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Nomenclature 
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Coordinates 

 radial position – ݎ
 nondimensionalized radial position – ߟ
 stretched radial coordinate – ݔ
 axial position – ݖ
 nondimensionalized axial position – ݕ

Flow variables 

 density – ߩ
 pressure – 
  – radial velocityݒ
 ఏ – circumferential velocityݒ
 ௭ – axial velocityݒ
ܶ – temperature 
 ෩ – auxiliary variable; see (3.9)ܪ
 ෩ – auxiliary variable; see (3.12)ߔ
 auxiliary variable; see (3.21) and (3.45) – ܪ
 auxiliary variable; see (3.22) and (3.46) – ߔ

Centrifuge parameters and physical constants 

ܽ – centrifuge radius 
 centrifuge length – ܮ
 ௪ – density at the wallߩ
 ௪ – pressure at the wall
 angular speed of rotation – ߗ
ܿ – specific heat capacity 
ܴ – gas constant 
 dynamic viscosity – ߤ
݇ – thermal conductivity 



- 5 -  
 

Other terms from the conservation equations 

 velocity vector – ݒ⃑
 heat flux vector – ݍ⃑
݂⃑ – body force vector 
߬̿ – shear stress tensor 
  – kronecker deltaߜ
 kronecker delta tensor – ̿ߜ
݁ – specific energy 
 specific internal energy – ݑ
ℎ – specific enthalpy 
߶௩ – viscous dissipation function 
݉̇௦ – localized rate of addition of mass from a mass source 
࣭ெ – collective localized effect of all sources of mass 
࣭ோ – collective localized effect of all sources of radial momentum 
࣭ఏ – collective localized effect of all sources of circumferential momentum 
࣭ – collective localized effect of all sources of axial momentum 
࣭ா – collective localized effect of all sources of energy 
࣭̅ – non-homogeneous terms in the Onsager equation 

Potential functions 

߰ – stream function 
߯ – Onsager’s master potential function 
ࣲ – modified master potential function 

Important dimensionless quantities 

 Prandtl number; see the sentence following (3.9) – ݎܲ
 stratification parameter; see (3.19) – ܣ
ܼ – aspect ratio; see (3.36) 
ܴ݁ – Reynolds number; see (3.37) 
  – Brinkman number; see (3.38)ܭ
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Terms related to the boundary conditions 

 prescribed wall temperature gradient – (ݕ)ߠ
 prescribed mass flow high in the atmosphere – (ݕ)݂
 part of the Carrier-Maslen condition – (ݔ)݃
ℎ(ݕ) – non-homogeneous boundary condition high in the atmosphere 
߯() – reference function that satisfies all radial boundary conditions 
ℋ(ݔ,  non-homogeneous term that arises after introducing the modified master potential – (ݕ
 part of the modified Carrier-Maslen condition – (ݔ)ܩ

Terms related to the finite element method 

 direction ݔ subdivisions in the – ܯ
ܰ – subdivisions in the ݕ direction 
෩ࣲ – test function (“weighting” function) for Galerkin method 
ℬ – part of the simplified Galerkin form; see (5.15) and (5.16) 
ℱ – part of the simplified Galerkin form; see (5.15) and (5.17) 
Φ  – two-dimensional basis functions; see (5.18) 
  – cubic spline basis functionsݏ
  – modified cubic spline basis functionsߪ
  – linear spline basis functionsߣ

Accents and modifiers 

overbar – nondimensionalized variable 
subscript ‘0’ – value at the reference state 
subscript ‘1’ – perturbation from the reference state 
subscript ‘ݎ’ – radial direction 
subscript ‘ߠ’ – circumferential direction 
subscript ‘ݖ’ – axial direction 
subscript ‘ݏ’ – source term 
subscript ‘ܶ’ – value at the top of the atmosphere 
superscript ‘*’ – flow in the Ekman layers 
superscript ‘-’ – prescribed value at the bottom boundary 
superscript ‘+’ – prescribed value at the top boundary
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Chapter One 

Background 
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Figure 1-1.  A cross-section of a 
centrifuge rotor.  Centrifuges spin so 
rapidly that most of the gas is 
compressed against the outer wall.  A 
counter-current circulation is induced 
to improve separating performance. 

Introduction 

The protagonist in that which follows is the gas centrifuge; the plot is the enrichment of uranium.  
The narrative itself is more documentary than drama, the object being to chart the course, 
faithfully and meticulously, of molecules whirling inside a centrifuge cylinder.  Another author 
could – and many have1 – with the same characters tell an equally true but more cinema-friendly 
account, chronicling instances of corporate theft, international espionage, the internment of 
scientists, and worse.  Surely, the gas centrifuge is a testament of mankind’s remarkable ability 
to unearth the secrets of nature; yet, eventually, even the noblest enthusiasm for certain elusive 
atoms must be reconciled with the “awful arithmetic of the atomic bomb.” 2  The hope is that this 
work will support those committed to the responsible use of this extraordinary machine. 

The basics 

Gas centrifuges are used to separate the molecules of a 
gas by isotope; the most common application is 
uranium enrichment.  Natural uranium consists of two 
primary isotopes, 238U (99.3%), and 235U (0.7%).  
Generally, the goal is to increase the concentration of 
the fissile isotope, 235U.  Varying levels of enrichment 
are required for different purposes – some examples 
include nuclear power (~5%), research reactors (~20%), 
medical devices (~60%), naval propulsion (~20-90%) 
and military applications (~90%).  To achieve these 
enrichment concentrations, multiple centrifuges are 
arranged in cascades.  

In essence, a centrifuge is a fast-rotating cylinder 
which contains the gas to be separated.  As the 
centrifuge spins, molecules with greater mass drift 
outwards (away from the axis of rotation), pushing the 
lighter molecules inwards.  To increase separation 
efficiency, engineers employ one of several techniques 
to induce countercurrent circulation along the axis (i.e. 

                                                             
1 See, for example, [23] and [24]. 
2 The quoted language is from President Eisenhower’s “Atoms for Peace” speech delivered to the UN General 
Assembly in 1953. 
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the flow circulates from top to bottom).  This practice produces a large concentration difference 
between the top and bottom of the cylinder. 

The precise pattern of gas flow inside a centrifuge is difficult to determine.  The velocity at 
the outer wall reaches several hundred meters per second, resulting in extremely large gradients 
in pressure and density.  In addition, the great majority of gas molecules compress into the region 
immediately adjacent to the outer wall, creating a rarified inner region for which the Navier-
Stokes equations are poorly suited.  A variety of analysis techniques have been applied to this 
problem; the purpose of this thesis is to investigate the Onsager-Maslen equation, a sixth-order 
partial differential equation which approximates the fluid dynamics inside a centrifuge rotor. 

Brief literature review 

Early attempts to investigate the hydrodynamics inside a gas centrifuge included a variety of 
analytical models, each based on its own set of assumptions.  A survey of some of these models 
is given by Soubbaramayer in [1].  Undoubtedly, one of the most important examples of this kind 
is the Onsager pancake model, a theory first posited by the Nobel laureate Lars Onsager.  
Beginning in 1961, he led a group of scientists under the auspices of the United States Atomic 
Energy Commission charged with studying the fundamental aspects of the fluid flow in a 
centrifuge.  Wood and Morton outline the basic theory developed by this team in [2], which is 
primarily based on an unpublished report by Onsager and on work by George Carrier and 
Stephen Maslen presented in [3] and [4].  The results in [2] are reported in a form amenable to 
numerical calculations. 

A good deal of the research performed by the centrifuge theory group took place at the 
University of Virginia.  Several documents published by this group underpin the work presented 
in this thesis.  First are two illuminating reports by Maslen, [5] and [6], which account for the 
effect of curvature terms originally neglected in [2].  In recognition of this contribution, the 
modified version of the Onsager equation which includes curvature terms is typically referred to 
as the Onsager-Maslen equation.  Other important documents focus on the “source” terms 
introduced in [2].  Of note are [7], in which Barbarsky and Wood clarify the origin and meaning 
of these terms, and [8], in which Wood and Painter describe their effects in more detail. 

Numerous publications introduce methods for solving the Onsager equation in its various 
forms.  For the basic equation with a linear wall temperature gradient, an eigenfunction 
expansion solution is presented in [2] and a finite element solution is given by Gunzburger and 
Wood in [9].  Ribando uses a finite difference scheme in [10] to solve the same model without 
condensing it into a single equation.  Wood, Jordan, and Gunzburger solve the Onsager-Maslen 
equation (which includes curvature terms) in [11] via a finite element method.  Wood and 



- 10 -  
 

Sanders investigate the effect of sources of mass, momentum, and energy with an eigenfunction 
expansion solution in [12], and Gunzburger, Wood, and Jordan solve a very similar problem with 
a finite element technique in [13]. 

In the intervening years, a scattering of publications related to the original pancake model has 
appeared.  In [14], Wood investigates the impact of feed effects on a single-stage centrifuge 
cascade.  The problem of multi-isotope separation is considered by Wood, Mason, and 
Soubbaramayer in [15].  Bourn, Peterson, and Wood solve the pancake model equations with a 
temperature potential rather than Onsager’s master potential in [16].  Babarsky, Herbst, and 
Wood investigate more fully in [17] the relationship between this temperature potential and the 
master potential.  In [18], Doneddu, Roblin, and Wood present the results of an optimization 
study for gas centrifuge design.  Wood, Ying, Zeng, Nie, and Shang estimate the overall 
separation factor for various multicomponent mixtures in [19].  Finally, Pradhan and Kumaran 
introduce a generalized Onsager model and compare its predictions with Direct Simulation 
Monte Carlo calculations in [20]. 

Content and motivation 

The essential component of this thesis is a solution of the Onsager-Maslen equation which allows 
for sources and sinks of mass, momentum, and energy.  Other authors have considered the 
effects of curvature terms and source terms separately; the aim here is to account for both 
phenomena at once.  The solution is obtained with a finite element algorithm. 

One goal is to provide a model which can accurately predict the flow characteristics of small, 
relatively low speed gas centrifuges, such as those whose designs became available through the 
A.Q. Khan network.  United States centrifuges (those for which the pancake model were 
developed) are tall and operate at very high speeds.  Under these conditions, the errors 
introduced by the pancake approximation are least severe.  The analysis method demonstrated in 
the following chapters – because it preserves effects of curvature terms and permits the use of 
source terms to model the introduction and withdrawal of feed – should lead to more accurate 
performance estimates for small, low speed gas centrifuge machines.
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Chapter Two 

Conservation Laws for a Compressible Viscous Fluid 
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Introduction 

This chapter examines the principles of conservation of mass, linear momentum, and energy for 
a compressible, viscous fluid.  The discussion is based on special conservation equations derived 
by Barbarsky and Wood in [7] that account for possible sources and sinks of mass, momentum, 
and energy within the flow field.  The basic equations are reduced to more practicable forms 
with a combination of the approaches given in [7], [21], and [22].3 

Conservation of mass 

The principle of conservation of mass in an infinitesimally small control volume is expressed by 

 డఘ
డ௧

+ ∇ ∙ (ݒ⃑ߩ) = ݉̇௦ , (2.1) 

where ݉̇௦ is the rate of addition of mass (per unit volume) emanating from a point source within 
the control volume.  After expanding the ∇ ∙ ݒ⃑ term as (ݒ⃑ߩ) ∙ ߩ∇ + ∇)ߩ ∙  the equation may be ,(ݒ⃑
rewritten as 

 ఘ
௧

= ∇)ߩ− ∙ (ݒ⃑ + ݉̇௦ , (2.2) 

in which ݐܦ/ܦ is the material derivative.  This new form is the equation of change for density 
and has the following physical interpretation: the density of the fluid within the infinitesimal 
control volume changes with a rate determined by the two terms on the right-hand side.  The first 
influencing factor is the divergence of the velocity vector.  If this value is positive, spatial 
changes in the velocity field have a net effect of “whisking away” mass faster than it is being 
replaced, driving the density of fluid flowing through the point to decrease.  In the opposite case 
(a negative divergence), spatial variation in the flow speed tends to accumulate mass in the tiny 
control volume, increasing the density of fluid flowing through its confines.  The second 
influencing factor is the increase (or decrease) in density caused by the mass source (or sink). 

                                                             
3 Reference [21] and references [7] and [22] use opposite sign conventions for the stress tensor.  The convention 
adopted here is that adopted in [7], in [22], and in most textbooks on fluid dynamics. 
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Conservation of momentum 

The principle of conservation of linear momentum at a point is expressed by 

 డ
డ௧

(ݒ⃑ߩ) + ∇ ∙ (ݒ⃑ݒ⃑ߩ) = ݂⃑ߩ + ∇ ∙ ߬̿ − ∇ + ݉̇௦⃑ݒ௦ + ݂⃑௦ (2.3) 

where ݒ⃑ݒ⃑ߩ is of tensorial nature, ⃑ݒ௦ is the velocity of the flow emanating from the mass source 
and ݂⃑௦ is a source term equivalent to a body force.  The first step in reducing this equation is to 
expand the ∇ ∙ ݒ⃑ term on the left-hand side as (ݒ⃑ݒ⃑ߩ) ∙ (ݒ⃑ߩ)∇ + ∇)ݒ⃑ߩ ∙  Then, rearranging the  .(ݒ⃑
equation and introducing the material derivative yields 

 
௧

(ݒ⃑ߩ) = ∇)ݒ⃑ߩ− ∙ (ݒ⃑ + ݂⃑ߩ + ∇ ∙ ߬̿ − ∇ + ݉̇௦⃑ݒ௦ + ݂⃑௦ . (2.4) 

This form, the equation of change for momentum, shows that the fluid momentum varies with a 
rate determined by the six influencing factors listed on the right-hand side.  The left-hand side of 
(2.4) is further expanded using 

 
௧

(ݒ⃑ߩ) = ߩ ௩ሬ⃑
௧

+ ݒ⃑ ఘ
௧

 , (2.5) 

which gives the relationship between the rates of change of the fluid’s momentum and of its 
constituent properties: density and velocity.  This result suggests subtracting from equation (2.4) 
the product of ⃑ݒ and (2.2), which, after some simplification, yields the equation of change for 
velocity, 

ߩ  ௩ሬ⃑
௧

= ݂⃑ߩ + ∇ ∙ ߬̿ − ∇ + ݉̇௦(⃑ݒ௦ − (ݒ⃑ + ݂⃑௦ . (2.6) 

The right hand side lists the five influencing factors that determine the rate of change of the 
fluid’s velocity. 

Conservation of energy 

The principle of conservation of total energy (internal and kinetic) in an infinitesimally small 
control volume is expressed as 

 డ
డ௧

(݁ߩ) + ∇ ∙ (ݒ⃑݁ߩ) = ݒ⃑ߩ ∙ ݂⃑ + ∇ ∙ (߬̿ ∙ (ݒ⃑ − ∇ ∙ (ݒ⃑) − ∇ ∙  (2.7) ݍ⃑

  +݉̇௦ ቀ݁௦ + ೞ
ఘೞ
ቁ + ௦ݍ̇ +   ௦ݓ̇

where ݁௦ is the specific total energy of the source flow, the term ௦/ߩ௦ is used to represent the 
flow work associated with introducing the source fluid, ̇ݍ௦ is the heat source per unit time and 



- 14 -  
 

volume, and ̇ݓ௦ is the work rate per unit volume (excluding flow work) due to the source.  The 
first step in reducing this equation is, again, to expand the second term on the left-hand side, this 
time as ∇ ∙ (ݒ⃑݁ߩ) = ݒ⃑ ∙ (݁ߩ)∇ + ∇)݁ߩ ∙  Rearranging and introducing the material derivative  .(ݒ⃑
leads to the equation of change for total energy, 

 
௧

(݁ߩ) = ∇)݁ߩ− ∙ (ݒ⃑ + ݒ⃑ߩ ∙ ݂⃑ + ∇ ∙ (߬̿ ∙ (ݒ⃑ − ∇ ∙ −(ݒ⃑) ∇ ∙  (2.8) ݍ⃑

  +݉̇௦ ቀ݁௦ + ೞ
ఘೞ
ቁ + ௦ݍ̇ +  , ௦ݓ̇

from which one may calculate the rate of change of energy in the fluid.  

Next, noting that total energy can be represented by ݁ = ݑ + ݒ⃑ ∙  being the ݑ with ,2/ݒ⃑
specific internal energy, and also recognizing that  (ݐܦ/ܦ)(⃑ݒ ∙ (2/ݒ⃑ = ݒ⃑ ∙ -the left ,(ݐܦ/ݒ⃑ܦ)
hand side of (2.8) may be expanded as 

 
௧

(݁ߩ) = ߩ ௨
௧

+ ݒ⃑ߩ ∙ ௩ሬ⃑
௧

+ ݁ ఘ
௧

 . (2.9) 

The energy of the fluid contained in the infinitesimally small control volume changes with a rate 
that is inextricably linked to the rates of change of the fluid’s internal energy, velocity, and 
density.  This result suggests subtracting both the dot product of ⃑ݒ and (2.6) and the product of ݁ 
and (2.2) from (2.8).  The result, after simplification, is the equation of change for internal 
energy, 

ߩ  ௨
௧

= ∇)− ∙ (ݒ⃑ − ∇ ∙ ݍ⃑ +  (2.10) ݒ⃑∇:̿߬

  +݉̇௦ ቀݑ௦ − ݑ + ೞ
ఘೞ

+ ଵ
ଶ

ݒ⃑| − ௦|ଶቁݒ⃑ − ݒ⃑ ∙ ݂⃑௦ + ௦ݍ̇ +   ௦ݓ̇

in which the right-hand side lists each factor that contributes to changes in the fluid’s internal 
energy.  Note that ߬̿:∇⃑ݒ is the irreversible rate of internal energy increase by viscous dissipation 
and is equal to ∇ ∙ (߬̿ ∙ (ݒ⃑ − ݒ⃑ ∙ (∇ ∙ ߬̿). 

The reduction of the energy equation includes one additional step, which is to express the 
internal energy in terms of the fluid temperature and its heat capacity.  After using (2.2) to 
replace the (∇ ∙  ,term in (2.10), and rearranging, one obtains (ݒ⃑

ߩ  ௨
௧
− 

ఘ
ఘ
௧

= −∇ ∙ ݍ⃑ +  (2.11) ݒ⃑∇:̿߬

  +݉̇௦ ቀݑ௦ + ೞ
ఘೞ
− ݑ − 

ఘ
+ ଵ

ଶ
ݒ⃑| − ௦|ଶቁݒ⃑ − ݒ⃑ ∙ ݂⃑௦ + ௦ݍ̇ +  . ௦ݓ̇
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Then, by introducing enthalpy, ℎ = ݑ + (ݐܦ/ℎܦ)ߩ and recognizing that ,ߩ/ = −(ݐܦ/ݑܦ)ߩ
(ݐܦ/ߩܦ)(ߩ/) +  equation (2.11) is rewritten ,(ݐܦ/ܦ)

ߩ  
௧

= 
௧
− ∇ ∙ ݍ⃑ +  (2.12) ݒ⃑∇:̿߬

  +݉̇௦ ቀℎ௦ − ℎ + ଵ
ଶ

ݒ⃑| − ௦|ଶቁݒ⃑ − ݒ⃑ ∙ ݂⃑௦ + ௦ݍ̇ +   ௦ݓ̇

For an ideal gas, assuming constant specific heat capacity, the term ܦℎ/ݐܦ can be expressed as 
ܿ(ݐܦ/ܶܦ), finally leading to an equation of change for temperature, 

ܿߩ 
்
௧

= 
௧
− ∇ ∙ ݍ⃑ +  (2.13) ݒ⃑∇:̿߬

  +݉̇௦ ቀܿ( ௦ܶ − ܶ) + ଵ
ଶ

ݒ⃑| − ௦|ଶቁݒ⃑ − ݒ⃑ ∙ ௦ܨ⃑ + ௦ݍ̇ +  . ௦ݓ̇

Final steps 

To complete the reduction process, the stress tensor is evaluated assuming a Newtonian fluid, 

 ߬̿ = ߤ ቂ∇⃑ݒ + ற(ݒ⃑∇) − ଶ
ଷ

(∇ ∙  ቃ , (2.14)̿ߜ(ݒ⃑

and Fourier’s law is employed to model temperature-driven heat flux, 

ݍ⃑  = −݇∇ܶ . (2.15) 

Under these assumptions, and for constant viscosity and constant thermal conductivity, the 
reduced momentum equation – equation (2.6) – becomes 

ߩ  ௩ሬ⃑
௧

= ݂⃑ߩ + ߤ ቂ∇ଶ⃑ݒ + ଵ
ଷ
∇(∇ ∙ ቃ(ݒ⃑ − ∇ + ݉̇௦(⃑ݒ௦ − (ݒ⃑ + ݂⃑௦ , (2.16) 

and the reduced energy equation – equation (2.13) – becomes, 

ܿߩ 
்
௧

= 
௧

+ ݇∇ଶܶ	 +  ௩ (2.17)߶ߤ

  +݉̇௦ ቀܿ( ௦ܶ − ܶ) + ଵ
ଶ

ݒ⃑| − ௦|ଶቁݒ⃑ − ݒ⃑ ∙ ݂⃑௦ + ௦ݍ̇ +  , ௦ݓ̇

where the dissipation function Φ௩ is 

 ߶௩ = ଵ
ଶ
∑ ∑ ൬డ௩

డ௫ೕ
+ డ௩ೕ

డ௫
൰ − ଶ

ଷ
(∇ ∙ ൨ߜ(ݒ⃑

ଶ

  . (2.18)
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Chapter Three 

The Onsager-Maslen Equation with Sources 
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Introduction 

The Onsager-Maslen equation is the modification of Onsager’s basic equation that arises when 
curvature terms are retained in the derivation.  The purpose of this chapter is to develop a version 
of that equation which accounts for the effects of sources (and sinks) of mass, momentum, and 
energy in the flow field.  The derivation is informed primarily by [2], [6], and the equations from 
the previous chapter, but also with aid from [11], [12], [5], [7], [8], and [20]. 

The domain for the problem is a right circular cylinder traversed by a cylindrical coordinate 
system with components (ߠ,ݎ,  Its origin is the intersection of the cylinder axis and bottom  .(ݖ
surface.  The problem is reduced to two spatial dimensions by assuming axisymmetric flow. 

For a compressible, viscous fluid, the ideal gas law and the principles of conservation of 
mass, momentum, and energy make up a complete system in the flow variables ݒ⃑ ,ߩ ,, and ܶ.  
The equations expressing these principles (derived in the previous chapter) which account for 
possible sources and sinks of mass, momentum, and energy within the flow field are 

  =  (3.1) , ܴܶߩ

 ఘ
௧

= ∇)ߩ− ∙ (ݒ⃑ + ࣭ெ , (3.2) 

ߩ  ௩ሬ⃑
௧

= ∇− + ߤ ቂ∇ଶ⃑ݒ + ଵ
ଷ
∇(∇ ∙ ቃ(ݒ⃑ + ࣭⃑ோఏ , (3.3) 

ܿߩ 
்
௧

= 
௧

+ ݇∇ଶܶ + ௩߶ߤ + ࣭ா . (3.4) 

In these equations, the effects of gravity are neglected under the assumption that it has a 
negligible impact on high speed rotating flows.  The appropriate viscous dissipation term is 

 ߶௩ = 2 ቀడ௩ೝ
డ
ቁ
ଶ

+ ௩ೝమ

మ
+ ቀడ௩

డ௭
ቁ
ଶ

+ డ௩ೝ
డ௭

డ௩
డ
൨ (3.5) 

  + ቀడ௩ഇ
డ

− ௩ഇ

ቁ
ଶ

+ ቀడ௩
డ
ቁ
ଶ

+ ቀడ௩ೝ
డ௭
ቁ
ଶ

+ ቀడ௩ഇ
డ௭
ቁ
ଶ
− ଶ

ଷ
[∇ ∙  . ଶ[ݒ⃑

Finally, the scalar components of the momentum equation are, in cylindrical coordinates and for 
steady, axisymmetric flow, 

ߩ  ቀ௩ೝ
௧

− ௩ഇమ


ቁ = − డ

డ
+ ߤ ቂ∇ଶݒ −

௩ೝ
మ

+ ଵ
ଷ
ப
ப

(∇ ∙ ቃ(ݒ⃑ + ࣭ோ , (3.6) 

ߩ  ቀ௩ഇ
௧

+ ௩ೝ௩ഇ

ቁ = ߤ ቂ∇ଶݒఏ −

௩ഇ
మ
ቃ + ࣭ఏ , (3.7) 

ߩ  ௩
௧

= − డ
డ௭

+ ߤ ቂ∇ଶݒ௭ + ଵ
ଷ
ப
ப௭

(∇ ∙ ቃ(ݒ⃑ + ࣭ . (3.8) 
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Recasting the equations 

It is useful to recast the governing set (3.1)-(3.4) into an alternate form.  Two new equations are 
developed which replace the azimuthal momentum and energy equations.  The first of these 
equations is based on the auxiliary variable, ܪ෩, defined as 

෩ܪ  = ்

బ்
+ 

ଶ బ்
ଶݒ) + ఏݒ)ఏݒ − (ߗݎ +  ௭ଶ) , (3.9)ݒ

where ܲݎ is the Prandtl number, ܲݎ =  /݇, which relates the ease of diffusion of momentumܿߤ
to the ease of diffusion of heat.  The initial step is to add (3.4) to the product of ⃑ݒ and (3.3), 
giving4 

ߩ  
௧
ቀܿܶ + ଵ

ଶ
ݒ⃑ ∙ ቁݒ⃑ = ∇ଶ ቀ݇ܶ + ߤ ଵ

ଶ
ݒ⃑ ∙  ቁ (3.10)ݒ⃑

ߤ+   ቀడ௩ೝ
డ
ቁ
ଶ

+ ቀ௩ೝ

ቁ
ଶ

+ ቀడ௩
డ௭
ቁ
ଶ

+ 2 డ௩ೝ
డ௭

డ௩
డ
− 2 ௩ഇ


డ௩ഇ
డ

+ ଵ
ଷ
ݒ⃑ ∙ ∇(∇ ∙ (ݒ⃑ − ଶ

ଷ
[∇ ∙  ଶ൨[ݒ⃑

  +࣭ா + ݒ⃑ ∙ ࣭⃑ோఏ ; 

then, subtracting from this result the quantity 2/ߗݎ multiplied by (3.7) and dividing every term 
by a constant temperature ܶ yields5 

ܿߩ 

௧
ቆ்

బ்
+ ଵ

ଶ బ்
ଶݒ) + ఏݒ)ఏݒ − (ߗݎ + ௭ଶ)ቇݒ = ݇∇ଶܪ෩ (3.11) 

  + ఓ

బ்
ቀడ௩ೝ

డ
ቁ
ଶ

+ ቀ௩ೝ

ቁ
ଶ

+ ቀడ௩
డ௭
ቁ
ଶ

+ 2 డ௩ೝ
డ௭

డ௩
డ
− ଵ


డ
డ
൫ݒఏ(ݒఏ − ൯(ߗݎ + ଵ

ଷ
ݒ⃑ ∙ ∇(∇ ∙ (ݒ⃑ − ଶ

ଷ
[∇ ∙  ଶ൨[ݒ⃑

  + ଵ

బ்
ቂ࣭ா + ݒ⃑ ∙ ࣭⃑ோఏ −

ఆ
ଶ
࣭ఏቃ . 

Equation (3.11) is the first of the new equations.  Notice that if ܲݎ = 1, then from (3.9) most of 
the terms to the left of the equals sign may be replaced by ܪ෩. 

The second equation is based on another auxiliary variable, ߔ෩, defined as 

෩ߔ  = ்

బ்
+ 

ଶ బ்
ଶݒ) + (௭ଶݒ − ௩ഇ

మ

మఆమ
 . (3.12) 

                                                             
4 Recall that ⃑ݒ ∙ ௩ሬ⃑

௧
= 

௧
ቀଵ
ଶ
ݒ⃑ ∙   ,ቁ.  Additionally, in a cylindrical coordinate system with axisymmetric flowݒ⃑

ݒ⃑ ∙ ∇ଶ⃑ݒ = ∇ଶ ቀଵ
ଶ
ݒ⃑ ∙ ቁݒ⃑ − ቀ௩ೝ


ቁ
ଶ
− ቀ௩ഇ


ቁ
ଶ
− (ݒ∇) ∙ −(ݒ∇) (ݒ∇) ∙ −(ݒ∇) (ݒ∇) ∙  .(ݒ∇)

5 Note that ఆ
ଶ
௩ഇ
௧

= ଵ
ଶ

௧

−(ఏݒΩݎ) ஐ
ଶ
ఏ and  ఆݒݒ

ଶ
∇ଶݒఏ = ∇ଶ ቀଵ

ଶ
ఏቁݒΩݎ −

ఆ
ଶ
ఏݒ − ߗ ப௩ഇ

ப
. 
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The development of this equation requires first multiplying ܲݎ/ܿ ܶ by the difference of (3.10) 
and the product of ݒఏ and (3.7), which is6 

ߩ  
௧
ቆܲݎ ൬்

బ்
+ ௩ೝమା௩మ

ଶ బ்
൰ቇ − ఘ

 బ்

௩ೝ௩ഇ
మ


= (3.13) 

ଶ∇ߤ   ቆ்

బ்
+ 

ଶ బ்
ଶݒ) + ௭ଶ)ቇݒ + ఓ

 బ்
ቀడ௩ഇ

డ
− ௩ഇ


ቁ
ଶ

+ ቀడ௩ഇ
డ௭
ቁ
ଶ
൨ 

  + ఓ
 బ்

ቀడ௩ೝ
డ
ቁ
ଶ

+ ቀ௩ೝ

ቁ
ଶ

+ ቀడ௩
డ௭
ቁ
ଶ

+ 2 డ௩ೝ
డ௭

డ௩
డ

+ ଵ
ଷ
ݒ⃑ ∙ ∇(∇ ∙ (ݒ⃑ − ଶ

ଷ
[∇ ∙  ଶ൨[ݒ⃑

  + 
 బ்

[࣭ா + ࣭ோݒ +  , [௭࣭ݒ

then finding the product of (3.7) and the quantity 2ݒఏ/ݎଶߗଶ, which is7 

ߩ  
௧
ቀ ௩ഇ

మ

మఆమ
ቁ + ߩ4 ௩ೝ


ቀ௩ഇ
ఆ
ቁ
ଶ

=  (3.14) 

ߤ   ቈ∇ଶ ቀ ௩ഇ
మ

మఆమ
ቁ + ସ௩ഇ

మஐమ
ப
ப
ቀ௩ഇ

ቁ − ଶ

మఆమ
ቀப௩ഇ

ப
− ௩ഇ


ቁ
ଶ

+ ቀப௩ഇ
ப௭
ቁ
ଶ
൨ 

  + ଶ௩ഇ
మఆమ

࣭ఏ , 

and finally subtracting (3.14) from (3.13) to obtain 

ߩ  
௧
൬ܲݎ ൬்

బ்
+ ௩ೝమା௩మ

ଶ బ்
൰ − ቀ௩ഇ

ఆ
ቁ
ଶ
൰ − ൬1 + మఆమ

ସ బ்
൰ ସఘ௩ೝ


ቀ௩ഇ
ఆ
ቁ
ଶ

= (3.15) 

෩ߔଶ∇ߤ   − ସఓ௩ഇ
మఆమ

డ
డ
ቀ௩ഇ

ቁ + ଶఓ

మఆమ
൬1 + మఆమ

ଶ బ்
൰ ቀப௩ഇ

ப
− ௩ഇ


ቁ
ଶ

+ ቀப௩ഇ
ப௭
ቁ
ଶ
൨ 

  + ఓ
 బ்

ቀడ௩ೝ
డ
ቁ
ଶ

+ ቀ௩ೝ

ቁ
ଶ

+ ቀడ௩
డ௭
ቁ
ଶ

+ 2 డ௩ೝ
డ௭

డ௩
డ

+ ଵ
ଷ
ݒ⃑ ∙ ∇(∇ ∙ −(ݒ⃑ ଶ

ଷ
[∇ ∙  ଶ൨[ݒ⃑

  + 
 బ்

[࣭ா + ࣭ோݒ + −[௭࣭ݒ ଶ௩ഇ
మఆమ

࣭ఏ . 

Here again, if ܲݎ = 1, the variable ߔ෩ may replace most of the terms to the left of the equals sign. 

Equations (3.1), (3.2), (3.6), (3.8), (3.11), and (3.15), along with the auxiliary relationships 
(3.9) and (3.12) make up a complete system. 

                                                             
6 Note the identities ݒఏ

௩ഇ
௧

= 
௧
ቀଵ
ଶ
ఏݒఏ∇ଶݒ ఏଶቁ andݒ = ∇ଶ ቀଵ

ଶ
ఏଶቁݒ − ∙ (ఏݒ∇)  .(ఏݒ∇)

7 Note that ଶ௩ഇ
మஐమ

௩ഇ
௧

= 
௧
ቀ ௩ഇ

మ

మஐమ
ቁ+ 2 ௩ೝ


ቀ௩ഇ
ஐ
ቁ
ଶ
 and  ଶ௩ഇ

మஐమ
∇ଶݒఏ = ∇ଶ ቀ ௩ഇ

మ

మஐమ
ቁ − ଶ

మஐమ
(ఏݒ∇) ∙ (ఏݒ∇) + ଼௩ഇ

యஐమ
డ௩ഇ
డ

− ସ௩ഇ
మ

రஐమ
. 



- 20 -  
 

The reference solution 

The flow in a gas centrifuge is assumed to vary only slightly from the flow pattern exhibited by a 
fluid in solid body rotation.  This reference state – nicknamed isothermal “wheel flow” – has 
velocities 

ݒ  = 0 , 
ఏݒ  =  (3.16) , ߗݎ
௭ݒ  = 0 , 

and a constant temperature, ܶ.  The corresponding pressure and density are determined from the 
radial component of the momentum equation, 

 డబ
డ

= ߩ
௩ഇబమ


=  ଶ , (3.17)ߗݎߩ

and the ideal gas law, leading to 

 బ
ೢ

= ఘబ
ఘೢ

= ݁ି
మ൬ଵିቀೝೌቁ

మ
൰ . (3.18) 

In this expression, ௪ and ߩ௪ are the pressure and density at the wall, ܽ is the radius of the 
cylinder, and the variable ܣ is the stratification parameter, defined as the ratio of the wall speed 
to the most probable molecular speed of the gas, 

ܣ  = ఆ
ඥଶோ బ்

 . (3.19) 

It is important to emphasize that this reference solution satisfies the system of equations (3.1)-
(3.4) and therefore also the alternate system made up of (3.1), (3.2), (3.6), (3.8), (3.11), and 
(3.15). 

The linearized equations 

Assuming the flow circulating in a gas centrifuge is a linear perturbation of the reference state 
described above, the flow variables may be written 

ݒ  = ఏݒ     , ଵݒ = ߗݎ + ௭ݒ     , ఏଵݒ =  , ௭ଵݒ

  =  + ߩ     , ଵ = ߩ + ܶ     , ଵߩ = ܶ + ଵܶ , (3.20) 

෩ܪ  = ෩ܪ + ෩ߔ     ,ܪ = ෩ߔ +  . ߔ
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Note that ܪ෩ = 1 and 

ܪ  = భ்

బ்
+ మఆమ

ଶ బ்

௩ഇభ
ఆ

 , (3.21) 

while ߔ෩ = 0, and 

ߔ  = భ்

బ்
− ଶ௩ഇభ

ఆ
 . (3.22) 

These expressions are inserted into (3.1), (3.2), (3.6), (3.8), (3.11), and (3.15).  Linearized 
equations for the perturbation variables (e.g., ଵ) are developed by subtracting from each 
equation the same equation evaluated at the reference state, and then retaining only the linear 
terms.  The resulting system is given by (3.23)-(3.28), 

 భ
బ

= ఘభ
ఘబ

+ భ்

బ்
 , (3.23) 

ଵݒ 
డఘబ
డ

= ∇)ߩ− ∙ (ଵݒ⃑ + ࣭ெ , (3.24) 

ఏଵݒߗߩ2−  − ଶߗݎଵߩ = − డభ
డ

+ ߤ ቂ∇ଶݒଵ −
௩ೝభ
మ

+ ଵ
ଷ
ப
ப

(∇ ∙ ଵ)ቃݒ⃑ + ࣭ோ , (3.25) 

 0 = − డభ
డ௭

+ ߤ ቂ∇ଶݒ௭ଵ + ଵ
ଷ
ப
ப௭

(∇ ∙ ଵ)ቃݒ⃑ + ࣭ , (3.26) 

 0 = ∇ଶܪ − ఆ
 బ்

ଵ

డ
డ

(ఏଵݒݎ) + ଵ
 బ்

ቂ࣭ா + ఆ
ଶ
࣭ఏቃ , (3.27) 

 −4 ൬1 + మఆమ
ସ బ்

൰ ఘబ௩ೝభ


= ߔଶ∇ߤ − ସఓ


డ
డ
ቀ௩ഇభ
ఆ
ቁ + 

 బ்
࣭ா −

ଶ
ఆ
࣭ఏ . (3.28) 

Nondimensionalization 

It is useful at this stage to introduce dimensionless versions of each variable.  These include 
dimensionless coordinates, 

ߟ  = 

ݕ     ,  = ௭


 , (3.29) 

dimensionless pressures and densities, 

̅  = బ
ೢ

̅     ,  = భ
ೢ

ߩ̅     ,  = ఘబ
ఘೢ

ߩ̅     ,  = ఘభ
ఘೢ

 (3.30) 

dimensionless velocities, 

ݒ̅  = ௩ೝభ
ఆ

௭ݒ̅     ,  = ௩భ
ఆ

ఏݒ̅     ,  = ௩ഇభ
ఆ

 , (3.31) 
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a dimensionless temperature, 

 തܶ = భ்

బ்
 , (3.32) 

and dimensionless source terms, 

 ࣭ெ̅ = ࣭ಾ
ఘೢఆ

 ,     ࣭ோ̅ = ࣭ೃ
ఘೢఆమ

 ,     ࣭ఏ̅ = ࣭ഇ
ఘೢఆమ

 ,     ࣭̅ = ࣭ೋ
ఘೢఆమ

 ,     ࣭ா̅ = ࣭ಶ
ఘೢమఆయ

 . (3.33) 

In addition, a dimensionless Laplacian operator is defined as 

 ∇ഥଶ= ܽଶ∇ଶ= ଵ
ఎ
డ
డఎ
ߟ డ
డఎ

+ ଵ
మ

డమ

డ௬మ
 , (3.34) 

and a dimensionless divergence is 

 ∇ഥ ∙ ݒ̅ = ∇∙௩ሬ⃑ భ
ఆ

= ଵ
ఎ
డ
డఎ
ݒ̅ߟ + ଵ


డ௩ത
డ௬

 . (3.35) 

Finally, there are five dimensionless numbers of interest: the Prandtl number and stratification 
parameter (ܣ), each defined previously, the cylinder aspect ratio, 

 ܼ = 

 , (3.36) 

the Reynolds number, 

 ܴ݁ = ఘೢమఆ
ఓ

 , (3.37) 

and the parameter ܭ – sometimes called the Brinkman number – where 

ܭ  = మఆమ
ସ బ்

 . (3.38) 

Employing (3.29)-(3.38), the system of (3.23)-(3.28) may be written in dimensionless form, 

̅  = ߩ̅ + ߩ̅ തܶ , (3.39) 

ݒ̅ 
డఘഥబ
డఎ

= (∇ഥߩ̅− ∙ (ݒ̅ + ࣭ெ̅ , (3.40) 

ఏݒ̅ߩ̅ߟ2−  − ߩ̅ߟ = − ଵ
ଶమ

	డ̅
డఎ

+ ଵ
ோ
ቂ∇ഥଶ̅ݒ −

௩തೝ
ఎమ

+ ଵ
ଷ
ப
பఎ

(∇ഥ ∙ ቃ(ݒ̅ + ࣭ோ̅ , (3.41) 

 0 = − ଵ
ଶమ

డ̅
డ௬

+ 
ோ
ቂ∇ഥଶ̅ݒ௭ + ଵ

ଷ
ப
ப௬

(∇ഥ ∙ ቃ(ݒ̅ + ܼ࣭̅ , (3.42) 

 0 = ଵ
ோ
∇ഥଶܪ − ସ

ோ
ଵ
ఎ
డ
డఎ

(ఏݒଶ̅ߟ) + ܭ4 ቂ࣭ா̅ + ଵ
ଶ
 ఏ̅ቃ , (3.43)࣭ߟ

 −4൫1 + ଶ൯ߟܭ ఘഥబ௩തೝ
ఎ

= ଵ
ோ
∇ഥଶߔ − ସ

ோ
ଵ
ఎ
డ௩തഇ
డఎ

+ 4 ቂܭ࣭ா̅ −
ଵ
ଶఎ
࣭ఏ̅ቃ . (3.44) 
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Note from (3.21) and (3.22) that ܪ and ߔ are already dimensionless; moreover, 

ܪ  = തܶ +  ఏ , (3.45)ݒଶ̅ߟܭ2

ߔ  = തܶ −  ఏ . (3.46)ݒ2̅

The combined momentum equation 

In this section, the radial and axial momentum equations will be combined into a single equation 
in such a way that all dependence on ̅ߩ and ̅ is eliminated.  Before proceeding, it is 
advantageous to note that the continuity equation may be used to eliminate the divergence terms 
in each momentum equation.  Employing (3.40) and a helpful identity developed from (3.17), 

 ଵ
ఘഥబ

డఘഥబ
డఎ

=  (3.47) , ߟଶܣ2

the momentum equations (3.41) and (3.42) become 

ఏݒ̅ߩ̅ߟ2−  − ߩ̅ߟ = − ଵ
ଶమ

	డ̅
డఎ

+ ଵ
ோ
ቂ∇ഥଶ̅ݒ −

௩തೝ
ఎమ
− ଶమ

ଷ
ப
பఎ

ቃ(ݒ̅ߟ) + ࣭ோ̅ + ଵ
ଷோ

ப
பఎ
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ , (3.48) 

 0 = − ଵ
ଶమ

డ̅
డ௬

+ 
ோ
ቂ∇ഥଶ̅ݒ௭ −

ଶమ

ଷ
ப
ப௬

ቃ(ݒ̅ߟ) + ܼ࣭̅ + ଵ
ଷோ

ப
ப௬
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ . (3.49) 

The process of combining the two begins by using (3.39) to eliminate ̅ߩ in (3.48) which 
allows for the introduction of ߔ, leading to  

ߔߩ̅ߟ  − ̅ߟ = − ଵ
ଶమ

	డ̅
డఎ

+ ଵ
ோ
ቂ∇ഥଶ̅ݒ −

௩തೝ
ఎమ
− ଶమ

ଷ
ப
பఎ

+ቃ(ݒ̅ߟ) ࣭ோ̅ + ଵ
ଷோ

ப
பఎ
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ ; (3.50) 

then, after dividing by ̅ߩ, (3.47) may be used to rewrite the previous result as 

ߔߟ  + ଵ
ଶమ

డ
డఎ
ቀ ̅
ఘഥబ
ቁ = ଵ

ఘഥబோ
ቂ∇ഥଶ̅ݒ −

௩തೝ
ఎమ
− ଶమ

ଷ
ப
பఎ

+ቃ(ݒ̅ߟ) ଵ
ఘഥబ
࣭ோ̅ + ଵ

ଷఘഥబோ
ப
பఎ
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ . (3.51) 

Similarly, dividing (3.49) by ̅ߩ yields 

 0 = − ଵ
ଶమ

డ
డ௬
ቀ ̅
ఘഥబ
ቁ+ 

ఘഥబோ
ቂ∇ഥଶ̅ݒ௭ −

ଶమ

ଷ
ப
ப௬

+ቃ(ݒ̅ߟ) 
ఘഥబ
࣭̅ + ଵ

ଷఘഥబோ
ப
ப௬
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ . (3.52) 
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Finally, differentiating (3.51) with respect to ݖ and differentiating (3.52) with respect to ߟ makes 
it possible to eliminate the pressure terms between them, resulting in 

ߟ  డః
డ௬

= ଵ
ோ

డ
డ௬
ቈ ଵ
ఘഥబ
ቂ∇ഥଶ̅ݒ −

௩തೝ
ఎమ
− ଶమ

ଷ
ப
பఎ

ቃ(ݒ̅ߟ) − 
ோ

డ
డఎ
ቈ ଵ
ఘഥబ
ቂ∇ഥଶ̅ݒ௭ −

ଶమ

ଷ
ப
ப௬

 ቃ  (3.53)(ݒ̅ߟ)

  + డ
డ௬
ቂ ଵ
ఘഥబ
࣭ோ̅ቃ − ܼ డ

డఎ
ቂ ଵ
ఘഥబ
࣭̅ቃ+ ଵ

ଷோ
డ
డ௬
ቈ ଵ
ఘഥబ

ப
பఎ
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ −

ଵ
ଷோ

డ
డఎ
ቈ ଵ
ఘഥబ

ப
ப௬
ቂ ଵ
ఘഥబ
࣭ெ̅ቃ . 

After rearranging and rewriting (3.53) using operator notation, 

ߟ  డః
డ௬

= ଵ
ఘഥబோ

ቀ∇ഥଶ − ଵ
ఎమ
− ସర

ଷ
ଶቁߟ ப

ப௬
ݒ̅ −


ோ

డ
డఎ

ଵ
ఘഥబ
∇ഥଶ̅ݒ௭  (3.54) 

  + ଵ
ఘഥబ

డ
డ௬
࣭ோ̅ − ܼ డ

డఎ
ଵ
ఘഥబ
࣭̅ + ଶమ

ଷோ
ఎ
ఘഥబమ

ப
ப௬
࣭ெ̅ , 

it becomes clear that the right hand side (excluding the source terms) is a function solely of the 
radial and axial velocities. 

Defining the stream function 

Equation (3.40) rewritten in an alternate form, 

 ଵ
ఎ
డ
డఎ

(ݒ̅ߩ̅ߟ) + ଵ

డ
డ௬

(௭ݒ̅ߩ̅) = ࣭ெ̅ , (3.55) 

suggests a stream function, ߰, defined such that 

ݒ̅ߩ̅ߟ  = − డట
డ௬
− ∫ ᇱߟᇱ࣭ெ̅݀ߟ

ଵ
ఎ  , (3.56) 

௭ݒ̅ߩ̅  = 
ఎ
డట
డఎ

 . (3.57) 

Integrating (3.56) from 0 to ݕ, evaluating the result at ߟ = 1, and then requiring that no flow 
passes through the rotor wall, gives 

 ߰|ఎୀଵ = 0 , (3.58) 

in which ߰|ఎୀଵ,௬ୀ has been set to zero which is permissible because any constant may be added 
to the stream function without affecting the primitive velocities.  Then, integrating (3.57) from ߟ 
to 1 and inserting the result from (3.58) yields 

 ߰ = − ଵ
 ∫ ᇱߟ௭݀ݒ̅ߩᇱ̅ߟ

ଵ
ఎ  . (3.59) 

This last expression relates the stream function to the net axial mass flux between ߟ and the wall. 
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A system of three equations 

Noting that 

ఏݒ̅  = ுିః
ଶ(ଵାఎమ)

  (3.60) 

and utilizing the stream function introduced in (3.56)-(3.57), equations (3.43) and (3.44) may be 
reformed into 

 ଵ
ோ
∇ഥଶܪ = ଶ

ோ
ଵ
ఎ
డ
డఎ
ቀߟଶ ுିః

ଵାఎమ
ቁ − ܭ4 ቂ࣭ா̅ + ଵ

ଶ
 ఏ̅ቃ , (3.61)࣭ߟ

 ଵ
ோ
∇ഥଶߔ − 4 ଵାఎమ

ఎమ
డట
డ௬

= ଶ
ோ

ଵ
ఎ
డ
డఎ
ቀ ுିః
ଵାఎమ

ቁ  (3.62) 

  +4 ଵାఎమ

ఎమ ∫ ᇱߟᇱ࣭ெ̅݀ߟ
ଵ
ఎ − 4 ቂܭ࣭ா̅ −

ଵ
ଶఎ
࣭ఏ̅ቃ .  

Then, inserting the stream function into equation (3.54) yields 

 డః
డ௬

= − ଵ
ோఘഥబఎ

ቀ∇ഥଶ − ଵ
ఎమ
− ସర

ଷ
ଶቁߟ ଵ

ఘഥబఎ
డమట
డ௬మ

− మ

ோ
ଵ
ఎ
డ
డఎ

ଵ
ఘഥబ
∇ഥଶ ଵ

ఘഥబఎ
డట
డఎ

  (3.63) 

  + ଵ
ఘഥబఎ

డ
డ௬
࣭ோ̅ −


ఎ
డ
డఎ

ଵ
ఘഥబ
࣭̅ + ଶమ

ଷோ
ଵ
ఘഥబమ

ப
ப௬
࣭ெ̅ 

  − ଵ
ோఘഥబఎ

ቀ∇ഥଶ − ଵ
ఎమ
− ସర

ଷ
ଶቁߟ ଵ

ఘഥబఎ
∫ ᇱߟ ப࣭̅ಾ

ப௬
ᇱଵߟ݀

ఎ  . 

Equations (3.61)-(3.63) make up a complete system in the variables ߔ ,ܪ, and ߰.  Thus far, no 
approximations have been made aside from the linearization itself. 

Simplifying assumptions 

To advance further towards the Onsager-Maslen equation, it is necessary to make additional 
simplifications.  If the Reynolds number is high, the viscous terms in (3.61)-(3.63) are expected 
to have minimal impact on the flow except within boundary layers.  Furthermore, away from the 
end walls, radial diffusion is expected to be of greater significance than axial diffusion.  For 
these reasons, it is assumed that viscous terms with derivatives in the ݕ coordinate may be safely 
neglected; the result after this simplification is given below in (3.64)-(3.66).8  The validity of this 
assumption is reinforced for cylinders with a high aspect ratio – see (3.34) and consider the 
interaction between ܼଶ and ܴ݁ in the third term in (3.63). 

                                                             
8 This same result would have arisen if two separate assumptions had been made from the beginning: (1) to neglect 
all viscous terms in the radial momentum equation, and (2) to neglect viscous terms with derivatives in the axial 
direction in the remaining conservation equations. 
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 ଵ
ோ

ଵ
ఎ
డ
డఎ
ቀߟ డு

డఎ
ቁ = ଶ

ோ
ଵ
ఎ
డ
డఎ
ቀߟଶ ுିః

ଵାఎమ
ቁ − ܭ4 ቂ࣭ா̅ + ଵ

ଶ
  ఏ̅ቃ , (3.64)࣭ߟ

 ଵ
ோ

ଵ
ఎ
డ
డఎ
ቀߟ డః

డఎ
ቁ − 4 ଵାఎమ

ఎమ
డట
డ௬

= ଶ
ோ

ଵ
ఎ
డ
డఎ
ቀ ுିః
ଵାఎమ

ቁ (3.65) 

  +4 ଵାఎమ

ఎమ ∫ ᇱߟᇱ࣭ெ̅݀ߟ
ଵ
ఎ − 4 ቂܭ࣭ா̅ −

ଵ
ଶఎ
࣭ఏ̅ቃ , 

 డః
డ௬

= − మ

ோ
ଵ
ఎ
డ
డఎ
൭ ଵ
ఘഥబఎ

డ
డఎ
ቆߟ డ

డఎ
ቀ ଵ
ఘഥబఎ

డట
డఎ
ቁቇ൱  (3.66) 

  + ଵ
ఘഥబఎ

డ࣭̅ೃ
డ௬

− 
ఎ
డ
డఎ
ቀ ଵ
ఘഥబ
࣭̅ቁ + ଶమ

ଷோ
ଵ
ఘഥబమ

ப࣭̅ಾ
ப௬

 

  − ଵ
ோఘഥబఎ

∇ഥଶ ቀ ଵ
ఘഥబఎ

∫ ᇱߟ ப࣭̅ಾ
ப௬

ଵ
ఎ ᇱቁߟ݀ + ଵ

ோ
ቀ1 + ସరఎర

ଷ
ቁ ଵ
ఘഥబమఎర

∫ ᇱߟ ப࣭̅ಾ
ப௬

ᇱଵߟ݀
ఎ  . 

The source terms involving ࣭ெ̅ in (3.66) have been retained for completeness; however, the 
equivalent terms are neglected in [2] and [7] because these (viscous) terms are scaled by ̅ߩ in 
such a way that they are expected to be non-negligible only high in the atmosphere where 
viscous effects are fairly unimportant. 

Reducing the system to two equations 

In this section, equations (3.64) and (3.65) are combined into a single equation that is a function 
of ߔ.  Multiplying equation (3.64) by ߟ and then integrating from ்ߟ to ߟ yields 

 ଵ
ோ
ߟ డு
డఎ

= ଶ

ோ
ଶߟ ுିః

ଵାఎమ
+ ఎబ

ோ
డ ത்

డఎ
ቚ
ఎୀఎ

+ ଶఎబయ

ோ
డ௩തഇ
డఎ
ቚ
ఎୀఎ

− ܭ4 ∫ ᇱߟ ቂ࣭ா̅ + ଵ
ଶ
ᇱ࣭ఏ̅ቃߟ ᇱߟ݀

ఎ
ఎ

 ; (3.67) 

however, if ்ߟ is chosen sufficiently far from the rotor wall such that the temperature and 
circumferential velocity gradients have decayed to zero (or if ்ߟ is set to zero), then9 

 ଵ
ோ
ߟ డு
డఎ

= ଶ

ோ
ଶߟ ுିః

ଵାఎమ
− ܭ4 ∫ ᇱߟ ቂ࣭ா̅ + ଵ

ଶ
ᇱ࣭ఏ̅ቃߟ ᇱߟ݀

ఎ
ఎ

 . (3.68) 

After dividing by ߟଶ൫1 +  ଶ൯ and rearranging, equation (3.68) may be rewrittenߟܭ

 ଵ
ோ

ଵ
ఎ
డ
డఎ
ቀ ு
ଵାఎమ

ቁ = − ଶ
ோ


(ଵାఎమ)మ

ߔ − ସ

ఎమ(ଵାఎమ)∫ ᇱߟ ቂ࣭ா̅ + ଵ
ଶ
ᇱ࣭ఏ̅ቃߟ ᇱߟ݀

ఎ
ఎ

 . (3.69)  

Next, using the identity 

 ଵ
ఎ
డ
డఎ
ቀߟ డః

డఎ
ቁ = ଵାఒఎమ

ఎయ
డ
డఎ
ቀ ఎయ

ଵାఒఎమ
డః
డఎ
ቁ − ଶ

ఎ(ଵାఒఎమ)
డః
డఎ

 , (3.70) 

                                                             
9 See Chapter Four for more a more detailed explanation of the boundary requirements at ߟ = ்ߟ . 
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equation (3.65) may be reformed into 

 ଵ
ோ

ଵାఎమ

ఎయ
డ
డఎ
ቀ ఎయ

ଵାఎమ
డః
డఎ
ቁ − 4 ଵାఎమ

ఎమ
డట
డ௬

= ଶ
ோ

ଵ
ఎ
డ
డఎ
ቀ ுିః
ଵାఎమ

ቁ + ଶ
ோ

ଵ
ఎ(ଵାఎమ)

డః
డఎ

 (3.71) 

  +4 ଵାఎమ

ఎమ ∫ ᇱߟᇱ࣭ெ̅݀ߟ
ଵ
ఎ − 4 ቂܭ࣭ா̅ −

ଵ
ଶఎ
࣭ఏ̅ቃ ; 

then, using equation (3.69) to eliminate the ܪ term in (3.71) leads to, after multiplying by ߟଶ and 
dividing by 4൫1 +  ,ଶ൯ߟܭ

 ଵ
ସோ

ଵ
ఎ
డ
డఎ
ቀ ఎయ

ଵାఎమ
డః
డఎ
ቁ − డట

డ௬
= (3.72) 

  +∫ ᇱߟᇱ࣭ெ̅݀ߟ
ଵ
ఎ − ఎమ

ଵାఎమ
ቂܭ࣭ா̅ −

ଵ
ଶఎ
࣭ఏ̅ቃ −

ଶ
(ଵାఎమ)మ ∫ ᇱߟ ቂ࣭ா̅ + ଵ

ଶ
ᇱ࣭ఏ̅ቃߟ ᇱߟ݀

ఎ
ఎ

 . 

This result and (3.66) make up a system in the variables ߰ and ߔ. 

Onsager’s master potential 

Onsager’s master potential function, ߯, which fully encapsulates the flow variables ߰ and ߔ (and 
therefore ݒ̅ ,ߩ̅ ,̅, ̅ݒ௭, and the combination തܶ −  ఏ) is defined by three equations.  The first twoݒ2̅
are, using (3.72), 

 ߰ = ଵ
ఎ
డఞ
డఎ

 , (3.73) 

 డః
డఎ

= 4ܴ݁ ଵା
ఎమ

ఎయ
డఞ
డ௬

+ 4ܴ݁ ଵା
ఎమ

ఎయ ∫ ᇱߟ ∫ ᇱᇱߟᇱᇱ࣭ெ̅݀ߟ
ଵ
ఎᇲ ᇱఎߟ݀

ఎ
 (3.74) 

  −4ܴ݁ ଵା
ఎమ

ఎయ ∫ ఎᇲయ

ଵାఎᇲమ
ቂܭ࣭ா̅ −

ଵ
ଶఎᇲ

࣭ఏ̅ቃ ᇱߟ݀
ఎ
ఎ

 

ܭ8ܴ݁−   ଵାఎమ

ఎయ ∫ ఎᇲ

ቀଵାఎᇲమቁ
మ ∫ ᇱᇱߟ ቂ࣭ா̅ + ଵ

ଶ
ᇱᇱ࣭ఏ̅ቃߟ ᇱᇱߟ݀

ఎᇲ

ఎ
ᇱఎߟ݀

ఎ
 , 

and the third is, using (3.66) and (3.73), 

 డః
డ௬

= − మ

ோ
ଵ
ఎ
డ
డఎ
ቌ ଵ
ఘഥబఎ

డ
డఎ
൭ߟ డ

డఎ
ቆ ଵ
ఘഥబఎ

డ
డఎ
ቀଵ
ఎ
డఞ
డఎ
ቁቇ൱ቍ  (3.75) 

  + ଵ
ఘഥబఎ

డ࣭̅ೃ
డ௬
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ఎ
డ
డఎ
ቀ ଵ
ఘഥబ
࣭̅ቁ + ଶమ

ଷோ
ଵ
ఘഥబమ

ப࣭̅ಾ
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  − ଵ
ோఘഥబఎ

∇ഥଶ ቀ ଵ
ఘഥబఎ

∫ ᇱߟ ப࣭̅ಾ
ப௬

ଵ
ఎ ᇱቁߟ݀ + ଵ

ோ
ቀ1 + ସరఎర

ଷ
ቁ ଵ
ఘഥబమఎర
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ப௬

ᇱଵߟ݀
ఎ  . 

Note that each of the primitive variables, except for ߲ߟ߲/ߔ, is obtained by taking radial 
derivatives of the master potential. 
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The Onsager-Maslen equation 

Differentiating equation (3.74) with respect to ݕ and differentiating (3.75) with respect to ߟ, then 
eliminating the ߔ term between them yields 

 ଵ
ఎ
డ
డఎ
൮ଵ
ఎ
డ
డఎ
ቌ ଵ
ఘഥబఎ

డ
డఎ
൭ߟ డ
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ఎ
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= (3.76) 
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  − ோ

ଵ
ఎ
డ
డఎ
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ఎ
డ
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ఎ
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ଵ
ఎ
డ
డఎ
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  − ଵ
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ቆ ଵ
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ଵ
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మ

ଵ
ఎ
డ
డఎ
ቆቀ1 + ସరఎర

ଷ
ቁ ଵ
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ఎ ቇ , 

which is a partial differential equation of sixth order in ߟ and of second order in ݕ.  The final step 
is to introduce the stretched radial coordinate, ݔ, defined as 

ݔ  = ଶ(1ܣ −  ଶ) , (3.77)ߟ

From (3.77), it is clear that10 

 ଵ
ఎ
డ
డఎ

= ଶܣ2− డ
డ௫

 ,  (3.78) 

and that (3.18) may be written  

 ଵ
ఘഥబ

= ݁௫ . (3.79) 

                                                             
10 An alternate form of this identity is useful for converting the integrals:  ߟ݀ߟ = − ଵ

ଶమ
 .ݔ݀
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Then, applying (3.77)-(3.79) to equation (3.76) produces, at last, the Onsager-Maslen equation, 

 డమ
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 ቇ . 

If the curvature term is set to one (the pancake approximation), equation (3.80) reduces to 
Onsager’s equation as derived in [2] and elsewhere.11  The first three source terms are equivalent 
to the source terms derived in [2] (as clarified by [7]), the fourth appears because curvature terms 
were included in the derivation, and the last four are considered in [7] but deemed negligible.12   

Note that if integration by parts is used to simplify the fourth source term, it may be 
combined with the first, resulting in a slightly simplified overall source function,13 
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 ቇ .

                                                             
11 Note that in [2], Wood and Morton scale the axial coordinate with ܽ rather than with ܮ.  One advantage of using ܮ 
is that the cylinder aspect ratio, ܼ, appears explicitly in the resulting equation.  To see the result of scaling by ܽ 
instead, set ܼ to one everywhere it appears in (3.81) 
12 See the sentences following (3.66) above. 
13 This form is better suited for comparison with the equivalent expression given in [20].  A few discrepancies are 
apparent, which may be traced to minor differences (as well as minor errors) in the derivation presented in [20]. 
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Chapter Four 

Boundary Conditions 
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Introduction 

Before solving the Onsager-Maslen equation, it is necessary to specify eight total boundary 
conditions.  The Onsager-Maslen equation has six derivatives in the radial coordinate. Three of 
the radial boundary conditions are specified at the cylinder’s outer wall (at ݔ = 0) and the 
remaining three specify the flow high in the atmosphere (at ݔ =  The two axial boundary  .(்ݔ
conditions (one for each end of the cylinder; i.e., at ݕ = 0 and ݕ = 1) are more complex and are 
referred to as Carrier-Maslen conditions.  The purpose of this chapter is to describe the origins 
and nature of each of the eight boundary conditions. 

Revisiting the stream function and master potential 

In this section, a variety of expressions for the stream function and master potential are 
developed which will aid in transforming the physical requirements of the problem to the 
appropriate radial boundary conditions.  To that end, equations (3.56) and (3.57), written in 
terms of ݔ and ߰, are 

ݒ̅ߩ̅ߟ  = − డట
డ௬
− ଵ

ଶమ ∫ ࣭ெ̅݀ݔᇱ
௫
  , (4.1) 

௭ݒ̅ߩ̅  = ଶܼܣ2− డట
డ௫

 . (4.2) 

and, written alternatively in terms of ݔ and ߯, are 

 ଵ
ଶమ

ݒ̅ߩ̅ߟ = డ
డ௬
ቀడఞ
డ௫
ቁ − ଵ

ସర ∫ ࣭ெ̅݀ݔᇱ
௫
  , (4.3) 

௭ݒ̅ߩ̅  = ସܼܣ4 డమఞ
డ௫మ

 . (4.4) 

Integrating (4.1) with respect to ݕ and integrating (4.2) with respect to ݔ results in 

 ߰ = ߰|௬ୀ − ߟ ∫ ᇱݕ݀ݒ̅ߩ̅
௬
 − ଵ

ଶమ ∫ ∫ ࣭ெ̅݀ݕᇱ
௬
 ᇱ௫ݔ݀

  , (4.5) 

 ߰ = ߰|௫ୀ −
ଵ

ଶమ ∫ ᇱݔ௭݀ݒ̅ߩ̅
௫
  . (4.6) 
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Setting ߰|௫ୀ,௬ୀ to zero, which is permissible because the associated flow velocities depend 
only on derivatives of ߰, the equations (4.5) and (4.6) may be combined in two separate ways to 
yield two alternate but equivalent expressions for the stream function, 

 ߰ = − ଵ
ଶమ ∫ ᇱݔ௭|௬ୀ݀ݒ̅ߩ̅

௫
 − ߟ ∫ ᇱݕ݀ݒ̅ߩ̅

௬
 − ଵ

ଶమ ∫ ∫ ࣭ெ̅݀ݕᇱ
௬
 ᇱ௫ݔ݀

  , (4.7) 

 ߰ = −∫ ᇱݕ|௫ୀ݀ݒ̅
௬
 − ଵ

ଶమ ∫ ᇱݔ௭݀ݒ̅ߩ̅
௫
  . (4.8) 

Equations (4.7) and (4.8) written in terms of the master potential are, 
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௬
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  , (4.9) 

 డఞ
డ௫

= ଵ
ଶమ ∫ ᇱݕ|௫ୀ݀ݒ̅

௬
 + ଵ

ସర ∫ ᇱݔ௭݀ݒ̅ߩ̅
௫
  ; (4.10) 

then, integrating from ݔ to ்ݔ yields 

 ߯ = ߯|௫ୀ௫ −
ଵ

ସర ∫ ∫ ᇱᇱݔ௭|௬ୀ݀ݒ̅ߩ̅
௫ᇲ

 ᇱ௫ݔ݀
௫ − ଵ

ଶమ ∫ ᇱߟ ∫ ᇱݕ݀ݒ̅ߩ̅
௬
 ᇱ௫ݔ݀

௫   (4.11) 

  − ଵ
ସర ∫ ∫ ∫ ࣭ெ̅݀ݕᇱ

௬
 ᇱᇱ௫ᇲݔ݀

 ᇱ௫ݔ݀
௫  , 

 ߯ = ߯|௫ୀ௫ −
௫ି௫
ଶమ ∫ ᇱݕ|௫ୀ݀ݒ̅

௬
 − ଵ

ସర ∫ ∫ ᇱᇱݔ௭݀ݒ̅ߩ̅
௫ᇲ

 ᇱ௫ݔ݀
௫  . (4.12) 

The subsequent analysis will also require (3.75) written in terms of ݔ, 

 డః
డ௬

= ଷଶభబమ

ோ
డ
డ௫
൭݁௫ డ

డ௫
ቆߟଶ డ

డ௫
ቀ݁௫ డ

మఞ
డ௫మ

ቁቇ൱  (4.13) 

  + ೣ

ఎ
డ࣭̅ೃ
డ௬

+ ଶܼܣ2 డ
డ௫

(݁௫࣭̅) 

  + ଶమ

ଷோ
݁ଶ௫ ப࣭̅ಾ

ப௬
− ଶమ

ோ
ೣ

ఎ
డ
డ௫
ቆߟଶ డ

డ௫
ቀ

ೣ

ఎ ∫
ப࣭̅ಾ
ப௬

௫
  ᇱቁቇݔ݀

  − ଵ
ଶమோమ

మೣ

ఎమ ∫
பయ࣭̅ಾ
ப௬య

ᇱ௫ݔ݀
 + ଵ

ଶమோ
ቀ1 + ସరఎర

ଷ
ቁ 

మೣ

ఎర ∫
ப࣭̅ಾ
ப௬

ᇱ௫ݔ݀
  , 

and the integral of (3.74) written in terms of 14,ݔ 

 ∫ డః
డ௫
ᇱ௬ݕ݀

 = − ଶோ
మ

ଵାఎమ

ఎర
ൣ߯ − ߯|௬ୀ൧ (4.14) 

  − ோ
ଶల

ଵାఎమ

ఎర ∫ ∫ ∫ ࣭ெ̅݀ݕᇱ
௬
 ᇱᇱ௫ᇲݔ݀

 ᇱ௫ݔ݀
௫  

  − ோ
ଶర

ଵ
ఎర ∫ ᇱߟ ∫ ࣭ఏ̅݀ݕᇱ

௬
 ᇱ௫ݔ݀

௫  

  + ோ

ర
ଵ
ఎమ ∫ ∫ ࣭ா̅݀ݕᇱ

௬
 ᇱ௫ݔ݀

௫  . 

                                                             
14 The source terms have been condensed; see the final paragraph of Chapter Four. 
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Boundary conditions at the rotor wall 

At the rotor wall, the boundary requirements on the primitive variables are: no mass through the 
wall, 

|௫ୀݒ̅  = 0 ,  (4.15) 

the no slip condition, 

ఏ|௫ୀݒ̅  = ௭|௫ୀݒ̅     , 0 = 0 , (4.16) 

and a prescribed temperature gradient, 

 డ ത்

డ௬
ቚ
௫ୀ

=  (4.17) . (ݕ)ߠ

These specifications lead to three requirements on the master potential.  The first is, from 
(4.10) and (4.15), 

 డఞ
డ௫
ቚ
௫ୀ

= 0 . (4.18) 

Next, from (4.4) and (4.16), is 

 డమఞ
డ௫మ

ቚ
௫ୀ

= 0 . (4.19) 

The third condition is slightly more complicated.  It is obtained by evaluating (4.13) at the 
wall and then using (4.16), (4.17), and (3.22) to write 

(ݕ)ߠ  = ଷଶభబమ

ோ
డ
డ௫
൭݁௫ డ

డ௫
ቆߟଶ డ

డ௫
ቀ݁௫ డ

మఞ
డ௫మ

ቁቇ൱อ
௫ୀ

  (4.20) 

  + డ࣭̅ೃ
డ௬
ቚ
௫ୀ

+ ଶܼܣ2 ቀ࣭̅ + డ࣭̅ೋ
డ௫
ቁቚ
௫ୀ

 

  − ଵమ

ଷோ
ப࣭̅ಾ
ப௬
ቚ
௫ୀ

− ଶమ

ோ
డ
డ௫
ቀப࣭̅ಾ
ப௬
ቁቚ
௫ୀ

 . 

Typically, the source terms are assumed zero at the wall, resulting in  

 డ
డ௫
൭݁௫ డ

డ௫
ቆߟଶ డ

డ௫
ቀ݁௫ డ

మఞ
డ௫మ

ቁቇ൱อ
௫ୀ

= ோ
ଷଶభబమ

 (4.21) . (ݕ)ߠ
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Boundary conditions high in the atmosphere 

High in the atmosphere, the boundary requirements are: prescribed radial mass flow (which is 
frequently zero), 

|௫ୀ௫ݒ̅ߩ̅  =  (4.22) , (ݕ)݂

 no shear stress, 

 డ௩തഇ
డ௫
ቚ
௫ୀ௫

= 0 ,     డ௩ത
డ௫
ቚ
௫ୀ௫

= 0 , (4.23) 

 and no heat transfer, 

 డ ത்

డ௫
ቚ
௫ୀ௫

= 0 . (4.24) 

These specifications again lead to three requirements on the master potential.  The first 
comes from (4.9) and (4.22), 

 డఞ
డ௫
ቚ
௫ୀ௫

= ଵ
ସర ∫ ᇱݔ௭|௬ୀ݀ݒ̅ߩ̅

௫
 + ଵ

ଶమ
௫ୀ௫்|ߟ ∫ ᇱ௬ݕ݀(ᇱݕ)݂

 + ଵ
ସర ∫ ∫ ࣭ெ̅݀ݕᇱ

௬
 ᇱ௫ݔ݀

  . (4.25) 

Note that the first term on the right-hand side of (4.25) represents the net flow through the 
bottom boundary, which is zero in many cases.   

The second condition is obtained by rearranging and differentiating (4.4) then applying 
(4.23), leading to, 

 డ
డ௫
ቀ݁௫ డ

మఞ
డ௫మ

ቁቚ
௫ୀ௫

= 0 . (4.26) 

Lastly, evaluating (4.14) at the top of the atmosphere and then applying (4.23), (4.24), and 
(3.22) yields 

 ߯|௫ୀ௫ = ߯|௫ୀ௫ ,௬ୀ . (4.27) 

It is permissible to set ߯|௫ୀ௫ ,௬ୀ to zero because the primitive variables all depend on 
derivatives of the master potential.  Doing so produces the third condition, 

 ߯|௫ୀ௫ = 0 . (4.28) 
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Carrier-Maslen boundary conditions 

The boundary conditions at the top and bottom of the cylinder are constructed so that the flow in 
the vicinity of the end caps is constrained to match the Ekman layer solution first presented by 
Carrier and Maslen in [3].  The derivation of these boundary conditions given here is informed 
by [5], [6], and especially [11]. 

 

 

Figure 4-1.  The Carrier-Maslen condition at the bottom surface matches 
the Ekman layer solution to the value of the master potential at 
ݕ = 0. 

 

To begin, it is useful to reproduce some of the equations developed in the previous chapter 
which are valid within the axial boundary layers.  To that end, equation (3.54) may be used to 
write, in operator notation, 

 డః∗

డ௬∗
= ଵ

ோఘഥబఎ
ቀ∇ഥଶ − ଵ

ఎమ
− ସర

ଷ
ଶቁߟ డ௩തೝ

∗

డ௬∗
− 

ோ
ଵ
ఎ
డ
డఎ

ଵ
ఘഥబ
∇ഥଶ̅ݒ௭∗ . (4.29) 

and equations (3.56), (3.60), and (3.62) may be combined to yield 

 ଵ
ோ
∇ഥଶߔ∗ + 4 ଵାఎమ

ఎ
∗ݒ̅ߩ̅ = ସ

ோ
ଵ
ఎ
డ௩തഇ

∗

డఎ
 . (4.30) 

Note that the flow variables as well as the ݕ∗ coordinate have been marked with a star to identify 
them as part of the boundary layer solution in the regions below or above ݕ = 0 and ݕ = 1, 
respectively.  In addition, the source terms are not considered outside of the interior region. 

ݕ = 0 

ݔ = 0 

∗ݕ = 0 
Ekman Layer 

Domain for 
Onsager-Maslen 
Eqn 

  

Center Axis 

Rarified 
Region 

ݔ =  ்ݔ
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Retaining only the terms most highly differentiated in the axial direction, equations (4.29) 
and (4.30) become 

 డః∗

డ௬∗
= ଵ

ோమఘഥబఎ
డయ௩തೝ∗

డ௬∗య
 , (4.31) 

 డమః∗

డ௬∗మ
= −4ܴܼ݁ଶ ଵା

ఎమ

ఎ
 ∗ . (4.32)ݒ̅ߩ̅

Then, differentiating (4.31) to combine it with (4.32) yields 

 డర௩തೝ∗

డ௬∗ర
= −4ܴ݁ଶܼସ൫1 +  ∗ . (4.33)ݒଶ̅ߩଶ൯̅ߟܭ

Considering first the flow near the bottom boundary (between ݕ∗ = 0, which represents the 
bottom surface, and ݕ = 0), solutions to (4.33) may be written in the form ݒ∗ = ݁௬∗.  The 
solutions which decay for large ݕ∗ have 

 ݉ଵ,݉ଶ = −(1 ± ݅)ටܴܼ݁ଶ̅ߩඥ1 +  ଶ  (4.34)ߟܭ

and so the general solution may be written  

∗ݒ  = ∗భ௬݁(ߟ)ଵܥ +  మ௬∗ . (4.35)݁(ߟ)ଶܥ

The next step is to find expressions for ߔ∗ and a stream function ߰∗.  First, integrating (4.31) 
once yields 

∗ߔ  = ଵ
ோమఘഥబఎ

డమ௩തೝ∗

డ௬∗మ
+  (4.36) ; (ߟ)ଷܥ

then, after defining a stream function in the same manner as in the previous chapter,  i.e., 15 

∗ݒ̅ߩ̅ߟ  = − డట∗

డ௬∗
 , (4.37) 

∗௭ݒ̅ߩ̅  = 
ఎ
డట∗

డఎ
 , (4.38) 

inserting it into the right-hand side of (4.33), and integrating once, the result is 

 ߰∗ = ଵ
ସோమరఘഥబ

ఎ
ଵାఎమ

డయ௩തೝ∗

డ௬∗య
+  (4.39) . (ߟ)ସܥ

Far from the bottom boundary (ܴ݁ଵ/ଶܼݕ∗ → ∞), the requirement is that 

∗ߔ   → ∗߰     , ௬ୀ|ߔ → ߰|௬ୀ , (4.40) 

                                                             
15 See (3.55)-(3.59)  and recall that mass sources/sinks are not considered in the axial boundary layers. 
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which leads to 

(ߟ)ଷܥ  = (ߟ)ସܥ     , ௬ୀ|ߔ = ߰|௬ୀ . (4.41) 

Evaluating (4.35), (4.36), and (4.39) at the bottom boundary (ݕ∗ = 0) yields, after some 
rearranging,16 

ିݒ  = (ߟ)ଵܥ +  (4.42) , (ߟ)ଶܥ

 ఎ
ଶඥଵାఎమ

൫ିߔ ௬ୀ൯|ߔ− = (ߟ)ଵܥ݅ −  (4.43) , (ߟ)ଶܥ݅

 ଶ
ఎ
ටோඥଵାఎమ

ఘഥబ
൫߰ି −߰|௬ୀ൯ = (1 − (ߟ)ଵܥ(݅ + (1 +  (4.44) , (ߟ)ଶܥ(݅

where the variables marked with a minus sign are the prescribed values at the bottom surface.  
Then, subtracting (4.43) and (4.44) from (4.42) gives the Carrier-Maslen condition for the 
bottom boundary, 

ିݒ  −
ఎ

ଶඥଵାఎమ
൫ିߔ − ௬ୀ൯|ߔ −

ଶ
ఎ
ටோඥଵାఎమ

ఘഥబ
൫߰ି − ߰|௬ୀ൯ = 0 . (4.45) 

The remaining task is to write this equation in terms of the master potential.  Equation (3.74) 
written in terms of ݔ and evaluated at ݕ = 0 is17 

 డః
డ௫
ቚ
௬ୀ

= − ଶோ
మ

ଵାఎమ

ఎర
డఞ
డ௬
ቚ
௬ୀ

  (4.46) 

  − ோ
ଶల

ଵାఎమ

ఎర ∫ ∫ ࣭ெ̅|௬ୀ݀ݔᇱᇱ
௫ᇲ

 ᇱ௫ݔ݀
௫  

  − ோ
ଶర

ଵ
ఎర ∫ ᇱݔᇱ࣭ఏ̅|௬ୀ݀ߟ

௫
௫  

  + ோ

ర
ଵ
ఎమ ∫ ࣭ா̅|௬ୀ݀ݔᇱ

௫
௫  , 

Then, rearranging (4.45) as 

 ଶඥଵାఎమ

ఎ
ିݒ − ൫ିߔ − ௬ୀ൯|ߔ − 4ܴ݁ଵ/ଶܼ ൫ଵାఎమ൯య/ర

ఎమ
݁௫/ଶ൫߰ି −߰|௬ୀ൯ = 0 , (4.47) 

differentiating with respect to ݔ, and applying (3.73) and (4.46) yields the required form of the 
Carrier-Maslen relationship, 

 ோమ

ଵభమమ
ଵାఎమ

ఎర
డఞ
డ௬
ቚ
௬ୀ

= − ோయ/మ

ସఴ
డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶ డఞ

డ௫
ቚ
௬ୀ

ቇ +  (4.48) , (ݔ)ି݃

                                                             
16 The variables ݒି, ିߔ, and ߰ି are equal to ݒ∗|௬∗ୀ, ߔ∗|௬∗ୀ, and ߰∗|௬∗ୀ, respectively. 
17 The source terms have been condensed; see the final paragraph of Chapter Four. 
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where 

(ݔ)ି݃  = ோ
ଵభబమ

డ
డ௫
൬ඥଵା

ఎమ

ఎ
ି൰ݒ −

ோ
ଷଶభబమ

డఃష

డ௫
− ோయ/మ

଼భబ
డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶ߰ିቇ (4.49) 

  − ோమ

ସభలమ
ଵାఎమ

ఎర ∫ ∫ ࣭ெ̅|௬ୀ݀ݔᇱᇱ
௫ᇲ

 ᇱ௫ݔ݀
௫ − ோమ

ସభరమ
ଵ
ఎర ∫ ᇱݔᇱ࣭ఏ̅|௬ୀ݀ߟ

௫
௫  

  + ோమ

ଷଶభరమ
ଵ
ఎమ ∫ ࣭ா̅|௬ୀ݀ݔᇱ

௫
௫  . 

A similar analysis for the top boundary condition yields the second Carrier-Maslen 
relationship: 

 ோమ

ଵభమమ
ଵାఎమ

ఎర
డఞ
డ௬
ቚ
௬ୀଵ

= ோయ/మ

ସఴ
డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶ డఞ

డ௫
ቚ
௬ୀଵ

ቇ + ݃ା(ݔ) , (4.50) 

where 

 ݃ା(ݔ) = ோ
ଵభబమ

డ
డ௫
൬ඥଵା

ఎమ

ఎ
ା൰ݒ −

ோ
ଷଶభబమ

డఃశ

డ௫
+ ோయ/మ

଼భబ
డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶ߰ାቇ (4.51) 

  − ோమ

ସభలమ
ଵାఎమ

ఎర ∫ ∫ ࣭ெ̅|௬ୀଵ݀ݔᇱᇱ
௫ᇲ

 ᇱ௫ݔ݀
௫ − ோమ

ସభరమ
ଵ
ఎర ∫ ᇱݔᇱ࣭ఏ̅|௬ୀଵ݀ߟ

௫
௫  

  + ோమ

ଷଶభరమ
ଵ
ఎమ ∫ ࣭ா̅|௬ୀଵ݀ݔᇱ

௫
௫  . 

Reduction to homogeneous boundary conditions 

The application of the finite element method to solve the Onsager-Maslen equation (Chapter 
Five) is greatly simplified if the essential boundary conditions of the problem are homogeneous.  
Of the four essential boundary conditions derived above, three – (4.18), (4.19), and (4.28) – are 
already homogeneous, while the fourth – (4.25) – is not.  The purpose of this section is to reduce 
the current problem to one with four homogeneous essential boundary conditions. 

The first step is to introduce a reference function, given by 

  ߯() = (௬)
ଷ௫

మ ଷݔ) −  ଷ)  (4.52)்ݔ

where  

 ℎ(ݕ) = ଵ
ସర ∫ ᇱݔ௭|௬ୀ݀ݒ̅ߩ̅

௫
 + ଵ

ଶమ
௫ୀ௫்|ߟ ∫ ᇱ௬ݕ݀(ᇱݕ)݂

 + ଵ
ସర ∫ ∫ ࣭ெ̅݀ݕᇱ

௬
 ᇱ௫ݔ݀

  , (4.53) 
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which is used to define a modified master potential, ࣲ, such that 

 ࣲ = ߯ − ߯() . (4.54) 

Replacing ߯ with the quantity ࣲ + ߯() in the Onsager-Maslen equation and in its associated 
boundary conditions generates an alternate problem with the desired qualities. 

The modified problem 

The reformulated Onsager-Maslen equation is 

 డమ

డ௫మ
൭݁௫ డ

డ௫
ቆߟଶ డ

డ௫
ቀ݁௫ డ

మࣲ
డ௫మ

ቁቇ൱ + ோమ

ଵభమమ
ଵାఎమ

ఎర
డమࣲ
డ௬మ

= ࣭̅ + ℋ (4.55) 

where ࣭̅ is given by (3.81) and ℋ is given by 

 ℋ = − ଶ(௬)
௫
మ

డమ

డ௫మ
ቆ݁௫ డ

డ௫
൬ߟଶ డ

డ௫
൰ቇ(௫݁ݔ) − ோమ

ସ଼భమమ
ଵାఎమ

ఎర
௫యି௫

య

௫
మ ℎᇱᇱ(ݕ) . (4.56) 

At the wall, the essential radial boundary conditions are 

 డࣲ
డ௫
ቚ
௫ୀ

= 0 , (4.57) 

 డమࣲ
డ௫మ

ቚ
௫ୀ

= 0 , (4.58) 

and the third boundary condition is 

 డ
డ௫
൭݁௫ డ

డ௫
ቆߟଶ డ

డ௫
ቀ݁௫ డ

మࣲ
డ௫మ

ቁቇ൱อ
௫ୀ

= ோ
ଷଶభబమ

(ݕ)ߠ − ଵ൫ଵିଵ/మ൯
௫
మ ℎ(ݕ)  (4.59) 

  − ோ
ଷଶభబమ

డ࣭̅ೃ
డ௬
ቚ
௫ୀ

− ோ
ଵఴ

ቀ࣭̅ + డ࣭̅ೋ
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ቁቚ
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ସ଼ఴమ
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ቚ
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+ ଵ
ଵఴమ

డ
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ቀப࣭̅ಾ
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ቁቚ
௫ୀ

 . 
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At the top of the atmosphere, the essential radial boundary conditions are 

 ߯|௫ୀ௫ = 0 , (4.60) 

 డࣲ
డ௫
ቚ
௫ୀ௫

= 0 , (4.61) 

and the third boundary condition is 

 డ
డ௫
ቀ݁௫ డ

మࣲ
డ௫మ

ቁቚ
௫ୀ௫

= − ଶ(௫ାଵ)
௫
మ ݁௫ℎ(ݕ) . (4.62) 

Finally, the Carrier-Maslen conditions are, at the bottom surface, 

 ோమ

ଵభమమ
ଵାఎమ

ఎర
డࣲ
డ௬
ቚ
௬ୀ

= − ோయ/మ
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డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
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௬ୀ

ቇ +  (4.63) , (ݔ)ିܩ

where 

(ݔ)ିܩ  = − ோమ
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ఎమ
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ோ
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 ᇱ௫ݔ݀
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௫
௫  

  + ோమ

ଷଶభరమ
ଵ
ఎమ ∫ ࣭ா̅|௬ୀ݀ݔᇱ

௫
௫  , 

and, at the top surface, 

 ோమ

ଵభమమ
ଵାఎమ

ఎర
డࣲ
డ௬
ቚ
௬ୀଵ

= ோయ/మ

ସఴ
డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶ డࣲ

డ௫
ቚ
௬ୀଵ

ቇ +  (4.65) , (ݔ)ାܩ

where 

(ݔ)ାܩ  = − ோమ

ସ଼భమ௫
మమ

ଵାఎమ

ఎర
ଷݔ) − ଷ)ℎᇱ(1)்ݔ + ோయ/మ

ସఴ௫
మ

డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
 ଶ݁௫/ଶቇℎ(1) (4.66)ݔ

  ோ
ଵభబమ

డ
డ௫
൬ඥଵା

ఎమ

ఎ
ା൰ݒ −

ோ
ଷଶభబమ

డఃశ

డ௫
+ ோయ/మ

଼భబ
డ
డ௫
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶ߰ାቇ 

  − ோమ

ସభలమ
ଵାఎమ

ఎర ∫ ∫ ࣭ெ̅|௬ୀଵ݀ݔᇱᇱ
௫ᇲ

 ᇱ௫ݔ݀
௫ − ோమ

ସభరమ
ଵ
ఎర ∫ ᇱݔᇱ࣭ఏ̅|௬ୀଵ݀ߟ

௫
௫  

  + ோమ

ଷଶభరమ
ଵ
ఎమ ∫ ࣭ா̅|௬ୀଵ݀ݔᇱ

௫
௫  .
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Chapter Five 

Finite Element Solution 
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Introduction 

This chapter describes the application of the Galerkin finite element method to solve the sixth-
order Onsager-Maslen differential equation first derived in Chapter Three and subject to the 
boundary conditions and modifications described in Chapter Four.  The approach taken here is 
informed primarily by [11], [9], and [13]. 

Basic Galerkin formulation 

Consider an approximate solution to the Onsager-Maslen equation for which each point has an 
associated residual, such that 

 (݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫௫ + ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬௬ − (ݕ,ݔ)࣭̅ −ℋ(ݕ,ݔ) = ,ݔ)ܴ  (5.1) . (ݕ

The weak form, a relaxed version of the original differential equation, is developed by requiring 
that the residual function vanish when integrated over the domain; i.e., 

 ∫ ∫ ଵݕܴ݀
 ௫்ݔ݀

 = 0 (5.2) 

  = ∫ ∫ ቂ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫௫ + ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬௬ − ࣭̅ − ℋቃ݀ݕଵ

 ௫்ݔ݀
  . 

The Galerkin method uses a specialized weak form in which the residual function is “weighted” 
by a function, ෩ࣲ, such that 

 ∫ ∫ ෩ࣲ ቂ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫௫ + ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬௬ − ࣭̅ − ℋቃ݀ݕଵ

 ௫்ݔ݀
 = 0 . (5.3) 

The weighting function is frequently referred to as the “test function.” 

Applying the boundary conditions 

The first term in (5.3), after integrating by parts three times, is 

 ∫ ∫ ෩ࣲ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫௫݀ݕ
ଵ
 ௫்ݔ݀

 =  (5.4) 

  −∫ ∫ ଶ(݁௫ࣲ௫௫)௫൫݁௫ߟ ෩ࣲ௫௫൯௫݀ݕ
ଵ
 ௫்ݔ݀

 + ∫ ෩ࣲ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫ห௫ୀ
௫ ଵݕ݀

  

  −∫ ݁௫ ෩ࣲ௫(ߟଶ(݁௫ࣲ௫௫)௫)௫ห௫ୀ
௫ ଵݕ݀

 + ∫ ଶ݁௫ߟ ෩ࣲ௫௫(݁௫ࣲ௫௫)௫ห௫ୀ
௫ ଵݕ݀

  . 
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Requiring that the weighting function satisfy the problem’s essential boundary conditions in the 
 ,.coordinate; i.e ݔ

 ෩ࣲ௫ห௫ୀ = ෩ࣲ௫௫ห௫ୀ = ෩ࣲห
௫ୀ௫

= ෩ࣲ௫ห௫ୀ௫ = 0 , (5.5) 

the term in (5.4) reduces to 

 ∫ ∫ ෩ࣲ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫௫݀ݕ
ଵ
 ௫்ݔ݀

 = (5.6) 

  −∫ ∫ ଶ(݁௫ࣲ௫௫)௫൫݁௫ߟ ෩ࣲ௫௫൯௫݀ݕ
ଵ
 ௫்ݔ݀

  

  −∫ ෩ࣲ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫ห௫ୀ	݀ݕ
ଵ
 + ∫ ଶ݁௫ߟ ෩ࣲ௫௫(݁௫ࣲ௫௫)௫ห௫ୀ௫݀ݕ

ଵ
  . 

Then, after applying the problem’s natural boundary conditions in the ݔ coordinate,18 

 (݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫|௫ୀ = ோ
ଷଶభబమ

(ݕ)ߠ − ଵ൫ଵିଵ/మ൯
௫
మ ℎ(ݕ) , (5.7) 

 (݁௫ࣲ௫௫)௫|௫ୀ௫ = − ଶ(௫ାଵ)
௫
మ ݁௫ℎ(ݕ) , (5.8) 

equation (5.6) simplifies further to 

 ∫ ∫ ෩ࣲ(݁௫(ߟଶ(݁௫ࣲ௫௫)௫)௫)௫௫݀ݕ
ଵ
 ௫்ݔ݀

 = (5.9) 

  −∫ ∫ ଶ(݁௫ࣲ௫௫)௫൫݁௫ߟ ෩ࣲ௫௫൯௫݀ݕ
ଵ
 ௫்ݔ݀

  

  − ோ
ଷଶభబమ ∫

෩ࣲห
௫ୀ(ݕ)ߠ	ݕ݀ଵ

 + ଵ൫ଵିଵ/మ൯
௫
మ ∫ ෩ࣲห

௫ୀℎ(ݕ)	݀ݕଵ
  

  − ଶ(௫ାଵ)
௫
మ ݁ଶ௫ ∫ ଶߟ ෩ࣲ௫௫ห௫ୀ௫ℎ(ݕ)݀ݕଵ

  . 

The second term in (5.3) becomes, after integrating by parts once, 

 ∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
෩ࣲࣲ௬௬݀ݕ

ଵ
 ௫ݔ݀

 = (5.10) 

  −∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬ ෩ࣲ௬݀ݕ

ଵ
 ௫ݔ݀

 + ோమ

ଵభమమ ∫
ଵାఎమ

ఎర
෩ࣲࣲ௬ห௬ୀ

ଵ
௫ݔ݀

  . 

The Carrier-Maslen boundary conditions with curvature terms included are 

 ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬ห௬ୀ = − ோయ/మ

ସఴ
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶࣲ௫|௬ୀቇ

௫
+  (5.11) , (ݔ)ିܩ

 ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬ห௬ୀଵ = ோయ/మ

ସఴ
ቆ൫ଵା

ఎమ൯య/ర

ఎమ
݁௫/ଶࣲ௫|௬ୀଵቇ

௫
+  (5.12) . (ݔ)ାܩ

                                                             
18 For simplicity, it is assumed here that the source terms are zero at the boundary. 
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Applying these to (5.10) yields 

 ∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
෩ࣲࣲ௬௬݀ݕ

ଵ
 ௫ݔ݀

 = −∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬ ෩ࣲ௬݀ݕ

ଵ
 ௫ݔ݀

  (5.13) 

  + ோయ/మ

ସఴ ∫ ቈ ෩ࣲห
௬ୀ ቆ

൫ଵାఎమ൯య/ర

ఎమ
݁௫/ଶࣲ௫|௬ୀቇ

௫
+ ෩ࣲห

௬ୀଵ ቆ
൫ଵାఎమ൯య/ర

ఎమ
݁௫/ଶࣲ௫|௬ୀଵቇ

௫
 ௫ݔ݀

  

  +∫ ቂ ෩ࣲห
௬ୀଵܩ

ା(ݔ)− ෩ࣲห
௬ୀܩ

ቃ(ݔ)ି ௫ݔ݀
  . 

Then, after integrating the second and third terms by parts and applying (5.5), equation (5.13) 
reduces to 

 ∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
෩ࣲࣲ௬௬݀ݕ

ଵ
 ௫ݔ݀

 = −∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬ ෩ࣲ௬݀ݕ

ଵ
 ௫ݔ݀

  (5.14) 

  − ோయ/మ

ସఴ ∫
൫ଵାఎమ൯య/ర

ఎమ
݁௫/ଶ ቀࣲ௫ ෩ࣲ௫ห௬ୀ + ࣲ௫ ෩ࣲ௫ห௬ୀଵቁ ݔ݀

௫
  

  +∫ ቂ ෩ࣲห
௬ୀଵܩ

ା(ݔ)− ෩ࣲห
௬ୀܩ

ቃ(ݔ)ି ௫ݔ݀
  . 

Simplified Galerkin form 

Collecting the terms in (5.9) and (5.14), equation (5.3) may be written 

 ℬ൫ࣲ, ෩ࣲ൯ = ℱ൫ ෩ࣲ൯ , (5.15) 

where 

 ℬ൫ࣲ, ෩ࣲ൯ =   (5.16) 

  ∫ ∫ ଶ(݁௫ࣲ௫௫)௫൫݁௫ߟ ෩ࣲ௫௫൯௫݀ݕ
ଵ
 ௫்ݔ݀

 + ∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
ࣲ௬ ෩ࣲ௬݀ݕ

ଵ
 ௫ݔ݀

  

  + ோయ/మ

ସఴ ∫
൫ଵାఎమ൯య/ర

ఎమ
݁௫/ଶ ቀࣲ௫ ෩ࣲ௫ห௬ୀ + ࣲ௫ ෩ࣲ௫ห௬ୀଵቁ݀ݔ

௫
  , 

 ℱ൫ ෩ࣲ൯ =   (5.17) 

  −∫ ∫ ෩ࣲ࣭̅݀ݕଵ
 ௫்ݔ݀

 − ∫ ∫ ෩ࣲℋ݀ݕଵ
 ௫்ݔ݀

  

  − ோ
ଷଶభబమ ∫

෩ࣲห
௫ୀ(ݕ)ߠ	ݕ݀ଵ

 + ∫ ቂ ෩ࣲห
௬ୀଵܩ

ା(ݔ)− ෩ࣲห
௬ୀܩ

ቃ(ݔ)ି ௫ݔ݀
  

  + ଵ൫ଵିଵ/మ൯
௫
మ ∫ ෩ࣲห

௫ୀℎ(ݕ)	݀ݕଵ
 − ଶ(௫ାଵ)

௫
మ ݁ଶ௫ ∫ ଶߟ ෩ࣲ௫௫ห௫ୀ௫ℎ(ݕ)݀ݕଵ

  . 

The remainder of this chapter is devoted to constructing a finite element solution to the equation 
described by (5.15)-(5.17). 
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Approximating the solution 

The general form of a finite-element method FEM) solution is a linear combination of basis 
functions, Φ(ݕ,ݔ), such that 

,ݔ)ࣲ  (ݕ ≈ ∑ ܽΦ(ݔ, (ݕ
ୀଵ  , (5.18) 

where ܭ	is the total degrees of freedom, which is related to the total number of grid points.  Each 
constant (ܽ) and basis function (Φ) pair is associated with a grid point.  The two-dimensional 
basis functions are the product of separate one-dimensional basis functions such that 

 Φ(ݕ,ݔ) =  (5.19) , (ݕ)ߣ(ݔ)ߪ

where each ݅ corresponds to a gridline in the x-direction and each ݆ corresponds to a gridline in 
the y-direction.  Hence, the general form of the solution may be written 

,ݔ)ࣲ  (ݕ ≈ ∑ ܽߪ(ݔ)ߣ(ݕ)
ୀଵ ≈ ∑ ∑ ܽ  (5.20) , (ݕ)ߣ(ݔ)ߪ

where ݇ is a function of ݅, and ݆.  The exact relationship between ݅, ݆, and ݇ is discussed in 
greater detail later in the chapter. 

The x-direction 

In the x-direction, the domain is partitioned into ܯ subintervals with divisions given by 

 0 = ݔ < ଵݔ < ⋯ < ெିଵݔ < ெݔ =  (5.21) . ்ݔ

Cubic polynomials are appropriate splining functions because the simplified weak form has three 
derivatives in the ݔ coordinate.  In addition, choosing cubic splines introduces ܯ + 3 degrees of 
freedom in this direction.19  

                                                             
19 A total of ܯ cubic functions of the form ݔܣଷ + ଶݔܤ + ݔܥ  are required.  Without constraints, the spline ܦ+
function would have a total of 4ܯ degrees of freedom; however, requiring that the function and its first two 
derivatives be continuous eliminates 3(ܯ − 1) degrees of freedom. 
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Cubic spline basis functions 

Any cubic spline function may be expressed as a linear combination of B-spline basis functions.  
In this case, the spline may be written 

(ݔ)ݏ  = ∑ ܿ
(௦)ݏ(ݔ)ெାଵ

ୀିଵ  . (5.22) 

Each ݏ(ݔ) is restricted to be nonzero only over the interval [ݔିଶ,  ାଶ] which surrounds theݔ
node point ݔ and is divided into four regions such that	ݔିଶ < ିଵݔ < ݔ < ାଵݔ <  ାଶ.  Theݔ
  are defined piecewise as follows.  Let (ݔ)ݏ

 ߫ଵ = ߙ ቀ
௫ି௫షమ

௫శమି௫షమ
ቁ
ଷ
 ,     ߫ଶ = ߚ ቀ

௫ି௫షభ
௫శమି௫షభ

ቁ
ଷ
 , (5.23) 

 ߫ଷ = ߛ ቀ
௫ି௫

௫శమି௫
ቁ
ଷ
 ,     ߫ସ = ߜ ቀ

௫ି௫శభ
௫శమି௫శభ

ቁ
ଷ
 ; 

then, 

(ݔ)ݏ  = ൞

߫ଵ ିଶݔ ≤ ݔ ≤ ିଵݔ
߫ଵ + ߫ଶ ିଵݔ ≤ ݔ ≤ ݔ
߫ଵ + ߫ଶ + ߫ଷ ݔ ≤ ݔ ≤ ାଵݔ
߫ଵ + ߫ଶ + ߫ଷ + ߫ସ ାଵݔ ≤ ݔ ≤ ାଶݔ

 . (5.24) 

Notice that the function and its first two derivatives are automatically continuous over the 
interval for which it is defined. 

Evaluating ݏ(ݔ) at the five nodes helps identify the first two of the four constraints on ݏ(ݔ) 
which are required to solve for the coefficients ߙ, ߚ, ߛ, and ߜ.  The nodal values are 

(ିଶݔ)ݏ  = 0 , (5.25) 

(ିଵݔ)ݏ  = ߙ ቀ
௫షభି௫షమ
௫శమି௫షమ

ቁ
ଷ
 , (5.26) 

(ݔ)ݏ  = ߙ ቀ
௫ି௫షమ
௫శమି௫షమ

ቁ
ଷ

+ ߚ ቀ
௫ି௫షభ
௫శమି௫షభ

ቁ
ଷ
 , (5.27) 

(ଵݔ)ݏ  = ߙ ቀ
௫శభି௫షమ
௫శమି௫షమ

ቁ
ଷ

+ ߚ ቀ
௫శభି௫షభ
௫శమି௫షభ

ቁ
ଷ

+ ߛ ቀ
௫శభି௫
௫శమି௫

ቁ
ଷ
 , (5.28) 

(ଶݔ)ݏ  = ߙ + ߚ + ߛ +   . (5.29)ߜ
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The first constraint is to set the value of ݏ(ݔ) to one at the middle node (ݔ =  ),20ݔ

ߙ  ቀ
௫ି௫షమ
௫శమି௫షమ

ቁ
ଷ

+ ߚ ቀ
௫ି௫షభ
௫శమି௫షభ

ቁ
ଷ

= 1 , (5.30) 

and the second pins the value of ݏ(ݔ) to zero at the rightmost end of the interval (ݔ =  ,(ାଶݔ

ߙ  + ߚ + ߛ + ߜ = 0 . (5.31) 

The remaining constraints are motivated by the observation that the first and second 
derivatives at the leftmost end (ݔ =  ିଶ) are zero, whereas the first and second derivatives at theݔ
rightmost end (ݔ =  ାଶ) areݔ

ݏ  ᇱ(ݔାଶ) = ߙ
ଷ

௫శమି௫షమ
+ ߚ

ଷ
௫శమି௫షభ

+ ߛ
ଷ

௫శమି௫
+ ߜ

ଷ
௫శమି௫శభ

 , (5.32) 

ݏ  ᇱᇱ(ݔାଶ) = ߙ


(௫శమି௫షమ)మ
+ ߚ


(௫శమି௫షభ)మ

+ ߛ


(௫శమି௫)మ
+ ߜ


(௫శమି௫శభ)మ

 . (5.33) 

Requiring that these be zero gives the two additional requirements, 

 ఈ
௫శమି௫షమ

+ ఉ
௫శమି௫షభ

+ ఊ
௫శమି௫

+ ఋ
௫శమି௫శభ

= 0 , (5.34) 

 ఈ
(௫శమି௫షమ)మ

+ ఉ
(௫శమି௫షభ)మ

+ ఊ
(௫శమି௫)మ

+ ఋ
(௫శమି௫శభ)మ

= 0 . (5.35) 

The four constraints may be written together in a matrix equation as 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ቀ ௫ି௫షమ

௫శమି௫షమ
ቁ
ଷ

ቀ ௫ି௫షభ
௫శమି௫షభ

ቁ
ଷ

0 0

1 1 1 1

ାଶݔ) − ିଶ)ିଵݔ ାଶݔ) − ିଵ)ିଵݔ ାଶݔ) − )ିଵݔ ାଶݔ) − ାଵ)ିଵݔ

ାଶݔ) − ିଶ)ିଶݔ ାଶݔ) − ିଵ)ିଶݔ ାଶݔ) − )ିଶݔ ାଶݔ) − ⎦ାଵ)ିଶݔ
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ߙ

ߚ

ߛ

ߜ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1

0

0

0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 . (5.36) 

 

The solution to this problem defines a cubic spline basis function corresponding to the ݅௧ 
gridline in the x-direction.  Each of these basis functions has support over four subintervals, 
meaning that the spline function may be written 

(ݔ)ݏ  = ܿିଶ
(௦) (ݔ)ିଶݏ + ܿିଵ

(௦) (ݔ)ିଵݏ + ܿ
(௦)ݏ(ݔ) + ܿାଵ

(௦)  (5.37) , (ݔ)ାଵݏ
 on [ݔିଵ, ݅ ], forݔ = 1,2, …  , ܯ,

                                                             
20 Note that, depending on the node spacing, the peak of the curve can occur away from ݔ =  .  In these cases, theݔ
function value at ݔ =  . will be one and the peak value of the function will be greater than oneݔ
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which is an alternate form of (5.22).  It is helpful to remember that the ߙ, ߚ, ߛ, and ߜ are 
determined entirely by the grid spacing and are not degrees of freedom in the same sense as the 
constants in (5.22) and (5.37). 

The first, second, and third derivatives of (ݔ)ݏ are 

(ݔ)ᇱݏ  = ∑ ܿ
(௦)ݏᇱ(ݔ)ெାଵ

ୀିଵ  , (5.38) 

(ݔ)ᇱᇱݏ  = ∑ ܿ
(௦)ݏᇱᇱ(ݔ)ெାଵ

ୀିଵ  , (5.39) 

(ݔ)ᇱᇱᇱݏ  = ∑ ܿ
(௦)ݏᇱᇱᇱ(ݔ)ெାଵ

ୀିଵ  , (5.40) 

where 

(ݔ)ᇱݏ  =

⎩
⎨

⎧
߫ଵᇱ ିଶݔ ≤ ݔ ≤ ିଵݔ
߫ଵᇱ + ߫ଶᇱ ିଵݔ ≤ ݔ ≤ ݔ
߫ଵᇱ + ߫ଶᇱ + ߫ଷᇱ ݔ ≤ ݔ ≤ ାଵݔ
߫ଵᇱ + ߫ଶᇱ + ߫ଷᇱ + ߫ସᇱ ାଵݔ ≤ ݔ ≤ ାଶݔ

 , (5.41) 

 

with ߫ଵᇱ , ߫ଶᇱ , ߫ଷᇱ , and ߫ସᇱ  defined as 

 ߫ଵᇱ = ଷఈ
(௫శమି௫షమ)య

ݔ) − ିଶ)ଶ ,     ߫ଶᇱݔ = ଷఉ
(௫శమି௫షభ)య

ݔ) −  ିଵ)ଶ , (5.42)ݔ

 ߫ଷᇱ = ଷఊ
(௫శమି௫)య

ݔ) − )ଶ ,     ߫ସᇱݔ = ଷఋ
(௫శమି௫శభ)య

ݔ) −  ; ାଵ)ଶݔ

where 

(ݔ)ᇱᇱݏ  =

⎩
⎨

⎧
߫ଵᇱᇱ ିଶݔ ≤ ݔ ≤ ିଵݔ
߫ଵᇱᇱ + ߫ଶᇱᇱ ିଵݔ ≤ ݔ ≤ ݔ
߫ଵᇱᇱ + ߫ଶᇱᇱ + ߫ଷᇱᇱ ݔ ≤ ݔ ≤ ାଵݔ
߫ଵᇱᇱ + ߫ଶᇱᇱ + ߫ଷᇱᇱ + ߫ସᇱᇱ ାଵݔ ≤ ݔ ≤ ାଶݔ

 , (5.43) 

 

with ߫ଵᇱᇱ , ߫ଶᇱᇱ , ߫ଷᇱᇱ , and ߫ସᇱᇱ  defined as 

 ߫ଵᇱᇱ = ఈ
(௫శమି௫షమ)య

ݔ) − ିଶ) ,     ߫ଶᇱᇱݔ = ఉ
(௫శమି௫షభ)య

ݔ) −  ିଵ) , (5.44)ݔ

 ߫ଷᇱᇱ = ఊ
(௫శమି௫)య

ݔ) − ) ,     ߫ସᇱᇱݔ = ఋ
(௫శమି௫శభ)య

ݔ) −  ; (ାଵݔ
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and where 

(ݔ)ᇱᇱᇱݏ  =

⎩
⎨

⎧
߫ଵᇱᇱᇱ ିଶݔ ≤ ݔ ≤ ିଵݔ
߫ଵᇱᇱᇱ + ߫ଶᇱᇱᇱ ିଵݔ ≤ ݔ ≤ ݔ
߫ଵᇱᇱᇱ + ߫ଶᇱᇱᇱ + ߫ଷᇱᇱᇱ ݔ ≤ ݔ ≤ ାଵݔ
߫ଵᇱᇱᇱ + ߫ଶᇱᇱᇱ + ߫ଷᇱᇱᇱ + ߫ସᇱᇱᇱ ାଵݔ ≤ ݔ ≤ ାଶݔ

 , (5.45) 

 

with ߫ଵᇱᇱᇱ, ߫ଶᇱᇱᇱ, ߫ଷᇱᇱᇱ, and ߫ସᇱᇱᇱ defined as 

 ߫ଵᇱᇱᇱ = ఈ
(௫శమି௫షమ)య

 ,     ߫ଶᇱᇱᇱ = ఉ
(௫శమି௫షభ)య

 , (5.46) 

 ߫ଷᇱᇱᇱ = ఊ
(௫శమି௫)య

 ,     ߫ସᇱᇱᇱ = ఋ
(௫శమି௫శభ)య

 . 

Modified cubic spline basis functions 

A set of constrained basis functions are required which automatically satisfy the essential 
boundary conditions of the problem at x-direction boundaries.  The spline composed of these 
basis functions, (ݔ)ߪ, must satisfy ߪᇱ(0) = ᇱᇱ(0)ߪ = (்ݔ)ߪ = (்ݔ)ᇱߪ = 0.  The four constraints 
eliminate four degrees of freedom so that the modified spline may be written 

(ݔ)ߪ  = ∑ ܿ
(ఙ)ߪ(ݔ)ெିଵ

ୀଵ  . (5.47) 

Its basis functions are, in terms of the B-spline functions, 

(ݔ)ߪ  = ቐ
−(ݔ)ଵݏ (ݔ)ݏଵିߤ + (ݔ)ଵିݏߤ ݅ = 1
(ݔ)ݏ ݅ = 2,3, … ܯ, − 2
−(ݔ)ெିଵݏ (ݔ)ெݏଵିߥ + (ݔ)ெାଵݏߥ ݅ = ܯ − 1

 , (5.48) 

where, for ݇ = 0,−1, the constants ߤ  and ߥ  are 

ߤ  = ௦ೖ
ᇲᇲ()௦భᇲ()ି௦ೖ

ᇲ ()௦భᇲᇲ()
௦బᇲ()௦షభᇲᇲ ()ି௦షభᇲ ()௦బᇲᇲ()

 , (5.49) 

ߥ  = ௦ಾషೖ
ᇲ (௫)௦ಾషభ(௫)ି௦ಾషೖ(௫)௦ಾషభ

ᇲ (௫)
௦ಾ(௫)௦ಾశభ

ᇲ (௫)ି௦ಾశభ(௫)௦ಾ
ᇲ (௫)

 . (5.50) 
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Equation (5.47) may be written alternatively as 

(ݔ)ߪ  = 

  

⎩
⎪⎪
⎨

⎪⎪
⎧ܿଵ

(ఙ)[ݏଵ(ݔ)− (ݔ)ݏଵିߤ + [(ݔ)ଵିݏߤ + ܿଶ
(ఙ)ݏଶ(ݔ) ,ݔ] [ଵݔ

ܿଵ
(ఙ)[ݏଵ(ݔ)− [(ݔ)ݏଵିߤ + ܿଶ

(ఙ)ݏଶ(ݔ) + ܿଷ
(ఙ)ݏଷ(ݔ) [ଶݔ,ଵݔ]

ܿିଶ
(ఙ)ݏିଶ(ݔ) + ܿିଵ

(ఙ)ݏିଵ(ݔ) + ܿ
(ఙ)ݏ(ݔ) + ܿାଵ

(ఙ)ݏାଵ(ݔ) [ݔ,ିଵݔ]

ܿெିଷ
(ఙ) (ݔ)ெିଷݏ + ܿெିଶ

(ఙ) (ݔ)ெିଶݏ + ܿெିଵ
(ఙ) −(ݔ)ெିଵݏ] [(ݔ)ெݏଵିߥ ,ெିଶݔ] [ெିଵݔ

ܿெିଶ
(ఙ) (ݔ)ெିଶݏ + ܿெିଵ

(ఙ) −(ݔ)ெିଵݏ] (ݔ)ெݏଵିߥ + [(ݔ)ெାଵݏߥ [ெݔ,ெିଵݔ]

 , (5.51) 

in which ݅ = 3,4 … ܯ, − 2. 

The y-direction 

In the y-direction, the domain is partitioned into N intervals such that  

 0 = ݕ < ଵݕ < ⋯ < ݕ < ⋯ < ேିଵݕ < ேݕ =  (5.52) ்ݕ

The weak form has only one derivative in this direction, so linear splines are acceptable basis 
functions.  Choosing a linear spline introduces ܰ + 1 degrees of freedom.21 

Linear basis functions 

A linear spline may be expressed as a linear combination of “hat” functions, in which each “hat” 
function is the basis function corresponding to a gridline in the ݕ coordinate.  Therefore, the 
spline may be written 

(ݕ)ߣ  = ∑ ܿ
(ఒ)ߣ(ݕ)ே

ୀ  . (5.53) 

                                                             
21 A total of ܰ functions of the form ݔܣ +  are required.  Without constraints, the spline function would have a ܤ
total of 2ܰ degrees of freedom; however, requiring that the function be continuous eliminates ܰ − 1 degrees of 
freedom. 
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where the “hat” functions, ߣ(ݕ), are given by 

(ݕ)ߣ  =

⎩
⎪⎪
⎨

⎪⎪
⎧

௬భି௬
௬భ

, ݆ = 0, 0 ≤ ݕ ≤ ଵݕ
௬ି௬ೕషభ
௬ೕି௬ೕషభ

, ݆ = 1,2, … ,ܰ − 1, ିଵݕ ≤ ݕ ≤ ݕ
௬ೕశభି௬
௬ೕశభି௬ೕ

, ݆ = 1,2, … ,ܰ − 1, ݕ ≤ ݕ ≤ ାଵݕ
௬ି௬ಿషభ
௬ಿି௬ಿషభ

, ݆ = ܰ, ேିଵݕ ≤ ݕ ≤ ேݕ

 , (5.54) 

The alternate form of (5.53) is 

(ݕ)ߣ  = ܿିଵ
(ఒ)ߣିଵ(ݕ) + ܿ

(ఒ)ߣ(ݕ) =
ೕ

(ഊ)ିೕషభ
(ഊ)

௬ೕି௬ೕషభ
ݕ	 +

ೕషభ
(ഊ) ௬ೕିೕ

(ഊ)௬ೕషభ
௬ೕି௬ೕషభ

  (5.55) 

 on ൣݕିଵ, ݆ ൧, forݕ = 1,2, … ,ܰ . 

The derivative of (ݕ)ߣ is 

(ݕ)ᇱߣ  = ∑ ܿ
(ఒ)ߣᇱ(ݕ)ே

ୀ  , (5.56) 

where 

(ݕ)ᇱߣ  =

⎩
⎪⎪
⎨

⎪⎪
⎧

ିଵ
௬భ

, ݆ = 0, 0 ≤ ݕ < ଵݕ
ଵ

௬ೕି௬ೕషభ
, ݆ = 1,2, … ,ܰ − 1, ିଵݕ < ݕ < ݕ

ିଵ
௬ೕశభି௬ೕ

, ݆ = 1,2, … ,ܰ − 1, ݕ < ݕ < ାଵݕ
ଵ

௬ಿି௬ಿషభ
, ݆ = ܰ, ேିଵݕ < ݕ < ேݕ

 . (5.57) 

Two-dimensional basis functions 

At this point it is clear that (5.18) and (5.20) may be refined into 

,ݔ)ࣲ  (ݕ ≈ ∑ ܽΦ(ݔ, (ݕ
ୀଵ ≈ ∑ ∑ ܽߪ(ݔ)ߣ(ݕ)ே

ୀ
ெିଵ
ୀଵ  , (5.58) 

where 

 ݇ = (ܰ + 1)(݅ − 1) + (݆ + 1)  (5.59) 

and ܭ = ܯ) − 1)(ܰ + 1), which is the total amount of degrees of freedom.  The summation 
variable, ݇, is defined in such a way that it increments from bottom to top along each ݔ gridline.  
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Returning to the Galerkin form 

This section evaluates the Galerkin statement of the problem – equations (5.15)-(5.17) – using 
the approximating spline functions developed above.  Assuming that ࣲ and ෩ࣲ may be 
represented by 

,ݔ)ࣲ  (ݕ ≈ ∑ ܽΦ(ݔ, (ݕ
ୀଵ  , (5.60) 

 ෩ࣲ(ݔ, (ݕ ≈ ∑ ܾ∗Φ∗(ݔ, (ݕ
∗ୀଵ  , (5.61) 

equation (5.15) may be written 

 ℬ(∑ ܽΦ(ݕ,ݔ)
ୀଵ ,∑ ܾ∗Φ∗(ݕ,ݔ)

∗ୀଵ ) = ℱ(∑ ܾ∗Φ∗(ݔ, (ݕ
∗ୀଵ ) . (5.62) 

After some rearranging, (5.62) becomes 

 ∑ ܾ∗ ∑ ܽ
ୀଵ


∗ୀଵ (∗Φ,Φ)ܤ = ∑ ܾ∗

∗ୀଵ  (5.63) , (∗Φ)ܨ

from which one may cancel the leading terms, resulting in 

 ∑ ܽ
ୀଵ Φ)ܤ ,Φ∗) =  (5.64) . (∗Φ)ܨ

This final equation is valid for each ݇∗ = 1,2, …  In addition, it may be written as a matrix  .ܭ,
problem to solve for the coefficients ܽ.  The matrix problem is 

 [A]Cሬ⃑ = Dሬሬ⃑  , (5.65) 

where, for ݇ = 1,2, … ∗݇ and ܭ, = 1,2, …  ,ܭ,

 A∗ =  (5.66) , (∗Φ,Φ)ܤ	

 C∗ = ܽ∗  , (5.67) 

 D∗ =  (5.68) . (∗Φ)ܨ	

Building the numerical solution 

To solve (5.65), it is necessary to evaluate ܤ(Φ ,Φ∗) and ܨ(Φ∗).  Using (5.16), equation 
(5.66) may be written 

 A∗ = 	 ଵܫ + ଶܫ +  ଷ , (5.69)ܫ
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and, using (5.17), equation (5.68) may be written, 

 D∗ = 	 ସܫ + ହܫ + ܫ + ܫ + ܫ଼  , (5.70) 

where  

ଵܫ  = ∫ ∫ ଶ൫݁௫Φ௫௫൯௫൫݁ߟ
௫Φ∗௫௫൯௫݀ݕ

ଵ
 ௫்ݔ݀

  , (5.71) 

ଶܫ  = ∫ ∫ ோమ

ଵభమమ
ଵାఎమ

ఎర
Φ௬Φ∗௬݀ݕ

ଵ
 ௫ݔ݀

  , (5.72) 

ଷܫ  = ோయ/మ

ସఴ ∫
൫ଵାఎమ൯య/ర

ఎమ
݁௫/ଶ ቀΦ௫Φ∗௫ห௬ୀ + Φ௫Φ∗௫ห௬ୀଵቁ ݔ݀

௫
  , (5.73) 

ସܫ  = −∫ ∫ Φ∗࣭̅	݀ݕ
ଵ
 ௫்ݔ݀

  , (5.74) 

ହܫ  = −∫ ∫ Φ∗ℋ݀ݕଵ
 ௫்ݔ݀

  , (5.75) 

ܫ  = − ோ
ଷଶభబమ ∫ Φ∗|௫ୀ(ݕ)ߠ	ݕ݀ଵ

  , (5.76) 

ܫ  = ∫ ൣΦ∗|௬ୀଵܩା(ݔ)−Φ∗|௬ୀ(ݔ)ିܩ൧݀ݔ௫
  , (5.77) 

ܫ଼  = ଵ൫ଵିଵ/మ൯
௫
మ ∫ Φ∗|௫ୀℎ(ݕ)	݀ݕଵ

 − ଶ(௫ାଵ)
௫
మ ݁ଶ௫ ∫ ଶΦ∗௫௫ห௫ୀ௫ℎߟ

ଵݕ݀(ݕ)
  . (5.78) 

These integrals are evaluated with products of Gaussian quadrature rules in each direction.
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Chapter Six 

Verification 
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Introduction 

As a means of verification, the algorithm described in the previous chapter has been 
implemented for several test cases to permit comparison with results published by other authors.  
The calculations were made with the geometry and operating conditions given in Table 6-1. 

Diameter (cm) 18.29 
Length (cm) 335.3 
Temperature (C) 300 
Wall Pressure (kPa) 13.3 

 

Table 6-1.  Centrifuge parameters for verification calculations. 

Calculations were made at one of three speeds: 700 m/s, 500 m/s, or 400 m/s.  The values of the 
Reynolds number (ܴ݁), stratification parameter (ܣ), and Brinkman number (ܭ) at each of these 
speeds are given in Table 6-2. 

 ܭ ܣ ܴ݁
700 m/s 6.7e6 5.9 1.1 
500 m/s 4.8e6 4.2 0.55 
400 m/s 3.8e6 3.4 0.35 

 

Table 6-2.  Values of non-dimensional quantities at three speeds. 

The basic pancake model 

The first comparison is made with results presented in [2].  These calculations employ the 
pancake approximation.  The driving mechanism used to induce countercurrent flow is a linear 
wall temperature gradient.  The calculations were made using a temperature difference of one 
degree Celsius along the outer wall.  Figure 6-1 shows the axial mass flux at the height ݕ = 0.5 
for the three speeds listed in Table 6-2.  A 24 element by 24 element grid was employed with 
gridlines concentrated near each of the three walls in the manner suggested by [9].  The top of 
the atmosphere (்ݔ) was set at 8.  Figure 6-1 matches Figure 7 in [2], which was created from an 
eigenfunction expansion solution. 
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Figure 6-1.  Countercurrent flow at the midplane (ݕ = 0.5) induced by a linear wall 
temperature gradient for three different speeds. 

Curvature term effects 

The second comparison is with results given in [11] which examine the effect of the curvature 
terms.  The countercurrent flow in this case is induced by the introduction and removal of mass 
through the top and bottom end caps; see [11] for details.  Figures 6-2a, 6-2b, and 6-2c – which 
are equivalent to Figures 3b, 4b, and 5b in [11] – show the flow profiles calculated both with and 
without curvature terms for three rotor speeds.  At the slowest slow speed (400 m/s), there is a 
dramatic difference between the two curves.  However, for higher speeds the deviation between 
the two solutions vanishes.  The calculations described in this section were made with a 50 
element by 50 element grid concentrated near the three walls in the same manner as above.  The 
top of the atmosphere (்ݔ) was set to 11. 
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Figures 6-2a, 6-2b, and 6-2c.  Countercurrent flow at ݕ = 0.25 induced by the addition and 
removal of mass through the end caps for rotor speeds of 400 m/s, 500 m/s, and 700 m/s. 
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Source term effects 

This section examines the effects of each of the various types of source terms.  All results are 
reported for a rotor speed of 700 m/s.  Figure 6-3 shows the countercurrent flow at ݕ = 0.25 
generated by a point mass source of 1 gram per second located high in the atmosphere and 
halfway along the centrifuge (ݔ = ݕ,8 = 0.5).  The mass is removed through holes in the top 
and bottom boundaries at ݔ = 8.  Figures 6-4a and 6-4b show the flow profile at ݕ = 0.25 
induced by point sources of radial momentum and axial momentum, respectively, while Figures 
6-5a  and 6-5b show the flow induced by a point circumferential momentum source and a point 
energy source, respectively.  The strength of each momentum source is one dyne (10-5 N) and the 
strength of the energy source is one Watt.  Equivalent results obtained using the pancake 
approximation are reported in [12] – see Figures 2a-2e in that reference – and the results given 
here agree nicely.  At such a high speed (700 m/s), the solutions with curvature terms do not 
deviate dramatically from those without them.  The calculations in this section were made with 
various sized grids and the top of the atmosphere (்ݔ) was set to 11. 

 

Figure 6-3.  Countercurrent flow at ݕ = 0.25 induced by a point mass source at ݔ = 8 
and ݕ = 0.5.  The rotor speed is 700 m/s.  Half of the mass is removed 
through a hole in the top boundary and half through a hole in the bottom 
boundary, each at ݔ = 8. 
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Figures 6-4a and 6-4b.  Countercurrent flow at ݕ = 0.25 for a point source of radial 
momentum and a point source of axial momentum, each at ݔ = ݕ ,8 = 0.5.  The 
strength of each source is one dyne.  The calculations are for a high speed (700 
m/s) and the curvature effects are relatively mild. 

012345678
-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-4 Mass Flux At y=0.25 Induced By Radial Momentum Source

Distance From Wall (scale heights)

A
xi

al
 M

as
s 

Fl
ux

 (g
/s

)

 

 

700 m/s, Pancake
700 m/s, Curvature

012345678
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02
Mass Flux At y=0.25 Induced By Axial Momentum Source

Distance From Wall (scale heights)

A
xi

al
 M

as
s 

Fl
ux

 (g
/s

)

 

 

700 m/s, Pancake
700 m/s, Curvature



- 60 -  
 

 

Figure 6-5a and 6-5b.  Countercurrent flow at ݕ = 0.25 for a point source of 
circumferential momentum and a point source of energy, each at ݔ = ݕ ,8 = 0.5.  
The strength of the momentum source is one dyne and the strength of the energy 
source is one Watt.  The calculations are for a high speed (700 m/s) and the 
curvature effects are relatively mild. 
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The effects of curvature and source terms at a lower speed 

In the previous section, only a single (high) rotor speed was considered (700 m/s).  This section 
explores the countercurrent flow induced by each of the source terms at a lower speed (500 m/s).  
Figure 6-6 shows the countercurrent flow generated by the point mass source described above.  
Figures 6-7a, 6-7b, 6-8a, and 6-8b report the expected flow induced by the three momentum 
sources and the energy source described above.  For all source types, the flow profiles generated 
with the inclusion of curvature terms differ to a greater extent at the lower speed than at the 
higher speed from those calculated using the pancake approximation. 

 

Figure 6-6.  Countercurrent flow at ݕ = 0.25 induced by a mass source at ݔ = 8 and 
ݕ = 0.5.  The rotor speed is 500 m/s.  The mass is removed through holes in the 
top and bottom boundaries at ݔ = 8. 
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Figures 6-7a and 6-7b.  Countercurrent flow at ݕ = 0.25 for a point source of radial 
momentum and a point source of axial momentum, each at ݔ = ݕ ,8 = 0.5.  
The strengths of the sources are one dyne.  The calculations are for a medium 
speed (500 m/s) and the curvature effects are more pronounced (compare with 
Figure 6-3). 
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Figures 6-8a and 6-8b.  Countercurrent flow at ݕ = 0.25 for a point source of 
circumferential momentum and a point source energy, each at ݔ = ݕ ,8 = 0.5.  
The strength of the momentum source is one dyne and the strength of the energy 
source is one Watt.  The calculations are for a medium speed (500 m/s) and the 
curvature effects are more pronounced (compare with Figure 6-4). 
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Conclusions 

This chapter has demonstrated that the finite element solution of the Onsager equation developed 
in the previous chapters is able to accurately reproduce results published by other authors.  In 
particular, it captures the effects of both curvature terms and source terms in the Onsager 
equation.  In general, prior authors have considered these phenomena separately; the present 
work accounts for both at once. 

The results presented here support the assertion that the impact of curvature terms is more 
pronounced in the analysis of relatively lower-speed centrifuges.  Further work is warranted – a 
logical next step is to analyze a low-speed machine using a more realistic feed model.  In 
addition, it will be important to calculate – using the fluid dynamics solution – what effect the 
inclusion of curvature terms has on the expected separating performance of a low-speed 
centrifuge.
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