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Abstract
This thesis demonstrates the presence of two-mode squeezing within a

broadband squeezed light field generated by an OPO pumped just below
threshold. Past experiments have confirmed the existence of this phenomenon,
but we have demonstrated the technique over an approximately 1 MHz fre-
quency range, with a highly tunable measurement technique. Through the
use of a two-frequency local oscillator generated by a double sideband mod-
ulation of an EOM, we are able to measure many two-mode squeezed fields
within the spectrum of one OPO output mode. Such a technique has great po-
tential for observing larger, more densely packed optical cluster states, which
could be used to construct a quantum computer.
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1 Introduction

Entanglement has fascinated physicists since the formulation of quantum me-
chanics. In their influential 1935 paper, Einstein, Podolsky, and Rosen recognized
entanglement as a distinctively non-classical phenomenon, which could be used to
test the validity of quantum mechanics as a “complete” description of nature [1].
Although the strangeness of entanglement led the aforementioned scientists to
doubt quantum mechanics’ status as a complete description of nature, an under-
standing of entanglement has become crucial to the study of quantum systems. In
particular, entanglement has been identified as a necessary component in realizing
quantum computation. Quantum computing has been identified as a theoretically
powerful tool, which could provide exponential speed-ups of some hard computa-
tional tasks [2], such as simulating quantum systems [3]. Cluster states, in which
individual quantum bits (qubits) are connected via entangling gates provide a tem-
plate for building a quantum computer [4, 5].

Constructing a cluster state based quantum computer would require the entan-
glement of multiple qubits; the larger the state, the more resources one has for
quantum computing. Multi-partite entanglement has been engineered in trapped
ion [6, 7] and photonic systems [8]. Cluster states can also be constructed using
qmodes, which have a continuous spectrum, as opposed to the two-state system
of a qubit. Quantum computing with qumodes is also referred to as continuous
variable (CV) quantum computing. Scalability is a particular advantage of CV sys-
tems, which makes them attractive to use for building a large cluster state [9]. In
2014, a 60 mode cluster state with multipartite entanglement was created in the
quantum optics group here at the University of Virginia. The state was constructed
using the quantum optical frequency comb (QOFC) of a bimodally pumped optical
parametric oscillator. The state was believed to be even larger(approximately 3,000
modes), but the limitations of the entanglement verification technique that was used
prevented this from being proven [10]. Large scale optical entanglement has also
been generated in the time domain [11], with modes separated temporally instead
of being indexed by frequency, but the advantage of frequency space experiments
is that the entire system is simultaneously available for use.

In this thesis, we report the generation of entangled frequency modes using
the output of a single OPO and intra-mode entanglement. In the experiment upon
which ours was based, correlations were observed between different eigenmodes
of the OPO cavity [10]. Here, we observe bipartite entanglement within the band-
width of one cavity mode. The number of modes available using this process is
limited only by the bandwidth of the cavity mode, the linewidth of the OPO pump,
and the bandwidth of the squeezing/entanglement verification measurement. Pre-
vious work in this area established the validity of the technique, but only one fre-
quency separation between the two modes was used [12, 13, 14]. The method
presented in this thesis successfully generates and verifies the presence of many
entangled modes within a relatively narrow bandwidth. Using this method, a larger
frequency entangled cluster state could be constructed in a relatively narrow band-
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width (compared to past experiments in the Pfister lab [10]).

2 Theory

2.1 Time Evolution in Quantum Mechanics

In quantum mechanics, there are three approaches to calculating how expec-
tation values change in time, the Schrodinger picture, Heisenberg picture, and
interaction or Dirac picture (this section is based heavily on Moran Chen’s PhD
thesis) [15]. A brief summary of the three will be useful for the analysis of this
thesis.

In the Schrodinger picture, a state with Hamiltonian H follows the Schrodinger
equation

i~
d |Ψ(t)〉

dt
= H |Ψ(t)〉 (1)

If H is time independent we can postulate a solution |Ψ(t)〉 = U(t, t0) |Ψ(t0)〉. Plug-
ging this into the Schrodinger equation, we can derive

U(t, t0) = e−i(t−t0)H/~ (2)

As time evolves, the expectation value of an operator A goes as

〈Ψ(t)| A |Ψ(t)〉

=
〈
Ψ(t0)U†

∣∣∣ A |UΨ(t0)〉
(3)

In the Schrodinger picture, the states evolve in time using a unitary evolution U,
while the operators are constant in time.

In contrast, the Heisenberg picture attaches the time dependence of a quantum
system to the operators instead of the states. The state in the Heisenberg picture is
the same as the state at time t = 0 in the Schrodinger picture, and vice-versa for
the operators. For both pictures to be valid, they must give the same measurement
results, so we can set the expectation values in each picture equal

〈ΨH(t)| AH(t) |ΨH(t)〉 = 〈ΨH(t0)| AH(t) |ΨH(t0)〉

= 〈ΨS (t)| AS (t) |ΨS (t)〉

=
〈
ΨS (t0)U†

∣∣∣ AS (t0) |UΨS (t0)〉

(4)

From this we can see that AH(t) = U†AU. Taking the derivative of A(t) (we will
drop the subscript) and using Eq (22) we derive

dA
dt

=
d(U†A(t0)U)

dt

=
1
i~

(−U†HA(t0)U + U†A(t0)HU)

=
1
i~

[A(t),H]

(5)
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assuming that A(t0) is time independent and that U commutes with H. This gives
us the Heisenberg equation

dA
dt

=
1
i~

[A(t),H] (6)

which is often more convenient to use than the Schrodinger equation in quantum
optics.

The third picture is called the interaction picture (sometimes the Dirac picture).
It attaches time evolution to both the operators and the wave function. To do this,
we break our Hamiltonian into two parts H = H0 + V where H0 is a single system
term, and V is a term that couples between multiple systems. In this paper, we will
use the convention that the states evolve under H0 and the operators evolve under
V. We define

AI(t) = U0AH(t)U†0 = U0U†A0UU†0 (7)

By taking the derivative with respect to time, we see that

dAI

dt
=

d(U0AIU
†

0)

dt

=
i
~

[AI ,H0] + U0
dAH

dt
U†0

(8)

By combining the Heisenberg equation with the second term of the above expres-
sion, we obtain

U0
dAH

dt
U†0 = −

i
~

[AI ,H0] −
i
~

[AI ,V] (9)

This leads us directly to a clear analogue to the Heisenberg equation for V and AI:

dAI

dt
= −

1
i~

[AI ,V] (10)

Now we must also account for the state evolution under H0, which is straightfor-
ward. It must be the case that |ΨI(t)〉 = U0 |ΨI(t0)〉. Now taking the derivative

d |ΨI(t)〉
dt

=
dU0

dt
|ΨI(t0)〉

= −
i
~

H0 |ΨI(t0)〉
(11)

In the interaction picture, the state evolves as in the Schrodinger picture with the
Hamiltonian H0 and the operators evolve as in the Heisenberg picture with Hamil-
tonian V . The interaction picture is quite useful when applied to the optical para-
metric oscillator, so it will show up again later.

2.2 The Harmonic Oscillator

In quantum optics, a light field can be treated as a single quantum harmonic
oscillator (this section is based heavily on Moran Chen’s PhD thesis) [15]. The
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Hamiltonian for a harmonic oscillator in one dimension is

H =
p2

2m
+

1
2

mω2x2 (12)

where p is the momentum, m is the mass, and ω is the oscillation frequency ω =√
k
m (k being the spring constant). Let us now define the dimensionless analogs to

position and momentum

X =

√
mω
~

x (13)

P =

√
1

mω~
p (14)

These are known as the quadrature operators. When comparing the classical har-
monic oscillator to the quantum system, we notice that the continuous energy spec-
trum of the classical oscillator gives way to discrete energy levels in the quantum
case. The operators that move the system up or down one energy level are a† the
creation operator and its hermitian conjugate, a, the annihilation operator. When
acting on a quantum state of the harmonic oscillator, they will respectively add or
subtract one quanta of energy to the state. These quanta are known as phonons
in the case of a mechanical oscillator, while quanta of the light field are called
photons. These operators are related to the quadrature operators by

a =
1
√

2
(X + iP)

a† =
1
√

2
(X − iP)

(15)

The Hamiltonian for the quantum harmonic oscillator written in terms of the cre-
ation/annihilation operators is

H = ~ω(a†a +
1
2

) (16)

This is also the Hamiltonian for a quantum light field in free space. Each photon
added to the field adds energy of ~ω, ω being the frequency of the field. The
creation/annihilation operators are not hermitian, and therefore not observable, and
they satisfy the commutation relation

[a, a†] = 1 (17)

from which we derive that Q and P have the commutator

[X, P] = i (18)

which leads to an uncertainty relation between X and P, as they are hermitian ob-
servables. In this thesis, I will use the notation ∆X =

√
〈X2〉 − 〈X〉2. The uncer-

tainty relation is

∆X∆P ≥
1
2

(19)
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This is analogous the famous Heisenberg Uncertainty Principle, only formulated
using our dimensionless operators. The amount of variance, or noise, in the quadra-
ture operators is a crucial component of the proceedings discussed in this thesis.

2.3 Uncertainty of Quantum States of Light

Any quantum state of light must satisfy the uncertainty principle in its quadra-
tures. To see how this works, let us examine the cases of a few types of quantum
states (this section is based heavily on Moran Chen’s PhD thesis) [15]. First, we
will examine the photon number states, or Fock states. More precisely, Fock states
are eigenstates of the photon number operator N = a†a. Fock states are written
as |n〉, where n is an integer that denotes the number of photons in the state. They
form an orthonormal basis, so 〈n|n′|n|n′〉 = δnn′ . Fock states also have the following
properties

a† |n〉 =
√

n + 1 |n + 1〉

a |n〉 =
√

n |n − 1〉

N |n〉 = n |n〉

(20)

with the third relation being straightforward to derive from the first two. These
relations can also be used to derive the expectation value and standard deviation
of the quadrature operators X and P for the Fock state. Omitting the algebra, we
arrive at

〈n| X |n〉 = 〈n| P |n〉 = 0 (21)

∆X = ∆P =

√
n +

1
2

(22)

Therefore we can see that for a Fock state, ∆X∆P = n + 1
2 . For n = 0, commonly

known as the vacuum state, the inequality is saturated, so that ∆X∆P = 1
2 . This

means that the vacuum state is a minimum uncertainty state.
Another noteworthy class of states are the coherent states. Coherent states are

commonly referred to as “classical light” because they interact with beamsplit-
ters and other optical elements in the way predicted by classical electromagnetism.
They can be thought of as the quantum mechanical representation of a monochro-
matic plane wave, so they are a good representation of the output of lasers and
other similar systems. We will write a coherent state as |α〉, with α being a com-
plex number analogous to the amplitude of the classical wave. Coherent states are
generated by the displacement operator, defined as

D(α) = eαa†−α∗a (23)

When we apply D(α) to the vacuum state, we must use the Baker-Campbell-
Hausdorf formula

eA+B = eAeBe−
[A,B]

2 (24)

5



which is applicable if A and B both commute with [A,B]. Using this, and the Taylor
series for exponentials, we can derive that

|α〉 = D(α) |0〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉 (25)

which is the representation of a coherent state in the Fock state basis. From this we
can derive that a coherent state is an eigenstate of the annihilation operator

a |α〉 = α |α〉 (26)

Using this fact, it only requires a little bit of algebra to verify the results for the
uncertainty of X and P in a coherent state:

〈n| X |n〉 =
1
√

2
(α + α∗) (27)

〈n| P |n〉 =
−i
√

2
(α − α∗) (28)

∆X = ∆P =
1
√

2
(29)

This result shows that all coherent states are minimum uncertainty states, meaning
the product of their variances always saturates the Heisenberg inequality. Now, we
will progress to the states that are of interest in this thesis.

2.4 Squeezed States

The bulk of the analysis in this section is based on Introductory Quantum Op-
tics by Knight and Gerry [16]. In general, we say that any state which has a mea-
surable with variance less than the square root of the minimum uncertainty product
is squeezed. In our case, this would mean that X or P would have variance less than
1/2. The conjugate variable then must have a larger variance, and is anti-squeezed.
We will look at producing squeezed states in the same way as when we used a dis-
placement operator on the vacuum state to produce coherent states. The operator
which can produce squeezed states is

S (ξ) = exp[
1
2

(ξ∗a2 − ξa†2)] (30)

Where ξ = reiθ, r being the squeezing parameter. If we apply this operator to the
vacuum, our state (the squeezed vacuum state) is given by

|ξ〉 = S |0〉 (31)

This state gives us the following values for the quadrature variances, if we set θ = 0:

∆X =
1
√

2
e−2r (32)
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∆P =
1
√

2
e2r (33)

By changing the value of θ we can tune which quadratures are squeezed and anti-
squeezed, while r determines the amount of squeezing. We can also look how the
squeezed vacuum state is written in terms of the photon number basis (again using
the Baker-Campbell-Hausdorf formula):

|ξ〉 =
1

√
cosh(r)

∞∑
m=0

(−1)m
√

(2m)!
2mm!

eimθ tanhm(r) |2m〉 (34)

A notable feature of this state is that the sum contains only even number states.
Now we’ll look at two mode squeezing. Let’s take modes a and b, and find an
operator that produces a two mode squeezed state when applied to the two mode
vacuum:

S 2 |0a, 0b〉 (35)

Now we define the superposition quadrature operators as

X′ =
1

23/2 (a + a† + b + b†) (36)

P′ =
1

23/2 (a − a† + b − b†) (37)

We want an operator that squeezes these quadratures, which are formed from the
superposition of the creation and annihilation operators of two distinct modes of
light. This operator takes the form

S 2(ξ) = exp(ξ∗ab − ξa†b†) (38)

Again, for θ = 0 we get the following type of squeezing if we apply our two mode
squeezing operator to the two mode vacuum state, which we can tune by changing
θ:

∆X′ =
1
√

2
e−2r (39)

∆P′ =
1
√

2
e2r (40)

The two mode squeezed vacuum state is, in terms of the Fock basis

|ξ〉2 =
1

cosh(r)

∞∑
n=0

(−1)neinθ tanhn(r) |n, n〉 (41)

Note that the two modes always have the same number of photons. This means
that the the two modes are entangled, as measuring the photon number of one will
reveal the photon number of the other. In this paper, it is the entanglement of the
two mode squeezed state that is ultimately of consequence.

Finally, we note that the squeezing operators S (ξ) and S 2(ξ) are simply unitary
operators U that were covered in the section regarding time evolution, give by
U(t, t0) = e−i(t−t0)H/~. It follows that if we use a system with a Hamiltonian with
the right terms, we can generate squeezed states of light.
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2.5 Input Output Theory

Although we can use the formulas from the previous section to examine the
nature of squeezing, we need another approach to connect the theory of squeezing
to its actual generation in our experiment. We use an optical parametric oscilla-
tor (OPO) to generate squeezing. An OPO is an optical cavity with a non-linear
medium included in the beam path, so that light fields of different frequencies may
be coupled to one another. Like a laser cavity, OPOs may be operated above or
below a threshold (an OPO below threshold is often called an optical parametric
amplifier, or OPA). Above threshold, the OPO emits coherent (classical) states of
light, so our interest is in an OPO operated below threshold. Our OPO is set up
to down-convert photons of green 532 nm light supplied by a laser (known as the
pump beam) into two photons of IR 1064 nm “signal” light. The amount of squeez-
ing in the OPO’s output beams is determined by the strength of the pump beam,
the losses in the OPO, the transmission of the output coupler, and the strength of
the non-linear interaction [17].

We will describe our cavity with a Hamiltonian of the form[17]

Htot = Hsys + Hb + Hint (42)

Here Hsys represents the internal modes of the cavity, Hb the external input and
output fields (the b stands for bath), and Hint the coupling between the intra-cavity
modes and the external fields. In the following analysis, a will refer to the internal
modes of the field, and ain,out to the external fields. The internal/external modes
simply refer to the modes of light that exist inside and outside the optical cavity,
respectively.

Figure 1: A model of an optical cavity with internal mode a, and external modes at
only one port. [18]

The equation (using the interaction picture) for the internal field operators be-
comes

da
dt

= −
i
~

[a,Hsys] −
γ

2
+ γ′ain (43)

Here, γ represents the coupling between the internal and external fields, which ac-
counts for the influce of Hb on the internal dynamics of the cavity. Due to the
boundary conditions at the mirrors, γ′ = kγ. Here, k is derived from the the conti-
nuity of the boundary conditions at the mirror. Using time reversal symmetry, we
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can write the system of equations [17]

da
dt

= −
i
~

[a,Hsys] −
γ

2
+ γ′ain

= −
i
~

[a,Hsys] +
γ

2
− γ′aout

(44)

By solving these equations and eliminating the internal field operators, we can see
the relationship between the input and output fields directly. As these equations
form a linear system, we can simplify them into the form [17]

d~a
dt

= [A −
γ

2
I]~a + kγ~ain

= [A +
γ

2
I]~a − kγ~aout

(45)

Where ~a is

~a =

[
a
a†

]
(46)

and I is the identity matrix, and A is the matrix that determines our system of
equations. We now examine our operator as a function of frequency

ã(ω) =
1
√

2π

∫ ∞

−∞

e−iωta(t)dt (47)

Taking into account frequency, we write rewrite Eq. (36) as

−iω~̃a = [A −
γ

2
I]~̃a + kγ~̃ain

= [A +
γ

2
I]~̃a − kγ~̃aout

(48)

We can now solve this system to eliminate the internal mode, and obtain the output
mode in terms of the input mode, which is what we are interested in. Doing this
yields [17]

~̃aout = [A + (
γ

2
+ iω)I][−A + (

γ

2
− iω)I]−1~̃ain (49)

In the next section, we will apply this equation to the OPO specifically.

2.6 The input-output theory of the OPO

Now, let us examine the case of the degenerate OPO (in which the two signal
photons are in the same mode) first. This will give us a single mode squeezed state.
For a degenerate OPO below threshold, the Hamiltonian will take the form

Hsys = ~ω0a†a + χ
1
2

i~[ap(a†)2 − a†pa2] (50)

The grouping of operators represents the conversion of one pump photon into two
signal photons, and the conjugate process. χ is the nonlinear coupling of our pro-
cess. In order for this interaction to occur, the down-converted frequency ω0 must
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be exactly half the pump frequency. Now let’s assume that we have an undepleted
pump, or that the pump is in a classical state which remains unchanged with re-
spect to the relatively small number of photons that are converted into signal light.
This allows us to write the pump operators as ap = εe−iωt, with ωp as the pump
frequency and ε as the pump intensity. We can now re-write the Hamiltonian [17]

Hsys = ~ω0a†a +
1
2

i~[εe−iωpt(a†)2 − ε∗eiωpta2] (51)

In this equation, the coupling constant χ has been folded into the effective ampli-
tude of the pump. Notice that the second half of this Hamiltonian now has the form
required to act as the squeezing operator S (ξ). Now if we transform our operators
into the rotating frame so that a→ aeiωpt, we get the matrix equation [17]

d~a
dt

= [A −
1
2

(γ1 + γ2)I]~a +
√
γ1~ain +

√
γ2~bin (52)

where the matrix is

A =

[
0 ε

ε∗ 0

]
(53)

and the extra operator b and coefficient γ2 represent that we now have a two sided
cavity, with γ2 accounting for the interactions at the second mirror. This means that
our state can couple to external modes through more than one mirror. Although the
OPO used in this experiment is intended to function as a one-sided cavity, second
output mode can be used to keep track of losses through mirrors other than the
output coupler.

Figure 2: A two sided cavity may have inputs and outputs at two mirrors, so there
are more fields to keep track of[18]. The second input/output is often used to keep
track of losses, in which case we only look at aout as our desired signal.

While this adds some complication to the algebra, it does not fundamentally
change the approach. Using Eq (49), we can now calculate the output field. After
substituting in the correct matrix, we ultimately arrive at [19]

aout(ω0 + ω) =
[( 1

2γ1)2 − ( 1
2γ2 − iω)2 + |ε|2]ain((ω0 + ω) + εγ1a†in((ω0 − ω)

( 1
2γ1 + 1

2γ2 − iω)2 − |ε|2

−

√
γ1γ2( 1

2γ1 + 1
2γ2 − iω)bin(ω0 + ω) + ε

√
γ1γ2b†in(ω0 − ω)

( 1
2γ1 + 1

2γ2 − iω)2 − |ε|2

(54)

10



Using the output field, we can calculate the quadrature variances, and the squeezing
spectrum in terms of the output frequency [19]. The maximum output squeezing
occurs when |ε| = 1

2 (γ1 + γ2), which relates the pump power and the reflectivity
of the OPO mirrors. This relation also gives the threshold power of the OPO.The
setup in this paper is most accurately represented by the single sided cavity (with
small losses), so γ2 � γ1. The other parameters are a vacuum input, and pump
power near threshold. Let γ1 + γ2 = γ. We can derive the following formulas for
the variance of the quadrature outputs [18]

VX,out =
ω2 + (γ2 )2 + |ε|2 + εγ − γ1γ2

ω2 + (γ2 )2 + |ε|2 − εγ

VP,out =
ω2 + (γ2 )2 + |ε|2 − εγ + γ1γ2

ω2 + (γ2 )2 + |ε|2 + εγ

(55)

Now let d =
|ε |
γ
2

, and recall that γ2 � γ. We can re-write the output quadrature
variances as [18]

VX,out = 1 +
(γ − γ2

γ

)( 4d
4(ωγ )2 + (d − 1)2

)
VP,out = 1 −

(γ − γ2

γ

)( 4d
4(ωγ )2 + (d + 1)2

) (56)

This shows that VX,out > 1 and VP,out < 1 so the corresponding output quadratures
are anti-squeezed and squeezed respectively (in this calculation, the variances are
scaled so that V < 1 gives squeezing). We could also use this formula to calculate
how much squeezing is to be expected if we measure all the parameters of our
system. It is also possible to calculate the squeezing level for a non-degenerate
OPO, which is governed by the Hamiltonian

Hsys = ~ω0a†1a1 + ~ω0a†2a2 +
1
2

i~[εe−iωpta†1a†2 − ε
∗eiωpta1a2] (57)

in which modes a1 and a2 denote different frequencies. In this case we derive a
result through a similar process (omitting tedious algebra) [20]

VT MS = 1 −
8γ2

nl − 8γnlγ(Vlaser − 1)

(3γnl + γ)2 + ω2 (58)

in which γnl =
|ε |2

2γ and Vlaser is the classical noise of the laser. Again, we can see
that this can be less than one, giving a squeezed result. This variance is that of the
two mode quadrature, described in equations 36 and 37.

2.7 Optical Frequency Comb

The output of an OPO will take the form of an optical frequency comb. First, if
we label the pump frequency asωp, then our two photons must satisfy the condition
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ω1 + ω2 = ωp in order to conserve energy. Second, the frequencies of all three
photons must work with the phase-matching bandwidth of our OPO, which has
been measured to be 3.2 THz [10]. Third, due to the resonant enhancement of the
cavity, the output photons will be overwhelmingly emitted in the resonant cavity
modes of the OPO. These modes are separated in frequency by the free spectral
range (FSR) of the OPO; ours has an FSR of .95 GHz [10]. These two properties,
the phase-matching bandwidth of the crystals and FSR of the OPO determine the
size and the spacing of the QOFC. When we have the possibility of many modes
being produced instead of just two, we rewrite our Hamiltonian in sum form [10].

H = i~
N∑

i=0

κia
†

i a†
−i + H.C. (59)

Here, κ takes into account the pump power and non-linear coupling coefficient(and
anything else affecting the strength of the interaction).The subscripts are labeled
so that the pump frequency is at i=0 and the integers label by how many FSRs
the corresponding modes are separated. Solving the Heisenberg equations for the
creation/annihilation operators and translating these results into the quadrature op-
erators p and q shows that this Hamiltonian will produce two-mode, quadrature
squeezed states of light.

Figure 3: The optical frequency comb as formed by a single pump. The vertical
lines represent modes of the OPO. The vertical arrow shows half the pump fre-
quency and the horizontal arrows connect modes which form entangled pairs.

Although previous work in the lab has focused on using the building block
of the optical frequency comb to create states with more complex entanglement
structure, my thesis does not focus on those efforts.

2.8 Homodyne Detection

This section is based on analysis in Introductory Quantum Optics by Knight
and Gerry [16]. It is not trivial to measure the quadrature operators of a light
mode directly. While photon counting detectors do exist, most work of this kind,
including in our lab, is done with photodiodes. Photodiodes provide a measurement
of the intensity of the light field, I = 〈a†a〉. In order to measure the quadratures of
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our light, we need a beamsplitter, and an electronic subtraction circuit. In quantum
optics, beam splitters provide the following relationship between their input modes
a,b and output modes c,d

c = t′a + rb

d = r′a + tb
(60)

Figure 4: A beam-splitter [15]

In order to conserve photon number and preserve unitarity (we assume the
beam-splitter to be lossless), r and t follow the conditions

|r| = |r′|, |t| = |t′|

|r|2 + |t|2 = 1

r∗t′ + r′t∗ = 0

r∗t + r′t′∗ = 0

(61)

We use the following setup in experiment with a balanced beamsplitter. In the case
of a balanced beam splitter

c =
1
√

2
(a + ib)

d =
1
√

2
(ia + b)

(62)

In order to measure the quadrature operators with only intensity measurements, we
must use a technique called homodyne detection. We place photodetectors at each
output port of beamsplitter and electronically subtract their signals

13



Figure 5: The balanced homodyne measurement. [15]
This setup is what was used obtaining the results of this thesis.

This gives us

Ic − Id = 〈c†c − d†d〉

= i〈a†b − ab†〉
(63)

Now assume one of our inputs is in a coherent state (this is known as the local
oscillator)

∣∣∣βe−iΦe−iωt
〉

so we can write b = |β|e−iΦe−iωt which gives us

Ic − Id = |β|(aeiωte−iθ + a†e−iωteiθ) (64)

Where θ = Φ + π/2. The input that is in a coherent state is known as the local
oscillator. Now, if a is at the same frequency as b, we can cancel the time dependent
terms, and we are left with

Ic − Id = 2|β|[
1
2

(ae−iθ + a†eiθ)] = 2|β|X(θ) (65)

This X(θ) is a general quadrature operator, and can be tuned from X to P by tuning
the relative phases of the local oscillator and signal beam. In this way, we can
directly measure the quadrature operators of an unknown state of light.

2.9 Intra-Mode Squeezing

Let us now examine a case where our squeezed signal has a relatively wide
bandwidth, and the local oscillator has two narrow frequencies (we can treat them
as delta functions in frequency compared to the squeezed mode). We will refer
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to such an arrangement as a bichromatic local oscillator, or BLO. The central fre-
quency of the broadband light is ω0 and the two local oscillator frequencies are
ω0±Ω0. The difference in photo-currents in our homodyne measurement analyzed
at a specific radio frequency Ω is [14]

I(Ω) =
1
√

2
[a(Ω0−Ω)+a(−Ω0−Ω)]e−iθ+

1
√

2
[a†(Ω0 +Ω)+a†(−Ω0 +Ω)]eiθ (66)

Where we have ignored the constant that arises from the coherent state. This equa-
tion derives from (63) by simply assuming that the inputs to our homodyne beam
splitter are a linear combination of modes at frequencies ω0 ± Ω. The quantity Ω0
is the separation of the two frequencies we use in the bichromatic local oscillator.
If we let the quadratures of the signal field be X and P, then we can define the
following

XB(Ω) =
1
√

2
[X(|Ω0 −Ω|) + X(−Ω0 + Ω)]

PB(Ω) =
1
√

2
[P(|Ω0 −Ω|) + P(−Ω0 + Ω)]

(67)

The two frequency terms result from measuring symmetrically with our BLO. Now,
it remains to be shown what properties the sidebands which exist in this broadband
squeezed light mode will have.

We can in fact break down a single broadband squeezed light mode into multi-
ple EPR pairs of modes in general [12]. In more general notation, the signal field’s
quadrature may be written as

X(Ω, θ) =
1
√

2
[a(ω0 −Ω)e−iθ + a†(ω0 + Ω)eiθ] (68)

where ω0 is the central frequency of the signal light. Here we assume that we have
squeezing such that

∆X = e−2r < 1

∆P = e2r > 1
(69)

By treating the upper and lower sidebands as separate modes, and using a beam-
splitter transformation to separate them, we can arrive at modes which satisfy the
equations [12]

∆X(ω0 + Ω) = ∆X(ω0 −Ω) = ∆P(ω0 + Ω) = ∆P(ω0 −Ω) =
e2r + e−2r

2
> 1 (70)

for the individual quadratures, but for the sums we have

∆[X(ω0 + Ω) − X(ω0 −Ω)]/2 = ∆[P(ω0 + Ω) + P(ω0 −Ω)]/2 = e−2r < 1 (71)
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and for the conjugate operators

∆[X(ω0 + Ω) + X(ω0 −Ω)]/2 = ∆[P(ω0 + Ω) − P(ω0 −Ω)]/2 = e2r > 1 (72)

These are the conditions for two mode squeezing, and this is what we will attempt
to measure in our experiment, the squeezing between two sidebands of broadband
squeezed light.

3 Experimental Principles

Our experiment uses an OPO with a four mirror bow-tie cavity configuration,
which houses two periodically poled KTiOPO4 (KTP) crystals. Spontaneous para-
metric down conversion (SPDC) of a single 532 nm wavelength pump photon into
two 1064 nm photons can occur in each crystal. Our crystals are identical, both
being x-cut. They are oriented at 90◦ from each other, so that one allows for a zzz
polarized process and the other for yyy. In the results of this thesis, only the zzz
polarized process was used, so we used only the z polarized, pump beam.

Figure 6: A diagram of the optical setup used in this thesis.

In order to measure squeezing, several conditions must be satisfied. The pump
beam must be phase locked to the local oscillator. Our pump laser (L1) is an
ultrastable continuous-wave Nd:YAG laser [15] (“Diabolo” by Innolight) with an
internal doubling cavity that emits green light in addition to the generated IR. The
laser that provides our local oscillator (L3) is another CW Nd:YAG laser (JDSU
Ligtwave Electronics Model 126) [15]. The two lasers are phase-locked to one
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another using a 70 MHz beatnote. The beam from L3 passes through an acousto-
optical modulator (AOM) which has an electronic signal of 70 MHz feeding it. The
resulting shifted beam is combined with light from L1 on a beam splitter, and the
interference is used to phase lock the two lasers. Locking the beam from L1 to the
shifted beam of L3 at a difference of 70 MHz compensates for the shift, and locks
the output of the two lasers at the same frequency. This is done by comparing
the beatnote to an electronic 70 MHz signal. This technique is useful because a
beatnote of some kind is helpful to lock, so the frequency difference cannot be zero
between two beams.

The pump laser must also be mode-locked to the OPO cavity itself, which we
accomplish using the Pound-Drever-Hall (PDH) locking technique. The IR output
from the pump laser is modulated at 12 MHz, and this signal is used to lock the
OPO.

Now, in order to measure two mode squeezing within a single mode of the
OPO, we need a bichromatic local oscillator with two closely spaced frequencies.
We accomplish this by using a fiber coupled EOM and a filter cavity. The local
oscillator light from L3 is PDH locked to the filter cavity using a modulation of
9.17 MHz.

In order to generate the bichromatic local oscillator, we engineered an elec-
tronic signal using an RF mixer, combining a 700 MHz LO signal and an IF fre-
quency ranging from 50 to 800 kHz. The resulting signal has two frequencies
present.

Figure 7: An electronic frequency mixer used in the up-conversion mode. The
local oscillator is an electronic RF freqency (not to be confused with the homodyne
beam), the intermediate frequency is kHz range, and the RF is the output with
fRF = fLO ± fIF .(information from Digikey’s website, an article titled “The Basics
of Mixers”)
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Figure 8: The frequency picture of the electronic mixer. The two RF outputs are
centered around the local oscillator, but some power from the LO and the IF always
leaks through.(information from Digikey’s website, an article titled “The Basics of
Mixers”)

When applied to an EOM, it modulates the light so that four sidebands are
created. Modulation with an EOM creates two sidebands symmetrically around
the carrier frequency, so modulating with two signals simultaneously produces a
total of five frequencies.

Figure 9: The frequency structure of the optical local oscillator, showing each pair
of sidebands is separated by 2 fIF and the two pairs are separated by 2 fLO.

Now, by PDH locking our modulated light to a filter cavity (which has the same
properties as the OPO, but lacks non-linear crystals) we can choose to keep either
pair of sidebands, or the carrier frequency. Each sideband pair is close enough
so that the 10 MHz bandwidth of the filter cavity will pass it easily, but the two
sideband pairs and the central frequency are separated by enough so that the filter
cavity will exclude the undesired components. This technique allows us to flexibly
create a bichromatic local oscillator, or BLO.
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4 Results

4.1 Squeezing at Various BLO separations

In order to verify intra-mode squeezing, and confirm the scalability of the tech-
nique, we measured squeezing using the bichromatic local oscillator with various
frequency spacings. The following plot is an example of the data we took. These
traces show the noise level of various optical signals, taken with a spectrum ana-
lyzer.

Figure 10: This picture was taken with a 50 kHz sideband separation on the
BLO. Squeezing is typically measured in dB, according to the formula S (dB) =

20 log
(

shot noise level
squeezed noise level

)
. Every squeezing trace in this uses one box as 4 dB on the

vertical scale. Other information on the vertical and horizontal scales is included
in the screenshot.

In all squeezing images in this section, the lower (yellow) trace is the electron-
ics noise of the detectors, the sky blue trace is the noise of the coherent state local
oscillator (measured by blocking the quantum light), and the purple trace is the
squeezed signal. The level of the shot noise is determined by the power of the local
oscillator, as the variance of a coherent state is related to its expected photon num-
ber. When the noise of the squeezed signal drops below the shot noise, it means
that the relative phases of the local oscillator and signal are so that we measure
the squeezed quadrature. When it is higher, it means that we are measuring the
anti-squeezed quadrature. Squeezing does not appear over the entire trace because
of fluctuations in path length for the two beams that cannot be compensated for
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with a phase lock. The squeezing level that appears here is approximately 2.5-3
dB, which remains fairly constant across the different BLO separations.

The following figures show the squeezing level for increasing BLO separation.

Figure 11: This picture was taken with a 75 kHz sideband separation on the BLO.

In this trace, the noise in the lower fourth of the spectrum is even more appar-
ent. This is due to the electronic mixing that is used to create the sidebands. The
RF mixer always some of the LO signal to pass, so the laser is modulated at 75
kHz, and multiples of that due to harmonics. The harmonics could be eliminated
by using a lower electronic power, but then the EOM was not modulated strongly
enough. If the frequency of the LO input is low enough, this modulation is buried
in the low frequency noise of the detection (which comes from the detector elec-
tronics). However, if the frequency is high enough, these modulation peaks on the
local oscillator interfere with the squeezing measurement.

20



Figure 12: This picture was taken with a 100 kHz sideband separation on the BLO.

Figure 13: This picture was taken with a 200 kHz sideband separation on the BLO.

In the previous two figures, the modulation peaks have become much more
apparent. In the 200 kHz trace, the squeezing is barely visible (only around 2.5
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MHz does the noise level drop below shot noise). For future squeezing traces, a
change of measurement technique was necessary.

Figure 14: This picture was taken with a 300 kHz sideband separation on the BLO.
The x axis is now in time, and it simply records the noise level at a particular
frequency over the sweep time. This is the case for all zero span spectrum analyzer
traces in this thesis.

On this trace, and all remaining squeezing measurements, we used the zero
span measurement on our spectrum analyzer. This allows us to examine only the
location on the squeezing trace where squeezing is visible. The noise fluctuations
on these traces still represent the relative phase shift of the quantum light and local
oscillator.
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Figure 15: This picture was taken with a 400 kHz sideband separation on the BLO.

Figure 16: This picture was taken with a 500 kHz sideband separation on the BLO.
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Figure 17: This picture was taken with a 600 kHz sideband separation on the BLO.

Figure 18: This picture was taken with a 700 kHz sideband separation on the BLO.
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Figure 19: This picture was taken with an 800 kHz sideband separation on the
BLO.

As is apparent from these figures, the squeezing level remains consistent for
greater shifts of the BLO. We would expect to begin to see a drop in the squeezing
level at some point, as the OPO mode has a bandwidth of approximately 10 MHz.

4.2 Disappearance of Squeezing for off center measurements

When measuring squeezing, it is important to confirm that the squeezing dis-
appears when looking at modes that should not be correlated. In this section, we
examine squeezing traces which were taken with the entire BLO setup shifted off

center, so that its two frequencies were no longer located symmetrically about the
frequency of the OPO mode. As the shift increases, the two sidebands should no
longer be addressing modes which have any quantum correlations, and this is in
fact the result. Each measurement here is taken with a BLO width of 50 kHz.
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Figure 20: This trace was taken with a 50 Hz shift from the central frequency.

Although squeezing is still present in this trace, it is starting to be canceled out
by beatnote oscillations between the local oscillator and the squeezed signal. We
tried to avoid under-sampling the data by increasing the video bandwidth of the
spectrum analyzer. The squeezing should be completely gone as we shift outside
the bandwidth of our local oscillator, which is less than 1 kHz.
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Figure 21: This trace was taken with a 100 Hz shift from the central frequency.

Figure 22: This trace was taken with a 200 Hz shift from the central frequency.
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Figure 23: This trace was taken with a 300 Hz shift from the central frequency.

Figure 24: This trace was taken with a 400 Hz shift from the central frequency.
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Figure 25: This trace was taken with a 500 Hz shift from the central frequency.

Figure 26: This trace was taken with a 600 Hz shift from the central frequency.
On this trace, the size of the oscillations are beginning to make it harder to see the
squeezing. The VBW of the spectrum analyzer had to be increased for this trace,
resulting in a noisier spectrum.
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These traces confirm the squeezing disappears as we shift our LO away from
the center of the broadband squeezed mode. This confirms that our quantum cor-
relations have the structure we expected to observe. It is important to note how
quickly the squeezing disappears; qualitatively, it starts to fade away at an approxi-
mately 1 kHz shift. This is in contrast to the centered case, in which each sideband
was displaced from the center by at least 50 kHz. This helps show that we are not
simply measuring single mode squeezing with our BLO, but actually a two mode
effect.

5 Conclusions

In Conclusion, we have demonstrated a technique for measuring intra-mode
entanglement in the output squeezing mode of an optical parametric oscillator. It
has been shown that a light field with broadband squeezing can be analyzed as a
collection of two mode squeezed side band fields arranged around a center fre-
quency. The limit of how narrow the sideband fields may be is only set by the
bandwidth of the measurement techniques, and by the pump field itself. In order
to measure this two mode squeezing signal, it is necessary to use a two-mode,
or bichromatic, local oscillator. We generated such a field using a fiber coupled
EOM with a double-frequency modulation. This produces a local oscillator with
a widely tunable range of sideband separations, but also does not require multiple
optical modulators or phase locks in order to work. Using this experimental setup,
we were able to verify the presence of squeezing in our output field in the range
from 50 kHz to 800 kHz sideband separation. The squeezing level did not drop
significantly when measuring the wider sidebands, and the spectrum should extend
out to multiple MHz.

This intra-mode squeezing technique opens up new possibilities by allowing
for the production of frequency entangled cluster states which are more densely
packed in frequency space. Such states would prove useful as large resources for
quantum computing.
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