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§1.	Introduction	

The	most	natural	way	of	understanding	the	role	of	mathematics	 in	scientific	explanations	 is	as	
representing	 physical	 explanatory	 facts	 and	 helping	 to	 draw	 inferences	 about	 those	 facts.	
According	to	Joseph	Melia,	for	example,	because	mathematics	offers	good	representations	of	the	
physical	world,	 some	scientific	explanations	 require	 the	use	of	mathematics,	but	 this	does	not	
mean	that	mathematics	is	in	itself	explanatory.	If	we	say,	for	example:	‘F	occurs	because	P	is	 2	
meters	long’,	despite	the	fact	that	we	are	mentioning	the	number	 2	in	the	explanation,	it	is	the	
actual	physical	length	of	object	P,	not	the	real	number	 2	by	which	we	represent	it,	that	does	the	
real	explanatory	work	(cf.	Melia	2002,	76).	The	main	idea	is	that	mathematical	statements	feature	
in	scientific	explanations	because	of	these	representational	and	inferential	roles.	By	performing	
derivations	over	 these	mathematical	 statements,	we	can	 learn	how	 the	 relevant	physical	 facts	
explain	the	explanandum.	

But	it	has	recently	been	argued	that	mathematics	may	be	able	to	do	more	than	this,	that	
there	can	be	mathematical	explanations	of	physical	phenomena	(MEPP).	In	recent	years,	there	has	
been	much	discussion	about	the	nature	of	these	MEPPs.	Authors	wonder	what	exactly	it	means	
for	mathematics	to	explain	a	physical	phenomenon;	whether	MEPPs	are	genuinely	different	from	
ordinary	scientific	explanations	that	use	mathematics;	and,	if	MEPPs	are	indeed	different,	which	
ontological	consequences	follow	from	the	fact	that	there	are	MEPPs	in	science.		

Many	purported	cases	have	been	advanced	in	recent	literature,	and	there	have	been	many	
attempts	to	determine	what	exactly	the	distinctive	feature	of	each	of	these	cases	is,	and	whether	
they	all	belong	to	the	same	category;	and	although	there	is	no	current	consensus,	most	authors	
agree	that	in	these	explanations	mathematics	is	involved	in	a	special	way.	For	example,	almost	all	
accounts	agree	that	these	are	scientific	explanations	that	depend	on	the	mathematical	model	they	
use	in	the	explanans	in	a	way	such	that	without	the	mathematical	model	these	explanations	would	
not	stand.	In	other	words,	the	mathematical	part	of	these	explanations	is	indispensable	for	the	
explanation	to	work	as	an	explanation.		

However,	many	authors	have	gone	further,	and	claim	that	in	these	cases	mathematics	itself	
is	 playing	 an	 explanatory	 role	 in	 science.	 In	 fact,	 some	 even	 suggest	 that	MEPPs	 ontologically	
commit	 us	 to	 the	 existence	 of	 mathematical	 entities,	 following	 a	 new	 version	 of	 the	
Indispensability	Argument.	 If	mathematical	 statements	 feature	 indispensably	 in	 some	scientific	
explanations,	then,	if	we	are	scientific	realists,	we	ought	to	be	committed	to	the	existence	of	the	
mathematical	entities	that	make	those	mathematical	statements	true	(just	as,	say,	explanations	
of	quantum	phenomena	commit	us	to	the	existence	of	subatomic	particles).				

I	think,	however,	that	we	should	not	go	that	far.	In	my	dissertation,	I	offer	an	account	of	
MEPPs	that	emphasizes	the	representational	role	of	mathematics.	That	is,	I	argue	that	in	MEPPs	
the	 role	 of	mathematics	 is	 (merely)	 to	 represent	 physical	 facts,	 but	 I	 also	maintain	 that	 these	
explanations	are	 special.	 I	 combine	elements	of	 James	Woodward’s	 counterfactual	 account	of	
scientific	 explanation,	 and	 Otávio	 Bueno,	 Marc	 Colyvan,	 and	 Stephen	 French’s	 Inferential	
Conception	of	the	Applicability	of	Mathematics.	The	main	aspects	of	my	account	are	the	notions	
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of	optimal	representation	and	explanatory	mathematical	derivations.	My	goal	 is	 to	advance	an	
account	 of	 MEPPs	 that	 is	 counterfactual,	 noncausal,	 and	 where	 the	 role	 of	 mathematics	 is	
representational.	

The	dissertation	is	divided	in	five	chapters.	I	give	some	background	to	the	topic	of	scientific	
explanation	and	 introduce	Woodward’s	account	 in	chapter	1.	 In	chapter	2	 I	discuss	the	role	of	
mathematics	 in	 scientific	 explanation.	 In	 chapter	 3	 I	 introduce	my	 own	 account	 of	MEPPs.	 In	
chapter	4	I	discuss	other	accounts	of	MEPPs;	and	in	chapter	5	I	show	that	the	existence	of	MEPPs	
does	not	justify	mathematical	realism.			

§2.	Outline	

Chapter	1.	This	chapter	is	an	overview	of	the	philosophical	debate	on	scientific	explanation,	and	
introduces	the	notions	that	will	be	important	throughout	the	dissertation,	namely,	explanation,	
causation,	 and	 invariance,	 and	 more	 specifically,	 the	 notions	 of	 explanatory	 asymmetry,	
explanatory	relevance,	and	modality.			

I	first	present	Carl	Hempel’s	Deductive-Nomological	model,	and	discuss	two	problems	of	
this	view.	Hempel’s	model	allows	 irrelevant	facts	as	explanatory,	and	 it	cannot	account	for	the	
asymmetry	between	the	explanandum	and	the	explanans	of	a	scientific	explanation.	Next,	I	discuss	
the	main	motivations	for	adopting	causal	accounts	of	scientific	explanation.	 I	 introduce	Wesley	
Salmon’s	 notion	 of	 causation	 and	 his	 Causal-Mechanical	 model	 of	 scientific	 explanation,	 and	
discuss	 some	 problems	 of	 this	 view,	 the	most	 important	 being	 that,	 because	 of	 its	 restrictive	
definition	of	causation,	the	CM	model	does	not	fully	solve	the	problem	of	relevance.	I	next	address	
James	Woodward’s	counterfactual	account	of	causation	and	scientific	explanation.	 I	argue	that	
this	account	is	better	equipped	to	deal	with	the	problem	of	relevance.	Crucial	for	understanding	
this	view	is	the	notion	of	the	right	 level	of	description,	which	is	that	for	 identifying	the	aspects	
relevant	to	the	occurrence	of	the	phenomenon	to	be	explained,	sometimes	we	must	refrain	from	
describing	 all	 the	 details	 of	 the	 overall	 situation.	 In	 those	 cases,	 what	 we	 gain	 is	 a	 better	
understanding	of	the	explanandum,	by	highlighting	its	modal	strength.	As	I	will	show	in	further	
chapters,	this	feature	of	successful	scientific	explanations	is	fundamental	for	fully	grasping	the	role	
of	mathematics	in	MEPPs.	And	yet,	Woodward’s	model,	as	it	stands,	is	not	capable	of	accounting	
for	these	MEPPs.		

Chapter	2.	This	chapter	focuses	on	the	role	of	mathematical	models	in	scientific	representation	
and	scientific	explanation.	The	discussion	of	this	chapter	provides	the	framework	for	my	account	
of	Mathematical	Explanations	of	Physical	Phenomena,	which	is	the	focus	of	chapters	3	and	4.		

I	begin	this	chapter	presenting	the	notion	of	mathematical	model,	including	a	conceptual	
distinction	between	abstraction,	approximation,	and	idealization.	I	also	discuss	the	different	kinds	
of	models	there	are,	based	on	the	representational	ideals	of	the	scientists	who	use	them.	I	next	
analyze	two	accounts	of	the	application	of	mathematics:	Christopher	Pincock’s	mapping	account,	
which	highlights	the	importance	of	the	structural	resemblance	between	the	model	and	the	target	
system;	and	Bueno,	Colyvan,	and	French’s	Inferential	Conception,	which,	in	addition,	emphasizes	
the	context	of	application,	as	well	as	the	role	of	the	interpretation	the	users	of	the	model	assign	
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to	 its	 mathematical	 structures.	 The	main	 point	 here	 is	 that,	 without	 a	 proper	 interpretation,	
mathematics	says	little	about	the	physical	world.	Next,	I	use	the	Inferential	Conception	to	clarify	
the	 role	 of	mathematics	 in	 scientific	 explanation,	 and	discuss	 a	 criticism	by	Robert	 Batterman	
(2010).	 I	 finish	the	chapter	by	presenting	a	possible	shortcoming	of	the	Inferential	Conception,	
which	 is	 that	 this	 view	 does	 not	 distinguish	 between	 explanatory	 and	 non-explanatory	
mathematical	derivations.			

Chapter	 3.	 In	 this	 chapter,	 I	 introduce	 my	 account	 of	 Mathematical	 Explanations	 of	 Physical	
Phenomena	(MEPPs).	On	my	view,	MEPPs	are	counterfactual	explanations.	And	despite	the	fact	
that	MEPPs	are	explanations	of	empirical	phenomena,	they	are	noncausal.		

I	 start	 by	 presenting	 and	 analyzing	 two	 cases	 that	 have	 been	 much	 debated	 in	 the	
literature:	 the	 impossibility	 of	 performing	 a	 trip	 over	 all	 the	 bridges	 of	 Königsberg	 without	
retracing	one’s	steps,	whose	explanation	appeals	to	a	property	of	non-Eulerian	graphs	(Pincock	
2007);	and	the	prime	numbered	life-cycle	of	some	species	of	periodical	cicadas,	whose	explanation	
appeals	to	a	property	of	prime	numbers	(Baker	2005).	I	next	introduce	my	account	of	MEPPs	in	
terms	of	 the	notions	of	optimal	representation	(as	opposed	to	the	 improvable	representations	
that	 operate	 in	 most	 applications	 of	 mathematics);	 deformations	 (as	 opposed	 to	 the	 causal	
interventions	of	Woodward’s	account);	and	explanatory	mathematical	derivations	(as	opposed	to	
Mark	Steiner’s	notion	of	explanatory	proof),	and	revisit	my	cases	to	illustrate	my	view.	I	finish	the	
chapter	discussing	the	sense	in	which	MEPPs	are	different	from	ordinary	scientific	explanations,	
and	how	MEPPs	account	for	the	explanatory	directionality.		

Chapter	 4.	 In	 this	 chapter,	 I	 distinguish	 between	 descriptive	 and	 representational	 accounts	 of	
MEPPs.	The	former	presuppose	that	the	physical	world	has	mathematical	features	which	are	then	
described	by	 the	mathematical	part	of	MEPPs;	 the	 latter	do	not	need	 that	assumption.	 In	 this	
chapter	I	defend	my	representational	account	against	alternative	views	of	MEPPs.		

I	first	introduce	the	distinction	between	descriptive	and	representational	views	of	MEPPs.	
Next,	I	discuss	Steiner’s	view	of	MEPPs,	which	is	known	as	the	transmission	view.	Steiner	says	that	
at	the	core	of	every	MEPP	there	is	an	explanatory	proof	of	a	mathematical	theorem.	Within	the	
philosophy	of	mathematics	literature,	however,	the	notion	of	explanatory	proof	is	controversial,	
and	I	take	it	as	an	advantage	of	my	own	view	that	it	does	not	require	explanatory	mathematical	
proofs.	In	addition,	Steiner	does	not	specify	which	kind	of	scientific	questions	may	be	amenable	
to	be	answered	by	a	MEPP.	My	view	does,	and	that	is	another	advantage	over	Steiner’s.	I	then	
argue,	against	Alan	Baker,	that	although	MEPPs	do	not	require	explanatory	proofs,	they	do	require	
some	explanatory	information	coming	from	their	mathematical	component.	Next,	I	focus	on	the	
modal	accounts	of	MEPPs.	Aidan	Lyon	argues	that	MEPPs	appeal	to	higher	order	mathematical	
features	 of	 the	 explanandum,	 and	 Marc	 Lange	 argues	 that	 MEPPs	 point	 to	 relations	 of	
mathematical	necessity	in	the	physical	world.	I	reject	these	views	by	pointing	out	first	that	they	do	
not	specify	the	sense	in	which	those	mathematical	features	may	be	explanatory,	and	secondly,	
that	 they	 do	 not	 convincingly	 establish	 the	 need	 of	 positing	 the	 existence	 of	 relations	 of	
mathematical	necessity	in	the	physical	world	in	order	to	make	sense	of	MEPPs.	Finally,	I	analyze	
Christopher	Pincock’s	view	of	MEPPs	as	abstract	explanations,	according	to	which	MEPPs	work	by	
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virtue	of	the	mathematical	structures	underlying	the	physical	world.	I	show	first	that	the	view	that	
mathematical	structures	may	have	physical	instantiations	is	unfounded,	and	secondly	that	even	if	
this	 was	 correct,	 this	 view	 fails	 to	 explicate	 the	 sense	 in	 which	 MEPPs	 provide	 explanatory	
information.		

Chapter	5.	The	Indispensability	Argument	(IA)	relies	on	the	applicability	of	mathematics	in	science	
to	support	mathematical	realism.	The	explanatory	version	of	the	IA	focuses	on	the	indispensability	
of	mathematics	 in	 scientific	 explanations,	 and	 relies	 on	 the	 principle	 of	 Inference	 to	 the	 Best	
Explanation	(IBE)	to	justify	its	conclusion.	The	idea	of	this	explanatory	IA	is	that	if	we	believe	in	the	
existence	of	the	concrete	unobservable	posits	that	feature	in	our	best	scientific	explanations,	we	
should	 also	 believe	 in	 the	 mathematical	 posits	 of	 those	 explanations.	 However,	 against	 the	
explanatory	IA	it	has	been	objected	that	the	role	of	mathematical	posits	in	scientific	explanations	
is	to	represent	concrete	explanatory	facts	and	help	draw	inferences	about	those	facts,	but	that	
mathematical	posits,	by	themselves,	are	not	explanatory.	This	has	been	taken	as	a	weakness	of	
the	explanatory	IA,	and	so	a	new	version	of	the	argument	has	been	recently	advanced,	known	as	
the	 ‘Enhanced	 Indispensability	 Argument’	 (EIA).	 The	 EIA	 relies	 on	 the	 fact	 that	 there	 are	
mathematical	 explanations	 of	 physical	 phenomena	 (MEPPs)	 to	 support	 the	 claim	 that	
mathematics	 can	 play	 an	 explanatory	 role	 beyond	 its	 representational	 and	 inferential	 roles.	
According	 to	 the	 EIA,	 if	we	 apply	 the	 IBE	 principle	 to	MEPPs,	mathematical	 realism	would	 be	
justified.	In	this	chapter	I	use	my	account	of	MEPPs	to	refute	the	EIA.	

I	start	by	introducing	the	original	IA,	and	discuss	criticisms	by	Charles	Parsons,	Elliott	Sober	
and	Penelope	Maddy.	Next,	 I	present	 the	explanatory	 IA,	and,	after	presenting	criticisms	 from	
Hartry	Field	and	Joseph	Melia,	I	discuss	the	motivation	for	the	Enhanced	Indispensability	Argument	
(EIA).	I	then	use	the	account	of	MEPPs	that	I	have	developed	in	the	previous	two	chapters	to	show	
that	the	EIA	fails.	First,	I	show	that	for	mathematics	being	indispensable	in	explanations	in	a	way	
that	 carries	 ontological	 commitments,	 the	 explanandum	 must	 already	 be	 committed	 to	 the	
existence	of	mathematical	properties	and	entities,	which	renders	the	EIA	circular.	Next,	 I	show	
that	 the	 indispensability	 of	 the	 mathematical	 component	 in	 MEPPs	 is	 pragmatic,	 and	 that,	
ultimately	 the	 role	 of	 mathematics	 is	 representational	 and	 inferential.	 For	 this	 reason,	 the	
existence	of	MEPPs	does	not	have	the	ontological	consequences	required	by	the	EIA.	My	goal	is	
not	to	directly	defend	mathematical	nominalism,	but	to	show	that	the	existence	of	MEPPs	does	
not	support	mathematical	realism.			
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CHAPTER	1.	Scientific	Explanation:	Modal	Information	and	the	Right	Level	of	Description	

§3.	Introduction		

The	main	 goal	 of	 this	 dissertation	 is	 to	 advance	 an	 account	 of	Mathematical	 Explanations	 of	
Physical	Phenomena	(MEPPs)	that	is	counterfactual,	and	noncausal.	This	introductory	chapter	is	
an	overview	of	the	philosophical	debate	on	scientific	explanation,	and	introduces	the	notions	that	
will	be	important	throughout	the	dissertation,	namely,	explanation,	causation,	and	invariance,	and	
more	specifically,	the	notions	of	explanatory	asymmetry,	explanatory	relevance,	and	modality.			

I	first	present	Carl	Hempel’s	Deductive-Nomological	model	(§4),	and	discuss	two	problems	
of	this	view	(§5).	Hempel’s	model	allows	irrelevant	facts	as	explanatory,	and	it	cannot	account	for	
the	asymmetry	between	the	explanandum	and	the	explanans	of	a	scientific	explanation.	Next,	I	
discuss	 the	 main	 motivations	 for	 adopting	 causal	 accounts	 of	 scientific	 explanation	 (§6).	 I	
introduce	Wesley	 Salmon’s	 notion	 of	 causation	 and	 his	 Causal-Mechanical	model	 of	 scientific	
explanation	 (§7),	and	discuss	some	problems	of	 this	view	(§8),	 the	most	 important	being	 that,	
because	of	its	restrictive	definition	of	causation,	the	CM	model	does	not	fully	solve	the	problem	
of	relevance.	I	next	address	James	Woodward’s	counterfactual	account	of	causation	and	scientific	
explanation	 (§9).	 I	 argue	 that	 this	 account	 is	 better	 equipped	 to	 deal	 with	 the	 problem	 of	
relevance.	Crucial	for	understanding	this	view	is	the	notion	of	the	right	level	of	description,	which	
is	that	for	identifying	the	aspects	relevant	to	the	occurrence	of	the	phenomenon	to	be	explained,	
sometimes	we	must	refrain	from	describing	all	the	details	of	the	overall	situation.	In	those	cases,	
what	we	gain	is	a	better	understanding	of	the	explanandum,	by	highlighting	its	modal	strength.	As	
I	will	show	in	further	chapters,	this	feature	of	successful	scientific	explanations	is	fundamental	for	
fully	grasping	the	role	of	mathematics	in	MEPPs.	And	yet,	Woodward’s	model,	as	it	stands,	is	not	
capable	of	accounting	for	these	MEPPs.		

§4.	Hempel’s	Deductive-Nomological	Model	

According	to	Wesley	Salmon,	there	are	three	different	kinds	of	accounts	of	scientific	explanation:	
epistemic,	modal,	and	ontic:		

Epistemic	accounts:	An	explanation	is	an	argument	to	the	effect	that	the	explanandum-
statement	must	be	nominally	expectable	given	the	statements	in	the	explanans.	

Modal	accounts:	An	explanation	must	show	that	a	given	event	had	to	occur,	given	the	facts	
cited	in	the	explanans.		

Ontic	 accounts:	 An	 explanation	 consists	 in	 showing	 how	 the	 explanandum	 fits	 into	 the	
network	of	objective	patterns	of	dependence	in	the	world	(Salmon	1984,	15-18)1	

																																																													
1	For	the	most	part,	I	will	ignore	pragmatic	accounts	of	explanation.		
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In	 this	 section	 I	will	discuss	Hempel’s	epistemic	account.	 In	 the	 following	sections	 I	will	
discuss	two	ontic	accounts	(those	of	Salmon	and	Woodward).	Mark	Lange’s	modal	account	will	be	
addressed	in	chapter	4.		

At	 the	 beginning	 of	 the	 20th	 century,	most	 positivist	 philosophers	 agreed	 that	 science	
should	not	aim	at	providing	explanations.	Explanation	was	thought	to	require	an	understanding	of	
the	deep	nature	of	things,	and	this	was	thought	to	be	outside	the	bounds	of	science.	The	scientific	
enterprise	was	to	describe	what	we	observe	of	the	physical	world,	and	in	that	sense	description	
was	thought	to	be	the	opposite	of	explanation.	Karl	Pearson,	for	example,	said	that	“[n]obody	now	
believes	 that	 science	 explains	 anything;	 we	 all	 look	 upon	 it	 as	 a	 shorthand	 description,	 as	 an	
economy	of	thought”	([1911]	1957,	xi,	emphasis	in	the	original;	quoted	in	Salmon	2000,	313).		

In	 1948,	 however,	 Carl	 Hempel	 and	 Paul	 Oppenheim	 published	 an	 influential	 essay	
providing	 an	 account	 of	 scientific	 explanation	 that	 changed	 the	 views	 of	 philosophers	 in	 this	
matter	(Hempel	&	Oppenheim	1948).	After	further	elaboration	by	Hempel	(e.g.	Hempel	1965),	
this	view	became	the	most	important	philosophical	account	of	scientific	explanation	until	the	70’s,	
to	the	point	of	being	considered	‘the	received	view’	of	scientific	explanation.		Hempel’s	Deductive-
Nomological	 (DN)	model	 is	 an	 attempt	 to	 explicate	 the	 notion	 of	 scientific	 explanation	 while	
avoiding	(to	the	eyes	of	positivist	philosophers)	metaphysically	dubious	concepts	such	as	causation	
and	production.	Scientific	explanations,	according	to	this	model,	are	deductive	arguments	that	are	
given	in	order	to	answer	a	why-question.		

The	latter	statement	needs	to	be	qualified.	Some	why-questions	are	explanation-seeking,	
and	 some	are	 evidence-seeking.	 If	we	 interpret	 ‘why	p?’	 as	 an	 evidence-seeking	 question,	we	
should	 look	 for	 reasons	 to	 believe	 p.	 But	 if	 we	 interpret	 ‘why	 p?’	 as	 an	 explanation-seeking	
question,	we	must	presuppose	that	p	is	true,	and	we	should	focus	on	the	events	that	lead	to	the	
occurrence	of	whatever	is	described	by	p.	Now,	in	many	cases	a	why-question	can	be	interpreted	
either	 way,	 so	 whether	 a	 why-question	 is	 evidence-seeking	 or	 explanation-seeking	 is	 not	
straightforward.	Consider	the	following	example	due	to	Salmon	([1989]	2006,	7):	

p:	Distant	galaxies	receding	from	us	

If	we	take	why	p	as	an	evidence-seeking	why-question,	we	may	say	that	this	is	because	the	light	
coming	from	these	galaxies	shifted	to	the	red	end	of	the	spectrum.	However,	if	we	take	why	p	as	
an	explanation-seeking	why-question	we	may	answer,	for	example,	that	this	is	a	consequence	of	
the	Big	Bang,	and	we	may	proceed	to	show	how	this	happened.	The	crucial	difference	is	that	in	
the	former	case	we	want	reasons	to	believe	in	p,	whereas	in	the	latter	case,	we	take	p	to	be	true;	
we	are	not	looking	for	reasons	to	believe	it.	Although	science	provides	answers	to	both	kinds	of	
questions,	 the	 philosophical	 debate	 on	 scientific	 explanation	 is	 focused	 on	 why-questions	
interpreted	 as	 explanation-seeking.	 It	 is	 a	 basic	 requirement	 for	 any	 account	 of	 scientific	
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explanation	that	the	explanandum	(the	proposition	describing	the	fact	to	be	explained)	must	be	
true	(cf.	Salmon	[1989]	2006,	7)2.			

	 According	 to	 the	DN	model,	 a	 scientific	 explanation	 is	 a	 valid	deductive	 argument	 that	
answers	an	explanatory	why-question.	The	premises	of	the	argument	are	known	as	the	explanans	
(the	set	of	propositions	describing	the	facts	that	do	the	explanatory	work),	and	the	conclusion	of	
the	argument	is	the	explanandum.	The	structure	underlying	successful	scientific	explanations	is	
that	 of	 a	 valid	 deductive	 argument	 the	 conclusion	 of	 which	 is	 the	 explanandum.	 Now,	 it	 is	
important	to	note	that	Hempel’s	view	is	not	that	all	explanations	in	science	are	given	in	DN	form,	
but	that	a	DN	structure	(or	its	variations;	see	footnote	4)	underlies	any	given	scientific	explanation.		

There	are	general	and	empirical	conditions	for	a	DN	explanation.	The	general	conditions	
are	that:	

i.	The	explanation	must	be	a	valid	deductive	argument	

ii.	The	explanans	must	contain	at	least	one	general	law	that	is	essential	for	the	validity	of	
the	argument	

iii.	The	explanans	must	have	empirical	content	(and	so	the	general	law	mentioned	in	(ii)	
must	be	a	law	of	nature)	3	

The	empirical	condition	is	that:		

iv.	The	sentences	constituting	the	explanans	must	be	true	

	 The	 explanation	 consists	 in	 subsuming	 the	 explanandum	 under	 the	 laws	 cited	 in	 the	
explanans.	 The	 idea	 is,	 in	 Hempel	 words,	 that	 scientific	 explanations	 “provide	 a	 systematic	
understanding	of	empirical	phenomena	by	showing	that	they	fit	into	a	nomic	nexus”	(1965,	488).	
Thus,	the	general	form	of	a	DN	explanation	is	the	following:	

Explanans:	 	 C1,	C2	…	Ck		 [particular	circumstances]	

	 	 	 	 L1,	L2	…	Lr							 [general	laws]	

	 	 	 	 _________	

	 Explanandum:		 E	 	 [description	of	the	phenomenon	to	be	explained]	

																																																													
2	This	does	not	mean,	as	we	will	see	below	in	section	§35,	that	all	the	entities	over	which	this	proposition	
quantifies	exist.	It	is	the	physical	fact	described	by	the	explanandum	statement	that	must	be	‘real’,	i.e.	a	
fact.		
3	Alan	Baker	(2005)	says	that	MEPPs	accommodate	the	DN	Model,	because,	for	him,	MEPPs	require	“purely	
mathematical	laws”	(2005,	235),	but	I	believe	condition	(iii)	rules	out	this	possibility.	Purely	mathematical	
laws	(if	they	can	be	so	called)	lack	empirical	content.	More	on	this	in	section	§27.		
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Wesley	Salmon	calls	accounts	like	Hempel’s	epistemic,	due	to	their	emphasis	in	the	nomic	
expectability	of	the	explanandum	given	the	explanatory	facts	mentioned	in	the	explanans.	Salmon	
emphasizes	that	knowledge	of	these	facts	renders	the	explanandum	expectable,	because	there	is	
a	relation	of	logical	necessity	between	the	explanans	statements	and	the	explanandum	statement	
(1984,	16).	In	Hempel’s	words,	the	purpose	of	a	scientific	explanation	is	to	show	that	“given	the	
particular	circumstances	and	the	laws	in	question,	the	occurrence	of	the	phenomenon	was	to	be	
expected”	 (Hempel	1965,	337).	This	 condition	of	nomic	expectability	 is	 the	 reason	why,	 in	 this	
model,	explanations	have	the	same	logical	form	(and	are	on	a	par	with)	predictions.	If	it	had	been	
given	before	the	occurrence	of	the	fact	described	by	the	explanandum,	a	good	explanation	would	
have	been	a	good	prediction;	conversely,	a	good	prediction	 is	a	potential	explanation.	This	has	
been	 called	 ‘the	 symmetry	 thesis’,	 and	 it	 is	 a	 crucial	 element	 in	 the	DN	model4.	 Consider	 the	
following	case:		

BOUNCING	 BALL	 CASE:	Why	 did	 a	 ping	 pong	 ball	 bounce	 around	 26,8cm	when	 it	 was	
dropped	from	30,5cm	height?		

The	first	thing	to	note	is	that	this	is	an	explanation-seeking	why-question.	We	are	assuming	
that	it	 is	true	that	the	ball	bounced	around	26,8cm.	Ignoring	aerodynamical	effects,	a	common	
textbook	explanation	would	derive	the	speed	right	before	the	collision	with	the	ground	(V)	from	
the	kinematic	laws	of	motion;	the	speed	right	after	the	collision	(V’)	from	the	laws	of	conservation	
of	momentum	and	semi	elastic	collisions;	and	the	maximum	height	after	the	bouncing	(hf)	from	V	
and	the	kinematic	laws.	The	DN	structure	of	the	textbook	explanation	would	be	the	following:		

Explanans:	 	 h0	=	30,5cm		 [initial	height]	

	 	 	 ρ	=	0,9375	 [average	coefficient	of	restitution	for	ping	pong	balls]	

	 	 	 	 V2	=	V0
2	+	2gh0		[kinematic	law]	

V’	=	ρV			 [law	of	partially	elastic	collisions]	

	 	 	 	 ___________	

	 Explanandum:		 hf	=	26,8cm	+/-	0,01cm								5	 	

																																																													
4	Hempel’s	model	is	not	restricted	to	explanations	of	particular	events,	nor	it	is	confined	to	deterministic	
contexts.	 It	 can	 explicate	 explanations	 of	 general	 regularities	 both	 using	 deterministic	 (Deductive	
Nomological	(DN)	model)	and	statistical	laws	(Deductive	Statistical	(DS)	model),	as	well	as	particular	events	
both	using	deterministic	(Deductive	Nomological	(DN)	model)	and	statistical	laws	(Inductive	Statistical	(IS)	
model),	the	latter	by	showing	that	the	explanandum	has	high	inductive	probability	given	the	explanatory	
facts.		
5	With	h0	=	30,5cm;	V0	=	0	and	V2	=	V0

2	+	2gh0	the	speed	before	collision	is	V	=	 0,305	x	9,8 ∙ 2.	This	result,	
along	with	ρ	=	0.9375	and	V’	=	ρV,	gives	us	a	speed	after	collision	of	V’	=	0,9375	x	 0,305	x	9,8 ∙ 2.	In	turn,	
this	result,	along	with	Vf

2	=	V’2	+	2ghf,	gives	us	a	final	height	hf	=	0,26806m=26,806cm.		
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This	explanation	of	course	can	be	improved	with	information	about	the	aerodynamics	of	
the	ball	and	the	air	conditions	at	the	time	of	the	dropping.	In	fact,	the	cited	law	of	partially	elastic	
collisions	is	an	instance	of	a	more	general	law	of	conservation	of	momentum	and	kinetic	energy.	
The	 empirically	 determined	 coefficient	 of	 restitution	 ρ	 could	 in	 principle	 be	 substituted	 with	
information	about	the	material	constitution	of	the	ball	and	the	rigidity	of	the	ground.	But	still,	this	
case	 exemplifies	 the	 general	 form	of	DN	 explanations.	 It	 includes	 two	 laws	 of	 nature	 and	 the	
relevant	initial	conditions,	and	it	shows	how	the	explanandum	is	an	instance	of	the	general	cases	
described	by	those	laws.	Moreover,	it	shows	that,	given	the	initial	conditions,	the	explanandum	
was	expected	to	occur.	That	is,	given	the	values	of	h0	and	ρ,	we	could	have	predicted	that	the	final	
height	would	be	26,8cm	when	dropping	the	ball	from	a	30,5cm	height.		

§5.	Problems	with	the	DN	Model	

There	are	many	 famous	counterexamples	 to	 the	DN	model.	 In	 this	 section	 I	will	 focus	on	 two,	
which	are	associated	respectively	to	the	asymmetry	between	the	explanans	and	the	explanandum,	
and	the	relevance	of	the	explanans	for	explaining	the	explanandum.6		

5.1.	The	asymmetry	between	explanans	and	explanandum	

One	problem	with	 the	DN	model	 is	 that	 it	 cannot	 account	 for	 a	 seemed	 asymmetry	 between	
explanans	and	the	explanandum.	The	most	famous	example	to	show	this	is	the	flagpole	case:	

FLAGPOLE	CASE:	Why	does	a	flagpole	of	height	h	cast	a	shadow	of	length	L?	(cf.	Salmon	
2006/1989,	47).	

A	valid	DN	explanation	of	this	should	mention	the	height	of	the	flagpole,	the	elevation	of	
the	sun,	and	the	laws	of	trigonometry,	given	the	rectilinear	propagation	of	light.7	But	suppose	that	
we	want	to	know	why	the	height	of	the	flagpole	is	h,	and	we	deduce	it	from	the	elevation	of	the	
sun,	the	laws	of	trigonometry,	and	the	length	of	the	shadow.	This	alleged	explanation	appeals	to	
the	length	of	the	shadow	to	explain	the	height	of	the	flagpole,	which	is	incorrect.	The	height	of	the	

																																																													
6	Another	famous	problem	with	the	DN	model	has	to	do	with	the	requirement	of	nomic	expectability.	As	
we	 saw,	 the	 symmetry	between	explanation	 and	prediction	 requires	 that	 the	 fact	 to	be	 explained	was	
expected	to	occur	(or	at	least	had	a	high	probability	of	occurring),	given	the	facts	cited	in	the	explanans.	
However,	this	requirement	is	not	met	by	those	perfectly	acceptable	probabilistic	explanations	that	do	not	
confer	 high	 inductive	 probability	 to	 the	 explanandum.	 Consider	 the	 case	 of	 mother-to-infant	 HIV	
transmission.	 It	 is	 estimated	 that,	 without	 receiving	 retrovirals,	 around	 20%	 of	 HIV-infected	 pregnant	
women	transmit	the	disease	to	their	children.	If	a	newborn	is	infected	with	HIV,	the	mother	being	infected	
would	be	an	explanatory	factor,	even	though,	on	the	basis	of	the	mother	being	 infected,	one	could	not	
have	predicted	the	infection	of	her	child.	(Another	such	a	case,	widely	discussed	in	the	literature,	 is	the	
development	 of	 paresis	 in	 syphilis	 patients	 (e.g.	 Salmon	 [1989]	 2006,	 49;	Woodward	 2003,	 155)).	 This	
problem	of	the	DN	model	is	not	directly	related	to	my	discussion.		
7	Although	mathematical	laws	lack	empirical	content,	citing	them	in	this	case	does	not	violate	condition	(iii)	
of	 section	 §4.	 Under	 certain	 circumstances	 the	 trajectory	 of	 light	 can	 be	 represented	 by	 the	 laws	 of	
trigonometry.	In	that	sense,	the	cited	laws	are	describing	an	(approximation	of)	empirical	facts.	More	of	
this	in	sections	§15	and	§27.	



	
	

15	

flagpole	is	better	explained	by	the	intentions	of	the	people	who	built	it,	its	position	with	respect	
to	the	ground	and	the	sun,	as	well	as	the	properties	of	its	own	material	components.	But	despite	
this,	it	fits	the	DN	definition	of	scientific	explanation.	Another	such	an	example	is	the	relationship	
between	symptoms	and	diseases.	One	usually	takes	symptoms	as	evidence	of	a	disease;	and	the	
disease	as	explaining	the	symptoms.	The	DN	model	allows	symptoms	to	explain	diseases	because	
it	ignores	the	asymmetric	dependence	between	the	two.	This	problem	generalizes	to	many	other	
situations.	On	the	DN	model,	for	example,	future	events	can	explain	past	ones!	Craver	&	Povich	
(2017)	call	these	alleged	explanations	‘reverse	cases’.	The	DN	model,	then,	is	too	permissive,	for	
it	cannot	rule	out	reverse	cases	as	bad	explanations	because	it	cannot	account	for	the	asymmetry	
between	the	explanandum	and	the	explanans.		

Now,	in	a	widely-known	twist	of	the	flagpole	case,	Bas	C.	van	Fraassen	argues	that	there	
are	cases	where	the	length	of	the	shadow	can	indeed	explain	the	height.	In	his	famous	story	‘The	
Tower	and	the	Shadow’,	van	Fraassen	presents	a	situation	of	a	Chevalier	who	wanted	to	cover	a	
terrace	under	a	shadow,	so	he	built	a	tower	that	casts	a	shadow	of	the	required	length	(1980,	132-
134).	In	this	case,	since	the	length	of	the	shadow	is	fixed,	it	determines	the	height	the	Chevalier	
needs.	Therefore,	the	length	of	the	shadow	would	explain,	in	Van	Fraassen’s	sense,	why	the	Tower	
was	built	with	such-and-such	height.	Van	Fraassen’s	main	point	 is	 that	 there	 is	no	explanatory	
asymmetry	simpliciter;	rather,	explanatory	asymmetry	is	a	context-dependent	notion,	relative	to	
the	specific	interests	of	the	person	doing	the	explaining.	Van	Fraassen’s	is	a	pragmatic	account	of	
scientific	explanation.		

However,	 one	 may	 argue,	 as	 Salmon	 does,	 that	 even	 in	 this	 case	 there	 is	 indeed	 an	
explanatory	asymmetry	that	is	independent	of	the	explanatory	context.	Salmon	argues	that	it	is	
not	the	shadow,	but	the	beliefs	and	desires	of	the	Chevalier,	along	with	facts	about	the	Tower’s	
material	constitution,	and	the	rectilinear	propagation	of	light	that	explain	why	the	Tower	was	built	
with	 such	 a	 height	 (cf.	 Salmon	 [1989]	 2006,	 144).	 As	we	will	 see	 below,	 Salmon’s	 account	 of	
scientific	explanation	is	ontic.	Ontic	accounts	exploit	objective	patterns	dependence.8	

5.2.	The	relevance	of	the	explanans		

Another	 serious	problem	with	 the	DN	model	 is	 that	 it	allows	 irrelevant	 factors	as	explanatory.		
Consider	the	following	case:	

BIRTH-CONTROL	PILLS	CASE:	Why	did	Mr.	Jones,	a	male,	fail	to	get	pregnant?	(cf.	Salmon	
[1989]	2006,	50)	

A	valid	DN	explanation	would	be	that	Mr.	Jones	took	birth-control	pills,	and	any	male	that	
takes	 birth-control	 pills	 fails	 to	 get	 pregnant.	 The	 generalization	 g:	 ‘any	male	 that	 takes	 birth-
control	pills	 fails	 to	get	pregnant’	 is	 an	exceptionless	 regularity	 that	may	well	be	 considered	a	
genuine	law	of	nature9,	so	this	explanation	meets	the	requirements	of	the	DN	model.	The	problem,	

																																																													
8	As	we	will	see	in	section	§18,	my	account	of	MEPPs	is	also	ontic.		
9	Hempel	mentions	that	for	a	lawlike	statement	to	be	a	law	(and	not	merely	an	accidental	generalization)	
(a)	it	has	to	be	true;	(b)	it	has	to	‘pass	the	counterfactual	test’;	and	(c)	It	has	to	be	explanatory	(cf.	Salmon	
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however,	is	that	the	fact	that	Mr.	Jones	has	been	taking	birth-control	pills	is	irrelevant	to	explaining	
why	he	failed	to	get	pregnant.	Another	famous	counterexample	to	the	DN	model,	with	respect	to	
the	problem	of	relevance,	is	the	hexed	salt	case:	A	sample	of	salt	dissolved	because	both	it	was	
placed	into	water	and	it	was	hexed.	Evidently,	the	hexing	(whatever	that	is)	is	irrelevant	for	the	
dissolution	of	the	salt	(cf.	Salmon	[1989]	2006,	50).		

These	 cases	 highlight	 a	 deep	 structural	 problem	 of	 the	 DN	 model.	 A	 valid	 deductive	
argument	 continues	 to	 be	 valid	when	 a	 new	proposition	 is	 conjunctively	 added	 to	 one	 of	 the	
premises;	 but	 this	 does	 not	 seem	 to	 be	 true	 for	 scientific	 explanations.	 Explanations	 should	
discriminate	what	is	and	what	is	not	relevant	to	the	occurrence	of	the	explanandum.	This	notion	
of	explanatory	relevance,	however,	cannot	be	captured	by	the	DN	model.		

§6.	Causation	vs.	Logical	Derivation	

In	Hempel’s	model,	there	is	a	relation	of	logical	necessity	between	the	statements	that	describe	
the	 facts	 and	 laws	 in	 the	 explanans,	 and	 the	 statement	 that	 describes	 the	 facts	 in	 the	
explanandum.	However,	the	logical	derivation	of	the	explanandum	from	the	premises	that	feature	
in	the	explanans	is	not	what	makes	an	explanation	successful,	for	this	relation	of	logical	necessity	
does	 not	 necessarily	 represent	 explanatory	 relationships.	 In	 particular,	 it	 does	 not	 necessarily	
capture	the	relevant	features	of	the	world	upon	which	the	explanandum	depends.		

	 As	we	saw,	Salmon	calls	ontic	those	accounts	of	scientific	explanation	that	emphasize	that	
successful	explanations	cite	objective	features	of	the	world	(objective	patterns	of	events)	(1984,	
18).	Most	ontic	accounts	are	causal;	they	take	that	the	basic	feature	of	a	successful	explanation	is	
that	it	should	mention	the	cause(s)	of	the	explanandum.	Thus,	for	example,	in	1975	Wesley	Salmon	
wrote	that	“the	instance	in	which	[an]	event	can	play	an	explanatory	role	is	one	in	which	it	is	cause	
(or	part	thereof)	of	the	explanandum	event”	(1998,	111).	Note	here	the	shift	from	the	explanans	
and	explanandum	being	sentences	to	being	facts	or	events.	Explanation	is	no	longer	a	matter	of	
logical	 necessity	 but	 of	 physical	 necessity.	 What	 is	 being	 emphasized	 now	 are	 objective	
relationships	 of	 dependence	 in	 the	 physical	 world,	 not	 the	 logical	 relationships	 between	 the	
statements	that	describe	the	world.		

Until	 very	 recently,	 that	 scientific	 explanations	 are	 causal	 explanations	 was	 the	 new	
consensus	in	the	philosophy	of	scientific	explanation.	However,	as	I	indicated	in	section	§1,	and	
will	see	in	section	§18,	one	of	the	purposes	of	this	dissertation	is	to	contribute	to	recent	challenges	
to	this	consensus,	by	providing	an	account	of	mathematical	explanations	of	physical	phenomena,	
which,	I	argue,	are	ontic	but	noncausal	explanations.	I	leave	this	discussion	for	further	chapters.	
My	 purpose	 here	 and	 in	 the	 remaining	 sections	 of	 this	 chapter	 is	 to	 discuss	 two	 of	 the	most	
important	causal	accounts	of	scientific	explanation.		

																																																													
2006/1989,	14).	Generalization	g	is	true	(a);	the	counterfactual	‘if	x	had	been	a	male	that	took	birth-control	
pills,	x	would	have	failed	to	get	pregnant’	is	also	true	(b).	Whether	g	meets	(c)	is	more	problematic.	I	think	
g	can	be	used	in	DN	explanations,	but	it	may	not	be	explanatory	under	Salmon’s,	because	it	is	not	about	
conservative	quantities.		
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Causal	accounts	can	successfully	deal	with	some	of	the	problems	of	Hempel’s	account.	The	
requisites	 for	 a	 successful	 logical	 derivation	 can	 be	 met	 by	 cases	 that	 do	 not	 preserve	 the	
asymmetry	between	explanans	and	explanandum,	or	cases	 that	 include	 irrelevant	 information.	
For	these	reasons,	merely	showing	how	a	particular	case	falls	under	a	general	law	is	not	enough	
to	capture	these	asymmetries	or	guarantee	the	needed	explanatory	relevance;	describing	causal	
relationships,	on	the	other	hand,	is	a	way	of	meeting	these	requirements.	With	this	in	mind,	we	
can	see	the	DN	model	in	a	new	light.	Sometimes	the	derivation	relation	between	the	explanans	
and	the	explanandum	captures	causal	relationships	between	them,	and	sometimes	it	does	not.	
When	it	does	not,	the	derivation	fails	to	provide	a	successful	explanation.		

Let	us	consider	the	asymmetry	problem	in	more	detail.	In	scientific	explanation	conceived	
as	 logical	 derivation,	 the	 particular	 facts	 cited	 in	 the	 explanans	 and	 the	 explanandum	 can	 be	
interchanged.	As	we	have	seen,	this	permissiveness	represents	one	of	the	strongest	motivations	
for	abandoning	the	DN	model	and	adopting	a	causal	model	instead.	This	asymmetry	between	the	
explanans	and	the	explanandum	can	be	captured	if	we	consider	the	causal	relationships	that	are	
present	 in	the	situation	to	be	explained.	 In	the	flagpole	case,	for	example,	 it	 is	the	height	that,	
along	with	other	initial	conditions	and	according	to	the	laws	of	nature,	causes	the	flagpole	to	block	
some	 light	 rays,	 thus	 casting	 a	 shadow	 of	 a	 certain	 length.	 Thus,	 we	 explain	 the	 shadow	 by	
appealing	to	the	height	(its	cause).	In	the	same	way,	diseases	cause	symptoms,	past	events	cause	
future	ones,	etc.,	and	for	that	reason	the	former	can	be	called	in	to	explanations	of	the	latter.		

This	can	also	be	seen	in	the	bouncing	ball	case.	Although	the	DN	model	seemed	to	have	
correctly	described	what	was	explanatory	in	this	case,	it	actually	missed	it.	It	is	not	because	of	the	
derivation	relation	between	the	explanans	(initial	height,	coefficient	of	restitution,	and	the	laws)	
and	the	explanandum	(the	final	bouncing	height)	that	the	former	explains	the	latter.	If	that	were	
the	 case,	we	 could	 have	 explained	 the	 initial	 height	 by	 appealing	 to	 the	 final	 height,	which	 is	
absurd.	It	is	not	the	derivation	itself,	but	the	causal	relationship	between	the	initial	height	and	the	
final	height	that	provides	the	asymmetry	between	the	explanandum	and	the	explanans.		

As	we	saw,	another	problem	with	Hempel’s	model	was	that	of	relevance.	This	may	not	be	
a	problem	for	causal	models	(at	least	prima	facie).	An	event	is	relevant	to	explaining	another	event	
if	 the	 former	 is	 causally	 relevant	 to	 the	 occurrence	 of	 the	 latter.	 Some	 biological	 factors	 are	
causally	relevant	for	Mr.	Jones’	non-pregnancy,	but	taking	birth-control	pills	is	not.	Therefore,	the	
formers	can	explain	his	non-pregnancy	but	the	latter	cannot.	

	 The	bouncing	ball	case	also	shows	this.	The	DN	explanation	of	the	final	height	appealed	to	
the	initial	height,	some	features	of	the	ball	and	the	ground,	and	the	laws	that	describe	how	those	
factors	 interact.	 However,	 if	 we	 add	 to	 the	 explanans,	 say,	 the	 fact	 that	 the	 ball	 is	 blue,	 the	
derivation	would	still	be	DN	successful,	but	being	blue	is	actually	irrelevant	to	the	bouncing.	The	
idea	 is	 that	 derivations	 that	 describe	 causal	 relationships	 can	 capture	 the	 relevance	 of	 the	
explanans.	But	derivations	that	do	not	may	mistakenly	count	irrelevant	factors	as	explanatory.		

Now,	 the	 concept	 of	 causation	 is	 indeed	 philosophically	 problematic.	 Bertrand	 Russell	
famously	said	that:		
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“The	law	of	causality…	like	much	that	passes	muster	among	philosophers,	 is	a	relic	of	a	
bygone	age,	surviving,	like	the	monarchy,	only	because	it	is	erroneously	supposed	to	do	no	
harm”	(Russell	[1913]	1957,	174;	cited	in	Dowe	2009,	214-15).		

Despite	 this,	 as	 we	 have	 seen,	 in	 the	 context	 of	 scientific	 explanation	 the	 notion	 of	
causation	 is	 very	 appealing.	 In	 fact,	 Russell	 himself	 did	 not	 abandon	 this	 notion,	 but	 rather	
redefined	it	in	terms	of	‘causal	lines’.	This	has	been	the	general	rule	for	causal	accounts	of	scientific	
explanation:	they	are	always	associated	with	specific	definitions	of	what	it	means	for	something	
to	cause	something	else	(cf.	e.g.	Salmon	1984;	Humphreys	1989b;	Woodward	2003).			

§7.	Salmon’s	Causal-Mechanical	Model	

Wesley	Salmon’s	causal	mechanical	(CM)	model	states	that	a	scientific	explanation	must	identify	
the	causal	relations	between	the	explanandum	and	the	events	that	caused	it.	The	correspondent	
account	of	causation	is	cashed	out	in	terms	of	causal	processes	and	causal	interactions,	which	are	
the	basic	causal	mechanisms	by	which	causal	influence	is	transmitted.	Salmon	first	defined	causal	
processes	and	interactions	using	the	‘mark	transmission’	criterion,	but	later	he	abandoned	it	and	
adopted	the	‘conserved	quantity’	criterion.		

7.1.	Causation	

a)	Mark	transmission	criterion		

In	his	(1984),	Salmon	defined	a	causal	process	as	anything	that	is	capable	of	transmitting	a	mark,	
and	a	causal	 interaction	as	 the	mutual	modification	of	 two	 intersecting	processes.	A	mark	 is	a	
modification	of	a	characteristic	Q	of	a	process	P	by	means	of	a	single	local	interaction	at	point	A.	
The	mark	is	transmitted	to	point	B	if	P	manifests	the	modification	Q’	at	B	and	at	all	stages	of	the	
process	 between	 A	 and	 B	 (cf.	 Salmon	 1984,	 148).	 This	 principle	 of	 mark	 transmission	 is	
counterfactual:	the	process	P	would	have	continued	having	characteristic	Q	if	the	specific	marking	
interaction	had	not	occurred	(cf.	Salmon	1984,	148).	Salmon	used	this	mark	transmission	criterion	
to	distinguish	between	causal	processes	and	pseudoprocesses,	which	are	processes	incapable	of	
transmitting	 a	mark.	 Examples	 of	 these	 are	 shadows	 and	 spots	 of	 light.	 Although	 they	 can	be	
marked	by	a	single	local	interaction,	they	are	incapable	of	transmitting	such	mark	without	further	
interactions.		

Now,	 there	 are	 two	 main	 problems	 with	 these	 definitions,	 which	 motivated	 Salmon	
ultimately	abandoning	the	mark	transmission	criterion.	First,	there	are	two	kinds	of	interactions	
that	are	left	unexplained	(1984,	181-182).	Marks	occur	when	at	least	two	processes	intersect	and	
separate,	but	this	criterion	cannot	account	for	cases	of	fission	and	fusion,	where	the	interaction	
consists	in	either	two	processes	becoming	one	or	one	process	becoming	two.		

y-type:		 a	 single	 process	 splits	 in	 two	 (for	 example,	 radioactive	 decay,	 or	 a	 hen	
dividing	itself	up	into	a	hen	and	an	egg).		
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λ-type:		 two	separate	processes	merge	into	one	(absorption	of	a	photon	by	an	atom;	
consumption	of	a	mouse	by	a	snake).10		

But	 there	 is	 a	more	 serious	 problem	with	 the	mark	 transmission	 criterion,	 for	 it	 is	 not	
always	successful	in	sorting	out	causal	processes	from	pseudoprocesses.	This	can	be	seen	in	the	
following	hypothetical	case,	advanced	by	Nancy	Cartwright,	of	a	pseudoprocess	that	meets	the	
mark	transmission	criterion	for	causal	processes	(cf.	Salmon	1998,	18):	 if	one	‘marks’	a	moving	
light	spot	by	putting	a	red	patch	on	the	spot	of	the	wall	where	the	light	spot	is	at	one	instant,	and	
at	the	same	time	(or	a	few	nanoseconds	before)	puts	a	red	filter	on	the	beacon,	the	light	spot	
would	have	one	characteristic	altered	by	means	of	a	local	interaction,	and	would	have	continued	
to	carry	such	characteristic	without	further	 local	 interventions.	 In	such	a	case,	the	 light	spot	(a	
pseudo	process)	would	have	met	 the	mark	 transmission	criterion,	which	 is	 reserved	 for	causal	
processes	only.		

Now,	 the	 counterfactual	 character	 of	 the	mark	 transmission	 criterion	 aims	precisely	 at	
avoiding	this	kind	of	cases.	In	Cartwright’s	example,	the	light	spot	would	have	turned	red	if	the	
single	local	interaction	had	not	occurred;	therefore,	this	must	not	be	counted	as	a	genuine	marking	
process.	 A	 genuine	 causal	 process	 should	 continue	 having	 characteristic	 Q	 if	 the	 marking	
interaction	 had	 not	 occurred,	 but	 that	 is	 not	 the	 case	 here.	 However,	 the	 problem	with	 this	
answer,	as	Philip	Kitcher	has	pointed	out,	is	that	it	places	counterfactuals	at	the	core	of	the	mark	
transmission	 view,	making	 the	 allusion	 to	 processes	 and	 interactions	 thus	 defined	 in	 principle	
dispensable	(cf.	Dowe	2009,	218).	This	is	not	a	trivial	point.	As	Salmon	himself	acknowledged,	the	
mark	criterion	does	not	explicate	what	causal	processes	actually	are.	It	does	not	show	the	actual	
features	that	make	a	process	causal	([1994]	1998,	252-253).	For	this	reason,	along	with	the	first	
criticism	mentioned	above,	Salmon	ended	up	abandoning	the	mark	transmission	criterion	([1994]	
1998,	254).		

b)	Conserved	quantity	criterion	

Based	on	Philp	Dowe’s	conserved	quantity	theory	of	causation,	Salmon	redefined	causal	processes	
and	 interactions	 in	a	way	 that	overcomes	 the	problems	of	 the	mark	 transmission	criterion.	He	
defined	causal	processes,	interactions,	and	transmission	of	conserved	quantities	as	follows:		

Causal	interaction:		 Is	an	intersection	of	world-lines	that	involves	exchange	of	a	
conserved	quantity.	

Causal	process:		 Is	a	world-line	of	an	object	that	transmits	a	nonzero	amount	
of	a	conserved	quantity	at	each	moment	of	its	history	(each	
space	time	point	of	its	trajectory)	

																																																													
10	In	(1984,	182)	Salmon	acknowledged	that	he	was	not	capable	of	explicating	these	interactions	with	his	
framework,	but	he	was	open	to	the	possibility	that	the	framework	may	accommodate	these	interactions	
after	all.	In	later	works	he	abandoned	the	mark	transmission	framework,	and	so	he	no	longer	explored	this	
possibility.	As	we	will	 see	shortly,	 in	 the	conserved	quantity	 framework	these	 interactions	can	be	easily	
explicated.		
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Conserved	quantity	(CQ):		 It	 is	 any	 quantity	 governed	 by	 a	 conservation	 law	 (mass-
energy;	linear	momentum;	charge;	etc.)		

Transmission	of	a	CQ:		 A	process	transmits	a	conserved	quantity	between	A	and	B	
(A	≠	B)	if	it	possesses	a	fixed	amount	of	this	quantity	at	A	and	
B	and	at	every	stage	of	the	process	between	A	and	B	without	
any	 interactions	 in	the	open	 interval	 (A,	B)	that	 involve	an	
exchange	 of	 that	 particular	 conserved	 quantity.	 (cf.	 Dowe	
2009,	216-221)	

This	 account	 of	 causation	 defines	 causal	 processes	 by	 what	 they	 actually	 possess	 (a	
conserved	quantity),	and	so	it	is	not	counterfactual.	It	also	deals	with	the	problems	of	fission	and	
fusion	interactions	in	an	obvious	way:	in	those	cases,	the	amount	of	the	conserved	quantity	carried	
by	the	processes	is	either	divided	or	combined	(1998,	19-20).		

7.2.	Scientific	Explanation	

Salmon’s	first	account	of	scientific	explanation	(e.g.	[1975]	1998)	proposed	the	notion	of	statistical	
dependence	 as	 a	 way	 of	 dealing	 with	 the	 problem	 of	 relevance.	 Given	 events	 A	 and	 B	 with	
probabilities	P(A)	and	P(B)	respectively,	if	the	probability	P(A.B)	is	simply	P(A)	x	P(B)	then	A	and	B	
are	statistically	independent.	If	this	is	not	the	case,	then	the	two	events	are	statistically	relevant	
to	each	other.	On	this	view,	statistically	independent	events	are	completely	without	explanatory	
value	 to	 one	 another;	 on	 the	 other	 hand,	 statistically	 relevant	 events	 are	 also	 explanatorily	
relevant.	Note	that	this	 is	 independent	of	whether	the	presence	of	one	event	makes	the	other	
event	expectable.	Explanatory	relevance	is	not	tied	with	high	inductive	probability.		

This	view,	however,	 is	 incomplete,	for	 it	 is	not	necessarily	the	case	that	two	statistically	
relevant	events	are	explanatorily	relevant.	For	example,	correlated	events	that	do	not	have	a	direct	
causal	connection	between	them	are	not	explanatorily	relevant	to	each	other	(otherwise,	some	of	
the	problems	of	the	DN	model	would	emerge	again).	Salmon	thus	proposed	a	new	version	of	this	
account,	called	the	Causal-Mechanical	(CM)	model	(e.g.	1984).	On	this	view,	it	is	only	when	two	
statistically	relevant	events	are	also	causally	related	that	one	is	explanatorily	relevant	to	the	other.	
What	is	of	primary	importance	is	causal	relevance,	which	is	not	the	same	as	statistical	relevance,	
but	a	species	of	it	(Salmon	1998,	116).		

The	crucial	idea	of	the	CM	model	is	the	notion	of	the	causal	structure	of	the	world,	which	
is	the	network	formed	by	causal	processes	and	interactions.	In	order	to	explain	the	explanandum,	
the	explanation	must	show	how	the	explanandum	fits	into	this	network.	Thus,	whereas	for	Hempel	
to	explain	was	to	fit	the	explanandum	‘into	the	nomic	nexus’,	for	Salmon	scientific	explanations	
work	by	showing	how	the	explanandum	“fit[s]	 into	the	causal	nexus”	(2006/1999,	120).	This	 is	
done	by	tracing	spatiotemporally	continuous	causal	processes	and	interactions	that	connect	the	
explanandum	to	its	causes	(Salmon	1984,	156).		Consider	the	following	example.		

BAROMETER	 CASE:	 A	 storm	 (S)	 was	 preceded	 by	 both	 a	 decrease	 in	 the	 reading	 of	 a	
barometer	(B)	and	a	decrease	in	the	atmospheric	pressure	(A).	Why	did	S	occur?	
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In	 this	 case,	B	 and	S	 are	 statistically	 relevant	 to	one	another,	 but	 they	are	not	directly	
causally	connected,	and	so	we	cannot	appeal	to	one	of	them	to	explain	the	other11.	On	the	other	
hand,	both	B	and	S	are	causally	connected	to	A,	and	thus	we	can	use	A	to	explain	either	of	them.	
The	idea	is	that	one	explains	a	relation	of	statistical	relevance	between	two	non-contiguous	events	
by	 invoking	 a	 common	 cause.	 This	 common	 cause	 is	 connected	 to	 those	 events	 by	
spatiotemporally	 contiguous	 causal	 processes.	 In	 this	 way,	 we	 show	 how	 the	 events	 to	 be	
explained	‘fit’	into	the	causal	nexus	of	processes	and	interactions,	that	is,	into	the	causal	structure	
of	the	world.	

§8.	Problems	with	the	CM	Model		

Because	of	its	causal	character,	Salmon’s	model	deals	with	the	asymmetry	problem	in	a	natural	
way.	 In	 the	 flagpole	 case,	 it	 is	 the	 height	 of	 the	 flagpole	 (a	 causal	 process)	 that,	 (causally)	
interacting	with	light	waves	coming	from	the	Sun	(causal	processes),	explains	the	fact	that	there	
is	one	section	of	 the	 floor	 that	 is	hit	by	 fewer	 light	waves,	 thus	creating	a	contrast	with	other	
sections	of	the	floor	that	are	more	illuminated	(we	describe	this	contrast	–	the	shadow	–	in	terms	
of	causal	processes).	However,	the	model	is	not	too	successful	on	two	other	fronts.		

8.1.	The	problem	of	relevance	

One	problem	with	the	CM	model,	as	has	been	pointed	out	by	Christopher	Hitchcock,	is	that	“the	
nexus	of	causal	processes	and	interactions	as	characterized	by	Salmon	is	not	rich	enough	to	supply	
the	necessary	conception	of	explanatory	relevance”	(1995,	304).	James	Woodward	makes	a	similar	
point:	

The	suggestion	that	explanation	involves	‘fitting’	an	explanandum	[E]	into	a	causal	nexus	
does	not	give	us	any	very	precise	characterization	of	what	the	relationship	between	E	and	
other	causal	processes	and	interactions	must	be	if	information	about	the	latter	is	to	explain	
E”	(Woodward	2003,	351).			

The	 idea	of	 these	 criticisms	 is	 that	merely	 showing	how	 the	explanandum	 fits	 into	 the	
causal	network	hardly	tells	us	which	amongst	all	causal	processes	connected	to	the	explanandum	
are	actually	 relevant	 for	explaining	 it.	 It	 is	 true	that	Salmon	points	out	 that	we	do	not	have	to	
search	the	whole	universe	to	find	out	what	events	bear	causal	relations	to	the	explanandum,	“we	
have	 only	 to	 examine	 the	 interior	 [of	 the	 light	 cone]	 and	 some	 boundary	 of	 some	 spatial	
neighborhood	of	[the	explanandum]	for	a	certain	time	in	the	immediate	past	of	[it]”	(Salmon	1998,	
120).	But	this	does	not	give	us	instructions	about	how	to	narrow	down	the	set	of	all	causes	of	the	
explanandum.	 Take	 the	 example	 of	 Mr.	 Jones	 taking	 birth	 control	 pills.	 The	 pills	 are	 causal	
processes	that,	when	ingested,	become	spatiotemporally	connected	with	the	explanandum	(Mr.	
Jones	non-pregnancy).	Although	the	pills	belong	to	the	causal	structure	of	the	world,	and	are	part	
of	the	causal	nexus	into	which	the	explanandum	fits,	they	do	not	explain	the	non-pregnancy	(cf.	
Woodward	2003,	352).	

																																																													
11	Note	that	this	is	true	even	though	we	can	predict	S	using	B.		
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	 Now,	an	answer	to	this	worry	may	be	that	whether	or	not	Mr.	Jones	takes	the	pills,	the	
probability	 of	 him	 becoming	 pregnant	 is	 zero,	 and	 so	 taking	 birth-control	 pills	 is	 statistically	
independent	of	whether	or	not	Mr.	Jones	gets	pregnant.	In	general,	amongst	all	causal	processes	
that	contribute	to	the	occurrence	of	the	explanandum,	only	those	that	really	make	a	statistical	
difference	 should	 be	 chosen.	However,	 this	 reply	 implies	 that,	 if	we	want	 to	 know	 the	 causal	
processes	in	virtue	of	which	those	statistical	dependencies	occur,	it	is	not	enough	to	know	the	set	
of	actual	causal	processes	and	interactions,	but	which	ones,	were	they	or	were	they	not	to	have	
been	 present,	 would	 or	 would	 not	 make	 a	 difference	 to	 the	 occurrence	 of	 the	 events	 to	 be	
explained.	It	seems	that	this	counterfactual	information	is	crucial	to	knowing	which	actual	causal	
processes	 are	 explanatorily	 relevant.	 In	 other	 words,	 appealing	 to	 the	 notion	 of	 statistical	
relevance	introduces	counterfactual	reasoning	after	all.		

8.2.	The	problem	of	higher-order	explanations	

Here	is	another	problem	with	the	CM	model.	Consider	the	following	case	due	to	Frank	Jackson	
and	Philip	Pettit:	

GLASS	CONTAINER	CASE:	The	water	in	a	closed	glass	container	reaches	boiling	temperature	
—the	mean	molecular	motion	is	at	such	and	such	a	level—	and	the	container	cracks.	Why	
did	it	crack?	(1990,	110).		

One	common	explanation	of	this	case	is	that	an	increment	in	water	temperature	(say,	due	
to	an	energy	transfer	from	an	external	source),	increased	the	internal	pressure	of	the	container.	
The	problem	is	that	strictly	speaking	temperature	is	not	a	causal	process,	but	a	way	of	describing	
the	average	kinetic	energy	of	the	water	molecules.	A	proper	CM	explanation	of	this	case	should	
appeal	to	the	momentum	of	the	molecules	that	stroke	some	molecular	bonds	in	the	container’s	
surface.	 But	 obviously	 it	 is	 virtually	 impossible	 to	 determine	which	molecules	 actually	 hit	 the	
container	surface,	let	alone	to	back	track	the	molecular	interactions	that	led	them	to	do	so.	This	
result	is	puzzling,	for	it	means	that	under	the	CM	model	this	case	cannot	be	explained.		On	the	
other	hand,	the	first	explanation	—the	one	that	appeals	to	the	increase	in	temperature—	does	
seem	to	be	a	satisfactory	one,	although	it	does	not	accommodate	the	CM	model.	We	can	explain	
the	 cracking	 when	 we	 learn	 that	 there	 was	 an	 increase	 in	 the	 temperature.	 How	 does	 this	
explanation	work	if	it	is	not	by	tracking	specific	causal	processes?		

Jackson	 &	 Pettit	 call	 explanations	 of	 this	 kind	 ‘program	 explanations’.	 Program	
explanations	 do	 not	 point	 to	 specific	 causal	 processes;	 rather,	 they	 appeal	 to	 an	 existential	
quantification:	there	will	be	some	set	of	causal	processes	that	will	be	efficacious	in	producing	the	
explanandum.		

Jackson	&	Pettit	distinguish	between	causally	relevant	and	causally	efficacious	properties.	
Causally	 efficacious	 properties	 are	 those	 possessed	 by	 Salmon’s	 causal	 processes.	 They	 are	
responsible	for	the	actual	occurrence	of	the	explanandum.	Causally	relevant	properties,	on	the	
other	hand,	not	only	include	causally	efficacious	properties	but	also	higher-order	properties:			
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[T]he	 higher-order,	 inefficacious	 property	 is	 causally	 relevant	 to	 the	 event	 produced,	
because	its	realization	programs	for	the	realization	of	a	lower-order	efficacious	property	
and,	in	the	circumstances,	for	the	occurrence	of	the	event	in	question	(Jackson	&	Pettit	
1990,	114-115;	my	emphasis).		

	 The	 crucial	 concept	 here	 is	 that	 of	 ‘programming’.	 In	 the	 glass	 container	 case,	 the	
temperature	 property	 is	 a	 statistical	 aggregate,	 and	 did	 not	 produce	 the	 momentum	 of	 the	
molecules	 that	 led	 to	 the	 cracking.	 But	 the	 temperature	 was	 relevant	 for	 the	 cracking.	 The	
instantiation	of	the	temperature	property	programs	or	ensures	that	there	will	be	a	set	of	causal	
processes	 (the	momentum	of	 a	 set	 of	water	molecules)	 that	will	 produce	 the	 cracking	 of	 the	
container.	An	explanation	that	appeals	to	the	temperature	gives	us	 important	 information	that	
helps	us	to	understand	why	the	container	cracked.	

Moreover,	 this	 explanation	 seems	 optimal.	 Even	 if	 it	 was	 possible	 to	 provide	 a	 CM	
explanation	 for	 this	 case	 (assuming	 one	 could	 back	 track	 the	 trajectory	 of	 every	 single	water	
molecule	 that	 hit	 the	 container	 walls	 ¾arguably,	 an	 impossible	 deed),	 the	 higher-order	
explanation	would	be	better.	The	actual	molecules	that	hit	the	walls	seem	not	to	be	statistically	
relevant	for	the	cracking.	Had	it	not	been	the	specific	water	molecules	that	hit	the	container	walls,	
others	would	have	hit	 it	 and	produced	 the	cracking	anyway.	This	hypothetical	CM	explanation	
would	miss	this	important	information.	Citing	the	actual	trajectory	of	the	particular	set	of	water	
molecules	that	hit	the	container	surface	is	not	as	important	to	the	explanation	as	mentioning	the	
property	that	‘programmed’	this	to	happen.	As	long	as	the	programming	property	is	instantiated,	
the	cracking	would	happen	anyway,	regardless	of	the	actual	trajectory	of	the	specific	molecules	
that	were	efficacious	in	doing	it.		

Program	explanations	are	not	special	or	rare	cases;	in	fact,	they	are	all	over	the	place	in	
science:	the	explanation	of	a	glass	that	breaks	due	to	its	fragility;	the	squareness	of	a	peg,	which	
ensures	that	it	will	not	fit	into	a	circular	hole;	the	rabbit	that	is	eaten	in	a	forest	infested	by	a	skulk	
of	 foxes;	 etc.	 Juha	Saatsi	has	pointed	out	 that	 although	 Jackson	&	Pettit’s	 is	not	 ‘a	 full-blown’	
theory	of	explanation,	 it	 is	“an	attempt	to	make	sense	of	higher-level	explanations	that	do	not	
feature	causally	efficacious	properties”	(2016,	16).	The	essential	feature	of	program	explanations	
is	that,	by	appealing	to	these	higher-order	properties,	they	give	us	modal	information	about	the	
explanandum	that	 is	essential	 to	understand	why	the	explanandum	occurred.	The	CM	account	
cannot	explicate	why	these	are	satisfactory	explanations.	As	I	will	show,	however,	despite	the	fact	
that	there	is	an	important	modal	component	at	play,	these	explanations	can	still	accommodate	
the	model	of	ontic	accounts	of	scientific	explanation.		

§9.	Woodward’s	Interventionist	Account	

James	Woodward’s	model	of	scientific	explanation	is	also	associated	with	an	account	of	causation.	
What	is	fundamental	in	causal	relationships,	according	to	Woodward,	are	invariant	relationships	
of	dependence	between	the	cause	and	the	effect.	For	Woodward,	a	causal	relationship	is	one	that	
in	principle	can	be	used	to	manipulate	the	effect	by	intervening	over	one	of	its	causes.	If	systematic	
interventions	 on	 X	 entail	 systematic	 changes	 on	 Y,	 then	 X	 is	 one	 of	 the	 causes	 of	 Y.	 These	
dependency	relations	are	at	the	core	of	successful	scientific	explanations.	With	this	account	of	
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causation,	Woodward	defines	a	scientific	explanation	of	Y	as	an	answer	to	a	w-question	of	the	
form:	 what-if-things-had-been-different?	 These	 questions	 can	 be	 answered	 by	 exploiting	 the	
causal	relationship	between	Y	and	one	of	its	causes	(for	example	X).		

For	Woodward,	when	explaining	a	physical	phenomenon,	one	must	find	the	right	level	of	
description	where	invariant	relationships	of	dependence	hold.	Knowing	these	relationships	often	
requires	 abstracting	 away	 from	 many	 of	 the	 details	 of	 the	 underlying	 causal	 processes	 that	
produced	the	explanandum.	On	this	account,	since	there	are	invariant	relationships	at	different	
levels	of	description,	causal	 relationships	can	be	 found	at	each	of	 these	 levels,	even	when	the	
underlying	causal	processes	cannot	be	tracked	down.	As	we	will	see,	this	is	why	Woodward’s	is	an	
ontic	account	of	scientific	explanation.	These	invariant	relations	are	discovered	when	the	system	
is	described	at	the	appropriate	level.	But	the	invariances	are	objective;	they	do	not	depend,	for	
their	existence,	on	the	person	who	describes	them.		

Contrary	to	Salmon’s,	Woodward’s	account	of	causation	and	scientific	explanation	does	
not	depend	on	tracking	down	spatiotemporally	continuous	relations	between	the	events	in	the	
explanans	and	the	explanandum.	In	what	follows,	I	discuss	the	notions	of	causation,	intervention,	
and	invariance	in	more	detail,	and	then	focus	on	Woodward’s	account	of	scientific	explanation.		

9.1.	Causation	

For	Woodward	X	is	a	cause	of	Y	if	there	is	an	invariant	relationship	of	dependence	between	X	and	
Y	that	can	be	used	for	manipulating	or	controlling	Y	(2003,	14).		These	invariant	relationships	are	
objective	features	of	the	world.	If	systematic	interventions	over	X	entail	changes	in	Y	(or	in	the	
probability	of	Y),	then	X	is	a	cause	of	Y.	This	dependence	between	X	and	Y	must	be	invariant	under	
a	range	of	interventions.		

	 Just	as	does	Salmon’s,	Woodward’s	notion	of	causation	allows	distinguishing	between	two	
variables	that	are	simply	correlated	and	two	that	are	causally	connected.	In	the	barometer	case,	
for	example,	a	decrease	in	the	reading	of	a	barometer	(B)	is	almost	always	followed	by	a	storm	(S).	
However,	it	is	not	possible	to	control	whether	or	not	S	occurs	by	intervening	over	B.	If	one	changes	
the	reading	of	the	barometer	by	means	that	affect	such	a	reading	only	(say,	by	locally	cooling	down	
a	mercury	barometer),	 obviously	 the	occurrence	of	 the	 storm	would	not	be	affected,	 and	 the	
correlation	 between	 B	 and	 S	 would	 break	 down.	 On	 the	 other	 hand,	 when	 the	 atmospheric	
pressure	A	drops,	it	is	more	likely12	that	S	will	occur.	This	is	a	causal	relationship	not	only	because	
without	a	decrease	in	A,	S	would	not	have	been	more	likely	to	occur,	but	also	because	within	some	
range,	gradual	changes	in	A	would	systematically	alter	the	probabilities	of	S.			

	

	

																																																													
12	For	Woodward,	being	‘more	likely’	to	occur	does	not	mean	actually	being	likely	to	occur.	Just	like	with	
Salmon’s	account,	a	factor	is	a	cause	if	it	affects	the	probability	of	its	effect,	regardless	of	whether	it	conveys	
high	probability	to	the	occurrence	of	the	effect.				
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9.2.	Interventions	

An	intervention	I	is	“an	idealized	experimental	manipulation	carried	out	on	some	variable	X	for	the	
purpose	 of	 ascertaining	 whether	 changes	 in	 X	 are	 causally	 related	 to	 changes	 in	 some	 other	
variable	Y”	(Woodward	2003,	94).	This	notion	of	intervention	is	in	itself	causal,	so	there	is	a	sense	
in	which	Woodward’s	account	commits	a	circularity.	However,	as	he	points	out,	this	is	not	a	vicious	
circularity.	It	is	true	that	the	concept	of	causation	is	not	fully	defined	within	his	view,	because	it	
does	not	“yield	a	reduction	of	causal	talk	to	non-causal	talk”	(Woodward	2013),	and	in	that	sense	
the	definition	is	circular;	but	his	is	an	account	of	causal	relationships	between	two	or	more	events	
or	processes.	The	criteria	for	I	to	be	a	proper	intervention	over	X	(in	order	to	manipulate	Y)	does	
not	include	any	reference	to	the	causal	relationship	between	X	and	Y.	So,	the	characterization	of	
interventions	is	not	viciously	circular	because	it	does	not	presuppose	“that	we	already	have	causal	
information	about	the	very	relationship	that	we	are	trying	to	characterize”	(Woodward	2013).13		

Another	feature	of	interventions	is	that	they	should	be	‘surgical’,	that	is,	they	should	affect	
one	of	the	variables	without	directly	affecting	the	other	one.14	For	example,	consider	a	pendulum	
with	a	copper	wire	of	length	L	that	has	a	period	T,	as	described	by:	

𝑇 =
𝐿
2𝜋	

Because	interventions	over	L	would	produce	systematic	changes	in	T,	L	is	a	cause	of	T.	One	can	
intervene	over	L,	say,	by	dilating	the	wire	with	heat.	But	not	every	way	of	heating	it	up	would	count	
as	an	intervention.	If	we	pump	hot	air	in	the	room	this	would	increase	the	wire’s	temperature,	
producing	the	dilatation,	but	the	air	may	also	push	the	wire	sideways,	thus	directly	affecting	the	
period	T.	This	disqualifies	it	as	an	intervention	in	Woodward’s	sense.	A	proper	intervention	may	
be,	for	example,	to	stretch	the	wire.			

Finally,	it	is	important	to	note	that,	in	many	senses,	interventions	need	not	be	possible.	For	
starters,	 they	do	not	need	to	be	humanly	or	 technologically	possible.	 Interventions	can	be	the	
result	of	natural	events.	Consider,	for	example,	the	relationship	between	the	moon	and	the	tides.	
That	the	moon	causally	affects	the	tides	can	be	seen	if	we	take	the	natural	rotation	of	the	moon	
around	the	earth	as	a	‘natural’	intervention.	Gradual	changes	in	the	position	of	the	moon	entail	
changes	in	the	tides,	due	to	the	gravitational	influence	of	the	moon	over	the	ocean	water.		

Interventions,	 however,	 need	 not	 even	 be	 physically	 possible,	 let	 alone	 have	 actually	
occurred.	For	example,	changing	the	moon’s	orbit	would	also	count	as	an	intervention.	But	when	
																																																													
13	 This	 discussion	 of	 interventions	 is	 important	 for	 one	 of	 the	main	 points	 I	 make	 in	 this	 dissertation.	
Woodward	defined	interventions	causally,	in	order	to	find	out	causal	relationships.	But	it	is	also	possible	to	
conceive	noncausal	 interventions	 (I	will	 call	 them	 ‘deformations’),	which	would	yield	 information	about	
noncausal	relationships	of	dependence.	As	I	will	argue	below	(section	§18),	there	are	scientific	explanations	
that	require	mentioning	these	noncausal	relationships.		
14	 To	draw	an	analogy	with	experimentation,	we	 could	 say	 that	one	must	manipulate	 the	 independent	
variable	in	order	to	assess	changes	in	the	dependent	variable.			
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we	 think	 of	 the	 conditions	 under	 which	 this	 may	 happen,	 the	 situation	 gets	 complicated	 (cf.	
Woodward	2009,	255).	If	such	alterations	were	produced,	say,	because	the	moon	is	attracted	by	
another	planet,	 such	a	planet	would	also	affect	 the	 tides	directly,	and	therefore	 the	alteration	
would	not	be	an	intervention	because	it	would	not	be	surgical.	It	is	difficult	to	imagine	a	causal	
intervention	that	affects	only	the	moon’s	orbit.		

In	spite	of	this,	we	can	still	think,	hypothetically,	of	what	would	happen	if	the	orbit	were	to	
change,	or	the	size	of	the	moon	were	to	be	doubled,	etc.,	even	if	it	may	not	be	physically	possible	
to	carry	out	these	interventions.	So,	even	if	it	is	true	that	there	is	no	physical	way	for	these	things	
to	occur,	we	still	believe	that	the	size	of	the	moon,	and	its	orbit,	are	causes	of	the	tides.	Why?	In	
this	 case,	 because	 of	 our	 reliance	 on	 Newtonian	 mechanics.	 Identifying	 causal	 relationships	
requires	analyzing	a	 series	of	 counterfactual	 claims.	We	can	answer	 these	counterfactuals,	 for	
example,	 by	 analyzing	 and	 manipulating	 the	 mathematical	 model	 that	 describes	 the	 physical	
system	in	question.	In	this	particular	case,	the	model	consists	in	Newtonian	laws	of	movement	and	
gravitation,	 as	 well	 as	 the	 geometrical	 laws	 of	 the	 composition	 of	 forces.	 Without	 actually	
intervening	 over	 the	 physical	 system,	 we	 can	 analyze	 the	 truth	 of	 counterfactual	 claims	 by	
manipulating	 such	 equations,	 even	 though	 it	 is	 physically	 impossible	 for	 the	 scenarios	 that	
correspond	to	those	manipulations	to	occur.	This	manipulation	of	the	mathematical	model	does	
not	imply	that	the	mathematical	or	logical	relationships	in	the	model	are	actually	carrying	out	the	
explanatory	work	in	the	explanation.	As	I	will	emphasize	in	further	sections	(see	especially	§14	and	
§15),	they	are	the	physical	features	represented	by	the	model	that	explain	the	explanandum	(in	
this	case,	the	tides).				

It	is	important	to	note	that,	on	this	account,	interventions	are	performed	(or	thought	of)	
in	order	to	find	out	causal	relationships.	Altering	the	actual	mechanism	that	relates	the	cause	and	
the	effect	would	not	count	as	a	proper	intervention.	The	idea	is	that	the	actual	mechanism	must	
remain	untouched.	Untouched	mechanism	means	that	the	relation	between	the	cause	and	the	
effect	should	remain	invariant.	This	will	become	clearer	in	the	next	subsection.		

9.3.	Invariance	

We	saw	that	for	Woodward	causation	is	about	objective	relationships	of	dependence	that	occur	
in	the	world	(that	is	why	this	is	an	ontic	account	of	explanation).	These	relationships	are	invariant	
under	interventions,	but	not	all	interventions	would	preserve	this	invariance.	Consider	the	case	of	
a	 spring	 that	 obeys	 Hooke’s	 law,	 which	 is	 a	 law	 that	 describes	 the	 behavior	 of	 springs	 when	
elongated	by	an	external	force.	Depending	on	the	elongation	of	the	spring,	it	would	pull	with	a	
restoring	force	given	by	the	following	equation:		

Fr	=	-KΔL												

In	this	equation,	K	is	the	constant	that	describes	the	stiffness	of	the	spring,	Fr	is	the	restoring	force	
that	 the	 spring	 produces	 in	 a	 direction	 opposite	 to	 the	 elongation,	 and	 ΔL	 is	 the	 difference	
between	the	initial	length	L0	and	the	elongated	length	L.		A	cause	of	the	magnitude	of	the	restoring	
force	Fr	is	the	elongation	ΔL	of	the	spring.	Systematic	variations	in	ΔL	would	produce	systematic	
changes	in	Fr.	In	that	sense,	the	relation	between	ΔL	and	Fr	is	invariant.	However,	not	all	possible	
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values	of	ΔL	will	preserve	this	invariance.	When	a	spring	is	stretched	beyond	its	elastic	limit,	it	loses	
its	capacity	of	producing	a	restoring	force.	It	 is	only	within	some	parameters	that	interventions	
over	the	elongation	of	the	spring	will	preserve	the	invariant	relationship	between	ΔL	and	Fr.	These	
parameters	are	called	the	range	of	invariance.	Beyond	this	range	the	mechanism	is	altered	and	
the	invariant	relationship	breaks	down.	Within	the	limits	of	this	range,	however,	the	elongation	is	
a	cause	of	the	restoring	force,	as	it	is	described	by	Hooke’s	law.	Beyond	this	range	there	is	no	such	
causal	relationship.		

The	 idea,	 then,	 is	 that	 some	 dependency	 relationships	 remain	 invariant	 under	 a	wider	
range	of	 interventions	(for	example,	the	gravitational	attraction	between	two	bodies),	whereas	
others	 have	 a	 limited	 range	 (for	 example	 Hooke’s	 law).	 The	 larger	 the	 range	 of	 the	 invariant	
relationship,	the	greater	the	amount	of	counterfactual	cases	that	could	be	analyzed	by	appealing	
to	it,	and	so	the	greater	the	capacity	to	answer	w-questions.	As	we	will	see,	since	answering	these	
questions	is	fundamental	to	scientific	explanation,	the	larger	the	range	of	invariance	the	greater	
the	explanatory	power	of	a	generalization.		

9.4.	Scientific	Explanation	

Woodward’s	model	of	scientific	explanation	is	called	the	Interventionist	model.	According	to	him,	
a	 scientific	 explanation	 should	 answer	 w-questions	 of	 the	 form:	 what-if-things-had-been-
different?	(2003,	11).	On	this	account,	scientific	explanations	should	inform	us	about	what	would	
have	happened	to	the	explanandum	if	the	facts	described	in	the	explanans	had	been	different,	
and	in	that	way	we	learn	about	the	actual	facts	that	made	a	difference	to	the	occurrence	of	the	
explanandum.		This	is	done	by	exploiting	invariant	relations	of	dependence	in	the	world.		

In	the	bouncing	ball	case,	for	example,	we	can	control	the	bouncing	height	by	intervening	
over	 the	 initial	 height.	Within	 some	 range,	 the	 relationship	 between	 initial	 and	 final	 height	 is	
invariant	under	 interventions.	But	of	 course,	 the	 range	under	which	 this	 invariant	 relationship	
holds	is	not	too	wide.	If	the	ball	was	dropped	from	100m	height	(in	a	vacuum)	it	would	probably	
smash	into	pieces	when	it	hit	the	floor.	Due	to	this	limited	range,	explaining	the	26,8cm	bouncing	
height	 by	 appealing	 to	 the	 initial	 height	 alone	 is	 not	 a	 fully	 satisfactory	 explanation.	 A	 better	
explanation	would	be	one	that	appeals	to	the	relation	of	semi-elastic	collision	between	the	floor	
(say,	made	out	of	concrete)	and	the	ping	pong	ball	(made	out	of	plastic	celluloid).	One	equation	
of	semi	elastic	collisions	is:	

V’	=	ρ	V	

The	 coefficient	 ρ	 depends	 upon	 some	 characteristics	 of	 the	 colliding	 objects,	 in	 this	 case	 the	
thickness	of	the	ball,	the	elastic	properties	of	the	celluloid	plastic,	the	rigidity	of	the	floor,	etc.	This	
relationship	is	stable	under	a	wider	range	of	interventions	than	the	relationship	between	initial	
and	final	height.	By	intervening	over	those	characteristics,	we	can	change	the	value	of	ρ,	and	we	
can	answer	a	greater	number	of	w-questions	about	the	final	height.			

Now,	 it	 may	 appear	 that	 the	more	 detail	 we	 introduce	 in	 our	 analysis	 the	 better	 the	
explanation	would	be.	But,	as	we	have	already	seen	in	section	§8	with	those	cases	that	require	
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program	 explanations,	 this	 is	 not	 always	 so.	 These	 cases	 can	 be	 well	 understood	 under	
Woodward’s	account.	Consider	the	following	program	explanation:		

THE	RABBIT	CASE:	A	rabbit	is	let	loose	in	a	forest	that	has	recently	been	infested	by	a	skulk	
of	foxes.	Given	its	average	speed,	it	would	have	taken	the	rabbit	2	minutes	to	run	away	
and	leave	the	forest.	But	in	the	end,	the	rabbit	was	eaten	by	a	fox.	Why	did	this	happen?	

	 There	 are	 some	 specific	 characteristics	 of	 foxes	 and	 rabbits	 that	may	 explain	 this,	 for	
example,	 that	 foxes	 are	 carnivorous,	 faster	 and	 stronger	 than	 rabbits,	 aggressive;	 etc.	 These	
features,	along	with	specific	details	of	the	trajectory	of	the	fox	that	ate	the	rabbit	and	the	rabbit	
itself,	explain	why	the	rabbit	was	eaten	by	a	particular	fox.	But	there	is	a	sense	in	which	the	specific	
trajectories	of	the	fox	and	the	rabbit	are	not	relevant	for	explaining	the	explanandum.	There	were	
so	many	foxes	in	the	area	that,	had	it	not	been	that	particular	fox,	another	fox	would	have	probably	
eaten	the	rabbit	before	he	managed	to	escape.	If	we	want	to	explain	why	the	rabbit	did	not	make	
it,	 the	 fact	 that	 it	was	 that	 specific	 fox	 is	 irrelevant.	As	we	 saw,	 this	 represents	 a	problem	 for	
Salmon’s	 account,	 where	 causal	 explanations	 should	 track	 down	 the	 trajectories	 of	
spatiotemporally	 continuous	 causal	 processes.	 	 For	 Salmon,	 only	 causal	 processes	 and	 their	
interactions	 should	 be	 cited	 in	 causal	 explanations.	 Since	 only	 individual	 foxes	 are	 causal	
processes,	only	they	should	be	mentioned.	But	as	we	saw,	by	doing	this	the	explanation	would	
omit	important	modal	information	about	the	explanandum.		

The	 key	 point	 here	 is	 that	 whether	 or	 not	 a	 given	 explanation	 requires	 a	 program	
explanation	depends	on	the	specific	explanandum	that	is	to	be	explained.	In	Woodward’s	view,	in	
order	to	acquire	the	information	needed	to	answer	w-questions	we	must	find	the	right	level	of	
description.	 In	this	specific	case,	given	the	explanandum,	we	must	describe	this	situation	at	the	
level	of	the	aggregate	of	foxes,	and	not	at	the	level	of	individuals.	What	happened	with	one	specific	
fox	is	statistically	irrelevant	to	the	occurrence	of	the	event	described	by	this	explanandum.	It	was	
the	increment	in	the	number	of	foxes	in	the	area	that	increased	the	probabilities	of	an	attack.	We	
can	intervene	over	this	by	analyzing	a	similar	case	in	which	the	rabbit	is	placed	in	forests	with	a	
different	number	of	foxes.	If	there	are	fewer,	the	probabilities	of	the	attack	would	be	reduced,	
and	 they	would	gradually	 increase	 if	 the	number	of	 foxes	 increases.	This	 satisfies	Woodward’s	
condition	 for	 invariance.	 Because	 the	 relationship	 between	 the	 number	 of	 foxes	 and	 the	
probabilities	is	invariant	(we	can	control	the	probability	of	being	eaten	by	causally	intervening	in	
the	number	of	foxes),	these	two	elements	hold	a	causal	relationship.	This	causal	relationship	can	
be	 used	 to	 answer	 a	 range	 of	 w-questions,	 and	 so	 we	 can	 explain	 the	 occurrence	 of	 the	
explanandum	by	appealing	to	the	number	of	foxes	(a	higher-order	property	of	the	aggregate).		

The	 conclusion	 we	 get	 from	 this	 example	 is	 that	 there	 are	 invariant	 dependency	
relationships	—that	is	causal	relationships—	at	higher	levels,	and	that	in	many	cases	these	higher-	
order	causal	relationships	are	more	explanatory	than	the	correspondent	lower-level	ones.	If	we	
want	 to	 scientifically	 explain	 a	 given	 phenomenon,	 we	 should	 find	 the	 level	 at	 which	 these	
invariant	relationships	of	dependence	are	stronger,	because	this	would	allow	us	to	answer	a	wider	
range	of	w-questions.	Moreover,	despite	the	fact	that	it	is	our	choice	to	describe	the	situation	at	
the	level	of	the	aggregate	of	foxes,	rather	than	at	the	level	of	the	particular	fox	that	ate	the	rabbit,	
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this	explanation	relies	on	the	fact	that	the	probability	of	the	rabbit	being	eaten	was	higher	than	it	
would	have	been	had	the	rabbit	been	in	a	forest	with	fewer	foxes.	This	higher	probability	is	an	
objective	fact	of	the	situation	that	is	discovered	once	the	situation	is	described	at	the	right	level.		

This	description-relative	approach	is	compatible	with	an	ontic	approach	to	explanation.	As	
we	saw,	in	an	ontic	conception:	

The	 aim	of	 scientific	 explanation…	 is	 to	 fit	 the	 event-to-be-explained	 into	 a	 discernible	
pattern.	This	pattern	is	constituted	by	regularities	in	nature	(Salmon	1984,	121).		

In	Woodward’s	model,	the	discernible	patterns	into	which	the	explanandum	fits	are	the	objective	
invariant	 relationships	 of	 dependence,	 some	 of	 which	 may	 qualify	 as	 laws.	 These	 invariant	
relationships	 can	 be	 found	when	 the	 system	 to	 be	 explained	 is	 described	 at	 the	 right	 level	 of	
description,	but	their	existence	itself	does	not	depend	upon	those	pragmatic	considerations.	As	
Woodward	puts	it:		

[W]hat	matters	for	purposes	of	causal	explanation	is	what	the	real	dependency	relations	
in	the	world	actually	are:	what	would	 in	 fact	happen	to	some	potential	explanandum	if	
other	conditions	were	changed	in	various	ways	(2003,	202).		

When	we	appeal	to	‘the	number	of	foxes’	as	a	property	of	the	aggregate,	we	are	capturing	
an	objective	relationship	between	the	aggregate	and	the	probability	of	 the	rabbit	being	eaten.	
Under	a	certain	range,	this	relationship	is	invariant.	It	is	not	description-relative	that	a	rabbit	in	a	
forest	with	one	hundred	foxes	is	more	likely	to	be	eaten	before	he	managed	to	escape	than	if	he	
had	 been	 in	 a	 forest	 with	 two	 foxes.	 It	 is	 this	 objective	 relationship	 that	 is	 fundamental	 in	
explanations,	and	for	that	reason,	Woodward’s	account	is	ontic.		

It	is	important	to	note	that,	from	this	point	of	view,	invariant	relationships	are	explanatorily	
more	fundamental	than	laws.	We	saw	that,	for	the	DN	model,	appealing	to	laws	of	nature	was	
essential	 for	 scientifically	 explaining	 a	 physical	 phenomenon.	 However,	 invariant	 relationships	
with	a	 limited	range	may	not	qualify	as	genuine	 laws	of	nature,	but	still	 they	have	explanatory	
power.	 This	 is	 because	 they	 allow	 us	 to	 answer	 an	 (albeit	 limited)	 range	 of	 counterfactual	
questions.	 Thus,	 from	 this	 point	 of	 view,	 the	 laws	 of	 nature	 are	 important	 for	 scientific	
explanations	only	insofar	as	they	describe	invariant	relationships.	

Woodward’s	model	 successfully	deals	with	 the	problems	we	have	 seen	 in	 this	 chapter.		
Since	it	is	causal,	it	does	not	have	the	problem	of	asymmetry.	In	the	flagpole	case,	for	example,	if	
we	keep	the	other	conditions	fixed,	like	the	position	of	the	Sun	and	the	angle	between	the	flagpole	
and	 the	 floor,	we	 can	 control	 the	 length	of	 the	 shadow	by	 intervening	over	 the	height	of	 the	
flagpole.	 There	 is	no	way	of	doing	 the	opposite:	 if	we	 keep	other	 conditions	 fixed,	we	 cannot	
control	the	height	of	the	flagpole	by	manipulating	the	length	of	the	shadow.15	In	the	same	way,	
Woodward’s	model	also	deals	easily	with	the	problem	of	relevance.	Whether	or	not	Mr.	 Jones	
takes	birth	control	pills	does	not	make	any	difference	in	whether	he	gets	pregnant.	There	is	no	

																																																													
15	This	rules	out	Van	Fraassen’s	counterexample	of	section	§5.	
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way	of	controlling	the	possibility	of	getting	pregnant	by	intervening	in	whether	or	not	he	takes	the	
pills.	If	we	want	to	explain	why	he	did	not	get	pregnant	despite	the	fact	that	he	has	been	having	
intercourse	 regularly,	 we	 need	 to	 find	 some	 factor	 that,	 had	 it	 been	 different,	 it	 would	 have	
contributed	to	the	pregnancy	(Woodward	2003,	352).	One	such	factor	may	be	gender.	If	he	had	
been	female,	there	may	have	been	some	probabilities	of	getting	pregnant.	One	way	of	controlling	
this	may	be	by	a	randomized	control	trial	over	a	sample	of	males	and	females.	We	can	improve	
this	explanation	by	appealing	to	physiological	and	anatomical	factors.	

	 Woodward’s	model	also	accounts	for	higher-order	explanations,	as	we	have	just	seen	in	
the	rabbit	case.	In	the	glass	container	case,	the	increment	in	kinetic	energy	produced	an	increment	
in	 the	 container’s	 internal	 pressure.	 For	 Woodward,	 this	 relationship	 between	 temperature	
(average	kinetic	energy)	and	pressure	is	causal	because	we	can	control	the	pressure	by	intervening	
over	the	temperature	(the	intervention	in	this	case	could	be	an	energy	transfer	from	an	external	
source).	Describing	this	case	at	the	level	of	the	aggregate	allows	us	to	answer	a	wider	range	of	w-
questions	than	if	we	describe	it	at	the	level	of	the	actual	water	molecules	that	caused	the	cracking,	
due	 to	 the	 fact	 that	 the	outcome	 is	modally	stronger	 than	what	could	have	been	rendered	by	
appealing	to	that	particular	set	of	water	molecules.		

§10.	Conclusion	

According	 to	Woodward’s	model,	 what	 is	 fundamental	 in	 scientific	 explanation	 is	 information	
about	objective	relationships	of	dependence	that	can	be	used	to	answer	counterfactual	questions.		
My	goal	in	the	remainder	of	this	dissertation	is	to	show	that,	for	scientific	explanation,	emphasis	
on	the	notion	of	counterfactual	information	subordinates	the	notion	of	causation.	In	other	words,	
if	interventions	are	conceived	more	broadly,	as	modifications	over	one	of	the	relata,	they	can	be	
used	 to	 provide	 this	 counterfactual	 information,	 leaving	 causal	 interventions	 as	 special	 cases.	
Given	the	importance	of	this	counterfactual	information	to	scientific	explanation,	the	conceptual	
space	is	open	for	an	ontic	account	of	noncausal	scientific	explanations.		
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CHAPTER	2.	Mathematical	Models	in	Science		

§11.	Introduction		

This	chapter	focuses	on	the	role	of	mathematical	models	in	scientific	representation	and	scientific	
explanation.	 The	 discussion	 of	 this	 chapter	 provides	 the	 framework	 for	 my	 account	 of	
Mathematical	Explanations	of	Physical	Phenomena,	which	is	the	focus	of	chapters	3	and	4.		

I	begin	this	chapter	presenting	the	notion	of	mathematical	model,	including	a	conceptual	
distinction	between	abstraction,	approximation,	and	idealization	(§12).	I	also	discuss	the	different	
kinds	of	models	there	are,	based	on	the	representational	ideals	of	the	scientists	who	use	them.	I	
next	 analyze	 two	 accounts	 of	 the	 application	 of	mathematics:	 Christopher	 Pincock’s	mapping	
account	(§13),	which	highlights	the	importance	of	the	structural	resemblance	between	the	model	
and	the	target	system;	and	Bueno,	Colyvan,	and	French’s	Inferential	Conception	(§14),	which,	in	
addition,	emphasizes	the	context	of	application,	as	well	as	the	role	of	the	interpretation	the	users	
of	the	model	assign	to	its	mathematical	structures.	The	main	point	here	is	that,	without	a	proper	
interpretation,	 mathematics	 says	 little	 about	 the	 physical	 world.	 Next,	 I	 use	 the	 Inferential	
Conception	to	clarify	the	role	of	mathematics	in	scientific	explanation	(§15),	and	discuss	a	criticism	
by	 Robert	 Batterman	 (2010).	 I	 finish	 the	 chapter	 by	 presenting	 a	 possible	 shortcoming	 of	 the	
Inferential	Conception,	which	is	that	this	view	does	not	distinguish	between	explanatory	and	non-
explanatory	mathematical	derivations.			

§12.	Abstraction	and	Idealization	in	Mathematical	Modeling	

12.1.	Mathematical	Models	

In	 this	 section	 I	 introduce	Michael’s	Weisberg’s	notion	of	mathematical	models	as	 interpreted	
mathematical	 structures.	 This	 view	 is	 compatible	with	 the	 two	accounts	of	 the	 applicability	of	
mathematics	I	discuss	later	in	this	chapter	(sections	§13	and	§14).	As	we	will	see,	this	view	is	not	
committed	to	a	specific	account	of	the	ontology	of	mathematical	objects.	The	only	requirement	is	
that	it	has	to	be	one	in	which	it	makes	sense	to	talk	about	mathematical	objects	(2013,	29).		

Weisberg	defines	scientific	modeling	as	the	 indirect	study	of	real	world	systems	via	the	
construction	and	analysis	of	scientific	models	(Weisberg	2013,	4).	A	model	is	a	structure	that	has	
been	assigned	a	given	interpretation,	so	that	parts	of	the	structure	correspond	to	a	given	target.	
Weisberg	 distinguishes	 between	 concrete	 models	 (also	 called	 ‘material’	 or	 ‘physical’)	 and	
mathematical	models.16				

Concrete	models	 are	 interpreted	physical	 structures,	 like,	 for	 example,	 a	 laboratory	 rat	
intended	 to	 represent	 an	 aspect	 of	 a	 human	 organism,	 a	 scale	 model	 of	 a	 terrain	 built	 in	 a	
subfreezing	lab,	or	the	hydraulic	scale	model	of	the	San	Francisco	Bay	built	in	1957	in	a	warehouse	
in	Sausalito	 (Weisberg	2013,	3).	These	physical	objects	have	properties	 that	are	missing	 in	 the	
																																																													
16	 He	 also	 talks	 about	 computational	 models	 but	 these	 are	 not	 important	 for	 the	 purposes	 of	 this	
dissertation.	 I	 explain	 what	 concrete	 models	 are	 only	 to	 highlight,	 by	 contrast,	 some	 aspects	 of	
mathematical	models.			
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target,	and	also	lack	some	properties	that	their	targets	have,	but	they	become	scientific	models	
when	some	of	their	structural	features	are	interpreted	in	terms	of	a	given	target	system	(which	
can	be	another	physical	object	or	a	class	of	physical	objects).	In	concrete	modeling,	one	has	direct	
access	 to	 the	model	 under	 study.	 For	 example,	 before	 administering	 a	 new	 drug	 to	 humans,	
researchers	often	observe	the	effects	of	this	drug	 in	animals,	 in	what	 is	called	the	 ‘pre-clinical’	
stage	of	research.	Researchers	interpret	some	parts	of	the	animal’s	organism	as	representing	a	
human	organism	in	virtue	of	some	sort	of	similarity	between	the	two.	In	the	same	way,	a	modeler	
may	assume	that	the	slope	of	her	model	corresponds	to	the	actual	terrain	that	is	the	target	of	the	
model	(this	assumption	is	false,	but	for	some	purposes	the	distinctions	between	the	two	may	be	
negligible	–	 this	depends	on	 the	 fidelity	 standards	of	 the	modeler).	 Finally,	 the	Army	Corps	of	
Engineers	 studied	 the	 possible	 effects	 of	 John	 Reber’s	 plan	 of	 building	 two	 dams	 in	 the	 San	
Francisco	Bay	by	manipulating	and	observing	the	scale	model,	and	in	that	way,	they	concluded	
that	the	implementation	of	the	Reber	plan	would	have	had	negative	consequences	for	the	bay	
(Weisberg	2013,	3).		

Mathematical	models,	 on	 the	other	hand,	 are	mathematical	 structures	 that	 have	been	
assigned	 an	 interpretation	 (2013,	 15).	 Examples	 of	 mathematical	 models	 are	 roads	 with	
frictionless	slopes,	 infinitely	deep	oceans,	or	 the	Lotka-Volterra	model	of	 the	relation	between	
population	 and	 prey.	 These	 models	 cannot	 be	 assessed	 or	 measured	 directly,	 so	 the	 way	
researchers	manipulate	and	learn	about	them	is	by	manipulating	the	equations,	graphs,	etc.	that	
describe	them.		

Now,	 mathematical	 models	 are	 often	 confused	 with	 their	 descriptions	 (i.e.	 the	 actual	
graphs,	equations,	etc.),	but	the	fact	is	that	they	are	not	their	descriptions,	first	because	there	are	
many	ways	of	describing	the	same	mathematical	structure	used	in	a	model;	but	also,	as	Weisberg	
has	pointed	out,	because	very	often	models	have	properties	not	mentioned	in	the	description,	
and	sometimes	the	description	itself	needs	to	be	interpreted	in	order	to	capture	the	right	model.	
In	 the	 Lotka-Volterra	 model,	 for	 example,	 the	 Lotka-Volterra	 equations	 cannot	 be	 assigned	
negative	or	 irrational	values	 (2013,	40),	otherwise	they	would	not	be	describing	predators	and	
preys.	As	Weisberg	puts	it:		

A	modeler	often	conceives	of	a	model	 in	a	vague	way,	writes	down	some	equations	 to	
describe	the	model	she	thought	she	had	in	mind,	studies	the	model	actually	specified	by	
the	equations,	and	determines	whether	or	not	they	pick	out	the	right	model.	Situations	
can	arise	where	the	modeler’s	imagination	picks	out	some	set	of	models	and	her	model	
description	picks	out	a	different	set	of	models,	necessitating	a	refinement	either	to	her	
imagination	or	to	her	model	description	(2007b,	217).					

	 The	idea	is	that	mathematical	models	are	picked	out	by	their	descriptions,	but	they	are	not	
themselves	their	descriptions,	even	though	it	is	often	the	case	that	one	can	only	access	the	details	
of	the	model	by	analyzing	the	description	itself.		
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12.2.	Abstractions,	Idealizations,	and	Approximations		

Mathematical	models	can	be	conceived	with	no	intention	of	representing	empirical	systems,	but	
most	models	used	in	science	are	conceived	with	a	specific	target	in	mind.17	Models	intended	to	
represent	concrete	targets	are	constructed	by	a	process	of	abstraction	and/or	 idealization,	and	
most	of	the	time	they	represent	their	target	systems	only	approximately.	The	use	of	these	terms,	
however,	varies	considerably	throughout	the	literature,	so	let	me	make	explicit	what	I	mean	by	
them.		

An	 approximation	 is	 an	 inexact	 representation	 of	 a	 feature	 of	 a	 target	 system.	
Approximations	 can	 be	 included	 in	 a	model	 because	 of	 practical	 limitations	 in	 approaching	 a	
system	 (for	 example,	 because	 the	measurement	 instruments	 lack	precision),	 or	 for	 tractability	
purposes	(to	round	up	things	in	the	mathematical	description	–	i.e.	6,1	rather	than	6,0972).		

I	will	call	abstraction,	as	a	process,	the	mental	activity	of	focusing	on	certain	features	of	a	
system,	deliberately	ignoring	others.	The	outcome	of	the	process	of	abstraction	is	a	system	whose	
properties	are	intended	to	be	direct	representations	of	real	properties.	For	example,	the	Lotka-
Volterra	model	focused	on	the	fact	that	predators	eat	prey	(and	not	the	other	way	around),	but	
not	on,	say,	the	size	of	these	animals.	Abstraction,	as	a	noun,	is	the	outcome	of	this	process	of	
mentally	 stripping	 from	 a	 system	 some	 of	 its	 features	 while	 retaining	 others	 (for	 example,	
representing	a	person’s	weight	with	a	number,	ignoring	other	aspects	such	as	her	height,	etc.).	
Crucially,	an	abstraction	in	a	model	will	be	a	feature	of	the	model	that	is	intended	to	have	a	direct	
correlate	in	a	real	system.	This	sense	of	abstraction	(process	and	noun)	is	often	called	‘Aristotelian	
abstraction’.		

Here	 it	 is	 important	 to	 mark	 distance	 from	 another	 sense	 of	 the	 word	 abstraction.	
Mathematical	models	are	often	said	to	be	abstract	in	a	Platonic	sense	(as	opposed	to	concrete),	
but	not	necessarily	because	mathematical	models	are	built	up	out	of	properties	abstracted	from	
physical	 systems.18	 	 A	mathematical	 sphere	 can	 be	 used	 to	 represent	 the	 Sun;	 this	 does	 not	
necessarily	mean	that	mathematical	‘sphericity’	is	an	actual	feature	of	the	Sun,	or	that	the	Sun’s	
shape	is	an	instance	or	an	exemplification	of	a	mathematical	sphere	in	a	strong	metaphysical	sense	
(like,	for	example,	in	Shapiro	1997)	(more	on	this	below).		

Finally,	idealization,	as	a	process,	is	the	mental	activity	of	constructing	a	system,	some	of	
whose	properties	are	intended	to	be	direct	representations	of	properties	of	the	target	system,	but	
																																																													
17	An	exception	is	the	case	of	models	of	three-sex	species	used	in	biology.	Although	these	models	have	not	
been	conceived	with	a	real	target	in	mind	(there	are	no	such	three-sex	species),	their	usefulness	in	science	
derives	 from	 the	 fact	 that	 they	 can	 help	 us	 understand	why	 there	 are	 no	 such	 three-sex	 species	 (see	
Weisberg	2013,	132).			
18	See	Cargile	2003,	147.	Contrary	to	this,	some	mathematical	structuralists	argue	that	this	 is	 in	fact	the	
correct	description	of	the	relationship	between	mathematical	structures	and	concrete	structures.	Michael	
Resnik	 (1997),	 for	example,	conceives	physical	patterns	as	mathematical	structures	of	physical	systems,	
and	Stewart	Shapiro	(1997)	argues	that	mathematical	structures	can	be	exemplified	by	concrete	structures.	
Pincock	(2015)	holds	a	similar	view.	In	any	case,	what	I	am	doing	here	is	a	conceptual	distinction	between	
these	two	senses	of	abstraction.		
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that	also	has	desirable	properties	the	target	system	lacks.	In	that	sense,	an	idealization,	as	a	noun,	
is	a	property	of	a	model	that	does	not	directly	represent	properties	of	the	target	system.	Insofar	
as	the	outcome	of	an	idealization	process	also	has	properties	that	are	direct	representations	of	
some	properties	of	the	target,	the	process	of	idealization	can	also	involve	a	process	of	Aristotelian	
abstraction.	But	the	crucial	point	of	the	process	of	idealization	is	that	the	outcome	is	a	system	that	
includes	elements	that	have	been	either	intentionally	distorted	from	the	target	or	that	have	been	
made	up,	in	a	way	that	they	do	not	have	a	direct	correlate	in	the	target	at	all.19	Some	authors	call	
the	 former	 idealizations	proper,	and	 the	 latter	outright	 fictions,	but	 this	distinction	will	not	be	
relevant	for	my	purposes.	Both	distortions	and	fictions	will	count	as	idealizations	for	me.		

	 Abstraction	is	always	present	in	modeling,	in	the	sense	that	the	modeler	has	to	choose	a	
target	by	focusing	on	some	aspects	of	the	world	and	ignoring	others	(Weisberg	2007b,	228).	But	
the	 models	 themselves	 combine	 approximation,	 abstraction	 and	 idealization.	 Consider	 for	
example	the	case	of	modelling	a	real	slope	with	a	frictionless	slope.	The	imagined	slope	includes	
properties	such	as	inclination,	surface	length,	etc.	and	ignores	other	properties	such	as	surface	
width,	color,	etc.	In	that	regard,	the	model	is	the	outcome	of	a	process	of	abstraction.	In	addition,	
it	has	a	plane	surface,	which	is	a	distortion	of	the	real	surface,	and	it	has	the	desirable	property	of	
being	frictionless.	So,	this	is	clearly	an	idealization.	Finally,	the	total	length	of	the	real	slope	is	only	
approximately	represented	by	the	model,	the	accuracy	criteria	of	this	approximation	depending	
on	the	practical	interests	of	the	scientists	given	the	situation	at	hand.	In	the	case	of	the	angle	of	
the	real	slope,	things	are	more	complicated	from	a	philosophical	perspective.	Strictly	speaking,	the	
slope	does	not	have	an	angle.	An	angle	is	the	arc	formed	by	two	rays	or	two	planes	with	common	
origin	(a	point	or	a	line).	We	cannot	say	that	the	‘physical’	angle	is	approximately	represented	by	
the	mathematical	angle	in	the	model	because	there	is	no	such	thing	as	a	concrete	(mathematical)	
angle.	More	properly,	we	should	say	that	the	mathematical	angle	is	an	idealization	obtained	from	
considering	a	property	abstracted	from	the	target,	namely,	the	inclination	of	the	slope.	The	angle	
and	the	inclination	of	the	slope	may	have	some	things	in	common,	and	we	can	learn	things	about	
the	latter	by	examining	the	former,	but	the	angle	has	not	been	abstracted	from	the	target.			

The	 example	 above	 illustrates	 that,	 although	 it	 is	 possible	 to	 conceptually	 distinguish	
between	idealization	and	abstraction,	in	the	case	of	mathematical	properties	it	is	often	hard	to	
separate	 the	 two.	 Paul	 Humphreys	 has	 pointed	 out	 that	 almost	 all	 attempts	 to	 abstract	
mathematical	properties	from	the	physical	world	collapse	into	idealization	(cf.	1995,	159),	because	
they	almost	always	end	up	 falsifying	 the	properties	of	 the	physical	 system;	 this	 is	because	 the	
model	 is	 using	 “the	 simple	 and	 precise	 concepts	 of	 mathematics	 to	 represent	 complex	 and	
imperfect	real	properties”	(1995,	158).	For	example,	representing	a	concrete	circular	shape	as	a	
mathematical	circumference	is	an	idealization,	since	no	concrete	circular	shape	has	the	features	
of	a	perfect	circle	(see	Humphreys	1995,	158).	The	same	happens,	as	we	have	seen,	when	trying	
to	abstract	a	mathematical	angle	from	a	real	slope.	Although	focusing	on	some	particular	aspects	
of	 an	 object	 rather	 than	 others	 is	 a	 form	 of	 abstraction,	 the	 representational	 mathematical	

																																																													
19	In	both	cases	it	is	assumed	that	the	modeler	is	aware	of	these	misrepresentations.			
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property	 is	 an	 idealization.	 In	 that	 sense,	 mathematical	 properties	 are	 not	 (Aristotelian)	
abstractions	obtained	from	concrete	properties.		

However,	 although	 it	 is	 hard	 to	 separate	 abstraction	 and	 idealization	 in	 the	 case	 of	
mathematical	 properties,	 there	 are	 some	mathematical	 models	 based	 solely	 on	 abstractions,	
without	incorporating	idealizations,	like,	for	example,	some	applications	of	graph	theory.	Consider	
a	model	intended	to	represent	‘hand	shakings’	in	a	group	of	people.	Imagine	that	there	are	ten	
persons	in	a	room	shaking	hands	with	each	other,	and	that	we	want	to	represent	this	situation	
mathematically	because,	say,	we	want	to	calculate	the	total	number	of	hand	shakings.		In	order	to	
do	this,	we	must	abstract	away	from	the	particularities	of	the	people	involved,	and	the	details	of	
every	particular	hand	shaking.	The	only	 features	relevant	to	representing	this	situation	are	the	
number	of	people	and	the	hand	shakings	(i.e.	the	‘connections’)	between	every	pair	of	them.	For	
that	reason,	we	can	use	a	graph	to	represent	this	case.	For	this	particular	situation,	what	we	need	
is	a	complete	graph.	A	complete	graph	is	one	that	has	edges	connecting	every	pair	of	vertices.	The	
representative	model	can	use	the	following	description:	

	

fig.	1	

Complete	graph	with	10	vertices		

Here	only	‘number	of	people’	(10)	and	total	hand	shakings	(45)	are	represented,	both	real	
properties,	and	arguably	there	are	no	additional	elements	such	as	idealizations.	So,	this	seems	to	
be	a	case	of	a	mathematical	model	based	solely	on	abstractions,	without	including	idealizations	
(in	 the	 sense	 defined	 above).	 This	 does	 not	 necessarily	 mean,	 however,	 that	 the	 graph	 is	
representing	the	mathematical	structure	of	the	system	of	people	(as,	for	example,	Shapiro	1997	
and	 Pincock	 2015	 would	 suggest).	 The	 graph	 is	 a	 mathematical	 representation	 of	 the	 salient	
physical	features	of	the	situation,	given	the	problem	at	hand.	As	I	will	argue	in	sections	§13	and	
§30,	in	order	to	account	for	the	usefulness	of	mathematics	in	science	it	is	not	necessary	to	assume	
that	physical	systems	instantiate	mathematical	properties.		
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12.3.	Galilean	and	Minimal	Mathematical	Models20	

The	use	of	mathematical	models	varies	depending	on	the	representational	ideals	of	the	scientists	
and	the	scientific	community,	and	on	the	details	of	the	situation	at	hand.	Weisberg	distinguishes	
between	Galilean	modeling	practices	and	minimal	modeling	practices.	Sometimes	a	model	is	used	
with	a	Galilean	interest	in	mind,	that	is	to	say,	the	abstractions	and	idealizations	are	incorporated	
in	the	model	with	the	purpose	of	simplifying	it	in	order	to	make	it	mathematically	tractable.	The	
idea	 is	 to	 start	with	 a	 simple	model	 and	 then	 add	 other	 relevant	 factors	 in	 order	 to	 increase	
accuracy.	For	example,	if	we	want	to	explain	why	a	certain	body	takes	some	time	to	slide	down	a	
slope,	we	could	start	with	a	frictionless	slope	as	a	model,	the	mathematical	specification	of	which,	
with	respect	to	the	problem	at	hand,	is	very	simple.	When	more	information	is	available,	or	when	
our	computational	powers	increase,	we	would	complicate	the	model,	adding,	say,	a	static	friction	
coefficient,	 then	one	 type	of	 dynamic	 friction,	 then	 two,	 until	we	 are	 able	 to	 assign	 a	 friction	
function	to	each	point,	thus	accounting	more	accurately	for	the	body’s	movement.	The	reason	
why	these	simplifications	are	introduced	is	basically	pragmatic.	The	ultimate	goal	of	introducing	
these	models	is	to	simplify	the	representation,	but	only	until	one	is	capable	of	getting	rid	of	all	the	
inaccuracies.	These	models	are	called	Galilean	because	it	was	the	modeling	practice	followed	by	
Galileo	Galilei	(cf.	McMullin	1985;	Weisberg	2007a;	2013).	

In	 other	 models,	 however,	 the	 abstractions	 and	 idealizations	 play	 an	 essential	 role	 in	
increasing	the	model’s	representational	power.	These	are	called	minimal	models.	Minimal	models	
are	those	that	include	the	core	relevant	features	of	the	target,	given	a	modeling	situation	(2013,	
100).	 As	 opposed	 to	 Galilean	 models,	 the	 leaving	 out	 of	 details	 is	 not	 done	 for	 increasing	
tractability.	Here	it	 is	not	the	goal	of	the	modeler	to	progressively	 include	back	those	excluded	
details.	In	many	cases	the	features	of	interest	represented	by	the	model	may	be	shared	by	other	
targets	as	well.	 In	those	cases,	a	complication	of	the	model	would	make	it	tailored	to	only	one	
specific	target,	losing	the	model’s	generality,	which	could	be	an	advantage.	This	is	the	case,	for	
example,	of	the	graph	representation	of	the	ten	people	interchanging	handshakes,	which	can	be	
used	 to	model	 connections	between	a	 vast	domain	of	objects,	not	only	 the	 ten	people	of	 the	
example.	Another	such	a	case	is	the	use	of	the	Poisson	model	to	represent	phenomena	as	varied	
as	 organisms	 per	 unit	 volume	 in	 a	 dilute	 solution,	 telephone	 calls,	 cars,	 radioactive	 decay,	
chromosomes,	flying	bombs,	caught	fish,	etc.	(see	Humphreys	2004,	88-91	for	details).	As	we	will	
see	 (§28	 and	 §29),	 this	 generality	 is	 useful	 for	 highlighting	 the	 modal	 strength	 of	 some	
developments	of	the	systems,	independently	of	many	initial	conditions.	The	model	shows	that	any	
system	that	has	the	relevant	minimal	features	will	behave	similarly.		

Minimal	modeling	is	also	useful	when	the	idealized	components	of	the	model	are	essential	
for	highlighting	relevant	properties	of	the	target.		In	those	cases,	although	the	models	are	false	in	

																																																													
20	This	section	relies	on	Weisberg	(2007a)	and	(2013).	However,	Weisberg	distinguishes	between	Galilean	
and	Minimal	Model	 idealizations.	 In	my	 discussion,	 I	 extend	 the	 notions	 from	 ‘Galilean’	 and	 ‘Minimal’	
idealizations	to	models	in	general,	including	those	that	do	not	contain	idealizations.	I	have	shown	that	at	
least	some	graph	theoretical	models	do	not	contain	idealizations	(e.g.	the	hand-shaking	case),	and	yet,	as	
we	will	see,	they	can	be	understood	as	either	Galilean	or	minimal	models.		
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some	respects	—because	they	have	properties	that	do	not	directly	represent	features	of	the	target	
system—	these	falsehoods	play	a	representational	role	(albeit	an	indirect	one).	Take,	for	example,	
the	case	of	the	behavior	of	low	pressure	gases.	If	we	want	to	represent	the	relationship	between	
pressure	 and	 volume,	 as	 described	by	Boyle’s	 law,	we	 can	 construct	 a	model	where	 collisions	
between	gas	particles	are	perfectly	elastic.	Although	this	element	does	not	directly	represent	what	
is	going	on	 in	 the	real	gas,	 it	 indirectly	contributes	 to	highlight	 the	 fact	 that	 the	energy	 lost	 in	
individual	particle	collisions	is	unimportant	for	representing	the	relationship	between	these	two	
properties.	This	highlighting	role	is	an	indirect	representational	role.	Another	such	a	case,	that	I	
will	discuss	below	in	§15,	is	the	ray	representation	of	light,	used	to	explain	features	of	the	rainbow.	
Although	light	beams	are	not	rays,	the	ray	representation	highlights	the	fact	that	when	the	ratio	
between	wave	length	(λ)	and	the	radius	(r)	of	water	drops	falls	below	a	certain	threshold,	the	wave	
features	of	light	are	unimportant	for	explaining	the	rainbow’s	angle	of	incidence	with	respect	to	
the	direction	of	the	Sun.		

Now,	whether	a	model	is	Galilean	or	minimal	is	not	a	feature	of	the	model	itself.	It	is	often	
the	case	that	the	same	model	can	be	considered	from	a	Galilean	interest	or	a	minimal	modeling	
interest	in	mind,	depending	on	the	representational	ideals	according	to	which	the	model	has	been	
constructed	or	will	be	used.	For	example,	one	can	use	a	straight	segment	to	represent	the	length	
of	 a	 road,	 either	with	 the	goal	of	 eventually	 improving	 this	 representation	 so	as	 to	 accurately	
capture	the	actual	shape	of	the	road	(Galilean	interest),	or	because	by	using	this	representation	
one	can,	say,	measure	the	total	elevation	of	the	final	point	with	respect	to	the	initial	one	(minimal	
model	interest).	The	intended	interpretation	of	some	aspects	of	the	model,	as	well	as	the	uses	to	
which	the	model	is	put,	are	essential	to	determine	whether	it	is	Galilean	or	minimal.	

§13.	Pincock’s	Mapping	Account	of	the	Applicability	of	Mathematics	

When	using	a	concrete	model	as	a	representation	of	another	system,	we	assume	that	the	model	
and	the	target	are	similar	in	some	relevant	respect.	For	example,	a	rat’s	organism	shares	some	
similarities	with	human	organisms	when	interacting	with	certain	drugs,	and	because	of	that	we	
can	infer	things	about	human	reactions	to	those	drugs	by	studying	rats.	In	the	same	way,	the	San	
Francisco	Bay	model	shares	some	relevant	causal	relations	with	the	actual	bay,	like	the	fact	that	
the	 interactions	between	the	sea	bed	and	sea	water	 flow	are	similar	 to	 the	ones	between	the	
bottom	of	the	model	(embedded	for	that	purpose	with	thousands	of	copper	strips)	and	the	water	
(see	Weisberg	2013,	8-10	for	details).		

But	 how	 can	 a	mathematical	model,	 being	 abstract	 (as	 opposed	 to	 concrete;	 see	 12.2	
above),	be	used	as	a	representation	of	a	concrete	system?	Mapping	or	structural	accounts	of	the	
applicability	of	mathematics	hold	 that	mathematical	models	 capture	 structural	 features	of	 the	
concrete	phenomenon.	The	basic	idea	is	that	there	is	a	correspondence	(specifically,	a	mapping)	
from	mathematical	structures	in	the	model	to	physical	structures.	It	has	often	been	emphasized	
(e.g.	Suárez	2010),	however,	that	structural	similarity	is	not	enough	for	representation.	Using	one	
structure	 to	 represent	another	 requires	some	context	dependent	 factors	such	as	 the	 intended	
interpretation	of	the	scientists	doing	the	representing.	So,	in	addition	to	structural	relations,	a	full	
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account	of	mathematical	representation	must	include	these	intrinsically	pragmatic	issues	at	the	
core	of	the	application	process.		

In	order	to	understand	Pincock’s	account,	we	need	first	to	define	the	notions	of	structure	
and	structural	relations,	as	well	as	the	notion	of	partial	structure.	These	notions	will	also	be	useful	
for	understanding	the	inferential	conception	of	the	applicability	of	mathematics	(Section	§14).		

13.1	Structural	Relations	and	Partial	Structures	

a)	Structure	and	Structural	Relations	

The	 notions	 of	 structure	 and	 structural	 relation	 are	 straightforward.	 A	 structure	 is	 the	 formal	
network	describing	the	set	of	relations	that	obtains	between	a	set	of	objects.	A	structural	relation	
between	two	systems	is	one	that	obtains	in	virtue	of	their	respective	formal	networks.	As	Pincock	
puts	it:		

A	structural	relation	is	one	that	obtains	between	systems	S1	and	S2	solely	in	virtue	of	the	
formal	network	of	the	relations	that	obtain	between	the	constituents	of	S1	and	the	formal	
network	of	the	relations	that	obtain	between	the	constituents	of	S2...	 [where	a]	 formal	
network	 is	 a	 network	 that	 can	 be	 correctly	 described	 without	mentioning	 the	 specific	
relations	which	make	up	the	network	(Pincock	2012,	27).		

A	structural	relation	can	be	some	kind	of	isomorphism	or	homomorphism.	An	isomorphism	
between	 structures	 S	 and	 S’	 is	 a	 one-to-one	 structure-preserving	 correspondence	 or	mapping	
between	all	of	the	elements	of	their	respective	domains	and	all	the	relations	between	them.	A	
homomorphism	is	also	a	correspondence	of	these	features,	but	it	is	not	necessarily	one-to-one.	In	
the	case	of	applied	mathematics,	the	basic	idea	is	that	if	we	use	a	mathematical	structure	M	to	
represent	a	physical	system	P	(say,	we	want	to	explain	something	about	P),	a	substructure	M1	of	
M	must	be	homomorphic	(or	isomorphic)	to	some	relevant	substructure	P1	of	P.		

Let	us	see	this	with	an	example	due	to	James	Robert	Brown	(2008).	Consider	the	case	of	a	
homomorphism	between	the	relation	of	physical	combination	of	weight,	and	the	mathematical	
operation	of	addition:			

Physical	domain	D:	[e.g.	bodies	a,	b,	c,…];	u	is	the	standard	unit	
Physical	relations	R1,	R2,	…	Rn	[‘£’:	weights	the	same	or	less	than;	‘Å’:	physical	combination]	
Physical	structure	P=	áD,	£,Å,	uñ				
	
Mathematical	domain	D*:	[e.g.	R+]	
Mathematical	relations	R*1,	R*2,	…	R*n	[£;+]	
Mathematical	Structure	M=	áR+,	£,+,	1ñ				
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Homomorphism	j:	D®R+	
Three	conditions:		

	
(1)	a	£	b	®	j(a)	£	j(b)	
(2)	j(aÅb)	=	j(a)	+	j(b)	
(3)	j(u)	=	1	

In	this	case	we	would	say	that	the	mathematical	model	M	stands	in	a	structural	relation	of	
homomorphism	with	respect	to	the	physical	system	P	(cf.	Brown	2008,	52).		

b)	Partial	Structures	

Two	systems	can	be	structurally	similar	with	respect	to	some	aspects,	without	being	structurally	
similar	with	respect	to	others.	And	in	fact,	they	can	be	similar	in	some	known	aspects	even	if	one	
is	not	sure	whether	they	are	similar	with	respect	to	others.	In	the	case	of	applied	mathematics,	
what	we	usually	find	is	that	there	are	some	relations	in	the	model	isomorphic	(or	homomorphic)	
to	the	target,	some	other	relations	that	we	know	not	to	have	any	correspondence	at	all	 in	the	
target,	and	yet	some	third	set	of	relations	that	we	do	not	know	whether	or	not	obtain	in	the	target.	
So	rather	than	a	full	isomorphism	(homomorphism),	what	is	often	the	case	are	partial	relations	
between	physical	and	mathematical	structures.	Newton	da	Costa	and	Steven	French	advanced	an	
account	of	partial	structures,	which	accommodates	the	uncontroversial	fact	that	most	of	the	time	
our	knowledge	of	the	empirical	domain	is	incomplete,	and	that	mathematical	models	often	have	
more	structure	than	their	targets.	In	da	Costa	&	French	(2003),	for	example,	they	define	a	partial	
structure	in	the	following	terms:		

Consider	a	binary	relation	R,	which	can	be	introduced	as	follows:	R	is	an	ordered	triple	<R1,	
R2,	R3>,	where	R1,	R2,	and	R3	are	mutually	disjoint	sets	such	that	R1∪		R2∪		R3	=	A…	R1	is	the	
set	of	ordered	pairs	which	are	satisfied	by	those	sentences	expressing	the	relationships	
between	 the	 entities	 concerned,	 R2	 is	 the	 set	 of	 ordered	 pairs	 not	 satisfied	 by	 these	
sentences,	and	R3	 is	 the	set	of	ordered	pairs	 for	which	 it	 is	 left	open	whether	 they	are	
satisfied.	When	R3	is	empty,	R	constitutes	a	normal	binary	relation	and	can	be	identified	
with	R1	(da	Costa	&	French	2003,	19).	

In	 other	 words,	 R1	 and	 R2	 are	 relationships	 in	 the	 model	 that	 have	 been	 assigned	 an	
empirical	interpretation.	Relations	pertaining	to	R1	are	those	that	have	been	interpreted	as	having	
a	correlate	in	the	target,	that	is,	that	have	been	mapped	one	by	one	onto	some	relationships	in	
the	target.		Relations	pertaining	to	R2	are	those	that	have	been	interpreted	as	mere	artifacts	of	
the	model,	with	no	correlate	in	the	target	system.	On	the	other	hand,	relationships	pertaining	to	
R3	 are	 those	 about	 which	 there	 is	 no	 interpretation	 yet,	 given	 the	 incompleteness	 of	 our	
knowledge	about	the	physical	domain.	The	main	point	is	that,	in	the	partial	structures	account,	
mathematics	represents	a	given	phenomenon	in	virtue	of	those	features	that	are	mapped	onto	
the	phenomenon	(R1).	We	do	not	need	a	full	mapping	to	use	a	mathematical	model	(that	is,	we	do	
not	need	to	solve	all	our	puzzles	about	R3).		
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13.2.	Pincock’s	Mapping	Account	of	Content	

Christopher	 Pincock	has	pointed	out	 that	 structural	 resemblance	 can	be	 trivially	 established	 if	
models	are	taken	to	be	mere	mathematical	objects	(read:	purely	non-linguistic	entities).	Structural	
relations	between	two	systems	are	very	easy	to	find	if	the	systems	have	the	right	cardinality,	and	
so	if	that	is	all	that	it	takes	for	a	model	to	be	representative,	any	model	with	the	right	cardinality	
can	 represent	 anything.	 This	 is	 true	 for	 total	 and	 partial	 structures	 (and	 in	 fact	 is	 even	more	
pressing	for	partial	structures,	since	you	do	not	need	two	systems	having	the	same	cardinality).	
This	problem	was	pointed	out	many	years	ago	by	Max	Newman	to	Bertrand	Russell’s	view,	in	The	
Analysis	of	Matter,	that	we	can	only	know	the	structural	features	of	the	external	word	(cf.	Newman	
1928,	142).	Newman’s	problem	is,	precisely,	that	since	“[a]ny	collection	of	things	can	be	organized	
so	as	to	have	the	structure	W,	provided	there	are	the	right	number	of	them”,	then	if	it	is	true	that	
only	structural	features	can	be	known,	“nothing	can	be	known	that	is	not	logically	deducible	from	
the	mere	 fact	of	existence,	except…	 the	number	of	 constituting	objects”	 (1928,	142).	 In	other	
words,	according	to	Newman,	Russell’s	view	entails	that	if	we	know	the	number	of	objects	in	the	
world,	knowledge	of	everything	else	can	be	deduced	from	it.	Newman	took	this	as	a	reductio	of	
Russell’s	view	(see	Demopoulos	&	Friedman	1985	for	a	discussion).	

According	 to	Pincock,	modeling	 involves	 a	 combination	of	 a	mathematical	 entity	 and	a	
series	of	propositions	relating	parts	of	the	model	to	physical	structures.	Structural	relations	cannot	
be	established	without	the	propositions	that	explicitly	relate	parts	of	the	two	structures.	These	
propositions	 are	 an	 essential	 component	 if	 we	 want	 models	 to	 meaningfully	 represent	 their	
targets	(2005,	1252).	Pincock	calls	this	view	the	‘mapping	account	of	content’.	A	model	is	accurate	
with	respect	to	the	relevant	aspects	of	a	physical	system	when	its	content	is	correct	with	respect	
to	these	aspects.	Pincock	holds	that	“the	content	of	mathematical	scientific	representations…	is	
exclusively	structural”	(2012,	25),	and	so	for	him	the	correctness	of	a	model	is	determined	by	the	
accuracy	of	the	structural	relations	between	the	mathematical	entity	and	the	physical	system	in	
question;	but	the	crucial	point	is	that,	if	these	structural	relations	are	to	be	meaningful	(i.e.	non-
trivial),	there	must	be	a	linguistic	specification21	of	which	parts	of	the	model	represent	physical	
structures	(2005,	1252):			

The	conditions	of	correctness	that…	representations	impose	on	a	system	can	be	explained	
in	 terms	 of	 a	 formal	 network	 of	 relations	 that	 obtain	 in	 the	 system	 along	 with	 a	
specification	 of	 which	 physical	 properties	 are	 correlated	 with	 which	 parts	 of	 the	
mathematics	(Pincock	2012,	25;	my	emphasis).	

	 For	Pincock,	a	representation	is	meaningful	when	it	truly	captures	a	real	structure	in	the	
target.	 Pincock	 distinguishes	 between	 “true	 representations”	 (when	 there	 is	 in	 fact	 a	 real	
isomorphism	between	the	mathematical	model	and	the	target),	and	“false	representations”	(when	
there	is	no	such	isomorphism)	(2005,	1253)	22.	The	idea	is	that	although	one	can	‘trivially’	establish	
isomorphisms	between	the	mathematics	and	the	target,	one	only	has	a	real	representation	when	
																																																													
21	Note	that	Pincock’s	use	of	this	word	is	different	from	Weisberg’s	(see	Weisberg	2007b,	217;	and	section	
12.1.	above).		
22	I	assume	that	‘true’	here	means	correct,	and	that	‘false’	means	incorrect.		
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the	required	isomorphism	“actually	exists”	(2005,	1253),	that	is,	when	the	physical	world	has	a	
real	structure	as	described	by	the	mathematical	model.		

But	 what	 is	 the	 nature	 of	 these	 physical	 structures,	 and	 how	 can	 they	 be	 related	 to	
mathematical	structures?	According	to	Pincock,	the	way	structural	relations	are	established	is	by	
a	 process	 of	 instantiation.	 Following	 Mauricio	 Suárez,	 Pincock	 argues	 that	 once	 the	 relevant	
physical	 relations	 have	 been	 identified	 in	 a	 given	 context,	 the	 system	 fixes	 an	 associated	
mathematical	structure	–	and	in	that	sense	“the	system	instantiates	that	structure,	relative	to	that	
specification,	 and	 allows	 that	 structural	 relations	 are	 preserved	 by	 this	 instantiation	 relation”	
(2012,	29).	This	process	of	instantiation	may	start	as	an	assumption	on	the	part	of	the	theorists:	
they	focus	on	some	aspects	of	the	target,	rather	than	on	others,	so	that	a	given	mathematical	
structure,	rather	than	another,	is	instantiated.	If	it	turns	out	that	they	have	focused	on	the	right	
aspects,	then	they	have	discovered	the	real	structure	 instantiated	by	the	target,	and	the	model	
truly	represents	the	target	in	virtue	of	there	really	being	an	isomorphism	between	the	two.	And	
what	 is	more,	 for	Pincock	 this	physical	 structure	 is	an	 instance	of	a	mathematical	 structure.	 In	
other	words,	for	a	real	isomorphism	between	the	mathematical	model	and	the	target	to	occur,	
what	is	important	“is	the	mathematical	structure	found	in	the	target	system	itself”	(2011,	212;	my	
emphasis).23	 This	 is	 how	 Pincock	 avoids	 Newman’s	 problem:	 although	 in	 principle	 a	 physical	
system	 can	 instantiate	many	mathematical	 structures,	 only	 those	 that	 are	 fruitful	 to	 scientific	
theories	exist.		

13.3.	Assessment	of	Pincock’s	Mapping	Account	

Pincock’s	account	has	strong	ontological	implications.	For	example,	since	the	structure	in	question	
is	taken	to	belong	to	the	physical	system	itself,	this	account	depends	on	some	form	of	scientific	
realism;	and	since	this	structure	is	taken	to	be	mathematical,	the	account	also	depends	some	form	
of	mathematical	realism.	I	take	it	that	these	are	shortcomings	of	the	view.	As	I	will	show	below	
and	in	further	chapters,	one	can	provide	an	account	of	the	applicability	of	mathematics	in	science	
while	at	the	same	time	remaining	neutral	with	respect	to	debates	on	realism.				

a)	Instantiation	

The	 notion	 of	 instantiation,	 for	 example,	 can	 be	 interpreted	 differently	 from	 Pincock’s	 view.	
Mauricio	 Suárez,	 in	 a	 paper	 that	 Pincock	 himself	 quotes,	 defines	 representation	 as	 a	 3-place	
relation	that	includes	not	only	a	structural	relation	between	mathematics	and	the	world,	but	the	
intentions	and	 interests	of	 the	 scientists	and	 the	 scientific	 community	 (cf.	2010,	96).	This	may	
sound	 like	 a	 different	 wording	 of	 Pincock’s	 idea,	 since,	 as	 we	 have	 seen,	 for	 Pincock	 verbal	
specifications	 (which	 arguably	 include	 the	 intentions	 and	 interests	 of	 the	 scientists	 using	 the	
model)	 are	 a	 requisite	 for	 establishing	 structural	 relationships	 between	mathematics	 and	 the	
world.	But	the	crucial	difference	is	that	for	Suárez	whether	or	not	a	physical	system	‘instantiates’	
a	given	structure	is	entirely	relative	to	those	interests:		

																																																													
23	In	section	§30,	I	come	back	to	this	notion	of	instantiation.		
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Since	there	are	always	different	ways	of	cutting	out	its	domain	of	elements	and	relations,	
every	 physical	 object	 instantiates	 simultaneously	 several	 structures.	 The	 physical	world	
underdetermines	 its	 mathematical	 structure	 –	 which	 may	 only	 be	 ascribed	 under	 a	
particular	description	(2010,	96).	

The	idea	is	that	“every	object	or	system	instantiates	more	than	one	structure”	(2010,	96),	
depending	on	which	aspects	of	it	are	the	focus	of	our	attention,	and	in	that	respect	mapping	from	
physics	onto	mathematics	is	user-relative.	So,	when	we	say	that	a	physical	system	instantiates	a	
mathematical	structure,	this	must	be	understood	as	a	notion	that	depends	on	the	approximations,	
idealizations	 and	 abstractions	 that	 the	 scientist	 has	 deemed	 relevant	 for	 representing	 a	 given	
physical	system.	It	is	this	essentially	pragmatic	element	in	modelling	that	prevents	us,	according	
to	Suárez,	from	taking	the	notion	of	 instantiation	in	a	strong	metaphysical	sense.	On	this	view,	
instantiation	means	that	scientists	have	decided	to	use	a	mathematical	representation	in	order	to	
highlight	certain	relevant	physical	features.	As	we	will	see	momentarily,	this	notion	of	instantiation	
and	 its	usefulness	 in	science	does	not	 justify	beliefs	 in	 the	physical	world	having	mathematical	
structures	(as	defined,	for	example,	by	mathematical	structuralists	such	as	Shapiro	or	Resnik.)24		

This	has	implications	for	Pincock’s	notions	of	true	representations,	real	isomorphisms,	and	
real	 structures.	 It	 does	not	make	 sense,	 I	 contend,	 given	 the	notion	of	 instantiation	 that	both	
Suárez	 and	 Pincock	 endorse,	 to	 say	 that	 a	 system	 incorrectly	 instantiates	 one	 mathematical	
structure	 but	 correctly	 instantiates	 another.	 As	 we	 saw,	 a	 structure	 is	 defined	 as	 the	 formal	
network	describing	the	set	of	relations	that	obtains	between	some	set	of	objects.	There	is	nothing	
in	this	definition	restricting	the	kind	of	relations	that	must	obtain.	As	long	as	a	physical	system	has	
an	 adequate	 cardinality,	 it	 can	 be	 taken	 to	 instantiate	 (on	 this	 view	 of	 instantiation)	 several	
mathematical	structures,	and	it	can	be	understood	as	bearing	a	relation	of	(real)	isomorphism	to	
a	mathematical	model	 based	 on	 such	mathematical	 structure.	 So,	 either	 all	 the	mathematical	
structures	instantiated	by	a	physical	system	are	real,	or	none	of	them	is.		

Let	me	elaborate	on	this.	A	mathematical	structure	is	supposed	to	be	instantiated	by	the	
target	when	 there	 are	 instructions	 that	 relate	 specific	 parts	 of	 the	mathematical	 structure	 to	
specific	 parts	of	 the	 target,	 thus	defining	 a	 concrete	 structure.	A	different	 specification	would	
describe	other	parts	of	the	physical	structure	as	instantiating	a	mathematical	one,	and	so	on.	From	
this	point	of	view,	therefore,	there	is	a	plethora	of	instantiated	mathematical	structures.	This	is,	
however,	a	process	of	abstraction	(as	defined	above):	we	decided	to	focus	on	some	aspects	of	
physical	systems,	and	the	relations	between	those	aspects	define	a	physical	structure.	We	then	
represent	this	physical	system	using	mathematics.	My	problem	with	this	is	that	I	do	not	see	why	
these	physical	structures	should	be	called	mathematical.	It	cannot	be	because	they	are	useful	in	
science,	because	as	a	matter	of	fact	most	of	those	supposed	mathematical	instantiations	will	be	
of	 no	 use	 for	 scientific	 purposes.	 Once	 it	 is	 accepted	 that	 there	 may	 be	 some	mathematical	
instances	 in	 the	 world,	 there	 is	 nothing	 that	 prevents	 us	 from	 assuming	 that	 all	 of	 these	
mathematical	instances	exist,	regardless	of	whether	they	are	useful	in	science	or	not,	because	the	
notion	of	instantiation	is	independent	of	the	notion	of	being	scientifically	useful.	But	if	we	want	to	
																																																													
24	According	to	Otávio	Bueno,	this	notion	of	instantiation	ends	up	being	so	weak	that	it	is	confusing	to	keep	
using	that	term	to	refer	to	this	practice	(personal	conversation).	
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restrict	our	commitments	to	those	structures	that	are	indeed	useful	in	science,	arguably	they	are	
useful	in	virtue	of	the	physical	properties	that	the	specification	highlights;	and	in	that	sense,	it	is	
useless	 to	 call	 them	 ‘mathematical’	 structures.	 Therefore,	 contrary	 to	 Pincock,	 the	 notion	 of	
isomorphism	can	be	understood	without	positing	mathematical	instances	in	the	physical	world.	
But,	as	Bueno	suggests	(fn.	24),	there	are	other	ways	of	capturing	this	idea	that	avoid	using	this	
metaphysically	loaded	term.		

b)	Assumed	Physical	Structures	

Here	is	another	reason	why	it	is	not	necessary	to	assume	Pincock’s	view	that	applied	mathematics	
works	 by	 describing	 the	 underlying	 ‘mathematical’	 structures	 of	 the	 physical	 world.	 In	 the	
application	of	mathematics,	whenever	a	partial	isomorphism	(or	homomorphism)	is	established,	
we	are	assuming	that	the	physical	system	has	a	certain	physical	structure.	The	physical	world	can	
be	carved	up	in	many	different	ways,	depending	on	the	features	of	interest	in	a	given	situation,	
and	once	the	relevant	features	have	been	identified	one	can	define	a	physical	structure,	which	is	
then	associated	with	a	mathematical	 structure	partially	 isomorphic	 (or	homomorphic)	 to	 it.	As	
Bueno	&	French	put	it:		

[M]athematics	 is	 applied	 by	 bringing	 structure	 from	 a	 mathematical	 domain…	 into	 a	
physical,	 but	mathematized	 domain…	What	 we	 have,	 thus,	 is	 a	 structural	 perspective,	
which	 involves	 the	 establishment	 of	 relations	 between	 structures	 in	 different	 domains	
(Bueno	&	French	2012,	88).		

Let	 me	 say	 something	 about	 this	 ‘mathematization’	 of	 the	 physical	 domain.	 Bueno	 &	
French	rely	here	on	Patrick	Suppes’	view	that	the	application	of	mathematics	to	the	world	does	
not	occur	in	a	direct	way,	but	through	a	series	of	models	and	steps,	organized	hierarchically,	that	
mediate	between	the	theoretical	models	and	the	target	system.	The	basic	point	is	that	in	order	
for	a	physical	phenomenon	to	be	studied	mathematically,	 it	has	 to	be	 first	measured,	and	 the	
process	 of	 measurement	 implies	 in	 itself	 a	 mathematization,	 i.e.	 the	 assignment	 of	 mixed	
mathematical/physical	statements,	which	are	then	represented	as	data	sets.		These	data	sets	are	
at	the	basis	of	a	whole	hierarchy	of	models	which	end	with	theoretical	models	at	the	top.25	The	
point	is	that	structural	relations	hold	in	virtue	of	the	fact	that	the	assumed	physical	structure	is	
from	the	start	represented	mathematically.		

Now,	 in	some	cases,	this	assumed	structure	 is	more	easily	 identified	than	 in	others.	For	
example,	in	the	case	of	a	street	map:			

[I]t	seems	natural	enough	to	divide	the	world	up	into	streets,	rivers,	coastlines	and	the	like,	
but	in	general	this	will	not	be	the	case.	When	there	is	a	natural	candidate	pre-theoretic	
structure,	 the	 mapping	 account	 can	 employ	 this	 structure.	 When	 there	 is	 no	 such	
structure,	 we	 might	 impose	 some	 suitable	 structure	 or	 other	 and	 let	 the	 resulting	
mathematical	model	help	us	to	fine	tune	or	revise	the	starting	structure.	Either	way,	the	

																																																													
25	The	literature	on	this	topic	 is	vast,	but	the	 locus	classicus	are	Suppes	(1962)	and	Bogen	&	Woodward	
(1988).	
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mapping	account	does	require	having	what	we	shall	call	an	assumed	structure	in	order	to	
get	started.	There	is	no	avoiding	such	an	assumption	(Bueno	&	Colyvan	2011,	347).	

This	assumed	structure	is	physical;	not	mathematical.	But	does	this	mean	that	this	assumed	
structure	is,	so	to	speak,	the	ultimate	underlying	structure	of	the	world?	It	is	true	that	the	choice	
of	 features	 of	 interest	 can	 have	 an	 element	 of	 arbitrariness;	 but	 the	 epistemological	 gains	 of	
dividing	the	world	in	one	way	rather	than	another	are	(arguably)	not	arbitrary.	This,	however,	does	
not	necessarily	entail	scientific	realism.	Explanatory	power,	for	example,	has	often	been	taken	to	
be	an	important	tool	for	deciding	whether	some	ways	of	dividing	the	world	are	more	natural	than	
others,	and	so	a	scientific	realist	may	use	this	to	argue	that	the	success	of	the	model	employing	
an	assumed	structure	is	a	reason	for	believing	that	such	assumption	is	correct	or	approximately	
correct.	 But	 a	 scientific	 antirealist	 could	 reply	 that	 we	 can	 never	 corroborate	 whether	 that	
assumption	is	true,	and	that	the	best	course	would	be	to	remain	agnostic.		

c)	The	role	of	pragmatic	considerations	

One	final	point	about	Pincock’s	account	is	that	it	does	not	say	much	about	the	role	of	the	pragmatic	
considerations	 involved	 in	 the	application	of	mathematics.	 It	 is	 true	 that	he	mentions	 that	 the	
propositions	linking	the	mathematical	and	physical	structures	are	an	essential	component	of	the	
model,	without	which	“the	model	would	just	be	a	mathematical	entity”	(2011a,	27).	However,	in	
Pincock’s	account,	the	role	of	these	propositions	is	limited	to	the	establishing	of	the	associated	
mathematical	 structure,	 and	 once	 this	 has	 been	 done,	 “inferential	 claims	 follow	 immediately”	
(2012,	28).	 In	other	words,	for	Pincock	the	background	knowledge	of	the	scientist	 is	 important	
insofar	as	it	fixes	the	content	of	the	mathematical	representation;	but	once	this	content	is	fixed,	
there	is	a	guarantee	that	anything	discovered	in	the	mathematical	model	will	be	a	discovery	in	the	
target.	 I	 believe,	however,	 that	 this	 is	not	necessarily	 the	 case.	As	we	will	 see,	 scientists	must	
interpret	the	mathematical	formalism	at	different	stages	of	the	application	process.	So,	although	
it	 is	 true	 that	Pincock’s	 account	 leaves	 room	 for	 “the	beliefs	 and	goals	of	 the	 scientists	which	
deploy	the	model”	(Pincock	2011b,	213),	 for	him	these	considerations	begin	and	end	once	the	
mapping	between	the	physics	and	mathematics	has	been	fixed.	I	believe	that	in	some	cases,	this	
will	be	true;	but	a	general	account	of	the	application	of	mathematics	should	include	those	cases	
where	additional	pragmatic	and	contextual	considerations	play	a	more	prominent	role.		

§14.	The	Inferential	Conception	of	the	Applicability	of	Mathematics	

Conceptually,	the	Inferential	Conception	of	the	applicability	of	mathematics	can	be	understood	as	
building	upon,	and	enhancing,	Pincock’s	mapping	account.	Both	accounts	rely	on	the	notion	of	
partial	 mappings	 between	 mathematical	 and	 physical	 structures,	 and	 both	 mention	 the	
importance	of	contextual	and	pragmatic	considerations	in	the	application	process.	The	inferential	
conception,	 however,	 goes	 beyond	 Pincock’s	 mapping	 account	 in	 the	 emphasis	 on	 the	
interpretation	of	mathematical	structures	 in	this	process,	which	opens	the	possibility	of	having	
different	kinds	of	mappings	involved	in	the	same	situation	of	applied	mathematics.		 	
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14.1.	The	importance	of	interpreting	mathematical	structures	

Otávio	Bueno,	just	as	Pincock	does,	argues	for	the	importance	of	interpreting	the	mathematical	
structures	used	in	a	model.	The	idea	is	that	the	same	mathematical	structure	can	be	interpreted	
in	 many	 different	 ways,	 and	 an	 analysis	 of	 the	 mathematics	 alone	 cannot	 determine	 which	
interpretation	is	correct	(2012,	980):		

	[M]athematical	 expressions,	 taken	by	 themselves,	 are	not	 about	 physical	 events	 in	 the	
world:	they	need,	first,	to	be	(properly)	interpreted	before	they	can	become	relevant	to	
the	 description	 of	 physical	 phenomena.	 A	 differential	 equation	 has	 multiple	
interpretations,	 and	 depending	 on	 the	 interpretation	 one	 adopts,	 the	 equation	 may	
provide	no	 implications	at	 all	 to	 the	physical	world,	or	 implications	 that	 turn	out	 to	be	
empirically	 inadequate,	 or	 implications	 that,	 suitably	 reconstructed,	may	 capture	 some	
aspect	of	the	physical	world	(2012,	973).	

The	 idea	 is	 that,	 whether	 a	 substructure	 of	 the	model	 belongs	 to	 R1,	 R2,	 or	 R3	 is	 not	
straightforwardly	deducible	 from	the	model	 itself.	As	Bueno	puts	 it,	without	an	 interpretation,	
“mathematics	does	not	state	anything	about	the	physical	world”	(2012,	973)26.	Let	me	illustrate	
this	point	with	two	examples,	the	first	one	is	a	simple	case	adapted	from	Bueno	and	Colyvan	(2011)	
and	the	second	is	taken	from	Bueno	(2012).		

Imagine	an	object	dropped	from	the	top	of	a	20m	high	building.	We	want	to	calculate	the	
time	it	will	take	for	the	object	to	reach	the	floor:	

	

fig	2.		

In	order	to	calculate	time	t,	we	can	use	the	model	specified	by	equation	(a),	replacing	the	values	
for	the	height	(h=20m)	and	the	acceleration	due	to	gravity	(g=9,8m/s2):	

ℎ = 234

5
				 …	(a)	

20 =
9,8	𝑡5

2
	

																																																													
26	As	we	have	seen,	Pincock	also	emphasizes	this	point.		
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40
9,8

= 𝑡5	

From	this,	we	obtain:	 	2,02	=	t1	 	 	and	 	 	 -2,02	=	t2.	As	we	can	see,	despite	the	fact	that	one	can	
establish	a	mapping	between	the	model	specified	by	(a)	and	the	system	(suitably	mathematized),	
there	are	elements	of	(a)	that	are	problematic,	notably,	that	(a)	has	two	real	solutions	for	t,	only	
one	of	which	is	physically	significant	(in	terms	of	partial	structures,	we	can	say	that	one	solution	
belongs	to	R1	and	the	other	belongs	to	R2).	Now,	what	is	crucial	is	that	the	decision	of	rejecting	
the	negative	solution	cannot	be	drawn	from	the	analysis	of	equation	(a)	itself	(Bueno	&	Colyvan	
2011,	349).	On	the	contrary,	that	decision	is	part	of	the	background	knowledge	of	the	theorist,	
who	dictates	to	interpret	the	mathematics	in	a	specific	way.		

We	can	also	see	this	in	the	case	of	Paul	Dirac’s	discovery	of	positrons,	cited,	among	other	
places,	in	Bueno	(2012).	The	Dirac	equation	admits	negative	solutions	for	the	variable	representing	
electron	particles.	At	first,	these	solutions	were	thought	to	be	mere	artifacts	of	the	mathematics,	
with	 no	 physical	 implications	 (that	 is,	 they	 were	 assigned	 to	 R2).	 Later	 on,	 Dirac	 assigned	 an	
interpretation.	 He	 took	 them	 to	 refer	 to	 ‘holes’	 in	 space-time.	 This	 interpretation,	 however,	
proved	 to	 be	 inconsistent	 with	 the	 theory	 –	 it	 implied	 infinitely	massive	 particles!	 Finally,	 he	
provided	a	third	interpretation	of	the	same	mathematical	structure.	This	time	the	solutions	were	
interpreted	as	referring	to	particles	as	massive	as	electrons	but	with	opposite	charge,	thus	giving	
rise	 to	 the	 idea	 of	 positrons,	whose	 existence	was	 later	 experimentally	 confirmed.	 So	 far,	 the	
positron	 interpretation	 of	 the	mathematical	 formalism	 has	 turned	 out	 to	 be	 the	 correct	 one	
(Bueno	2012,	974).	Again,	the	solutions	to	the	Dirac	equation	were	by	themselves	meaningless,	
since	many	different	interpretations	could	be	assigned.	It	is	only	when	a	correct	interpretation	is	
advanced	that	the	mathematical	formalism	captures	aspects	of	the	world	(see	Bueno	2005	and	
2012	for	details;	also	Bueno	&	Colyvan	2012,	364-65).			

	 These	 examples	 illustrate	 the	 importance	 of	 interpretation	 in	 the	 application	 of	
mathematics.	As	Bueno	and	Colyvan	put	it:	

[A]ll	of	the	interpretations	in	question	are	mappings	from	a	mathematical	structure	to	the	
empirical	set	up,	and	they	are	not	uniquely	determined	by	the	structure	alone	–	hence,	the	
need	for	pragmatic	and	contextual	considerations	 in	 the	selection	of	suitable	mappings	
(Bueno	&	Colyvan	2011,	365).		

This	does	not	mean,	however,	that,	because	structural	resemblance	must	always	be	understood	
in	 terms	of	 interpreted	mathematical	 structures,	 there	are	no	constraints	 in	 the	mathematical	
model	 to	be	used.	For	example,	although	 it	 is	 true	 that	one	can	 represent	a	city	using	several	
different	maps,	a	map	is	still	better	than	a	white	page;	and,	as	James	Ladyman	has	pointed	out,	to	
deny	this	seems	to	take	us	away	from	what	we	take	to	be	a	scientific	representation	(Ladyman	
2009,	421).	A	fruitful	mathematical	model	will	be	one	that	allows	us	to	infer	many	things	about	
the	world.	At	the	opposite	side	of	the	spectrum,	however,	models	from	which	‘everything	follows’	
are	also	not	useful	 (like,	 for	example,	models	with	 inconsistent	 idealizations).	As	Peter	Tan	has	
emphasized,	 there	must	 be	 some	 constraints	 with	 respect	 to	 the	 kind	 of	 inferences	 that	 are	
admissible	(cf.	Tan,	‘The	Challenge	of	Inconsistent	Idealizations’	(unpublished	draft)).		
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14.2.	The	basic	structure	of	the	Inferential	Conception		

The	inferential	conception	integrates	both	structural	resemblance	between	mathematical	models	
and	 the	world,	 and	 “additional	 pragmatic	 and	 context-dependent	 features”	 (Bueno	&	Colyvan	
2011,	352).	This	account	is	presented	in	three	papers	by	Bueno	&	Colyvan	(2011),	Bueno	&	French	
(2011),	and	Bueno	&	French	(2012),	and	more	recently	in	Bueno	&	French	(2017).	According	to	
the	inferential	conception,	the	process	of	application	of	mathematics	in	science	can	be	understood	
in	terms	of	the	following	three	steps:	

In	 the	 immersion	 step,	 a	 mapping	 is	 established	 between	 the	 empirical	 set	 up	 to	 a	
convenient	mathematical	structure.	Several	mappings	can	do	the	job,	and	so	the	choice	of	
mapping	is	a	contextual	matter	(cf.	Bueno	&	Colyvan	2011,	353).	

In	the	derivation	step,	one	draws	consequences	from	the	mathematical	formalism,	using	
the	mathematical	structure	obtained	 in	the	 immersion	step	(cf.	Bueno	&	Colyvan	2011,	
353).		

Finally,	in	the	interpretation	step,	one	interprets	the	consequences	that	were	obtained	in	
the	derivation	step	in	terms	of	the	target.	Contrary	to	Pincock’s	account,	this	mapping	is	
not	necessarily	the	one	used	in	the	immersion	step	(cf.	Bueno	&	Colyvan	2011,	353-4).		

	 The	basic	idea	of	the	inferential	conception	is	that	the	representation	process	involves	a	
mapping	 between	 the	 target	 and	 a	 mathematical	 model,	 upon	 which	 certain	 mathematical	
operations	take	place,	resulting	in	a	mathematical	structure	that	maps	onto	the	target	once	it	has	
been	interpreted	in	a	suitable	way.	The	following	scheme	represents	the	essential	features	of	the	
Inferential	Conception:	

	

fig.	3	

(Bueno	&	Colyvan,	2011,	353)27	

The	inferential	conception	leaves	room	for	the	incompleteness	of	our	knowledge	of	the	
physical	domain,	and	so	it	is	also	compatible	with	the	partial	structures	view:	

[W]e	typically	have	surplus	structure	at	the	mathematical	level,	so	only	some	structure	is	
brought	from	mathematics	to	physics;	in	particular,	those	relations	which	help	us	to	find	

																																																													
27	See	also	Bueno	&	French	2012,	102.	
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counterparts,	at	the	empirical	domain,	of	relations	that	hold	at	the	mathematical	domain.	
In	this	way,	by	‘transferring	structure’	from	a	mathematical	domain	to	a	physical	domain,	
empirical	problems	can	be	better	represented	and	tackled	(Bueno	&	French	2012,	88).	

Bueno	&	 French	point	 out	 that	 although	 there	may	be	different	 structures	 that	may	 count	 as	
surplus,	the	choice	of	one	structure	over	the	others	 is	decided	on	a	contextual	basis	(2017,	22	
fn36).		

The	Inferential	Conception	explicates	the	different	roles	mathematics	plays	in	science,	for	
example,	 in	 unifying	 seemingly	 disparate	 phenomena,	 in	 making	 predictions,	 and	 in	 scientific	
explanation.	The	main	idea	of	the	inferential	conception	is	that	these	roles	can	be	understood	in	
terms	of	the	main	role	of	drawing	inferences	within	mathematical	structures	that	correspond	to	
physical	relations.	As	Bueno	and	Colyvan	put	it:	

[B]y	embedding	certain	features	of	the	empirical	world	into	a	mathematical	structure,	it	is	
possible	 to	 obtain	 inferences	 that	 would	 otherwise	 be	 extraordinarily	 hard	 (if	 not	
impossible)	to	obtain	(2011,	352).		

Thus,	in	unifying	different	scientific	theories,	one	establishes	inferential	relations	between	them,	
like	showing	that	one	can	be	derived	from	the	other	(2011,	352).	In	the	case	of	novel	predictions,	
one	infers	from	some	initial	conditions	that	have	been	embedded	in	a	mathematical	structure,	
that,	given	some	properly	interpreted	mathematical	results,	a	given	phenomenon	may	or	may	not	
occur	 (2011,	 352).	 Finally,	 scientific	 explanations	 are	 formulated	 in	 terms	 of	 suitable	
interpretations	of	inferred	mathematical	results	(2011,	353).		

	 As	we	will	see,	it	is	because	of	this	interpretation	element	that	the	Inferential	Conception	
is	 best	 equipped	 to	 deal	 with	 some	 issues	 concerning	 the	 role	 of	 mathematics	 in	 scientific	
explanation.		

§15.	Mathematics	and	Scientific	Explanation		

15.1.	The	Representational	Role	of	Mathematics	

According	 to	 the	 Inferential	Conception,	explanations	are	 formulated	by	 interpretations	of	 the	
mathematical	formalism	in	terms	of	the	target.	Crucially,	what	does	the	explanatory	work	is	not	
the	mathematical	formalism	per	se,	but	the	empirical	features	represented	or	highlighted	by	these	
mathematical	 formalisms.	 On	 this	 view,	 mathematics	 is	 a	 device	 to	 find	 out	 about	 these	
explanatory	relationships.		

[A]	 stone	 is	 thrown	 into	 the	 air.	 At	 one	 point	 in	 time,	 the	mathematical	 equation	 that	
describes	the	stone’s	movement	has	value	zero.	Does	the	fact	that	the	equation	has	such	
a	 value	 provide	 an	 explanation	 of	 why	 the	 stone	 is	 at	 rest,	 or	 does	 it	 simply	 offer	 a	
mathematical	 description	 of	 the	 phenomenon	 in	 question?	 Presumably,	 no	 one	would	
consider	the	fact	that	an	equation	has	value	zero	to	be	by	itself	an	explanation	of	a	physical	
phenomenon.	 A	 suitable	 physical	 interpretation,	 which	 identifies	 the	 relevant	 physical	
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processes	responsible	for	the	production	of	the	phenomena	in	question,	is	needed	in	order	
to	yield	a	satisfactory	explanation	(Bueno	&	French	2012,	104).			

This	way	of	understanding	the	role	of	mathematics	is	compatible	with	all	the	accounts	of	
scientific	explanation	we	have	studied	in	Chapter	1.	The	main	idea	is	that	mathematics	helps	us	
identify	the	physical	 features	that	are	responsible	for	the	explanation.	Hempel’s	DN	model,	 for	
example,	 assigned	 a	 representational	 role	 to	mathematics.	 In	 the	DN	model,	deduction	 is	 the	
relevant	explanatory	tool,	mathematics	being	just	a	tool	to	carry	out	these	deductions.	As	Hempel	
puts	it:		

[The	 function	 of	 mathematics]	 is	 analytic	 or	 explicative:	 it	 renders	 explicit	 certain	
assumptions	 or	 assertions	 which	 are	 included	 in	 the	 content	 of	 the	 premises	 of	 the	
argument.	 […]	Mathematical	 as	 well	 as	 logical	 reasoning	 is	 a	 conceptual	 technique	 of	
making	explicit	what	is	implicitly	contained	in	a	set	of	premises	(Hempel	1983,	390).		

And	then	he	adds:		

Thus,	 in	the	establishment	of	empirical	knowledge,	mathematics…	has,	so	to	speak,	the	
function	of	a	theoretical	juice	extractor	(Hempel	1983,	391).		

In	the	case	of	Salmon’s	CM	model,	only	causal	processes	and	interactions	are	explanatory;	
since	mathematical	 entities	 and	 operations	 do	 not	 have	 causal	 powers	 in	 Salmon’s	 sense	 (as	
processes	that	transfer	a	conservative	quantity	as	described	by	a	conservative	law)28,	the	role	of	
mathematics	cannot	be	that	of	explaining	the	explanandum.	The	mathematics	in	the	explanans	is	
used	to	represent	those	causal	processes	and	interactions.			

In	 the	 case	 of	 Woodward’s	 interventionist	 account,	 scientific	 explanation	 requires	
information	about	the	invariant	relationships	of	dependence	responsible	for	the	occurrence	of	the	
explanandum.	 We	 saw	 that	 an	 invariant	 relationship	 is	 one	 that	 remains	 stable	 under	
interventions,	 so	 that	 it	 is	 possible	 to	 manipulate	 one	 relata	 by	 intervening	 on	 the	 other.	
Sometimes	it	is	impossible	to	carry	out	these	interventions,	and	yet	we	can	gather	this	information	
by	analyzing	a	mathematical	model	 that	 represents	 these	relationships,	as	 long	as	we	have,	of	
course,	an	appropriate	model.	Thus,	for	example,	we	can	explain	the	tides	by	citing	the	position	
of	the	moon	at	a	certain	point	in	time.	Despite	a	‘surgical’	intervention	over	the	moon´s	position	
not	being	possible,	we	can	‘change’	its	position	in	the	mathematical	model	that	represents	it,	for	
example,	if	we	insert	in	the	variable	representing	its	distance	from	the	Earth	a	value	different	from	
the	actual	one.	This	allows	us	to	identify	distance	from	the	Earth	as	one	of	the	causes	of	the	tides.	
Here,	the	mathematical	model	is	a	tool	to	manipulate	these	objective	relations	of	dependence	in	
the	world.		

																																																													
28	There	are	other	ways	of	interpreting	mathematical	objects	as	having	causal	powers.	James	Cargile,	for	
example,	holds	that	for	a	mathematical	Platonist	the	intuition	of	mathematical	truths	can	be	the	cause	of	
some	physical	processes	(like	my	physical	behavior	consisting	in	writing	physical	marks	on	a	physical	paper)	
(see	Cargile	2003,	145	for	details).	Field	(1989)	interprets	Gödel’s	mathematical	intuition	in	a	similar	way.		
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Now,	Woodward	limited	his	analysis	to	causal	relationships,	but,	as	Alisa	Bokulich	(2011)	
has	suggested,	and	we	will	see	in	section	§18,	noncausal	relationships	can	also	be	included.	Bueno	
&	 French	 (2011)	 point	 out,	 following	 Alisa	 Bokulich,	 that	 even	 in	 noncausal	 explanations	 the	
mathematics	should	“be	able	to	give	information	about	how	the	target	system	would	behave,	if	
the	structures	represented	in	the	model	were	changed	in	various	ways”	(98).	One	can	certainly	
use	a	mathematical	model	as	a	means	of	performing	hypothetical	manipulations	of	 the	 target	
system.	

15.2.	Can	mathematics	be	explanatory?		

The	consensus	that	the	role	of	mathematics	 in	scientific	explanation	is	merely	representational	
has	recently	been	challenged	by	some	authors	who	claim	that,	at	least	in	some	cases,	mathematics	
can	play	an	explanatory	role,	in	addition	to	its	representational	role.	These	supposed	cases	have	
been	called	Mathematical	Explanations	of	Physical	Phenomena	(MEPPs).	Robert	Batterman	(2010)	
distinguishes	 between	 MEPPs	 that	 appeal	 to	 mathematical	 entities	 and	 those	 that	 appeal	 to	
mathematical	operations.	 The	 first	 kind	 of	 cases	would	 show	 that,	 despite	 their	 non-concrete	
nature,	mathematical	entities	and	their	properties	can	be	genuinely	explanatory.	These	cases	have	
recently	been	the	focus	of	debates	centered	on	the	indispensability	of	mathematics	in	science	as	
a	justification	for	mathematical	realism.	This	kind	of	MEPP	is	the	main	focus	of	this	dissertation,	
and	I	will	thoroughly	discuss	it	in	chapters	3	and	4,	where	I	develop	an	account	of	what	is	and	what	
is	not	 special	 about	 these	 cases.	 The	other	 kind	of	MEPP	are	 those	 that	 involve	mathematical	
operations.	The	discussion	of	this	second	kind	of	MEPP	is	important	for	highlighting	the	scope	and	
limitations	of	the	Inferential	conception,	which	is	the	main	focus	of	the	present	chapter.	So,	let	
me	start	discussing	one	example	of	a	MEPP	 that	 involves,	 in	an	essential	way,	a	mathematical	
operation.	

a)	The	Rainbow	Case	

According	to	Batterman,	mathematics	can	play	a	genuinely	explanatory	role	in	science,	one	that	is	
independent	of	its	representational	role.	He	introduces	the	notion	of	‘asymptotic	explanations’,	
which	are	those	that	 indispensably	 involve	mathematical	operations.	According	to	him,	what	 is	
special	about	 these	cases	 is	 that	 there	 is	a	 transition	between	 two	theoretical	models	used	 to	
represent	the	same	phenomenon,	but	where	the	underlying	theories	are	different,	only	one	of	
which	is	currently	taken	to	be	true	by	the	scientific	community.	Model	A	aims	to	be	an	accurate	
representation	of	the	target,	and	model	B	is	a	more	idealized	representation	of	it.	Crucially,	model	
B	results	from	model	A	by	asymptotic	reasoning,	that	is,	by	taking	the	limit	to	one	relevant	variable	
of	 model	 A.	 For	 Batterman,	 what	 is	 important	 in	 this	 kind	 of	 case	 is	 that	 the	 mathematical	
operation	(in	this	case,	taking	the	limit)	that	relates	the	two	models	is	essential	for	the	explanation	
to	 work	 as	 an	 explanation.	 Asymptotic	 explanations,	 Batterman	 argues,	 “do	 not	 proceed	 by	
focusing	on	an	abstract	structure	realized	by	the	physical	system”	(2010,	3),	and	“do	not	require	
that	one	associate	a	mathematical	entity	or	its	properties	with	some	physical	structure	had	by	the	
system	of	interest”	(2010,	4).	Rather,	they	rely	on	the	mathematical	operation	of	taking	the	limit	
to	a	parameter	in	the	model.		
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Let	us	examine	one	case	often	cited	in	the	literature:	

THE	RAINBOW	CASE:	Rainbows	always	appear	at	42°	relative	to	the	direction	of	sunlight	
(that	is,	the	inclination	of	the	light	beams	coming	from	the	top	of	the	bow	with	respect	to	
the	sunlight	is	always	around	42°	(See	fig.	4).	In	addition,	they	always	appear	with	the	same	
color	 pattern,	 despite	 the	 fact	 that	 each	 rainbow	 is	 the	 result	 of	 a	 unique	 set	 of	
circumstances	(Batterman	2010,	20).	How	can	we	explain	these	features?	

	

fig.	4		

These	features	of	rainbows	are	due	to	the	interaction	between	light	waves	and	raindrops,	
so	it	is	natural	to	think	that	we	must	use	light	wave	theory	to	explain	them.	And	in	fact,	using	wave	
theory	one	can	provide	an	explanation	of	the	color	pattern	as	a	consequence	of	the	phenomenon	
of	light	dispersion,	namely,	that	the	index	of	refraction	varies	depending	on	the	wavelength	of	the	
refracting	waves	(the	approximate	values	of	the	refraction	index	for	colors	at	the	opposite	end	of	
the	spectrum	are:	nred	»	4/3	and	nviolet	»1,344.).	In	turn,	this	influences	the	order	in	which	they	hit	
us	in	the	eye,	red	beams	from	higher	drops	all	the	way	down	to	violet	beams	from	the	lower	ones,	
as	can	be	seen	in	fig	5:		

	

fig.	5		

However,	 in	order	to	explain	the	 inclination	 itself	 (why	the	 inclination	of	diffracted	light	
beams	with	respect	to	the	direction	of	sunlight	is	always	approximately	42°)	we	must	appeal	to	
the	geometrical	relations	between	incident	and	refracting	beams	inside	each	raindrop	(assuming	
spherical	raindrops).	In	the	case	of	red	beams,	the	geometrical	relationships	are	as	follows:					
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fig.	6	

Following	Snell’s	law:		

Sin	(2b-j)	=	n	Sinb	…	(a)	

The	largest	concentration	of	rays	occurs	when	the	variation	of	j	with	respect	to	b	is	zero;	
which	can	be	represented	mathematically	as:	

89
8:
= 0	…	(b)		

For	red	light,	nred	=	4/3,	so	we	have			
	

𝑆𝑖𝑛	 2𝛽 − 𝜑 =
4
3
𝑆𝑖𝑛𝛽	

j	=	2b	-	Sin-1	(A
B
𝑆𝑖𝑛𝛽)	

	
8
8:
	[j]	=	 8

8:
	[2b	–	Sin-1	(A

B
𝑆𝑖𝑛𝛽)]	

Using	(b)	we	have	

0=	2 −
C
DEFG:

HIJKL MNO:
	

Since		
Cos2b=1-Sin2b	

We	have	that		

Sin	b	=	 P
H5
	

Therefore,	
b	»	40,2°	

And	following	(a)	we	have		
2j	»	42°.			

An	analogous	reasoning	gives	us	2j	»	40,5°	for	violet	light.	
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This	is	puzzling.	This	explanation	depends	upon	the	geometrical	relations	occurring	inside	
the	drop	(fig.	6),	which	are	captured	when	light	beams	are	represented	as	perfectly	linear,	that	is,	
when	light	is	taken	to	be	traveling	as	rays.	This	means	that	we	must	not	go	into	the	details	of	the	
wave	composition	of	light.	Rather,	we	must	amplify	the	scale	at	which	we	represent	diffracted	red	
light	beams.	In	other	words,	we	must	assume	red	light	beams	are	rays,	rather	than	waves,	which	
is	false.	The	crucial	problem,	says	Batterman,	is	that	this	falsehood	is	essential	for	explaining	the	
42°	inclination.		

Here	is	the	puzzle	in	other	words:	in	order	to	explain	the	color	pattern,	we	must	appeal	to	
properties	of	diffracted	light	beams	taken	as	waves	(depending	on	the	wavelength,	the	refraction	
index	 will	 change);	 but	 for	 explaining	 the	 inclination	 itself	 we	 must	 appeal	 to	 geometrical	
relationships	occurring	inside	the	drop,	which	in	turn	requires	describing	light	beams	as	rays.	Why	
is	a	false	representation	of	light	essential	to	explaining	a	feature	of	real	rainbows?	Moreover,	why	
do	we	need	two	different	models	(which	assume	different	ontologies)	to	explain	related	features	
of	the	same	phenomenon?		

b)	Limiting	Operations		

According	to	Batterman,	the	reason	why	this	explanation	succeeds	is	that	the	wave	model	and	the	
ray	model	are	related	by	a	 limiting	operation.	 In	 the	wave	model,	each	diffracted	wave	has	an	
associated	wave	 length	 λ.	When	 the	 ratio	 between	 this	wavelength	 λ	 and	 the	 radius	 r	 of	 the	
raindrop	approaches	zero,	the	realistic	mathematical	representation	collapses	into	the	false	ray	
representation.	This	operation	is	called	taking	the	limit	(also	known	as	variable	reduction).	Taking	
the	 limit,	 says	 Batterman,	 is	 explanatorily	 essential	 because	 it	 provides	 “the	 mediating	 link	
between	the	representative	models”	(2010,	10).	A	simple	illustration	of	this	is	given	by	a	function	
f(x)	that	defines	a	curve	in	a	Cartesian	plane.			

𝑓 𝑥 = 𝐴 cos 5W
X
𝑥						…		(c)	

lim
H/X→^

𝑓 𝑥 = 	 lim
H/X→^

𝐴 cos
2𝜋
𝜆 𝑥	

lim
H/X→^

𝑓 𝑥 = 	𝐴						…		(d)	

	 As	we	can	see,	equation	(c)	specifies	a	wave	and	equation	(d)	specifies	a	line.	The	limiting	
operation	provides	a	transition	between	these	two	models,	and	because	of	that,	says	Batterman,	
the	highly	 idealized	model	of	ray	optics	can	be	successfully	used	 in	the	explanation	of	why	the	
inclination	is	always	the	same.	The	model	can	be	obtained	as	a	limiting	case	of	the	more	realistic	
model	of	wave	optics	as	the	result	of	a	mathematical	operation	performed	over	the	latter	(the	
limiting	operation),	and	in	that	sense,	the	operation	itself	 is	explanatorily	relevant.	Batterman’s	
account	of	 asymptotic	 explanation	 relies	on	mathematics	 identifying	 stable	patterns	 that	omit	
many	details	of	the	actual	phenomena.	By	taking	the	limit	in	the	mathematical	model,	one	discards	
these	details	of	the	real	processes.	The	goal	of	the	explanation	is	to	show	why	these	regularities	
occur	(as	opposed	to	relying	on	the	regularities	to	explain	something	else).			
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According	 to	 Batterman,	 asymptotic	 explanations	 are	 a	 counterexample	 to	 mapping	
accounts,	 because	 these	 explanations	 rely	 on	 the	 idealized	 components	 of	 the	 mathematical	
models,	and	because	the	operation	itself	does	not	represent	anything	in	the	real	world.	So,	these	
explanations,	according	to	Batterman,	do	not	rely	on	structural	resemblances	between	the	model	
and	the	target	system,	which	is	the	core	assumption	of	mapping	accounts.	He	summarizes	this	
problem	as	follows:		

The	 problem	 is	 simple.	 Nothing	 in	 the	 physical	 world	 actually	 corresponds	 to	 the	
idealization.	So,	in	what	sense	can	we	have	a	mapping	from	a	mathematical	structure	to	
an	 existing	 physical	 structure?	 Mapping	 accounts	 are	 representative	 and	 good	
representations	reflect	the	truth	about	the	world.	Idealizations,	however,	are	false	(2010,	
10).		

Therefore,	 Batterman	 argues,	 a	 completely	 new	 approach	 to	 the	 problem	 of	 mathematical	
application	and	scientific	explanation	is	needed.	

c)	Response	to	the	Rainbow	Case	

According	 to	 Bueno	 &	 French	 (2012),	 asymptotic	 explanations	 can	 be	 incorporated	 to	 the	
inferential	 conception.	 It	 is	 true	 that,	 prima	 facie,	 there	 are	 no	 mappings	 for	 the	 limiting	
operations,	and	this	may	be	a	problem	for	the	inferential	account	because	“if	there	are	no	physical	
analogs	 corresponding	 to	 the	 divergences	 and	 singularities	 in	 the	 mathematical	 setting,	 the	
inferential	conception	cannot	 land	back	 in	 the	empirical	 set	up”	 (Bueno	and	French	2012,	91).	
However,	Bueno	&	French	argue	that	as	long	as	there	is	some	model	that	can	be	interpreted	in	
terms	of	the	target	system,	there	is	no	problem	if	a	model	is	mapped	onto	a	more	idealized	model:	
	 		

A	given	physical	structure	can	be	related	via	partial	homomorphisms	(or	some	other	partial	
morphism)	 to	 a	 suitable	 mathematical	 structure,	 which	 in	 turn	 is	 related	 to	 further	
mathematical	structure,	some	of	which	can	then	in	turn	be	interpreted	physically	(Bueno	
&	French	2012,	91).		

	

fig	7.	

Bueno	&	French	2012,	92	

then is interpreted into the physical set up. The diagram above (Figure 1)

illustrates the situation.

Even if there is no possible physical structure analogous to the surplus

structure (where asymptotic reasoning takes place), it is perfectly possible

for the intermediary structures—that is, Model 1 in Figure 1—to have a

suitable physical interpretation. These intermediary structures ultimately

link the surplus structure to the empirical set up. In this way, as will

become clear below, the formal framework we advance has suitable resources

to accommodate Batterman’s cases.

In other words, Batterman’s challenge can be met: the kinds of example he

presents can be accommodated as surplus structure, appropriately related to

mathematical structures that are physically interpreted.9 Consider, for

example, the now classic case of the explanation of certain features of

rainbows, highlighted by Batterman.10 A rainbow is a caustic surface that is

the boundary between regions of zero and non-zero light intensity and thus it

emerges as a singularity from geometrical optics (a caustic surface being the

envelope of a family of light rays). However, ray optics cannot explain the

appearance of supernumerary bows and interference effects in general (for an

accessible introduction, see Berry and Howls [1993]). Here, the work of Berry

Figure 1. The iterated inferential conception of applied mathematics.

9 We shall return to the issue of providing a physical interpretation below, when we consider
Belot’s contribution (Belot [2005]).

10 We would like to thank one of the referees for encouraging us to consider this example.
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The	idea	is	that	the	initial	mathematical	model	is	itself	immersed	into	another	model,	which	gives	
us	the	surplus	structure,	and	the	results	are	then	interpreted	back	into	Model	1,	which	only	then	
is	interpreted	into	the	physical	set	up:	

Even	if	there	is	no	possible	physical	structure	analogous	to	the	surplus	structure	(where	
asymptotic	reasoning	takes	place),	it	is	perfectly	possible	for	the	intermediary	structures…	
to	have	a	suitable	physical	interpretation.	These	intermediary	structures	ultimately	link	the	
surplus	structure	to	the	empirical	set	up	(Bueno	&	French	2012,	92).		

This	is	called	a	‘two-stage’	mapping.	The	point	is	that,	although	it	is	true	that	there	is	no	physical	
interpretation	 for	 the	 limiting	operations,	as	 long	as	 the	outcomes	of	 these	operations	can	be	
interpreted	in	terms	of	the	empirical	set	up,	the	mathematical	operation	itself	does	not	need	to	
be	assigned	an	interpretation,	and	remains	at	the	level	of	surplus	structure	(Bueno	&	French	2012,	
92).		

This	can	be	seen	in	the	rainbow	case.	The	operation	of	taking	the	limit	λ/r	à0	connects	
the	two	models,	but	that	only	shows	that	the	ray	model	is	a	special	case	of	the	wave	model,	and	
so	that	it	can	be	incorporated	under	the	overarching	wave	theory	of	light	as	a	special	case,	where,	
once	the	parameter	λ/r	falls	below	a	certain	threshold,	some	features	of	wave	are	irrelevant	for	
explaining	the	angle	of	incidence	of	the	rainbow.	Bueno	&	French’s	point	is	that	what	is	doing	the	
explanatory	work	in	this	case	is	the	ray	model,	and	not	the	operation	by	which	we	reached	that	
model.	 After	 all,	 even	 before	 the	 advancement	 of	 the	 wave	 theory	 of	 light	 we	 could	 have	
considered	 the	 ray	 explanation	 as	 fairly	 complete	 once	 the	 refraction	 index	 was	 empirically	
calculated.	The	means	by	which	the	ray	model	was	conceived	are	not	relevant	for	the	explanation	
itself.		

In	 addition,	 as	 Pincock	 (2011b)	 has	 pointed	 out,	 the	 ray	 representation	 does	 have	 a	
structural	resemblance	to	real	light	beams:	the	ray	representation	highlights	the	fact	that	some	
relations	within	light	beams	have	some	sort	of	‘linearity’	(their	trajectory),	which	is	essential	for	
explaining	 the	 angle	 of	 incidence.	 Representing	 light	 beams	 as	 rays,	 although	 false	 in	 many	
respects,	is	true	nonetheless	with	respect	to	this	specific	feature	of	light.	So,	even	though	it	does	
not	directly	represent	the	target,	the	idealized	model	can	be	understood	as	indirectly	representing	
some	features	of	the	target,	and	in	that	sense,	there	is	after	all	a	structural	similarity	between	the	
ray	model	and	the	physical	light	beams.	This	is,	as	we	saw	above	(12.3),	one	of	the	reasons	why	
minimal	models	are	so	useful	in	science.			

15.3.	Are	all	operations	in	the	derivation	step	legitimate?		

I	would	 like	to	 finish	this	chapter	presenting	one	criticism	to	the	 inferential	conception.	To	my	
mind,	one	aspect	that	has	not	been	clarified	is	whether	all	the	operations	in	the	derivation	step	
are	 admissible.	 This	 account	 seems	 to	 put	 all	 the	 explanatory	 force	 in	 the	 immersion	 and	
interpretation	steps.	Consider	for	example	the	discussion	in	Bueno	&	Colyvan	(2011):			
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[T]o	articulate	mathematical	 explanations29	 it	 is	 crucial	 to	establish	 inferential	 relations	
between	mathematical	structures	and	the	(suitable	interpreted)	empirical	set	up.	The	key	
inferential	moves	emerge	here	in	the	immersion	and	in	the	interpretation	steps	(366).		

What	 is	 lacking	 here	 is	 a	 discussion	 of	 the	 role	 of	 the	 derivation	 step	 in	 conveying	
understanding	of	the	physical	situation.		For	example,	Bueno	&	French	emphasize	that:	

A	basic	requirement	[for	an	explanation]	…	is	that	we	understand	how	the	explanans	leads,	
in	some	sense,	to	the	results	in	question	obtaining,	not	simply	that	they	do	in	fact	obtain	
(2012,	102).		

But	then	they	add	that	“such	understanding	may	be	provided	through	the	identification	of	suitable	
physical	 interpretations	of	 the	relevant	mathematical	results”	 (2012,	102;	my	emphasis).	 If	 the	
understanding	is	provided	solely	in	virtue	of	considering	the	mathematical	results,	then	in	principle	
this	 account	 seems	 to	 be	 open	 to	 the	 possibility	 that	 an	 explanation	 can	 be	 good	 even	 if	 the	
derivation	step	(the	means	by	which	those	results	were	obtained)	cannot	be	assigned	a	physical	
interpretation.	This	does	not	seem	right.	As	we	have	seen	in	chapter	1,	a	scientific	explanation	
must	convey	understanding	about	how	the	explanandum	was	brought	about.	Woodward	(2003),	
for	example,	says	that	“not	every	logical	or	mathematical	transformation	one	can	perform	on	a	
formal	 representation	 of	 a	 system	 corresponds	 to	 a	 physical	 manipulation	 performed	 on	 the	
formal	 system	 itself”	 (196).	 So,	 something	must	be	 said	about	 the	kind	of	derivations	 that	are	
admissible.		

Moreover,	if	explanation	was	merely	a	matter	of	properly	interpreting	the	mathematical	
results	obtained	in	the	derivation	step,	then	operations	that	do	not	convey	understanding	would	
be	explanatory,	which	is	incorrect.	Here	are	three	such	cases:		

Brute	computation	strategies.	Consider	the	proof	by	exhaustion	in	the	famous	bridges	of	
Königsberg	case:	a	bridges	system	about	which	it	is	asked	why	no	one	has	been	able	to	perform	a	
continuous	walk	over	 all	 the	bridges,	without	 retracing	one’s	 steps	 (what	 is	 called	an	Eulerian	
path).	Walking	over	all	possible	routes	would	establish	that	an	Eulerian	path	over	the	bridges	is	
impossible,	but,	crucially,	it	would	not	explain	why	it	is	impossible	(I	thoroughly	discuss	this	case	
in	§18,	§22	and	§27).		

Mistaken	 operations.	 In	 principle,	 the	 inferential	 conception	 (at	 least	 in	 the	 version	
advanced	in	the	papers	I	have	been	discussing)	is	open	to	mistaken	operations	(operations	that	
include	errors	in	calculations	or	in	derivations)	as	being	explanatory	in	virtue	of	the	results	having	
a	proper	physical	interpretation.		

Inconsistent	idealizations.	The	trivial	mathematical	derivations	obtained	from	inconsistent	
idealizations	 that	 I	mentioned	 in	 14.1	 above	 also	 should	 be	 excluded	 as	 explanatory	 (see	 Tan	
(unpublished	draft)	for	a	throughout	discussion;	see	also	Woodward	2003,	58).		

																																																													
29	I	assume	they	mean	‘explanations	that	include	mathematics’.		
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The	 point	 of	 my	 objection	 is	 that	 something	 more	 should	 be	 said	 as	 to	 the	 kind	 of	
operations	that	are	admissible	in	the	derivation	step.		

I	 believe	 that	 the	 resources	 for	 overcoming	 this	 difficulty	 can	 be	 found	 within	 the	
Inferential	 Conception	 itself.	 For	 example,	 Bueno	 &	 French	 say	 that	 “[a]	 suitable	 physical	
interpretation,	which	identifies	the	relevant	physical	processes	responsible	for	the	production	of	
the	phenomena	in	question	is	needed	in	order	to	yield	a	satisfactory	explanation”	(2012,	104).	I	
think	this	is	correct,	as	long	as	we	understand	‘physical	processes’	in	a	broader	sense	(not	in	the	
restricted	sense	advocated	by	Salmon’s	CM	model).	 If	the	physical	relations	are	emphasized	as	
vehicles	for	understanding,	they	can	be	tracked	down	by	the	relevant	mathematical	derivations,	
and	only	those	that	can	be	interpreted	that	way	would	count	as	explanatory	derivations.		

Now,	to	be	fair,	in	their	recent	book,	Bueno	&	French	say	that	the	inferential	conception	
does	not	provide	an	account	of	explanation	per	se.	Rather,	it	is	“a	framework	in	terms	of	which	
certain	kinds	of	explanations	can	be	articulated”	(2017,	201).	However,	they	do	acknowledge	the	
strength	of	my	objection.	They	say:	

[A]s	Barrantes	suggests,	we	might	still	insist	that	not	all	moves	in	that	step	are	permissible	
insofar	as	they	may	be	deemed	to	fail	in	supporting	the	explanation	as	a	whole.	Thus,	for	
example,	trivial	mathematical	derivations	from	inconsistent	premises	should	be	excluded	
(assuming	the	adoption	of	classical	 logic;	these	 inferences	are	 immediately	blocked	in	a	
paraconsistent	setting)	(2017,	156,	fn.	208)	

Also	in	response	to	these	comments	they	add	that:		

[C]ertain	kinds	of	permissible	moves	on	the	mathematical	side	are	going	to	be	ruled	out	
when	 it	 comes	 to	 the	 explanation	 of	 physical	 phenomena.	 Thus,	 referring	 back	 to	 the	
diagram	of	our	 iterated	 inferential	conception	above,	when	 it	comes	to	the	 ‘derivation’	
step,	certain	kinds	of	moves	here	should	be	excluded.	So,	for	example,	in	addition	to	those	
moves	 that	 do	 not	 track	 the	 relevant	 explanatory	 asymmetries,	 derivations	 from	
inconsistent	premises	which	would	be	trivial	within	classical	logic	would	also	be	ruled	out.	
Likewise,	‘brute	computation	strategies’	might	also	be	deemed	to	be	unacceptable	(2017,	
201).		

In	 sections	 §18,	 §20,	 and	 §25	 I	 go	 deeper	 into	 the	 issue	 of	 whether	 there	 are	 some	
mathematical	 operations	 in	 the	 derivation	 step	 that	 may	 not	 be	 legitimate	 in	 a	 scientific	
explanation,	but	it	is	pertinent	to	introduce	the	main	idea	here.	In	the	philosophy	of	mathematics,	
there	is	a	growing	consensus	that	there	is	a	distinction	between	explanatory	and	non-explanatory	
mathematical	 proofs.	 The	 first	 convey	 understanding	 of	 the	mathematical	 results	 in	 question,	
whereas	 the	 second	merely	 show	 that	 the	mathematical	 results	 obtain.	 I	 argue	 that	 in	 some	
scientific	explanations	physical	systems	can	be	mapped	onto	a	mathematical	model	in	a	way	such	
that	 the	question	about	 the	physical	 explanandum	can	be	perfectly	 represented	as	a	question	
about	a	mathematical	explanandum,	which	requires	an	explanatory	derivation.	In	those	cases,	I	
will	 argue,	 a	 non-explanatory	 derivation	would	 not	 be	 legitimate	 as	 the	 only	 operation	 in	 the	
derivation	step,	because	that	operation	would	not	convey	understanding,	despite	the	fact	that	the	
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outcome	of	such	derivation	can	be	interpreted	in	physical	terms.	And	even	if	one	does	not	fully	
solve	the	issue	of	which	mathematical	proofs	are	and	which	are	not	explanatory,	my	point	is	that	
the	 mathematical	 derivations	 must	 provide	 us	 some	 understanding	 of	 why	 the	 physical	
phenomenon	in	question	did	occur,	and	not	only	showing	us	that	it	occurred.		

§16.	Conclusion	

As	 I	 mentioned,	 there	 have	 been	 several	 attempts	 to	 provide	 an	 account	 of	 cases	 where	
mathematics	plays	a	genuine	explanatory	role,	besides	its	representational	one.	Several	authors	
claim	that,	at	least	sometimes,	mathematical	entities	(as	opposed	to	Batterman’s	operations)	can	
be	explanatory,	 in	addition	to	being	representational.	Although	they	reject	 that	 there	are	such	
cases,	Bueno	&	French	give	some	guidelines	as	to	what	it	would	mean	for	mathematics	to	play	a	
genuinely	explanatory	role:	

[T]hose	who	hold	that	mathematics	does	play	such	an	explanatory	role	owe	us	an	account	
of	 the	 nature	 of	 explanation	 involved	 in	 the	 relevant	 examples	 for	 scientific	 practice.	
Expressing	 it	as	neutrally	as	possible,	any	such	account	must	be	able	to	tell	us	how	the	
mathematics	 and	 the	 relevant	 physical	 phenomena	 are	 related	 in	 a	manner	 that	 goes	
beyond	 the	 representation	 of	 this	 relation	 via	 deduction	 or	 other	 formal	 devices.	 One	
option	 would	 be	 for	 such	 an	 account	 to	 say	 how	 it	 is	 that	 the	 relevant	 physical	
phenomenon	 is	brought	about.	One	doesn’t	 always	have	 to	appeal	 to	 causal	 factors	 in	
explicating	this	bringing	about	–	one	might	draw	on	certain	structural	[i.e.	structural	but	
non-causal]	features,	for	example	(2012,	97).		

In	the	next	two	chapters	 I	present	an	account	of	mathematical	explanations	of	physical	
phenomena	that	is	compatible	with	the	inferential	conception.	Although	I	will	not	show	that	the	
mathematics	 go	 “beyond	 the	 representation”	 of	 physical	 relations,	 I	 will	 show	 that	 these	
explanations	do	not	work	exactly	as	ordinary	scientific	explanations	do.		
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CHAPTER	3.	An	Account	of	Mathematical	Explanations	of	Physical	Phenomena	

§17.	Introduction	

In	 this	 chapter,	 I	 introduce	my	 account	 of	Mathematical	 Explanations	 of	 Physical	 Phenomena	
(MEPPs).	In	my	view,	MEPPs	are	counterfactual	explanations.	And	despite	the	fact	that	MEPPs	are	
explanations	of	empirical	phenomena,	they	are	noncausal.		

I	 start	 by	 presenting	 and	 analyzing	 two	 cases	 that	 have	 been	 much	 debated	 in	 the	
literature:	 the	 impossibility	 of	 performing	 a	 trip	 over	 all	 the	 bridges	 of	 Königsberg	 without	
retracing	 one’s	 steps	 (§18),	 whose	 explanation	 appeals	 to	 a	 property	 of	 non-Eulerian	 graphs	
(Pincock	2007);	and	the	prime	numbered	 life-cycle	of	some	species	of	periodical	cicadas	(§19),	
whose	explanation	appeals	 to	a	property	of	prime	numbers	 (Baker	2005).	 I	next	 introduce	my	
account	of	MEPPs	in	terms	of	the	notions	of	optimal	representation	(as	opposed	to	the	improvable	
representations	that	operate	in	most	applications	of	mathematics);	deformations	(as	opposed	to	
the	causal	interventions	of	Woodward’s	account);	and	explanatory	mathematical	derivations	(as	
opposed	to	Mark	Steiner’s	notion	of	explanatory	proof)	(§20),	and	revisit	my	cases	to	illustrate	my	
view	(§21).	I	finish	the	chapter	(§22)	by	discussing	the	sense	in	which	MEPPs	are	different	from	
ordinary	scientific	explanations,	and	how	do	MEPPs	account	for	the	explanatory	directionality.		

§18.	Case	study	1.	The	Bridges	of	Königsberg		

18.1.	The	problem	 	

In	 the	 18th	 century,	 the	 islands	 of	 the	 German	 city	 of	 Königsberg	 (now	 the	 Russian	 city	 of	
Kaliningrad)	were	connected	between	themselves	and	to	the	land	by	seven	bridges.		

	

fig.	8.	The	bridges	of	Königsberg	System	

The	inhabitants	of	the	city	were	puzzled	about	the	fact	that	nobody	could	do	a	trip	that	included	
every	bridge	only	once.	Leonard	Euler	himself	was	contacted	to	solve	this	problem	by	Carl	Elher,	
the	major	of	the	nearby	city	of	Dunzig.	In	his	letter	to	Euler,	Elher	suggested	that	the	solution	to	
this	problem	may	not	require	traditional	geometrical	calculus	but	what	Gottfried	Leibniz	had	called	
‘calculus	of	position’:		
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You	would	 render	 to	me…	a	most	valuable	 service…	 if	 you	would	send	us	 the	solution,	
which	you	know	well,	 to	 the	problem	of	 the	seven	Königsberg	bridges,	 together	with	a	
proof.	 It	would	prove	 to	be	an	outstanding	example	of	 the	 calculus	of	position	 [Calculi	
Situs],	worthy	of	your	great	genius	(Cited	in	Hopkins	&	Wilson	2004,	201).		

In	 a	 letter	 addressed	 to	 the	mathematician	 Giovanni	Marinoni,	 Euler	 wrote	 about	 the	
details	of	this	problem:		

A	problem	was	posed	to	me	about	an	island	in	the	city	of	Königsberg,	surrounded	by	a	river	
spanned	by	seven	bridges,	and	I	was	asked	whether	someone	could	traverse	the	separate	
bridges	 in	a	connected	walk	 in	such	a	way	 that	each	bridge	 is	crossed	only	once.	 I	was	
informed	that	hitherto	no-one	had	demonstrated	the	possibility	of	doing	this,	or	shown	
that	it	is	impossible.	This	question	is	so	banal,	but	seemed	to	me	worthy	of	attention	in	
that	geometry,	nor	algebra,	nor	even	the	art	of	counting	was	sufficient	to	solve	it.	In	view	
of	 this,	 it	 occurred	 to	me	 to	wonder	whether	 it	 belonged	 to	 the	 geometry	 of	 position	
[Geometriam	 Situs],	 which	 Leibniz	 had	 once	 so	 much	 longed	 for.	 And	 so,	 after	 some	
deliberation,	I	obtained	a	simple,	yet	completely	established,	rule	with	whose	help	one	can	
immediately	 decide	 for	 all	 examples	 of	 this	 kind,	 with	 any	 number	 of	 bridges	 in	 any	
arrangement,	whether	such	a	round	trip	is	possible,	or	not	.	.	.	(Cited	in	Hopkins	&	Wilson	
2004,	201).	

	 There	are	four	things	to	note	on	this	paragraph.	First,	the	way	the	problem	is	defined.	At	
the	beginning	Euler	describes	it	as	being	about	“whether	someone	could	traverse	the	separate	
bridges	in	a	connected	walk	in	such	a	way	that	each	bridge	is	crossed	only	once”.	Presented	in	
these	 terms,	 the	 problem	 corresponds	 to	 the	 modern	 graph	 theoretical	 one	 of	 whether	 an	
Eulerian	path	can	be	performed	over	the	system	of	bridges.	However,	by	the	end	of	the	paragraph	
he	says	that	the	required	path	is	a	“round	trip”.	A	roundtrip	that	crosses	all	the	bridges	only	once	
is	 called,	 in	 modern	 graph	 theory,	 an	 Eulerian	 circuit.	 In	 his	 essay	 Solutio	 Problematis	 Ad	
Geometriam	Situs	Pertinentis	(1736;	from	now	on	Solutio),	however,	Euler	describes	the	problem	
as	being	about	an	Eulerian	path:	

Concerning	these	bridges,	it	was	asked	whether	anyone	could	arrange	a	route	in	such	a	
way	that	he	would	cross	each	bridge	once	and	only	once	(Solutio,	Paragraph	2).		

The	solution	he	provides	 in	his	Solutio	applies	 to	Eulerian	paths	only;	 if	we	were	to	apply	 it	 to	
Eulerian	circuits	a	small	modification	would	be	required.	Since	such	a	modification	was	not	present	
in	Euler’s	essay,	in	what	follows	I	will	consider	that	the	problem	to	be	solved	is	whether	an	Eulerian	
path	over	the	bridges	is	possible.	As	we	will	see,	only	Eulerian	and	Semi-Eulerian	systems	allow	
Eulerian	paths.		

The	second	thing	to	note	from	Euler’s	letter	to	Marinoni	is	that	the	question	is	whether	
any	Eulerian	path	is	possible,	and	not	why	a	particular	attempt	failed.	Evidently,	a	negative	answer	
to	the	first	question	would	apply	to	the	second	question	as	well;	but	this	would	not	work	in	the	
other	 way	 around.	 That	 is,	 from	 a	 particular	 failure	 we	 cannot	 conclude	 that	 such	 a	 path	 is	
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impossible.	But	if	we	show	that	such	a	trip	is	impossible	we	would	also	be	accounting	for	every	
particular	failure.		

A	third	thing	to	note	is	that	Euler	discards	algebra	and	‘the	art	of	counting’	as	sufficient	to	
solve	the	problem.	For	him,	the	solution	relies	on	the	geometry	of	position,	which	around	fifty	
years	before	had	been	described	by	Leibniz	as:		

[The]	kind	of	analysis,	geometric	or	 linear,	which	deals	directly	with	position	as	algebra	
deals	with	magnitudes	(Cited	in	Hopkins	&	Wilson	2004,	201).	

This	is	a	kind	of	analysis	in	which	magnitudes	such	as	distances,	lengths	or	angles	are	irrelevant.	It	
applies	to	the	bridges	case	because	the	real	distances	between	the	pieces	of	land,	as	well	as	their	
areas	and	the	length	of	the	bridges,	are	irrelevant	for	solving	the	problem;	the	solution	requires	
abstracting	away	from	all	these	features,	considering	only	the	connections	between	the	pieces	of	
land.	For	this	reason,	in	his	solution	to	the	problem	Euler	did	not	work	directly	with	the	physical	
system	of	bridges	but	on	a	model	that	represented	the	connections	only.	

	

The	bridges	of	Königsberg	graph	(Euler’s	version)	

fig	9.	Baker	2009b,	4	

	 It	is	often	asserted	that	this	was	the	first	instance	of	a	graph	theoretical	analysis	(see	e.g.	
Baker	2009b).	In	modern	graph	theory,	a	graph	is	a	geometrical	structure	composed	of	vertices	
connected	by	edges.	The	graph	that	represents	Euler’s	diagram	is	the	following:	

	

The	bridges	of	Königsberg	graph	(modern	graph	theoretical	version)	

fig.	10.	Baker	2009b,	6	
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	 Finally,	the	fourth	thing	to	notice	in	the	aforementioned	quote	is	that	Euler	aimed	for	a	
solution	that	did	not	apply	to	the	Bridges	of	Königsberg	alone;	rather,	he	wanted	a	rule	that	would	
apply	 to	 “all	 examples	of	 this	 kind,	with	 any	number	of	bridges	 in	 any	 arrangement”	 (call	 this	
‘condition	of	 generality’).	 As	we	will	 see	 below,	 abstraction	 from	 those	 elements	 that	 are	 not	
essential	 to	 the	 solution	of	 the	problem	 is	not	only	desirable	 for	 tractability	purposes	but	 it	 is	
crucial	for	meeting	this	condition	of	generality.		

18.2.	Euler’s	Solutions	

In	Solutio	Euler	presents	three	solutions	to	this	problem30.	The	first	two	apply	specifically	to	this	
case;	the	third	solution	is	more	general	and	applies	to	similar	cases.	

a)	Brute	computation	strategy	

One	can	systematically	perform	every	single	possible	trip	over	the	bridges.	In	doing	so,	one	will	
notice	that	none	of	them	is	an	Eulerian	path.	Since	there	is	none	available,	we	can	conclude	that	
it	 is	 impossible	 to	 perform	 an	 Eulerian	 path	 over	 the	 bridges	 system.	 Euler	 himself	 explicitly	
dismissed	 this	 disjunctive	 explanation,	 precisely	 because	 it	 does	 not	 meet	 the	 condition	 of	
generality:	

As	far	as	the	problem	of	the	seven	bridges	 is	concerned,	 it	can	be	solved	by	making	an	
exhaustive	list	of	all	possible	routes,	and	then	finding	whether	or	not	any	route	satisfies	
the	 conditions	 of	 the	 problem.	 Because	 of	 the	 number	 of	 possibilities,	 this	method	 of	
solution	would	be	too	difficult	and	laborious,	and	in	other	problems	with	more	bridges	it	
would	be	impossible	(Solutio,	paragraph	3).		

This	is	a	very	important	point.	The	number	of	possible	trips	varies	exponentially	with	the	
number	of	bridges.	A	rough	estimate	for	this	case	is	27,	assuming	that	every	time	one	reaches	a	
piece	of	land,	one	has	2	options	for	continuing	the	trip	(cf.	Moore	and	Mertens	2011,	4).	But	this	
brute	strategy	is	impossible	in	cases	with	many	more	bridges.	In	Venice,	for	example,	there	are	
420	bridges,	and	even	the	fastest	computer	available	today	would	take	more	than	the	age	of	the	
universe	to	survey	all	those	options	(cf.	Moore	and	Mertens	2011,	4).	

	

fig.	11.	The	bridges	of	Venice	

																																																													
30	A	similar	classification	has	been	recently	highlighted	by	Tim	Räz	(2014)	
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b)	Particular	analytic	solution	

This	solution	 is	brilliantly	simple.	 It	depends	on	the	extremely	simple	 fact	 that	 ‘every	 time	one	
crosses	a	bridge,	two	pieces	of	land	are	involved:	the	one	from	which	one	departs,	and	the	one	
where	one	arrives’31.	The	solution	is	divided	in	two	steps.	As	we	can	see	in	fig.	9,	Euler	labeled	the	
pieces	of	land	with	the	letters	A,	B,	C	and	D.	He	then	defined	a	path	as	a	sequence	of	letters.	First,	
every	time	one	crosses	a	bridge	two	letters	appear	in	the	path	(those	corresponding	to	the	pieces	
of	land	at	each	side	of	the	bridge).	From	this	it	follows	that	if	one	crosses	a	second	bridge,	a	third	
letter	would	 appear	 in	 the	 path-sequence,	 and	 so	 on.	 In	 general:	 “however	many	bridges	 the	
traveler	crosses,	his	journey	is	denoted	by	a	number	of	letters	one	greater	than	the	number	of	
bridges”	(Solutio,	paragraph	5).	If	a	system	has	‘n’	bridges,	a	successful	Eulerian	path	must	have	
‘n+1’	letters.	Therefore,	in	the	case	of	the	seven	bridges	of	Königsberg,	a	successful	path	would	
feature	8	letters.	And	so	the	question	now	is	whether	an	8-lettered	path-sequence	is	possible	over	
the	bridges.	

	 Secondly,	we	must	analyze	how	many	times	a	particular	letter	will	appear	in	a	path,	given	
the	number	of	edges	connecting	to	it.	For	any	piece	of	land	with	K	bridges	connecting	to	it,	either	
K	is	odd	or	K	is	even	(we	call	it	respectively	an	‘odd	piece	of	land’	or	an	‘even	piece	of	land).		It	
follows,	again	from	the	fact	that	every	time	one	crosses	a	bridge	two	letters	appear	in	the	path,	
that	if	K	is	odd	the	letter	corresponding	to	that	piece	of	land	will	appear	`aH

5
	times,	independently	

of	whether	or	not	we	start	on	that	piece	of	land.	For	example,	from	fig.	12	it	is	easy	to	see	that	
whether	or	not	one	starts	in	L,	if	one	crosses	each	bridge	only	once	one	would	step	on	L	exactly	2	
times:		

	

fig.	12	
Land	L	connected	by	three	bridges	

	 In	the	bridges	of	Königsberg,	we	can	see	in	fig.	9	that	there	are	5	bridges	connecting	to	A,	
and	3	connecting	to	B,	C	and	D	respectively,	so	the	frequency	of	each	letter	will	be:	

	

	

																																																													
31	I	emphasize	how	simple	this	fact	is	because	later	this	will	be	useful	in	my	discussion	of	the	ontological	
implications	(or	lack	thereof)	of	the	existence	of	MEPPs.	A	bridge	is	defined	as	something	that	connects	
two	areas.	It	is	an	analytical	truth	that	every	time	one	crosses	a	bridge,	two	areas	are	involved.	This	is	true	
for	every	physical	object	that	meets	this	description.		
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	 #bridges	 Frequency	
A	 5	 3	
B	 3	 2	
C	 3	 2	
D	 3	 2	
Total	 	 9	

Table	1.		

	 In	consequence,	the	number	of	letters	in	a	path	that	crosses	all	the	bridges	only	once	must	
be	9.	But	we	saw	that	a	successful	path	should	have	8	letters;	therefore,	the	trip	is	impossible	in	
the	bridges	of	Königsberg	system.	Although	this	solution	does	not	meet	the	condition	of	generality	
either,	it	provided	Euler	with	the	elements	for	constructing	a	more	general	solution.		Contrary	to	
the	brute	computation	strategy,	this	solution	explains	why	an	Eulerian	path	over	the	bridges	 is	
impossible.	However,	the	third	solution	provides	a	better	explanation.		

c)	Generalized	analytic	solution		

A	generalization	of	this	result	should	account	for	cases	that	also	contain	‘even’	pieces	of	land.	As	
it	is	evident	from	fig	13,	in	those	cases,	if	the	journey	starts	in	an	even	piece	of	land	its	letter	will	
appear	`

5
	+1	times	in	the	path	sequence.	If	the	journey	does	not	start	in	that	piece	of	land,	its	letter	

will	appear	`
5
	times	in	the	path	sequence.		

	

Fig.	13	

Land	L	connected	by	four	bridges	

Here	is	a	reconstruction	of	Euler’s	generalized	solution	in	modern	graph	theoretical	terms.	
Define	a	generalized	graph	with	o	odd	nodes,	e	even	nodes,	and	n	edges.	Every	odd	node	has	hi	
edges	connecting	to	it,	and	every	even	node	has	kj	edges	connecting	to	it.	A	path-sequence	is	a	list	
of	all	the	nodes	covered	by	a	given	path.			
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(1)	Every	time	you	cross	an	edge,	two	nodes	feature	in	the	path-sequence,	the	starting	point	and	
the	ending	point	[Elementary	fact	about	edges32]	

(2)	If	a	graph	has	n	edges,	a	successful	Eulerian	path-sequence	will	have	n+1	nodes.		 (1)	

(3)	Every	odd	node	will	feature	bcaH
5
	times	in	a	successful	Eulerian	path-sequence.			 (1)	

(4)	 If	 the	path	 starts	 in	an	even	node,	 it	will	 feature	
de
5
	 +1	 times	 in	a	 successful	Eulerian	path-

sequence.	 	 	 	 	 	 	 	 		 	 	 (1)	

(5)	If	the	path	does	not	start	in	that	even	node,	it	will	feature	
de
5
	times	in	a	successful	Eulerian	path-

sequence.	 	 	 	 	 	 	 	 	 	 	 (1)	

(6)	Define	r	as	a	binary	variable	that	takes	value	1	if	the	path	starts	in	an	even	node	and	0	if	it	does	
not.			

(7)	The	number	of	nodes	in	any	path-sequence	is:	

#Nodes	=		 bcaH
5

F
NfH 	+	

de
5

g
hfH 	+	r		 	 	 	 	 	 (3-6)	

(8)	In	a	successful	Eulerian	path	sequence	the	following	holds:		

bcaH
5

F
NfH 	+	

de
5

g
hfH 	+	r	=	n+1																			 	 	 	 	 (7+2)	

(9)		 	 ℎNF
NfH 	+	 𝑘hg

hfH 	+	o	+	2r	=	2n+2		 	 	 	 	 	 (8)	

(10)	Every	edge	has	been	counted	twice,	so:	 ℎNF
NfH 	+	 𝑘hg

hfH 	=	2n		

(11)	 	 2n	+	o	+	2r	=	2n	+	2																 	 	 	 	 	 	 (8+10)	

(12)																				o	+	2r	=	2																		 	 	 	 											 	 	 	 (11)			

(13)		 	 o1	=	2	;	r1	=	0	v	o2	=	0	;	r2	=	1		 	 	 	 	 	 	 (12+6)	

From	this	it	follows	that	the	desired	path	is	possible	under	two	conditions	only:	

C1*:		Either	the	graph	has	exactly	two	vertices	of	odd	degree	(in	which	case	the	
path	must	start	on	one	of	them)	[Semi	Eulerian	graph]	
C2*:	Or	the	graph	does	not	have	odd	vertices.	[Eulerian	graph]	

																																																													
32	This	fact	about	edges	fully	captures	the	elementary	fact	about	bridges	I	mentioned	above.	By	substituting	
edges,	nodes	and	graphs	 for	bridges,	pieces	of	 land,	and	physical	 road	systems	 this	explanation	can	be	
cashed	out	in	empirical	terms.		
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These	conditions	are	not	met	by	the	graph	that	represents	the	bridges	system	(the	graph	
has	4	odd	vertices).	Therefore,	it	is	impossible	to	go	over	all	the	edges	without	crossing	over	at	
least	one	of	them	more	than	once.			

Euler	concludes	by	saying	 that	 this	method	makes	 it	easier,	 “even	 in	most	complicated	
cases,	to	determine	whether	or	not	a	journey	can	be	made	crossing	each	bridge	once	and	once	
only”	 (Solutio,	 paragraph	 16).	 As	 I	 mentioned,	 tractability	 is	 important	 because	 brute	
computational	 strategies	 are	 physically	 impossible	 to	 carry	 out	 when	 the	 number	 of	 possible	
routes	 is	exponentially	 large.	Even	 the	 fastest	 computer	would	 take	more	 than	 the	age	of	 the	
universe	to	process	the	2420	routes	available	in	the	bridges	of	Venice	case.	Because	of	this,	Moore	
and	 Mertens	 (2011)	 eloquently	 describe	 the	 importance	 of	 this	 solution	 in	 terms	 of	 its	
computational	tractability:	

An	exhaustive	 verification	 in	 a	 city	with	n	bridges	 takes	 an	 amount	of	 time	 that	 grows	
exponentially	with	n.	But	we	can	check	that	every	vertex	has	even	degree	in	an	amount	of	
time	proportional	to	the	number	of	vertices,	assuming	that	we	are	given	the	map	of	the	
city	in	a	convenient	format.	Thus	Euler’s	method	let	us	solve	this	problem	in	linear	time,	
rather	than	the	exponential	 time	of	a	brute-force	search.	Now	the	cities	of	Venice,	and	
larger	cities,	are	easily	within	our	reach	(2011,	4).		

§19.	Case	study	2.	The	Cicadas		

19.1.	The	problem	

Periodical	cicadas	of	the	genus	magicicada	remain	underground,	in	nymphal	state,	for	either	13	
or	17	years,	getting	nutrients	from	the	roots	of	forest	trees.	After	that	period	of	time	they	emerge	
in	the	summer	(when	the	ground	temperature	reaches	64°F),	mate	within	the	next	two	weeks,	lay	
eggs,	and	die.	Then	the	cycle	repeats	all	over	again.		

	 These	insects	are	mostly	found	in	the	US	Eastern	states,	where	15	different	broods	have	
been	identified.	Broods	with	13-year	life	cycles	are	located	in	the	South,	and	broods	with	17-year	
life	cycles	 in	 the	North.	One	single	brood	can	contain	more	 than	one	species,	but	 they	do	not	
interbreed.	In	some	areas,	for	example	in	Virginia,	it	is	possible	that	broods	of	17-year	species	and	
13-year	species	geographically	coexist,	and	so	they	may	appear	at	the	same	time	every	221	years.		

	 Although	the	number	of	species	of	cicadas	 is	a	matter	of	dispute,	most	biologists	agree	
that	there	are	seven	species	(cf.	Cooley,	magicidada.org).	Three	of	them	(septendecim,	cassini,	and	
septendecula)	 have	 17-year	 life	 cycles	 and	 each	 of	 them	 has	 at	 least	 one	 13-year	 life	 cycle	
counterpart	(thus:	tredecim,	neotredecim,	tredecassini,	and	tredecula).	Differences	in	morphology,	
behavior	and	calling	signals	are	clear	between	species	of	the	same	life	cycle.	However	–	and	here	
is	where	 the	 dispute	 begins	 –	 these	 differences	 are	 not	 so	 evident	 between	 a	 species	 and	 its	
counterpart	with	the	alternative	life	cycle.	It	is	for	this	reason	that	some	biologists	claim	that	these	
counterparts	may	both	belong	to	the	same	species	(the	only	difference	between	subspecies	would	
be	the	life	cycle	length).	This	question	has	not	yet	been	settled.	Cooley	presents	the	current	state	
of	affairs	as	follows:			
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More	information	on	the	nature	of	the	boundary	between	13-	and	17-year	populations	
and	the	extent	of	hybridization	between	them	would	help	to	resolve	this	question,	but	for	
now	there	is	no	evidence	that	the	distinctiveness	of	the	life-cycle-forms	is	decreasing.	For	
this	 reason	 and	 for	 practical	 purposes,	most	 writers	 have	 adopted	 the	 taxonomy	 that	
recognizes	the	life	cycle	siblings	as	distinct	species	(Cooley,	magicicada.org)	

	 There	 are	 many	 features	 of	 these	 insects’	 behavior	 that	 are	 puzzling	 and	 require	
explanation,	but	 the	most	salient	 is	 their	 life	cycle.	 In	particular,	 the	question	that	has	puzzled	
scientists	the	most	is	why	these	insects	emerge	simultaneously	every	13	or	17	years.	This	question	
can	be	decomposed	into	four	sub	questions:	(i)	Why	are	their	life	cycles	so	long?	(ii)	Why	is	there	
a	difference	between	life	cycles?	(iii)	Why	do	they	emerge	simultaneously?	And	(iv)	Why	are	their	
life	 cycles	 prime	 numbered?	 As	 we	 will	 see,	 many	 philosophers	 claim	 that	 this	 last	 question	
requires	a	different	kind	of	explanation	than	the	 first	 three;	but	before	we	get	 into	this,	 let	us	
present	the	standard	scientific	answers	to	the	first	three	questions.		

With	respect	to	(i)	the	long	length	of	the	cycles,	two	factors	may	be	involved.	Jin	Yoshimura	
(1997)	suggests	that	the	colder	conditions	during	the	glacial	period	 in	the	Pleistocene	(roughly	
until	11700	years	ago)	slowed	the	growth	and	development	of	the	cicadas.	On	the	other	hand,	Cox	
&	Carlton	(2003)	suggest	that	cicadas	may	have	evolved	long	life	cycles	so	that	they	can	minimize	
the	times	they	emerge,	in	order	to	avoid	the	risk	of	emerging	during	a	particularly	cold	year.	Both	
explanations	also	account	for	(ii)	the	difference	in	length	(Matson	2013).	Northern	cicadas	have	
longer	cycles	than	southern	ones	because	the	climate	there	is	colder	(cf.	Matson	2013).	As	for	(iii)	
the	synchronized	emergence,	Matson	has	pointed	out	that	it	is	really	surprising,	especially	if	we	
consider	 the	 length	 of	 the	 cycles.	 It	 may	 be	 explained	 by	 two	 factors.	 First,	 synchronized	
emergence	increases	mating	opportunities,	and	in	that	sense	it	is	evolutionarily	advantageous.	In	
addition,	 simultaneous	emergence	 increases	 the	chances	of	 survival	 from	predators.	Predators	
have	a	limited	eating	capacity.	Even	at	their	fullest,	they	cannot	eat	the	whole	population	of	prey	
if	the	number	of	prey	is	too	large.	By	emerging	at	the	same	time,	the	cicadas	guarantee	that	part	
of	the	population	will	survive.		

	 As	I	said	before,	the	feature	of	these	insects’	behavior	that	has	generated	most	discussion	
among	philosophers	is	that	both	southerners	and	northerners	have	life	cycles	that	are	represented	
by	prime	numbers.	As	Matson	points	out,	many	subspecies	of	cicadas	may	have	emerged	from	the	
glacial	 period	with	 a	 spectrum	 of	 life	 cycles	 ranging	 from	 12	 to	 20	 years	—Yoshimura	 (1997)	
suggests	that	the	possible	life	cycles	may	have	been	in	the	[14-18]	range	in	the	North,	and	[12-15]	
in	 the	South.	 	Eventually,	 those	with	13	and	17	years	 survived.	Why	have	precisely	 those	with	
prime	numbered	life	cycles	survived?33		

																																																													
33	There	may	be	a	little	bit	of	speculation	here.	These	constrains	exclude	11-	and	19-year	life	cycles	for	no	
apparent	reason.	In	any	case,	it	is	still	a	surprising	fact	that	those	of	13	and	17	survived	and	the	rest	(most	
of	them	non-prime	numbered)	did	not.			
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	 It	 has	 been	 argued	 that	 the	 cycles	 are	 not	 ‘prime’	 themselves;	 that	 their	 supposed	
‘primeness’	depends	upon	an	arbitrarily	chosen	measurement	unit:	years.	Daly	&	Langford	express	
this	charge	thus:		

Prime	numbers	appear	 in	 the	description	of	 the	 life	 cycle	of	 cicadas	because,	and	only	
because,	we	measure	that	life	cycle	in	years.	But	we	could	choose	to	measure	the	duration	
of	that	cycle	differently.	Instead	of	measuring	it	as	[say]	17	years,	we	could	measure	it	as	
68	seasons,	for	instance,	or	as	204	months.	Since	neither	68	nor	204	is	a	prime	number,	it	
seems	that	the	role	of	primes	in	the	life	cycle	of	cicadas	is	arbitrary…		(2009,	652).	

	 I	am	partially	sympathetic	to	this	line	of	thought.	As	I	will	discuss	below,	prime	numbers	
represent	life	cycles,	but	the	life	cycles	are	not	themselves	‘prime’.	‘Primeness’	is	a	property	of	
some	natural	numbers,	not	of	time	lengths.	In	the	inferential	account	that	I	am	following,	the	role	
of	mathematics	is	to	represent	physical	facts,	but	these	facts	are	not	themselves	mathematical34	
(this	is	true	even	in	cases	where	the	mathematical	representation	seems	indispensable	to	pick	up	
the	 relevant	 physical	 properties).	 So,	 it	 seems	 natural	 to	 assume	 that	 there	 is	 an	 element	 of	
arbitrariness	in	the	choice	of	the	representational	tool.	However,	there	is	a	strong	sense	in	which	
the	charge	of	arbitrariness	is	not	justified.	Years	are	a	natural	unit	for	measuring	organisms’	life	
cycles.		The	rotations	of	the	Earth	around	the	Sun	determine	climatological	conditions	that	affect	
the	life	cycle	of	organisms	by	changing	relevant	local	features	such	as	temperature	and	amount	of	
daylight	(cf.	Baker	2009a,	615).	As	 I	mentioned,	cicadas	emerge	only	 in	the	summer,	when	the	
ground	is	at	64°F.	There	is	only	one	summer	a	year,	so	years	are	the	relevant	choice	of	units	for	
this	 case.	Daly	 and	 Langford’s	 claim	 that	months	or	 seasons	 could	 also	work	 is	 right,	 but	only	
because	in	both	cases	the	relevant	prime	factor	is	included	in	those	numbers.	In	other	words,	what	
is	relevant	is	the	relationship	between	the	numbers	representing	the	life	cycle	and	the	time	of	the	
year	where	appropriate	climatological	conditions	appear.	For	example,	 if	we	choose	months	as	
our	 unit,	 we	 have	 that	 the	 life	 cycle	 of	 northern	magicicadas	 would	 be	 204	 units	 and	 the	
climatological	conditions	would	occur	every	12	units.	Evolutionary	time	scales	are	very	long,	so	
even	if	the	cicadas	emerged	during	a	different	month	each	cycle,	on	average,	they	would	have	to	
emerge	on	a	12-unit	basis.	The	relationship	between	these	two	numbers	would	still	be	prime:	17.	
It	is	precisely	this	primeness	that	puzzled	scientists	and	philosophers.	As	we	will	see	shortly,	the	
explanation	consists	 in	showing	that	prime	numbers	are	coprime	with	numbers	 less	 than	their	
double,	which	can	be	translated	in	terms	of	prime-numbered	cycles	minimizing	intersection	with	
other	cycles	(more	on	this	below).	

	 It	 has	 also	 been	 argued	 that	 the	 cicada’s	 prime	 numbered	 life	 cycles	 may	 be	 a	 mere	
coincidence.	 According	 to	 this	 objection,	 there	 is	 nothing	 to	 be	 explained	 about	 the	 cicadas’	
behavior.	This	would	be	supported	by	the	fact	that	there	are	no	other	known	magicicadas	that	
develop	prime	numbered	cycles	(except	for	another	species	of	forest	cicadas	that	emerges	–	non-
simultaneously	–	every	7	years	(see	May	1979,	348)).	But	despite	this	objection,	it	is	undeniably	
puzzling	that	there	are	no	magicicadas	of	intermediate	life	cycles.	Why	precisely	13	and	17	and	

																																																													
34	Sections	§37	and	§38	are	devoted	to	a	discussion	of	these	and	related	issues.		
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not	any	other	number?35	There	is	still	the	question	of	whether	there	are	seven	or	three	species	of	
magicicadas.	If	the	species	are	seven,	then	this	number	may	not	be	negligible,	and	it	makes	it	less	
likely	that	the	cycles	are	a	coincidence	because	the	greater	the	number	of	species	with	a	property	
the	less	likely	that	the	property	is	an	accident	(but	still,	there	are	more	than	1500	other	species,	
most	of	them	developing	cycles	of	less	than	5	years).	On	the	other	hand,	if	there	are	only	three	
species,	then	the	question	remains	as	to	why	those	species	have	divided	themselves	in	subspecies	
with	prime	life	cycles.	It	is	not	completely	clear	to	me	which	outcome	would	be	more	favorable.		

19.2.	The	number	theoretical	explanations	

Two	 explanations	 for	 these	 prime	 numbered	 cycles	 have	 been	 predominant	 in	 the	 literature.	
Goles,	 Schulz	 and	Markus	 (2001)	 argue	 that	 preys	with	 prime	 numbered	 life	 cycles	will	 avoid	
encounters	with	predators	more	than	those	with	non-prime	numbered	cycles:	

[A]	prey	with	a	12-year	cycle	will	meet	–	every	time	 it	appears	–	properly	synchronized	
predators	appearing	every	1,	2,	3,	4,	6	or	12	years,	whereas	a	mutant	with	a	13-year	period	
has	the	advantage	of	being	subject	to	fewer	predators	(2001,	33).		

This	would	explain	why,	amongst	the	species	with	different	life	cycles	that	may	have	emerged	from	
the	Pleistocene,	only	those	with	13	and	17	years	passed	on.		

	 The	second	explanation,	due	to	Cox	&	Carlton	(2003),	emphasizes	the	evolutionary	benefit	
of	not	overlapping	with	subspecies	with	different	life	cycles.	Most	broods	include	all	species	with	
the	same	 life	cycle,	and	 there	 is	no	 interbreeding	between	these	species.	However,	when	two	
broods	overlap	in	some	regions	there	may	be	interbreeding	between	siblings	with	different	life	
cycles.	For	example,	septendecula	(decula	with	17-year	cycles),	and	tredecula	(decula	with	13-year	
cycles)	 belong	 to	 different	 broods,	 but	 if	 their	 broods	 coincide	 these	 two	 subspecies	 will	
interbreed,	giving	rise	to	descendants	with	life	cycles	between	13	and	17.	These	descendants	will	
not	overlap	with	other	nymphs	belonging	to	their	progenitors’	species.	This	will	make	them	lose	
the	advantage	of	synchronized	emergence.	Having	prime	life	cycles	ensures	that	this	kind	of	event	
happens	only	every	221	years.		

	 Both	explanations	rely	on	the	fact	that	the	chosen	life	cycles	minimize	the	possibilities	of	
intersection	 (in	 one	 case	 intersection	 with	 predators,	 in	 the	 other	 case	 intersection	 with	
subspecies	 of	 different	 life	 cycles).	 Specifically,	 as	 Alan	 Baker	 puts	 it,	 “[t]he	mathematical	 link	
between	primeness	and	minimizing	the	intersection	of	periods	involves	the	notion	of	lowest	[least]	
common	multiple	(LCM)”	(2005,	231).		

Lemma	1:	the	least	common	multiple	of	m	and	n	is	maximal	iff	m	and	n	are	coprime.		

																																																													
35	Current	research	is	exploring	the	possibility	that	the	relevant	explanatory	property	may	be	the	4-year	
difference	between	the	two	cycles,	and	not	their	‘primeness’.	If	this	turns	out	to	be	true,	then	the	cicada	
case	would	have	to	be	abandoned	as	an	example	of	a	MEPP,	because	the	4-year	difference	would	have	a	
causal	explanation.			
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Lemma	2:	a	number	m	is	coprime	with	each	number	n < 2m; n ≠ m	iff	m	is	prime.		

	 It	 seems	 that	 without	 mentioning	 these	 facts	 about	 prime	 numbers	 neither	 of	 those	
explanations	of	the	length	of	the	cycles	would	work.	And	although	a	complete	explanation	of	the	
cycle	lengths	must	include	empirical	information	about	ecological	and	biological	considerations,	
the	fact	that	cycles	of	13	and	17	years	minimize	the	possibilities	of	intersection	requires	a	different	
kind	 of	 explanation.	 Moreover,	 the	 explanation	 shows	 that	 many	 aspects	 of	 the	 actual	
evolutionary	history	of	the	cicadas	are	irrelevant.	In	other	words,	that	the	cicadas	would	end	up	
having	cycles	of	13	and	17	years	was	modally	stronger	than	the	specific	details	of	their	evolutionary	
history.	The	 idea	 is	 that	once	 the	explanandum	has	been	cashed	out	 in	 terms	of	primeness,	 it	
becomes	‘prime-numbered	life	cycles	minimize	intersection	with	other	life	cycles’,	and	it	can	be	
explained	by	appealing	to	the	two	lemmas	above,	the	proof	of	which	is	quite	simple:		

	 Lemma	1:	LCM	(m,n)	is	maximal	iff	m	and	n	are	coprime36	 		

	 1)	LCM	(m,n)	≤	m·n	 	 	 	 	 	 [Def.	of	LCM]	

	 2)	LCM	(m,n)	is	maximal	iff	LCM	(m,n)	=	m·n			 	 [from	1]	

	 3)	LCM	(m,n)	·GCD	(m,n)	=	m·n	 	 	 	 [Def.	of	GCD]37	

	 4)	If	LCM	(m,n)	is	maximal,	then	GCD	(m,n)	=	1		 	 [from	2	and	3]	

	 5)	GCD	(m,n)	=	1	iff	m	and	n	are	coprime	 	 	 [Def.	of	coprime	numbers]	

6)	If	LCM	(m,n)	is	maximal,	then	m	and	n	are	coprime		 [from	4	and	5]	(first	part	of	the	
bi-conditional)	

	 7)	If	m	and	n	are	coprime,	then	LCM	(m,n)	=	m·n	 	 [from	5	and	3]	

8)	If	m	and	n	are	coprime,	then	LCM	(m,n)	is	maximal		 [from	7	and	2]	(second	part	of	
the	bi-conditional)	

9)	LCM	(m,n)	is	maximal	iff	m	and	n	are	coprime	 [from	6	and	8]	

	

Lemma	2:	If	m	is	prime	then	it	is	coprime	with	every	n;	n	<	2m	

1)	GCD	(m,n)	=	1	iff	m	and	n	are	coprime	 [Def.	of	coprime	numbers]	

2)	If	m	is	prime,	then	GCD	(m,n)	=	1	for	all	n	<	2m	 [Def.	of	prime]	

																																																													
36	LCM	(m,n):	Least	Common	Multiple	of	m	and	n.	
37	GCD	(m,n):	Greatest	Common	Divisor	of	m	and	n	
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3)	If	m	is	prime	then	it	is	coprime	with	every	n;	n	<	2m	 [from	1	and	2]	

The	notion	of	primeness	is	crucial	for	these	mathematical	proofs	to	work.	However,	as	I	
will	argue	in	more	detail	in	section	§37,	there	is	a	strong	sense	in	which	the	mathematical	notion	
of	primeness	is	not	indispensable	for	explaining	the	actual	length	of	the	cycles.	For	now,	what	is	
important	is	that	the	two	available	explanations	of	the	cycles	strongly	rely	on	number	theoretical	
facts	about	prime	numbers.	In	fact,	biologist	Robert	MacArthur	noticed	that	this	“may	be	the	only	
application	of	number	theory	to	biology”	(cited	in	May	1979,	347).	The	cicada’s	behavior	depends	
upon	many	different	considerations,	like	evolutionary	aspects,	climatological	aspects,	etc.,	and	so	
a	full	explanation	of	the	cicada’s	life	cycle	requires	taking	of	all	of	these	elements	into	account.	But	
the	crucial	point,	the	reason	why	many	authors	think	of	this	as	a	special	case,	is	that	there	is	a	
sense	in	which	the	scientific	explanation	that	does	not	appeal	to	this	number	theoretical	result	
would	be	limited	in	its	explanatory	power.	However,	as	I	will	show	in	§21,	the	role	of	mathematics	
in	the	cicada	explanation	is	to	highlight	the	relevant	empirical	facts	about	time	lengths	that	explain	
the	life	cycles.		

§20.	An	account	of	MEPP	

In	this	and	the	following	sections	I	present	a	characterization	of	these	and	similar	cases	in	terms	
of	what	has	been	called	mathematical	explanations	of	physical	phenomena	(MEPPs).	The	notions	
that	I	use	will	become	transparent	throughout	my	discussion.		

Assume	that	we	know	that	a	physical	system	P	has	property	p*,	and	we	want	to	explain	
why	it	has	that	property.	A	MEPP	of	this	fact	has	the	following	conditions:	

-	M	is	a	mathematical	structure	that	optimally	represents	those	features	of	P	relevant	to	
explaining	why	it	has	property	p*.		

-	m*	is	a	mathematical	property	that	represents	the	physical	property	p*.	

-	We	can	manipulate	whether	M	has	m*	by	deforming	a	property	m	of	M.		

-	 This	procedure	 can	be	 interpreted	 in	 terms	of	manipulations	of	whether	P	has	p*	by	
deforming	a	property	p	of	P.			

These	 conditions	 can	 be	 interpreted	 in	 terms	 of	 the	 immersion,	 derivation,	 and	
interpretation	steps	of	Bueno,	Colyvan,	and	French’s	Inferential	Conception:	
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fig.	1438.	

In	what	follows	I	discuss	the	notion	of	optimal	representation,	explain	the	sense	in	which	
deformations	of	mathematical	structure	M	must	be	understood,	and	revisit	my	cases	to	illustrate	
my	view.	I	finish	the	chapter	by	exploring	the	relationship	between	MEPPs	and	ordinary	scientific	
explanations,	and	how	they	account	for	the	explanatory	directionality.		

20.1.	Optimal	Representation	

Mathematical	representations	can	usually	be	improved.	Sometimes	this	improvement	implies	new	
values	for	the	variables	in	the	same	mathematical	structure,	and	in	others	a	new	mathematical	
structure	must	be	used	altogether.	I	will	call	this	kind	of	representation	improvable.	Consider	the	
following	example	of	a	static	representation	of	the	relationships	between	three	sticks:	

	

fig.	15	

In	this	case	we	can	use	the	following	mathematical	model	to	represent	the	geometrical	
relations	between	the	sticks	as	a	right	triangle:		

	

																																																													
38	Adapted	from	Bueno	and	Colyvan	2011,	353.	However,	 these	authors	do	not	use	the	 idea	of	optimal	
representation.	
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Model	1:	

	

fig.	16	

𝑐 = 	 𝑎5 + 𝑏5	

The	measures	of	a,	b	and	c	are	of	course	approximate.	Depending	on	the	purpose	of	the	
representation,	we	can	increase	the	accuracy	of	these	measures;	if	we	do	so,	the	corresponding	
mathematical	model	would	no	longer	be	a	right	triangle:	

Model	2:	

	

fig.	17	

𝑐 = 	 𝑎5 + 𝑏5 − 2𝑎𝑏	𝑐𝑜𝑠𝛼	

	 Neither	a,	b,	or	c	are	completely	straight,	but	perhaps	for	making	the	model	more	tractable	
(Galilean	model),	perhaps	because	all	that	matters	is	the	distance	between	the	extremes	of	the	
sticks	(minimal	model),	segments	have	been	used	in	the	representation.	What	is	important	is	that	
regardless	 of	 the	 representational	 ideals	 of	 the	 modeler,	 one	 can	 continue	 improving	 these	
representations,	either	because	not	all	the	core	features	have	been	identified,	or	because,	having	
been	identified,	they	cannot	be	measured	accurately.	In	other	words,	both	Galilean	and	minimal	
models	are,	in	general,	improvable.	For	example,	a	minimal	modeler	can	improve	her	model	by	
measuring	more	 accurately	 the	 distances	 between	 the	 extremes	 of	 the	 sticks,	 as	 well	 as	 the	
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angle	𝛼.	Similarly,	a	Galilean	modeler	can	provide	a	better	representation	if	she	introduces,	for	
example,	aspects	of	the	geometry	of	the	edges	of	the	sticks.		

	 I	shall	now	define	a	special	kind	of	mathematical	representation	that	I	will	call	‘optimal	(i.e.	
‘non-improvable’)	representation’.	An	optimal	representation	is	a	minimal	model	that	captures	all	
the	features	that	are	relevant	to	an	empirical	situation	at	a	specified	level	of	description.39	What	
is	 a	 representational	 ideal	 for	 most	 minimal	 models	 is	 actually	 achieved	 by	 these	 optimal	
representations.	Let	us	illustrate	this	in	the	hand	shaking	case	of	section	§12:		

HAND	SHAKING	CASE:	There	are	10	persons	in	a	room	shaking	hands	with	each	other.	How	
many	hand	shakings	will	there	be?	(see	fig.	1)	

In	 order	 to	 answer	 this,	 we	must	 abstract	 away	 from	 the	 particularities	 of	 the	 people	
involved,	and	the	details	of	every	particular	hand	shaking.	The	only	feature	relevant	to	answering	
this	question	is	the	fact	that	there	will	be	hand	shakings	(i.e.	the	‘connections’)	between	every	pair	
of	persons.	For	that	reason,	we	can	use	a	graph	to	represent	this	case.	As	we	have	seen,	for	this	
particular	situation	what	we	need	 is	a	complete	graph.	This	graph-theoretical	representation	 is	
optimal,	in	the	sense	that	it	captures	all	and	only	those	aspects	that	are	relevant	to	answering	the	
question	about	the	number	of	hand-shakings.		

Now,	mathematical	representations	are	not	‘optimal’	in	themselves.	Optimality	is	a	relative	
notion.	A	mathematical	 structure	M	 is	an	optimal	 representation	of	a	physical	 situation	P	only	
relative	to	a	specific	feature	p*	of	P.	In	the	case	of	scientific	explanations,	M	may	be	an	optimal	
representation	of	P	with	respect	to	explaining	why	it	has	property	p*,	but	it	may	not	be	optimal	
with	 respect	 to	 explaining	 another	 feature	 q*	 of	 P.	 It	 is	 also	 important	 to	 note	 that	 the	
mathematical	model	does	not	tell	us	what	 is	relevant	 in	these	cases.	 It	 is	with	our	background	
knowledge	about	the	overall	situation	that	we	construct	a	mathematical	model	M	that	captures	
these	relevant	features.			

20.2.	Deformations	(noncausal	interventions)	

In	a	MEPP,	once	we	implement	an	optimal	representation,	the	explanandum	‘why	P	has	property	
p*’	becomes	‘why	M	has	property	m*’.	By	properly	interpreting	the	answer	to	the	mathematical	
question	we	answer	the	physical	question	as	well.	But	how	should	we	answer	the	mathematical	
question?	I	believe	that	not	every	answer	would	be	explanatory.	Recall	that	at	the	end	of	section	
§15	I	questioned	whether	all	the	operations	in	the	derivation	step	of	a	scientific	explanation	are	
legitimate,	 and	 I	mentioned	 that	 there	 are	 cases	where	 the	mathematical	 operations	 are	 not	
explanatory	 with	 respect	 to	 the	 physical	 situation,	 in	 the	 sense	 that	 they	 do	 not	 help	 us	 to	
understand	why	the	physical	explanandum	occurred.		

																																																													
39	Not	to	be	confused	with	Orzack	&	Sober	(2001)’s	notion	of	‘optimality	models’,	which	are	models	(mostly	
found	in	biology)	that	describe	those	traits	that	maximize	fitness	(see	also	Baker	(2016)	for	a	description	of	
the	cicada	case	as	an	optimality	model).		
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Consider	the	bridges	case.	A	brute	computation	strategy	that	proves	the	impossibility	of	
an	Eulerian	path	over	the	graph	would	not	provide	an	explanation	of	such	a	result.	As	we	saw,	
Euler’s	first	solution	consisted	in	trying	every	possible	route	(roughly	estimated	to	be	128).	If	we	
do	this,	we	will	come	to	the	conclusion	that	none	of	these	routes	is	an	Eulerian	path,	and	for	that	
reason	we	know	that	an	Eulerian	path	over	the	bridges	is	impossible.	This	solution,	however,	does	
not	explain	why	such	a	path	is	impossible	(except	in	the	trivial	sense	that	it	is	impossible	because	
there	is	no	such	path	available!).	Euler’s	solutions	b.2.	and	b.3	(section	§18)	did	more	than	just	
verify	the	impossibility	of	such	a	path.	By	answering	the	original	question	in	his	Solutio,	he	also	
explained	why	 that	 was	 the	 answer	 to	 the	 question.	 But	 what	 makes	 solutions	 b.2	 and	 b.3	
explanatory?		In	this	section	I	argue	that	these	proofs	convey	counterfactual	information	about	
the	empirical	phenomenon	to	be	explained.		

In	section	§9	 I	 introduced	Woodward’s	 interventionist	account	of	scientific	explanation,	
according	to	which	scientific	explanations	exhibit	“patters	of	counterfactual	dependence	having	
to	do	with	what	would	happen	under	interventions”	(2003,	220),	and	in	section	§15	I	showed	how	
the	 Inferential	Conception	of	 the	applicability	of	mathematics	 is	 compatible	with	 this	 account.	
Woodward’s	 is	 a	 causal	 account	 because	 this	 counterfactual	 information	 is	 obtained	 by	
performing	 (or	 thinking	 of)	 causal	 interventions.	 In	 a	 passage	 of	 his	 2003	 book,	 however,	
Woodward	allows	the	possibility	of	explanations	that	would	not	appeal	to	 interventions.	These	
would	be	noncausal	explanations:	

The	common	element	 in	many	forms	of	explanation,	both	causal	and	noncausal,	 is	that	
they	must	answer	what-if-things-had-been-different	questions.	When	a	theory	tells	us	how	
Y	would	change	under	interventions	on	X,	we	have	(or	have	material	for	constructing)	a	
causal	 explanation.	 When	 a	 theory	 or	 derivation	 answers	 a	 what-if-things-had-been-
different	question	but	we	cannot	 interpret	 this	as	an	answer	 to	a	question	about	what	
would	happen	under	an	intervention,	we	may	have	a	noncausal	explanation	of	some	sort	
(220-221).	 		

Woodward’s	comments	were	advanced	in	the	context	of	a	discussion	about	Mark	Steiner’s	
account	of	explanatory	proofs	in	mathematics	(which	I	examine	in	section	§26).	The	main	point,	
however,	 goes	 beyond	 Steiner’s	 account.	 The	 idea	 is	 that	 what	 both	 causal	 and	 noncausal	
explanations	 have	 in	 common	 is	 the	 counterfactual	 aspect,	which	may	 be	 the	main	 source	 of	
explanatory	power.		

I	believe	MEPPs	belong	precisely	to	this	category	of	counterfactual,	noncausal	scientific	
explanations.	Given	the	fact	that	M	optimally	represents	P	with	respect	to	explaining	why	it	has	
p*,	 in	 order	 to	 explain	why	 P	 has	 p*	we	 should	 obtain	 information	 about	 how	M	 having	m*	
depends	on	M	having	property	m,	which	can	then	be	interpreted	in	terms	of	property	p	of	P,	and	
that	is	how	MEPPs	obtain	their	explanatory	power:			

EXPLANATORY	POWER	OF	MEPPs:	By	deforming	M	with	respect	to	m,	we	can	manipulate	
whether	 M	 has	 m*.	 This	 procedure	 can	 be	 interpreted	 in	 empirical	 terms,	 that	 is,	 as	
manipulations	of	whether	P	has	p*	by	deforming	property	p,	independently	of	whether	it	
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is	physically	possible	to	change	property	p.	Crucially,	it	is	not	just	p,	but	the	whole	process40	
of	identifying	p	that	explains	why	P	has	p*.		

In	order	to	explain	how	we	obtain	counterfactual	information	from	a	mathematical	model	
let	 me	 introduce	 the	 notion	 of	 deformation.	 As	 a	 first	 approximation,	 we	 can	 think	 of	 a	
deformation	as	a	modification	of	a	property	m	of	a	mathematical	 structure	M,	so	 that	we	can	
manipulate	 M	 in	 a	 way	 such	 that	 it	 allows	 us	 to	 answer	 what-if-things-had-been-different	
questions	 about	M.	Mathematical	 relations	 are	 acausal,	 so	 these	 deformations	 are	 noncausal	
interventions.		

Now,	 this	 first	 approximation,	 though	 useful,	 is	 problematic.	 Changing	 an	 aspect	 of	 a	
mathematical	 structure	 might	 as	 well	 count	 as	 replacing	 the	 whole	 structure,	 because	
mathematical	 structures	 have	 their	 properties	 as	 a	 matter	 of	 necessity.	 So	 perhaps	 these	
deformations	are	better	understood	as	replacements	of	different	mathematical	structures.	The	
main	point	remains,	though.	The	idea	is	that	if	we	replace	a	mathematical	structure	by	another	as	
close	as	possible	to	the	first	but	for	that	one	aspect	m,	we	may	be	able	to	see	which	other	aspects	
(e.g.	m*)	must	change	as	a	matter	of	necessity.41		

These	 deformations,	 despite	 being	 carried	 out	 over	 a	 physical	 system,	 must	 not	 be	
understood	 as	 causal	 interventions,	 because	 although	 the	 physical	 system	 is	 composed	 by	
elements	with	causal	powers	(e.g.	wooden	bridges),	the	deformations	are	not	performed	taking	
those	 causal	 powers	 into	 account	 (this	 aspect	 has	 also	 been	 emphasized	 by	 Lange	 2013	 and	
Pincock	 2007).	 The	 reason	 is	 that	 it	 is	 not	 possible,	 not	 even	 in	 principle,	 to	 perform	 these	
deformations	 in	 the	 ‘surgical’	 way	 required	 by	Woodward,	 that	 is,	 as	 interventions	 over	 one	
property	that	do	not	directly	affect	the	explanandum	(cf.	2003,	130).	p	is	an	element	of	structure	
P,	and	by	definition	this	element	is	related	to	other	elements	constitutive	of	the	structure.	It	 is	
impossible	to	change	this	element	without	altering	the	others	to	which	it	is	related.		

Now,	 in	a	MEPP	we	use	M	to	optimally	 represent	P	with	respect	 to	p*.	But	 in	order	to	
obtain	 this	 explanatory	 information	about	how	property	p	of	 P	 explains	 ‘P	has	p*’,	we	 should	
obtain,	for	convenience,	information	about	how	M	having	m	relates	to	‘M	has	m*’.	We	obtain	this	
information	by	performing	operations	 in	the	representation	M	that	are	 interpreted	in	terms	of	
deformations	over	P.	Crucially,	these	operations	on	M	do	not	necessarily	have	to	be	understood	
as	explanatory	proofs	of	M	having	m*.	Whether	or	not	m	explains	M	having	m*	is	not	important,	
because	the	ultimate	goal	of	a	MEPP	is	to	explain	an	empirical	phenomenon,	namely,	P	having	p*.	
For	example,	it	may	well	be	that	M	is	such	that	we	cannot	decide	whether	m	explains	m*	or	in	
reverse,	and	so	whether	one	can	be	used	to	explain	the	other	is	context	dependent	(see	Resnik	&	
Kushner	 1987,	 and	 section	 §26	 below).	 This	 is	 not	 an	 impediment	 for	 the	 physical	 property	
represented	by	m	to	be	explanatory	with	respect	to	the	physical	property	represented	by	m*.	

																																																													
40	This	is	perhaps	the	most	controversial	aspect	of	my	view.	I	clarify	this	when	I	revisit	my	cases	in	section	
§21,	and	provide	several	arguments	for	it	in	section	27.2	(b),	below.		
41	Pincock	(2015)	calls	these	‘Other	Object’	counterfactuals.	
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§21.	Cases	Revisited	

Let	us	see	how	these	two	notions	apply	to	my	cases.	

21.1.	The	Bridges	of	Königsberg	case	revisited	

P:		 The	bridges	of	Königsberg	system	(see	fig	8)	

p*:		 The	property	of	not	allowing	paths	that	cross	all	the	bridges	without	retracing	one’s	
steps	(an	Eulerian	walk)	

Physical	explanandum:	The	bridges	of	Königsberg	system	does	not	allow	paths	that	cross	
all	the	bridges	without	retracing	one’s	steps.	

M:	 The	bridges	of	Königsberg	graph	(see	fig	10)	

m*:	 The	property	of	not	allowing	an	Eulerian	path	(not-EP)	

Mathematical	representation	of	the	explanandum:	The	bridges	of	Königsberg	graph	is	not-
EP	

First,	my	account	of	‘optimal	representation’	captures	what	is	special	about	this	case.	As	
we	have	seen,	Euler	did	not	represent	every	single	aspect	of	the	system	of	bridges.	The	‘geometry	
of	position’	he	used	ignores	details	such	as	the	actual	length	of	the	bridges,	the	actual	distances	
between	the	pieces	of	land,	their	areas,	and	even	the	relative	positions	of	the	pieces	of	land	and	
the	bridges.	 The	only	 features	 relevant	 to	explaining	why	an	Eulerian	path	over	 the	bridges	 is	
impossible	are	the	number	of	pieces	of	 land	(each	piece	of	 land	is	represented	as	a	node),	the	
number	of	bridges	(each	bridge	is	represented	as	an	edge),	and	the	connections	between	them.	
These	are	the	only	features	relevant	to	the	explanation,	and	all	of	them	are	represented	by	the	
mathematical	graph.	Nothing	else	needs	to	be	represented.			

With	respect	to	the	notion	of	‘deformation’,	we	have	seen	that	its	importance	lies	in	its	
conveying	information	about	the	aspects	of	the	physical	structure	that	are	relevant	to	explaining	
the	explanandum.	In	the	explanation,	we	must	identify	a	property	p	of	P	that	explains	the	physical	
explanandum.	The	explanation	is	the	whole	process	of	identifying	a	property	m	of	M	that	can	be	
suitably	interpreted	in	terms	of	p.	This	can	clearly	be	seen	in	my	reconstruction	of	Euler’s	solution	
in	section	§18	above.		

Now,	 it	 is	 difficult	 to	 see	how	 this	 notion	applies	 to	 the	bridges	 case	 in	 the	way	 it	 has	
traditionally	 been	 presented	 in	 philosophical	 debates.	 Euler’s	 solution	 has	 usually	 been	
summarized	like	this	(note	that	the	premises	and	the	conclusion	are	mathematical	statements):		

Let	us	call	the	property	of	a	graph	having	either	zero	or	two	odd	nodes	property	SE	(for	
‘semi-Eulerian’),	 and	 the	 property	 of	 allowing	 an	 Eulerian	 path,	 property	 EP	 (these	
properties	can	be	easily	understood	in	terms	of	concrete	road	systems):	
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P1)	The	bridges	of	Königsberg	graph	does	not	have	property	SE	

P2)	A	graph	g	has	EP	iff	g	has	SE	[mathematical	fact]	

C)	The	bridges	of	Königsberg	graph	does	not	have	EP	

The	problem	with	this	traditional	reconstruction	is	that	merely	knowing	that	‘A	graph	g	is	
EP	iff	g	has	SE’	does	not	give	us	instructions	about	the	aspects	of	the	structure	that	are	relevant	
for	 its	 being	 non-EP.	 But	 we	 can	 learn	 about	 these	 aspects	 if	 we	 pay	 close	 attention	 to	 my	
reconstruction	of	Euler’s	full	proof	of	the	theorem,	which	details	the	whole	process	of	discovering	
why	not	allowing	a	path	that	crosses	every	bridge	only	once	depends	on	the	bridges	system	having	
more	 than	 two	pieces	of	 land	connected	 to	an	odd	number	of	bridges.	Moreover,	 as	we	 saw,	
Euler’s	proof	shows	how	this	is	in	turn	related	to	the	fact	that	a	bridge	connects	two	pieces	of	land.	
When	we	pay	attention	to	my	reconstruction	of	the	proof,	we	can	see	exactly	what	properties	of	
the	structure	should	be	deformed	in	order	to	manipulate	whether	or	not	the	bridges	system	allow	
the	desired	Eulerian	walk.		

21.2.	The	cicada	case	revisited42	

a)	Empirical	version	of	the	cicada	case	

The	 first	 thing	we	need	to	do	 in	order	 to	see	how	my	account	applies	 to	 the	cicada	case	 is	 to	
separate	the	empirical	explanandum	and	the	mathematical	explanandum.	By	doing	this	we	realize	
that	 the	 life	 cycles	 themselves	 are	not	 prime.	 Rather,	 they	possess	 a	 physical	 property	 that	 is	
responsible	for	their	evolutionary	advantage.	

	 Consider	the	definitions	of	the	following	empirical	properties:		

1)	Iteration	of	length	L:	the	resulting	length	of	combining	successive	L’s.			

In(L)	=	L	Å	L	…	Å	L	(n	times)	

2)	Overlapping:	For	any	two	objects	with	different	lengths	A	and	B	respectively,	at	several	
points	their	iterations	will	have	equal	lengths43:	

In(A)	=	Im(B);	Ip(A)	=	Iq(B);	etc.	for	some	m,n,p,q,	etc.	

3)	Overlapping	minimization:	Im(L)	and	In(L)	will	overlap	at	In(Im(L));	if	this	is	the	first	time	
they	overlap,	then	they	minimize	overlapping	with	respect	to	each	other.		

4)	p-coprime:	If	the	only	length	of	which	both	Im(L)	and	In(L)	are	iterations	is	L,	then	Im(L)	
and	In(L)	are	p-coprime	with	respect	to	L.	

																																																													
42	A	version	of	this	section	has	been	published	in	Barrantes	(2017)	
43	This	applies	to	objects	with	lengths	that	are	rational	numbers	(on	some	scale).	
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5)	p-prime:	If	In(L)	≠	Ip(Im(L))	for	any	m;p	<	n,	then	In(L)	is	p-prime	with	respect	to	L		

1-5	 are	 geometrical	 properties	 of	 empirical	 lengths	 (including	 time	 lengths),	 not	
mathematical	properties.44	This	 is	true	despite	the	fact	that,	arguably,	 it	would	have	been	very	
hard	 (though	not	 impossible)	 to	 discover	 these	 properties	without	mathematics.	We	 can	now	
express	lemmas	1	and	2	of	the	number	theoretical	explanation	in	terms	of	these	properties:	

p-Lemma	1:	p-coprime	iterations	minimize	overlapping	

p-Lemma	2:	If	In(L)	is	p-prime,	then	it	is	co-prime	with	every	Im(L)	<	I2(In(L))	

The	explanandum	in	the	cicada	case	is	therefore	‘why	the	I13(L)	and	I17(L)	(L	=	one	year)	
cycles	 are	 evolutionarily	 advantageous’.	 The	 explanation	depends	on	 the	 fact	 that	 they	 are	p-
prime,	and	as	illustrated	by	the	argument	in	19.2,	it	follows	that	the	cycles	minimize	overlapping,	
which	is	evolutionarily	advantageous.		

b)	The	cicada	case	as	a	MEPP	

Now	we	can	see	how	this	case	fits	my	description:	

P:		 The	life	cycles	of	cicadas	(I13(L)	and	I17(L)	(L	=	one	year))	

p*:		 Evolutionary	advantage	

Physical	 explanandum:	Why	are	 the	 I13(L)	 and	 I17(L)	 (L	 =	one	 year)	 cycles	 evolutionarily	
advantageous?	

M:		 13	and	17	

m*:		 Minimization	of	intersection	 	 	

Mathematical	explanandum:	Why	do	13	and	17	minimize	intersection?		

First,	this	explanation	relies	on	an	optimal	representation.	Here	the	question	that	worries	
scientists	 is	 why	 life	 cycles	 represented	 by	 prime	 numbers	 have	 an	 evolutionarily	 desirable	
property.	The	mathematical	representation	which	assumes	that	years	are	equal	to	each	other	
captures	all	the	relevant	factors	for	the	explanation	of	this	feature	of	time.	Representing	years	
with	the	natural	number	system	gives	us	an	optimal	mathematical	model,	because	more	details	
about	the	actual	time	lengths	or	the	causal	history	the	cicadas	followed	to	get	to	that	point	are	
not	 required.	This	model	captures	all	and	only	 those	 features	 relevant	 to	explaining	how	the	
‘overlapping	 minimization’	 property	 is	 evolutionarily	 advantageous.	 What	 is	 more,	 it	 is	 our	
background	knowledge	about	 the	 importance	of	natural	 cycles	 in	explaining	animal	behavior	
that	lead	us	to	take	years	as	the	relevant	measurement	unit,	and	to	idealize	years	as	equal.	Once	

																																																													
44	m,	n,	p	and	q	represent	natural	numbers;	but	as	we	will	see	in	section	37.1,	using	these	representations	
is	unproblematic	because	these	numbers	can	be	expressed	nominalistically.			
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years	 have	 been	 idealized	 as	 equal,	 the	 mathematical	 explanation	 cannot	 be	 improved	 (of	
course,	it	could	be	replaced	by	a	different	explanation	in	the	face	of	new	discoveries;	but	the	
point	is	that	this	explanation	has	all	it	needs	to	work	as	such).	

Now,	once	 this	model	 is	 in	place,	we	can	 ‘forget’	 about	 the	cicadas	and	 focus	on	 the	
prime	 number	 of	 years.	 ‘Why	 are	 the	 I13(L)	 and	 I17(L)	 (L	 =	 one	 year)	 cycles	 evolutionarily	
advantageous?’	 becomes	 ‘why	 are	 prime	 periods	 evolutionary	 advantageous?’	 The	
mathematical	explanation	of	this	fact	explains	the	empirical	question	about	cicadas	only	insofar	
as	 it	 shows	 us	 how	 the	 facts	 about	 time	 explain	 the	 life	 cycles.	 In	 other	 words,	 we	 use	
mathematics	 to	 represent	 time-lengths,	 and	 then	 we	 use	 the	 number-theoretic	 lemmas	 to	
understand	why	the	cycles	are	evolutionarily	advantageous.	We	see—within	the	mathematics—
that	this	is	because	the	cycles	are	prime;	but	then	we	must	interpret	back	this	result	in	empirical	
terms,	 thus	 discovering	 that	 it	 is	 the	 overlapping	 minimization	 property	 that	 explains	 the	
evolutionary	advantage.	The	notion	of	mathematical	primeness	used	to	represent	p-primeness	
has	surplus	structure	that	we	get	rid	of	once	we	interpret	back	these	results	in	empirical	terms.45	

§22.	MEPPs	as	noncausal	explanations	

22.1.	In	what	sense	are	MEPPs	empirical	and	noncausal?	

It	may	be	argued	that	MEPPs	are	causal	explanations	because	MEPPs	are	empirical	applications	of	
mathematics;	since	their	domain	is	constituted	by	entities	with	causal	powers,	one	may	think	that	
MEPPs	 have	 a	 causal	 component.	 For	 example,	 in	 a	 recent	 paper	 Tim	 Räz	 (2014)	 says	 that,	
although	not	causal,	MEPPs	are	not	completely	non-causal.	This	is	because	“[t]he	bridge	principle	
connecting	the	mathematics	and	the	world	is	far	from	trivial;	it	is	an	important	contribution	to	[the	
explanation]”	 (2014,	19).	He	distinguishes	between	what	he	calls	 the	 ‘Intra	Mathematical’	 (the	
IME)	 component	 of	 the	 MEPP,	 and	 the	 ‘Scientific	 Explanation	 using	 Mathematics’	 (the	 SEM)	
component	of	the	MEPP.	According	to	him:		

[MEPPs]	are	not	purely	causal,	because	the	IME	component	is	an	explanatory	contribution	
of	pure	mathematics	 to	 these	explanations,	and	mathematics	 is	 commonly	 taken	 to	be	
non-causal.	However,	 the	explanations	are	not	non-causal	either.	We	can	 interpret	 the	
mathematical	structure	causally	(2014,	19-20).			

For	Räz:		

Adding	the	SEM	component,	the	pragmatically	motivated	bridge	principle,	turns	the	IME	
into	an	explanation	 that	explains	qua	 interpretation	of	 the	 structure	 in	 terms	of	 causal	
processes.	If	the	SEM	component	is	removed,	the	remaining	explanation	does	no	longer	
convey	causal	information	–	but	it	is	no	longer	about	the	[empirical]	system	(2014,	25).		

																																																													
45	As	we	saw,	this	interpretation	step	is	a	crucial	element	of	the	Inferential	Account	(e.g.	Bueno	&	Colyvan	
2011,	357;	Bueno	&	French	2012,	107	and	ss).	
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As	I	understand	it,	Räz’s	point	is	that	MEPPs	are	not	completely	noncausal	because	they	
include	bridge	principles	that	connect	the	mathematical	representation	with	the	empirical	system;	
the	interpretation	step	adds	entities	with	causal	powers	to	the	explanation,	and	for	that	reason	
MEPPs	are	somehow	causal	(i.e.	not	completely	noncausal).		

I	think	there	is	a	problem	with	this	argument.	Every	empirical	application	of	mathematics,	
including	 MEPPs,	 must	 include	 bridge	 principles,	 precisely	 because	 these	 are	 empirical	
applications.	MEPPs	by	definition	are	empirical,	that	is,	they	are	explanations	that	explain	physical	
phenomena.	We	can	certainly	assert	that	physical	phenomena,	in	general,	have	causal	powers,	so	
by	definition	a	MEPP	is	about	things	with	causal	powers.	But	to	conclude	from	this	fact	that	MEPPs	
have	a	causal	component	would	make	every	kind	of	explanation	of	physical	facts	causal.	MEPPs	
indeed	involve	entities	endowed	with	causal	powers,	but,	as	Mark	Lange	points	out,	MEPPs	do	not	
work	“by	exploiting	those	powers”	(2013,	485),	and	that	is	why	MEPPs	are	not	causal	explanations.		
MEPPs	work	by	providing	information	about	the	physical	structures	involved,	qua	structures,	but	
not	 in	virtue	of	the	causal	powers	of	the	entities	that	 instantiate	those	structures.	 I	do	not	see	
what	is	to	be	gained	by	labeling	these	explanations	‘not	completely	noncausal’,	instead	of	saying	
simply	that	they	are	about	empirical	phenomena,	which	is	something	already	built	into	the	very	
notion	of	a	MEPP.		

22.2.	MEPPs	and	explanatory	asymmetry	

There	is	a	prima	facie	problem	with	the	suggestion	that	the	explanatory	work	of	MEPPs	is	carried	
out	 purely	 within	 the	 mathematical	 model.	 As	 we	 have	 seen	 (§6),	 causal	 dependence	 was	
introduced	in	scientific	explanation	in	order	to	provide	an	asymmetry	between	the	explanandum	
and	 the	 explanans.	 But	 mathematical	 relations	 are	 not	 causal,	 so,	 is	 there	 another	 way	 of	
introducing	explanatory	asymmetries?	This	is	a	problem	that	must	be	overcome	by	any	account	
of	 mathematical	 explanations	 of	 mathematical	 facts,	 but	 the	 worry	 is	 that	 this	 problem	may	
translate	to	empirical	applications,	thus	undermining	the	possibility	of	a	project	such	as	mine,	that	
aims	to	provide	an	account	of	mathematical	explanations	of	physical	facts.		

Consider	the	flagpole	example,	which,	as	we	saw	(§5),	was	advanced	as	a	counterargument	
to	 Hempel’s	 DN	 model.	 Once	 the	 light	 rays,	 the	 flagpole,	 and	 the	 shadow	 are	 represented	
geometrically,	Geometry	by	itself	does	not	tell	us	what	explains	what,	and	this	is	why	it	is	necessary	
to	 introduce	 extra-geometrical	 considerations.	 As	 we	 saw,	 causal	 asymmetries	 have	 been	 the	
preferred	way	adopted	in	the	last	40	years	of	philosophical	discussion	about	scientific	explanation.	
But	structural	relations	(mathematical	and	empirical)	are	noncausal;	so	how	do	MEPPs	overcome	
the	problem	of	explanatory	asymmetry?		

First	of	all,	we	need	to	narrow	the	scope	of	the	task	at	hand.	What	we	need	in	a	MEPP	is	
for	 the	 mathematical	 derivation	 to	 convey	 some	 explanatory	 information	 about	 the	 physical	
system,	regardless	of	whether	this	would	be	explanatory	with	respect	to	the	mathematical	part	of	
the	MEPP.	In	other	words,	independently	of	the	outcome	of	the	debate	about	whether	there	are	
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explanatory	proofs	within	mathematics,	what	we	need	to	solve	is	the	problem	of	how	a	structural	
property	p	can	be	explanatory	with	respect	to	another	feature	p*	of	physical	system	P.46	

I	 argue	 that	 counterfactual	 reasoning	 gives	 this	 asymmetry.	 In	 the	 flagpole	 case,	 the	
explanatory	 dependence	 is	 provided	 by	 the	 fact	 that	 the	 length	 of	 the	 shadow	 depends	
counterfactually	on	the	height	of	the	flagpole:	we	can	change47	the	height	of	the	flagpole	in	order	
to	manipulate	the	shadow,	but	since	we	cannot	do	this	the	other	way	around,	the	flagpole	explains	
the	 shadow,	but	 the	 shadow	does	not	explain	 the	 flagpole’s	height.	Now,	 in	 this	 situation	 the	
change	in	the	explanatory	property	is	provided	by	a	causal	intervention,	and	that	is	why	this	is	a	
causal	explanation.	But	in	other	cases	this	counterfactual	information	can	be	provided	by	other	
types	of	changes,	for	example,	by	the	deformations	of	the	previous	section.	In	that	sense,	we	can	
capture	the	explanatory	asymmetry	without	appealing	to	causal	relations.		

Let	us	revisit	our	cases	to	see	how	this	idea	unfolds.	In	the	bridges	case,	the	question	‘why	
it	is	impossible	to	perform	a	trip	over	all	the	bridges	of	Königsberg	without	retracing	one’s	steps?’	
becomes	‘why	is	an	Eulerian	path	over	the	graph	impossible?’	This	impossibility	(a	property	of	the	
graph)	can	be	manipulated	by	changing	the	number	of	edges	 (another	property	of	 the	graph).	
Remember	Euler’s	two	conditions	for	an	Eulerian	path	(§18):	

C1:	Either	the	graph	has	only	two	odd	vertices,	 in	which	case	the	successful	trip	
must	start	in	one	of	them;		
C2:	Or,	the	graph	does	not	have	odd	vertices.		

The	graph	representing	the	bridges	of	Königsberg	does	not	meet	either	of	these	conditions,	
and	 that	 is	 why	 an	 Eulerian	 path	 over	 it	 is	 impossible.	 We	 can	 interpret	 these	 conditions	
empirically,	 and	 cash	 out	 this	 explanation	 in	 terms	 of	 the	 actual	 system	 of	 bridges.	 Euler’s	
explanation	consisted	in	showing	that	these	two	conditions	depended	on	the	extremely	simple	
fact	that	(f):	an	edge	connects	two	vertices,	which	corresponds	to	the	physical	fact	that	a	bridge	
connects	two	pieces	of	land.	As	we	saw,	from	the	fact	that	every	time	one	crosses	a	bridge	two	
letters	appear	in	the	path,	it	follows	that,	if	K	is	even,	then	if	the	journey	starts	in	an	even	piece	of	

land	its	letter	will	appear	
de
5
	+1	times	in	the	path	sequence,	and	if	the	journey	does	not	start	in	that	

piece	 of	 land,	 its	 letter	 will	 appear	
de
5
	times	 in	 the	 path	 sequence;	 but	 if	 K	 is	 odd	 the	 letter	

corresponding	to	that	piece	of	land	will	appear		bcaH
5
	times,	independently	of	whether	or	not	we	

start	on	that	piece	of	land.			

This	 explanation	 allows	 us	 to	 answer	 a	 range	 of	 what-if-things-had-been-different	
questions	because	we	can	alter	 the	degree	of	each	vertex	 (m)	and	see	how	the	mathematical	
possibility	of	performing	a	Eulerian	trip	varies	accordingly	(m*),	and	in	that	way	we	can	understand	
exactly	 how	 these	 variations	 would	 affect	 the	 possibility	 of	 performing	 a	 Eulerian	 path.	 This	
operation	over	the	graph	explains	the	empirical	question	about	the	physical	bridges	insofar	as	it	
shows	us	how	the	physical	bridges	connecting	a	given	piece	of	land	(p)	explain	such	impossibility	
																																																													
46	As	we	will	see	in	section	§26,	this	is	one	of	the	problems	of	Steiner’s	account	of	MEPPs.		
47	I	use	change	as	an	overarching	concept	that	includes	both	interventions	and	deformations.		
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(p*),	given	fact	f.	Euler’s	proof	shows	how	the	impossibility	of	performing	an	Eulerian	walk	ontically	
depends	on	f.	This	ontic	dependence	 is	captured	by	counterfactual	reasoning.	We	can	use	f	 to	
manipulate	whether	a	Eulerian	walk	 is	possible	 (e.g.	by	 thinking	what	would	happen	 if	we	add	
more	bridges).	But	nothing	 that	we	do	 to	 the	bridges	 structure	 (and	 its	associated	properties)	
would	alter	f.	Therefore,	the	impossibility	depends	on	f		but	f	does	not	depend	on	the	impossibility,	
and	that	is	why	we	can	use	f	to	explain	the	impossibility.		

Likewise,	in	the	cicada	case	the	question	that	worries	us	is	why	life	cycles	represented	by	
prime	numbers	have	an	evolutionarily	desirable	property.	As	we	saw,	once	we	use	the	natural	
number	series	(M)	to	represent	time-lengths,	we	can	use	the	number-theoretic	lemmas	to	explain	
why	prime	numbers	(m)	minimize	intersection	with	other	numbers	(m*),	thus	explaining	why	the	
cycles	are	evolutionarily	advantageous.	Changes	over	the	number	of	iterations	(in	years)	(p)	shows	
us	 how	 the	 system	 possesses	 the	 overlapping	 property	 (p*).	 Suitable	 derivations	 on	 the	
mathematical	model	explain	the	empirical	question	about	cicadas	only	insofar	as	it	shows	us	how	
the	overlapping	minimization	property	depends	on	two	very	simple	facts	about	time,	namely,	that	
at	a	certain	level	of	description	the	notions	of	combination	and	equality	can	be	applied	to	time	
lengths.	 Again,	 the	 reason	 why	 these	 two	 notions	 are	 explanatory	 is	 that	 the	 overlapping	
minimization	property	depends	on	combination	and	equality;	but	combination	and	equality	do	not	
depend	 on	 the	 overlapping	 minimization	 property,	 and	 this	 is	 the	 source	 of	 the	 explanatory	
asymmetry.		

I	will	say	more	about	the	problem	of	asymmetry	in	section	§27,	where	I	answer	a	potential	
objection	to	my	account	based	on	Baker	(2012).		

§23.	Conclusion	

The	main	features	of	my	account	of	MEPPs	is	that	these	are	scientific	explanations	that	rely	on	an	
optimal	 representation	 of	 the	 target	 system,	 capturing	 the	 structural	 features	 of	 this	 system	
relevant	 to	 explaining	 the	 explanandum.	 These	 structural	 features	 are	 physical	 relationships	
between	the	entities	or	processes	involved,	which	are	then	exploited	by	the	MEPP	to	explain	the	
explanandum.	Since	the	mathematical	representation	captures	all	the	features	that	are	relevant	
to	 the	 explanation,	 we	 can	 ‘forget’	 about	 the	 physical	 system	 and	 work	 entirely	 over	 the	
mathematical	 model.	 Because	 of	 this,	 we	 can	 use	 the	 mathematical	 model	 to	 acquire	
counterfactual	 information	 about	 the	 physical	 system	 under	 question.	 And	 although	 this	
counterfactual	information	should	be	interpreted	in	empirical	terms,	we	should	not	interpret	it	
causally.	As	we	have	seen,	despite	MEPPs	being	non	causal,	they	can	account	for	the	explanatory	
directionality.	 In	that	sense,	MEPPs	are	noncausal	scientific	explanations.	 In	the	next	chapter,	 I	
discuss	other	accounts	of	MEPP,	and,	at	the	same	time,	continue	clarifying	some	aspects	of	my	
own	account	of	MEPP.		
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CHAPTER	4:		Other	accounts	of	MEPPs	

§24.	Introduction	

Chapter	 4.	 In	 this	 chapter,	 I	 distinguish	 between	 descriptive	 and	 representational	 accounts	 of	
MEPPs.	The	former	presuppose	the	existence	of	mathematical	features	in	the	physical	world	that	
are	described	by	the	mathematical	part	of	MEPPs;48	the	latter	do	not	need	that	assumption,	the	
role	of	mathematics	 in	MEPPs	being	to	represent	the	relevant	explanatory	physical	features.	 In	
what	follows,	I	will	defend	my	representational	account	against	alternative	views	of	MEPPs.		

In	section	§25	I	introduce	the	distinction	between	descriptive	and	representational	views	
of	 MEPPs.	 Next,	 in	 section	 §26	 I	 discuss	 Steiner’s	 view	 of	 MEPPs,	 which	 is	 known	 as	 the	
transmission	view	of	MEPPs.	Steiner	says	that	at	the	core	of	every	MEPP	there	is	an	explanatory	
proof	of	a	mathematical	theorem.	Within	the	philosophy	of	mathematics	literature,	however,	the	
notion	of	explanatory	proof	is	controversial,	and	I	take	it	as	an	advantage	of	my	own	view	that	it	
does	not	require	explanatory	mathematical	proofs.	In	addition,	Steiner	does	not	specify	which	kind	
of	scientific	questions	may	be	amenable	to	be	answered	by	a	MEPP.	My	view	does,	and	that	is	
another	advantage	over	Steiner’s.	I	then	argue,	against	Alan	Baker,	that	MEPPs	do	require	some	
explanatory	information	coming	from	their	mathematical	component	(§27).	Next,	my	focus	is	the	
modal	accounts	of	MEPPs.	Aidan	Lyon	argues	that	MEPPs	appeal	to	higher-order	mathematical	
features	(§28),	and	Marc	Lange	argues	that	MEPPs	point	to	relations	of	mathematical	necessity	in	
the	physical	world	(§29).	I	reject	these	views	by	pointing	out	first	that	they	do	not	specify	the	sense	
in	 which	 those	 mathematical	 features	 may	 be	 explanatory,	 and	 secondly,	 that	 they	 do	 not	
convincingly	establish	 that	 there	are	 relations	of	mathematical	necessity	 in	 the	physical	world.	
Finally,	 I	analyze	Christopher	Pincock’s	view	of	MEPPs	as	abstract	explanations	(§30).	 	For	him,	
MEPPs	work	in	virtue	of	the	mathematical	structures	underlying	the	physical	world.	I	show	first	
that	the	view	that	mathematical	structures	may	have	physical	 instantiations	 is	unfounded,	and	
secondly	that	even	if	this	was	correct,	this	view	fails	to	explicate	the	sense	in	which	MEPPs	provide	
explanatory	information.		

§25.	Descriptive	vs	Representational	views	of	MEPPs	

I	 have	 argued	 in	 the	 previous	 chapter	 that	 there	 are	 mathematical	 explanations	 of	 physical	
phenomena	(MEPPs),	which	are	explanations	that	rely	on	optimal	mathematical	representations	
of	the	physical	target	system.	My	account	is	an	attempt	to	make	sense	of	the	existence	of	purely	
MEPPs	in	science	while	preserving	mathematics’	representational	role.	But	there	is	of	course	the	
Enhanced	Indispensability	Argument	(EIA),	which	I	will	thoroughly	address	in	chapter	5.	The	EIA	
holds	that	if	there	are	MEPPs,	then	we	ought	to	be	committed	to	mathematical	realism.	I	admit	it	
may	 be	 puzzling	 to	 learn	 that	 mathematics	 is	 merely	 representational	 and	 that	 there	 are	
mathematical	explanations	in	science.	In	order	to	clarify	this,	I	will	use	a	distinction	due	to	James	
Robert	Brown	(2008).	For	Brown,	there	are	two	ways	of	understanding	the	relationship	between	
the	mathematical	 realm	 and	 the	 physical	 realm.	 Either	 these	 two	 realms	 are	 separate,	 and	 in	

																																																													
48	Bueno	&	French	call	this	idea	that	some	properties	are	physico-mathematical	the	‘hybridity	claim’	(see	
e.g.	2017,	141).		
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applications	mathematics	represents	the	physical	realm;	or	these	two	realms	are	not	completely	
separated,	and	in	applications	mathematics	describes	mathematical	features	of	the	physical	world.	
According	to	Brown,	this	distinction	is	pertinent	to	the	indispensability	debate.	For	example,	he	
uses	it	to	understand	the	differences	between	views	like	Field’s	and	views	like	Quine	and	Putnam’s:	

Looking	back	on	the	debate,	Field	versus	Quine	and	Putnam,	we	can	see	it	as	an	implicit	
debate	about	whether	mathematics	represents	(Field)	or	describes	(Putnam	and	Quine).	I	
think	of	Field	as	being	on	the	representational	side	since	he	has	explicitly	used	the	results	
of	measurement	theory	as	done	in	the	representational	way.	My	reason	for	saying	Quine	
and	Putnam	see	mathematics	as	describing	the	world	stems	from	their	various	remarks	
about	the	possibility	of	revising	mathematics	and	logic	in	the	face	of	experience.	On	the	
representationalist	(or	modeling)	view	of	applied	mathematics,	this	would	be	absurd,	since	
an	 empirical	 upset	 would	 simply	 make	 us	 look	 for	 a	 different	 mathematical	 model	 to	
represent	things;	 it	would	not	 lead	us	to	change	our	mathematical	 theories	themselves	
(Brown	2008,	61).		

Although	 the	 descriptivist	 view	 is	 committed	 to	 some	 sort	 of	 mathematical	 realism,	 the	
representationalist	view	is	not	necessarily	committed	to	nominalism,	despite	the	fact	that	Brown	
cites	Hartry	Field	(a	nominalist)	to	illustrate	this	view.	A	mathematical	Platonist	may	agree	that	the	
physical	 and	 the	 mathematical	 realms	 are	 separated,	 but	 still	 believe	 that	 mathematical	
statements	quantify	over	real,	non-physical	entities	(Brown	himself	endorses	this	view	(see	e.g.	
2008,	156)).		

Now,	although	the	distinction	between	representation	and	description	is	not	thoroughly	
discussed	in	Brown’s	book,	I	believe	it	will	be	helpful	for	understanding	the	sense	in	which	my	view	
of	 MEPPs	 is	 different	 from	 most	 accounts	 of	 MEPPs	 in	 current	 literature.	 Mine	 is	 a	
representationalist	 view,	 because	 I	 hold	 that	 even	 in	 MEPPs	 the	 role	 of	 mathematics	 is	 to	
represent	physical	features.	I	believe	that	most	of	the	accounts	of	MEPPs	that	I	will	discuss	can	be	
understood	under	the	‘descriptive	view’	(Steiner’s	is	an	exception).	Alan	Baker,	for	example,	holds	
that	MEPPs	apply	directly	to	the	mathematical	features	of	the	physical	explanandum;	Aidan	Lyon	
argues	 that	MEPPs	 appeal	 to	 higher-order	mathematical	 features	 of	 this	 explanandum;	Marc	
Lange	says	 that	MEPPs	point	 to	 relations	of	mathematical	necessity	 in	 the	physical	world;	and	
finally,	 Christopher	 Pincock	 argues	 that	MEPPs	 work	 in	 virtue	 of	 the	mathematical	 structures	
underlying	the	physical	world.	All	these	accounts	highlight	important	features	of	MEPPs.	I	will	show	
that	my	view	also	has	these	features,	but	without	appealing	to	alleged	mathematical	properties	of	
the	physical	explanandum.		

§26.	Mark	Steiner:	MEPPs	and	mathematical	explanations	

26.1.	Steiner’s	view	of	MEPPs	

One	of	the	first	analyses	of	the	structure	of	MEPPs	was	given	by	Mark	Steiner	(1978b).	According	
to	him,	MEPPs	are	scientific	explanations	whose	explanatory	power	depends	on	an	explanatory	
proof	 of	 their	 mathematical	 component.	 Steiner’s	 account	 depends	 on	 the	 existence	 of	
mathematical	explanations	of	mathematical	facts,	so	let	me	say	something	about	this	debate.	
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a)	Explanatory	and	non-explanatory	proofs	

According	to	many	philosophers	of	mathematics,	there	is	a	difference	between	proofs	that	merely	
verify	the	truth	of	a	theorem	and	proofs	that	explain	the	theorem.49	Non-explanatory	proofs	show	
that	a	given	theorem	is	true.	Explanatory	proofs	show,	in	addition,	why	the	theorem	is	true.	This	
view	is	shared	by	some	mathematicians.	For	example,	Giancarlo	Rota	says	that:	

Not	all	proofs	give	satisfying	reasons	why	a	conjecture	should	be	true.	Verification	is	proof,	
but	verification	may	not	be	reason	(1997,	186-7;	quoted	in	Mancosu	2001,	100).	

In	the	same	spirit,	Timothy	Gowers	and	Michael	Neilson	say	that:	

[P]roofs	are	more	than	guarantees	of	truth:	they	are	valued	for	their	explanatory	power,	
and	a	new	proof	of	a	theorem	can	provide	crucial	insights	(2009,	879;	quoted	in	Colyvan	
2012,	78)	

Let	me	illustrate	what	this	distinction	may	be	with	an	example.	Imagine	that	we	want	to	
prove	the	following	theorem:		

Every	even	natural	number	between	4	and	200	can	be	expressed	as	the	sum	of	two	primes	
(cf.	Baker	2009a)	

Evidently,	we	can	show	that	the	theorem	is	true	if	we	verify	it	for	every	element	in	the	domain,	
but	it	should	be	clear	that	we	do	not	understand	why	the	theorem	holds;	we	do	not	understand	
the	 relation	 between	 evenness,	 primeness,	 and	 addition	 that	 makes	 the	 theorem	 true.	 This	
particular	 kind	 of	 brute	 computation	 strategy	 is	 called	 proof	 by	 exhaustion.	 In	 an	 explanatory	
context,	these	proofs	are	useful	for	establishing	the	truth	of	the	explanandum,	and	as	we	have	
seen,	a	true	explanandum	is	a	requisite	for	a	successful	explanation.	But	evidently,	establishing	
the	truth	of	the	explanandum	is	not	necessarily	the	same	as	explaining	it.	Other	kinds	of	proofs	
that	are	deemed	 to	be	non-explanatory	are	 reductio	proofs	 (Colyvan	2012,	79),	and	proofs	by	
induction	(Lange	2010),	although	this	has	been	disputed	(Baker	2009a).		

Now,	as	a	matter	of	fact,	there	is	no	consensus	in	the	philosophy	of	mathematics	about	
what	 exactly	 the	 distinction	 between	 explanatory	 and	 non-explanatory	 proofs	 amounts	 to.	 In	
addition,	there	are	many	cases	of	proofs	where	intuitions	disagree	on	labeling	them	as	explanatory	
or	not.	 I	will	not	 fully	address	this	discussion	here.	 In	order	to	understand	Steiner’s	account	of	
MEPPs,	we	only	need	to	examine	his	notion	of	mathematical	explanation.		

	

	

																																																													
49	See	Steiner	(1978a);	Mancosu	(2001),	(2010);	Sandborg	(1998);	and	Colyvan	(2012.)	For	a	contrary	view,	
see	Resnik	&	Kusher	(1987)	who	argue	that	there	are	no	mathematical	explanations	simpliciter.	For	them,	
mathematical	explanations	are	context-dependent	(more	on	this	below).	
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b)	Steiner’s	counterfactual	account	of	explanatory	proofs	

According	to	Steiner,	explanatory	proofs	are	those	that:		

make	reference	 to	a	characterizing	property	of	an	entity	or	structure	mentioned	 in	 the	
theorem,	such	that	from	the	proof	it	is	evident	that	the	result	depends	on	the	property	
(1978a,	143;	my	emphasis).	

Steiner	 uses	 the	 notion	 of	 characterizing	 property	 in	 order	 to	 avoid	 the	 expression	 ‘essential	
property’.	An	essential	property,	Steiner	argues,	is	a	property	an	entity	possesses	in	all	possible	
worlds.	But	since	all	mathematical	truths	are	necessary,	a	mathematical	entity	would	possess	all	
its	properties	as	a	matter	of	necessity,	which	implies	that	every	property	of	a	mathematical	entity	
would	 be	 essential.	 For	 Steiner,	 using	 this	 term	would	 confuse	 the	meaning	 of	 the	 definition	
(1978a,	143.)	A	characterizing	property,	on	the	other	hand,	is	“a	property	unique	to	a	given	entity	
or	structure	within	a	family	or	domain	of	such	entities	or	structures”	(1978a,	143.)	The	notion	of	
‘family	of	structures’,	Steiner	explains,	is	relative,	in	the	sense	that	“a	given	entity	can	form	part	of	
a	number	of	different	domains	or	families.”	(1978a,	143).50	The	idea	is	that	the	proof	must	deduce	
the	 theorem	 to	 be	 proved	 from	 this	 characterizing	 property,	 in	 such	 a	 way	 that,	 if	 the	
characterizing	property	were	different,	then	the	theorem	would	not	have	held.	For	Steiner,	this	
counterfactual	information	can	be	used	to	explain	facts	about	such	an	entity:		

[In	an	explanatory	proof]	it	must	be	evident…	that	if	we	substitute	in	the	proof	a	different	
object	of	the	same	domain,	the	theorem	collapses;	more,	we	should	be	able	to	see	as	we	
vary	the	object	how	the	theorem	changes	in	response.	In	effect,	then,	explanation	is	not	
simply	a	relation	between	a	proof	and	a	theorem;	rather,	a	relation	between	an	array	of	
proofs	and	an	array	of	theorems,	where	the	proofs	are	obtained	from	one	another	by	the	
'deformation'	 prescribed	 above.	 (But	 we	 can	 say	 that	 each	 of	 the	 proofs	 in	 the	 array	
'explains'	its	individual	theorem)	(1978a,	143;	my	emphasis).	

	 Steiner	 provides	 the	 following	 example:	 We	 can	 prove	 the	 Pythagorean	 Theorem	 by	
appealing	to	the	mathematical	fact	that	the	areas	(A)	of	similar	figures	are	to	each	other	as	the	
squares	of	their	corresponding	sides	(see	equation	(a),	below),	and	to	the	fact	that	a	right	triangle	
can	be	divided	into	two	triangles	that	are	similar	to	it	(see	equation	(b),	below).	

	

fig.	19.	

																																																													
50	As	we	will	see,	this	is	a	big	problem	for	this	view.		
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𝐴u
𝑎5 =

𝐴uu
𝑏5 =

𝐴uauu
𝑐5 = 𝐾… . (𝑎)	

where	K	is	a	positive	real.	From	(a)	it	follows	that	

	𝐴u = 𝐾𝑎5;	𝐴uu = 𝐾𝑏5; 𝐴uauu = 𝐾𝑐5.	

But	given	that:	

𝐴u + 𝐴uu = 𝐴uauu	…	(b),	

we	have	that	

𝐾𝑎5 + 𝐾𝑏5 = 𝐾𝑐5,	

from	which	the	Pythagorean	Theorem	follows.	

	 According	 to	 Steiner,	 this	 proof	 is	 explanatory	 because	 it	 appeals	 to	 a	 characterizing	
property	of	right	triangles,	namely,	the	right	angle,	and	this	property	plays	a	crucial	role	 in	the	
proof.	It	is	easy	to	see,	as	we	perform	hypothetical	‘deformations’	of	this	angle,	that	no	non-right	
triangle	can	be	divided	in	two	parts	such	that	they	are	similar	to	each	other	and	to	the	original	
triangle	(cf.	1978a,	144)	(see	fig.	20).	This	can	only	happen	with	right	triangles	when	the	dividing	
segment	is	the	height	relative	to	the	hypotenuse	(compare	fig.	19	with	fig	20).	

	

fig.	20	(1978a,	144)	

The	proof	depends	on	the	fact	that	the	right	triangle	is	the	only	one	that	can	be	divided	in	
two	triangles	similar	to	each	other	and	to	the	whole	(cf.	1978a,	144).	So,	equation	(b)	in	the	proof	
depends	precisely	on	the	property	of	having	a	right	angle.	Since	(b)	is	crucial	for	the	proof	to	work,	
for	Steiner	this	would	be	an	explanatory	proof.		

Now,	there	are	other	proofs	of	this	theorem,	but	only	those	that	are	based	on	a	proper	
characterization	of	the	relevant	properties	that	make	a	right	triangle	what	 it	 is	would	count	as	
explanatory.			
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c)	MEPPs	as	mathematical	explanations	

With	this	account	of	explanatory	proofs,	Steiner	develops	an	account	of	MEPPs.	According	to	him,	
there	 are	 three	 elements	 involved	 in	 a	 MEPP:	 the	 physical	 explanandum	 P’,	 a	 mathematical	
explanandum	M’	of	P’,	and	a	mathematical	explanans	M.51	Given	some	bridge	assumptions,	the	
physical	explanandum	P’	 is	represented	by	the	mathematical	explanandum	M’,	which	in	turn	is	
explained	by	the	mathematical	explanans	M.	The	MEPP	should	include	these	three	elements,	and	
it	inherits	its	explanatory	power	from	the	explanation	of	M’	by	M.	Schematically	the	relation	is	like	
this:	

𝑴→𝑴{—𝑷{	

fig.	21.		

Adapted	from	Baker	2012,	247.		

The	arrow	‘→’	represents	an	explanation,	and	the	dash	‘—’	represents	the	set	of	bridge	
principles	linking	M’	and	P’.	For	Steiner,	at	the	core	of	a	MEPP	there	is	always	a	‘pure’	mathematical	
explanation.	On	 this	 view,	 the	 special	 feature	of	MEPPs	 is	 that	 if	 “we	 remove	 the	physics,	we	
remain	with	a	mathematical	explanation	–	of	a	mathematical	truth”	(1978b,	19),	as	opposed	to	
ordinary	scientific	explanations,	in	which	“after	deleting	the	physics	nothing	remains”	(1978b,	19).	
The	idea	is	that	it	is	by	working	over	the	mathematical	explanandum	that	it	is	possible	to	find	an	
explanation	that	can	then	be	transmitted	to	the	physical	explanandum	P’.	Alan	Baker	calls	 this	
account	“the	transmission	view”	(2012,	246),	because	the	explanatory	power	of	the	explanation	
comes	from	the	mathematical	explanation	of	the	mathematical	fact,	which	is	then	‘transmitted’	
to	 the	explanation	of	 the	physical	 fact.	 In	MEPPs,	once	 the	explanation	of	M’	has	been	 found,	
nothing	explanatorily	relevant	is	added	when	one	applies	the	explanation	to	phenomenon	P’.52		

26.2.	Problems	with	Steiner’s	View	

There	are	some	problems	with	Steiner’s	account	of	explanatory	proofs.	First,	as	Resnik	&	Kushner	
point	out,	it	is	not	clear	how	explicit	the	‘mentioning’	of	the	characterizing	property	must	be.	A	
proof	may	rely	on	a	characterizing	property	without	mentioning	it	explicitly.	Would	that	proof	be	
explanatory?	It	seems	fair	to	assume	that	it	would	be,	but	Steiner	seems	to	think	otherwise.	For	
example,	he	rejects	proofs	by	induction	as	non-explanatory	because,	although	they	“characterize	
the	set	of	natural	numbers”,	this	set	“is	not	mentioned”	in	the	proof	(1978a,	145).	But	it	seems	
that	whether	or	not	this	characterization	is	explicitly	mentioned,	or	whether	it	is	evident	that	the	
																																																													
51	M,	M’,	and	P	refer	to	mathematical	and	physical	structures	respectively.		
52	 In	the	same	vein	as	Steiner’s,	Mark	Colyvan	calls	MEPPs	‘extra-mathematical	explanations’.	These	are	
‘intra-mathematical	explanations’	that	“‘spill	over’	into	physical	applications”	(2012,	90).	He	provides	the	
following	 condition	 for	 an	 explanation	 to	 be	 a	 MEPP:	 “[C]onsider	 an	 explanatory	 proof	 of	 some	
mathematical	theorem.	If	that	theorem	has	some	physical	application,	then	the	proof	of	the	theorem	might	
well	explain	what’s	going	on	in	the	physical	situation”	(2012,	90).	In	these	cases,	says	Colyvan,	“it	seems	
that	mathematics	is	carrying	the	bulk	of	the	explanatory	load”	(2012,	91).	My	criticisms	of	Steiner’s	view	
apply	to	Colyvan’s	view	as	well.		
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proof	 depends	 on	 it,	 are	 pragmatic	 issues	 that	 should	 not	 determine	 whether	 the	 proof	 is	
explanatory.		

Another	problem	is	that	some	non-explanatory	proofs	can	indeed	be	deformed	in	the	way	
suggested	by	Steiner,	and	some	explanatory	proofs	cannot.	For	example,	an	inductive	proof	of	the	
fact	that	the	product	of	every	three	consecutive	integers	is	divisible	by	6	can	be	‘deformed’	into	
an	inductive	proof	of	the	fact	that	the	product	of	every	four	consecutive	integers	is	divisible	by	24	
(see	Lange	2014,	521).	But,	arguably,	this	proof	is	not	explanatory	(Steiner	himself	would	agree	
that	 this	 is	not	an	explanatory	proof,	 although,	as	 I	have	argued,	 for	 the	wrong	 reasons).	One	
reason	why	this	proof	may	not	be	explanatory	is	that	it	does	not	tell	us	what	property	of	these	
series	of	 three	numbers	makes	 them	divisible	by	6.	On	 the	other	hand,	 there	are	explanatory	
proofs	 that	 cannot	 be	 deformed.	 For	 example,	 the	 standard	 proof	 of	 the	 intermediate	 value	
theorem	is	generally	taken	to	be	explanatory,	despite	the	fact	that	the	same	‘proof	idea’	cannot	
be	applied	to	non-continuous	functions	(Resnik	&	Kushner	1987,	146-149).	Therefore,	whether	or	
not	a	proof	can	be	deformed	in	the	way	Steiner	suggests	does	not	determine	whether	or	not	the	
proof	is	explanatory.		

Another	case	where	deforming	the	proof	into	a	different	one	of	the	same	‘family’	seems	
to	 be	 irrelevant	 to	 its	 status	 of	 explanatory	 as	 such,	 is	 Euler’s	 proof	 of	 the	 graph	 theoretical	
theorem	mentioned	in	the	bridges	case.	The	proof	works	by	defining	a	general	connected	graph,	
and	uses	 the	 fact	 that	 it	 is	a	connected	graph	to	calculate	the	 total	number	of	nodes	 that	will	
appear	in	the	path	(n+1;	step	7	of	the	proof	in	section	§18)	(how	explicit	this	characterization	is,	is	
unclear	to	me).	We	take	this	proof	to	be	explanatory,	however,	there	is	no	explicit	mentioning	of	
how	it	would	work	for	non-connected	graphs.	If	we	think	of	a	specific	non-connected	graph,	it	is	
hard	 to	 see	how	the	same	 ‘proof	 idea’	 could	be	applied.	There	 is	no	equivalent	of	 step	7	 in	a	
general	proof	for	non-connected	graphs	(in	fact,	the	very	idea	of	asking	for	a	continuous	walk	on	
a	non-connected	graph	does	not	seem	to	make	sense).	But	despite	this,	Euler’s	proof	strikes	us	as	
explanatory.	Why?	Because	it	deduces	the	theorem	from	basic	facts	about	even	and	odd	nodes,	
which	in	turn	are	based	on	the	simple	fact	that	an	edge	connects	two	nodes.	In	the	proof,	we	can	
see	how	these	elementary	properties	are	responsible	for	the	theorem.		

	 Now,	I	just	mentioned	that	the	proof	of	the	intermediate	value	theorem	and	Euler’s	proof	
‘strike	us’	(strike	me?)	as	explanatory,	whereas	proofs	by	induction	do	not.	But	how	can	I	say	this	
without	providing	an	account	of	explanatory	proofs?	This	is	a	complicated	debate,	and	I	do	not	
want	to	take	sides,	especially	because	intuitions	differ	among	mathematicians	as	to	which	specific	
proofs	 are	 or	 are	 not	 explanatory.	 It	 is	 hard	 to	 determine	 a	 set	 of	 cases	 that	 must	 be	
accommodated	by	all	accounts	of	explanatory	proofs.	I	believe	some	proofs	are	explanatory	when	
they	show	how	the	theorems	depend	on	some	of	the	properties	of	the	entities	involved,	but	this	
does	not	mean	that	deforming	those	properties	would	provide	us	with	alternative	proofs	of	the	
same	family.		I	will	not	thoroughly	defend	this	view	here	because	I	do	not	think	I	have	to.	In	fact,	I	
take	 it	 as	 a	 shortcoming	 of	 Steiner’s	 view	 (and	 of	 other	 transmission	 views	 that	 depend	 on	
explanatory	proofs,	such	as	Colyvan	(2012))	that	it	depends	on	the	outcome	of	this	debate.	My	
account	of	MEPPs	does	not	rely	on	a	specific	view	of	mathematical	explanation.	As	I	have	shown,	
what	 we	 need	 in	 a	 MEPP	 is	 for	 the	 mathematical	 derivation	 to	 convey	 some	 explanatory	



	
	

91	

information	 about	 the	 physical	 system,	 regardless	 of	 whether	 this	 information	 would	 be	
explanatory	with	respect	to	the	mathematical	part	of	the	MEPP.		

In	addition,	Steiner’s	view	 is	unsatisfactory	as	an	account	of	 scientific	explanation.	First	
because	transmission	views	that	depend	on	explanatory	proofs	may	not	be	capable	of	accounting	
for	 the	 explanatory	 directionality	 in	 some	 cases.	 A	 deduction	 of	 a	 theorem	 from	 the	 axioms	
preserves	an	asymmetric	dependence,	i.e.	the	axioms	are	more	fundamental	than	the	theorem.	
But	not	all	proofs	work	this	way,	and	it	is	sometimes	not	possible	to	determine	which	property	is	
more	fundamental	than	another,	precisely	because,	as	Steiner	points	out,	mathematical	structures	
have	 their	 properties	 as	 a	matter	 of	 necessity	 (all	 properties	 are	 ‘essential’	 to	 the	 structure).	
Steiner	 tried	 to	 solve	 this	 problem	 by	 appealing	 to	 the	 notion	 of	 characterizing	 property,	 but	
objectively	identifying	a	characterizing	property	is	not	always	possible.53	In	the	bridges	graph,	for	
example,	it	may	seem	that	the	fact	that	the	graph	does	not	allow	Eulerian	paths	is	a	byproduct	of	
the	 fact	 that	 the	graph	 is	non	Eulerian.	But	 the	structure	may	as	well	be	characterized	as	non	
Eulerian	because	it	does	not	allow	Eulerian	paths.	It	is	unclear	that	one	characterization	is	more	
fundamental	than	the	other.	But	despite	this,	as	we	have	seen,	in	terms	of	the	concrete	system	of	
bridges,	features	of	the	bridges	structure	explain	the	impossibility,	but	not	the	other	way	around.	
It	is	precisely	because	MEPPs	are	about	concrete	systems	that	they	do	not	have	‘the	problem	of	
asymmetry’,	in	a	way	that	explanatory	proofs	may	have	(I	will	say	more	about	this	problem	in	27.2,	
below).		

Finally,	 another	 problem	with	 Steiner’s	 view,	 the	most	 serious	 one	 because	 it	 directly	
relates	to	how	MEPPs	are	supposed	to	work	as	scientific	explanations,	 is	 that	Steiner	does	not	
specify	 the	 relationship	 between	 the	 physical	 explanandum	 P’	 and	 the	 mathematical	
representation	M’.	He	says	that,	given	some	assumptions,	P’	is	represented	by	M’,	which	in	turn	
requires	an	explanatory	proof.	But	he	does	not	say	anything	about	which	P’s	are	suitable	to	be	
explained	by	a	MEPP.	Why	is	a	MEPP	needed	to	explain	a	given	physical	phenomenon	P’	in	some	
cases	but	not	in	others?	Steiner	does	not	say.	As	I	have	shown,	by	introducing	the	notion	of	optimal	
representation,	my	account	gives	more	details	about	which	cases	should	be	explained	by	a	MEPP:	
given	our	background	knowledge	about	what	is	relevant	to	explaining	a	physical	phenomenon,	we	
may	or	may	not	implement	an	optimal	mathematical	representation.	If	we	do,	then	we	will	have	
to	use	a	MEPP.		

Ultimately,	 my	 view	 can	 be	 understood	 as	 a	 variation	 of	 Steiner’s.	 As	 we	 have	 seen,	
according	 to	 Steiner,	 a	 MEPP	 is	 an	 explanation	 whose	 explanatory	 power	 comes	 from	 a	
mathematical	explanation	of	the	mathematical	facts	featuring	in	the	explanans,	such	that	“if	we	
remove	 the	 physics,	 we	 remain	 with	 a	 mathematical	 explanation	 –	 of	 a	 mathematical	 truth”	
(1978b,	19).	On	this	view,	when	we	eliminate	the	physical	component	of	a	MEPP,	all	that	is	left	is	
a	mathematical	explanation.	My	account	emphasizes	the	other	side	of	the	coin.	On	my	view,	in	a	

																																																													
53	In	fact,	as	I	mentioned	in	fn.	49,	Resnik	&	Kushner	argue	that	there	are	no	explanatory	proofs	simpliciter:	
“[N]othing	is	an	explanation	simpliciter	but	only	relative	to	the	context-dependent	why	question(s)	that	it	
answers”	(1987,	153).	
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MEPP	if	we	were	to	‘remove	the	mathematics’,	we	remain	with	an	ordinary	scientific	explanation	
of	an	empirical	truth,	the	only	difference	being	that	it	would	be	a	noncausal	explanation.			

§27.	Alan	Baker:	MEPPs,	Indispensability	and	‘bare’	mathematical	truths	

27.1.	Baker’s	Science-Driven	Mathematical	Explanations	

a)	Indispensability	and	non-arbitrariness	

On	Baker’s	view,	for	a	scientific	explanation	to	be	counted	as	a	MEPP,	it	is	not	enough	that	it	has	
a	mathematical	component.	The	mathematical	component	must	be	explanatory	in	its	own	right,	
and	not	merely	be	a	representational	device.	For	Baker,	therefore,	in	a	MEPP	mathematics	plays	
an	explanatory	role	 in	addition	to	 its	representational	role.	Now,	although	Baker	acknowledges	
that	it	is	difficult	“to	demonstrate	that	the	mathematical	component	is	explanatory”	(2009,	625),	
he	proposes	that	one	way	of	doing	this	is	by	showing	that	the	mathematical	element	involved	is	
indispensable	in	the	explanation,	by	which	he	means	that	it	is	not	arbitrary.		

Let	me	illustrate	this	with	an	example	of	my	own.	A	piece	of	mathematics	that	plays	an	
arbitrary	 role	would	 be	 the	 number	 that	 corresponds	 to	 the	 boiling	 point	 of	water	 in	 normal	
conditions.	If	we	use	Celsius	as	our	temperature	unit,	the	boiling	point	would	be	100;	but	if	we	use	
Fahrenheit	as	our	temperature	unit,	it	would	be	212.	The	idea	is	that	nothing	hangs	on	this	choice	
of	units.	No	property	of	water	would	be	picked	out	by	a	property	of	either	of	 those	numbers	
because	the	choice	of	those	numbers	relies	on	an	arbitrary	convention:		

The	thought	is	that	if	it	can	be	shown	that	the	choice	of	mathematical	apparatus	is	just	one	
of	 many	 equally	 good	 alternatives	 then	 the	 particular	 mathematical	 objects	 involved	
cannot	be	indispensable	to	the	overall	explanation	(2009,	614-15).		

On	the	other	hand,	if	the	mathematical	apparatus	is	not	arbitrary,	then	it	is	indispensable,	and	on	
Baker’s	view,	explanatory.	This	is	why,	for	example,	for	Baker	the	cicada	case	is	a	MEPP:	

I	think	that	the	cicada	explanation	is	well	placed	to	meet	charges	of	arbitrariness	[…]	The	
units	involved	in	the	explanation	arise	from	intrinsic	physical	features	of	the	situation,	the	
number-theoretic	notion	of	primeness	plays	a	key	role,	and—despite	the	relative	simplicity	
of	the	mathematics	involved—no	easy	nominalistic	paraphrases	are	available	(2009,	619).		

On	 Baker’s	 account,	 a	 physical	 phenomenon	 requires	 a	 MEPP	 when	 it	 can	 only	 be	
represented	by	a	specific	mathematical	property.	This	 is	because	the	explanatory	property	 is	a	
mathematical	property	of	the	physical	system.	In	other	words,	what	carries	the	explanatory	load	
is	the	link	between	the	physical	properties	and	the	mathematical	properties	of	the	physical	system	
involved.	This	 ‘hybridity’	between	the	physical	and	the	mathematical	realm	is	a	view	shared	by	
descriptive	accounts	of	MEPP.54	In	the	cicada	case,	for	example,	the	concept	of	primeness	is	not	
merely	representing	a	property	of	time	lengths:	for	Baker,	the	time	lengths	themselves	are	prime	
(cf.	 2009,	 621).	 The	 cicadas’	 life-cycles	have	 the	 property	 of	 primeness;	 truths	 related	 to	 this	
																																																													
54	I	take	this	notion	of	hybridity	from	Bueno	and	French	(2017).	
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property	(the	number	theoretical	lemmas)	explain	why	having	this	primeness	property	makes	the	
cycles	evolutionarily	advantageous,	which	in	turn	explains	why	cicadas	evolved	life	cycles	having	
this	 property.	 Put	 this	way,	 realism	 of	mathematical	 properties	 is	 a	 condition	 for	 there	 being	
genuine	MEPPs	 in	 science.	 This	 hybridity	 claim	 is	 also	 endorsed	 by	 Lange	 (2013)	 and	 Pincock	
(2015).		

b)	‘Bare’	mathematical	results	

In	 his	 (2012),	 Alan	 Baker	 argues	 that	 in	 MEPPs	 (what	 he	 calls	 ‘Science-Driven	 Mathematical	
Explanations’:	SDME)	we	do	not	need	to	explain	the	mathematical	truths	cited	in	the	explanans	in	
order	to	have	an	explanation	of	physical	facts	(Pincock	(2015)	and	Lange	(2002)	also	endorse	this).	
The	idea	is	that	as	long	as	it	is	known	that	a	given	theorem	is	true,	it	can	successfully	be	used	in	
empirical	applications:	

In	general,	all	scientists	need	to	know	when	they	appeal	to	a	given	mathematical	result	in	
the	 context	 of	 a	 science-driven	 mathematical	 explanation	 is	 that	 this	 result	 has	 been	
proved.	Nothing	else	about	the	proof	matters	for	the	purposes	of	the	overall	SDME,	nor	
does	the	proof	need	to	be	included	in	the	presentation	of	the	SDME	(Baker	2012,	263).		

For	Baker,	the	mathematical	facts	cited	in	the	explanans	of	a	MEPP	have	the	same	status	as	the	
initial	conditions	in	an	ordinary	scientific	explanation,	which	are	just	assumed	to	be	present	in	the	
situation	to	be	explained,	but	do	not	need	to	be	explained	themselves.	Baker	tracks	back	this	idea	
to	Hempel,	who	said	that	“an	explanation	can	be	completed	even	if	the	facts	to	which	it	appeals	
are	left	unexplained”	(quoted	in	Baker	2012,	263).	For	example,	we	do	not	need	to	explain	why	
there	are	raindrops	in	the	air	in	order	to	explain	the	rainbow.		In	the	same	way,	Baker	argues,	we	
do	not	need	to	explain	the	mathematical	facts	that	we	use	in	a	MEPP.	Rather,	what	a	MEPP	does	
is	to	show	how,	given	the	initial	conditions	and	the	mathematical	facts,	the	explanandum	follows.	
The	idea	is	that	the	physical	explanandum	of	a	MEPP	gets	explained	when	one	finds	truths	about	
its	mathematical	properties,	but	the	means	by	which	one	finds	these	truths	are	not	an	essential	
component	of	the	explanation.		

In	the	cicada	case,	for	example,	the	proof	of	the	two	number	theoretical	 lemmas	is	not	
relevant	for	explaining	the	lengths	of	the	cicada’s	life-cycles:		

[T]he	proofs	of	these	two	lemmas	—	while	relatively	elementary	—	were	not	presented	or	
discussed;	instead	readers	were	referred,	without	further	comment,	to	Edmund	Landau’s	
Elementary	Number	Theory…	This	suggests	that	even	a	more	fleshed-out	version	of	the	
cicada	[MEPP]	need	not	contain	any	mathematical	proofs	(Baker	2012,	262).	

	 On	Baker’s	view,	therefore,	a	proper	reconstruction	of	the	cicada	case	would	be	like	this:	

1a)	The	lowest	common	multiple	of	m	and	n	is	maximal	iff	m	and	n	are	coprime	
[Lemma	1]	
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2a)	A	number	m	 is	coprime	with	each	number	n < 2m; n ≠ m	 iff	m	is	prime	
[Lemma	2]	

3a)	Prime	numbers	minimize	intersection	with	numbers	less	than	their	double	
(1a+2a)	

4a)	 The	 life	 cycles	 have	 the	 mathematical	 properties	 of	 the	 numbers	 that	
represent	them	[hybridity]	

5a)	Prime	 life	cycles	minimize	 intersection	with	cycles	 less	 than	their	double	
(3a+4a)	

	

6a)	 Prime	 numbered	 life	 cycles	 contribute	 to	minimizing	 the	 possibilities	 of	
intersection	with	other	species	that	lessen	the	fitness	of	the	given	species	
(5a)	

7a)	Features	that	contribute	to	minimizing	the	possibilities	of	intersection	with	
other	species	that	lessen	the	fitness	of	the	given	species	are	evolutionarily	
advantageous	

8a)	Prime	numbered	life	cycles	are	evolutionarily	advantageous	(5a+6a)	

In	the	same	way,	the	bridges	case	would	be	reconstructed	like	this:		

1b)	The	bridges	of	Königsberg	graph	does	not	have	property	SE	

2b)	A	graph	g	is	EP	iff	g	has	SE	[mathematical	truth]	

3b)	The	bridges	of	Königsberg	graph	is	not-EP	(1b	+	2b)	

4b)	 The	 bridges	 graph	 and	 the	 bridges	 system	 share	 the	 same	 structure	
[hybridity]	

5b)	The	bridges	of	Königsberg	system	does	not	allow	continuous	walks	over	all	
its	bridges	without	retracing	one’s	steps	(3b+4b)	

	 On	 Baker’s	 view,	 it	 is	 not	 necessary,	 for	 explaining	 the	 conclusion,	 to	 provide	 an	
explanation	of	(1a,	2a)	and	(2b)	respectively.	This	is	a	rejection	of	the	‘transmission	view’,	including	
my	version	of	it.	In	the	bridges	case,	for	example,	Baker’s	view	requires	that	we	ignore	steps	(1)	to	
(13)	of	my	reconstruction	(see	§18	above),	which	I	think	are	essential	for	the	overall	explanation	
to	work	as	an	explanation.		

	

	



	
	

95	

27.2.	Problems	with	Baker’s	view	

a)	The	indispensability	of	mathematics	

The	whole	of	chapter	5	is	devoted	to	the	alleged	indispensability	of	mathematics	in	science,	and	
section	 §38	 is	 specifically	 focused	 on	 the	 different	 ways	 in	 which	 mathematics	 can	 be	
indispensable	in	MEPPs,	but	the	main	points	can	be	presented	here.	 I	will	argue	that,	although	
mathematics	can	be	indispensable	to	have	cognitive	access	to	the	relevant	explanatory	physical	
features,	this	does	not	entail	that	a	mathematical	representation	is	the	only	way	one	can	have	
access	 to	 these	 explanatory	 physical	 features,	 let	 alone	 that	 these	 explanatory	 features	 are	
themselves	mathematical.		

In	the	bridges	case,	for	example,	in	principle	one	can	discover	the	relevant	structural	facts	
about	the	bridges	system	by	observing	the	bridges	system	from	above.	In	the	same	way,	we	can	
conceive	of	some	alternative	means	one	may	have	discovered	the	relevant	facts	about	time	that	
operate	 in	 the	 cicada	 case,	 deducing	 them	 from	 the	 facts	 about	 combination	 and	 equality.	
Mathematics	is	said	to	be	indispensable	only	because,	though	conceivable,	it	is	not	plausible	that	
one	may	actually	come	to	know	the	facts	about	road	systems	or	life-cycles	without	mathematics.	
Mathematics	makes	it	plausible	to	discover	those	modal	facts	in	the	physical	world,	but	once	we	
envision	a	way	to	discover	these	facts,	the	use	of	mathematics	becomes	merely	pragmatic.	As	we	
will	see,	this	usefulness	of	mathematics	 in	science	does	not	support	the	view	that	the	physical	
world	has	mathematical	properties.		

b)	The	case	for	explanatory	derivations	

In	my	reply,	I	will	focus	on	the	bridges	case,	but	everything	I	say	about	it	applies	to	the	cicada	case	
as	well.		

b.1.	Mathematical	truths	are	not	initial	conditions	

Contrary	to	Baker’s	view,	I	believe	that	in	a	scientific	explanation,	mathematical	truths	do	not	play	
the	same	role	as	the	initial	conditions.	The	role	of	mathematics	is	either	to	represent	these	initial	
conditions,	or	to	track	down	the	relationship	between	the	initial	conditions	and	the	explanandum.	
As	we	have	seen,	Hempel’s	D-N	model	also	assigned	a	representational	role	to	mathematics.	In	
the	D-N	model,	deduction	is	the	relevant	explanatory	tool,	mathematics	being	just	a	tool	to	carry	
out	these	deductions	(c.f.	the	‘theoretical	juice	extractor’	metaphor).	In	a	similar	way,	for	Wesley	
Salmon,	 the	 role	 of	 mathematics	 consisted	 in	 describing	 spatiotemporally	 continuous	 causal	
processes	 and	 interactions	 linking	 the	 explanandum	 to	 these	 initial	 conditions;	 and	 for	 James	
Woodward,	mathematics	should	track	down	the	mechanisms	linking	the	two	(see	section	§15).		

In	MEPPs,	we	are	not	describing	causal	relationships,	but	we	still	want	to	know	how	the	
relevant	aspects	of	the	structure	are	responsible	for	the	explanandum.	This	is	what	is	going	on,	for	
example,	 in	 Euler’s	 explanation	 in	 the	bridges	 case.	Here	we	want	 to	 know,	 given	 the	bridges	
graph,	why	it	does	not	allow	an	Eulerian	path.	In	order	to	learn	this,	we	must	spell	out	the	reasons	
why	(2b)	holds.	 It	 is	not	enough	to	say	that	 it	holds.	This	 is	true	 independently	of	whether	the	
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hybridity	 claim	 is	 true.	 That	 is,	 even	 it	 if	 is	 true	 that	 physical	 structures	 are,	 intrinsically,	
mathematical	 structures,	we	 still	 need	 to	 say	 something	 about	why	 the	 said	 structure	 has	 its	
properties.	That	is,	regardless	of	whether	(2b)	is	a	description	of	genuine	mathematical	features	
of	the	world	(the	‘mathematical	structure’	of	the	bridges	system),	merely	citing	(2b)	is	not	enough	
to	 have	 an	 explanation.	 An	 explanation	must	 show	 how	 the	 explanandum	 depends	 on	 some	
properties	of	the	structure.		

b.2.	The	problem	of	relevance	

The	failure	of	Hempel’s	D-N	model	has	taught	us	that	merely	showing	how	the	explanandum	is	a	
logical	 consequence	 of	 the	 facts	 cited	 in	 the	 explanans	 does	 not	 constitute	 an	 acceptable	
explanation.	This	is	because	this	deduction	by	itself	does	not	inform	us	about	the	features	relevant	
to	 the	occurrence	of	 the	explanandum.	For	example,	 in	order	 to	explain	why	a	given	animal	 is	
black,	it	is	not	enough	to	say	that	it	is	a	raven	and	that	‘all	ravens	are	black’.	Rather,	we	must	show,	
as	Woodward	puts	 it,	what	 features	of	 ravens	are	 responsible	 for	 their	blackness;	 that	 is,	how	
blackness	 counterfactually	 depends	 on	 some	 specific	 features	 of	 ravens,	 such	 that,	 if	 those	
features	were	 altered	 in	 different	ways,	we	would	be	 able	 to	manipulate	 the	 raven	 color.	 ‘All	
ravens	are	black’	can	be	used	to	show	that	the	explanandum	was	to	be	expected,	but	it	“doesn’t	
tell	us	anything	about	how	to	change	the	color	of	a	raven	a	or	any	other	raven	or	bird”	(2003,	193).	
‘All	 ravens	are	black’,	 therefore,	does	not	 inform	us	about	 features	of	 ravens	 relevant	 to	 their	
blackness.		

In	 the	 same	way,	 if	we	 do	 not	 know	 the	 sense	 in	which	 some	 features	 of	 the	 bridges	
structure	are	associated	with	the	property	of	not	allowing	an	Eulerian	walk,	the	argument	above	
would	only	be	establishing	the	truth	of	the	explanandum,	but	it	would	not	be	an	explanation	of	it.	
What	makes	the	bridges	of	Königsberg	system	fail	to	allow	an	Eulerian	walk?	If	the	argument	does	
not	answer	this,	it	is	not	an	explanation.	Merely	citing	‘a	graph	g	has	EP	iff	g	has	SE’,	as	Baker	would	
suggest,	does	not	inform	us	about	features	of	the	structure	relevant	to	its	not	allowing	an	Eulerian	
path.	Contrary	to	this,	Euler’s	proof	shows	how	specific	aspects	of	the	bridges	system	structure	
relate	to	its	not	allowing	an	Eulerian	path.	Specifically,	it	shows	that	the	fact	that	a	bridge	connects	
two	pieces	of	 land	is	responsible	for	the	relevant	distinction	between	‘odd’	pieces	of	 land,	and	
‘even’	pieces	of	land,	which	in	turn	relates	to	the	possibility	(or	lack	thereof)	of	an	Eulerian	walk.		

b.3)	Levels	of	explanation	and	Scientific	Practice	

Now,	 it	could	be	argued	that,	by	altering	the	variables	cited	 in	(2b),	we	can	 indeed	use	(2b)	to	
manipulate	the	 impossibility	of	performing	an	Eulerian	path.	 In	 that	sense,	we	do	not	need	an	
additional	 explanation	 for	why	 (2b)	 holds.	 This	 defense	 of	 Baker’s	 view	 relies	 on	 a	 distinction	
between	levels	of	explanation.	At	one	level,	we	have	the	explanation	of	(5b);	at	a	different	level,	
we	have	the	explanation	of	(2b).		

The	problem	with	this	approach	is	that	it	assumes	a	distinction	between	explanations	of	
regularities,	which	would	appeal	to	causes,	mechanisms,	or	structural	relations,	and	explanations	
of	 particulars,	 which	 would	 be	 performed	 by	 deduction	 from	 these	 generalities,	 in	 the	 way	
proposed,	for	example,	by	the	D-N	model.	But	as	Woodward	has	argued,	scientists	do	not	usually	
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make	a	distinction	between	explanations	of	generalizations,	and	explanations	of	particulars.	For	
example,	whether	they	want	to	explain	why	a	is	black	or	why	all	ravens	are	black,	they	will	appeal	
to	the	same	genetic	and	biological	mechanisms:		

The	 “two-level”	 approach	 thus	 has	 the	 implication	 that	 there	 are	 two	 quite	 different	
varieties	of	explanation	that	work	according	to	different	principles,	one	having	to	do	with	
explanation	of	 regularities	 and	 the	other	 having	 to	do	with	 the	 explanation	of	 singular	
explananda.	(2003,	391)	

In	other	words,	the	two-levels	of	explanation	view	would	entail	that	deduction	from	regularities	
explains	particular	events,	whereas	only	generalizations	are	explained	by	appealing	to	the	relevant	
mechanisms.	This,	Woodward	argues,	is	not	found	in	scientific	practice:	

[I]n	 many	 areas	 of	 science,	 explanations	 typically	 or	 commonly	 take	 the	 form	 of	
explanations	of	generalizations	or	regularities,	with	the	explanation	of	particular	outcomes	
being	parasitic	on	this	activity,	in	the	sense	that	it	draws	on	the	same	information		(2003,	
391).		

b.4)	The	Asymmetry	Problem	

The	most	serious	problem	with	Baker’s	view	that	MEPPs	work	by	appealing	to	‘bare’	mathematical	
truths,	 is	 that	 if	 that	were	 the	 case,	MEPPs	would	not	be	able	 to	 account	 for	 the	explanatory	
directionality.	In	the	bridges	case,	for	example,	the	view	that	citing	(2b)	is	all	we	need	to	provide	
an	explanation	entails	that	the	following	argument	would	also	count	as	an	explanation:		

P1*)	The	bridges	of	Königsberg	graph	is	not-EP		

P2)	A	graph	s	is	EP	iff	a	has	SE	

C*)	The	bridges	of	Königsberg	graph	does	not	have	property	SE	(1+2)	

This	is	what	Craver	&	Povich	call	‘a	reverse	case’,	that	is,	an	alleged	scientific	explanation	that	fails	
to	account	for	the	explanatory	asymmetry	between	the	explanandum	and	the	facts	cited	in	the	
explanans	(2017,	33).	As	we	have	seen	(§3),	the	most	famous	example	for	illustrating	the	failure	
of	Hempel’s	D-N	model	in	accounting	for	explanatory	asymmetries	is	the	flagpole	case.	On	Craver	
&	Povich’s	terminology,	the	length	of	the	shadow	explaining	the	height	of	the	flagpole	would	be	
the	reverse	case	of	the	(correct)	explanation,	which	uses	the	height	of	the	flagpole	explaining	the	
length	of	the	shadow.		

The	same	happens	 in	 the	bridges	case.	The	reason	why	 the	reverse	bridges	case	 is	not	
correct	is	that	whether	or	not	a	system	has	bridges	connecting	in	a	certain	way	depends	on	other	
considerations,	such	as	the	reasoning	of	the	people	who	decided	to	build	the	bridges,	and	not	on	
whether	or	not	a	particular	walk	is	possible	(Craver	&	Povich	2017,	34).	When	we	ask	about	why	
the	Königsberg	system	fails	to	have	either	zero	or	two	pieces	of	land	connected	by	an	odd	number	
of	bridges,	we	are	demanding	why	the	system	was	built	with	this	specific	structure.	On	the	other	
hand,	 when	we	 ask	 why	 the	 system	 does	 not	 allow	 an	 Eulerian	 walk,	 we	 are	 asking	 about	 a	
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property	 the	 system	 has	 in	 virtue	of	 having	 the	 structure	 it	 has.	We	 can	 use	 facts	 about	 the	
structure	to	explain	why	the	system	is	not	Eulerian	walkable,	but	we	cannot	use	the	fact	that	it	is	
not	Eulerian	walkable	to	explain	why	it	was	built	in	a	particular	way.			

As	I	have	argued	(§22),	Euler’s	proof	makes	it	clear	how	this	explanation	accounts	for	the	
asymmetry	between	the	explanandum	and	the	explanans.	Euler	showed	how	the	impossibility	of	
performing	an	Eulerian	walk	depended	on	the	bridges	structure,	because	it	ultimately	depended	
on	 the	 fact	 that	 a	 bridge	 connects	 two	 pieces	 of	 land.	We	 can	 use	 this	 fact	 about	 bridges	 to	
manipulate	whether	an	Eulerian	walk	is	possible.	But	nothing	that	we	do	to	the	bridges	structure	
(and	 its	 associated	properties)	would	alter	 the	 fact	 that	 a	bridge	 connects	 two	pieces	of	 land.	
Therefore,	the	impossibility	depends	on	this	fact	about	bridges,	but	this	fact	about	bridges	does	
not	depend	on	the	impossibility,	and	that	is	why	we	can	use	this	fact	about	bridges	to	explain	the	
impossibility.	We	can	only	learn	this	 information	if	we	disaggregate	(2b)	in	terms	of	the	reason	
why	such	generalization	obtains.		

§28	Aidan	Lyon:	MEPPs	and	program	explanations		

An	aspect	of	MEPPs	that	has	often	been	highlighted	in	the	literature	is	their	modal	component.55	
The	 idea	 is	 that	 MEPPs	 show	 that	 the	 explanandum	 was	 somehow	 bound	 to	 happen,	
independently	 of	 its	 actual	 causal	 history.	We	have	 already	 seen	 that	many	ordinary	 scientific	
explanations	have	this	feature	as	well	(section	§8).	Let	us	examine	now	how	MEPPs	provide	this	
modal	information,	and	if	the	modalities	involved	in	MEPPs	are	stronger	than	those	of	ordinary	
scientific	explanations.	In	the	following	two	sections	I	will	examine	two	modal	accounts	of	MEPPs,	
Aidan	Lyon’s	(§28)	and	Mark	Lange’s	(§29).		

Lyon	holds	that	MEPPs	are	program	explanations.	Recall	(§8)	that	Jackson	&	Pettit	(1990)	
call	‘program	explanations’	those	that	do	not	depend	on	citing	the	specific	causal	processes	that	
produced	 the	 explanandum,	 but	 on	 higher-order	 properties	 that	 ensured	 (or,	 as	 they	 put	 it,	
‘programmed’)	that	there	will	be	some	set	of	causal	processes	that	will	be	efficacious	in	producing	
the	 explanandum.	 These	 higher-order	 properties	 are	 not	 causally	 efficacious	 in	 producing	 the	
explanandum,	but	they	are	causally	relevant	precisely	because	they	play	this	programming	role.	
The	explanatory	strength	of	these	program	explanations	comes	from	citing	these	‘programming	
properties’	because	they	show	that	the	explanandum	is	modally	stronger	than	it	could	have	been	
rendered	by	the	specific	causal	processes	that	actually	produced	it.			

This	 seems	 to	 resonate	with	 the	examples	 I	 have	discussed	 so	 far.	 In	 the	bridges	 case,	
whereas	process	explanations	would	show	why	in	any	particular	attempt	an	Eulerian	path	could	
not	be	completed,	by	appealing	to	the	overall	structure	of	the	bridges	system	the	MEPP	shows	
that	“no	matter	how	anyone	chose	to	go	for	a	walk	around	Königsberg,	they	would	never	pass	
over	 each	 bridge	 exactly	 once”	 (Lyon	 2011,	 10).	 Similarly,	 even	 though	 in	 principle	 a	 detailed	
process	explanation	could	be	given	of	why	the	cicadas	have	life	cycles	of	13	and	17	years,	that	
explanation	“misses	the	fact	that	the	final	evolutionary	outcome,	the	convergence	on	13	and	17,	
is	robust	with	respect	to	the	historico-ecological	details”	(Lyon	2011,	9).	By	appealing	to	higher	
																																																													
55	See	for	example	Baker	2005;	2009;	2012;	Colyvan	2001;	2012;	Lyon	2011;	Lange	2013;	Pincock	2015.		
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order	 properties	 of	 the	 time	 lengths	 the	 MEPP	 shows	 that	 even	 if	 some	 of	 those	 historico-
ecological	details	had	been	different,	the	cicadas	would	still	have	had	such	life	cycles.		

Now,	according	to	Lyon’s	account,	what	these	examples	have	in	common,	in	addition	to	
being	 program	 explanations,	 is	 that	 the	 higher-order	 property	 doing	 the	 ‘programming’	 is	
mathematical.	And	this	is,	according	to	him,	the	distinctive	feature	of	MEPPs:	

An	 explanation	 of	 an	 empirical	 fact	 is	 mathematical	 –	 i.e.	 it	 has	 mathematics	 doing	
explanatory	work	–	if	the	explanation	is	a	program	explanation	that	uses	mathematics	in	a	
way	that	is	indispensable	to	the	program.	Take	away	the	mathematics	and	the	program	
falls	apart	(2011,	10).		

On	this	view,	mathematics	does	genuine	explanatory	work	when	it	does	the	programming	
work	in	a	program	explanation.	Lyon	associates	this	with	mathematical	realism	(2011,	559).	It	is	
because	 the	 physical	 system	 has	 this	 higher-order	 mathematical	 property	 that	 a	 lower-level	
property	 produced	 the	 explanandum.	 We	 know	 that	 a	 mathematical	 property	 is	 doing	 the	
programming	work	when,	as	Lyon	puts	it,	it	is	‘indispensable	to	the	program’.	It	is	in	that	sense	
that	MEPPs	show	that	the	explanandum	is	modally	stronger	than	the	causally	efficacious	processes	
that	actually	produced	it.		

28.2.	Problem	with	Lyon’s	view	

Now,	a	serious	charge	against	Lyon’s	view	is	that	the	role	of	mathematics	in	program	explanations	
may	be	taken	to	be	simply	representing	the	higher-order	nominalistic	property	that	does	the	real	
explaining.	This	problem	has	also	been	pointed	out	by	Juha	Saatsi:		

“[In	these	examples]	it	is	not	clear	why	the	higher-order	property	doing	the	programming	
should	be	viewed	as	a	mathematical	property.	That	 is,	 it	 is	not	 clear	why	mathematics	
cannot	be	viewed	as	playing	a	broadly	representational	role	vis-à-vis	some	nominalistically	
acceptable	higher-order	property”	(2012,	581).		

Because	of	this,	Lyon’s	account	fails	to	capture	the	features	that	make	MEPPs	different	
from	ordinary	program	explanations.	He	may	reply	that	the	difference	is	that	MEPPs	work	because	
they	appeal	to	mathematical	properties,	but	it	 is	not	obvious	that	mathematical	properties	can	
play	this	programming	role.		As	Saatsi	has	pointed	out,	programming	properties	have	an	intuitively	
clear	relationship	with	their	corresponding	lower-level	causally-efficacious	properties.	It	is	hard	to	
see	how	mathematics	can	enter	in	this	relationship	without	a	metaphysical	account	of	the	relation	
between	mathematics	and	the	physical	world.	“The	programming	relation”,	says	Saatsi,	“is	a	modal	
relation	between	properties”	(2012,	582).	Programming	properties	necessitate	the	instantiation	
of	 a	 causally	 efficacious	 property,	 but	 it	 is	 not	 clear	 how	 a	 mathematical	 property	 would	
necessitate	a	physical	instance.56	

	

																																																													
56	Pincock	(2015)	addresses	this	issue	(see	§30	below).	
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§29.	Marc	Lange:	MEPPs	and	mathematical	necessities	

29.1.	Distinctive	mathematical	explanations	

Just	as	Lyon	does,	Marc	Lange	holds	that	MEPPs	show	that	the	explanandum	was	more	necessary	
than	could	have	been	rendered	by	any	of	the	causal	processes	that	may	have	produced	it.		

If	 a	 fact	 has	 a	 distinctively	 mathematical	 explanation,	 then	 the	modal	 strength	 of	 the	
connection	between	causes	and	effects	is	insufficient	to	account	for	that	fact’s	inevitability	
(2013,	487).	

According	to	Lange,	MEPPs	get	their	modal	strength	from	pointing	to	relations	of	mathematical	
necessity	 in	 the	physical	world.	As	we	saw	 in	section	§22,	 for	him,	 rather	 than	describing	“the	
world’s	 network	 of	 causal	 relations”	 (2013,	 509),	 MEPPs	 work	 by	 describing	 “the	 framework	
inhabited	by	any	possible	causal	relation”	(2013,	509).	This	is	why	MEPPs	make	an	essential	appeal	
to	mathematics.	By	using	modally	stronger	facts	(i.e.	mathematical	facts),	the	MEPP	is	capable	of	
pointing	to	these	‘stronger	necessities’	in	the	physical	world,	and	in	this	way,	it	gives	us	information	
that	alternative	causal	explanations	cannot.		

These	 necessities	 are	 stronger	 than	 causal	 necessity,	 setting	 distinctively	mathematical	
explanations	 apart	 from	 ordinary	 scientific	 explanations.	 Distinctively	 mathematical	
explanations	 in	 science	 work	 by	 appealing	 to	 facts	 (including,	 but	 not	 limited	 to,	
mathematical	facts)	that	are	modally	stronger	than	ordinary	causal	laws	–	together	with	
contingent	 conditions	 that	 are	 contextually	 understood	 to	 be	 constitutive	 of	 the	
arrangement	or	task	at	issue	in	the	why	question	(2013,	491).	

Now,	 for	 Lange	 a	MEPP	 “exploits	 what	 the	 world	 is	 like	 as	 a	 matter	 of	 mathematical	
necessity”	 (2013,	 496).	 In	 that	 sense,	 his	 view	 of	 MEPPs	 is	 committed	 to	 the	 existence	 of	
mathematical	relations	of	necessity	in	the	physical	world,	so	it	belongs	to	what	I	have	called	the	
‘descriptivist’	view	of	MEPPs.	For	example,	one	of	the	cases	Lange	discusses	most	thoroughly	is	
why	a	mother	cannot	evenly	divide	23	strawberries	among	her	three	children.	The	explanation,	
says	Lange,	is	that	23	is	not	a	multiple	of	3.	This	mathematical	fact	is	more	necessary	than	any	
contingent	fact	about	strawberries	and	children.	Although	it	is	true	that	the	explanation	involves	
objects	with	causal	powers	(strawberries	and	children),	this	is	not	relevant	to	the	explanation.	No	
collection	of	23	objects,	not	even	pseudo	processes	(which	lack	causal	powers),	can	be	divided	by	
three,	and	this	is	why	the	strawberries	cannot	be	evenly	divided	between	three	children	(cf.	Lange	
2013,	496).		

This	is	also	what	happens	in	the	bridges	case.	The	idea	is	that	the	system	of	bridges	has	not	
been	crossed	because	 it	cannot	be	crossed.	This	 impossibility	 is	stronger	than	the	 impossibility	
associated	to	each	particular	unsuccessful	attempt.	Any	particular	attempt	to	cross	the	bridges	is	
a	causal	process	that	necessarily	will	prove	to	be	unsuccessful.	From	the	perspective	of	a	causal	
explanation,	the	fact	that	all	these	attempts	have	failed	would	be	a	coincidence.	The	MEPP,	on	the	
contrary,	shows	that	this	is	no	coincidence:	it	was	necessary	for	all	these	attempts	to	fail,	since	the	
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trip	 is	 mathematically	 impossible.	 On	 Lange’s	 account,	 an	 Eulerian	 path	 over	 the	 bridges	 is	
mathematically	impossible,	and	this	is	why	it	is	physically	impossible.			

In	the	cicada	case,	what	requires	a	mathematical	explanation	is	not	that	cicadas	with	prime	
cycles	 have	 been	 ‘chosen’	 by	 natural	 selection,	 as	 opposed	 to	 those	 with	 non-prime	 cycles.	
“Selection	 for”,	 Lange	points	out	 following	Elliott	Sober,	 “is	 the	causal	 concept	par	excellence”	
(2013,	499).	Rather,	what	requires	a	mathematical	explanation	is	the	fact	that,	“in	connection	with	
predators	having	periodic	life-cycles,	cicadas	with	prime	periods	tend	to	suffer	less	from	predation	
than	cicadas	with	composite	periods	do”	(2013,	499).	The	explanation	shows	that	it	is	a	matter	of	
mathematical	 necessity	 that	 prime	 cycles	 have	 this	 property	 of	 ‘minimizing	 intersection’	 with	
other	cycles.	

One	 interesting	aspect	of	this	account	 is	 that	 it	helps	to	make	sense	of	why	MEPPs	are	
noncausal	explanations.	As	we	saw	in	section	§22,	although	MEPPs	are	empirical	applications	of	
mathematics,	this	in	itself	does	not	render	MEPPs	causal,	because	they	do	not	work	by	‘exploiting’	
these	 causal	 powers.	 Lange	 emphasizes	 that	 the	 why	 question	 answered	 by	 the	 MEPP	
presupposes	that	some	facts	in	the	explanandum	are	fixed.	These	are,	as	he	puts	it,	the	‘contingent	
conditions	that	are	contextually	understood	to	be	constitutive	of	the	arrangement	or	task	at	issue	
in	the	why	question’.	What	needs	to	be	explained,	then,	are	some	aspects	of	the	structure	of	the	
physical	system	once	it	has	been	fixed	by	the	why	question	(2013,	506).	For	example,	with	respect	
to	the	bridges	case	Lange	says	that:	

[t]he	 bridges	 arrangement	 does	 not	 function	 in	 connection	 with	 the	 distinctively	
mathematical	explanation	as	an	initial	condition	that	happens	to	persist	(partly	by	virtue	
of	various	causal	laws)	during	all	attempts	to	cross	the	bridges.	Rather,	the	why	question	
itself	 takes	 the	 arrangement	 as	 remaining	 unchanged	 over	 the	 course	 of	 any	 eligible	
attempt	(2013,	497).		

Although	 the	MEPP	presupposes	 the	 causal	 powers	 of	 the	objects	 involved	 (for	 instance,	 that	
“bridges	 are	 not	 brought	 into	 existence	 or	 caused	 to	 disappear	 by	 people	 travelling	 over	 the	
bridges”	(2013,	497)),	this	does	not	mean	that	the	explanation	works	in	virtue	of	those	powers.	
For	this	reason,	this	is	a	noncausal	explanation.		

Now,	Pincock	has	objected	 that	Lange’s	view	trivializes	 the	discussion	of	 the	distinctive	
features	of	MEPPs.	After	 all,	 Pincock	 argues,	 if	 even	 contingent	 facts	 can	be	 fixed,	 then	many	
physical	phenomena	would	have	a	mathematical	explanation	(cf.	Pincock	2015,	875).	 I	believe,	
however,	that	Lange	should	not	be	worried	by	this	charge	of	triviality.	That	there	would	be	a	MEPP	
for	many	simple	physical	facts,	once	they	have	been	suitably	defined,	should	not	be	taken	as	a	
weakness	of	the	view.	Perhaps	some	MEPPs	are	more	interesting	than	others,	but	this	in	principle	
should	not	be	a	problem.	There	are	certainly	some	ordinary	scientific	explanations	that	are	more	
interesting	than	others!	It	would	be	a	weakness	of	an	account	of	scientific	explanation	if	it	cannot	
accommodate	simple	cases.	
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29.2.	Problems	with	Lange’s	view	

There	are,	I	think,	two	problems	with	Lange’s	account.	First,	he	does	not	provide	details	about	the	
source	of	 the	explanatory	power	of	 the	explanation.	And	 secondly,	 the	 sense	 in	which	MEPPs	
would	appeal	 to	 facts	 that	are	mathematically	necessary	 is	not	clear.	With	 respect	 to	 the	 first	
problem,	Lange	says	that	MEPPs	show	that	the	outcome	was	necessary.	But	saying	that	something	
is	necessary	is	not	enough	to	explain	it.	Consider	again	the	graph	that	represents	the	bridges	of	
Königsberg.	 It	 is	necessary	that	there	will	be	a	fixed	number	of	paths	available	over	the	graph,	
none	of	them	being	Eulerian.	This	would	be	true	in	every	possible	world.		As	we	saw,	however,	the	
brute	computation	strategy	can	be	used	to	verify	the	truth	of	this	claim,	but	it	does	not	explain	it.	
The	crucial	point	is	that	the	brute	computation	strategy	also	depends	on	facts	that	are	more	than	
physically	necessary.	So	here	we	have	a	mathematical	derivation	that	appeals	to	facts	that	are	
more	than	physically	necessary,	but	does	not	provide	explanatory	information	of	the	physical	facts	
it	 represents.	 Unfortunately,	 Lange	 does	 not	 give	 details	 about	 how	 to	 differentiate	 this	
mathematical	derivation	and	explanatory	derivations	such	as	Euler’s	proofs.		

A	second	problem	is	Lange’s	commitment	to	the	view	that	there	may	be	‘mathematical	
necessities’	 in	 the	 physical	 world.	 This	 seems	 like	 a	 strong	 ontological	 commitment,	 so	 let	 us	
examine	 it	more	closely	 from	the	perspective	of	our	 two	main	examples.	 Let	us	 start	with	 the	
cicada	case.	The	explanation	that	appeals	to	mathematical	primeness	 in	the	cicada	case	would	
highlight	the	fact	that	it	is	necessary	that	prime-numbered	cycles	minimize	intersection	with	other	
cycles.	This	would	be	true	in	any	world	where	the	idea	of	cycles	makes	sense,	so	this	necessity	
would	 be	 stronger	 than	 physical	 necessity.	 Does	 this,	 by	 itself,	 support	 the	 claim	 that	 these	
relations	are	of	mathematical	necessity?	Recall	that	this	case	depends	on	the	simple	notions	of	
combination	and	equality.	I	do	not	believe	combination	and	equality	are	inherently	mathematical	
notions,	but	I	do	agree	that	in	every	world	where	physical	lengths	can	be	described	by	these	two	
notions,	the	property	of	overlapping	minimization	would	make	sense.	This	fact	may	be	modally	
stronger	than	other	physical	facts;	but	I	do	not	believe	there	is	anything	to	be	gained	by	calling	it	
mathematical.	This	point	 is	perhaps	clearer	 in	 the	bridges	of	Königsberg	case.	The	explanation	
relies	on	the	extremely	simple	fact	that	every	time	one	crosses	a	bridge,	two	pieces	of	land	are	
involved,	 the	starting	point	and	the	ending	point.	This	 fact	seems	to	be	modally	 stronger	 than	
other	physical	facts,	and	it	is	in	virtue	of	this	modally	stronger	fact	that	the	explanation	gains	its	
explanatory	force.	But	I	do	not	think	anything	is	to	be	gained	by	calling	it	mathematically	necessary	
(more	on	this	on	section	§38).	

I	have	not	argued	that	there	are	no	mathematical	necessities	in	the	world;	only	that	MEPPs	
do	not	presuppose	the	existence	of	these	relations	of	mathematical	necessity.	We	shall	see	in	the	
next	chapter	whether	there	are	other	reasons	to	believe	that	the	physical	world	actually	has	these	
features.	For	now,	my	point	is	that	all	we	need	for	a	MEPP	is	that	the	problem	itself	must	be	stated	
in	a	very	precise	way	so	that	it	fits	the	mathematical	representation	(for	example,	it	must	be	very	
precise	what	we	mean	by	 ‘bridge’).	 In	order	 to	do	 that,	we	must	 refine	our	description	of	 the	
physical	system	so	that	we	can	build	in	the	conceptual	definition.	Once	we	have	this,	mathematics	
will	help	us	make	explicit	some	of	the	ideas	implicit	in	our	conceptual	definition	of	the	problem	at	
hand.		



	
	

103	

§30.	Christopher	Pincock:	MEPPs	and	mathematical	structures		

30.1.	MEPPs	as	abstract	explanations	

In	a	recent	paper	(2015),	Christopher	Pincock	presents	an	account	of	abstract	explanations	that	
analyzes	the	role	of	mathematics	in	MEPPs,	which	is	an	extension	of	Woodward’s	counterfactual	
account	of	scientific	explanation.	Recall	that	for	Woodward	fundamental	in	scientific	explanations	
are	objective	relations	of	dependence	between	properties	or	events	(see	§9).	These	dependence	
relations	 are	 called	 invariances,	 and	 can	 potentially	 be	 used	 for	 manipulation	 and	 control.	
According	to	Pincock,	causal	dependence	is	not	the	only	objective	dependence	relation	that	can	
be	used	in	scientific	explanations.	Another	dependence	relation	is	the	instantiation	relation	(2015,	
865),	and	although	he	does	not	explicitly	define	this	kind	of	relationship,	he	mentions	two	main	
features:	i)	if	a	is	an	instance	of	A	then	A	is	more	abstract	than	a	(abstract	character);	ii)	if	a	is	an	
instance	of	A	then	A	cannot	be	an	instance	of	a	(asymmetry).57	One	example	of	the	instantiation	
relation	is	the	one	between	types	and	tokens.	A	type	is	more	abstract	than	one	of	its	tokens;	a	
token	is	an	instance	of	a	type,	but	the	type	cannot	be	an	instance	of	the	token.	These	abstract	
properties,	although	having	physical	 instances,	are	not	themselves	physical	 (cf.	2015,	865).	For	
that	reason,	the	instantiation	relation	is	not	causal;	for	Pincock,	it	does	not	make	sense	to	talk	of	
intervening	over	the	abstract	property	in	order	to	manipulate	the	instance.		

With	 this	 view	of	 instantiation	 in	mind,	 Pincock	 defines	abstract	 explanations	as	 those	
where	 one	 explains	 features	 of	 the	 instances	 by	 appealing	 to	 features	 of	 the	 more	 abstract	
property.	 These	 explanations	 are	 ontic,	 because	 they	 depend	 upon	 objective	 relations	 of	
dependence;	however,	they	are	not	causal,	because,	as	we	have	seen,	this	dependence	relation	is	
not	causal.	Now,	for	Pincock	“many	mathematical	structures	have	concrete	systems	as	instances”	
(2015,	865).	For	that	reason,	MEPPs	are	a	subclass	of	abstract	explanations.	Specifically,	MEPPs	
are	abstract	explanations	in	which	the	instantiation	relation	is	between	a	mathematical	property	
and	a	physical	instance.	On	this	view,	since	mathematical	structures	have	physical	instances,	the	
role	of	mathematics	is	not	merely	representational;	it	is	to	describe	these	mathematical	structures	
in	the	physical	world.	In	that	sense,	this	is	a	descriptive	account	of	MEPPs.		

Now,	we	have	seen	that	explanations	that	distinguish	between	levels	of	abstraction	are	
not	uncommon	in	science.	Program	explanations	(§8	and	§28),	for	example,	also	appeal	to	more	
abstract	properties	in	order	to	explain	the	explanandum,	and	as	we	saw,	program	explanations	
are	all	over	 the	place	 in	 science.	However,	 for	Pincock	 there	 is	 a	difference	between	program	
explanations	and	his	abstract	explanations:		

[A]bstract	 explanations	 invoke	 a	 more	 abstract	 entity	 and	 its	 properties.	 Program	
explanations	appeal	only	to	a	more	abstract	property	of	the	physical	system	itself	(2015,	
873).		

																																																													
57	James	Cargile	(personal	conversation)	has	pointed	out	that	this	characterization	leaves	aside	cases	such	
as	‘the	property	of	being	a	property’,	which	is	not	more	abstract	than	the	properties	that	instantiate	it.		
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In	 other	 words,	 program	 explanations	 appeal	 to	 higher-order	 physical	 properties,	 whereas	
abstract	 explanations	 appeal	 to	 non-physical	 abstract	 (and	 in	 some	 cases	 mathematical)	
properties.		

Using	 this	 account,	Pincock	explicates	 the	bridges	 case	as	 follows.	The	 structure	of	 the	
bridges	is	an	instantiation	of	the	structure	of	a	non-Eulerian	graph.	It	is	for	this	reason	that	we	can	
explain	facts	about	the	physical	system	of	bridges	by	appealing	to	facts	about	graphs.	In	particular,	
the	 impossibility	 of	 performing	 an	 Eulerian	 trip	 belongs	 both	 to	 the	 abstract	 graph	 and	 to	 its	
physical	instance:58	

Euler	added	his	mathematical	theorem	that	there	is	no	return	path	through	a	graph	that	
crosses	each	edge	exactly	once	when	at	least	one	vertex	has	an	odd	valence.	This	is	why	
there	is	no	such	return	path	across	the	bridges	of	Konigsberg.	(2012,	206;	my	emphasis).59	

For	Pincock	the	graph	that	represents	the	bridges	(a	mathematical	object)	is	not	Eulerian,	and	this	
is	why	the	bridges	(physical	things)	cannot	be	crossed.	In	his	(2015)	paper,	he	does	not	explicitly	
address	the	cicada	case,	but	we	can	understand	it	as	an	abstract	explanation	like	this:	because	the	
life	cycles	instantiate	the	property	of	primeness,	we	can	appeal	to	facts	about	the	latter	to	explain	
the	former.	For	example,	17	minimizes	intersection	with	other	numbers;	this	is	why	the	life	cycles	
minimize	intersection	with	other	life	cycles.		

Crucial	to	understanding	this	account	is	the	notion	of	instantiation.	In	his	(2012)	Pincock	
explains	what	he	means	by	a	physical	structure	‘instantiating’	an	abstract	structure:	

Suppose	we	have	a	 concrete	 system	along	with	a	 specification	of	 the	 relevant	physical	
properties.	This	specification	fixes	the	associated	structure.	Following	Suarez,	we	can	say	
that	the	system	instantiates	that	structure,	relative	to	that	specification,	and	allow	that	
structural	relations	are	preserved	by	this	instantiation	relation	(2012,	29).		

I	believe	that	what	Pincock	is	saying	here	is	that	one	discovers	whether	or	not	a	system	instantiates	
a	mathematical	structure	depending	on	the	level	at	which	the	system	is	described.	Once	this	level	
of	 description	 is	 specified,	 it	 is	 a	 fact	 of	 the	matter	 that	 the	 system	 instantiates	 the	 relevant	
mathematical	 structure,	and	so	 it	possesses	 the	properties	associated	with	 such	mathematical	
structure.		

30.2.	Problems	with	Pincock’s	view	

One	problem	with	Pincock’s	view	is	that	he	does	not	provide	details	with	respect	to	how	exactly	
these	explanations	are	carried	out.	Just	as	Woodward	does,	Pincock	says	that	objective	relations	
of	dependence	are	necessary	for	explanation.	But	whereas	Woodward	is	clear	about	how	to	use	
these	dependencies	in	explaining	(we	must	use	them	to	perform	interventions),	Pincock	is	silent	
																																																													
58	It	seems	that	for	Pincock	the	impossibility	belongs	to	the	two	structures	in	the	same	sense,	because	the	
physical	system	possesses	the	mathematical	property	of	being	an	Eulerian	graph.			
59	Note	that	Pincock	 is	addressing	the	problem	of	whether	an	Eulerian	circuit	 is	possible.	This	 is	not	the	
problem	Euler	aimed	to	solve,	although	for	philosophical	purposes	this	distinction	is	unimportant.		
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about	this	issue.	Pincock	rejects	the	possibility	of	performing	‘interventions’,	so	for	him	a	physical	
property	gets	explained	just	by	showing	it	to	be	an	instance	of	a	mathematical	property.	In	fact,	
he	understands	his	view	as	providing	support	of	Baker’s	rejection	of	Steiner’s	view	(2015,	847,	
fn12).	Because	of	 this,	Pincock’s	account	 is	open	 to	 the	 same	criticism	 I	made	of	Baker’s	 (and	
Lange’s)	account.	Even	if	there	are	mathematical	structures	instantiated	in	the	physical	world,	in	
order	to	explain	physical	features	it	would	not	be	enough	to	show	that	truths	about	mathematical	
structures	 apply	 to	 the	 physical	 instance;	 an	 explanation	 must	 show	 how	 the	 explanandum	
depends	 on	 some	 properties	 of	 the	 structure.	 Without	 this	 information,	 we	 do	 not	 have	 an	
explanation.	

Another	problem	of	Pincock’s	view	is	its	reliance	on	the	notion	of	physical	structures	as	
instantiations	of	mathematical	structures,	as	opposed	to	defining	them	as	nominalistic	structures	
capable	of	being	represented	by	mathematics.	Pincock	argues	against	this	possibility	saying	that	
this	 representational	 strategy	 does	 not	 work	 for	 mathematical	 explanations.	 For	 him,	 if	
mathematics	were	simply	a	representational	or	indexical	device,	it	would	be	incapable	of	isolating	
explanatorily	 relevant	 features	of	 a	phenomenon	 (cf.	 2012,	208-10).	 For	Pincock,	 explanations	
where	recurring	features	are	isolated	are	noncausal	explanations	precisely	because	they	fail	to	fit	
the	indexing	or	representational	approach.			

Indexing	here	is	a	technical	term,	used	amongst	others	by	van	Fraassen	(e.g.	2008),	that	
refers	to	the	representational	role	of	data	models	and	their	nonmathematical	target	systems.	A	
data	model	is	the	first	level	of	mathematical	models	that	is	constructed	with	data	sets	obtained	
by	measurement	procedures	(see	Suppes	1962	for	a	discussion	of	data	models,	and	van	Fraassen	
2008	for	a	detailed	account	of	the	indexical	role	of	mathematics).	Pincock’s	idea	is	that	if	the	role	
of	mathematics	in	applications	is	ultimately	indexical,	the	physical	world	in	itself	does	not	have	
mathematical	features,	and	therefore	it	would	be	hard	to	explain	how	a	mathematical	structure	
can	be	representational	at	all:		

Indeed,	it	is	hard	to	see	how	the	indexing	approach	is	even	supposed	to	get	off	the	ground	
when	the	mathematics	is	isolating	recurring	features…	we	typically	lack	the	knowledge	to	
characterize	these	features	in	non-mathematical	terms.	But	even	if	we	could,	a	physical	
characterization	of	 those	 features	 risks	 introducing	 irrelevant	aspects	of	 the	 systems	 in	
question	(2012,	210).	

Pincock’s	point	is	that	a	mathematical	representation	is	not	going	to	necessarily	be	restricted	to	
the	point	where	it	represents	only	what	is	explanatorily	relevant.	Many	cases	would	have	“surplus”	
mathematical	structure	that	is	not	relevant	for	the	explanation.	This	is	why,	for	Pincock,	we	must	
introduce	the	notion	of	instantiation.	

I	believe,	however,	that	this	charge	against	the	indexical	or	representational	approach	is	
unjustified,	because	there	is	no	risk	of	introducing	irrelevant	aspects	in	the	explanation.	The	choice	
for	an	appropriate	mathematical	representation	is	made	considering	the	background	knowledge	
about	what	 is	 and	what	 is	 not	 relevant	 to	 the	 explanation;	 this	 is	 done	prior	 to	 the	 choice	of	
mathematical	structure	to	be	used	in	the	explanation.		



	
	

106	

I	have	already	discussed	the	problems	with	this	notion	of	instantiation	in	section	§13,	but	
let	me	come	back	to	 it	 to	see	how	 it	works	 in	relation	to	Pincock’s	criticism	of	 the	 indexing	or	
representational	 approach.	 Let	 us	 examine	 once	 again	Mauricio	 Suárez’s	 quote	mentioned	 in	
section	 §13	 (cited	 and	 subscribed	 to	 by	 Pincock	 (cf.	 2012,	 29)).	 For	 Suárez,	 the	 notion	 of	
instantiation	must	be	understood	as	follows:	

We	may	say	that	an	object	instantiates	a	structure	if	there	is	some	division	in	parts	and	
relations	of	the	object	that	agrees	with	the	structure	[…]	Since	there	are	always	different	
ways	of	cutting	out	its	domain	of	elements	and	relations,	every	physical	object	instantiates	
simultaneously	several	structures.	The	physical	world	underdetermines	 its	mathematical	
structure	–	which	may	only	be	ascribed	under	a	particular	description	(2010,	96)	

For	Suárez,	a	physical	system	can	‘instantiate’	many	mathematical	structures.	Because	of	
this,	there	is	always	the	question	of	how	do	we	choose,	among	these	structures,	the	one	that	is	
relevant	 for	 a	 given	 scientific	 purpose.	 The	 idea	 is	 that	 whether	 or	 not	 a	 physical	 system	
instantiates	a	mathematical	structure	depends	on	specific	theoretical	assumptions	about	such	a	
system.	In	a	scientific	explanation,	these	are	assumptions	about	the	features	that	are	relevant	to	
explaining	 the	 explanandum.	 Pincock	 argues	 that	 if	 these	 features	 were	 not	 somehow	
mathematical,	 the	mathematical	 apparatus	would	 not	 be	 capable	 of	 highlighting	 the	 relevant	
explanatory	physical	features.	But	as	we	have	seen,	the	very	process	of	instantiation	consists	in	
highlighting	the	features	that	can	be	represented	with	a	specific	mathematical	structure.	This	is	
precisely	what	underlies	the	process	that	I	have	called	‘optimal	representation’.			In	my	account,	
we	want	to	understand	why	P	has	property	p*,	and	we	represent	P	with	the	mathematical	model	
M.	The	crucial	point	is	that	the	fact	that	we	chose	a	particular	model	M,	rather	than,	say,	model	
M’,	depends	on	our	background	knowledge,	 that	 is,	on	our	previous	understanding	of	what	 is	
relevant	to	the	explanation.	And	it	is	only	after	the	representation	is	in	place	–	a	representation	
that	is	loaded	with	our	own	theoretical	assumptions	about	what	is	relevant	to	the	explanation	–	
that	we	can	provide	a	mathematical	explanation.	Given	what	we	know	to	be	relevant	in	a	given	
situation,	we	decide	to	represent	the	physical	system	as	instantiating	(in	Suárez’s	sense)	a	given	
mathematical	structure	and	we	interpret	this	structure	in	empirical	terms.		

The	inferential	conception	of	the	applicability	of	mathematics	addresses	this	issue	without	
appealing	to	the	notion	of	instantiation.	The	question	is,	how	do	we	choose	the	right	mathematical	
structure	to	represent	a	physical	phenomenon	 in	a	given	situation.	Bueno	&	Colyvan	point	out	
that:	

[e]ven	if	there	is	some	privileged	way	of	carving	up	the	world	into	objects	and	relations	
(and,	 of	 course,	 it	 is	 extremely	 controversial	 that	 the	 world	 co-operates	 in	 this	 way,	
providing	 natural	 joints,	 as	 it	were),	 such	 a	 carving,	 it	would	 seem,	 is	 delivered	by	 our	
theories,	not	by	the	world	itself	(2011,	347).	

The	idea	is	that,	by	choosing	one	mathematical	model	(suitably	interpreted)	rather	than	another,	
we	assume	that	the	physical	system	has	certain	structural	features.	The	role	of	the	mathematical	
model	 is	 to	 represent	 these	 features.	 But	 in	 order	 to	 do	 this,	 we	 do	 not	 need	 the	 notion	 of	
instantiation.	Let	us	see	how	this	works	in	our	cases.		
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In	the	hand	shaking	case	of	section	§21,	for	example,	even	though	we	may	not	know	why	
there	have	been	45	hand-shakings	between	10	people,	we	know	that	the	only	relevant	things	are	
the	 connections	 between	 people,	 and	 we	 know	 that	 things	 like	 height,	 hair	 color,	 etc.	 are	
irrelevant.	And	it	is	with	this	background	knowledge	that	we	decide	to	represent	these	features	
using	 a	 complete	 graph.	 The	 system	 of	 10	 people	 can	 be	 represented	 by	 many	 different	
mathematical	structures,	depending	on	how	we	describe	it,	but	given	our	background	knowledge	
about	what	is	explanatorily	relevant	in	this	particular	explanatory	context,	we	choose	to	represent	
it	with	a	complete	graph.		

This	 is	 even	more	 evident	 in	 the	 bridges	 case.	 Recall	 Elher’s	 letter	 to	 Euler,	 where	 he	
suggested	that	the	solution	to	the	problem	may	require	Leibniz’s	Calculi	Situs	(§18).	Elher	already	
knew	that	distances	and	such	were	not	relevant,	and	Euler	mentioned	the	same	idea	to	Marinoni	
in	his	letter.	Before	providing	a	solution,	before	even	choosing	a	particular	mathematical	model,	
it	was	evident	 for	 these	 two	men	which	 things	were	 relevant	and	which	 things	were	not.	 The	
choice	of	a	mathematical	graph	is	an	expression	of	this	background	knowledge.		This	graph	does	
not	explain	why	such	a	path	is	impossible;	rather,	by	working	over	the	graph	Euler	showed	how	
the	 relevant	 physical	 facts	 do	 so.	 It	 tells	 us	 that	 areas,	 distances,	 etc.	 are	 not	 relevant,	 but	
connections	are.		

Likewise,	in	the	cicada	case,	it	was	their	background	knowledge	about	the	importance	of	
natural	 cycles	 in	 explaining	 animal	 behavior	 that	 led	 scientists	 to	 take	 years	 as	 the	 relevant	
measurement	unit,	and	to	idealize	years	as	equal	to	each	other.	Once	this	model	is	in	place,	we	
can	 forget	 about	 the	 cicadas	 and	 focus	 on	 the	 prime	 number	 of	 years,	 and	 so	 we	 have	 a	
mathematical	fact,	which	is	that,	say,	17	minimizes	intersection	with	numbers	less	than	34.	One	
can	use	time-lengths	to	illustrate	this	principle.	But	the	fact	that	these	time-lengths	exemplify	this	
mathematical	 theorem	does	 not	mean	 that	 they	 are	 explained	 by	 it.	 Again,	 the	mathematical	
representation	show	us	how	the	real	explanatory	facts	about	time	explain	the	life	cycles,	but	those	
facts	about	time	are	not	explained	by	the	mathematical	representation.		

From	my	discussion,	what	is	important	to	note	is	that	theoretical	background	knowledge	
about	 relevant	 features	 is	 an	essential	part	of	 the	process	of	 choosing	 the	 right	mathematical	
model	 to	 be	used	 in	 a	MEPP.	 It	 is	 because	of	 this,	 I	 have	 argued,	 that	 the	 representationalist	
approach	cannot	be	easily	dismissed	to	explicate	what	is	going	on	in	these	cases.	But	of	course,	
there	may	be	other	reasons	to	adopt	the	realist	approach	(what	I	called	the	‘descriptive’	view	at	
the	beginning	of	 this	chapter).	 I	analyze	 (and	reject)	what	 is	considered	to	be	one	of	 the	main	
arguments	for	the	descriptivist	approach	in	the	next	chapter.			

§31.	Conclusion	

The	 descriptive	 accounts	 I	 have	 discussed	 in	 this	 chapter	 appeal	 to	 the	 existence	 of	 physical	
properties	in	the	physical	world.	As	I	have	shown,	however,	this	assumption	is	not	needed	in	order	
to	explicate	what	is	special	about	MEPPs.	But	perhaps	there	are,	after	all,	mathematical	properties	
in	the	physical	world.	This	lead	us	to	the	Enhanced	Indispensability	Argument.		
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CHAPTER	5.	The	Indispensability	Argument	

§32.	Introduction	

The	Indispensability	Argument	(IA)	relies	on	the	applicability	of	mathematics	in	science	to	support	
mathematical	 realism.	 The	 explanatory	 version	 of	 the	 IA	 focuses	 on	 the	 indispensability	 of	
mathematics	 in	 scientific	 explanations,	 and	 relies	 on	 the	 principle	 of	 Inference	 to	 the	 Best	
Explanation	(IBE)	to	justify	its	conclusion.	The	idea	of	this	explanatory	IA	is	that	if	we	believe	in	the	
existence	of	the	concrete	unobservable	posits	that	feature	in	our	best	scientific	explanations,	we	
should	 also	 believe	 in	 the	 mathematical	 posits	 of	 those	 explanations.	 However,	 against	 the	
explanatory	IA	it	has	been	objected	that	the	role	of	mathematical	posits	in	scientific	explanations	
is	to	represent	concrete	explanatory	facts	and	help	draw	inferences	about	those	facts,	but	that	
mathematical	posits,	by	themselves,	are	not	explanatory.	This	has	been	taken	as	a	weakness	of	
the	explanatory	IA,	and	so	a	new	version	of	the	argument	has	been	recently	advanced,	known	as	
the	 ‘Enhanced	 Indispensability	 Argument’	 (EIA).	 The	 EIA	 relies	 on	 the	 fact	 that	 there	 are	
mathematical	 explanations	 of	 physical	 phenomena	 (MEPPs)	 to	 support	 the	 claim	 that	
mathematics	 can	 play	 an	 explanatory	 role	 beyond	 its	 representational	 and	 inferential	 roles.	
According	 to	 the	 EIA,	 if	we	 apply	 the	 IBE	 principle	 to	MEPPs,	mathematical	 realism	would	 be	
justified.	In	this	chapter	I	use	my	account	of	MEPPs	to	refute	the	EIA.	

I	start	by	introducing	the	original	IA	(§33),	and	discuss	criticisms	by	Charles	Parsons,	Elliott	
Sober	and	Penelope	Maddy	(§34).	Next,	I	present	the	explanatory	IA	(§35),	and,	after	presenting	
criticisms	 from	 Hartry	 Field	 and	 Joseph	 Melia,	 I	 discuss	 the	 motivation	 for	 the	 Enhanced	
Indispensability	Argument	(EIA)	(§36).	I	then	use	the	account	of	MEPPs	that	I	have	developed	in	
the	previous	two	chapters	to	show	that	the	EIA	fails.	First,	I	show	that	in	order	for	mathematics	to	
be	indispensable	in	explanations	in	a	way	that	carries	ontological	commitments,	the	explanandum	
must	 already	 be	 committed	 to	 the	 existence	 of	 mathematical	 properties	 and	 entities,	 which	
renders	 the	 EIA	 circular	 (§37).	 Next,	 I	 show	 that	 the	 indispensability	 of	 the	 mathematical	
component	in	MEPPs	is	pragmatic,	and	that,	ultimately	the	role	of	mathematics	is	representational	
and	 inferential	 (§38).	 For	 this	 reason,	 the	 existence	 of	 MEPPs	 does	 not	 have	 the	 ontological	
consequences	required	by	the	EIA.	My	goal	is	not	to	directly	defend	mathematical	nominalism,	
but	to	show	that	the	existence	of	MEPPs	does	not	support	mathematical	realism.			

§33.	Quine’s	indispensability	argument		

The	 original	 indispensability	 argument	 is	 based	 on	W.O.	 Quine’s	 doctrines	 of	 naturalism	 and	
confirmational	holism.	According	to	Quine,	naturalism	is:		

[The]	abandonment	of	the	goal	of	a	first	philosophy.	It	sees	natural	science	as	an	inquiry	
into	reality,	fallible	and	corrigible	but	not	answerable	to	any	supra-scientific	tribunal,	and	
not	in	need	of	any	justification	beyond	observation	and	the	hypothetico-deductive	method	
(cited	in	Resnik	2005,	416).			

This	 is	what	Michael	Resnik	calls	 ‘ontological	naturalism’,	 the	view	 that	 science	 is	 the	ultimate	
arbiter	of	existence.	For	Quine,	ontological	naturalism	implies	that	“it	is	within	science	itself,	and	
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not	in	some	prior	philosophy,	that	reality	is	to	be	identified	and	described”	(cited	in	Resnik	2005,	
427).	The	idea	is	that,	because	of	its	success,	science	is	the	only	enterprise	that	gives	us	an	accurate	
picture	of	the	world.	It	is	this	naturalistic	premise	that	entitles	us	to	believe	in	the	existence	of	the	
entities	or	processes	postulated	by	our	best	scientific	theories,	being	observable	 like	rocks	and	
apples,	or	unobservable	like	genes,	electrons,	radio	waves	and	electromagnetic	fields.		

Quine	also	defended	the	thesis	of	confirmational	holism,	which	is	that	claims	of	theoretical	
science	are	not	confirmed	or	refuted	in	isolation,	but	only	as	a	part	of	a	system	of	hypotheses.	
Scientific	hypotheses	are	never	tested	alone,	but	in	conjunction	with	auxiliary	hypotheses:		

The	 totality	 of	 our	 so-called	 knowledge	 or	 beliefs,	 from	 the	 most	 casual	 matters	 of	
geography	 and	 history	 to	 the	 profoundest	 laws	 of	 atomic	 physics	 or	 even	 of	 pure	
mathematics	and	logic,	is	a	man-made	fabric	which	impinges	on	experience	only	along	the	
edges	(cited	in	Resnik	2005,	414;	my	emphasis).	

On	this	view,	if	empirical	evidence	confirms	a	part	of	a	theory,	the	whole	theory	gets	confirmed,	
including	its	mathematical	components.	Since	mathematics	implies	quantification	over	numbers,	
functions,	 sets,	 etc.,	 the	 belief	 in	 the	 existence	 of	 these	 mathematical	 entities	 is	 justified.	 In	
Quine’s	words:	

Ordinary	interpreted	scientific	discourse	is	as	irredeemably	committed	to	abstract	objects	
–	to	nations,	species,	numbers,	functions,	sets	–	as	it	is	to	apples	and	other	bodies.	All	these	
things	figure	as	values	of	the	variables	in	our	overall	system	of	the	world.	The	numbers	and	
functions	contribute	just	as	genuinely	to	physical	theory	as	do	hypothetical	particles	(cited	
in	Colyvan	2001,	10).	

This	has	been	called	the	‘Indispensability	Argument’	(IA).	The	basic	idea	is	that,	because	of	
naturalism,	we	should	be	committed	to	the	truth	of	the	statements	that	are	indispensable	to	our	
best	scientific	 theories;	and	because	of	holism,	we	should	be	committed	to	all	 the	objects	and	
processes	over	which	those	statements	quantify.	Since	quantification	over	mathematical	objects	
is	indispensable	to	the	success	of	these	theories,	we	ought	to	be	committed	to	the	existence	of	
the	 mathematical	 objects	 mentioned	 in	 those	 statements.	 Mark	 Colyvan	 schematizes	 the	
argument	as	follows:		

P1:	We	 ought	 to	 have	 ontological	 commitment	 to	 all	 and	 only	 those	 entities	 that	 are	
indispensable	to	our	best	scientific	theories;		

P2:	Mathematical	entities	are	indispensable	to	our	best	scientific	theories.	

C.	We	ought	to	have	ontological	commitment	to	mathematical	entities	(Colyvan	2001,	11).	

The	 importance	 of	 the	 IA	 has	 been	 acknowledged	 by	 supporters	 and	 detractors	 of	
mathematical	 realism.	 Mark	 Colyvan	 (2001)	 takes	 it	 to	 be	 responsible	 for	 one	 of	 the	 most	
dominant	debates	in	the	philosophy	of	mathematics,	and	Hartry	Field	thinks	it	is	“the	only	non-
question-begging”	argument	for	mathematical	realism	(1980,	4).		
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Now,	with	 respect	 to	 the	nature	of	 the	mathematical	 objects	whose	existence	may	be	
supported	by	the	IA,	Colyvan	says	the	following:		

[The	 IA]	 simply	 asserts	 that	 there	 are	mathematical	 objects…	 any	 (realist)	 account	 of	
mathematical	objects	is	all	right	by	the	indispensability	argument.	It	must,	of	course,	be	
consistent	with	the	view	that	mathematics	has	an	empirical	character	(which	is	the	only	
real	restriction)	(2001,	142).			

	 This	 notion	 of	 empirical	 character	 is	 explicated	 by	 Quine	 in	 later	 formulations	 of	 the	
argument,	where	he	points	out	that:	

[i]nsofar	 as	mathematics	 gets	 applied	 in	 natural	 sciences,	 I	 see	 it	 as	 sharing	 empirical	
content.	Sentences	of	pure	arithmetic	and	differential	calculus	contribute	indispensably	to	
the	critical	semantic	mass	of	various	clusters	of	scientific	hypothesis	and	so	partake	of	the	
empirical	content	imbibed	from	the	implied	observation	categoricals	(1991,	269).	

	 The	notion	of	observation	categoricals	provides	a	softer	version	of	confirmational	holism.	
Back	in	Two	Dogmas,	the	unit	of	‘empirical	significance’	was	‘the	whole	of	science’,	but	later	Quine	
formulated	it	in	terms	of	‘clusters	of	sentences	just	inclusive	enough	to	have	critical	semantic	mass	
(i.e.	 are	 open	 to	 confirmation).	 An	 observation	 categorical,	 then,	 is	 a	 generalization	 that	
conditionally	 connects	 two	 observation	 sentences	 (e.g.	 ‘whenever	 this,	 that’).	 The	 empirical	
character	of	mathematics	implies	that,	since	mathematics	is	applied	in	the	sciences,	and	scientific	
claims	have	critical	semantic	mass,	mathematical	statements	are	open	to	empirical	refutation.		

As	we	have	seen	at	the	beginning	of	the	previous	chapter	(§25),	descriptive	accounts	of	
MEPPs	assume	some	hybridity	between	the	physical	and	the	mathematical	realms,	and	allow	the	
possibility	 of	 mathematics	 being	 revised	 in	 the	 face	 of	 experience.	 These	 are	 accounts	 that	
endorse	the	‘empirical	character’	of	mathematics.	Colyvan’s	point	is	that,	apart	from	the	fact	that	
mathematics	must	be	 somehow	empirical	 (which	 rules	out	pure	mathematical	 Platonism),	 the	
question	about	what	kind	of	objects	are	these	mathematical	objects	is	not	settled	by	the	IA.		

The	most	discussed	criticisms	against	 the	 IA	are	those	of	Charles	Parsons,	Elliott	Sober,	
Penelope	 Maddy,	 Hartry	 Field,	 and	 lately	 Joseph	 Melia.	 Parsons	 and	 Sober	 object	 that	
mathematics	is	unfalsifiable,	and	so	it	should	not	inherit	the	confirmation	of	the	scientific	theories	
that	use	them.	In	turn,	Maddy	objects	that	naturalism	(as	understood	by	Quine)	is	not	compatible	
with	confirmational	holism.	As	we	will	 see,	 this	poses	a	problem	when	mathematics	quantifies	
over	idealized	concrete	posits.	On	the	other	hand,	Field	targets	the	second	premise	of	the	IA.	He	
argues	 that,	 in	principle,	mathematics	 is	dispensable	 from	our	best	 scientific	 theories.	 In	 turn,	
Melia	argues	that	the	role	mathematics	plays	in	science	is	not	enough	to	justify	the	conclusion	of	
the	IA.	Some	of	these	objections	have	elicited	reformulations	of	the	IA.		In	the	following	sections	I	
will	present	these	objections,	discuss	some	replies	by	Michael	Resnik	and	Mark	Colyvan,	and	then	
focus	on	the	newer	version	of	the	IA.		
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§34.	Problems	with	confirmational	holism	

34.1.	The	unfalsifiability	of	mathematics	

a)	Charles	Parsons	and	Euclidean	rescues	

One	 complaint	 against	 the	 IA	 has	 been	 that	 mathematics	 seems	 to	 be	 unfalsifiable.	 Charles	
Parsons,	 for	 example,	 has	 pointed	 out	 that	 if	 mathematical	 theories	 inherit	 a	 share	 of	 the	
confirmation	 of	 scientific	 theories,	 one	 would	 expect	 them	 to	 be	 on	 a	 par	 with	 regard	 to	
falsification	as	well.	But	this	does	not	seem	to	be	true	of	mathematics:	

[N]o	proposition	of	pure	mathematics	has	been	falsified.	[For	example,]	no	proposition	of	
Euclidean	geometry	is	falsified	by	the	discovery	that	physical	space	is	not	Euclidean	(cited	
in	Colyvan	2001,	125).		

Resnik	replies	to	Parson	using	what	he	calls	‘Euclidean	rescues’.	For	Resnik,	although	it	is	true	that	
Euclidean	geometry	remains	unfalsified	as	an	abstract	theory	of	Euclidean	spaces,	it	was	indeed	
falsified	as	a	theory	of	physical	space.	These	Euclidean	rescues,	Resnik	argues,	can	in	principle	be	
applied	to	any	falsified	theory.	The	idea	is	that	in	cases	of	falsification,	the	mathematical	parts	of	
a	 theory	 should	 be	 interpreted	 as	 highlighting	 an	 abstract	 structure,	 rather	 than	 a	 concrete	
structure	 (Busch	 2012,	 500).	 I	 do	 not	 see,	 however,	 how	 this	 answer	 helps	 the	mathematical	
realist.	 If	 it	 is	true	that	even	false	theories	can	be	rescued,	why	would	science	be	important	to	
justify	Platonism,	as	the	IA	defendant	holds?	If	empirical	falsifications	do	not	affect	the	status	of	a	
mathematical	theory,	then	whether	or	not	that	theory	is	conceived	as	quantifying	over	fictional	or	
real	posits	is	independent	of	its	application	in	science	(as	I	will	show	below,	this	is	also	why	Resnik’s	
pragmatic	IA	fails).		

b)	Elliott	Sober	and	the	Maxim	of	minimal	mutilation	

Another	 criticism	 to	 the	 IA	 has	 been	pointed	out	 by	 Elliott	 Sober.	 According	 to	 him,	 it	 is	 very	
common	 that	 different	 scientific	 hypotheses	 share	 the	 same	 mathematical	 corpus	 in	 their	
assumptions,	and	so	those	mathematical	assumptions	are	never	tested.	For	mathematics	to	be	
actually	tested,	there	must	be	mathematics-free	competitors,	or	at	least	alternative	mathematical	
theories	as	competitors.	But	this	would	make	the	IA	implausible:	

[D]o	we	really	have	alternative	hypotheses	to	the	hypotheses	of	arithmetic?	If	we	could	
make	sense	of	such	alternatives,	could	they	be	said	to	confer	probabilities	on	observations	
that	differ	from	the	probabilities	entailed	by	the	propositions	of	arithmetic	themselves?	I	
suggest	that	both	these	questions	deserve	negative	answers	(cited	in	Colyvan	2001,	128).	

	 Now,	a	distinction	between	confirmation	and	falsification	can	be	established	using	Quine’s	
‘maxim	of	minimal	mutilation’,	which	is	an	application	of	Occam’s	razor	(“when	choice	is	otherwise	
undetermined,	opt	for	economy”	(Quine	1991,	269)).	When	a	cluster	of	sentences	with	critical	
semantic	mass	gets	confirmed	by	empirical	observations,	all	of	the	sentences	get	confirmed;	but	
when	 it	 gets	 disconfirmed,	 it	 is	 rarely	 the	 fault	 of	 every	 member	 of	 the	 cluster.	 One	 false	



	
	

112	

assumption	is	enough	to	render	the	whole	set	of	claims	false.	So	how	to	choose?	The	maxim	of	
minimal	mutilation	dictates	that	when	revising	a	set	of	claims,	we	must	try	to	avoid	altering	beliefs	
that	occupy	a	central	place	in	our	web	of	beliefs,	because	revising	these	central	beliefs	would	have	
ramifications	in	many	other	areas	of	the	web.	As	Quine	points	out,	this	is	precisely	the	case	of	our	
mathematical	beliefs:		

[W]e	 are	 disinclined	 to	 tamper	with	 logic	 or	mathematics	when	 a	 failure	 of	 prediction	
shows	 there	 is	 something	wrong	with	 our	 system	 of	 the	world.	We	 prefer	 to	 seek	 an	
adequate	revision	of	some	more	secluded	corner	of	science,	where	the	change	would	not	
reverberate	so	widely	through	the	system	(cited	in	Colyvan	2001,	126).		

Colyvan	 argues	 that	 this	maxim	 of	minimal	mutilation	 can	 be	 used	 to	 reply	 to	 Sober’s	
objection.	The	fact	that	many	theories	share	mathematical	assumptions	does	not	mean	that	these	
assumptions	are	untestable,	 it	only	means	that	these	assumptions	are	useful	 in	many	different	
contexts.	In	fact,	this	maxim	is	applied	in	a	variety	of	other	contexts.	As	Colyvan	points	out:		

Hypotheses	about	electrons	(notoriously)	have	been	employed	by	many	false	theories,	and	
yet	we	are	unwilling	to	blame	them	for	the	lack	of	empirical	support	for	the	theories	in	
question.	 Astrologers	 refer	 to	 the	 orbits	 of	 the	 planets	 in	 grossly	 false	 theories	 about	
human	behaviour,	and	yet	we	are	not	about	to	blame	the	planets	for	the	lack	of	empirical	
support	for	astrology	(2001,	132).		

The	maxim	of	minimal	mutilation	dictates	that,	in	the	face	of	falsification,	we	should	not	start	by	
questioning	 the	 assumptions	 that	 are	 central	 to	many	different	 theories.	 This	 does	not	mean,	
however,	that	those	shared	assumptions	are	untestable.		

Now,	to	be	fair	to	Sober,	all	that	Colyvan’s	reply	shows	is	that	the	fact	that	mathematics	is	
shared	by	many	branches	of	science	does	not	render	it	untestable	in	principle.	But	neither	Colyvan	
nor	Quine	nor	Resnik	have	presented	a	positive	case	for	the	testability	of	mathematics:	why	would	
mathematical	theories,	which	quantify	over	abstract	mathematical	objects,	be	abandoned	as	such	
simply	because	one	assigned	physical	interpretation	has	turned	out	to	be	incorrect?	To	my	mind,	
these	authors	have	not	advanced	a	convincing	case	to	support	this.	As	we	will	see,	this	is	not	the	
only	problem	with	confirmational	holism.		

34.2.	The	incompatibility	of	naturalism	and	confirmational	holism	

Penelope	Maddy	advances	two	criticisms	of	the	IA.	First,	she	questions	the	compatibility	between	
naturalism	 and	 confirmational	 holism.	 According	 to	 her,	 we	 ought	 not	 to	 have	 an	 ontological	
commitment	to	all	the	entities	indispensable	to	our	best	scientific	theories	(2005,	454).	Maddy	
does	not	reject	the	naturalistic	assumption	that	only	science	tells	us	what	exists	and	what	is	true;	
her	point	 is	 that	not	all	 the	entities	 indispensable	 to	science	exist.	Note	 that	 this	 first	criticism	
applies	to	scientific	theories	in	general,	and	not	only	to	mathematical	posits.	That	is,	Maddy	points	
to	problems	of	reconciling	naturalism	and	confirmational	holism	in	general,	not	necessarily	related	
to	 indispensability	 arguments.	 Consider	 the	 following	 examples:	 in	 fluid	 dynamics,	 matter	 is	
assumed	 to	 be	 continuous,	 but	 scientists	 do	 not	 take	matter	 to	 be	 continuous;	 for	 explaining	
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waves,	the	ocean	is	represented	as	infinitely	deep,	but	nobody	thinks	this	is	actually	the	case;	in	
classical	mechanics,	some	kinematic	properties	are	calculated	by	assuming	frictionless	planes,	but	
no	such	things	exist	in	the	world.	As	Maddy	points	out:		

If	we	can	 see,	 in	 the	course	of	our	 scientific	 study	of	 science,	 that	 certain	parts	of	our	
theory…	 don’t	 reflect	 what’s	 actually	 present	 in	 the	 physical	 situation…	 then	 it	 seems	
reasonable	to	conclude	that	these	parts	of	our	theory	are	not,	in	fact,	confirmed	by	our	
scientific	methods	(2005,	456).		

The	idea	of	this	criticism	is	that	by	naturalism,	we	should	respect	the	methods	of	working	
scientists,	and	working	scientists	often	appeal	to	entities	and	processes	that	they	do	not	take	to	
be	true;	but	according	to	confirmational	holism,	theories	get	confirmed	as	wholes.		So	there	seems	
to	be	an	incompatibility	between	these	two	principles,	and	Maddy	rejects	confirmational	holism.	
The	question	now	is	on	what	side	should	we	put	mathematics	once	we	abandon	the	picture	of	
scientific	theories	as	homogeneous	units.	According	to	Maddy,	if	mathematics	is	used	to	quantify	
over	 idealized	physical	objects	 (such	as	 frictionless	planes,	 infinitely	deep	oceans,	etc.),	 then	 it	
should	not	receive	a	share	in	confirmation	when	the	theory	gets	confirmed,	for	the	same	reason	
that	beliefs	 in	those	idealized	physical	objects	do	not	get	confirmed	either.	This	 is	also	true	for	
Quine’s	 moderate	 holism,	 according	 to	 which	 it	 is	 clusters	 of	 statements,	 rather	 than	 whole	
theories,	 that	 get	 confirmed	 as	 wholes.	 Maddy’s	 point	 is	 that,	 when	 those	 clusters	 include	
idealizations,	those	idealizations	are	never	confirmed	when	the	cluster	gets	confirmed.		

In	his	reply	to	Maddy,	Colyvan	points	out	that	the	indispensability	argument	is	about	those	
entities	that	are	 indispensable	to	science.	Idealizations	such	as	frictionless	planes,	says	Colyvan,	
are	not	 indispensable	(the	same	can	be	said	about	 infinitely	deep	oceans	and	the	continuity	of	
matter).	They	are	introduced	for	pragmatic	purposes	only:		

Appeal	 to	 frictionless	 planes	 simply	makes	 the	 statement	 of	 certain	 laws	of	mechanics	
easier,	 so	 omitting	 such	 appeals	makes	 little	 difference	 to	 the	 overall	 theory…	 [In	 that	
sense,]	frictionless	planes	are	dispensable	to	the	theory	of	mechanics	(Colyvan	2001,	99	
fn11).		

I	believe	that	Colyvan	is	correct	 in	the	case	of	Galilean	idealizations,	such	as	frictionless	
planes	introduced	for	tractability	purposes,	or	in	the	case	of	minimal	model	idealizations	that	can	
be	cashed	out	in	empirical	terms,	such	as	some	explanations	of	the	bridges	of	Königsberg	case.	
But	Maddy’s	point	still	stands,	because	there	are	other	kinds	of	mathematical	models	where	not	
all	false	assumptions	are	dispensable	in	the	way	Colyvan	suggests.		As	we	saw	in	sections	§12	and	
§15,	 non-deidealizable	 idealizations	 are	 also	 part	 of	 scientific	 practice,	 like	 asymptotic	
explanations.	In	those	cases,	some	of	the	mathematics	used	quantifies	over	false	objects	in	a	way	
that	is	indispensable	to	the	explanation,	but,	again,	we	are	not	committed	to	the	existence	of	these	
objects.		
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34.3.	Resnik’s	pragmatic	IA	

Maddy’s	argument	relies	on	a	distinction	between	parts	of	a	theory	that	are	true,	and	parts	that	
are	merely	useful:		

If	we	 remain	 true	 to	 our	 naturalist	 principles	we	must	 allow	 a	 distinction	 to	 be	 drawn	
between	parts	of	a	theory	that	are	true	and	parts	that	are	merely	useful.	We	must	even	
allow	 that	 the	merely	useful	 parts	might	 in	 fact	be	 indispensable,	 in	 the	 sense	 that	no	
equally	good	 theory	of	 the	 same	phenomena	does	without	 them.	Granting	all	 this,	 the	
indispensability	of	mathematics	 in	well-confirmed	scientific	theories	no	longer	serves	to	
establish	its	truth	(cited	in	Resnik	1997,	46).	

Now,	 Resnik	 argues	 that	 even	 if	 we	 grant	 this	 distinction,	 the	 IA	 would	 stand.	 That	 is	
because,	for	him,	it	is	the	mere	usefulness	of	mathematics	in	science	that	grants	commitment	to	
mathematical	 posits.	 Resnik	 has	 pointed	 out	 that	 when	 scientists	 use	 mathematics,	 they	
presuppose	 the	 truth	 of	 these	 mathematical	 theories,	 even	 in	 cases	 where	 they	 know	 their	
physical	theories	to	be	false:			

[A]	careful	analysis	of	the	way	scientists	use	mathematics	reveals	that	they	presuppose	its	
truth.	Even	when	using	such	devices	as	point-masses,	frictionless	objects,	or	ideal	gases	to	
develop	 idealized	models,	 they	 presuppose	 the	 reality	 of	 the	mathematical	 objects	 to	
which	they	refer	(1997,	6).	

Resnik	acknowledges	 that	 this	 leads	 to	a	different	version	of	 the	 IA,	one	that	does	not	 rely	on	
confirmational	holism.	He	calls	it	the	‘pragmatic’	indispensability	argument	(1997,	46).	The	basic	
idea	is	that	even	when	quantifying	over	false	objects,	science	needs	mathematics.	Resnik	thinks	
that	these	applications	of	mathematics	would	not	be	possible	if	mathematics	were	false.	On	this	
view,	 successful	 theories	 confirm	 their	 derivation	 methods.	 Here	 is	 Resnik’s	 pragmatic	 IA	 in	
standard	form:	

P1P.	 In	 stating	 its	 laws	and	 conducting	 its	derivations	 science	assumes	 the	existence	of	
many	mathematical	objects	and	the	truth	of	much	mathematics	

P2P.	These	assumptions	are	indispensable	to	the	pursuit	of	science;	moreover,	many	of	the	
important	conclusions	drawn	from	and	within	science	could	not	be	drawn	without	taking	
mathematical	claims	to	be	true.	

CP.	 So	 we	 are	 justified	 in	 drawing	 conclusions	 from	 and	 within	 science	 only	 if	 we	 are	
justified	in	taking	the	mathematics	used	in	science	to	be	true	(Resnik	1997,	46-7)	

	 Resnik	notes	that	this	version	of	the	IA	does	not	presuppose	that	our	best	scientific	theories	
are	true.	It	applies	whenever	scientists	presuppose	the	truth	of	mathematics,	even	in	theories	that	
have	been	empirically	 falsified	(e.g.	Newtonian	physics).	What	 is	more,	 the	argument	does	not	
presuppose	that	the	evidence	for	science	is	also	the	evidence	for	mathematics	(cf.	1997,	47).	In	
that	 sense,	 the	 justification	 for	mathematical	 realism	 is	 not	 the	 same	as	 the	one	 for	 scientific	
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realism.	One	can	be	a	scientific	antirealist	and	still	believe	in	the	truth	of	mathematics	(cf.	1997,	
6).	It	is	the	indispensability	of	mathematics	in	doing	science	that	justifies	its	truth,	regardless	of	
whether	it	is	confirmed	science	or	not.			

	 It	seems	to	me,	however,	that	this	version	of	the	IA	faces	a	serious	problem:	the	argument	
presupposes	 the	 truth	 of	 mathematics	 before	 it	 is	 successfully	 applied	 in	 science.	 Resnik’s	
pragmatic	IA	requires	us	to	have	“quite	a	bit	of	independent	evidence	from	mathematics”	(1997,	
47),	which	comes	from	our	everyday	practices	of	measuring,	counting,	etc.	(cf.	1997,	48).	But	if	
this	is	all	that	is	needed	to	justify	mathematics,	then	we	do	not	need	the	IA	as	support	for	its	truth.	
If	 mathematics	 can	 be	 justified	 by	 false	 scientific	 theories	 just	 because	 they	 presuppose	 the	
correctness	of	mathematical	derivations,	why	would	it	be	necessary	to	appeal	to	science	in	the	
first	place?	Evidently,	purely	mathematical	practice	also	requires	mathematical	derivations,	but	
we	do	not	take	mathematics	itself	to	be	justified	by	it,	at	least	not	when	our	main	purpose	is	to	
argue	for	the	truth	of	mathematics	by	appealing	to	its	applicability	in	science.	But	what	would	be	
the	gain	of	 successful	 applicability,	 if	 unsuccessful	 applicability	 also	 justifies	 the	 truth	of	 these	
theories?	Resnik’s	modification	of	the	IA	renders	it	circular.		

§35.	The	explanatory	indispensability	argument	

35.1.	Inference	to	the	best	explanation	

One	special	kind	of	indispensability	argument,	the	one	most	discussed	in	the	literature60,	focuses	
on	indispensability	for	explanations.	This	version	of	the	IA	is	based	on	the	principle	of	Inference	to	
the	Best	Explanation	(IBE),	which	is	explicated	by	Hartry	Field	as	follows:			

[S]uppose	(a)	that	we	have	certain	beliefs,	beliefs	about	‘the	phenomena’,	which	we	are	
unwilling	 to	 give	 up;	 (b)	 that	 this	 class	 of	 ‘phenomena’	 that	we	 believe	 in	 is	 large	 and	
complex;	(c)	that	we	have	a	pretty	good	explanation	of	these	phenomena	(in	the	sense	of,	
a	relatively	simple	non-ad	hoc	body	of	principles	from	which	they	follow);	and	(d)	one	of	
the	assumptions	that	appears	in	this	explanation	is	claim	S,	and	we	are	pretty	sure	that	no	
explanation	of	the	phenomena	that	does	without	claim	S	is	possible.	The	idea	of	‘inference	
to	 the	best	explanation’	 is	 that	under	 these	circumstances	we	have	a	 strong	 reason	 to	
believe	claim	S	(1989,	15)	

The	IBE	principle	entails	that	if	a	belief	is	indispensable	to	the	best	explanation	of	a	given	
phenomenon,	then	we	should	believe	it,	“regardless	of	whether	that	belief	is	itself	observational,	
and	regardless	of	whether	the	entities	it	is	about	are	observable	[entities]”	(Field	1989,	15).	Field	
points	 out	 that	 one	 reason	 why	 the	 difference	 between	 observable,	 unobserved,	 and	
unobservable	 is	 unimportant	 for	 the	 application	 of	 IBE	 is	 that	 every	 time	 we	 rely	 on	 the	 IBE	
principle	we	are	believing	something	beyond	what	we	have	observed:		

																																																													
60	This	version	of	the	IA	was	widely	discussed	in	the	literature	years	before	Baker	(2005)	and	Colyvan	(2001)	
presented	the	Enhanced	Indispensability	Argument	(see	e.g.	Field	1989;	Steiner	1978b).	The	EIA	relies	on	
so	called	genuine	MEPPs.		
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The	 fact	 that	 one	 belief	 could	 be	 fairly	 directly	 tested	 by	 observation	 while	 the	 other	
couldn’t	seems	to	have	no	relevance	to	their	evidential	status	when	such	an	independent	
test	has	not	been	made.	(When	the	independent	test	has	been	made	[…]	then	we	need	no	
longer	rely	on	inference	to	the	best	explanation.	When	we	do	rely	on	inference	to	the	best	
explanation,	our	beliefs	go	beyond	the	observations	we	have	made,	and	my	point	is	that	
the	difference	with	respect	to	possible	observations	that	haven’t	been	made	is	irrelevant	
to	our	actual	evidential	situation.)	(1989,	16)	

There	are,	however,	two	cases	where	the	IBE	principle	does	not	apply.	First,	according	to	
Field,	the	IBE	principle	does	not	apply	to	so	called	‘as-if’	claims,	that	is,	claims	of	the	form	“the	
phenomena	are	as	they	would	be	if	explanation	E	were	correct”	(1989,	15).	These	claims	do	not	
start	from	accepting	the	truth	of	the	explanandum;	rather,	they	aim	at	establishing	the	truth	of	
the	explanandum	because	there	is	a	nice	candidate	explanation	in	the	offing.	‘As-if’	explanations	
cannot	be	used	to	establish	ontological	commitments	based	on	the	IBE	principle,	because	they	are	
more	similar	to	arguments	than	to	explanations:	they	assume	the	correctness	of	the	explanation	
in	order	to	establish	truths	about	the	explanandum	(as	I	will	show	(§37),	Baker	made	this	mistake	
in	his	first	reconstruction	of	the	cicada	case	to	defend	his	version	of	the	IA).	In	addition,	Joseph	
Melia	has	pointed	out	that	not	all	the	elements	involved	in	an	explanation	are	responsible	for	the	
explanatory	power	of	the	explanation,	and	only	those	that	are	should	be	interpreted	realistically.	
These	elements	are	said	to	be	playing	a	genuine	explanatory	role,	and	the	IBE	strategy	applies	only	
to	them.	Some	authors	have	pointed	out	that	to	play	an	explanatory	role	is	to	be	indispensable	to	
the	explanation.	But	as	Melia	has	pointed	out,	it	is	not	enough	for	a	posit	to	be	indispensable	to	
the	explanation:	it	has	to	be	indispensable	in	the	right	way.			

35.2.	The	explanatory	IA	

The	explanatory	version	of	the	IA	substitutes	the	first	premise	of	Quine’s	IA	with	the	IBE	principle,	
and	appeals	to	an	alleged	indispensability	of	mathematics	in	scientific	explanations	to	conclude	
that	 by	 IBE	we	 should	 accept	 the	 truth	 of	 the	mathematical	 statements	 that	 feature	 in	 these	
explanations,	and	consequentially,	 the	existence	of	 the	mathematical	objects	posited	by	 those	
statements.	In	standard	form	the	argument	would	be	as	follows:			

P1E:	We	ought	rationally	to	believe	in	the	existence	of	any	entity	that	is	indispensable	to	
our	best	scientific	explanations.		

P2E:	Mathematical	objects	are	indispensable	to	our	best	scientific	explanations.		

C:	Hence,	we	ought	rationally	to	believe	in	the	existence	of	mathematical	objects	(Adapted	
from	Baker	2009,	613).	

It	 is	 important	 to	 note	 that	 the	 argument	 does	 not	 simply	make	 an	 analogy	 between	
explanations	 that	 require	postulation	of	 concrete	unobservables	and	explanations	 that	 require	
postulation	of	mathematical	entities.	As	Field	points	out,	the	argument	is	actually	stronger.	It	says	
that	the	same	scientific	explanations	that	posit	unobservables	also	posit	mathematical	entities.	In	
that	sense,	 it	 is	not	possible	 to	distinguish	between	different	kinds	of	explanations,	 labeling	as	
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weaker	those	that	postulate	mathematical	entities,	and	stronger	those	that	rely	only	on	concrete	
objects	 (Field	1989,	 17).	 This	 actually	makes	 this	 version	of	 the	 IA	more	pressing	 for	 scientific	
realists	than	for	other	philosophers.	The	argument	claims	that	the	same	explanations	that	require	
us	to	believe	in	unobservable	concrete	objects	or	processes,	also	require	us	to	believe	in	abstract	
mathematical	objects.	Of	course	not	all	philosophers	are	scientific	realists,	but	the	point	of	this	
version	of	the	argument	is,	as	Hilary	Putnam	has	pointed	out,	that	if	you	admit	that	theoretical	
entities	exist,	then	you	would	be	intellectually	dishonest	 if	you	do	not	grant	that	mathematical	
entities	exist	as	well	(cf.	Colyvan	2001,	10-11).		

35.3.	Objections	to	the	explanatory	IA:	The	hard	road	and	the	easy	road	

Most	criticisms	of	this	argument	focus	on	the	indispensability	thesis	(P2).	According	to	Hartry	Field,	
there	 is	 a	 fundamental	 difference	 between	 quantification	 over	 mathematical	 entities	 and	
theoretical	entities.	For	Field:		

Truth	 is	 not	 required	 for	 goodness…	 what	 is	 required	 instead	 is	 something	 call	
conservativeness,	which	involves	some	of	the	features	of	necessary	truth	without	involving	
truth	(1989,	4).		

Mathematics	is	useful	in	science	because	mathematics	is	conservative	over	the	non-mathematical	
world:	

(C)	CONSERVATIVENESS:	A	mathematical	 theory	M	 is	conservative	 if	and	only	 if	 for	any	
assertion	A	about	the	physical	world	and	any	body	N	of	such	assertions,	A	doesn’t	follow	
from	N	+	M	unless	it	follows	from	N	alone	(1989,	58).		

For	 Field,	 this	 marks	 a	 fundamental	 difference	 between	 mathematics	 and	 concrete	
physical	 posits.	 If	 the	nominalistic	 theory	 is	 consistent,	 then	every	 claim	about	 its	 domain	will	
follow	entirely	from	its	nominalistic	premises.	Adding	mathematics	to	a	scientific	theory	does	not	
carry	 any	 new	 consequence	 about	 the	 theory’s	 empirical	 domain.	 The	 purpose	 of	 adding	
mathematics	is	to	help	find	out	about	those	consequences	by	shortening	derivations	within	the	
nominalistic	theory.	On	the	contrary,	the	postulation	of	new	concrete	objects	typically	results	in	a	
theory	 that	 has	 new	 implications	 about	 its	 domain.	 In	 principle,	 Field	 argues,	 in	 science	 any	
inference	 from	 a	 set	 of	 premises	 to	 a	 set	 of	 conclusions	 that	 can	 be	made	 with	 the	 help	 of	
mathematics	can	also	be	made	without	it;	but	this	is	not	the	case	of	theoretical	entities.	Because	
of	this,	Field	says,	scientific	theories	can	in	principle	be	reformulated	without	using	mathematics,	
and	in	that	sense	mathematics	is	dispensable	in	a	way	theoretical	entities	are	not.		

Field’s	strategy	has	been	called	‘the	hard	road	to	nominalism’	(cf.	e.g.	Colyvan	2010),	since	
it	 refutes	 the	 indispensability	of	mathematics	by	 showing	how	science	 can	be	 reformulated	 in	
nominalistic	terms	(hence	the	title	of	Field’s	1980	book:	‘Science	without	Numbers’).	This	strategy	
has	received	many	criticisms	(see	Bueno	2014	for	a	summary);	but	let	me	focus	on	the	two	that	
are	relevant	to	my	discussion.		
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Though	reluctant	to	accept	mathematical	realism,	Joseph	Melia	argues	that	we	should	not	
attempt	 to	eliminate	quantification	over	abstract	entities	 in	 science	because	 this	 should	 imply	
going	 against	 current	 scientific	 practice	 (2002,	 454),	 and	 it	 is	 very	 unlikely	 that	 scientists	 will	
change	their	practice	of	quantifying	over	abstracta.	As	he	puts	it,	“if	we	really	are	to	respect	the	
practice	of	scientists,	we	ought	to	accept	the	abstract	ontology	which	their	practice	commits	them	
to”	(2002,	p.457).	In	addition,	Melia	claims,	in	practice	it	is	impossible	to	express	some	scientific	
contents	 without	 mathematics,	 especially	 if	 we	 consider	 mathematics’	 great	 representational	
power.	

Melia’s	 strategy	 against	 the	 indispensability	 thesis	 is	 to	 respect	 the	 practice	 of	 using	
mathematics	in	science	―which	consists	in	quantifying	over	mathematical	objects―	while	at	the	
same	time	refraining	(‘weaseling	away’)	from	accepting	these	objects	in	our	ontology	(hence	the	
title	 of	 Melia’s	 2000	 article:	 ‘Weaseling	 Away	 the	 Indispensability	 Argument’).	 This	 is	 in	 fact,	
according	to	Melia,	what	most	scientists	do	in	practice.	But	how	do	we	know	when	to	apply	the	
‘weaseling’	strategy?	The	idea	is	that	mathematical	entities	and	concrete	unobservable	entities	do	
not	play	the	same	role	in	science.	Although	both	concrete	unobservable	entities	and	mathematical	
entities	 may	 be	 indispensable	 to	 science,	 they	 are	 not	 indispensable	 in	 the	 same	 way.	
Quantification	over	concrete	unobservables	 is	ontologically	committing,	whereas	quantification	
over	 mathematical	 entities	 is	 not;	 this	 is	 because,	 contrary	 to	 concrete	 unobservables,	
mathematical	 entities	 give	 us	 information	 about	 the	 world	 by	 playing	 an	 indexical	 or	
representational	role,	and	an	inferential	role.	Specifically,	“mathematics	can	enable	us	to	express	
possibilities	about	the	concrete	world	that	may	not	be	expressible	in	nominalistically	acceptable	
language.”	(2000,	255).	Because	of	this,	mathematics	is	indeed	very	useful	for	doing	science,	even	
indispensable	in	practice,	but	this	does	not	mean	that	beliefs	in	mathematical	entities	are	justified	
by	this	usefulness:		

[M]athematics	 is	 the	necessary	 scaffolding	upon	which	 the	bridge	 [of	 science]	must	be	
built.	But	once	the	bridge	has	been	built,	the	scaffolding	can	be	removed	(Melia	2000,	469).	

Now,	as	we	saw,	the	IBE	principle	entails	that	our	commitments	to	concrete	unobservables	
are	grounded	on	the	fact	that	some	of	our	best	scientific	theories	gain	their	explanatory	power	
from	positing	the	existence	of	those	entities	or	processes	(we	believe	in	the	existence	of	electrons,	
or	in	evolution,	in	part	because	of	the	vast	array	of	phenomena	that	can	be	explained	by	positing	
them);	 but	 this	 is	 not	 the	 case	 of	 the	 role	 of	 mathematics.	 As	 we	 have	 seen	 (§14,	 §15),	
mathematical	 statements	 feature	 in	 our	 best	 scientific	 theories	 because	 these	 mathematical	
statements	can	correctly	represent	some	aspects	of	the	physical	world	and	help	us	draw	inferences	
about	 concrete	 objects.	 In	 that	 sense,	 the	 role	 of	 mathematics	 in	 science	 is	 merely	
representational	and	inferential,	as	stated	by	the	inferential	conception.61	Even	when	mathematics	
features	 in	 scientific	explanations,	 it	does	not	play	an	explanatory	 role.	This	 strategy	has	been	
called	‘the	easy	road	to	nominalism’	(cf.	Colyvan	2010)	since,	contrary	to	Field’s	strategy,	it	does	

																																																													
61	 Representational	 is	 understood	 here	 a	 broad	 sense.	 Mathematics	 represents	 (highlights)	 physical	
features	by	directly	representing	them,	or	by	isolating	them	by	indexing	what	is	and	what	is	not	relevant	in	
a	given	context	(see	section	§12).		



	
	

119	

not	require	the	elimination	of	mathematical	vocabulary	from	scientific	theories	(see	Melia	2000,	
2002,	and	also	Bueno	2012).		

Melia’s	challenge	for	defendants	of	the	explanatory	indispensability	argument	is	to	show	
that	mathematics	can	play	an	indispensable	explanatory	role	in	science,	not	only	that	it	provides	
us	 with	 good	 representations	 of	 the	 relevant	 physical	 properties	 that	 feature	 in	 successful	
explanations.		This	has	given	rise	to	a	modified	version	of	the	explanatory	IA,	which	focuses	not	in	
scientific	 explanations	 in	 general,	 but	 in	mathematical	 explanations	 of	 physical	 phenomena,	
where,	allegedly,	the	role	of	mathematics	is	genuinely	explanatory.	Here	is	where	the	topic	of	this	
dissertation	becomes	relevant	to	this	discussion	in	the	philosophy	of	mathematics.		

§36.	The	Enhanced	Indispensability	Argument62	

Alan	Baker	(2005)	and	Mark	Colyvan	(2001)	attempt	to	reformulate	the	explanatory	IA	in	a	way	
that	accommodates	Melia’s	challenge.	The	key	to	the	success	of	their	project	is	to	call	attention	
to	the	existence	of	purely	mathematical	explanations	of	physical	phenomena	(MEPP)	in	science.	
Because	of	this,	on	their	view,	mathematical	realism	would	be	justified	if	we	reason	like	this:			

P1*:	 We	 ought	 rationally	 to	 believe	 in	 the	 existence	 of	 any	 entity	 that	 plays	 an	
indispensable	explanatory	role	in	science.		

P2*:	Mathematical	objects	play	an	indispensable	explanatory	role	in	science.		

C:	Hence,	we	ought	rationally	to	believe	in	the	existence	of	mathematical	objects	(cf.	Baker	
2009,	613).	

This	 has	 been	 called	 the	 Enhanced	 Indispensability	 Argument	 (EIA).	 In	 Colyvan’s	 words,	 “if	
mathematics	is	contributing	directly	to	explanations,	it	is	hard	to	see	how	any	scientific	realist	can	
accept	the	explanations	yet	deny	the	truth	of	the	mathematics”	(Colyvan	2007,	120).	

This	new	version	of	the	IA	depends	on	whether	some	of	our	best	scientific	explanations	
indispensably	 depend	 on	 their	 mathematical	 part.	 In	 other	 words,	 the	 EIA	 relies	 on	 whether	
mathematics	can	be	indeed	indispensably	explanatory	in	the	sense	required	by	premise	P1*.	It	is	
for	this	reason	that	the	analysis	of	MEPPs	is	important.	If	it	is	found	that	the	role	of	mathematics	
in	MEPPs	 is	 genuinely	 explanatory,	 then	according	 to	Baker,	 Colyvan	and	Melia,	mathematical	
realism	would	be	 justified	because,	as	Baker	puts	 it,	 “the	mathematical	postulates	would	have	
virtues	 that	 the	 nominalist	 has	 already	 conceded	 carry	 ontological	weight”	 (Baker	 2005,	 225).	
Melia	claims	that	there	are	no	such	cases,	but	Baker	and	Colyvan	claim	that	there	are	―precisely	
the	MEPPs	that	I	have	discussed	in	previous	chapters.	In	the	following	sections	I	will	show	that	the	
EIA	 can	 be	 resisted	 by	 adequately	 distinguishing	 between	 the	 physical	 and	 the	mathematical	
explanandum,	 and	 showing	 that	 the	 mathematized	 version	 is	 not	 superior,	 in	 the	 relevant	
respects,	to	the	nominalized	version	(§37).	I	will	then	use	my	own	account	of	MEPP	to	argue	that	
the	EIA	is	unsound	because	the	sense	of	 indispensability	of	P2*	is	not	the	one	required	by	P1*	

																																																													
62	Parts	of	this	and	the	following	sections	have	been	published	in	Barrantes	(2017)	
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(§38).	 Most	 of	 my	 analysis	 will	 be	 focused	 on	 the	 cicada	 case,	 since	 according	 to	 most	 EIA	
supporters,	it	is	this	case	that	better	illustrates	their	view.		

§37.	Are	MEPPs	the	best	explanations?	

When	he	first	presented	his	new	version	of	the	IA,	Baker	worried	that	for	the	argument	to	work,	
there	must	be	genuine	mathematical	explanations	of	physical	facts,	and	not	only	of	mathematical	
facts:			

We	 are	 interested…	 in	 cases	 where	 the	 postulation	 of	 mathematical	 objects	 yields	
explanatory	power.	A	key	strategic	point	of	the	indispensability-based	approach	is	to	focus	
on	external	applications	of	mathematics,	since	otherwise	it	is	open	to	charges	of	circularity.	
Thus	we	 shall	 not	 be	 discussing	mathematical	 explanations	 of	mathematical	 facts.	 And	
since	our	concern	here	is	with	the	application	of	mathematics	to	science,	the	explanandum	
of	any	putative	example	must	be	some	physical	phenomenon	(2005,	225).	

Now,	as	we	have	seen,	Melia’s	objection	to	the	original	IA	requires	that,	for	the	EIA	to	work,	
the	mathematical	explanation	should	not	apply	only	to	a	mathematical	representation	of	a	physical	
phenomenon.	 If	 the	mathematical	 explanandum	was	merely	 a	 representation	 of	 the	 physical	
explanandum,	then	there	would	be	those	physical	features	represented	by	the	mathematics	that	
would	actually	be	doing	the	real	explaining,	and	the	mathematical	explanation	would	be	 just	a	
proxy	to	find	out	about	them.	So,	in	order	to	work	as	support	for	mathematical	realism,	the	EIA	
requires	that	the	MEPP	applies	to	the	mathematical	features	of	the	physical	explanandum.63	I	will	
use	 the	 cicada	 case	 to	 exemplify	 this	 problem	and	Baker’s	 solution	 to	 it.	 I	will	 then	 challenge	
Baker’s	solution.		

37.1.	The	concept	of	primeness	in	the	cicada	case	

One	important	thing	to	note	in	the	two	scientific	explanations	of	the	cicada	life	cycles	(see	19.2)	is	
the	way	 the	 concept	of	 primeness	 is	 used.	 Sometimes	primeness	 refers	 to	 a	property	of	 time	
lengths,	and	sometimes	it	refers	to	a	property	of	numbers.	The	relevant	scientific	literature	does	
not	make	this	philosophical	distinction,	and	so	one	important	question	here	is	whether	we	should	
take	 scientists	 at	 face	 value	 and	 ignore	 the	 distinction,	 or	 whether	 we	 should	 differentiate	
between	two	uses	of	the	word	‘prime’.		

According	to	Juha	Saatsi,	we	should	not	take	scientists	at	face	value	in	this	case	(2011,	153).	
Whenever	the	word	‘prime’	is	used	in	these	explanations,	it	is	done	with	the	purpose	of	picking	
out	the	relevant	property	of	 time.	For	Saatsi,	 the	starting	point	 is	 that	“the	 life-cycle	period	of	
North-American	cicada	[is]	exactly	13	or	17	years”	(2011,	149).	Numbers	13	and	17	are	used	to	
represent	the	fact	that	“both	cicada	life-cycles	are	intersection-minimizing	periods”	(2011,	153).	
From	Saatsi’s	remarks,	I	believe	the	following	reconstruction	of	the	cicada	case	can	be	advanced64:	

																																																													
63	Which,	as	we	will	immediately	see,	implies	commitment	to	the	existence	of	such	features.			
64	I	am	not	sure	whether	this	is	what	Saatsi	had	in	mind,	but	in	any	case,	this	is	the	interpretation	that	I	
defend	in	this	section.		
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The	 concept	 of	 primeness	 is	 responsible	 for	 picking	 out	 the	 empirical	 property	 of	 being	
‘intersection-minimizing	 periods’.	 Once	 we	 assume	 that	 the	 cycles	 are	 evolutionarily	
advantageous,	 the	 explanandum	 is	 that	 the	 ‘life-cycles	 represented	 by	 prime	 numbers	 are	
evolutionarily	advantageous’,	and	the	explanation	must	show	how	this	is	so.		

On	the	other	hand,	Alan	Baker	argues	that,	in	this	case,	there	is	no	reason	to	contradict	
scientists	on	their	use	of	the	term	‘prime’.	On	Baker’s	view,	as	we	have	seen,	the	life	cycles	are	
themselves	(mathematically)	prime:	

Even	once	biologists	had	good	explanations	for	the	long	duration	and	periodicity	of	
cicada	 life	 cycles,	 they	 remained	 puzzled	 about	 why	 these	 periods	 have	 the	
particular	lengths	they	do.	And	there	is	good	evidence,	based	on	what	they	write	
and	say,	that	this	puzzlement	only	arose	because	of	the	fact	that	both	of	the	known	
period	lengths	are	prime	(2009,	617).	

According	to	Baker,	then,	the	explanandum	in	the	cicada	case	is	‘prime	life	cycles	are	evolutionarily	
advantageous’.	The	explanation	consists	in	showing	how	the	property	of	primeness	provides	the	
desired	evolutionary	advantage.			

This	distinction	between	different	descriptions	of	the	explanandum	in	the	cicada	case	is	
particularly	important	for	Baker.	In	the	first	case,	the	quantification	over	mathematical	objects	can	
be	 avoided,	 but	 in	 the	 second	 case,	 the	 explanandum-claim	 ineliminably	 quantifies	 over	
mathematical	objects.	As	Baker	explains,	when	one	describes	the	cycles	as	being	13	and	17	years	
respectively,	one	can	express	the	same	idea	without	referring	to	numbers	by	using	first	order	logic	
with	identity.	For	example,	a	claim	such	as	‘the	number	of	F’s	is	2’	can	be	paraphrased	like	this:		

∃𝑥∃𝑦(𝐹𝑥 ∧ 𝐹𝑦 ∧ 𝑥 ≠ 𝑦 ∧ ∀𝑧 𝐹𝑧 ⊃ 𝑧 = 𝑥 ∨ 𝑧 = 𝑦 )	

(cf.	Baker	2009,	619)	

Evidently,	an	analogous	paraphrase	can	be	done	for	‘the	length	(in	years)	of	the	life	cycle	of	one	
cicada	subspecies	is	13’	and	‘the	length	(in	years)	of	the	life	cycle	of	the	other	cicada	subspecies	is	
17.’	However,	Baker	points	out,	‘the	number	of	F’s	is	prime’	cannot	be	paraphrased	away	like	this.	
Since	there	are	infinite	ways	for	a	number	to	be	prime,	the	paraphrase	would	involve	an	infinite	
disjunction	(‘X	has	life	cycle	length	2	or	length	3	or	length	5	or	…’)	(Baker	2009,	619).	Given	the	
fact	 that	 scientists	 do	 describe	 the	 explanandum	 in	 terms	 of	 primeness,	 and	 that	 there	 is	 no	
nominalist	paraphrase	of	this	notion,	the	particular	parts	of	number	theory	that	have	been	used	
in	the	cicada	example	are	ineliminable,	and	for	this	reason,	Baker	argues,	“the	mathematics	in	the	
[explanation	of	the]	cicada	case	is	indispensable”	(2009,	620).		

Now,	 given	 that	 Baker’s	 goal	 is	 to	 support	 mathematical	 Platonism,	 describing	 the	
explanandum	 in	 this	 way	 is	 problematic.	 In	 an	 explanation,	 the	 explanandum	 must	 be	 true	
(otherwise,	there	would	be	nothing	to	be	explained	in	the	first	place).	If	the	explanandum	can	only	
be	expressed	mathematically,	one	would	be	already	committed	to	the	truth	of	the	mathematical	
part	of	it.		
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This	objection	was	first	pointed	out	by	Mark	Steiner.	Steiner	is	one	of	the	first	authors	who	
wrote	 about	 whether	 there	 are	 genuine	 MEPPs,	 and	 whether	 their	 existence	 would	 support	
mathematical	 realism.	 He	 answered	 affirmatively	 to	 the	 first	 question,	 and	 negatively	 to	 the	
second.	According	to	Steiner,	the	indispensability	argument,	even	in	its	explanatory	version,	begs	
the	question	in	favor	of	the	mathematical	realist:		

There	 are,	 then,	 mathematical	 explanations	 in	 physics.	 Do	 they	 make	 reasonable	 the	
existence	of	mathematical	entities?	If	so,	the	explananda	should	not	already	be	committed	
to	 such	 entities.	 But	 Goodman	 and	 Quine	 pointed	 out	 thirty	 years	 ago	 the	 apparent	
impossibility	of	describing	 the	world	without	 reference	to	numbers	 […]	To	describe	 the	
experience	of	diversity	and	change	requires	mathematical	entities	[…]		

Conclusion:	no	explanatory	argument	can	establish	the	existence	of	mathematical	entities	
(1978b,	19-20).		

In	 an	 explanation,	 the	 explanandum	 must	 be	 true.	 Steiner’s	 point	 is	 that,	 if	 the	
explanandum	can	only	be	expressed	mathematically,	one	would	be	already	committed	to	the	truth	
of	the	mathematical	part	of	it65.	Something	similar	happens	in	the	cicada	case.	As	we	have	seen,	
the	 problem	 is	 the	 role	 of	 primeness	 in	 the	 description	 of	 the	 explanandum.	 For	 the	 EIA	 to	
overcome	Melia’s	objection,	the	explanandum	itself	must	be	described	as	being	mathematical,	
which	would	 imply	 commitment	 to	mathematical	 realism.	 But	 if	 such	 is	 the	 case,	 neither	 the	
explanation	itself	would	be	needed	to	justify	this	realism	nor	would	the	EIA	strategy.	Sorin	Bangu	
has	recently	stressed	this	point	in	criticizing	Baker’s	cicada	case:		

[The	explanandum	of	the	cicada	case	assumes	that]	there	is	a	mathematical	object	
(specifically:	 a	 number)	 to	 which	 the	 property	 ‘is	 prime’	 applies.	 Therefore,	 by	
taking	the	explanandum	as	being	true…	Baker	assumes	realism	before	he	argues	
for	it	(2008,	18)	(see	also	Bangu	2012,	157-162).		

Bangu’s	objection	shows	that	if	the	explanandum	in	the	cicada	case	is	described	as	Baker	
does,	 then	 we	 cannot	 use	 this	 case	 to	 support	 mathematical	 realism.66	 Baker	 himself	 has	
acknowledged	the	strength	of	Bangu’s	objection:	

I	suggested…	that	the	concept	of	primeness	is	unlikely	to	be	eliminable	using	only	
non-mathematical	vocabulary.	 Indeed	this	 is	an	important	part	of	the	reason	for	
thinking	that	the	mathematics	in	the	cicada	explanation	is	indispensable.	Combine	
this	with	the	fact	that	biologists	do	tend	to	phrase	the	question	concerning	cicada	

																																																													
65	From	the	quote	above	one	can	see	that	he	believes	that	that	is	actually	the	case.	For	Steiner,	the	EIA	
cannot	work	precisely	because	describing	the	world	requires	mathematics.	My	criticism	to	the	EIA	does	not	
require	believing	this.	The	point	is	just	that	if	it	was	the	case	that	the	explanandum	could	only	be	expressed	
with	mathematics	(as	Baker	believes	in	the	cicada	example),	then	the	EIA	would	be	circular.		
66	However,	rather	than	rejecting	mathematical	realism,	Bangu	presents	the	‘banana	game’	as	a	case	that	
requires	a	MEPP,	and	the	explanandum	of	which	is	not	committed	to	mathematical	entities.	I	believe	the	
account	that	I	have	developed	accommodates	his	example	as	well,	but	since	it	involves	probability	theory,	
addressing	this	example	will	require	a	larger	discussion	than	the	one	I	present	here.			
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period	length	using	the	concept	of	primeness,	and	it	seems	as	if	Bangu’s	complaint	
is	on	target	(2009,	620).	

In	his	(2009),	however,	Baker	presents	a	reply	to	Bangu’s	charge,	which	I	here	copy	almost	
in	full:		

We	start	with	two	pieces	of	data67:		

[1]	The	length	(in	years)	of	the	life	cycle	of	cicada	subspecies	A	is	13	

[2]	The	length	(in	years)	of	the	life	cycle	of	cicada	subspecies	B	is	17	

These	data	are	acceptable	to	both	the	Platonist	and	the	nominalist	[…]	On	the	basis	
of	these	data,	we	then	advance	the	following	theses:		

[1*]	The	length	(in	years)	of	the	life	cycle	of	cicada	subspecies	A	is	prime	

[2*]	The	length	(in	years)	of	the	life	cycle	of	cicada	subspecies	B	is	prime	

The	mathematical	content	of	[1*]	and	[2*]	cannot	be	paraphrased	away	[…].	From	
a	philosophical	perspective,	therefore,	we	do	not	at	this	stage	endorse	[1*]	or	[2*]	
for	fear	of	begging	the	question	[…].		

Next	we	ask	whether	there	is	an	explanation	for	the	tentative	theses,	[1*]	and	[2*].	
In	discovering	the	number-theoretic	explanation	linking	primeness	to	minimization	
of	 intersection	 with	 other	 period	 lengths,	 we	 make	 use	 of	 the	 following	
intermediate	conclusion:	

[3]	The	lengths	(in	years)	of	the	life	cycles	of	periodical	organisms	are	likely	
to	be	prime.		

Statement	(3)	yields	a	common	explanation	for	[1*]	and	[2*],	from	which	[1]	and	
[2]	 follow	 as	 specific	 consequences	 once	 appropriate	 ecological	 constraints	 are	
introduced	(Baker	2009,	620-621).		

The	argument,	then,	is	that	the	circularity	can	be	avoided	if	we	pay	close	attention	to	the	way	the	
explanation	is	actually	laid	out.	According	to	Baker,	the	explanandum	is	indeed	that	the	cycles	are,	
respectively,	13	and	17	(a	description	that	is	acceptable	to	both	Platonists	and	nominalists).	But	in	
order	to	provide	a	common	explanation	of	the	13	and	17	year	cycles,	we	must	tentatively	describe	
the	 cycles	 as	 prime.	 If	 this	 explanation	 turns	 out	 to	 be	 better	 than	 its	 alternatives,	 then	 the	
conclusion	of	the	EIA	would	be	supported:	the	cycles	are	themselves	prime	and	the	explanandum	
is	 indeed	committed	to	mathematical	objects.	This	justification,	however,	would	not	have	been	
made	in	a	circular	way.		

																																																													
67	I	have	changed	the	numeration	of	all	the	statements,	and	I	am	using	brackets	to	indicate	this.		
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Baker	then	compares	this	explanation	with	a	hypothetical	historico-ecological	explanation	
that	would	track	down	all	the	details	of	the	cicadas’	evolutionary	history,	and	concludes	that	the	
mathematical	explanation	is	better	because	it	“predicts	that	other	organisms	with	periodical	cycles	
are	also	likely	to	have	prime	periods”	(2009,	621),	which	is	the	modal	aspect	that	I	mentioned	in	
previous	sections	(specially	§29).	From	the	perspective	of	a	historico-ecological	explanation,	the	
fact	that	both	cycles	are	prime	would	be	a	coincidence.	For	Baker,	the	mathematical	explanation	
is	better	precisely	because	it	explains	why	it	was	somehow	necessary	for	the	cycles	to	end	up	being	
prime,	and	that	is	how	mathematical	realism	is	justified:		

Hence,	by	 inference	to	the	best	explanation,	we	ought	to	believe	 in	 the	entities	
invoked	 in	 the	 number	 theoretic	 explanation,	 which	 includes	 abstract	
mathematical	 objects	 such	 as	 numbers.	 But	 once	 numbers	 are	 included	 in	 our	
ontology,	we	need	no	longer	be	tentative	about	[1*]	and	[2*]	(Baker	2009,	621).		

37.2.	The	nominalized	version	of	the	cicada	case	

In	Baker’s	 reconstruction	of	 the	 cicada	 case,	 the	property	 that	 the	13-year	 cycles	 and	17-year	
cycles	have	in	common	is	the	mathematical	property	of	primeness.	For	Baker,	without	mentioning	
this	property	the	explanation	would	lose	explanatory	force,	because	it	would	be	less	general	and	
would	fail	to	provide	the	modal	information	about	the	likelihood	of	periodical	species	to	develop	
periods	that	are	(described	by	a	number	that	is)	prime.	But	expressing	the	property	the	cycles	have	
in	 common	 in	 terms	 of	 primeness	 is	 not	 the	 only	way	 of	 providing	 this	 generality	 and	modal	
information.	 Let	 us	 assume	 that	 the	 life	 cycles	 are	 not	 prime.	 Rather,	 they	 possess	 a	 physical	
property	that	is	responsible	for	their	evolutionary	advantage.68		

As	we	saw	(§21),	the	mathematical	lemmas	1	and	2	in	the	MEPP	were	used	to	pick	out	the	
physical	relationships	expressed	by	p-Lemmas	1	and	2,	which	can	be	cashed	out	in	empirical	terms	
using	the	basic	notions	of	physical	combination	(Å)	and	equality:	

p-Lemma	1:	p-coprime	iterations	minimize	overlapping	

p-Lemma	2:	If	In(L)	is	p-prime,	then	it	is	co-prime	with	every	Im(L)	<	I2(In(L))	

The	why-question	in	the	cicada	case	is	therefore	‘why	are	the	I13(L)	and	I17(L)	(L	=	one	year)	cycles	
evolutionarily	advantageous?’.	The	explanation	is	that	they	are	p-prime,	and	that,	by	the	two	p-
lemmas	 above,	 it	 follows	 that	 the	 cycles	 minimize	 overlapping,	 which	 is	 evolutionarily	
advantageous.	As	we	saw,	p-lemmas	1	and	2	can	be	explained	in	terms	of	physical	combination	
(Å)	and	equality.	In	the	cicada	case,	time	is	idealized	as	linear,	and	so	the	time	lengths	I13(L)	and	
I17(L)	(L	=	one	year)	are	p-prime	with	respect	to	years,	and	that	is	why	they	have	the	overlapping	

																																																													
68	 There	 are	many	 proposed	 nominalizations	 of	 the	 cicada	 case	 in	 the	 literature.	 The	 nominalization	 I	
introduced	 in	 section	 §19	 does	 not	 break	 new	 ground	 in	 this	 respect,	 but	 it	 emphasizes	 how	 these	
explanatory	facts	depend	on	the	extremely	simple	notions	of	combination	and	equality.	The	simplicity	of	
these	 two	 notions	will	 be	 crucial	 for	 defending	my	 point	 below	 about	 these	 nominalizations	 providing	
generality	and	modal	strength.		
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minimization	property,	which	is	the	relevant	explanatory	property	of	the	cycle	lengths.	It	 is	the	
instantiation	of	 this	property	 that	 is	 responsible	 for	 the	modal	 strength	of	 the	outcome	 in	 the	
cicada	case,	and,	just	as	in	Baker’s	version,	without	mentioning	this	property	it	would	appear	that	
the	life	cycles	are	13	and	17	by	coincidence.		

The	main	 idea	 here	 is	 that	 there	 is	 a	 distinction	 between	 the	 empirical	 property	 of	 p-
primeness	and	the	mathematical	property	of	primeness.	We	are	trying	to	explain	a	scientific	claim	
about	 insect	 species,	 and	 not	 an	 abstract	 mathematical	 claim.	 Do	 we	 need	 to	 appeal	 to	 the	
(mathematical)	property	of	primeness	to	express	the	fact	that	the	cicadas	have	p-primeness?	In	
one	way	we	do	(I	explore	this	below),	but	even	in	that	case	we	would	be	able	to	paraphrase	away	
such	mathematical	expression.	The	problem	of	the	infinite	series	of	disjunctions	pointed	out	by	
Baker	would	 disappear.	 Once	we	 are	 in	 the	 domain	 of	 application	 of	mathematics,	 there	 are	
constraints	on	the	parts	of	mathematics	that	we	need	to	use;	so,	we	are	not	dealing	with	pure	
mathematics	any	longer.	The	‘p-primeness’	property	is	a	property	of	time,	and	the	number	of	ways	
a	life	cycle	may	have	this	property	is	not	infinite.	As	opposed	to	the	claim	about	primeness,	there	
is	 a	 finite	 number	 of	 cycles	 a	 species	may	 adopt.	 Expressing	 this	 does	 not	 involve	 an	 infinite	
disjunction.	It	is	difficult	to	see,	for	example,	in	what	way	it	can	be	true	that	‘in	principle’	a	living	
organism	can	have	a	life	cycle	of,	say,	947	years.		

The	 Platonist	 may	 protest,	 however,	 saying	 that	 this	 is	 exactly	 what	 we	 mean	 by	 ‘in	
principle’.	But	we	can	set	the	number	of	a	cicada	cycle	(in	years)	to	some	integer	greater	than	the	
known	lifetime	of	the	universe	(known	to	be	around	13,82x109	years)69.	In	that	case,	we	would	
have	only	 a	 finite,	 although	 very	 large,	 disjunctive	 specification	 and	we	 can	nominalize	 it.	 The	
elements	to	perform	such	nominalization	already	exist.		

Now,	although	it	is	possible	to	conceive	an	empirical	version	of	the	cicada	case,	I	believe	
that	this	is	indeed	a	MEPP.	As	we	have	seen,	the	distinguishing	feature	of	MEPPs	is	that	they	rely	
on	optimal	representations;	it	is	for	this	reason	that	the	mathematics	used	in	them	seem	to	be	
indispensable:	 because	 the	 explanandum	 is	 mathematical.	 But	 if	 it	 is	 argued	 that	 the	 MEPP	
provides	the	only	(or	the	best)	explanation	of	P	having	p*,	the	reply	would	be,	again,	that	as	long	
as	it	is	possible	to	establish	a	distinction	between	the	mathematical	explanandum	and	the	physical	
explanandum,	then	the	role	of	mathematics	in	the	explanation	would	be	merely	representational.	
The	confusion	with	MEPPs	has	been	that	the	distinction	between	the	empirical	explanandum	and	
its	mathematical	representation	has	not	been	clearly	established	in	most	of	the	cases	discussed.	
In	MEPPs,	the	mathematical	explanation	applies	to	a	mathematical	representation	of	P,	and	for	
that	reason	these	explanations	cannot	be	used	to	support	mathematical	Platonism,	as	proponents	
of	the	EIA	hold.		

The	strategy	of	nominalizing	alleged	examples	of	MEPPs	on	a	case	by	case	basis	has	been	
called	‘piecemeal	nominalism’70,	as	opposed	to,	on	the	one	hand,	hard	road	nominalism	and	on	
the	other,	easy	road	nominalism.	This	is,	I	think,	the	correct	way	of	describing	my	view.	Although	
																																																													
69	Three	years	ago	the	European	Space	Agency’s	Planck	mission	found	evidence	that	the	age	of	the	universe	
might	be	around	that	number.		
70	Cf.	Baker	2016,	340.		
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it	does	not	require	a	full	nominalization	of	all	science,	it	does	require,	for	every	alleged	case	of	a	
MEPP,	a	clear	distinction	between	the	mathematical	representation	and	the	empirical	set	up.	In	
order	to	do	this,	we	must	find	a	way	of	nominalizing	the	explanandum,	which	is	what	I	did	in	the	
cicada	case.	This	is	not	controversial;	in	fact,	as	Bangu	has	noted,	establishing	this	distinction	is	
also	important	for	the	Platonist,	otherwise	she	would	be	begging	the	question.		

37.3.	Theoretical	Virtues	

It	could	be	argued	that	current	scientific	practice	uses	the	notion	of	primeness	in	the	mathematical	
sense	(that	is	why	they	use	number-theory	in	the	explanation),	and	that	this	would	be	enough	to	
establish	 the	 indispensability	of	mathematics	 in	 this	case.	This	objection,	however,	has	already	
been	addressed	in	the	literature;	in	fact,	the	answer	to	this	objection	is	what	motivated	‘Melia’s	
challenge’,	which	 I	mentioned	above.	There	are	many	ordinary	 scientific	explanations	 that	use	
mathematics;	and	without	using	mathematics,	they	would	not	be	as	successful	as	they	are.	The	
same	would	happen	 in	 this	case.	 It	would	be	very	hard	 to	pick	out	 the	 ‘p-primeness’	property	
without	using	mathematics;	but	from	the	moment	we	describe	the	role	of	mathematics	as	merely	
representational,	the	alleged	indispensability	of	mathematics	would	be	pragmatic.	Mathematics	
would	 not	 be	 playing	 an	 explanatory	 role	 –	 it	 would	 be	 the	 property	 represented	 by	 the	
mathematics	 that	 would	 be	 playing	 this	 role.	 If	 the	 presence	 of	 mathematics	 to	 simplify	
calculations	or	to	discover	new	physical	properties	was	all	that	is	needed	to	justify	mathematical	
Platonism,	 the	 detour	 by	 the	 EIA	 would	 have	 been	 unnecessary.	 The	 original	 indispensability	
argument	would	have	been	enough.	That	would	be	a	major	drawback	for	defendants	of	the	EIA.		

In	this	section	I	will	focus	on	other	objections,	based	on	whether	MEPPs,	in	the	way	I	have	
described	them,	are	the	best	explanations	of	the	phenomena	they	are	about.	Davide	Rizza	has	
pointed	 out	 that,	 in	 the	 cicada	 case,	 “the	 non-numerical	 explanation…	does	 not	 suffer	 of	 any	
particular	shortcomings	with	respect	to	Baker’s	numerical	alternative”	(2011,	112).	I	believe	this	
is	 correct,	 and	 in	 fact	 I	would	 go	 further	 and	 argue	 that	 this	 is	 the	 case	 for	 all	MEPPs.	 Baker	
disagrees.	He	argues	that	these	nominalized	resulting	explanations	are	not	the	best	explanations,	
because	 they	 do	 not	 share	 the	 theoretical	 virtues	 of	 the	mathematical	 versions.	 In	 particular,	
because	they	would	“lack	the	generality	of	the	original”	(2016,	340),	and	because,	by	appealing	to	
mathematical	objects,	Baker’s	version	of	this	explanation	uses	facts	that	are	modally	stronger	than	
empirical	facts	(Baker	2016,	16	fn	22).		

Below	I	examine	five	theoretical	virtues	(elegance,	simplicity,	unificatory	power,	generality,	
and	 modal	 strength)	 in	 which,	 allegedly,	 the	 mathematical	 version	 performs	 better	 than	 any	
nominalist	version.	I	will	show	that	this	is	not	the	case	for	any	of	these	five	virtues.		

a)	Elegance	

Let	us	start	with	elegance.	The	idea	is	that	an	explanation	is	better	than	an	alternative	if	 it	has	
greater	aesthetical	appeal.	 In	 the	context	of	 this	debate,	 this	 is	perhaps	 the	most	problematic	
notion	of	the	five.	First,	because	intuitions	are	not	clear	regarding	what	it	actually	amounts	to.	But	
also	because	elegance,	understood	this	way,	seems	to	be	reducible	to	simplicity	and	unificatory	
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power	(Colyvan	2001,	79	fn.	25)71.	Below	I	will	show	that	my	version	of	the	cicada	case	matches	
the	mathematical	 version	both	 in	 terms	of	 simplicity	 and	unificatory	 power.	 Therefore,	 it	 also	
matches	it	in	terms	of	elegance.		

b)	Simplicity	

One	of	the	most	cited	theoretical	virtues	is	simplicity:	given	two	theories	with	the	same	empirical	
consequences,	 we	 must	 choose	 the	 one	 that	 is	 simpler,	 that	 is,	 that	 has	 less	 ontological	
commitments	(Colyvan	2001,	78.)	For	Baker,	using	the	notion	of	mathematical	primeness	makes	
for	 a	 simpler	explanation.	He	argues	 (2016,	349)	 that,	 in	 the	present	 context,	what	matters	 is	
simplicity	with	respect	to	our	commitments	to	concrete	posits,	regardless	of	whether	this	entails	
overpopulating	the	world	with	abstract	entities.	According	to	him,	even	if	this	explanation	would	
commit	 us	 to	 the	whole	world	 of	mathematical	 entities,	 as	 long	 as	 it	 has	 the	 same	 empirical	
commitments	 as	 a	 given	 alternative,	 it	 will	 not	 be	 considered	 more	 complex	 than	 the	 said	
alternative.	The	question	of	simplicity,	then,	comes	down	to	whether	the	nominalized	explanation	
has	the	same	empirical	posits	as	the	mathematical	explanation.		

In	 this	 respect,	 however,	 I	 argue	 that	 either	 postulating	mathematical	 primeness	 or	 p-
primeness	commit	us	 to	 the	same	concrete	posits.	Mathematical	primeness	would	have	 to	be	
instantiated	as	a	property	of	concrete	time	lengths	in	order	to	account	for	the	observed	cycles;	
the	same	happens	with	the	property	of	p-primeness.	Because	of	this,	both	explanations	are	equally	
simple.	Baker	has	argued	that	the	mathematical	explanation	is	committed	to	less	concrete	posits,	
because	 it	 only	 requires	 predators	 of	 2	 or	 3	 year	 cycles	 (2016,	 338).	 But	 the	 property	 of	 p-
primeness	would	have	exactly	the	same	consequence;	the	only	difference	being	that	2,	3,	13	and	
17	would	be	p-prime;	not	mathematically	prime.				

c)	Unificatory	power	

Another	often	cited	 theoretical	 virtue	 is	unificatory	power.	Here	 the	 idea	 is	 to	account	 for	 the	
maximum	of	observed	phenomena	with	the	 fewer	theoretical	devices.	According	to	Bangu,	 for	
example,	quantification	over	mathematical	objects	brings	the	common	factor	that	allows	unifying	
otherwise	 disparate	 phenomena	 (2012,	 172).	 In	 the	 cicada	 case,	 this	 would	 mean	 that	 by	
describing	 the	 cycles	 as	 mathematically	 prime	 we	 would	 be	 capable	 of	 providing	 a	 common	
explanation	of	the	13	and	17	cycles.	However,	this	objection	does	not	work	against	my	version	of	
the	 cicada	 case.	 By	 positing	 the	 concrete	 property	 of	 p-primeness	 we	 also	 provide	 a	 unified	
explanation	of	the	two	cycles.	As	we	saw,	the	idea	is	to	unify	observed	phenomena.	In	this	respect	
both	primeness	 and	p-primeness	 can	do	 the	 job	―both	explanations	 explain	 the	observed	13	
cycles	and	17	cycles―,	so	both	explanations	are	equally	unifying.		

Now,	 it	 may	 be	 argued	 that	 my	 piecemeal	 strategy	 is	 less	 unified	 than	 the	 Platonist	
strategy,	in	Philip	Kitcher’s	sense	(e.g.	1989).	Piecemeal	strategies	deal	with	one	MEPP	at	the	time,	
whereas	Platonism	explicates	what	is	common	to	all	MEPPs.	In	that	sense,	the	Platonist	unifies	all	
MEPPs	 under	 the	 same	 explanatory	 pattern:	 identify	 the	 underlying	 mathematical	 structure	

																																																													
71	See	also	Keas	(forthcoming),	section	5.1.		



	
	

128	

relevant	 to	 explaining	 the	 situation,	 and	 find	 out	 the	 relevant	 explanatory	 property	 of	 such	
structure	by	a	mathematical	proof.	However,	what	my	account	shows	is	that	all	alleged	cases	of	
MEPPs	can	be	understood	in	the	same	way:	first,	we	must	establish	a	clear	distinction	between	
the	physical	explanandum	and	its	mathematical	representation,	and	next	we	must	show	that	the	
mathematical	derivation	is	actually	tracking	down	the	relevant	physical	explanatory	features.	So,	
although	it	 is	true	that	 I	propose	that	we	have	to	examine	MEPPs	one	by	one,	the	explanatory	
pattern	used	to	make	sense	of	these	explanations	is	the	same.	So	even	at	this	level	my	proposal	is	
as	unified	as	the	Platonist	one.			

d)	Generality	

As	we	have	seen,	Baker	argues	that	the	mathematical	version	is	more	general	than	the	nominalist	
version.	The	generality	objection	runs	as	follows:	postulating	mathematical	primeness	accounts	
for	 a	 wider	 range	 of	 possible	 observations,	 and	 because	 of	 that,	 even	 if	 we	 nominalize	 the	
explanandum	 in	 the	way	 proposed	 by	 piecemeal	 nominalists,	 the	 explanation	 that	 appeals	 to	
mathematical	 primeness	 is	 the	 best	 one	 (e.g.	 Baker	 2009,	 617;	 2016,	 340).	 	 But	 how	 much	
generality	do	we	really	need?	As	we	saw,	there	are	empirical	constrains	that	 limit	the	possible	
length	of	the	cycles.	For	starters,	they	cannot	be	longer	than	the	age	of	the	universe.	What	is	more,	
the	overall	explanation	of	the	cicadas’	life	cycles	depends	on	the	fact	that	during	the	Pleistocene	
the	Earth	temperature	was	extremely	cold,	and	that	that	is	why	cicadas	developed	relatively	long	
cycles.	Therefore,	it	is	a	condition	for	the	evolutionary	explanation	to	work	that	the	cycles	are	less	
than	11700	years.		

It	may	still	be	objected	that	the	 interesting	thing	about	the	explanation	that	appeals	to	
primeness	 is	 that	 it	 would	work	 in	 other	 planets	 older	 than	 ours,	 and	 that	 it	 is	 precisely	 this	
generality	that	would	get	lost	if	we	do	not	use	the	notion	of	mathematical	primeness.	But,	again,	
those	planets	would	still	be	physical,	just	as	ours.	And	however	old	these	planets	may	be,	their	age	
would	still	be	measurable	in	terms	of	finite	cycles.	Moreover,	however	long	the	cycles	are,	they	
cannot	be	infinitely	long	if	we	are	talking	of	live	species,	because	the	very	idea	of	an	infinite	life	
cycle	does	not	make	sense	in	this	context	–	if	a	time	length	does	not	have	an	upper	bound,	it	would	
not	make	sense	to	call	it	‘a	cycle’.		

Now,	the	Platonist	may	still	reply	that	the	result	is	still	less	general	than	when	we	describe	
the	explanandum	as	prime,	even	if	we	do	not	appeal	to	infinitely	 long	cycles,	because	it	would	
apply	to	more	cycles	than	mere	physical	or	realizable	cycles.	But	I	do	not	think	this	is	going	to	be	
enough	to	justify	the	existence	of	those	non-realizable	cycles.	Consider	an	example	due	to	James	
Franklin	(2014,	69).	The	statement	‘all	red	things	are	colored’	applies	to	all	red	things,	and	we	can	
say	that	for	anything,	if	it	was	red,	then	it	would	be	colored.	However,	it	does	not	seem	right	to	
justify	the	existence	of	infinitely	many	red	things	just	because	if	there	were	infinitely	many	red	
things	the	statement	‘all	red	things	are	colored’	would	be	more	general.	In	the	same	vein,	it	does	
not	 seem	 right	 to	 justify	 the	 existence	 of	 numbers	 just	 because	 if	 there	 were	 numbers,	 the	
statement	 ‘n	 is	 prime’	would	 be	more	 general.	 If	 this	were	 enough	 to	 justify	 the	 existence	of	
numbers,	the	detour	around	the	EIA	would	have	been	unnecessary	(I	return	to	this	point	below).		
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Also,	it	is	important	to	note	that	what	mine	and	similar	nominalizations	of	the	cicada	case	
show	is	that	the	explanation	relies	on	the	simple	notions	of	combination	and	equality,	which	are	
general	enough	properties.	They	apply	to	any	set	of	objects	once	they	are	described	in	a	certain	
way.	This	generality	 can	be	captured	 in	modal	 terms.	For	example,	 if	 there	are	 two	objects	of	
congruent	lengths	then	the	notion	of	equality	would	apply	to	them.	But	again,	this	by	itself	does	
not	justify	the	existence	of	infinite	objects	that	fit	this	description.	

e)	Modal	strength		

Finally,	it	may	be	argued	that	the	kind	of	modal	information	provided	by	mathematical	properties	
is	stronger	than	any	provided	by	empirical	properties	(Baker	2016,	16	fn.	22;	Lyon	2011,	9-10).		
Thus,	 the	 fact	 that	 primeness	 minimizes	 intersection	 between	 numbers	 is	 mathematically	
necessary.	This	necessity	would	be	stronger	than	the	fact	that	p-primeness,	a	property	of	time	
lengths,	 minimizes	 intersection	 between	 biological	 species.	 Therefore,	 appealing	 to	 these	
‘stronger	necessities’	would	provide	a	better	explanation	than	appealing	to	the	weaker	physical	
necessities.	 This	 interpretation	 presupposes	 the	 existence	 of	 mathematical	 necessities	 in	 the	
physical	 world.	 In	 that	 sense,	 the	 explanation	 that	 appeals	 to	mathematical	 primeness	would	
highlight	 the	 fact	 that	 it	 is	 mathematically	 necessary	 that	 prime-numbered	 cycles	 minimize	
intersection	with	other	cycles.	This	would	be	true	in	any	world	where	the	idea	of	cycles	makes	
sense,	so	this	necessity	would	be	stronger	than	physical	necessity	(this	is	the	view	endorsed	by	
Lange	(2013);	however,	he	does	not	link	it	to	the	indispensability	debate).	

The	 problem	 with	 this	 suggestion	 is	 that	 whether	 or	 not	 this	 justifies	 mathematical	
Platonism	is	independent	of	the	Indispensability	Argument.	Let	me	illustrate	this	with	Franklin’s	
example.	‘All	red	things	are	colored’	is	necessarily	true,	it	applies	to	things	in	the	real	world,	and	it	
would	still	be	true	in	any	world	where	red	is	a	color.	So	even	though	this	is	a	fact	about	the	physical	
world,	it	is	necessarily	true	in	a	way	stronger	than	physical	necessity:	even	if	the	laws	of	nature	
were	different,	it	would	be	true	that	‘all	red	things	are	colored’	(Franklin	2014,	69).	But	again,	the	
fact	that	‘all	red	things	are	colored’	is	necessarily	true	does	not	by	itself	prove	that	the	property	
‘red’	exists	independently	of	its	realizations.	And	the	fact	that	‘in	every	world	where	red	is	a	color,	
red	things	would	be	colored’	does	not	by	itself	prove	that	those	other	worlds	actually	exist.	In	the	
same	way,	maybe	some	relations	between	time	lengths	are	modally	stronger	than	other	physical	
relations72;	 but	 whether	 or	 not	 the	 existence	 of	 relations	 of	 necessity	 stronger	 than	 physical	
necessity	shows	that	there	exist	abstract	mathematical	objects	is	a	deep	metaphysical	question,	
which	answer	seems	to	be	independent	of	considerations	about	the	usefulness	of	mathematics	in	
science,	which	is	what	the	EIA	is	ultimately	about.		

Let	us	see	how	this	works	in	the	cicada	case.	I	have	shown	that	the	empirical	explanation	
of	the	 life	cycles’	 length	relies	on	the	extremely	simple	notions	of	combination	and	equality	of	
physical	lengths.	If	we	describe	physical	objects	in	a	way	such	that	combination	and	equality	apply,	
then	 every	 physical	 object	 that	 fits	 such	 definition	 would	 be	 subject	 to	 these	 relations	 of	
																																																													
72	Perhaps	geometrical	relations	are	physical	and	yet	stronger	than	mere	nomologically	necessary.	I	cannot	
go	into	more	details	about	this	at	this	point.	However,	I	hope	my	overall	strategy	is	clear:	the	existence	of	
geometrical	relations	does	not	by	itself	support	mathematical	Platonism.		
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combination	and	equality,	which	in	turn	entails	that	any	physical	object	represented	by	13	would	
not	 overlap	 with	 iterations	 of	 other	 lengths	 represented	 by	 26	 or	 less,	 apart	 from	 those	
represented	by	1;	similarly,	it	entails	that	any	physical	object	represented	by	17	would	not	overlap	
with	iterations	of	other	lengths	represented	by	34	or	less,	apart	from	those	represented	by	1.	This	
will	be	necessarily	true.	But	the	crucial	point	is	this:	even	if	this	relationship	turns	out	to	be	that	of	
mathematical	necessity,	it	would	be	as	surprising	as	the	relationship	of	necessity	between,	say,	
the	fact	that	if	there	were	two	objects	of	the	same	length,	and	a	third	object	of	the	double	length	
of	the	first	object,	then	a	combination	of	the	lengths	of	the	first	two	would	be	equal	to	the	length	
of	the	third.	If	this	fact	were	enough	to	support	mathematical	Platonism,	then	the	detour	by	the	
EIA	would	have	been	unnecessary.	Again,	I	do	not	want	to	say	that	these	are	not	mathematical	
relationships	 of	 necessity	 in	 the	world73;	 only	 that	whether	 or	 not	 they	 are	 is	 independent	 of	
naturalism	and	the	usefulness	of	mathematics	in	science,	which	is	what	the	EIA	is	about.	In	other	
words,	the	usefulness	of	mathematics	in	science	has	nothing	to	do	with	this	metaphysical	claim.	

This	 point	 is	 perhaps	 clearer	 in	 the	 bridges	 of	 Königsberg	 case.	 The	 impossibility	 of	
performing	a	trip	that	crosses	all	the	seven	bridges	of	18th-century	Königsberg	without	retracing	
one’s	steps	is	explained	by	a	graph-theoretical	theorem.	For	me,	what	is	crucial	for	understanding	
this	case	is	that	Euler’s	proof	of	this	theorem	relied	on	the	extremely	simple	fact	that	every	time	
one	crosses	a	bridge,	two	pieces	of	land	are	involved,	the	starting	point	and	the	ending	point.	As	
we	have	seen,	it	is	often	said	that	it	is	a	matter	of	mathematical	necessity	that	the	trip	over	the	
bridges	 is	 impossible.	This	necessity	would	be	both	stronger	than	mere	physical	necessity,	and	
about	a	physical	system	(cf.	Lange	2013;	Lyon	2011).	As	I	said,	I	prefer	not	to	enter	this	debate	
here.	 My	 point	 is	 that	 if	 the	 impossibility	 of	 performing	 an	 Eulerian	 trip	 over	 the	 bridges	 is	
described	as	a	matter	of	mathematical	necessity,	then	the	fact	that	‘every	time	that	I	cross	a	bridge	
two	 pieces	 of	 land	 are	 involved’	 would	 also	 be	mathematically	 necessary.	 But	 if	 this	 justifies	
mathematical	Platonism,	such	an	argument	does	not	need	the	complications	of	the	EIA,	or	for	that	
matter,	of	issues	pertaining	the	applicability	of	mathematics	in	science.		

The	defining	feature	of	MEPPs	is	that	they	rely	on	optimal	representations.	These	are	cases	
where	researchers	are	interested	in	special	features	of	a	physical	situation,	such	that	all	that	is	
needed	to	explain	these	features	can	be	included	in	the	mathematical	representation.	 In	these	
explanations,	 the	 role	 of	mathematics,	 although	 perhaps	 pragmatically	 indispensable	 –	 in	 the	
sense	that	it	would	have	been	very	unlikely	that	researchers	would	have	discovered	the	relevant	
explanatory	factors	without	using	mathematics	–,	is	ultimately	representational.	For	that	reason,	
these	cases	do	not	overcome	Melia’s	challenge,	and	so	they	do	not	support	the	conclusion	of	the	
EIA.		

§38.	The	EIA	and	practical	indispensability	

We	have	seen	that	 in	MEPPs	explanatory	derivations	are	 indispensable	because	MEPPs	rely	on	
optimal	representations,	and	so	the	explanatory	strength	comes	purely	from	the	mathematical	
derivation	of	the	mathematical	facts	in	the	representation.	This	is	a	sense	in	which	mathematics	
																																																													
73	I	believe	there	are	not,	but	I	do	not	think	this	is	relevant	for	my	overall	case	against	the	EIA	supporting	
Platonism.	
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is	 indispensable:	explanatory	derivations	are	 indispensable	 for	MEPPs	 to	work	as	explanations.	
Given	my	characterization	of	MEPPs,	this	sense	of	indispensability	is	not	the	one	required	by	the	
EIA	because	in	my	account	it	is	possible	to	conceive	an	ordinary	physical	explanation	of	the	same	
facts.	But	there	is	another	sense	in	which	MEPPs	can	be	indispensable,	at	least	in	the	cases	that	I	
have	discussed.	So,	let	us	focus	on	this	issue:	

There	are	two	ways	in	which	mathematics	contributes	to	the	explanations	of	the	cicada	
case	and	the	bridges	case.	The	first	is	by	making	these	problems	computationally	tractable,	and	
the	second	is	by	facilitating	the	discovery	of	modally	stronger	facts.	Some	of	these	contributions,	
depending	on	the	case,	can	be	indispensable	to	finding	an	explanation	of	the	physical	explananda	
(I	will	call	it	‘practical	indispensability’).	In	this	section,	I	explore	this	other	sense	of	indispensability	
and	show	that	it	is	not	the	one	required	by	the	EIA	either.	Ultimately,	as	I	will	show,	this	pragmatic	
indispensability	does	not	entail	that	mathematics	itself	is	explanatory.	My	view	is	compatible	with	
Saatsi’s,	who	has	pointed	out	that:		

[T]he	 cases	 discussed	 in	 the	 literature	 demonstrate	 that	 mathematics	 can	 play	 a	
knowledge-conferring	role	in	science:	it	can	help	us	learn	about	the	world.	But	the	fact	that	
mathematics	can	give	us	knowledge	(or	better	 justified	beliefs)	of	certain	physical	 facts	
does	not	automatically	entail	that	it	thereby	plays	an	explanatory	role	(Saatsi	2011,	144-
5).	

We	saw	that	one	of	the	cases	where	the	IBE	principle	does	not	apply	is	if	a	posit	does	not	
play	the	right	role	in	the	explanation.	This	is	exactly	the	case	of	MEPPs.	Mathematics,	even	when	
it	 is	 indispensable	 in	 practice,	 always	 plays	 these	 knowledge-conferring	 role,	 in	 virtue	 of	
representing	and	helping	draw	inferences	about	the	physical	explanatory	facts.	The	contributions	
of	 mathematics	 to	 the	 two	 cases	 I	 discussed	 in	 previous	 chapters	 fall	 precisely	 under	 this	
‘knowledge-conferring’	role.		

The	first	contribution	is	computational	tractability.	This	can	be	seen	in	the	bridges	case	if	
we	 try	 to	 solve	 the	original	problem	 following	a	 ‘brute	 computation	 strategy’.	As	we	 saw,	 this	
strategy	consists	in	systematically	performing	every	single	possible	route	over	the	bridges.	In	doing	
so,	we	would	notice	that	none	of	the	routes	succeeds	in	crossing	the	seven	bridges	using	each	
bridge	only	once	and	so	we	would	be	able	to	conclude	that	such	a	route	is	impossible.	However,	
as	we	saw,	Euler	himself	pointed	out	that	this	strategy	works	for	the	bridges	of	Königsberg,	but	it	
will	not	work	for	other,	more	complicated	cases.	One	such	case	is	that	of	the	bridges	of	Venice,	
where	the	brute	computational	strategy	is	unfeasible	because	there	are	420	bridges,	which	gives	
a	 total	of	possible	 routes	 that	cannot	be	computed.	As	we	saw	 (§18),	 the	use	of	mathematics	
makes	this	and	similar	cases	accessible.	This	is	one	sense	in	which	mathematics	may	be	considered	
indispensable	 for	 solving	 those	 more	 complicated	 cases:	 mathematics	 makes	 those	 cases	
computationally	tractable.		This	contribution	is	compatible	with	nominalism	because	it	is	similar	
to	counting.		

The	 second	 contribution	 of	 mathematics	 is	 showing	 the	 modal	 strength	 of	 the	
explanandum.	This	is	exemplified	by	both	the	bridges	case	and	the	cicada	case.	As	we	saw	(§18),	
although	in	the	bridges	case	the	brute	computational	strategy	may	verify	that	all	possible	routes	
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are	unsuccessful,	this	method	fails	to	identify	the	common	feature	of	these	routes	that	renders	
them	unsuitable	as	Eulerian	paths.	Thus,	from	the	perspective	of	the	brute	computational	strategy,	
the	 fact	 that	 all	 possible	 attempts	 failed	 in	 the	 Königsberg	 case	 is	 a	 mere	 coincidence.	 The	
mathematics,	on	the	other	hand,	shows	that	the	result	is	modally	stronger	than	could	have	been	
rendered	by	any	particular	unsuccessful	attempt:	the	bridges	system	does	not	have	the	required	
structural	features	(conditions	C1	and	C2)	for	such	a	path	to	be	possible,	 leading	to	a	 lack	of	a	
successful	route.	It	is	clear	that	the	role	of	mathematics	here	is	to	represent	the	physical	structures	
relevant	to	the	possibility,	or	lack	thereof,	of	performing	an	Eulerian	path,	and	to	show	how	these	
structures	do	not	allow	such	a	path.		

It	 is	also	possible	to	conceive	of	an	alternative	explanation	of	the	cicada’s	 life	cycle.	For	
example,	one	may	eventually	identify	the	specific	events	that	affected	the	cicada’s	evolutionary	
history;	or	one	could	even	identify	the	biological	basis	of	the	cicada’s	behavior.	Nevertheless,	as	
we	have	seen	(§19),	this	alternative	explanation	would	make	it	look	as	if	the	cycles	were	somehow	
accidental.	By	using	mathematics	we	can	show	that,	independently	of	the	evolutionary	history	of	
the	cicadas,	 these	 insects	were	 likely	to	evolve	prime	 life-cycles	because	these	cycles	have	the	
property	of	minimizing	the	possibility	of	intersection	with	other	species.	It	is	only	by	appealing	to	
this	property	that	we	can	explain,	as	Baker	puts	it,	“why	any	periodical	organism	with	periodical	
predators	 is	 likely	 to	 evolve	 a	 life-cycle	period	 that	 is	 prime”	 (2012,	 257;	my	emphasis).	 Thus,	
another	 sense	 in	which	mathematics	may	play	 an	 indispensable	 role	 is	 that	 the	mathematical	
explanation	reveals	the	modal	strength	of	the	explanandum74.		

But	 in	principle,	one	could	have	discovered	these	modally	stronger	facts	of	the	physical	
systems	in	question	without	using	mathematics.	For	example,	it	is	not	impossible	to	conceive	of	a	
person	discovering	the	relevant	structural	facts	about	the	bridges	system	by	attentively	observing	
the	 bridges	 system	 from	 the	 top	 of	 the	 Königsberg	 Cathedral	 and	 discovering	 the	 relations	
between	this	and	the	modally	stronger	fact	that	‘a	bridge	connects	two	pieces	of	land’.	In	the	same	
way,	we	 can	 conceive	of	 some	alternative	means	one	may	have	discovered	 the	 relevant	 facts	
about	time	that	operate	in	the	cicada	case.	As	Saatsi	has	pointed	out,	the	idea	is	that	there	is	an	
intersection-minimizing	period	Tx	for	periods	in	the	range	[T1…	T2].	One	could	have	identified	such	
a	period	Tx	by	manipulating	sticks	with	proportional	measurements	(cf.	Saatsi	2011,	152),	and	thus	
discovering	 the	 relation	 between	 this	 and	 the	 modally	 stronger	 notions	 of	 combination	 and	
equality.		

However,	even	if	such	alternative	means	of	discovery	are	conceivable,	it	is	not	plausible	
that	 one	 may	 actually	 come	 to	 know	 the	 facts	 about	 road	 systems	 or	 life-cycles	 without	
mathematics.	It	seems	very	unlikely	that	scientists	would	have	identified	these	modal	facts	about	
the	world	without	 the	 assistance	 of	mathematics.	 For	 example,	 by	 correctly	 representing	 the	
relevant	relations	in	the	system	of	bridges,	one	can	infer	why	it	is	impossible	to	perform	an	Eulerian	
path.	This	is	even	more	evident	in	the	cicada	case.	We	have	seen	that	it	seems	hard	enough	even	
to	express	those	facts	without	mathematics.	The	use	of	the	natural	number	series	as	a	model	for	
the	sequence	of	years	seems	to	be	indispensable	for	discovering	the	facts	about	time	that	explain	

																																																													
74	As	we	have	seen	(chapter	4),	Lange	2013	and	Lyon	2011	also	emphasize	this	point.		
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the	 length	of	animal	 life-cycles.	But	once	we	envision	a	way	to	discover	these	modal	facts	that	
does	not	presume	 the	use	of	mathematics,	 no	matter	how	 implausible	 this	way	 is,	 the	use	of	
mathematics	becomes	merely	pragmatic.	By	correctly	representing	the	relevant	features	of	time,	
mathematics	helps	us	infer	other	facts	about	time	that	explain	this	case.		

As	we	have	seen,	in	these	explanations	mathematics	seems	to	play	an	indispensable	role.	
Is	this	the	kind	of	indispensability	required	by	the	first	premise	of	the	EIA?	I	argue	that	it	is	not.	My	
discussion	 shows	 that	 mathematics	 is	 indispensable	 to	 find	 out	 truths	 about	 the	 relevant	
explanatory	 physical	 facts.	 Computational	 tractability	 is	 clearly	 a	 pragmatic	 notion.	 And	 even	
though	modal	strength	is	not,	we	have	seen	that	modal	strength	can	be	accounted	for	in	terms	of	
the	 necessities	 associated	 with	 the	 relevant	 physical	 systems.	 The	 indispensable	 role	 of	
mathematics	 in	 the	 process	 of	 discovering	 these	 necessities	 is	 also	 a	 pragmatic	 contribution.	
Therefore,	although	mathematics	may	play	an	indispensable	role	in	these	explanations	―because	
it	 offers	 good	 representations	 of	 the	 relevant	 explanatory	 features	 of	 the	 physical	 systems	
involved―	this	practical	indispensability	is	not	ontologically	committing	in	the	sense	required	by	
the	EIA;	 it	ultimately	depends	on	 the	 representational	and	 inferential	 roles	of	mathematics.	 In	
other	words,	premise	P2*	of	the	EIA	is	about	practical	indispensability,	but	this	is	not	the	sense	of	
indispensability	 required	 by	 premise	 P1*,	 which	 is	 the	 one	 that,	 allegedly,	 carries	 ontological	
weight.	In	the	cases	I	have	studied,	mathematics	has	proven	to	be	an	indispensable	knowledge-
conferring	tool,	and	as	we	saw	(§36),	both	sides	of	the	debate	agree	that	this	role	of	mathematics	
does	not	commit	us	to	beliefs	in	the	existence	of	mathematical	objects.		

§39.	Conclusion		

It	 is	 important	 to	 note,	 for	 the	 purpose	 of	 assessing	 the	 EIA	 in	 light	 of	MEPPs,	 that	 in	 these	
explanations	mathematics	is	representing	features	of	the	physical	systems	in	question,	and	it	helps	
us	to	infer	facts	about	these	features.	Even	if	it	may	have	been	practically	impossible	to	do	this	
without	 mathematics,	 this	 is	 no	 reason	 to	 believe	 that	 the	 role	 of	 mathematics	 is	 in	 itself	
explanatory.	As	Saatsi	points	out:	

[M]athematics	only	plays	a	role	in	representing	physical	facts…	allowing	us	to	infer	certain	
physical	facts	from	other	physical	facts,	and	hence	providing	us	knowledge	of	the	crucial	
explanatory	physical	fact	(Saatsi	2011,	146).	

	It	is	true	that	MEPPs	are	scientific	explanations	that	rely	on	explanatory	derivations,	but	
this	 is	 because	 the	 physical	 setup	 can	 be	 optimally	 represented	 with	 respect	 to	 the	 given	
explanandum	 for	 each	 case.	 As	 I	 have	 shown,	 the	 role	 of	 mathematics	 in	 these	 optimal	
representations	is	not	ontologically	committing.	In	this	respect,	there	is	no	difference	between	the	
role	 of	 mathematics	 in	 ordinary	 explanations	 that	 rely	 on	 either	 Galilean	 or	 minimal	 model	
idealizations,	 and	 those	 that	 rely	 on	optimal	 representations,	 since	 both	 improvable	 and	non-
improvable	representations	capture	or	highlight	the	relevant	(physical)	explanatory	facts.		

As	I	mentioned	at	the	beginning	of	this	chapter,	my	discussion	of	the	IA	and	the	role	of	
MEPPs	in	the	EIA	debate	is	not	a	positive	argument	for	mathematical	antirealism.	Baker	is	correct	
when	he	says	that:	
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[A]n	 argument…	 that	 purports	 to	 show	 how	 appeal	 to	mathematical	 objects	 could	 be	
explanatory	with	 respect	 to	 some	given	physical	phenomena	despite	 the	mathematical	
objects	not	existing	is	not—or	at	least	not	obviously—an	argument	for	suspending	belief	
in	the	existence	of	such	objects	(Baker	2009,	p.	627).			

I	 fully	 agree	with	 Baker	 here.	 But	 showing	 that	we	 can	 explicate	MEPPs	without	 appealing	 to	
mathematical	objects	constitutes	an	argument	against	the	Enhanced	Indispensability	Argument.	
If	the	role	of	mathematics	in	MEPPs	is	ultimately	representational,	then	the	presence	of	MEPPs	in	
science	is	not	a	good	reason	to	believe	in	the	existence	of	mathematical	entities.		
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