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Abstract. Kalman filtering was introduced by R.E. Kalman in 1960 as a way to predict

the state of system that was subject to noisy measurements. The measurements were as-

sumed to have Gaussian noise which make the actual state somewhere in the middle but

unknown. Since the first implementation the Kalman filter has been used extensively in

signal processing and later introduced into object tracking. Using state equations from

physics on a moving object a newly predicted state can be estimated based on time between

observations the only di↵erence between signal processing and object tracking is working in

an additional dimension.

The Particle filter (sequential monte carlo (SMC)) was introduced in 1993 by Gordon et al.

in the paper ’Novel approach to nonlinear/non-Gaussian /Bayesian state estimation’ which

discussed a new way for state space estimation by continuously resampling an estimated

distribution and reducing the error based on actual observations. The inherent advantage

to this method is that it requires no knowledge of how the object motion needs to be mod-

eled.

In this paper I intend to do a comparative analysis of algorithms on video data and how

well they are able to track an object in motion as a saved video or if given the video as

though it were sequenced in real-time. Another aspect of exploration is the determination

of which algorithm performs better under variable frame rates or how slow can each frame

rate be before there is a severe lack of data to track objects in a scene accurately.
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2. LITERATURE REVIEW 1

1. Problem Statement

Computational performance for many complex algorithms has been significantly reduced

and even some of the most complex algorithms can be iterated through in a fraction of a sec-

ond. Although technology has allowed for complex algorithms to be instantiated throughout

certain fields of study, there has yet to be a performance estimate of computation complexity,

real-time processing, or accuracy comparisons between certain video processing algorithms.

This thesis work would be a comparative analysis of competing algorithms used for object

tracking in a video scene. The video will contain varying degrees of di�culty and a compar-

ison will be made as to how each could possibly be better than the other and under what

conditions it applies.

2. Literature Review

2.1. Particle Filter. Gordon, Salmon, and Smith prove in their paper that a boot-

strapping filter, now commonly referred to as the Particle filter or sequential Monte Carlo

method is superior to the extended Kalman filter due to the fact it does not rely on a model

of behavior and its innate ability to predict movement of non-linear functions. The filter

works by making initial guesses as to where the point or where the signal is. These guesses

are referred to as particles, the particles are worked on by some updating function that pre-

dicts where they will be at the current time step. Once the observation of where the point

is the particles are all updated according to a weighting scheme that weights points closer

to the observed point higher and distances further from the observed point lower. Then the

particles are redrawn from this newly weighted distribution and used for the next time step

which follows the previous steps to update the point, weight them according to the observed

point, then redraw them from the new distribution.

The portion that is missing is that there is lacking knowledge of how the computational

load increases as the number of objects increases. This is caused by the continuous sampling

and resampling of particles. Each iteration requires the updating of each particle through

time then calculating their importance on what was actually observed then resampled to be
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used in the next iteration. When passing this through thousands of particles and numerous

states the computational e↵ects have yet to be studied. Their examples only follow a single

object for their tracking example and only one signal in their one dimensional case. By

increasing to multiple objects the calculations increase exponentially and there has been

no comparison to see if the algorithm can support multiple objects in a near real-time

environment or what happens when only given a sparse dataset, which could occur in a real

world application.

The ending of their paper is a call for more research in regards to a “quantitative assess-

ment of filter performance for important nonlinear problems.” [5]. Gordon’s work relies on

one other aspect of their tracking behavior is that they are only looking at a single object

as well as not looking at computational complexity and time. By looking at other aspects

yet to be explored a new analysis of the filter’s performance can be addressed.

2.2. Kalman Filter. In his paper ’A New Approach to Linear Filtering and Prediction

Problems’[11], Kalman presents his research for finding an optimal filter that is much more

simplified than the Wiener filter as the Wiener filter had too many limitations that did

not promote practical implementations. Kalman introduced this concept in order to predict

random signals based on noisy measurements and allow the prediction of known signals in

the presence of random noise. Although largely Kalman assumes the random noise to be

Gaussian in nature. This paper also requires the signal or track to be largely linear in nature,

statistical outliers result in a negative Kalman gain causing the covariance and the model to

have negative state predictions.

The Kalman filter works in a few steps in a feedback loop. The initial requirement

is that the system be modeled by a state transition equation. If the model is too far o↵

the resulting predictions will be far o↵ unless it can be fixed in the covariance calculation

update. For a tracking problem as the one to be researched a displacement model would

accurately described the model in which the object will be tracked. With an adequate system

model we then predict the next state based on the initialization state. This state then has

a calculation of Kalman gain this calculation is intended to determine how inaccurate the
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state prediction was to the actual observed value. Kalman gain is intended to reduce error

in the calculation of the covariance matrix. The covariance matrix is the posteriori error

from the state prediction to the observed value. The updated covariance matrix will be used

in the next state prediction and should have less error due to the update from the Kalman

gain calculation. The limitations of this approach have been noted and other variations of

Kalman have been created to circumvent some of the assumptions that have to be made in

order to accurately use this method; linearity, Gaussian noise. Although these limitations

exist the low amount of computational cost could prove it to be a satisfactory method for

tracking objects.

2.3. Real Time Object Tracking. ’Real Time Object Detection and Tracking: His-

togram Matching and Kalman Filter Approach’ [15] is a paper from 2010 that assesses the

feasibility of using histogram segmentation of static video and used in combination with

Kalman filtering to track an object in real time. The authors of this paper are using a his-

togram segmentation algorithm in combination with absolute frame di↵erencing. How this

works is by finding an object that satisfies a certain histogram distribution. The distribution

is binned in a certain way in that the object is unique to the background or environment.

The problem with this technique is the spectra in which they work. Since red, green, blue

(RGB) values are not linear there is certain conditions where this technique will assume the

object is new based on varying degrees of light intensity. To better compensate the authors

should have worked either in hue, saturation, value (HSV) coordinates which are cylindri-

cal or luminosity, a, and b (LAB) values which is an international standard and is a cubic

structure thus works better in over saturated environments. The other aspect is that the dis-

tribution of colors can also change as the object changes position in reference to the camera.

There could be shifts of the histogram and could be seen as a new object if say the object

goes from a head on view to a profile view from the camera. Based on the set-up of there

algorithm it could cause a re-initialization and loss of previously accumulated track data.

The only practical purpose for this would be to process many di↵erent videos and trying to

follow a specific object through a scene in which the color histogram was previously known.
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2.4. Video Based Object Tracking. “Video Based Moving Object Tracking by Par-

ticle Filter”[8] introduces two di↵ering methods of identifying an object but rely on Particle

filter as the algorithm of choice to predict movement from frame to frame. The first segmen-

tation algorithm the authors introduce is another histogram segmentation algorithm that

requires a pre-set histogram or human interaction to determine which object is to be fol-

lowed through the sequence of video. The authors work in HSV color space which is robust

when light intensities change. The other method they are introducing is template matching.

This method introduces algorithm complexity as it is susceptible to changes in shape, rota-

tions, camera angle, distance from the camera. The way to address these issues is to have

a large repository that these di↵erent templates reside and are accessed whilst processing

the video. The authors use a correlation factor and probability of the state transition to

determine if they are still following the same object. This method is inherently more robust

than relying on histogram matching as explained earlier about position to camera, etc. The

only requirement is that the amount of templates to match could lead to large computation

needs and a repository for how the template will change in time. The authors also use a

clean video that has no additive noise. Their template extraction begins with a canny edge

detector. The canny edge detector works by looking at di↵erences in intensity gradients[2].

A large gradient increase between two pixels informs the detector that there is likely an edge

present. Since the videos being processed in the authors videos have little to no noise the

canny detector works as expected. The other problem with canny is if the background and

object to be tracked are close in color causing no large gradient change from pixel to pixel.

The authors allude to this type of failure as they track the object and have only satisfactory

results. Although based on their claims of robustness I feel as though they felt short on

tests that run the gamut of robustness, i.e. tracking multiple objects, introducing noise to

the video signal, adjusting frame rates, and working in an environment where object and

background are similar in color.

2.5. Comparing a Kalman Filter and a Particle Filter in a Multiple Ob-

jects Tracking Application[14]. The authors of this paper do a comparative analysis
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of a Kalman filter against a Particle filter in a real-time application based on video. The

basis for this analysis exists to look at single and multi-target applications through video

sequences and determining which is the better of the two algorithms. Based on their assess-

ment the particle filter wins out due to how robust it is since it creates other exploitable

features for data association. The Kalman filter application uses a probabilistic approach to

data association that requires di↵erent feature extraction such as Euclidian distance from

predicted point to next observed value. This is time consuming an computationally intensive.

The particle filter uses multi-modal application to simultaneously use one set of particles to

create probabilistic associations to data. Due to this robustness the processing time when

objects was four or greater resulted in a computation time that was nearly half that of the

Kalman filter application. Based on their findings the application of the Kalman filter would

have been best suited for applications only involving a single target while the particle filter

was best overall. Although the focus of this paper largely focuses on the front-end data

association portions it delves into the the robustness characteristic of the particle filter for

real-time processing of multiple objects.

2.6. Performance Comparison of Gaussian-Based Filters Using Information

Measures. Tracking objects through non-linear trajectories causes many problems with

state estimation as with most algorithms a modeling behavior equation needs to be expected

or known. In this paper Vemula [18] uses two di↵erent metrics in order to optimize error

based on algorithm. The first is the Kullback-Liebler KL divergence along with root mean

squared error. The KL divergence is an information metric and is described in equation (13)

. The value of the KL divergence is always positive and represents how much a sampled

distribution, q, diverges from a reference distribution, p. The paper shows how there is a

correlation between lowering the KL and the smaller the RMSE becomes. They do this

dynamically at the expense of computation time to determine the best choice of optimiz-

ing parameters for the unscented Kalman, extended Kalman, and particle filters. In order

to make a representative distribution of the posterior the authors create this by using a

large scale particle filter (10000 particles). This is justified by the general acceptance that
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particle filters overall have the lowest RMSE which means they best estimate the posterior

distribution. This paper was used a reference for output values as they were also looking at

non-linear systems in a continuous context. Based on results shown herein and the values

that the authors stated I was able to conclude that my versions were correctly instantiated

and were reproducible.

2.7. Particle Filters for Positioning, Navigation and Tracking. Di↵erent appli-

cations of Kalman and particle filtering are analyzed in this paper. The authors make an

association in order to reduce the jittering e↵ect that is sometimes needed in the particle

filter. The jittering e↵ect is used when users want to minimize the number of particles used

in order to speed up prediction times. Sometimes during this minimization e↵ort the number

of particles used will not create enough particles to represent the actual sample density or

distribution i.e. the weighting of the particles has many zeros. The jittering e↵ect creates

an intermediate step where the particles are resampled with added noise in order to create

enough particles that have weights greater than zero and have a su�cient number of these

points. Although the authors only utilize the normal Kalman and particle filter they ac-

curately describe the computational complexity which is for the Kalman is on the order of

O(2n3
x

) and the particle filter on the order of O(Nn2
x

) where in these equations n
x

represents

the amount of dimensions in the state space estimate. Based on the notion that n
x

= 4

and N = 500 we should see that the Kalman filter is an estimated 62 times faster than the

particle filter.

3. Methods

3.1. Data Source. Availability of data was a di�cult problem as really the only truly

non-linear source would be from simulation of data but would result in the algorithm con-

taining the function with which the data was created from. Another source that would

have had real world applications would be the tracking of ships through time. This did not

fulfill the non-linear portion and would ultimately not be an adequate representation of a

comparison since the normal Kalman filter would provide the best prediction at the lowest
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computational cost. The search lead me to something that I had seen everyday during the

summer months. That source was how my dogs behaved while at the dog park while retriev-

ing balls. Their pattern was non-linear, their velocity and acceleration were non-constant as

well as if a camera were to capture the movement there would be relativistic e↵ects from the

fixed position.

3.2. Image Processing. In order to extract a usable dataset the method of processing

the images becomes important. Dealing with a single object through a video sequence

requires no data association methods and can easily be done. The increasing complexity

of multiple objects tracking and prediction creates an entirely di↵erent range of problems.

How do you associate a previous data point to a prediction and the next data point? Each

of these scenarios will be discussed in the following sections.

3.2.1. Single Object Tracking. This portion of data extraction was simple since there

was no need to associate previous data with current data so the only aspect discussed in

this section will account for the method in which the image was processed. The following

multiple object tracking section will discuss how data was associated with previous data

(i.e. covariance matrices). A simple yet powerful way to distinguish movement in a video

sequence is to take the absolute di↵erence between two sequential frames. This works well

with registered (still) video. Unregistered video has an added step of feature extraction and

will not be discussed in this document. Taking the absolute di↵erence of frames creates a

ghost image of what has moved between two frames since there will only be a minutia of

movement or di↵erence of all objects.

The di↵erence image as seen above in figure 1 is then further processed in order to

elicit the needed information. This can be done in a myriad of ways so I was interested in

a computationally inexpensive method that found available data. The approach that was

taken was to first threshold the di↵erence image in order to suppress minute changes in

intensities or returns. These di↵erences could be something small such as wind causing the

grass to move and reflect more or less light. Once the thresholded image is created and
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Frame 1 Frame 2 Di↵erence Image

Figure 1. Example of Frame Di↵erencing

the remainder of the image only contains the larger objects that have changed I applied

a black-white conversion of gray values that turned anything gray into white pixels while

the background or non-changing pixels were set to remain black. The remaining black and

white image is then processed to create a blob shape. The processing is required since

some changes from the frame di↵erencing and thresholding could create multiple separate

blobs which would later result in multiple objects being tracked that were actually the same

object. This is done using a varied combination of built in MATLAB functions such as

imdilate, imfill, and bwareaopen. The result of the processing is shown in figure 2 which

illustrates the di↵erenced image with the result having two objects in the frame moving

since the previous frame.

Figure 2. Processed Black and White Image



3. METHODS 9

As can be shown in 2 we can see two distinct objects within the frame. Based solely

on the di↵erenced image the ball being thrown was not entirely noticeable. The way to

distinguish the objects will be discussed in the next section about multi-object tracking.

Since we know that we only want to track the largest moving object in the frame we use the

centroid function built in from the bwlabel command in MATLAB. This function labels all

centroid locations of each unique blob. Since for the single object case we are only interested

in the dog movement as such we identify the largest blob and disregard everything else.

3.2.2. Multi-Object Tracking. Multi-object tracking required another level of data asso-

ciation. This was achieved by first determining if the centroid was in a previous frame. To

do this all previous tracks were searched with then they were compared against the predicted

location for the next frame. If the centroid was located within two standard deviations of the

predicted value then the centroid was associated with the previous covariance matrix and

allowed to continue. If the track was not associated and deemed a new track and the data-

base of tracks would be updated to reflect a new track. The database in this case refers to

a structure element that contains the new measured value, the prediction from the previous

time step, and also the associated covariance matrix.

3.3. Algorithm Implementation. In the literature review section I looked at work

from various authors on prediction theorems such as the Kalman filter and particle filter.

The mathematics involved is discussed in their respective papers on how they work along

with their proofs. This section will discuss the crux of the formulae along with how code

was created in order to discuss specific cases that this paper intends to expound upon.

3.3.1. Kalman Filter. The Kalman filter is a type of discrete state space model. This

follows that the previous states prior to the current state and the next predicted state do

not directly influence the predicted state. The standard formulation for this is

x
t

= g(x
t�1) + u

t

(1)

y
t

= h(x
t

) + v
t

(2)
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x
t

is the unknown state, g(x
t�1) is the state transition function, y

t

are the measurements,

h(x
t

) is the measurement function, and v
t

and u
t

are the expected noise. Since I was working

in a two dimensional space the state transition function took the form as follows.

g(x
t�1) =

2

66666664

1 0 �t 0

0 1 0 �t

0 0 1 0

0 0 0 1

3

77777775

(3)

This linear set of equations relates to the change of position formula represented by

Change of Pos. = v ⇤�t+
1

2
⇤ a ⇤�t2 (4)

g(x
t�1) only takes into account the velocity vector. To help estimate acceleration we fold

this into the u
t

portion of the equation and is represented below by the matrix of the form

u
t

=

2

66666664

1
2�t2

1
2�t2

�t

�t

3

77777775

⇤Noise (5)

h(x
t

) is just a position update this matrix helps to calculate the Kalman gain which is

how incorrect the state update is from the actual measured value. This value helps to try and

reduce the error in the next update through the use of the covariance matrix. The derivations

are left in the paper proposed by Kalman [11]. The covariance matrix is calculated as follows

P = g(x
t�1) ⇤ P ⇤ g(x

t�1)
T (6)

This is the estimated covariance for the next update step and used to estimate the

following location at time t. To estimate how correct the estimate is the Kalman gain is

calculated which is something like an averaging factor that weights the estimate with a vague
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knowledge of what has happened previously from the covariance matrix. This is calculated

as follows

K = P ⇤ h(x
t

)0 ⇤ inv(h(x
t

) ⇤ P ⇤ h(x
t

)0 + noise) (7)

Now we just combine all the equations together and estimate the new point by the

following equation

x
t

= (g(x
t�1) + u

t

) +K ⇤ (PreviousMeasuredV alue� h(x
t

) ⇤ g(x
t�1) + u

t

) (8)

That refers to the code required to make a prediction of the next time step. The limi-

tations of this is that the model assumes linearity and begins to accumulate errors once the

measured values become non-linear. Non-linearity refers to values that cannot be expressed

in a linear form from one time step to the next. These are things like polynomial equations

that model the behavior. The way to better estimate non-linear models is with the extended

Kalman filter.

3.3.2. Extended Kalman Filter. The way in which the extended Kalman filter di↵ers from

the Kalman filter is the state update model that is used as the predictor for the next state.

For the Kalman this model is a linear model which in my case was the change of position

equation from basic physics. The model in the extended Kalman does not need to be linear

but it does require it to be di↵erentiable. This is because the extended Kalman includes a

step that creates another matrix of partial derivatives since the covariance and means of the

update model cannot be applied directly. By using the partial derivatives the calculations

essentially linearize the current estimate to be nearer the mean and covariance.

The implementation for this was bearings only tracking. This uses trigonometric equa-

tions to estimate the position based on some relative point. The Jacobian transition matrix
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is listed below.

H =

2

4 cos(✓̂) 0 sin(✓̂) 0

�sin(✓̂)/r̂ 0 cos(✓̂)/r̂ 0

3

5 (9)

r̂ =
p

x̂2 + ŷ2 (10)

✓̂ = arctan(ŷ/x̂) (11)

3.3.3. Particle Filter. Particle filtering is a multi-step process that is rather computation-

ally intensive and can greatly be influenced by how many particles are used. This filtering

technique is a sample based variant of Bayes filters which is the over arching type of filtering

that contains Kalman filtering. The sampling that is used with particle filtering is to create

enough particles that allow samples to resemble the actual probability density function (pdf)

distribution as the number of samples increases. The way in which the algorithm works is by

creating a random state estimate for the first iteration. This is due to fact that there is no

previous estimations on where the object could be located so it makes a random guess over

the entire frame. Once the first observation is seen by the algorithm there is an importance

weighting performed on the samples. The importance follows that the weights sum to one

and are related to how correctly the new state was guessed. These importance weights are

then passed into the next iteration where they are used to re-draw a new random set of

samples. As the number of iterations increases the importance factors are normalized and

tends to represent the actual posterior.

Since we assume the posterior is Gaussian we can update the next iteration by weighting

the probabilities this is done for each variable and particle. The update step is

P
x

=
e(

�(x̂�x

N

)2

(4)

p
4⇡

(12)

We perform this step for each particle generated and then normalize the probabilities such

that they sum to one. Once we have normalized the probabilities the next step is to redraw
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particles based on this new distribution. These are the particles that will be used in the next

iteration and state update.

3.4. Varied Time. Based on research done with these algorithms there has been little

study into where they begin to breakdown based on limited information. For this portion I

instituted two di↵erent methods for processing. The first was a constant variation in time

which would be similar to a camera or video that streams or captures only a certain frame

rates. Having a steady consistent track is great but does not always represent what data is

actually available. The second variation is when we have inconsistent data. While controlling

the seed numbers for the random number generator and creating a list of frames to skip we

are able to see performance of each algorithm when not all data is continuous or consistent.

3.5. Metrics. Two metrics were chosen on the overall performance of each algorithm.

These metrics are root mean squared error (RMSE) and Kullback-Liebler (KL) divergence.
The KL divergence equation is given below in the multivariate case. The original derivation

and proof for the univariate case is given in their paper. The starting univariate equation is

given by

KL(p||q) =
Z

p(x)log
p(x)

q(x)
dx

= log
�2

�1
+

�1 + (µ1 � µ2)2

2�2
2

� 1

2

(13)

The multivariate extension takes into account that ⌃ represents the covariance matrix

as well as each µ represents the mean of each given distribution.

KL =

Z 
1

2
log

|⌃2|
|⌃1| �

1

2
(x� µ1)

T⌃�1
1 (x� µ1) +

1

2
(x� µ2)

T⌃�1
2 (x� µ2)

�
xp(x)dx

=
1

2
log

|⌃2|
|⌃1| �

1

2
tr
�
E
⇥
(x� µ1)(x� µ1)

T

⇤
⌃�1

1

 
+

1

2
E
⇥
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Figure 3. Representative Posterior Estimate with 15000 Particles

The theory behind this is that given two distributions p and q that are conditional on

the same event space that you can determine how far apart q is from p and give a relative

assessment of how much they di↵er. If q = p then ultimately their divergence will be zero. In

order to obtain the reference distribution I used the theory behind ”Performance Comparison

of Gaussian-Based Filters”[18]. In this paper they make the conjecture that to best estimate

the unknown posterior distribution a Monte Carlo simulation is run with many data points

in order to create a representative posterior. This is run with a particle filter that uses many

particles. Due to the theory with which the particle filter operates as the number of particles

approaches 1 the true posterior distribution is achieved. In order to represent the posterior

Vemula[18] used 10000 particles. For our purposes I ended up using 15000. This allowed for

a more defined multivariate Gaussian distribution that is shown below in figure 3.
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To ensure algorithms were written correctly a comparison between posted results from

Vemula [18] and the outputs of my results should align with some di↵erences but have

similar patterns and values. Based on KL and RMSE values in comparison to those posted

in Vemula [18] the values were deemed acceptable thus ensuring that the di↵erent algorithms

were properly adjusted for di↵erent noise and tuning variables.

4. Results

Based on a�rmation that the algorithms were correctly tuned from a cursory comparison

of published results the next section will display the results for the di↵erent variations of my

application. The continuous case was used as the baseline to ensure a good comparison and

proof of concept against other algorithms. The results for the varied time cases is where the

trade-o↵s and benefits will become present.

4.1. Continuous Data Set. This section is dedicated to the single object continuous

data set. The data set consists of 240 frames which is roughly 10 seconds of video. When

an object is not present it creates a not a number (NaN) value for the centroids command

of the video processing. These values are discarded in order to improve processing. After all

NaN values have been discarded the resulting data set is 218 usable frame. From this data

set the algorithms were run and the following results were seen and were expected for this

case based on claims made in other papers.

4.1.1. KL Divergence. The following sets of figures will display how each algorithm looks

when looking at the histogram of the distributions based on a creation using the multivariate

Gaussian function in MATLAB. The function requires a matrix input of µ
x

and µ
y

as well as

⌃ which represents the means of each as well as the covariance matrices associated with the

distributions. Since there are only two variables in this distribution the covariance matrix is

a 4x4 matrix that is composed as follows

⌃ =

2

4�xx

�
xy

�
xy

�
yy

3

5 (15)
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Figure 4. Representative Posterior Estimate with 15000 Particles

As was stated earlier the posterior distribution was created from a 15000 particle implemen-

tation of a particle filter. This was done because inherently across the board particle filters

produce the lowest RMSE of Gaussian filters. As will be shown later the particle filter in

this instance also produced the lowest RMSE. This is from the estimation of the unknown

posterior distribution since as the amount of particles increase towards infinity the estimated

posterior distribution will approach the actual posterior distribution. For fair representation

each distribution was binned into 12x12 grids and are shown in figures 4, 5, 6, and 7.

Figure 4 shows the representative distribution. The other remaining distributions are

shown as well. Discussed earlier about how KL divergence works we compare the distribu-

tions to assess how closely they measure against the representative sample. Inherently it

would be logical that the particle filter run with 100 particles should match closely with the
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representative distribution. This happened in practice but it was not a zero and the covari-

ance matrices as well as the associated means were di↵erent. Figure 5 shows the distribution

of points for the particle filter. It looks sparse and doesn’t look like it could actually be a

subset of the larger particle filter. This is not the case since the Z axis is what is important

or how likely something is. The distribution for the Kalman depicts how close the spread out

the covariance is meaning the it would have a flatter distribution unlike the particle which

has a tight sharper covariance. The extended Kalman filter has a unique pattern which in

the one dimensional case would seem more of a skewed distribution. The distribution is due

to how the covariance is propagated and it is taking a linear approach to a time segment.



4. RESULTS 18

Figure 5. Posterior Distribution: Particle Filter

Figure 6. Posterior Distribution: Kalman Filter
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Figure 7. Posterior Distribution: Ext. Kalman Filter

Figure 8. KL Divergence
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As can be seen in figure 8 the particle filter has the lowest KL divergence values across the

board. The extended Kalman and Kalman filter have very similar tracks with the extended

Kalman marginally being the better solution.

4.1.2. Root Mean Square Error. The other measure used for a comparison was RMSE to

determine how far o↵ the predictions were from the measured value from the frames.

RMSE
total

=
q
RMSE2

x

+RMSE2
y

(16)
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x

=

r
1

n
⌃(x

predict

� x
meas.

)2 (17)

RMSE
y

=

r
1

n
⌃(y

predict

� y
meas.

)2 (18)

For this measure I looked at both cumulative RMSE as well as how the RMSE was e↵ected

between individual frames. These measurements were used as a comparison to ensure proper

adjustment of relative values and behavior documented in other publishings of these algo-

rithms. As can be confirmed with the cumulative RMSE values figure 9 the particle filter

maintains a lower level of overall error with the extended Kalman coming in just above that.

The normal Kalman filter has a very steady error rate with minor perturbations in the cu-

mulative case. The region of note in the cumulative case is around the 100th frame where

the extended Kalman begins to have less error that the normal Kalman. This is about the

point where the track becomes highly non-linear. The initial high peaks in RMSE in the

particle and extended Kalman are both known behaviors figure 10. Some of that initial error

on the particle filter is because for the first frame it just has to estimate over the entire frame

where it thinks it will be resulting in a spike of error. Once that is corrected it achieves a

more reasonable guess of future points by creating better guesses from a better set of points

with which to choose from. The extended Kalman has an initial error that is relatively high

and is due to the modeling equation since it is trying to model the behavior as non-linear

while the track in equation is actually linear. It take a number of iterations in order for it

to correct itself and once it does has a much lower error rate.
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Figure 9. Cumulative RMSE: Continuous Data Track

Figure 10. Frame by Frame RMSE: Continuous Data Track
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4.2. Continuous-Multiple Time Steps. This section contains the results of predict-

ing how RMSE and KL divergence were e↵ected once the data was allowed to skip various

amounts of time. This accounts for continuous time skips from two to six frames since above

that the trend is rather apparent. The next section contains the results for random time

skips over the video.

4.2.1. KL Divergence: 2 Frame Skip. Using the model distribution which was created

from a 15000 particle filter monte carlo simulation the comparison of posterior estimates.

As can be seen there is little to no di↵erence between the particle filter and the extended

Kalman. The normal Kalman has many di↵erences and as will be shown for the RMSE the

di↵erence is related to the amount of error.

Figure 11. KL Divergence: 2 Frame Skip

4.2.2. Root Mean Square Error: 2 Frame Skip. The expectation for figures 12 and 13

are an increase in cumulative RMSE and frame by frame RMSE. These are both shown

to be true. The gap between the extended Kalman filter and the particle filter greatly

increases as opposed to the gap that was very similar shown in the purely continuous case.

One peculiarity is the correlation between the KL divergence measure and the total RMSE.

Based on the conjecture that if the posterior is adequately represented then the estimate of



4. RESULTS 23

position should be more accurate. The KL divergence is nearly identical for the particle and

extended Kalman filter as shown in figure 11. This could be impart to having an unchanging

tuning variable for the amount of noise expected for the velocity or position. Since I kept

those static from instance to instance it could be that the amount of variability could not

be properly adjusted or in a reasonable amount of time to correct itself.

Figure 12. Cumulative RMSE: 2 Frame Skip

Figure 13. Frame by Frame RMSE: 2 Frame Skip
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4.2.3. KL Divergence: 3 Frame Skip. Processing every third frame produced similar

results as with processing every second frame in terms of KL divergence. The only thing

that threw o↵ results was that the initial values in the covariance matrix of the extended

Kalman filter were nearing zero which caused the matrix to be singular or near singular

when taking the inverse. That accounts for the initial spike in value in figure 14. This is the

reason why there is no cumulative KL metric since it skewed the results.

Figure 14. KL Divergence: 3 Frame Skip

4.2.4. Root Mean Square Error: 3 Frame Skip. The results for measuring every third

frame contrast what was seen in the predictions of every second frame. The KL divergence

is similar though out the entire video disregarding the first value. The supporting evidence

is seen in the RMSE for cumulative and frame to frame. As can be seen in figures 15 and 16

they are close with little to no distinction at which outperforms the other. The only other

discerning di↵erence would be computation workload and that will be discussed later.
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Figure 15. Cumulative RMSE: 3 Frame Skip

Figure 16. Frame by Frame RMSE: 3 Frame Skip
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4.2.5. KL Divergence: 4 Frame Skip. Similar to the position estimate of every third

frame, estimation of every fourth frame created very similar results with the normal Kalman

being relatively out of the picture while the extended Kalman and particle filter have very

close results in regards to KL divergence as shown in figure 17 . This also translates below

when talking about RMSE.

Figure 17. KL Divergence: 4 Frame Skip

4.2.6. Root Mean Square Error: 4 Frame Skip. Mentioned above there is very little dif-

ference when looking at cumulative RMSE. The frame by frame assessment shows that once

the covariance matrix adjusts in the extended Kalman the RMSE becomes small and similar

to the particle filter with an end result of no noticeable di↵erence between the performance

of each algorithm.
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Figure 18. Cumulative RMSE: 4 Frame Skip

Figure 19. Frame by Frame RMSE: 4 Frame Skip
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4.2.7. KL Divergence: 5 Frame Skip. Measurements at every third and fourth frames

produced results that are to be expected where the KL divergence measure translates to

how far o↵ the RMSE ends up being. Once we do measurements at every fifth frame we see

similar results as measuring at every second frame. This is that although the KL divergence

is low the overall RMSE is high.

Figure 20. KL Divergence: 5 Frame Skip

4.2.8. Root Mean Square Error: 5 Frame Skip. Linearization of the track causes the a

small amount of lag in how the algorithm adjusts for error in the covariance matrix. This

is shown in the RMSE as it takes five collections to begin to compensate. This is a known

feature of the extended Kalman filter. There could be ways to reduce the error by actively

adjusting the tuning parameters at the expense of computation time. The result is pretty

definitive as shown in figure 21 that the clear winner is the particle filter.
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Figure 21. Cumulative RMSE: 5 Frame Skip

Figure 22. Frame by Frame RMSE: 5 Frame Skip



4. RESULTS 30

4.2.9. KL Divergence: 6 Frame Skip. Measuring at every sixth frame reproduced similar

results as measuring every fifth frame. The same happened at very seventh and with frame

so we will only show the results for every sixth frame. The only significant di↵erence is how

the correlation between KL and RMSE begin to diverge.

Figure 23. KL Divergence: 6 Frame Skip

4.2.10. Root Mean Square Error: 6 Frame Skip. Similar to the previously shown RMSE

cumulative and frame by frame the amount of di↵erence begins to show how well the particle

filter continues to outperform the other algorithms.
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Figure 24. Cumulative RMSE: 6 Frame Skip

Figure 25. Frame by Frame RMSE: 6 Frame Skip
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4.3. Variable Data Set. This section contains the results from allowing the data to

be manipulated in time. The data was randomly advanced in time using a uniformly draw

number between one and eight. This was to test the robustness of each algorithm and how

the variation in data would e↵ect the prediction.

4.3.1. KL Divergence. The variable data set that was used did not produce great results

since the only relevant metric would be is the cumulative KL divergence. The problem with

this was that for some initial values there would be a singularity or near singularity in the

extended Kalman filter covariance matrix when it was inverted. This skewed the average

since it was such a large number and caused a great increase to the average. For this reason

the average for the 500 samples was left out.

4.3.2. Root Mean Square Error. Comparison of inter-frame errors cannot be represented

since a transition from frame seven to frame nine would be di↵erent from a transition from

six to nine. Due to this realization the average cumulative error was looked at. Although

provided is an example of what type of behavior was viewed for a single instance.
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Figure 26. Frame by FrameRMSE: Variable Data Track

Figure 27. Cumulative RMSE: Variable Data Track
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As can be seen in figures 26 and 27 the same type of pattern emerges where the particle

filter and extended Kalman filter are on par and the particle filter ultimately being better.

The normal Kalman experiences larger error rates and overestimates during the times that

the track becomes more non-linear in nature. Using the time steps that are jumped between

one to eight time steps and taking the average over 500 di↵erent times we can see in table 1.

Normal Klaman Ext. Kalman⇤ Particle
1.4⇥ 105 1.1⇥ 105 9.4⇥ 104

Table 1. Average Cumulative Error

The extended Kalman has an asterisk due to some of the data being miss calculated.

There were terms that caused some of the values to create a singularity in the update matrix

causing the calculations to go either negative (which all values should be strictly positive)

or go into the XX⇥1011 neighborhood. These values were erroneous and when discarded

created a much lower error rate and is thus reflected in the table value. If the erroneous

data was included the average cumulative error was 7.27⇥ 105 which is not entirely too far

o↵ but overall worse than the normal Kalman filter.

5. Discussion

Tracking and prediction of where objects are and where they will be has many applica-

tions outside the context of this paper. There has been work at how well objects are tracked

using di↵erent algorithms but not many tested the robustness of the algorithm. This is a

measure how they perform outside of ideal conditions meaning strictly continuous stream-

ing data. There are other things that increase complexity such as unregistered video but

that was not considered for this paper but could be looked at in the future. What this

paper intended to address was how the algorithms performed when given scenarios such as

inconsistent (variable) data, such as time skips as well as consistent time skips. Looking
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at two metrics of RMSE and KL divergence there were comparisons at how well the poste-

rior was estimated as well as how far from the actual measured value was the estimated value.

Results for the consistent multiple time steps presented very interesting results since the

KL divergence for the extended Kalman and particle filters were very similar but for the

RMSE measurements the results were not always the same. One would think that if the

posterior estimates are similar then the subsequent position estimates will likely fall within

the same amount of error. This proved true for taking measurements of every third and

fourth frames. The cumulative RMSE’s were close and rather indistinguishable but when

applied to more frames they began to diverge in the amount of cumulative error. This is

perhaps due to the the extended Kalman needing better error estimates within the algorithm

since each step that does not have a decent way of correction would cause the error to be

systematic and would correct in the covariance but at a cost.

One to one comparison of the variable time steps would not be possible since each se-

quence of time steps was unique. There was data represented that showed the overall average

cumulative error as well as representative output from just one such sequence. As with much

of the KL calculations the extended Kalman had values that caused singularities within the

calculations creating errors within the data and improper estimates of the locations. When

these erroneous outliers were corrected the results were that the overall best was the particle

filter for overall lowest error rate. The KL divergence was not calculated for this portion as

there is not really a good metric with which to compare. Frame by frame comparison and

how it relates to frame by frame RMSE would be the best but since each sequence is unique

there would not be enough room within this document to show each evaluation.

Based on the research presented above for how di↵erent tracking algorithms handle non-

linear tracks with an emphasis on not having all data available shows the clear leader is

the particle filter. This is shown throughout for variable sequences, time skipping sequences
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and continuous time. The noted downfall is computation time which can be remedied in

di↵erent instances such as parallel processing or brute force with a lot of computing power.

The extended Kalman had similar performance in how well it represented the posterior dis-

tribution. This would have led me to believe the position estimate would be closer to the

measured value which in some sequences proved true and false in other instances. This might

be due to a lack of optimal tuning parameters which at a cost can be determined for each

instance. It would be interesting to look at the RMSE and KL of the frame to frame to see

if the RMSE gets lower when there is a three or four frame time skip. In just about every

aspect the normal Kalman was outperformed except when it came to pure speed. There

were times when the normal could outperform the extended Kalman which could be above

six frame time steps. The extended Kalman is widely used and accepted for how well it

performs in multiple instances and how computationally complex it is. The only downfall is

that there needs to be a model that estimates the track with which to update and predict.

The particle filter as has been stated previously does not require this which is a major ben-

efit. Definitively we can say that if you have data collection in the sweet spot of every third

or fourth time step then there is no real di↵erence in error rates of the extended Kalman

and particle filter. Outside of this sweet spot the particle filter outperforms in the post pro-

cessing aspect. If we were to consider time versus error the extended Kalman would likely

be the better of the three but this would only apply to serial processing of a real-time system.

Future work for development could be done to capitalize on the decrease in computational

complexity between the extended Kalman and particle filter. In the paper by Gustafsson

[6] the complexity of the particle filter based on the parameters given was around 62 times

slower than the Kalman filter. The table below shows the computational complexity of each

algorithm where n
x

is the amount of state variables that are updated at each time step.

Particle Kalman Ext. Kalman
O(Nn2

x

) O(2n3
x

) O(4n3
x

)
8000 128 256

Table 2. Computational Complexity Measures



5. DISCUSSION 37

Based on the complexity measures listed above as the number of parameters increases

there could be a point where they are equivalent but tracking that amount of state parameters

is unlikely. In order to exploit the decrease in complexity it could be feasible to create a

hybrid algorithm that accounts for when the predictions are likely to be indistinguishable.

This would happen when �t was three or four. The switch would be seamless as it would

just reference the last time step and assess the covariance of the previous usage then use

that in its prediction. This algorithm would exploit the intrinsic value of both algorithms

while maintaining the error that would be comparable to running the particle at all times.
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1. First Appendix

temp = 0;

p kal =[];

RMSE kal = 0;

RMSE kal cum = [];

RMSE kal f = [];

for i = 2:dt:240

file = 'dog';

num = num2str(i);

ext = 'jpg';

filename = strcat(file,num,'.',ext);

img = imread(filename);

%imshow(img)

gray stills = rgb2gray(img);

num past = num2str(i-1);

file past = strcat(file,num past,'.',ext);

img past = imread(file past);

gray stills past = rgb2gray(img past);

gray diff = imabsdiff(gray stills past,gray stills);

%imshow(gray diff)

thresh = 0.05;

bw = (gray diff >= thresh

*

255);

bw2 = bwareaopen(bw,20,8);

SE = strel('disk',2,4);

bw3 = imdilate(bw2,SE);

bw3 = imfill(bw3,8,'holes');

L = bwlabel(bw3);

s = regionprops(L, 'Area', 'Centroid');

centroids = nan(1, 2);
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if size(s,1) == 0

else

area vector = [s.Area];

[tmp, idx] = max(area vector);

centroids = s(idx(1)).Centroid;

end

if isnan(centroids) == 1

continue

end

%%

u = 1;

if temp == 0

Q= [centroids(1,1); centroids(1,2); 0; 0]; %initized state--it has

four components: [posX; posY; velX; velY]

Q estimate = Q;

noise mag = .3; %process noise

noise x = 5; %measurement noise in the vertical direction (x axis).

noise y = 5; %measurement noise in the horizontal direction (y axis).

noise = [noise x 0; 0 noise y];

proc noise = [dtˆ4/4 0 dtˆ3/2 0; ...

0 dtˆ4/4 0 dtˆ3/2; ...

dtˆ3/2 0 dtˆ2 0; ...

0 dtˆ3/2 0 dtˆ2].

*

noise magˆ2; % Convert the process noise (stdv)

into covariance matrix

P = proc noise; % covariance matrix

A = [1 0 dt 0; 0 1 0 dt; 0 0 1 0; 0 0 0 1]; %state update matrice

B = [(dtˆ2/2); (dtˆ2/2); dt; dt];

% B = 0;

C = [1 0 0 0; 0 1 0 0];

Q loc estimate = []; % position estimate

vel estimate = []; % velocity estimate
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P estimate = P;

predic state = [];

predic var = [];

temp = 1;

end

Q loc meas = [centroids(1,1); centroids(1,2)];

Q estimate = A

*

Q estimate + B

*

u;

predic state = [predic state, Q estimate(:,1)] ;

P = A

*

P

*

A' + proc noise;

predic var = [predic var; P] ;

K = P

*

C'

*

inv(C

*

P

*

C'+noise);

Q loc estimate = [Q loc estimate, Q estimate(1:2)];

vel estimate = [vel estimate, Q estimate(3:4)];

kal x loc = Q estimate(1);

kal y loc = Q estimate(2);

% Update the state estimate.

if ~isnan(Q loc meas)

Q estimate = Q estimate + K

*

(Q loc meas - C

*

Q estimate);

end

P = (eye(4)-K

*

C)

*

P;

p kal = cat(3,p kal, P(1:2,1:2));

RMSE kal x = (centroids(1,1)-kal x loc)ˆ2;

RMSE kal y = (centroids(1,2)-kal y loc)ˆ2;

RMSE kal = RMSE kal + sqrt(RMSE kal x + RMSE kal y);

RMSE kal cum = [RMSE kal cum;RMSE kal];

RMSE kal frame = sqrt(RMSE kal x + RMSE kal y);

RMSE kal f = [RMSE kal f;RMSE kal frame];

end
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