.38 35.22±0.86
R2D2 59.30±0.39 18.05±0.53 65.33±0.44 16.41±0.54 79.05±0.38 36.70±0.90
CAN 59.91±0.38 17.37±0.53 70.52±0.43 18.84±0.60 68.73±0.41 22.74±0.72
RENet 64.91±0.38 19.10±0.57 71.27±0.42 18.83±0.61 76.49±0.36 32.43±0.81
Baseline++ 56.48±0.37 15.30±0.48 65.79±0.42 17.51±0.54 55.15±0.44 9.17±0.47
RFS 61.81±0.35 18.00±0.53 70.80±0.42 18.35±0.60 76.99±0.35 32.45±0.80

5

ANIL 67.68±0.33 14.83±0.40 73.26±0.35 13.72±0.39 77.72±0.34 31.63±0.55
LEO 67.92±0.32 26.31±0.59 81.10±0.34 29.49±0.72 83.62±0.30 46.62±0.82
BOIL 72.80±0.29 13.09±0.22 80.11±0.32 14.90±0.22 86.11±0.26 19.17±0.28
ProtoNet 74.46±0.28 32.07±0.58 82.93±0.31 30.95±0.70 90.13±0.21 60.06±0.74
DN4 72.87±0.29 27.60±0.58 75.17±0.36 16.07±0.62 89.85±0.21 59.25±0.77
R2D2 74.36±0.29 35.37±0.59 83.12±0.30 31.12±0.72 90.47±0.21 58.66±0.82
CAN 76.71±0.28 36.44±0.65 84.40±0.29 31.17±0.76 83.14±0.27 41.31±0.74
RENet 80.23±0.26 36.19±0.63 84.90±0.28 30.27±0.76 89.23±0.21 52.93±0.82
Baseline++ 71.14±0.30 29.52±0.57 82.31±0.31 30.01±0.72 66.12±0.35 16.86±0.52
RFS 78.69±0.26 36.85±0.64 84.86±0.29 31.15±0.76 90.26±0.20 54.98±0.81

Table A.3.7: Standard accuracies (Acc) and class-wise worst accuracies obtained with FewSTAB
(wAcc-A) with 95% confidence intervals of the ten FSC methods on miniImageNet, tieredImageNet,
and CUB datasets. Numbers in the Shot column indicate that the models are both trained (if
applicable) and tested on 5-way 1- or 5-shot tasks. Darker colors indicate higher values.

Effectiveness of FewSTAB: More Results

Results on More Recent Methods. Note that our method selection in Table 4.3 aims to cover
diverse methods and allow for rigorous comparison in the same setting. Importantly, our method
is general and can continue to evaluate emerging methods. To demonstrate, we provide results on
recent methods, namely UniSiam [228], PsCo [229], and BECLR [230]. FewSTAB uncovers that,
even the state-of-the-art methods still suffer from spurious bias as we observe large gaps between
wAcc-R and wAcc-A (Table A.3.9), when we explicitly construct the test tasks to have spurious
correlations. This also shows that FewSTAB is effective for various FSC methods.
Results on IFSL. Interventional few-shot learning (IFSL) [63] is a method that specifically ad-
dresses spurious correlations in few-shot classification. We follow the settings in [63] and report the
results of MAML [22], MN [23], SIB [231], and MTL [133] in Table A.3.10, where “Base” refers to
one of the four methods, “+IFSL” denotes using IFSL on top of “Base”, and the better performance
between the two is in bold. Overall, IFSL is effective in mitigating spurious bias in few-shot clas-
sifiers except for some methods, e.g. SIB. This shows that FewSTAB can reveal the improvement
made to mitigate spurious bias.

Robustness of FewSTAB with Different VLMs

We instantiated our FewSTAB with a pre-trained ViT-GPT2 and a pre-trained BLIP, respectively.
We calculated the wAcc-A on FSC test tasks constructed by FewSTAB with the two VLMs on the
miniImageNet, tieredImageNet, and CUB-200 datasets, respectively.
Effects on Individual and Relative Measurements. We observe from Table A.3.8 that Few-
STAB with BLIP produces lower wAcc-A than with ViT-GPT2 on the miniImageNet and tiered-
ImageNet datasets. This indicates that FewSTAB with BLIP is more effective in uncovering the
robustness of few-shot classifiers to spurious bias. We reason that BLIP can identify more attributes
than ViT-GPT2 (Table 4.2) and therefore more spurious correlations can be formulated by our
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Shot Method
miniImageNet tieredImageNet CUB-200

ViT-GPT2 BLIP ViT-GPT2 BLIP ViT-GPT2 BLIP

1

ANIL 10.38±0.30 10.39±0.29 11.21±0.30 10.76±0.29 13.78±0.40 14.74±0.41
LEO 14.26±0.46 14.38±0.45 16.00±0.55 14.34±0.52 28.29±0.80 31.06±0.80
BOIL 12.48±0.23 12.51±0.22 12.27±0.21 11.65±0.21 19.15±0.29 20.35±0.29
ProtoNet 14.03±0.49 13.50±0.46 14.50±0.50 13.25±0.50 34.62±0.85 38.63±0.81
DN4 12.37±0.46 12.86±0.46 11.99±0.47 11.21±0.46 35.22±0.86 39.51±0.82
R2D2 18.05±0.53 17.66±0.51 16.41±0.54 15.01±0.53 36.70±0.90 40.61±0.84
CAN 17.37±0.53 16.89±0.51 18.84±0.60 17.43±0.61 22.74±0.72 24.23±0.71
RENet 19.10±0.57 18.80±0.54 18.83±0.61 17.29±0.60 32.43±0.81 36.12±0.82
Baseline++ 15.30±0.48 15.06±0.46 17.51±0.54 15.60±0.52 9.17±0.47 10.42±0.50
RFS 18.00±0.53 17.43±0.50 18.35±0.60 16.81±0.57 32.45±0.80 35.43±0.79

5

ANIL 14.83±0.40 13.67±0.38 13.72±0.39 12.57±0.37 31.63±0.55 33.01±0.56
LEO 26.31±0.59 24.79±0.57 29.49±0.72 27.92±0.70 46.62±0.82 49.97±0.81
BOIL 13.09±0.22 12.79±0.22 14.90±0.22 14.63±0.22 19.17±0.28 20.03±0.27
ProtoNet 32.07±0.58 29.28±0.57 30.95±0.70 28.51±0.68 60.06±0.74 64.67±0.64
DN4 27.60±0.58 25.28±0.57 16.07±0.62 14.98±0.58 59.25±0.77 65.61±0.67
R2D2 35.37±0.59 31.81±0.59 31.12±0.72 29.50±0.68 58.66±0.82 64.02±0.77
CAN 36.44±0.65 33.81±0.62 31.17±0.76 29.28±0.72 41.31±0.74 43.10±0.73
RENet 36.19±0.63 33.76±0.63 30.27±0.76 28.71±0.72 52.93±0.82 60.29±0.74
Baseline++ 29.52±0.57 27.17±0.55 30.01±0.72 28.20±0.70 16.86±0.52 17.25±0.53
RFS 36.85±0.64 34.72±0.62 31.15±0.76 29.29±0.72 54.98±0.81 62.33±0.69

Table A.3.8: Comparison between wAcc-A calculated over 5-way 1/5-shot tasks obtained using
Vit-GPT2 and using BLIP. We calculated wAcc-A for ten FSC methods on miniImageNet, tiered-
ImageNet, and CUB datasets. Numbers in the Shot column indicate that the models are both
trained (if applicable) and tested on 1- or 5-shot tasks. Darker colors indicate higher values.

Method Shot wAcc-R wAcc-A (V) wAcc-A (B)
UniSiam 1 21.26±0.48 13.52±0.43 13.49±0.42

PsCo 1 21.50±0.47 14.30±0.40 12.46±0.37

BECLR 1 35.57±0.80 23.60±0.83 22.42±0.82

UniSiam 5 45.60±0.52 27.76±0.57 25.42±0.56

PsCo 5 42.15±0.52 25.54±0.52 22.64±0.49

BECLR 5 55.20±0.49 37.32±0.66 33.42±0.68

Table A.3.9: Results on the miniImageNet dataset. V: ViT-GPT2, B: BLIP. All input images are
resized to 84×84.

FewSTAB. However, on the fine-grained CUB-200 dataset, which contains different bird classes,
FewSTAB with BLIP is less effective than with ViT-GPT2. Although BLIP can identify more at-
tributes than ViT-GPT2 in this fine-grained dataset, it may also detect more attributes related
to classes. To validate this, we first found a set of attributes UBLIP unique to BLIP from all the
attributes ABLIP detected by BLIP, and a set of attributes UViT-GPT2 unique to ViT-GPT2 from all
the attributes AViT-GPT2 detected by ViT-GPT2. Specifically, we have UBLIP = ABLIP−AViT-GPT2,
and UViT-GPT2 = AViT-GPT2−ABLIP. Then, we found in UBLIP and UViT-GPT2 how many attributes
contain “bird”, “beak”, “wing”, “breast”, “tail”, or “mouth”, which are all related to the concept of
a bird. We found that there are 11 attributes, or 8.5% of total attributes in UBLIP that are related
to a bird. While there is only 1 attribute (2.4% of total attributes) in UViT-GPT2 that is related
to a bird. Due to the limited capability of BLIP, these class-related attributes cannot be detected
in all the images. Hence, although these attributes are not spurious, they are treated as spurious
attributes and used by FewSTAB to construct FSC test tasks. In this case, FewSTAB becomes in-
effective in revealing the spurious bias in few-shot classifiers since the classifiers can exploit spurious
correlations in the tasks to achieve high accuracies. Nevertheless, from the perspective of comparing
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Method
1-shot 5-shot

Base +IFSL Base +IFSL
MAML 13.29±0.55 12.05±0.56 28.70±0.69 29.82±0.76

MN 17.40±0.62 17.72±0.63 30.48±0.73 31.51±0.75

SIB 30.09±1.04 27.10±0.97 46.73±0.96 46.66±0.95

MTL 37.29±0.57 40.22±0.57 49.49±0.58 52.66±0.58

Table A.3.10: wAcc-A comparison (%) on the miniImageNet dataset.

VLM
Detection accuracy Spearman’s rank correlation coefficient
ViT-GPT2 BLIP 1-shot 5-shot

miniImageNet 34.46 31.42 0.98 1.0
tieredImageNet 35.04 32.00 1.0 0.99

CUB-200 70.12 59.28 1.0 0.98

Table A.3.11: Detection accuracies of the ViT-GPT2 and BLIP along with the Spearman’s rank
correlation coefficients between the results based on the two VLMs.

the robustness of different FSC methods to spurious bias, the test tasks constructed by FewSTAB
using different VLMs can reveal consistent ranks in terms of wAcc-A for different FSC methods
(Table 4.6).
Detection Accuracies of VLMs. Using different VLMs may generate different sets of attributes.
Some sets of attributes may not exactly reflect the data being described, resulting in low detection
accuracies. For example, some attributes are not identified by a VLM or the identified attributes
do not match with the ground truth attributes. To analyze how the detection accuracy of a VLM
affects our framework, we show in Table A.3.11 the detection accuracies of the two VLMs that we
used in Chapter 4.1.5 along with the Spearman’s rank correlation coefficients between the evaluation
results on the ten FSC methods based on the two VLMs. To calculate the detection accuracy of a
VLM without the labor-intensive human labeling, we use the outputs of another VLM as the ground
truth. Specifically, for the i’th image, we have two detected sets of attributes, Aiquery and Airef ,
representing the attributes from a VLM being evaluated and the ones from another VLM serving as
the ground truth attributes. The detection accuracy is calculated as follows:

Acc(V LMquery, V LMref ) =
1

|Dtest|

Ntest∑
i=1

|Aiquery ∩ Airef |
|Airef |

, (A.11)

where Ntest = |Dtest|, and | · | denotes the size of a set. For example, to calculate the detection
accuracy of ViT-GPT2, we set V LMquery =ViT-GPT2 and V LMref =BLIP. From Table A.3.11, we
observe that the detection accuracies of the two VLMs are not high, indicating that the attributes
identified by the two VLMs are very different. However, the two VLMs are well-established in
practice and can identify many attributes from images (Table 4.2). The correlation coefficients in
Table A.3.11 indicate that for well-established VLMs, the detection accuracies have little impact on
the comparison of robustness to spurious bias between different FSC methods.

A.3.5 Tasks Constructed by FewSTAB

FewSTAB does not construct tasks based on a specific model. Hence, FewSTAB is a fair evaluation
framework for different FSC methods, and the tasks constructed by FewSTAB can be used to reveal
few-shot classifiers’ varied degrees of robustness to spurious bias.

We show a 5-way 1-shot task constructed by FewSTAB using samples from the tieredImageNet
and CUB-200 datasets in Figures A.3.2 and A.3.3, respectively. Query samples for each class are
constructed such that they do not contain the spurious attribute from the support set sample of the
same class but contain spurious attributes from support set samples of other classes. For example,
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in Figure A.3.2, the class malamute has a support set sample with a rocky background, but most
of its query samples have a bike which is the spurious attribute from the support set sample of the
valley class. Moreover, in Figure A.3.3, the class Mallard has a support set sample with a sandy

background, but its query samples all have a water background similar to that in the support set
sample of the Baltimore Oriole class. Note that the sample selection may not be ideal due to the
limited capacity of VLMs. For example, in Figure A.3.2, some query images of the class eggnog have
the spurious attribute cup which also appears in the support set image of the class, leading to a high
accuracy on these query samples for a model that relies on this spurious attribute. However, this
does not affect our evaluation of different FSC methods on their robustness to spurious bias since
the same set of tasks is used to evaluate different FSC methods. Moreover, our metric, wAcc-A,
measures the worst per-class classification accuracy over FSC tasks, making our evaluation robust
to the sampling noise caused by a VLM.

Figure A.3.2: A 5-way 1-shot task constructed by our FewSTAB using samples from the tieredIm-
ageNet dataset. Note that due to the limited capacity of a VLM, the attributes may not well align
with human understandings.

Figure A.3.3: A 5-way 1-shot task constructed by our FewSTAB using samples from the CUB-200
dataset. Note that due to the limited capacity of a VLM, the attributes may not well align with
human understandings.
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A.4 Learning Robust Classifiers with Self-Guided Spurious
Correlation Mitigation

A.4.1 Learning Algorithm

The whole learning procedure of our proposed LBC is shown in Algorithm 4. We iteratively retrain
a model adapted from an ERM-trained model using relabeled (Section 4.2.3) and balanced (Section
4.2.3) training data. Our relabeling does not alter the class membership of the training data; instead,
it creates fine-grained labels within classes. Therefore, although the classification head of θ̃ keeps
changing in each training epoch, the model’s ability to recognize different classes keeps improving
after each training epoch. Even when the generated fine-grained labels are noisy, the backbone of θ̃
is still encouraged to recognize different classes. We select the best model based on its performance
on the validation data.
Time complexity. The first step of our algorithm, i.e., building the attribute set A, is only
needed once for each dataset. Thus, its time complexity is negligible once A has been generated.
Generating the spurious scores needs a forward pass of all the N training samples. Therefore, the
time complexity is O(N) with a scaling constant τsc representing the average complexity over N
samples. The KMeans clustering step has a time complexity of O(KNT ) with a scaling constant
τclu, where K is the number of clusters, T is the number of iterations for the clustering, and τclu
denotes the complexity for computing the Euclidean distance between two vectors. The complexity
of optimizing f̃θ̃ is O(N) with a scaling constant τopt denoting the complexity for a backward pass
of the model. Typically, τsc ≪ τopt, τclu ≪ τopt, and K · T is typicall small. Therefore, the overall
complexity of our algorithm is approximately O(EN), where E is the number of training epochs.

Algorithm 4 Learning beyond classes (LBC)

Input: Training dataset Dtr, an ERM trained model fθ, number of clusters K, a pre-trained VLM
ϕ, an attribute extraction procedure ψ, and the number of training iterations E.
Output: Learned weights θ̃

1: Build the attribute set A = ∪(x,y)∈Dtrψ(ϕ(x))

2: Transform fθ into f̃θ̃
3: for e = 1, . . . , E do
4: Generate spuriousness scores using Equation (4.8)
5: Get cluster labels pK(x, y) with Equation (4.10)
6: Relabeling with gK(x, y) = pK(x, y) + (y − 1) ·K
7: Optimize f̃θ̃ using Equation (4.12)
8: end for
9: return θ̃

A.4.2 Datasets

Table A.4.1 depicts detailed statistics for all datasets. For Waterbirds and CelebA datasets, we give
the number of training, validation, and test images in each group specified by classes and attributes.
For example, the group ⟨landbird, land⟩ in the Waterbirds dataset has 3498 training images which
are all landbirds and have land backgrounds. The NICO dataset uses multiple contexts as spurious
attributes which are listed in Table A.4.2. The ImageNet-9 and ImageNet-A datasets do not have
clear group partitions specified by the class and attribute associations.

In the NICO dataset [182], the training set consists of 7 context classes per object class, and
there are 10 object classes. Images in the training set are long-tailed distributed in the sense that
an object class has exponentially decreasing numbers of images that correlate with the 7 contexts.
Table A.4.2 gives the contexts for each of the 10 classes. The contexts of a class are arranged based
on the number of images they have in the class, and the first context has the most images. We follow
the setting in [182], where for each class, the number of images having the context t is proportional
to the ratio IRit , where it(0 ≤ it ≤ 6 denotes the index of the context t for the corresponding class
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Dataset
Number of
classes

⟨class, attribute⟩ Number of images
Train Val Test

Waterbirds 2

⟨landbird, land⟩ 3,498 467 2,255
⟨landbird, water⟩ 184 466 2,255
⟨waterbird, land⟩ 56 133 642
⟨waterbird, water⟩ 1,057 133 642

CelebA 2

⟨non-blond, female⟩ 71,629 8,535 9,767
⟨non-blond, male⟩ 66,874 8,276 7,535
⟨blond, female⟩ 22,880 2,874 2,480
⟨blond, male⟩ 1,387 182 180

NICO 10 - 2840 1299 1299
ImageNet-9 9 - 54,600 2,100 -
ImageNet-A 9 - - - 1087

Table A.4.1: Detailed statistics of the 5 datasets. ⟨class, attribute⟩ represents a spurious correlation
between a class and a spurious attribute. “-” denotes not applicable.

in Table A.4.2, and the imbalance ratio IR is 0.02. The validation and test sets contain images from
the 10 classes, and each class has a equal number of images from its 7 associated context classes and
3 new contexts not seen in the training.

Class Contexts

dog on grass, in water, in cage, eating, on beach,
lying, running; at home, in street, on snow

cat on snow, at home, in street, walking, in river,
in cage, eating; in water, on grass, on tree

bear in forest, black, brown, eating grass,
in water, lying, on snow; on ground, on tree,
white

bird on ground, in hand, on branch, flying, eating,
on grass, standing; in water, in cage, on
shoulder

cow in river, lying, standing, eating, in forest,
on grass, on snow; at home, aside people,
spotted

elephant in zoo, in circus, in forest, in river, eating,
standing, on grass; in street, lying, on snow

horse on beach, aside people, running, lying,
on grass, on snow, in forest; at home, in
river, in street

monkey sitting, walking, in water, on snow, in forest,
eating, on grass; in cage, on beach, climbing

rat at home, in hole, in cage, in forest, in water,
on grass, eating; lying, on snow, running

sheep eating, on road, walking, on snow, on grass,
lying, in forest; aside people, in water, at
sunset

Table A.4.2: Classes and their associated contexts in the NICO datasets. Contexts after the semi-
colons are unseen in the training set.

The ImageNet-9 dataset [181] is a subset of ImageNet. It has 9 super-classes, i.e., Dog, Cat,
Frog, Turtle, Bird, Primate, Fish, Crab, Insect, which are obtained by merging similar classes from
ImageNet. ImageNet-A contains real-world images that are challenging to the image classifiers
trained on standard ImageNet. We extract images of the 9 super-classes from the ImageNet-A
dataset and use these images as the test data. To calculate the Unbiased accuracy on the validation
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set of ImageNet-9, we use the cluster labels provided in [181] that partition the validation data into
groups and calculate the average accuracy over these groups.

A.4.3 Implementation Details

Spurious Attribute Detection

We generate text descriptions for images using a pre-trained ViT-GPT2 model [40]. Figure A.4.1
shows four images from the ImageNet-9 dataset along with their descriptions generated by the ViT-
GPT2 model. After generating text descriptions, we use Spacy (https://spacy.io/) to automatically
extract nouns and adjectives from the descriptions. Then, we add the extracted words to A, forming
a set of detected attributes which are potentially spurious. We additionally filter out attributes
with frequencies less than 10 to remove rare words that represent too few images and potential
annotation noise. Table A.4.3 shows the numbers of detected attributes as well as the numbers of
average detected attributes per image for the four datasets which we used during training. We did
not detect attributes on the ImageNet-A dataset since it was only used for testing.

a small black and 

white dog standing 

on a hard wood floor

a cat that is laying 

in a basket

a bird perched on 

top of a tree branch
a man holding a

fish in his hand

Figure A.4.1: Examples of the generated text descriptions for images in the ImageNet-9 dataset.

Dataset
Number of

detected attributes
Average number of
attributes per image

Waterbirds 144 4.314
CelebA 345 4.291
NICO 199 3.995

ImageNet-9 442 4.311

Table A.4.3: Statistics of the attributes detected from theWaterbirds, CelebA, NICO, and ImageNet-
9 datasets.

Dataset Backbone Initialization Learning Rate
Learning Rate

Scheduler
Batch Size Epochs

Waterbirds ResNet-50 ImageNet pre-trained 3e-3 Cosine Annealing 32 100
CelebA ResNet-50 ImageNet pre-trained 3e-3 Cosine Annealing 100 20
NICO ResNet-18 ImageNet pre-trained - - - -

ImageNet-9 ResNet-18 ImageNet pre-trained 1e-3 Cosine Annealing 128 100
ImageNet-9 ResNet-18 Random 5e-2 MultiStepLR([50, 80, 100],0.2) 256 100

Table A.4.4: Details for training ERM models on the four datasets. MultiStepLR([epoch1, epoch2,
epoch3], r) denotes a learning rate scheduler which decays the learning rate at specified epochs with
a multiplication factor r, and ‘-’ denotes no training.
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Dataset Learning rate Batch size
Number of Batches

Per Epoch
Training Epochs K

Model Selection
Metric

Waterbirds 1e-4 128 20 50 3 PU-ValAcc
CelebA 1e-4 128 20 50 3 PU-ValAcc
NICO 1e-4 128 50 50 3 PU-ValAcc

ImageNet-9 1e-4 128 200 100 4 Validation accuracy

Table A.4.5: Hyperparameter settings and model selection criteria for LBC training on the Wa-
terbirds, CelebA, NICO, and ImageNet-9 datasets. PU-ValAcc denotes pseudo unbiased validation
accuracy.

Non-self-explanatory attributes are still informative. We use two detected attributes,
christmas tree and phone, to select samples from the CelebA dataset and show four samples
for each of the attribute in Figure A.4.2. We observe that christmas tree and phone are not
self-explanatory in representing the common features shared among the samples because of the
limited capacity of the pre-trained vision-language model (VLM) used to generate text descriptions.
However, samples selected by each attribute do have some characteristics shared in common. For
the samples selected based on christmas tree, they all have background colors that are related
to a Christmas tree, e.g., red colors are recognized as some decorations on a Christmas tree by the
pre-trained VLM. In the samples selected based on phone, the people all hold their hand close to
their faces.

phone

christmas tree

blond

non-blond

Figure A.4.2: Samples selected based on the two detected attributes, christmas tree and phone.
Although these attributes are not self-explanatory in representing the selected samples, samples
selected by them have some common characteristics.

Training ERM Models

Our method starts with an ERM model and retrains it in an adapted form using the proposed
techniques. Table A.4.4 shows the detailed settings for training ERM models on the four datasets.
Note that for the NICO dataset, since the training data is limited, we did not use the training data
to train an ERM model; instead, we followed the setting in [183] to only initialize a model for the
later LBC training with ImageNet pre-trained weights. For fair comparison with existing methods,
we adopted ResNet-50 as the backbone for experiments on the Waterbirds and CelebA datasets and
adopted ResNet-18 as the backbone for experiments on the NICO and ImageNet-9 datasets. All
images are resized to 224× 224 resolution. Standard data augmentations, i.e., RandomResizedCrop
and RandomHorizontalFlip, were used in training these models. Models that achieved the best
validation accuracy were saved as the final ERM models.
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Training LBC Models

To train our LBC models, we used a stochastic gradient descent optimizer with a momentum of
0.9 and a weight decay of 10−4. The key hyperparameter settings and model selection criteria for
training on the Waterbirds, CelebA, NICO, and ImageNet-9 datasets are shown in Table A.4.5.
We used the ERM-trained models to initialize our LBC models. Standard data augmentations are
used during training. The pseudo unbiased validation accuracy exploits detected attributes and is
defined in Section 4.2.3. In each training epoch, we generated training batches by sampling with
replacement in case we could not find enough samples under our within- and cross-class balancing
techniques proposed in Section 4.2.3.

Time Costs for Extracting Attributes

The VLM and the attribute extractor are only used once for offline data preparation on the training
and validation splits of a dataset. The attribute extractor performs a single pass on the texts to
find informative words with a linear time complexity. Thus, the overall time complexity wouldn’t be
a major concern, compared with costly human annotations. Specifically, the total processing time
using ViT-GPT2 on a single NVIDIA RTX 8000 GPU for each of the datasets is in the table below.

Datasets Time
Waterbirds 9.7min
CelebA 4.6h
NICO 16.2min

ImageNet-9 1.5h

Table A.4.6: Time costs for extracting attributes from the four datasets.

Dataset Metric tanh(Abs(log(η))) tanh(log(η)) Abs(log(η)) log(η) Abs(δ) δ

Waterbirds

Pseudo unbiased
validation accuracy

95.1 94.3 94.9 95.0 94.7 94.4

Average test accuracy 93.2 89.8 91.3 92.2 92.1 91.0
Worst-group test accuracy 87.3 79.2 82.9 85.1 85.0 81.7

CelebA

Pseudo unbiased
validation accuracy

94.6 94.5 94.3 94.4 94.3 94.3

Average test accuracy 92.2 92.9 93.0 93.3 92.8 93.3
Worst-group test accuracy 81.2 78.1 79.1 79.7 80.8 78.8

Table A.4.7: Comparison between different designs of spuriousness scores. We ran experiments
using different scores for 5 times on the Waterbirds and CelebA datasets and calculated the average
performance under different metrics.

A.4.4 Attributes with High Spuriousness Scores

We give 10 spurious attributes with the highest spuriousness scores for each class of the CelebA,
NICO, and ImageNet-9 datasets. As discussed in Section 4.3.3 in the main paper, not all of these
attributes are self-explanatory; some of them may represent features that cannot be described by
themselves. In general, these spurious attributes are not directly related to their corresponding
classes.
CelebA.
Non-blond hair: sun, umbrella, pretty, flag, lady, sky, blonde, ear, long, tooth
Blond hair: apple, flag, right, animal, blow dryer, blow, dryer, bottle, hand, scarf.
NICO.
Dog : ground, snow, white, green, lush, road, grassy, grass, sheep, side.
Cat : food, painting, snow, feeder, yellow, bird feeder, wood, colorful, parrot, seagull.
Bear: grass, floor, animal, wire fence, bear, wire, person, hand, piece, branch.
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Bird : rock, bunch, grass, man, animal, bowl, large, room, chair, table.
Cow : snow, beach, brown, top, woman, field, sandy, back, white, people. Elephant : leave, river,
middle, tree, herd, man, stage, fence, body, baby elephant.
Horse: group, banana, window, rock, picture, pile, people, plate, face, sign.
Monkey : cat, beach, ground, hand, animal, snow, small, white, body, water.
Rat : elephant, snow, man, body, herd, cow, cattle, water, field, white.
Sheep: cement, bunch, plant, gray, wooden, banana, teddy, teddy bear, post, monkey.
ImageNet-9.
Dog : cell phone, phone, cell, right, desk, plant, cage, hand, picture, log.
Cat: dirt road, statue, road, dirt, laptop, man, woman, bear, cat, large.
Frog : woman, young, flower pot, boy, little, bunch, flower, girl, pot, body.
Turtle: painting, boat, group, leave, dead, pile, animal, body, picture, beach.
Bird : forest, mouth, middle, bird, white, duck, water, colorful, hummingbird, feeder
Primate: trash can, trash, collage, can, parrot, flock, air, squirrel, dirt road, baby.
Fish: fence, surfboard, shot, dog, right, person, fire hydrant, hydrant, fire, hand.
Crab: view, beach scene, scene, flower, group, people, body, close, water, bunch.
Insect : face, woman, front, knife, object, banana, hand, dog, person, animal.

A.4.5 Different Designs of Spuriousness Score

We show the performance comparison of six variants of spuriousness score on the Waterbirds and
CelebA datasets in Table A.4.7, where

δ =M(D(c,a)
tr ; fθ)−M(D(c,â)

tr ; fθ), (A.12)

η =M(D(c,a)
tr ; fθ)/M(D(c,â)

tr ; fθ), (A.13)

andM(·; ·) is the accuracy measure used in Equation (4.17). The models used for testing are selected
based on the pseudo unbiased validation accuracy defined in Section 4.2.3. We observe that taking

the simple difference between the accuracies M(D⟨c,a⟩
tr ; fθ) and M(D⟨c,â⟩

tr ; fθ)) is not as effective as
taking the logarithm of their ratio. Therefore, adding non-linearity into our design of spuriousness
score is beneficial. Moreover, tanh and Abs together further improve the average and worst-group
test accuracies of our proposed method on the Waterbirds dataset. On the CelebA dataset, the
default score, i.e., tanh(Abs(log(η))), achieves the best pseudo unbiased validation accuracy, which
favors a model that achieves the best worst-group test accuracy. Overall, our spuriousness score
works well with the pseudo unbiased validation accuracy in selecting a model that is most robust to
spurious correlations in terms of worst-group test accuracy and has competitive average performance.

A.4.6 Analysis Based on Spuriousness Score

We additionally show the spuriousness scores of the attributes detected within the non-blond and
blond classes in the CelebA dataset before (denoted as ERM) and after applying our proposed LBC.
The high maximum score in Figure A.4.3(b) shows that for the ERM model, predicting the blond
class heavily relies on spurious correlations, while predicting the non-blond class is relatively robust
to spurious correlations as the maximum score in Figure A.4.3(a) is small. This also aligns with our
empirical observation that the ERM model struggles in predicting the blond class. Figure A.4.3(c)
shows that some of the prediction behaviors (orange points) for predicting images from the blond
class are similar to those leading to the non-blond class, offering insights into why the ERM model
performs poorly on predicting the blond class.

After our LBC retraining, as shown in Figure A.4.3(e), the reliance on spurious correlations
is significantly reduced. However, as a side effect, the reliance on spurious correlations increases
for predicting the non-blond class, as observed in Figure A.4.3(d). As a result, for images in the
non-blond class, we observe dense clusters in Figure A.4.3(f) with each cluster representing similar
prediction behaviors which use certain spurious correlations for predictions. Interestingly, we observe
that images in the blond class are more concentrated in the spuriousness embedding space after
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our LBC retraining, indicating more consistent prediction behaviors on the class. This improved
consistency comes at the cost of increased inconsistency in the predictions of the non-blond class
images, as we observe that several non-blond class images (blue points) are close to the orange
cluster. Given that the non-blond class is the majority class, while the blond class is the minority
class, the increased consistency in predicting blond class images improves the performance on the
blond class images reflected by the increased worst-group accuracy. At the same time, the average
accuracy dominated by the non-blond class images decreases due to the increased inconsistency in
the predictions of the non-blond class images. This average and worst-group accuracy tradeoff is
commonly observed in Table 4.7 in the main paper across different methods, and our spuriousness
score can effectively reveal this tradeoff.

(a) Non-blond, ERM (b) Blond, ERM (c) ERM

(f) LBC(d) Non-blond, LBC (e) Blond, LBC

non-blond
blond

non-blond
blond

Figure A.4.3: (a) and (b): Spuriousness scores for the attributes detected from non-blond and blond
based on an ERM model. (d) and (e): Spuriousness scores based on our LBC model. (c) and
(f): Spurious embeddings of the images in the CelebA dataset based on the ERM and LBC model,
respectively.

A.4.7 Analysis on Using ERM-Trained Models

Our method starts training using the initialization of an ERM-trained model. To investigate how
different initializations affect the performance of our method, we tested three kinds of models used
by our method: (1) a randomly initialized model, (2) an ERM model trained from scratch, and
(3) an ERM model trained with ImageNet pre-trained weights. Table A.4.8 shows that LBC with
a randomly initialized model does not perform well on the three evaluation metrics, because the
randomly initialized model gives noisy information on the spuriousness of the detected attributes.
LBC with an ERM model trained from scratch performs better than the first one thanks to the
good initialization provided by the ERM-trained model. The ImageNet pre-trained weights contain
knowledge about recognizing multiple objects and patterns. Therefore, when the ERM model is
trained with ImageNet pre-trained weights, LBC performs the best on the three metrics.

A.4.8 Does the Performance Gain Come from the Attributes?

Since we used a VLM to detect attributes from training data, it is naturally to ask whether the
performance gain comes from the detected attributes. We showed that the performance gain mainly
comes from our proposed learning algorithm. Specifically, we added an additional layer after the
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Method ERM Model
ImageNet-9 ImageNet-A

Validation (↑) Unbiased (↑) Test (↑)
LBC Random initialization 46.38 43.92 15.73
LBC Trained from scratch 93.71 92.14 39.65

LBC
Trained with ImageNet
pre-trained weights

96.97 96.03 40.63

Table A.4.8: Performance comparison (%) between different choices of model initializations used in
our method LBC on the ImageNet-9 and ImageNet-A datasets.

backbone to predict attributes for each image, and we trained the whole model on the Waterbirds
and CelebA datasets, respectively. In other words, we added an additional attribute prediction loss
term in Equation (4.15) for each image. Essentially, the attributes act as a regularization for the
classifier. If the attributes contain information effective in improving a classifier’s robustness to
spurious correlations, we would observe improved performance after training.

The worst-group accuracies on the Waterbirds and CelebA datasets are 71.7% and 47.2%, re-
spectively. Although this approach is slightly better than ERM, but it falls far behind our proposed
LBC algorithm. Therefore, the detected attributes from the VLM alone do not contain information
effective for improving a classifier’s robustness to spurious correlations. In contrast, LBC directly
identifies highly dependent spurious attributes for a classifier and mitigates the classifier’s reliance
on them, effectively improving the classifier’s robustness to spurious correlations.
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A.5 Spuriousness-Aware Meta-Learning for Learning Ro-
bust Classifiers

A.5.1 Datasets

Table A.5.1 depicts detailed statistics for all datasets. For Waterbirds and CelebA datasets, we
give the number of training, validation, and test images in each group specified by classes and
attributes. For example, the group label (landbird, land) in the Waterbirds dataset has 3498 training
images which are all landbird and have land backgrounds. NICO provides context labels as spurious
attributes. ImageNet-9 and ImageNet-A datasets do not have clear group partitions specified by the
class and attribute associations.

Dataset
Number of
classes

⟨class, attribute⟩ Number of images

Train Val Test

Waterbirds 2

⟨landbird, land⟩ 3,498 467 2,255
⟨landbird, water⟩ 184 466 2,255
⟨waterbird, land⟩ 56 133 642
⟨waterbird, water⟩ 1,057 133 642

CelebA 2

⟨non-blond, female⟩ 71,629 8,535 9,767
⟨non-blond, male⟩ 66,874 8,276 7,535
⟨blond, female⟩ 22,880 2,874 2,480
⟨blond, male⟩ 1,387 182 180

NICO 10 ⟨object, context ⟩ 10298 642 894

ImageNet-9 9 - 54,600 2,100 -

ImageNet-A 9 - - - 1087

Table A.5.1: Detailed statistics of the 5 datasets. ⟨class, attribute⟩ represents a spurious correlation
between a class and a spurious attribute. “-” denotes not applicable.

Class
Contexts

Validation Test

dog running in street
cat on tree in street
bear on tree white
bird on shoulder in hand
cow spotted standing

elephant in circus in street
horse running in street

monkey climbing sitting
rat running in hole

sheep at sunset on road

Table A.5.2: Classes and their associated contexts in the NICO datasets. Contexts not shown in
the table are used in the training set.

NICO [148] is a real-world dataset for out-of-distribution robustness. We used its Animal subset
containing 10 object classes and 33 context labels. Following the setting in [186, 190], we split the
dataset into training, validation, and test sets with each set having unique contexts. Table A.5.2
gives the allocation of the contexts for the 10 classes.
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Dataset Learning rate
Learning rate
scheduler

Number of tasks
per epoch

Training epochs τ
Model selection

metric

Waterbirds 1e-3 Cosine Annealing 80 100 5 Accpu
CelebA 1e-3 Cosine Annealing 80 100 5 Accpu
NICO 5e-3 Cosine Annealing 80 50 10 Validation accuracy

ImageNet-9 1e-3 Cosine Annealing 80 50 50 Validation accuracy

Table A.5.3: Hyperparameter settings and model selection criteria for SPUME training on the
Waterbirds, CelebA, NICO, and ImageNet-9 datasets. Accpu denotes pseudo unbiased validation
accuracy.

The ImageNet-9 dataset [181] is a subset of ImageNet. It has 9 super-classes, i.e., Dog, Cat,
Frog, Turtle, Bird, Primate, Fish, Crab, Insect, which are obtained by merging similar classes from
ImageNet. ImageNet-A contains real-world images that are challenging to the image classifiers
trained on standard ImageNet. We extract images of the 9 super-classes from the ImageNet-A
dataset and use these images as the test data.

A.5.2 Experimental Details

VLM Settings. For both ViT-GPT2 and BLIP, we set the maximum length of the sequence to
be generated as 16 and the number of beams for beam search to 4.

Training Details. We initialize ResNet-50 and ResNet-18 using ImageNet pre-trained weights.
Standard data augmentations, i.e., RandomResizedCrop and RandomHorizontalFlip are used during
model training. We use an SDG optimizer with a momentum of 0.9 and a weight decay of 10−4

during meta-training. The detailed training configurations are shown in Table A.5.3.

A.5.3 Baselines

We briefly summarize and describe the baselines which are compared in the experiments:
Group DRO [3] proposes to train the models on the worst-case loss over a set of predefined groups.
ReBias [181] proposes a novel framework to train a de-biased representation by encouraging it to
be different from a set of biased representations.
REx [188] proposes a min-max algorithm to optimize for the worst linear combination of risks on
different environments.
LfF [33] proposes a failure-based debiasing scheme by training a pair of neural networks: the first
network to be biased by repeatedly amplifying its “prejudice” and debias the training of the second
network by focusing on samples that counter the first network.
CVaR DRO [171] is an algorithm for distributionally robust optimization of convex losses with
conditional value at risk (CVaR) and χ2 divergence uncertainty sets.
JTT [31] proposes a simple two-stage approach that first trains a standard ERM model and then
trains a second model by upweighting the training examples misclassified by the first model.
DFR [4] retrains the last linear layer on a small held-out dataset with balanced groups of data.
CaaM [182] learns causal features that are robust in any confounding context and self-annotates
the confounders in an unsupervised fashion.
LWBC / SSL+ERM [183] employs a committee of classifiers as an auxiliary module that identifies
bias-conflicting data and assigns large weights to them when training the main classifier. SSL+ERM
is another approach proposed in this paper that uses self-supervised representation as the frozen
backbone of the committee and the main classifier.
MaskTune [173] employs an interpretation-based masking strategy that mitigates over-reliance
on spurious features. It forces the trained model to explore new features during a single epoch
fine-tuning by masking previously discovered features.
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DivDis [172] is a simple two-stage framework for identifying and resolving ambiguity in data. It
first learns a diverse set of hypotheses and then disambiguates them by selecting one of the discovered
functions using additional information (e.g. target labels).
JiGen [111] jointly classifies objects and solves unsupervised jigsaw tasks.
Mixup [189] trains a neural network on convex combinations of pairs of examples and their labels
to alleviate memorization and sensitivity to adversarial examples in deep neural networks.
CNBB [148] is a non-independent and identically distributed (Non-I.I.D) learning method that is
based on batch balancing inspired by causal inference.
DecAug [186] proposes a semantic augmentation and feature decomposition approach to disentan-
gle context features from category-related features.
SIFER [187] automatically identifies and suppresses easily-computable spurious features in lower
layers of the network and allows the higher layers of the network to extract and utilize more mean-
ingful representations.

A.5.4 Analyzing the Effects of Using VLMs

Using the Outputs of VLMs as Regularization. We added a linear layer with weights WA ∈
R|A|×D and bias bA ∈ R|A| after the backbone to predict the detected attributes for each image,
i.e.,

θ̃ = argmin
θ

E(x,y)∈Dtr
ℓ(fθ(x), y) +

∑
a∈ψ(ϕ(x))

ℓ′(f ′θ′(x), a) (A.14)

where f ′θ′(x) = WAhθ1(x)+bA, and ℓ
′(·, ·) is the binary entropy loss function. We trained the whole

model on the Waterbirds and CelebA datasets, respectively. If the attributes contain information
effective in improving a classifier’s robustness to spurious correlations, we will observe improved
performance after training. However, the worst-group accuracies on the Waterbirds and CelebA
datasets are 71.7% and 47.2%, respectively, which are only slightly better than those of ERM and
fall far behind the results of SPUME. Therefore, the detected attributes from the VLM alone do not
contain information effective for improving a classifier’s robustness to spurious correlations.

Directly Using VLMs for Predictions. Although the goal of this paper is to learn a classic
and resource-light classifier that is robust to spurious correlations, we explored the scenario when
BLIP is directly used for prediction with modifications on the inference paradigm. Specifically, we
used text embeddings of the sentences with the template “a photo of class label” (“a person
with hair color hair” for CelebA) from BLIP as the classifier weights and calculated the cosine
similarity between an image embedding and these weights in the shared embedding space of BLIP.
We predicted the label such that its corresponding sentence has the highest similarity to the image
embedding. The worst group accuracies on the Waterbirds and CelebA datasets are 1.17% and
29.71% respectively. The average accuracies on the NICO, ImageNet-9, and ImageNet-A datasets
are 14.30%, 13.43%, and 9.20%, respectively. Directly using the VLM without carefully tuning
the inference pipeline performs much worse than our proposed method. In contrast, our proposed
method SPUME exploits the attributes provided by VLMs in a novel way for significant improvement
in the robustness of a classifier to spurious correlations.
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A.6 ShortcutProbe: Probing Prediction Shortcuts for Learn-
ing Robust Models

A.6.1 Proof of Proposition 1

The proposition uses the result from Lemma 1 in our main paper, which is a restatement of
Equation (4.4) in [191]. To prove the proposition, we first show that OO = O. Note that
O = I−VT (VVT )−1V, thus we have

OO =
(
I−VT (VVT )−1V

)(
I−VT (VVT )−1V

)
= I− 2VT (VVT )−1V +VT (VVT )−1V

= I−VT (VVT )−1V = O. (A.15)

Next, we expand φ(x̃)TOφ(x) as follows

φ(x̃)TOφ(x) = φ(x̃)TOOφ(x) (A.16)

= (Oφ(x̃))T (Oφ(x)) (A.17)

≤ ∥Oφ(x̃)∥2∥Oφ(x)∥2, (A.18)

where Equation (A.17) uses the fact that OT = O, and (A.18) is the result of Cauchy–Schwarz
inequality.

The inequality (A.18) holds in general. However, the equality actually holds in our setting. To
show this, we need to prove that the vectors Oφ(x̃) and Oφ(x) are independent. We first note
that a spurious sample x̃ is independent of an original sample x. For example, in the Waterbirds
dataset [3], let x̃ represent an image showing only a water background, and x̃ is independent of
x, as x̃ may be obtained by removing core objects from images of landbirds or waterbirds with
waterbird backgrounds. Thus, the corresponding feature vectors φ(x) and φ(x̃) are independent.
If we assume that Oφ(x) and Oφ(x̃) are dependent with Oφ(x) = ηOφ(x̃), where η is a non-zero
constant, then we have φ(x) = ηO−1Oφ(x̃) = ηφ(x̃), which contradicts the fact that φ(x) and
φ(x̃) are independent. Therefore, Oφ(x) and Oφ(x̃) are independent. Consequently, we have the
following equality,

φ(x̃)TOφ(x) = ∥Oφ(x̃)∥2∥Oφ(x)∥2. (A.19)

Finally, we reinterpret the feature alignment γφ as follows,

γφ = Ex̃,x
[φ(x̃)TOφ(x)
∥Oφ(x)∥22

]
(A.20)

= Ex̃,x
[∥Oφ(x̃)∥2 · ∥Oφ(x)∥2
∥Oφ(x)∥2 · ∥Oφ(x)∥2

]
(A.21)

=
Ex̃[∥Oφ(x̃)∥2]
Ex[∥Oφ(x)∥2]

, (A.22)

where Equation (A.22) results from the fact that the random variables x and x̃ are independent.

A.6.2 Learning Algorithm

We show the detailed training process of our proposed method, ShortcutProbe, in Algorithm 5. The
algorithm is a two-step procedure. In the first step, we train a shortcut detector, and in the second
step, we use the prediction shortcuts detected by the shortcut detector to mitigate spurious biases
in the model.

Complexity Analysis. Given that the time complexity for obtaining Dycor, Dypre, and Dymis is
Cdata, the time complexity for each batch update during the shortcut detector training is Cdet,
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Algorithm 5 ShortcutProbe

Input: Probe set Dprob, parameters of an ERM-trained model θ including θ1 of the feature extractor
and θ2 of the classifier, parameters of the shortcut detector ψ = A with K base vectors, batch size
B, number of batches per epoch NB , number of training epochs for the first step E1, learning rate
α used in the first step, number of training epochs for the second step E2, learning rate β used in
the second step, regularization strengths η and λ.
Output: the classifier’s weights θ2

1: Obtain Dycor, Dypre, and D
y
mis for each class y from Dprob using Equation (5.2) and Equation (5.3),

respectively
2: //Learn shortcut detector
3: for e = 1, . . . , E1 do
4: for b = 1, . . . , NB do
5: Sample Bycor ⊂ Dycor and Bypre ⊂ Dypre, ∀y ∈ Y, with |Bycor| = |Bypre| and

∑
y∈Y(|Bypre| +

|Bycor|) = B
6: Calculate ψ = ψ − α∇ψ(Ldet + ηLreg) using Bycor and Bypre
7: end for
8: end for
9: //Mitigate spurious biases

10: for e = 1, · · · , E2 do
11: for b = 1, · · · , NB do
12: Sample Bycor ⊂ Dycor and Bymis ⊂ D

y
mis, ∀y ∈ Y, with |Bycor| = |B

y
mis| and

∑
y∈Y(|B

y
mis| +

|Bycor|) = B
13: Calculate θ2 = θ2 − β∇θ2λLori/Lspu using Bycor and B

y
mis

14: end for
15: end for
16: return θ2

and the time complexity for each batch update during classifier retraining is Cret, the overall time
complexity is O(Cdata + E1NBCdet + E2NBCret).

Notably, the sets Dycor, Dypre, and Dymis can be precomputed before training and need to be
constructed only once, allowing Cdata to be omitted once these sets are available. Additionally,
Cdet and Cret are typically very small due to the lightweight design of the shortcut detector and the
retraining process, which only involves the model’s final linear layer. Consequently, ShortcutProbe is
highly computation-efficient. We provide a run-time comparison between different debiasing methods
in Table A.6.1 below.

JTT DFR AFR ShortcutProbe
1440 162 230 210

Table A.6.1: Training time (s) comparison on the Waterbirds dataset.

A.6.3 Datasets

Table A.6.2 gives detailed statistics for all the eight datasets. We give the number of training,
validation, and test images in each group specified by classes and attributes for the Waterbirds,
CelebA, MultiNLI, and CivilComments datasets. For example, the group label ⟨landbird, land⟩ in
the Waterbirds dataset has 3498 training images which are all landbirds and have land backgrounds.

NICO [148] is a real-world dataset for evaluating a method’s out-of-distribution generalization
performance. NICO provides context labels as spurious attributes. We used its Animal subset
containing 10 object classes and 33 context labels. Following the setting in [186, 190], we split the
dataset into training, validation, and test sets with each set having unique contexts. Table A.6.3
gives the allocation of the contexts for the 10 classes.
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Dataset
Number of
classes

⟨class, attribute⟩ Number of images

Train Val Test

Waterbirds [3] 2

⟨landbird, land⟩ 3,498 467 2,255
⟨landbird, water⟩ 184 466 2,255
⟨waterbird, land⟩ 56 133 642
⟨waterbird, water⟩ 1,057 133 642

CelebA [149] 2

⟨non-blond, female⟩ 71,629 8,535 9,767
⟨non-blond, male⟩ 66,874 8,276 7,535
⟨blond, female⟩ 22,880 2,874 2,480
⟨blond, male⟩ 1,387 182 180

NICO [148] 10 ⟨object, context ⟩ 10298 642 894

ImageNet-9 [185] 9 N/A 54,600 2,100 N/A
ImageNet-A [176] 9 N/A N/A N/A 1087

CheXpert [192] 2 ⟨diagnose, race+gender ⟩ 167093 22280 33419

MultiNLI [194] 3

⟨contradiction, no negation⟩ 57498 22814 34597
⟨contradiction, negation⟩ 11158 4634 6655
⟨entailment , no negation⟩ 67376 26949 40496
⟨entailment, negation⟩ 1521 613 886
⟨neither, no negation⟩ 66630 26655 39930
⟨neither, negation⟩ 1992 797 1148

CivilComments [195] 2

⟨neutral , no identity⟩ 148186 25159 74780
⟨neutral , identity⟩ 90337 14966 43778
⟨toxic , no identity⟩ 12731 2111 6455
⟨toxic , identity⟩ 17784 2944 8769

Table A.6.2: Detailed statistics of the 8 datasets. ⟨class, attribute⟩ represents a spurious correlation
between a class and a spurious attribute. “N/A” denotes not applicable.

ImageNet-9 [181] is a subset of ImageNet, and ImageNet-A contains real-world images that are
challenging to the image classifiers trained on standard ImageNet. Both datasets do not have clear
group partitions specified by the class and attribute associations. ImageNet-9 has 9 super-classes,
i.e., Dog, Cat, Frog, Turtle, Bird, Primate, Fish, Crab, Insect, obtained by merging similar classes
from ImageNet. We extract images of the 9 super-classes from the ImageNet-A dataset and use
these images for testing.

The CheXpert dataset [192] is a chest X-ray dataset from the Stanford University Medical center.
There are six spurious attributes in the dataset, each of them is the combination of race (White,
Black, Other) and gender (Male, Female). Two diagnose results, i.e., “No Finding” (positive) and
“Finding” (negative) are the labels.

A.6.4 Training Details

ERM Training. This step trains ERM models which serve as the base models used in our frame-
work for detecting prediction shortcuts and mitigating spurious biases. The training hyperparame-
ters as well as the optimizer and learning rate scheduler used for each dataset are given in Table A.6.4.
For vision models, we initialized them with ImageNet-pretrained weights. For text models, we ini-
tialized them with weights pretrained on Book Corpus and English Wikipedia data.

Training ShortcutProbe Models. We provide hyperparameter settings for the experiments on
the Waterbirds, CelebA, CheXpert, MultiNLI, CivilComments, ImageNet-9, and NICO datasets
in Table A.6.5. We used an SGD optimizer with a momentum of 0.9 and a weight decay of
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Class
Contexts

Validation Test

dog running in street
cat on tree in street
bear on tree white
bird on shoulder in hand
cow spotted standing

elephant in circus in street
horse running in street

monkey climbing sitting
rat running in hole

sheep at sunset on road

Table A.6.3: Classes and their associated contexts in the NICO datasets. Contexts not shown in
the table are used in the training set.

Dataset Batch size Epochs Initial learning rate Weight decay Learning rate scheduler Optimizer

Waterbirds 32 100 0.003 0.0001 CosineAnnealing SGD
CelebA 128 20 0.003 0.0001 CosineAnnealing SGD

CheXpert 128 20 0.003 0.0001 CosineAnnealing SGD
MultiNLI 16 10 0.00001 0.0001 Linear AdamW

CivilComments 16 10 0.00001 0.0001 Linear AdamW
NICO 128 100 0.003 0.0001 CosineAnnealing SGD

ImageNet-9 128 100 0.003 0.0001 CosineAnnealing SGD

Table A.6.4: Training settings for training ERM models on different datasets.

1× 10−4 in training the shortcut detector and retraining the classifier. We chose K from {2, 4, 6, 8},
η from {0.1, 1.0, 5.0, 10.0}, λ from {0.1, 1.0, 5.0, 10.0, 50.0}, and NB from {50, 100, 200}, β from
{0.0001, 0.0005, 0.001, 0.003, 0.01}, and r from {0.1, 0.2, 0.3, 0.4, 0.5}. We selected the best hyper-
parameters based on the performance on the whole validation set if the training data was used to
construct the probe set or the remaining validation set if part of the validation set was used for the
construction. The remaining hyperparameters were determined based on our empirical observations
considering both dataset size and the convergence of training.

Training Baseline Models. For JTT [31], we combined the training data with half of the vali-
dation data to create a new training set for training JTT models. For DFR [4] and AFR [32], we
applied these methods to the same ERM-trained model to ensure a fair comparison. We adhered to
the hyperparameter settings recommended in the respective original papers.

A.6.5 Additional Results

ImageNet-9 and ImageNet-A. We presents performance comparison on the ImageNet-9 and
ImageNet-A datasets in Table A.6.7. The validation accuracy measures the in-distribution per-
formance of a model, while the accuracy gap measures the performance drop from ImageNet-9 to
ImageNet-A. Images in the ImageNet-A dataset represent distribution shifts from the training im-
ages in the ImageNet-9 dataset. Thus, the accuracy on the ImageNet-A dataset measures a model’s
performance under distribution shifts. As shown in Table A.6.7, our method achieves the best on
the ImageNet-A dataset, demonstrating its robustness to distribution shifts. It also exhibits a good
tradeoff between in-distribution and out-of-distribution performance by achieving the best accuracy
gap.
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Dataset K η λ E1 E2 B NB α β r

Waterbirds 2 5.0 5.0 50 50 32 200 0.0001 0.001 0.3
CelebA 2 5.0 5.0 50 50 128 100 0.0001 0.001 0.1

CheXpert 6 10.0 50.0 50 50 128 50 0.0001 0.003 0.1
MultiNLI 2 5.0 5.0 50 50 128 100 0.0001 0.001 0.1

CivilComments 6 1.0 1.0 50 50 128 100 0.0001 0.003 0.1
NICO 8 1.0 1.0 50 50 128 200 0.0001 0.001 -

ImageNet-9 4 1.0 1.0 50 50 128 200 0.0001 0.001 -

Table A.6.5: Hyperparameter settings for experiments on the seven datasets. K: number of base
vectors; η: regularization strength for the semantic similarity constraint in Equation (5.5); λ: regu-
larization strength used in the training objective in Equation (5.10); E1: number of training epochs
for learning the shortcut detector; E2: number of training epochs for retraining the classifier; B:
batch size; NB : number of batches sampled in each epoch; α: learning rate for learning the shortcut
detector; β: learning rate for retraining the classifier; r: proportion of samples used to construct the
probe set. When r is not specified (“-”), it means using the training data to construct the probe set.

ResNet-152 and ViT Backbones. Our method can be easily applied to larger backbone net-
works beyond ResNet-50, such as ResNet-152 and ViT. We evaluated our method with ResNet-152
and ViT-B/32 on three vision datasets and provide a performance comparison with baseline methods
in Table A.6.6 below. We observe that our method remains highly effective on large-scale models.

Backbone Method Waterbirds CelebA Chexpert

ResNet-152

ERM 17.4 60.6 18.6
DFR 30.3 68.3 66.0
AFR 31.4 70.7 63.8
Ours 34.7 80.0 68.3

ViT-B/32

ERM 69.5 52.2 20.9
DFR 87.6 63.0 73.4
AFR 86.6 79.5 64.5
Ours 88.0 83.7 75.1

Table A.6.6: Comparison of worst-group accuracy (%) across last-layer retraining methods using
ResNet-152 and ViT backbones.

A.6.6 Qualitative Analysis of Learned Prediction Shortcuts

To qualitatively analyze the detected prediction shortcuts, we aim to interpret the learned base
vectors in the matrix A, as prediction shortcuts are obtained by linearly combining these vectors.
To achieve this, for each base vector, we gave the top-5 images whose prediction shortcuts are
most similar to the base vector. Specifically, for each learned base vector, we first calculated the
embeddings of training samples, and following Equation (5.1), we extracted prediction shortcuts in
those samples as projected vectors by projecting the embeddings to the subspace spanned by the
learned base vectors. We ranked the images based on the similarity of their prediction shortcuts to
the base vector. A large similarity score signals a strong existence of the feature the base vector
represents in the corresponding image.

As shown in Figure A.6.1(a), on the Waterbirds dataset, the two learned base vectors are most
similar to images with land backgrounds and water backgrounds, respectively. In Figure A.6.1(b),
the two learned base vectors are most similar to images of male celebrities and female celebrities,
respectively. These results show that our shortcut detector can learn spurious attributes that well
align with the biases in the datasets which models tend to capture during training.
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Method ImageNet-9 (↑) ImageNet-A (↑) Acc. gap (↓)
ERM 90.8±0.6 24.9±1.1 65.9
ReBias [181] 91.9±1.7 29.6±1.6 62.3
LfF [33] 86.0 24.6 61.4
CaaM [182] 95.7 32.8 62.9
SSL+ERM [183] 94.2±0.1 34.2±0.5 60
LWBC[183] 94.0±0.2 36.0±0.5 58
SIFER [187] 97.8±0.1 40.0±0.8 57.8
ShortcutProbe (Ours) 96.9±0.2 45.3±1.2 51.6

Table A.6.7: Comparison of average accuracy (%) and accuracy gap (%) on the ImageNet-9 and
ImageNet-A datasets.

base vector 1

base vector 2

(b) CelebA 

(a) Waterbirds 

base vector 1

base vector 2

Figure A.6.1: Visualization of the top-5 images that are most similar to the learned base vectors
from the (a) Waterbirds and (b) CelebA datasets.
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A.7 NeuronTune: Towards Self-Guided Spurious Bias Miti-
gation

The appendix is organized as follows:

• Section A.7.1: Details of the Synthetic Experiment

• Section A.7.2: Theoretical Analysis

– Section A.7.2: Preliminary

– Section A.7.2: Proof of Lemma 1

– Section A.7.2: Proof of Corollary 1

– Section A.7.2: Proof of Proposition 5.2

– Section A.7.2: Proof of Theorem 5.1

– Section A.7.2: Proof of Theorem 5.2

– Section A.7.2: Proof of Lemma 2

– Section A.7.2: Proof of Lemma 3

• Section A.7.3: Connection to Last-Layer Retraining Methods

• Section A.7.4: Comparison between Models Selected with Worst-Class Accuracy

• Section A.7.5: Complexity Analysis

• Section A.7.6: Advantages over Variable Selection Methods

• Section A.7.7: Dataset Details

• Section A.7.8: Training Details

• Section A.7.9: Visualizations on Biased and Unbiased dimensions

A.7.1 Details of the Synthetic Experiment

Data Model. Without loss of generality, we considered an input v ∈ R3 to simulate a latent
embedding before the last prediction layer, which consists of three dimensions: a core dimension
with the core component vc ∈ R, a spurious dimension with the spurious component vs ∈ R, and
a noise dimension with the noise component vϵ. We considered a dataset Dsyn = {(vi, yi)}Ni=1 of
N sample-label pairs, where yi ∈ {−1,+1}, vci = yi + nc, and vϵ and nc are zero-mean Gaussian
noises with variances σ2

ϵ and σ2
c , respectively. When yi = −1, vsi = 0 + ns with the probability α

and vsi = 1 + ns with the probability 1− α; when yi = +1, vsi = 1 + ns with the probability α and
vsi = 0 + ns with the probability 1− α, where ns is an independent zero-mean Gaussian noise with
the variance σ2

s . To facilitate developing the spurious bias of using the correlation between vsi and yi
for predictions, we generated a training set Dsyn

train with easy-to-learn spurious attributes by setting
σ2
c > σ2

s and α ≈ 1 [169]. Thus, the correlations between vsi and yi are predictive of αN labels. To
demonstrate, we set σ2

c = 0.6, σ2
s = 0.1, σ2

ϵ = 0.1, α = 0.95, and N = 5000. We generated a test set
Dsyn

test with the same set of parameters except α = 0.1. Now, spurious correlations between vsi and yi
are only predictive of a small portion of the test samples. Figure 5.5 shows four data groups along
with their respective proportions in each class.

Classification Model. We considered a logistic regression model ϕw̃(v) = 1/(1+exp{−(wTv+
b)}), where w̃ = [w, b]. The model predicts +1 when ϕw̃(v) > 0.5 and −1 otherwise. We trained
ϕw̃ on Dsyn

train and tested it on Dsyn
test.

Spurious Bias. We observed a high average accuracy of 95.4% but a WGA of 66.2% (Figure
5.5(a) in the main paper) on the training data. The results show that the model heavily relies on the
correlations that exist in the majority of samples and exhibits strong spurious bias. As expected,
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the performance on the test data is significantly lower (Figure 5.5(a), right). The decision boundary
(Figure 5.5(a), black lines) learned from the training data does not generalize to the test data.

Mitigation Strategy. Without group labels, it is challenging to identify and mitigate spurious
bias in the model. We tackled this challenge by first finding that the distributions of values of an
input dimension, together with the prediction outcomes for a certain class, provide discriminative
information regarding the spuriousness of the dimension. (1) When the values for misclassified
samples at the dimension are high, while values for the correctly predicted samples are low, this
indicates that the absence of the dimension input does not significantly affect the correctness of
predictions, while the presence of the dimension input does not generalize to certain groups of data.
Therefore, the dimension tends to be a biased dimension. The plots in Figure 5.5(b) illustrate the
value distributions of the first and second dimensions of input embeddings when yi = −1. (2) In
contrast, if the absence of the dimension input results in misclassification, then the dimension tends
to represent a core attribute. The left plot of Figure 5.5(b) represents the first dimension of input
embeddings when yi = −1. Next, we retrained the model while suppressing the second and third
dimensions. As a result, the retrained model has learned to balance its performance on both the
training and test data with a significant increase in WGA on the test data (Figure 5.5(c)).

A.7.2 Theoretical Analysis

Preliminary

For the ease of readability, we restate the data model specified by (5.14) and (5.15) in the following

x = xcore ⊕ xspu ∈ RD×1, y = βTxcore + εcore, (A.23)

and
xspu = (2a− 1)γy + εspu, a ∼ Bern(p), (A.24)

where (2a − 1) ∈ {−1,+1}, a ∼ Bern(p) is a Bernoulli random variable, p is close to 1, εcore is
a zero-mean Gaussian random variable with the variance η2core, and each element in εspu follows
a zero-mean Gaussian distribution with the variance η2spu. We set η2core ≫ η2spu to facilitate the

learning of spurious attributes. The model f(x) = bTWx in Section 5.2.3 can be further expressed
as follows,

ŷ =

M∑
i=1

bi(x
T
corewcore,i + xTspuwspu,i) = xTcoreucore + xTspuuspu, (A.25)

where wT
i ∈ R1×D is the i’th row of W, wT

i = [wT
core,i,w

T
spu,i] with wcore,i ∈ RD1×1 and wspu,i ∈

RD2×1, ucore =
∑M
i=1 biwcore,i, and uspu =

∑M
i=1 biwspu,i. The loss function which we use to optimize

W and b is

ℓtr(W,b) =
1

2
E(x,y)∈Dtrain

∥f(x)− y∥22. (A.26)

With the above definitions, the following lemma gives the optimal coefficients u∗
core and u∗

spu based
on the training data.

Proof of Lemma 1

Lemma 1. Given a training dataset Dtrain with p defined in (A.24) satisfying 1 ≥ p ≫ 0.5, the
optimized weights in the form of u∗

core and u∗
spu are

u∗
core =

(2− 2p)η2core + η2spu
η2core + η2spu

β, (A.27)

and

u∗
spu =

(2p− 1)η2core
η2core + η2spu

γ, (A.28)
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respectively. When p = 0.5, the training data is unbiased and we obtain an unbiased classifier with
weights u∗

core = β and u∗
spu = 0.

Proof. Note that f(x) = bTWx = xTv = xTcoreucore + xTspuuspu, then we have

ℓtr(W, b) =
1

2
E∥xTcoreucore + xTspuuspu − y∥22 (A.29)

=
1

2
E∥xTcoreucore +

[
(2a− 1)γy + εspu

]T
uspu − y∥22 (A.30)

=
1

2
E∥xTcoreucore −

[
1− (2a− 1)γTuspu

]
y∥22 +

1

2
η2spu∥uspu∥22 (A.31)

=
1

2
(pE1 + (1− p)E2) +

1

2
η2spu∥uspu∥22, (A.32)

where E1 = ∥xTcoreucore− (1−γTuspu)y∥22 when a = 1 and E2 = ∥xTcoreucore− (1+γTuspu)y∥22 when
a = 0. We first calculate the lower bound for E1 as follows

E1 = E∥xTcoreucore − (1− γTuspu)(β
Txcore + εcore)∥22 (A.33)

= E∥xTcoreucore − (1− γTuspu)β
Txcore + (1− γTuspu)εcore)∥22 (A.34)

= E∥xTcoreucore − (1− γTuspu)β
Txcore∥22 + η2core(1− γTuspu)

2 (A.35)

≥ η2core(1− γTuspu)
2. (A.36)

Similarly, we have

E2 = E∥xTcoreucore − (1 + γTuspu)(β
Txcore + εcore)∥22 (A.37)

= E∥xTcoreucore − (1 + γTuspu)β
Txcore∥22 + η2core(1 + γ

Tuspu)
2 (A.38)

≥ η2core(1 + γTuspu)
2. (A.39)

Then, plug in (A.36) and (A.39) into (A.32), we obtain the following

ℓtr(W, b) ≥
1

2

(
pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥uspu∥22

)
(A.40)

=
1

2

(
pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥γ∥22∥uspu∥22

)
(A.41)

≥ 1

2

(
pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥γTuspu∥22

)
, (A.42)

where (A.41) uses the fact that γ has a unit norm, and the inequality (A.42) exploits the
Cauchy–Schwarz inequality. Let z = γTuspu, we have ℓ(z) = pη2core(1 − z)2 + (1 − p)η2core(1 +

z)2 + η2spuz
2. Let ∂ℓ(z)

∂z = 0, we obtain

z∗ = γTu∗
spu =

(2p− 1)η2core
η2core + η2spu

.

Given u∗
spu, we can obtain the optimal u′

core for minimizing E1 in (A.35) as u′
core = (1 − z∗)β;

similarly, we can obtain the optimal u
′′

core for minimizing E2 in (A.38) as u
′′

core = (1 + z∗)β. Via
proof by contradiction, only u′

core or u
′′

core is the solution for u∗
core. Since p≫ 0.5, E1 contributes to

the majority error of (A.35). Thus, u∗
core = (1− z∗)β, i.e.,

u∗
core = (1− z∗)β =

(2− 2p)η2core + η2spu
η2core + η2spu

β.
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Proof of Corollary 1

Lemma 1 gives the optimal model weights under a given training dataset Dtrain with the parameter
p controlling the strength of spurious correlations. Lemma 1 generalizes the result in [199] where
p = 1. Importantly, we obtain the following corollary for unbiased models:

Corollary 1. The unbiased model f(x) = uTx = xTcoreucore + xTspuuspu is achieved when ucore =

u∗
core and γTuspu = 0.

Proof. Plug γTucore = 0 into (A.35) and (A.38), then we observe that ucore minimizes errors from
both the majority (a = 1) and minority (a = 0) groups of data.

If we could obtain a set of unbiased training data with p = 0.5, then we obtain an unbiased model
with u∗

spu = 0 and u∗
core = β. However, in practice, it is challenging to obtain a set of unbiased

training data, i.e., it is challenging to control the value of p.

Proof of Proposition 5.2

Proposition 5.2 (Principle of NeuronTune). Given the model f(x) = bTWx trained with data
generated under the data model specified in (A.23) and (A.24), it captures spurious correlations
when γTwspu,i < 0, i ∈ {1, . . . ,M}. The principle of NeuronTune is to suppress neurons containing
negative γTwspu,i.

Proof. Consider the i’th neuron ei (i = 1, . . . ,M) before the last layer. We first expand it based on
our data model specified by (A.23) and (A.24) as follows:

ei = xTcorewcore,i + xTspuwspu,i (A.43)

= xTcorewcore,i + [(2a− 1)γy + εspu]
Twspu,i (A.44)

= xTcorewcore,i + (2a− 1)[βTxcore + εcore]γ
Twspu,i + ε

T
spuwspu,i (A.45)

= xTcorewcore,i + (2a− 1)βTxcoreγ
Twspu,i + εrem, (A.46)

where εrem = εcoreγ
Twspu,i+ ε

T
spuwspu,i. In (A.46), if γTwspu,i ≥ 0, the model handles the spurious

component correctly. Specifically, when a = 1, the spurious component positively correlates with
the core component and contributes to the output, whereas when a = 0, its correlation with the core
component breaks with a negative one and has a negative contribution to the output. In contrast,
if γTwspu,i < 0 and a = 1, then the model still utilizes the spurious component even the correlation
breaks, demonstrating a strong reliance on the spurious component instead of the core component.
Therefore, the principle of selective activation is to find neurons containing negative γTwspu,i so
that suppress them improves the model’s generalization.

Proof of Theorem 5.1

The following theorem validates our neuron selection method.

Theorem 5.1 (Metric for Neuron Selection). Given the model f(x) = bTWx, we cast it to
a classification model by training it to regress y ∈ {−µ, µ} (µ > 0) on x based on the data model
specified in (A.23) and (A.24), where µ = E[βTxcore]. The metric δyi defined in the following can
identify neurons with spurious correlations when δyi > 0:

δyi = Med(V̄yi )−Med(V̂yi ),

where V̄yi and V̂yi are the sets of activation values for misclassified and correctly predicted samples
with the label y from the i’th neuron, respectively; an activation value is defined as xTcorewcore,i +
xTspuwspu,i; and Med(·) returns the median of an input set of values.
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Proof. We start by obtaining the set of correctly predicted samples D̂y and the set of incorrectly

predicted samples D̄y as D̂y = {x|f(x) ≥ 0, (x, y) ∈ DIde} and D̄y = {x|f(x) < 0, (x, y) ∈ DIde},
where DIde is the set of identification data. Then, we have V̂yi = {ei|x ∈ D̂y}, and V̄yi = {ei|x ∈ D̄y},
where ei is the i’th neuron activation defined in (A.46). Expanding ei following (A.46), we obtain

ei = xTcorewcore,i + (2a− 1)βTxcoreγ
Twspu,i + εrem.

Note that xTcorewcore,i and εrem exist for all the samples, regardless of the ultimate prediction results,
and all ei follows a Gaussian distribution given a. Then, among all the correctly predicted samples
with the label y, according the Lemma 2, we have Med(V̂yi ) ≈ E[xTcorewcore,i]+µγ

Twspu,i. Similarly,
among all the incorrectly predicted samples with the label y, we have Med(V̄yi ) ≈ E[xTcorewcore,i]−
µγTwspu,i. Then, the difference between the two is

δyi ≈ −2µγ
Twspu,i.

When δyi > 0, we have γTwspu,i < 0. According Proposition 5.2, using δyi > 0 indeed selects neurons
that have strong reliance on spurious components.

Proof of Theorem 5.2

Theorem 5.2 (NeuronTune Mitigates Spurious Bias). Consider the model f∗(x) = xTu∗

trained on the biased training data with p≫ 0.5, with u∗
core and u∗

spu defined in (A.27) and (A.28),

respectively. Under the mild assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M , then applying
NeuronTune to f∗(x) produces a model that is closer to the unbiased one.

Proof. Consider f∗(x) as the base model. We aim to prove that the retrained model obtained with
NeuronTune produces model parameters that is closer to the unbiased model defined in Corollary 1
than the base model.

First, the assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M generally holds for a biased
model as the model has learned to associate spurious attributes with the core attributes.

Then, we denote the retrained parameters obtained with NeuronTune as u†
core and u†

spu. We

start with calculating u†
spu. Focusing on (A.42) and following the derivation in Lemma 1, we obtain

u†
spu =

∑
i∈I+

biwspu,i = u∗
spu, where I+ denotes the set of neuron indexes satisfying γTwspu,i > 0.

Note that NeuronTune is a last-layer retraining method; thus we only optimize bi here and wspu,i is
the same as in f∗(x). Left multiplying u†

spu with γT , we have

γTu†
spu =

∑
i∈I+

b†iγ
Twspu,i (A.47)

= z∗ =
(2p− 1)η2core
η2core + η2spu

> 0.

Note that γTwspu,i > 0, ∀i ∈ I+ because of NeuronTune. Hence, we have b†i > 0, ∀i ∈ I+.
Moreover, we observe that u†

spu is the same as u∗
spu as long as I+ is non-empty. This shows that

NeuronTune is not able to optimize parameters related to the spurious components in the input
data.

According to the Corollary 1, the unbiased model is achieved when p = 0.5 and ucore = β. The
Euclidean distance between β and the biased solution ucore = (1− z∗)β is ∥u∗

core − β∥ = z∗. Based
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on (A.47), we estimate the distance between our NeuronTune solution u†
core and β as follows

∥u†
core − β∥2 = ∥βT (u†

core − β)∥2 (A.48)

= ∥βTu†
core − 1∥2 (A.49)

= ∥
∑
i∈I+

b†iβ
Twcore,i − 1∥2 (A.50)

≈ ∥
∑
i∈I+

b†iγ
Twspu,i − 1∥2 (A.51)

= ∥z∗ − 1∥, (A.52)

where (A.49) uses the fact that βTβ = 1, and (A.50) uses the condition βTwcore,i ≈ γTwspu,i,∀i =
1, . . . ,M . Note that z∗ is achieved on the training data with p ≫ 0.5 and η2core ≫ η2spu, hence we

have z∗ ≈ 1 and ∥u†
core − β∥2 ≈ 0. In other words, NeuronTune can bring model parameters closer

to the optimal and unbiased solution than the parameters of the biased model.

Proof of Lemma 2

Lemma 2 (Majority of Samples among Different Predictions). Given the model f(x) =
bTWx trained on y ∈ {−µ, µ} (µ > 0) with µ = E[βTxcore], and the conditions that p > 3/4 and
η2core ≫ η2spu, we have the following claims:

• Among the set of all correctly predicted samples with the label y, more than half of them are
generated with a = 1;

• Among the set of all incorrectly predicted samples with the label y, more than half of them
are generated with a = 0.

Proof. With the two regression targets, −µ and µ, the optimal decision boundary is 0. Without loss
of generality, we consider y = µ. Then, the set of correctly predicted samples D̂y is

D̂y = {x|f(x) ≥ 0, (x, y) ∈ DIde},

and the set of incorrectly predicted samples D̂y is

D̄y = {x|f(x) < 0, (x, y) ∈ DIde}.

The probability of a sample with the label y that is correctly predicted is

P (x ∈ D̂y|y) = P (a = 1)P (f(x) ≥ 0|a = 1, y) + P (a = 0)P (f(x) ≥ 0|a = 0, y)

= pP (f(x) ≥ 0|a = 1, y) + (1− p)P (f(x) ≥ 0|a = 0, y).

Similarly, the probability of a sample with the label y that is incorrectly predicted is

P (x ∈ D̄y|y) = pP (f(x) < 0|a = 1, y) + (1− p)P (f(x) < 0|a = 0, y).

To calculate P (f(x) ≥ 0|a = 1, y), we expand f(x) as follows:

f(x) = xTcoreu
∗
core + xTspuu

∗
spu

= xTcoreβ(1− z∗) + (γ(βTxcore + εcore) + εspu)
Tu∗

spu

= xTcoreβ(1− z∗) + xTcoreβγ
Tu∗

spu + γTu∗
spuεcore + ε

T
spuu

∗
spu

= xTcoreβ + z∗εcore + ε
T
spuu

∗
spu
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The output of f(x) follows a Gaussian distribution, with the mean µ1 = E[f(x)] = µ, and the
variance σ2

1 = V ar(xTcoreβ) + η2core(z
∗)2 + η2spu(z

∗)2. Therefore, we have

P (f(x) ≥ 0|a = 1, y) = P (x ∈ D̂y|a = 1, y) = 1− Φ(
0− µ
σ1

) = Φ(
µ

σ1
), (A.53)

P (f(x) < 0|a = 1, y) = P (x ∈ D̄y|a = 1, y) = 1− Φ(
µ

σ1
) = Φ(

−µ
σ1

). (A.54)

Similarly, to calculate P (f(x) ≥ 0|a = 0, y), we expand f(x) as follows:

f(x) = xTcoreβ(1− z∗)− xTcoreβγ
Tu∗

spu − γTu∗
spuεcore + ε

T
spuu

∗
spu

= xTcoreβ(1− 2z∗)− z∗εcore + εTspuu∗
spu.

The output of f(x) follows a Gaussian distribution, with the mean µ0 = E[f(x)] = µ(1− 2z∗), and
the variance σ2

0 = (1− 2z∗)2V ar(xTcoreβ) + η2core(z
∗)2 + η2spu(z

∗)2. Therefore, we have

P (f(x) ≥ 0|a = 0, y) = P (x ∈ D̂y|a = 0, y) = 1− Φ(
0− µ0

σ0
) = Φ(

(1− 2z∗)µ

σ0
), (A.55)

P (f(x) < 0|a = 0, y) = P (x ∈ D̄y|a = 0, y) = 1− Φ(
µ0

σ0
) = Φ(

−(1− 2z∗)µ

σ0
). (A.56)

Therefore, we have the probabilities for correctly and incorrectly predicted samples with the label
y, i.e.,

P (x ∈ D̂y|y) = pΦ(
µ

σ1
) + (1− p)Φ((1− 2z∗)µ

σ0
), (A.57)

and

P (x ∈ D̄y|y) = pΦ(
−µ
σ1

) + (1− p)Φ(−(1− 2z∗)µ

σ0
) (A.58)

Next, we seek to determine whether the majority of samples in the correctly (incorrectly) pre-
dicted set D̂y (D̄y) is generated with a = 0 or a = 1. To achieve this, in the set of correctly predicted
samples, we use the Bayesian theorem based on (A.57), i.e.,

P (a = 1|x ∈ D̂y, y) =
P (x ∈ D̂y|a = 1, y)P (a = 1)

P (x ∈ D̂y|y)

=
pΦ(µ/σ1)

pΦ(µ/σ1) + (1− p)Φ((1− 2z∗)µ/σ0)
, (A.59)

and

P (a = 0|x ∈ D̂y, y) = 1− P (a = 1|x ∈ D̂y, y)

=
(1− p)Φ((1− 2z∗)µ/σ0)

pΦ(µ/σ1) + (1− p)Φ((1− 2z∗)µ/σ0)
. (A.60)

Similarly, in the set of incorrectly predicted samples, we have

P (a = 1|x ∈ D̄y, y) =
P (x ∈ D̄y|a = 1, y)P (a = 1)

P (x ∈ D̄y|y)

=
pΦ(−µ/σ1)

pΦ(−µ/σ1) + (1− p)Φ(−(1− 2z∗)µ/σ0)
, (A.61)
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and

P (a = 0|x ∈ D̄y, y) = 1− P (a = 1|x ∈ D̄y, y)

=
(1− p)Φ(−(1− 2z∗)µ/σ0)

pΦ(−µ/σ1) + (1− p)Φ(−(1− 2z∗)µ/σ0)
. (A.62)

Under the assumption that p > 3/4 and η2core ≫ η2spu, we have 1−2z∗ =
(
(3−4p)η2core+η2spu

)
/(η2core+

η2spu) < 0. Hence, Φ(−(1− 2z∗)µ/σ0) < 1/2 and P (a = 1|x ∈ D̂y, y) > 1/2; in other words, among
the set of all correctly predicted samples with the label y, more than half of them are
generated with a = 1.

Moreover, under the assumption that Φ(−µ/σ1) ≈ 0, i.e., predictions of the model have a high
signal-to-noise ratio, then P (a = 0|x ∈ D̄y, y) > 1/2, i.e., among the set of all incorrectly
predicted samples with the label y, more than half of them are generated with a = 0.
This assumption is generally true, as σ2

1 = V ar(xTcoreβ) + η2core(z
∗)2 + η2spu(z

∗)2 is typically very
small when z∗ approaches zero given p > 3/4 and η2core ≫ η2spu.

Proof of Lemma 3

Lemma 3. Consider the model f(x) = xTu with u = [ucore,uspu], the optimal solution for uspu

that can be achieved by last-layer retraining on the retraining data with pre is u
r
spu, which is defined

as

urspu =
(2pre − 1)η2core
η2core + η2spu

γ. (A.63)

Proof. First, we have f(x) = xTu = bTWx. For last-layer retraining, b is optimized. Following
the derivation in Lemma 1, we similarly obtain the inequality in (A.42) with p = pre, i.e.,

ℓ(b) ≥ 1

2

(
preη

2
core(1− γTuspu)

2 + (1− pre)η2core(1 + γTuspu)
2 + η2spu∥γTuspu∥22

)
, (A.64)

Note that the terms on the right side of the inequality are independent of any manipulation of
the retraining data, such as reweighting. Then, taking the derivative to the sum of these terms with
respect to b, we obtain the following equation

γTWspub =
(2pre − 1)η2core
η2core + η2spu

, (A.65)

where uspu = Wspub. Since γ
Tγ = 1, then we have uspu = urspu. We finally verify that urspu indeed

minimizes the sum of the terms on the right hand side of (A.64). If pre equals to p for the training
data, then urspu = u∗

spu defined in (A.28).

A.7.3 Connection to Last-Layer Retraining Methods

Although our method shares a similar setting to last-layer retraining methods, such as AFR [32] and
DFR [4], our method is fundamentally different from these methods in how spurious bias is mitigated.
Take AFR for an example. It, in essence, is a sample-level method and adjusts the weights of the
last layer indirectly via retraining on samples with loss-related weights. Our method directly forces
the weights identified as affected by spurious bias to zero, while adjusting the remaining weights
with retraining.

The advantage of NeuronTune can be explained more formally in our theoretical analysis frame-
work. First, consider the training loss in (A.32), we can express it as the sum of following terms for
brevity,

ℓtr(W,b) =
1

2
pE[ψ1(ucore,uspu)] +

1

2
(1− p)E[ψ2(ucore,uspu)] +

1

2
ψ3(uspu), (A.66)
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where p is the data generation parameter and is fixed, and ψ1, ψ2, and ψ3 are defined as

ψ1(ucore,uspu) = E∥xTcoreucore − (1− γTuspu)β
Txcore∥22,

ψ2(ucore,uspu) = E∥xTcoreucore − (1 + γTuspu)β
Txcore∥22,

and
ψ3(uspu) = pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥γTuspu∥22,

respectively. Based on Lemma 3, for last-layer retraining methods in general, the optimal solution
for uspu is u∗

spu, given that the retraining data follows the same distribution as the training data.
AFR changes the distribution within the first two expectation terms ψ1(ucore,uspu) and

ψ2(ucore,uspu) and jointly updates ucore and uspu, while there is no optimality guarantee for
uspu (ψ3(uspu) is not considered in AFR). By contrast, according to Theorem 5.2, NeuronTune first
ensures that uspu is optimal, then it moves ucore close the the unbiased solution.

A.7.4 Comparison between Models Selected with Worst-Class Accuracy

We compared our approach with AFR [32] and JTT [31] to demonstrate the challenges of the
unsupervised setting for semi-supervised methods. These methods were tuned using worst-class
accuracy [29] on the validation set instead of WGA. As shown in Table A.7.1, our method exhibits
larger performance gains over AFR and JTT compared to their results presented in Tables 5.4 and
5.5.

Method Waterbirds CelebA

JTT 84.2±0.5 52.3±1.8

AFR 89.0±2.6 68.7±1.7

NeuronTune 91.8±0.8 83.0±2.8

Table A.7.1: WGA comparison when models selected by the worst-class accuracy on the validation
set.

A.7.5 Complexity Analysis

We analyze the computational complexity of our method, NeuronTune, alongside representative
reweighting-based methods, including AFR [32], DFR [4], and JTT [31]. Let the number of iden-
tification samples be NIde, the number of retraining samples be Nret, the total number of training
samples be N , the number of latent dimensions be D, and the number of training epochs be E.
Additionally, denote the time required for inference as τfw, for last-layer retraining as τll, and for op-
timizing the entire model as τopt. The computational complexities of these methods are summarized
in Table A.7.2.

Among the methods, JTT has the highest computational complexity since τopt ≫ τll, requiring
full model optimization. DFR is much faster due to its reliance on last-layer retraining, though
it requires group annotations. AFR extends DFR by additionally precomputing sample losses,
increasing its computational cost slightly. NeuronTune, while requiring more time than AFR to
identify biased dimensions across all D embedding dimensions, remains computationally efficient.
This is because τfw, the time required for forward inference, is typically very small. As a result,
NeuronTune offers an effective balance between computational efficiency and robust spurious bias
mitigation.

A.7.6 Advantages over Variable Selection Methods

Although the identification of biased dimensions in (5.19) may resemble traditional variable selection
methods [232], our approach extends beyond simply selecting a subset of variables that optimally
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Method Time complexity
JTT [31] O(NEτopt)
AFR [32] O(NIdeτfw + ENretEτll)
DFR [4] O(ENretEτll)

NeuronTune O(E(NIdeDτfw +NretEτll))

Table A.7.2: Computation complexity comparison with different reweighting methods.

explain the target variable. Instead, it specifically addresses spurious bias—an issue often neglected
in traditional variable selection.

Traditional variable selection methods, such as L1 regularization, do not distinguish whether
variables represent spurious or core attributes. Since spurious attributes are often predictive of
target labels in the training data and are easier for models to learn [190, 199], these methods may
mistakenly prioritize spurious attributes, thereby amplifying spurious bias. In contrast, our method
explicitly targets dimensions influenced by spurious bias and re-balances the model’s reliance on
features, reducing the model’s dependency on spurious information.

Furthermore, unlike many variable selection methods that require explicit supervision (e.g., la-
bels or statistical relationships) to mitigate spurious bias, NeuronTune operates in an unsupervised
setting where group labels indicative of spurious attributes are unavailable. By leveraging misclas-
sification signals to estimate spuriousness scores, our method is better suited for scenarios where
group annotations are costly or infeasible, offering a practical and scalable solution to the challenge
of spurious bias mitigation.

A.7.7 Dataset Details

Table A.7.3 gives the details of the two image and two text datasets used in the experiments. Addi-
tionally, the ImageNet-9 dataset [49] has 54600 and 2100 training and validation images, respectively.
The ImageNet-A [176] dataset has 1087 images for evaluation.

A.7.8 Training Details

Table A.7.4 and Table A.7.5 give the hyperparameter settings for ERM and NeuronTune training,
respectively.

A.7.9 Visualizations of Unbiased and Biased Dimensions

We provide visualizations of the neuron activation value distributions for the identified unbiased
and biased dimensions in Figures A.7.1 to A.7.4. The biased and unbiased dimensions selected for
visualizations are obtained by first sorting the dimensions based on their spuriousness scores and
then selecting three biased dimensions that have the largest scores and three unbiased dimensions
that have the smallest scores. Note that a dimension does not exclusively represent a core or spurious
attribute; it typically represents a mixture of them.

On the CelebA dataset, as shown in Figure A.7.1, samples that highly activate the unbiased
dimensions have both males and females; thus, the unbiased dimensions do not appear to have
gender bias. For samples that highly activate the identified biased dimensions, all of them are
females, demonstrating a strong reliance on the gender information. In Figure A.7.2, samples that
highly activate the identified biased dimensions (right side of Figure A.7.2) tend to have slightly
darker hair colors or backgrounds, as compared with samples that highly activate the identified
unbiased dimensions (left side of Figure A.7.2). With the aid of the heatmaps, we observe that these
biased dimensions mostly represent a person’s face, which is irrelevant to target classes.

On the Waterbirds dataset, as shown in Figure A.7.3, for the landbirds class, the identified
unbiased dimensions mainly represent certain features of a bird and land backgrounds. For the
identified biased dimensions, they mainly represent water backgrounds, which are irrelevant to the
landbirds class based on the training data. For the waterbirds class, as shown in Figure A.7.4, the
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Class Spurious attribute Train Val Test

Waterbirds

landbird land 3498 467 2225
landbird water 184 466 2225
waterbird land 56 133 642
waterbird water 1057 133 642

CelebA

non-blond female 71629 8535 9767
non-blond male 66874 8276 7535
blond female 22880 2874 2480
blond male 1387 182 180

MultiNLI

contradiction no negation 57498 22814 34597
contradiction negation 11158 4634 6655
entailment no negation 67376 26949 40496
entailment negation 1521 613 886
neither no negation 66630 26655 39930
neither negation 1992 797 1148

CivilComments

neutral no identity 148186 25159 74780
neutral identity 90337 14966 43778
toxic no identity 12731 2111 6455
toxic identity 17784 2944 8769

Table A.7.3: Numbers of samples in different groups and different splits of the four datasets.

Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI CivilComments

Initial learning rate 3e-3 3e-3 1e-3 1e-5 1e-3
Number of epochs 100 20 120 10 10
Learning rate scheduler CosineAnnealing CosineAnnealing MultiStep[40,60,80] Linear Linear
Optimizer SGD SGD SGD AdamW AdamW
Backbone ResNet50 ResNet50 ResNet18 BERT BERT
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4
Batch size 32 128 128 16 16

Table A.7.4: Hyperparameters for ERM training.

identified unbiased dimensions mostly represent certain features of a bird and water backgrounds,
while the identified biased dimensions mainly represent land backgrounds.
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Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI CivilComments

Learning rate 1e-3 1e-3 1e-3 1e-5 1e-3
Number of batches per epoch 200 200 200 200 200
Number of epochs 40 40 1 60 60
Optimizer SGD SGD SGD AdamW AdamW
Batch size 128 128 128 128 128

Table A.7.5: Hyperparameters for NeuronTune.

(a) Identified unbiased dimensions for non-blond hair (b) Identified biased dimensions for non-blond hair

Figure A.7.1: Value distributions of the correctly (blue) and incorrectly (red) predicted samples for
unbiased (a) and biased (b) dimensions, along with the representative samples, respectively, based
on the non-blond hair samples in the CelebA dataset.

(a) Identified unbiased dimensions for blond hair (b) Identified biased dimensions for blond hair

Figure A.7.2: Value distributions of the correctly (blue) and incorrectly (red) predicted samples for
unbiased (a) and biased (b) dimensions, along with the representative samples, respectively, based
on the blond hair samples in the CelebA dataset.
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(a) Identified unbiased dimensions for landbird (b) Identified biased dimensions for landbird

Figure A.7.3: Value distributions of the correctly (blue) and incorrectly (red) predicted samples for
unbiased (a) and biased (b) dimensions, along with the representative samples, respectively, based
on the landbirds samples in the Waterbirds dataset.

(a) Identified unbiased dimensions for waterbird (b) Identified biased dimensions for waterbird

Figure A.7.4: Value distributions of the correctly (blue) and incorrectly (red) predicted samples for
unbiased (a) and biased (b) dimensions, along with the representative samples, respectively, based
on the waterbirds samples in the Waterbirds dataset.

214



A.8 Self-Adaptive Prompt Exploration for Zero-Shot Spuri-
ous Bias Mitigation in Vision-Language Models

A.8.1 Prompt Templates

We provide the prompt templates used in the experiments in Table A.8.1. There are a total of 80
templates. The special symbol “[CLASS]” is a placeholder, which will be replaced with actual class
labels in zero-shot classification.

For the vanilla zero-shot classification method, we followed the prompts used in [95]. Specifically,
on the Waterbirds dataset, we used “an image of landbird” and “an image of waterbird”; on the
CelebA dataset, we used “person with dark hair” and “person with blond hair”; on the PACS and
VLCS datasets, we directly used the class names as the input text descriptions.

A.8.2 Dataset Details

The details of the four datasets used in the experiments are shown in Table A.8.2, including groups,
total samples, number of classes, and class labels. As we focus on the zero-shot setting, only the
information regarding the test set in each dataset is shown in Table A.8.2.

A.8.3 Limitations and Future Works

While our proposed method demonstrates significant robustness, the performance of SAVE is con-
tingent on the diversity and quality of the predefined prompt templates. A more diverse and task-
relevant set of prompt templates could enhance the method’s ability to select optimal prompts for
mitigating multimodal spurious biases. Furthermore, SAVE operates within the framework of zero-
shot debiasing, meaning it does not incorporate any training techniques for vision-language models
(VLMs). Although this ensures the approach remains entirely out-of-the-box, future work could
explore integrating SAVE with small labeled datasets to further refine and improve model perfor-
mance. Lastly, while we evaluated SAVE across multiple datasets, extending its evaluation to a
broader range of tasks and bias types would provide deeper insights into its generalizability and
broader applicability.

A.8.4 More Selected Prompt Templates

In the same setting as Section 5.3.3, we show more prompt templates selected by our method
in Figures A.8.1, A.8.2, and A.8.3. We observe that, in general, the most frequently selected
template is different across classes and datasets. One defining characteristic of those frequently
selected templates is that they typically contain words that describe out-of-distribution images. For
example, “black and white” occurs frequently when images all have colors. This could provide
useful insights into the design of customized and more effective prompt templates for mitigating
multimodal spurious bias.
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Prompt Templates Prompt Templates
a bad photo of a [CLASS]. a photo of many [CLASS].
a sculpture of a [CLASS]. a photo of the hard to see [CLASS].
a low resolution photo of the [CLASS]. a rendering of a [CLASS].
graffiti of a [CLASS]. a bad photo of the [CLASS].
a cropped photo of the [CLASS]. a tattoo of a [CLASS].
the embroidered [CLASS]. a photo of a hard to see [CLASS].
a bright photo of a [CLASS]. a photo of a clean [CLASS].
a photo of a dirty [CLASS]. a dark photo of the [CLASS].
a drawing of a [CLASS]. a photo of my [CLASS].
the plastic [CLASS]. a photo of the cool [CLASS].
a close-up photo of a [CLASS]. a black and white photo of the [CLASS].
a painting of the [CLASS]. a painting of a [CLASS].
a pixelated photo of the [CLASS]. a sculpture of the [CLASS].
a bright photo of the [CLASS]. a cropped photo of a [CLASS].
a plastic [CLASS]. a photo of the dirty [CLASS].
a jpeg corrupted photo of a [CLASS]. a blurry photo of the [CLASS].
a photo of the [CLASS]. a good photo of the [CLASS].
a rendering of the [CLASS]. a [CLASS] in a video game.
a photo of one [CLASS]. a doodle of a [CLASS].
a close-up photo of the [CLASS]. a photo of a [CLASS].
the origami [CLASS]. the [CLASS] in a video game.
a sketch of a [CLASS]. a doodle of the [CLASS].
an origami [CLASS]. a low resolution photo of a [CLASS].
the toy [CLASS]. a rendition of the [CLASS].
a photo of the clean [CLASS]. a photo of a large [CLASS].
a rendition of a [CLASS]. a photo of a nice [CLASS].
a photo of a weird [CLASS]. a blurry photo of a [CLASS].
a cartoon [CLASS]. art of a [CLASS].
a sketch of the [CLASS]. an embroidered [CLASS].
a pixelated photo of a [CLASS]. itap of the [CLASS].
a jpeg corrupted photo of the [CLASS]. a good photo of a [CLASS].
a plushie [CLASS]. a photo of the nice [CLASS].
a photo of the small [CLASS]. a photo of the weird [CLASS].
the cartoon [CLASS]. art of the [CLASS].
a drawing of the [CLASS]. a photo of the large [CLASS].
a black and white photo of a [CLASS]. the plushie [CLASS].
a dark photo of a [CLASS]. itap of a [CLASS].
graffiti of the [CLASS]. a toy [CLASS].
itap of my [CLASS]. a photo of a cool [CLASS].
a photo of a small [CLASS]. a tattoo of the [CLASS].

Table A.8.1: List of prompt templates.
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Dataset Groups Statistics Classes

Total Samples # Classes

Waterbirds
landbird in land, landbird in water,
waterbird on land, waterbird on water

5794 2 landbird, waterbird

CelebA
male & not blond, female & not blond,
male & blond, female & blond

19962 2 not blond, blond

PACS
art, cartoons, photos,
sketches

9991 7
dogs, elephant, giraffe,
guitar, house, person

VLCS
Caltech101, LabelMe,
SUN09, VOC2007

10725 5 bird, car, chair, dog, person

Table A.8.2: Dataset statistics including groups, total samples, number of classes, and class labels.

Figure A.8.1: Top-10 most frequently selected prompt templates by our method for each class with
CLIP-ViT-B/32 in the CelebA dataset.
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Figure A.8.2: Top-10 most frequently selected prompt templates by our method for each class with
CLIP-ViT-B/32 in the PACS dataset.
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Figure A.8.3: Top-10 most frequently selected prompt templates by our method for each class with
CLIP-ViT-B/32 in the VLCS dataset.
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