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Abstract

Hyperpolarized noble gas magnetic resonance imaging (MRI) provides a unique

view of the airspaces in human lungs. However, images created with this tech-

nique have a fundamental resolution limit due in part to the gas diffusion within

the air spaces during the image acquisition. The process of diffusion can be used to

provide a method for extracting structural information below the resolution limit,

via short-time diffusion MR. In free space, the area a gas particle explores in a

given amount of time (the diffusion coefficient) is a constant that does not depend

on the duration over which the measurement is made. In a highly restrictive area

like the lung airspaces, the diffusion coefficient varies greatly with the duration of

the measurement.

For very short times measurement times, the diffusion coefficient approaches

the free space value, while at longer measurement times the surrounding walls

prevent the particle from traveling. This time dependence is related to the surface

to volume ratio of the confining space.

The goal of this work was to develop a method of making diffusion-weighted

measurements at diffusion times less than∼ 1 ms to detect this time dependence in

restrictive environments such as the human lung. In order to make measurements

at these short times, we turned to an MRI technique known as Steady State Free

Precession (SSFP). SSFP pulse sequences are coherent, which means the transverse

magnetization is not zero at the application of the next RF pulse. An advantage of



iii

using an SSFP pulse sequence is that it produces a very high signal level on which

to measure the small diffusion attenuation imparted by short-time measurements.

We developed several modifications to an SSFP pulse sequence which include

diffusion sensitization, and investigated the behavior of each of these methods

through the use of a magnetization simulation. We made global apparent diffu-

sion coefficient (ADC) measurements, as well as created images with the resulting

pulse sequences. In the global version, we were able to make ADC measurements

over a range of diffusion times from 300-800 µs in glass-bead phantoms and fit

the time-dependent ADC to extract the packing volume fraction φ for each of the

phantoms. Multiple diffusion-time global ADC measurements made in human

subjects highlighted the differences between healthy and emphysmatic lungs. In

the imaging experiments, we generated ADC maps at a diffusion time of 500 µs in

several human subjects.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a method of body imaging that was initially

demonstrated by Paul Lauterbur in 1973 [1]; less than twenty years later it had be-

come an essential and nearly ubiquitous medical technology. Magnetic resonance

(MR) images are created by combining nuclear magnetic resonance (NMR) with

magnetic field gradients which locally manipulate the precession frequencies of

particles with spin in an external magnetic field. Lauterbur and Peter Mansfield

shared a Nobel Prize in 2003 for their seminal work developing the basic tech-

niques of MRI, and the field continues to inspire research and development today.

The advancement of MRI techniques provides an opportunity to contribute signif-

icantly to many aspects of human biology, from the basic understanding of how

the body functions to the diagnosis and treatment of disease.

The main application of MRI is imaging hydrogen nuclei (1H), present in the

body in large numbers in the forms of water and fat. The hydrogen nucleus con-

sists of a single proton, which has an intrinsic spin which gives rise to a magnetic

moment. The magnetic moment will tend to align and precess in the presence of

external magnetic fields. By manipulating the size and direction of the external

field through the use of field gradients and transverse resonant fields, images of
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various tissues in the body are made through a process discussed in Chapter 2.

The degree to which the nuclear spins of an ensemble are aligned with an ex-

ternal field is known as polarization. For a spin-1/2 particle like the 1H nucleus,

there are only two possible eigenstates in the presence of a magnetic field, aligned

and anti-aligned. Polarization P is defined as the asymmetry of the populations of

the states:

P =
|N↑ − N↓|
|N↑ + N↓|

, (1.1)

where N↑ represents the number of particles in the aligned state and N↓ is the

number of particles in the anti-aligned state.

At thermal equilibrium, the number of spins in each state Ni at a given temper-

ature T is determined by the Boltzmann distribution. The energy of those states Ei

is related to the field strength B and the gyromagnetic ratio of the particle γ. The

thermal equilibrium polarization, Pthermal for an ensemble of N particles is calcu-

lated as follows:

Ni

N
=

gie
−Ei
κBT

Z(T)
, Z(T) = ∑

i
, gie

−Ei
κBT , N = ∑

i
Ni, Ei = h̄γB, (1.2)

Pthermal = tanh
h̄γB
2κBT

, (1.3)

where gi is the degeneracy of the state with energy Ei, h̄ = 1.05x10−34 J · s is

Planck’s constant, and κB = 1.38x10−23 J/K is the Boltzmann constant. For hy-

drogen nuclei, γ = 2π ∗ 42.6 MHz/T. In an external field of B = 1.5 T and

body temperature of T = 37 C, Pthermal = 4.9x10−6. This small net alignment

results in a measurable signal due to the large 1H density found in the body,

∼ 90, 000 mole/cm3.

MRI is a useful tool for imaging a variety of areas in the body including skele-
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tal muscle, joints, and nearly every internal organ. Lung imaging however, has

provided a challenge for MRI due to the sparsity of hydrogen nuclei in the lungs.

The field of hyperpolarized gas imaging was created in 1994 to address this chal-

lenge [2]. The process involves imaging the airspaces in the lung after the subject

inhales a noble gas that has been polarized to a level many orders of magnitude

larger than the thermal equilibrium value. Helium-3 and xenon-129 both have a

nuclear spin of 1/2, and are the most common gases used in hyperpolarized gas

MR. In order to generate a measurable signal, the gas must be prepared with a

polarization approaching unity (Pgas → 1) to compensate for the reduced particle

density of the gas (∼ 50 mole/cm3). The process of producing helium-3 with such

a large polarization is the subject of Chapter 3. Hyperpolarized gas MRI provides a

unique view of the lung, offering both structural and functional information. The

images produced with this technique have been shown to be useful tools in as-

sessing various forms of lung disease such as asthma [3, 4], cystic fibrosis [5], and

chronic obstructive pulmonary disease (COPD) [6, 7].

Prior to the development of hyperpolarized gas MRI the primary tools for

studying lung disease were pulmonary function tests, X-ray computed tomog-

raphy (CT), and lung histology. Each of these methods has drawbacks which

limit their ability to characterize disease processes. The most common pulmonary

function test is spirometry, the process of characterizing ventilatory lung function

based on air volume and flow during inhalation and exhalation. A spirometry test

provides no regional information, and is generally not sensitive to small changes

in lung structure. CT scans provide detailed, high-resolution images of the lung

tissue, but generally provide structural rather than functional information. The

radiation dose associated with each CT scan also limits the use of CT in long-term

studies. Histology is the process of taking thin slices of tissue samples and exam-
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ining them on microscopic slides. These slides can be evaluated using stereolog-

ical methods for quantitative parameters such the mean chord length, which in

the lung can be converted to the surface-to-volume ratio of the alveoli. The ma-

jor drawback of using lung histology to characterize lung disease is the invasive

nature of sample collection. Histology is a common tool when studying animal

models of lung disease, but is significantly less useful in human research.

Hyperpolarized gas MRI does not share any of these drawbacks, and has the

potential to become a standard measure of lung disease characterization. Lung

imaging with hyperpolarized gas MRI can provide regional information about

lung function and structure, with a great potential for use in long-term research

studies. However the gases and technologies required for imaging are not cur-

rently well disseminated or optimized for wide-spread use. Achieving the goal of

establishing hyperpolarized gas MRI as a key tool in lung disease assessment de-

pends on further optimization and development, which are the underlying goals

of this work.

An area where the benefits of hyperpolarized gas MR can contribute signif-

icantly is in diagnosing and monitoring chronic obstructive pulmonary disease

(COPD). COPD is responsible for 2-3 million deaths worldwide each year [8], and

is projected to be the third leading cause of death in the US by 2020 [9]. Patients

with COPD are primarily smokers, although not all smokers develop the disease.

COPD has two main components which can present jointly or independently, air-

flow limitation (chronic bronchitis) and tissue destruction (emphysema). The MRI

techniques developed in this thesis are primarily aimed at studying emphysema.

Emphysema progresses by destroying alveolar walls, which change both the

structure and performance of the lungs. Healthy lungs consist of many alveolar

sacs of about ∼ 200-300 µm diameter [10]. As the disease progresses, the walls be-
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tween the alveoli are destroyed which reduces the surface area of lung tissue and

decreases the capacity for gas exchange. Currently, emphysema is categorized by

a pulmonary function test [11], but this gives no regional information about the

disease. There is usually considerable tissue destruction before lung function suf-

fers to the point of diagnosis. CT imaging can provide regional information about

destruction through a reduction in tissue density, however the radiation dose re-

quired means that it is not a practical alternative to pulmonary function tests for

long-term studies of emphysema.

There is currently no cure for emphysema, only treatments to manage the symp-

toms. Future drug treatment developments depend on the ability to assess the ef-

fectiveness of treatments. Hyperpolarized gas MRI has the potential to provide a

tool for frequently assessing disease characteristics without contributing ill-effects

(such as radiation dose) from the measurement technique.

While lung airspace images produced by hyperpolarized gas MRI (often re-

ferred to as ventilation images) are useful for characterizing many aspects of lung

disease, they are unable to reach the spatial resolution required to visualize the

effects of emphysema on alveolar walls. The minimum resolution in a ventilation

MR image is limited by several factors, such as the size of field gradients that can

be generated by the MRI scanner and gas diffusion during the image acquisition.

Because the gas particles are continually moving while being imaged, they cannot

be localized to an region smaller than the distance they have traveled. The resolu-

tion limit due to gas diffusion over a typical hyperpolarized gas MR acquisition is

∼ 1mm. This distance is several times larger than an alveolor diameter, and many

times larger than the thickness of the alveolor walls themselves (∼ 10µm [12]).

The diffusion process describes how particles of a gas or liquid move through

a fluid over time. Particles undergo Brownian motion in which they randomly
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Species D0 (pure) D0 (in air)
3He 1.9 cm2/s 0.88 cm2/s

129Xe 0.06 cm2/s 0.14 cm2/s
H2O 2.3 ∗ 10−5 cm2/s –

Table 1.1: Free diffusion coefficients of common MR nuclei.

explore the medium. Diffusivity D(t) is defined as the mean-squared displacement

of a particle over a given period of time t:

D(t) ≡ 〈[r(t)− r(0)]2〉
2dt

, (1.4)

d = 1, 2, 3 for 1D, 2D, 3D diffusion,

where r(t) is the particle location. For particles diffusing in free space, D(t) = D0,

the free diffusion coefficient. D0 is an intrinsic time-independent quantity that is

characteristic of specific partial pressures and mixtures of gases. In Table 1.1, the

free diffusivities are listed for the two most common hyperpolarized imaging gases

helium-3 and xenon-129, as well as for water. The gas particles diffuse much more

quickly than the liquid particles.

For particles diffusing in the empty spaces of a porous medium, the diffusive

motion is restricted not only by other freely diffusing particles, but also by the

walls of the pore space. In this situation, referred to as restricted diffusion, the

diffusivity is time-dependent, and decreases as a function of measurement time t.

Diffusion-weighted MRI is a technique that exploits particle movement dur-

ing the imaging acquisition to produce image contrast. As will be explained in

Chapter 2, the contrast can be manipulated to extract a measurement of diffusiv-

ity. When applied to inhaled hyperpolarized gases, diffusion-weighted MRI can be

used to reveal details about the area in which the particles are diffusing (the alve-

oli), providing structural information below the pixel resolution limit of the raw
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images. When diffusivity is measured in the body by MRI, the values are referred

to as apparent diffusion coefficients, or ADCs. This distinction is made because

ADC values generally have some residual dependence on measurement parame-

ters, whereas the true diffusivity is an intrinsic property of the diffusing particles

and the containing space.

The length scale being probed by a diffusion measurement is given by the mea-

surement time and the diffusivity, obtained by rearranging Equation 1.4:

∆r =
√

2dDt . (1.5)

When diffusing particles are placed in a restrictive space, the mean-squared dis-

placement no longer increases in proportion to measurement time, which results

in diffusivity D(t) that is lower than the free diffusion coefficient D0 and decreases

with measurement time. The degree to which the particles are confined will deter-

mine how much lower than D0 the diffusivity is and how quickly it decreases with

time. However if the diffusivity of confined particles is measured at short diffusion

times, i.e. before most particles have traveled far enough to contact a wall, then the

value measured would be very close to the free diffusion coefficient (D(0) = D0).

This dependency on measurement time is essential to our measurement technique,

which will be detailed in Chapters 2 and 4.

There are many examples in the literature of hyperpolarized gas diffusion-

weighted MRI in which the ADC is measured in the lung using diffusion times

of t ∼ 1-2 ms [13–18]. Assuming three-dimensional diffusion and a diffusivity in

healthy lungs of D ∼ 0.27 cm2/s [18], we can use Equation 1.5 to calculate the

length scale that diffusivity measurements at t = 1-2 ms are sensitive to:

∆r =
√

2dDt = 400-570 µm, (1.6)
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which is larger than the alveolar size of 200-300 µm.

There is significant value in developing a diffusion-weighted MR technique

that is sensitive to length scales closer to alveolar size, as it would potentially be

more sensitive to the early stages of lung tissue destruction caused by emphy-

sema. The goal of this thesis is to develop a method of making hyperpolarized gas

diffusion MR measurements at shorter diffusion times such that the length scale

probed approaches the alveolar length scale. The methods we developed to make

diffusion-weighted measurements at short diffusion times is described in Chap-

ter 4. The key feature of our basic strategy is an MR pulse sequence technique

known as steady state free precession (SSFP). SSFP is a class of pulse sequences

that uses the rapid application of RF pulses to generate a large coherent MR signal.

A diffusion-weighted SSFP MR pulse sequence was used to make global (non-

imaging) ADC measurements of hyperpolarized helium-3 in structured glass cells

and human subjects, and these results are presented in Chapter 5. In Chapter 6,

an imaging version of the pulse sequence was used to create ADC maps in human

subjects at a diffusion time of t = 500 µs, reducing our length scale sensitivity to

∆r ≈ 280 µm.



Chapter 2

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a technique which combines nuclear mag-

netic resonance (NMR) with magnetic field gradients to produce spin-density im-

ages [1]. When imaging the human body, the most common object of MRI is the

hydrogen nucleus (1H) which is primarily present in the body in the forms of wa-

ter or fat. The high density of hydrogen nuclei (∼ 90, 000 mole/cm3) creates a

large NMR signal from the thermal equilibrium polarization generated by the MRI

scanner’s main magnetic field, which for the work in this thesis was primarily at

B0 = 1.5 T. Areas in the body that have a lower density of water or fat, such as

the lungs, are difficult to image with MRI. Hyperpolarized gas MR is a field which

has emerged to address this problem by filling the lungs with a mixture of air and

a pre-polarized noble gas (typically helium-3 or xenon-129) which can be imaged.

In this chapter I describe how magnetic resonance images are made, and how

they can be used to study lung disease such as emphysema. First, I discuss how

particles with spin behave in the presence of a static, uniform magnetic field. Sec-

tion 2.2 outlines how the application of resonant magnetic fields leads to NMR,

followed by how the addition of magnetic field gradients leads to imaging in Sec-

tion 2.3. In Section 2.4 I discuss the changes required for adapting MRI from the de-
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tection of thermally-polarized hydrogen nuclei to the detection of hyperpolarized

gases in the lung. The method of incorporating diffusion sensitization into MR is

described in Section 2.5.

2.1 Spins in a Magnetic Field

Hydrogen nuclei and other targets of NMR have a non-zero spin
−→
S which causes

them to have an intrinsic magnetic moment,

−→µ = γ
−→
S , (2.1)

where γ is the particle’s gyromagnetic ratio. In the presence of an external mag-

netic field, the classical description of the spin’s behavior is that it will tend to align

with the direction of the field and precess around it when not perfectly aligned

(Figure 2.1a).

In the quantum description, the quantization of spin results in a set of eigen-

states mS which have discrete directions of alignment. In the case of spin S = 1
2

particles like the hydrogen nucleus, there are only two eigenstates of the spin mag-

netic moment, mS = ±1
2 (Figure 2.1b).

The quantum expectation value of the magnetic moment is analogous to the

classical magnetization and is a superposition of the eigenstates. The expectation

value is given by:

〈Ψ|−→µ (t)|Ψ〉, (2.2)

where |Ψ〉 is the wavefunction of the spin 1/2 system,

Ψ(t) = ∑
m=±1/2

cmΨme−
i
h̄ Emt . (2.3)
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(a) Classical mag-
netic particle

(b) Quantum spin
eigenstates

Figure 2.1: A spin in a magnetic field B0.

The Ψm are the vector eigenstates, and the complex coefficients cm are determined

by initial conditions,

c±1/2 = a±eiα± . (2.4)

The coefficients satisfy the normalization condition:

∑
m
|cm|2 = 1 . (2.5)

In the presence of an external field
−→
B = B0ẑ, the energy of each state is given

by:

E = −−→µ · −→B = −h̄γmzB0, (2.6)

where h̄ is Planck’s constant and mz = ±1
2 is the component of spin along the

ẑ-direction. The energy required to transition between the two states is:

E1 − E2 = ∆E = ±h̄γB0 = ±h̄ω0, (2.7)

where ω0 is known as the Larmor frequency, which is the precession frequency of

the classical magnetization.
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The correspondence between the classical and the quantum mechanical pic-

tures can be further appreciated by considering the component of the magnetic

moment that is transverse to the applied field. When determining the expec-

tation value of a spin 1/2 system in the basis of the eigenstates of Sz, the spin

operator
−→
S can be mathematically represented by the Pauli spin matrices,

−→
S =

h̄
2 (σx x̂ + σyŷ + σzẑ):

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (2.8)

The expectation value of µx(t) is given by:

〈Ψ|µx(t)|Ψ〉 = ∑
m

∑
m′

c∗m′Ψ
†
m′γ

h̄
2

σxcmΨme
i
h̄ (Em′−Em)t (2.9)

Only the cross-terms survive due to the orthonormality of the eigenstates.

〈µx(t)〉 =
h̄γ

2
(c∗−1/2c1/2eiω0t + c∗1/2c−1/2e−iω0t) (2.10)

Substituting in the complex representation of the cm:

〈µx(t)〉 =
h̄γ

2
(a−a+e−i(α−−α+−ω0t) + a+a−ei(α−−α+−ω0t)) (2.11)

=
h̄γ

2
a−a+(e−i(α−−α+−ω0t)ei(α−−α+−ω0t)) (2.12)

= h̄γa−a+ cos (α− − α+ −ω0t) . (2.13)

From the normalization condition of the cm, we have:

1 = |a2
+ + a2

−| . (2.14)
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This condition can be satisfied by:

a+ = cos (Θ/2) α− = sin (Θ/2), (2.15)

where the significance of the angle Θ will be explained later. We substitute the a±

into the solution for 〈µx(t)〉,

〈µx(t)〉 = h̄γ cos (Θ/2) sin (Θ/2) cos (α− − α+ −ω0t) (2.16)

=
h̄
2

γ sin Θ cos (α− − α+ −ω0t) . (2.17)

Substituting in φ0 ≡ α− − α+ into Equation 2.17 we have:

〈µx(t)〉 =
h̄
2

γ sin Θ cos (φ0 −ω0t) . (2.18)

The solutions for 〈µy(t)〉 and 〈µz(t)〉 are:

〈µy(t)〉 =
h̄
2

γ sin Θ sin (φ0 −ω0t), (2.19)

〈µz(t)〉 =
γh̄
2

cos Θ . (2.20)

The expectation value of the magnetic moment 〈Ψ|−→µ (t)|Ψ〉 in the presence of

a constant external magnetic field in ẑ-direction is a vector tipped by an angle Θ

which precesses around the field at the frequency ω0. Θ is determined by the

relative weighting of the two eigenstates, and φ0 represents an initial angle in the

x̂-ŷ plane. The solution for the quantum expectation value of the magnetic moment

is consistent with the classical description of a spin precessing around the external

field at ω0. In the classical picture, the angle Θ represents the angle between the

spin vector and the external field.
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Larmor precession frequencies for hydrogen nuclei and the two noble gases

commonly used for hyperpolarized gas MRI can be found in Table 2.1 for MRI

scanner main field values of 1.5 T and 3 T.

Nuclei γ/2π f0 = ω0
2π (1.5T) f0 = ω0

2π (3T)
1H 42.576 MHz/T 63.67 MHz 123.19 MHz

3He −32.43 MHz/T 48.50 MHz 93.83 MHz
129Xe −11.78 MHz/T 17.62 MHz 34.08 MHz

Table 2.1: Resonant frequencies for MR nuclei.

2.2 Nuclear Magnetic Resonance

(a) Application of transverse field. (b) Decay toward equilibrium.

Figure 2.2: Nuclear magnetic resonance: (a) A transverse field B1(ω0, t) induces
precession around the effective field, the combination of B0 and B1. (b) After B1 is
removed, the spin continues to precess as it decays back to the equilibrium orien-
tation.

In nuclear magnetic resonance, the alignment direction of the magnetic mo-

ment with respect to the main magnetic field can be altered by the application
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of an additional resonant frequency (RF) magnetic field. In the classical picture

shown in Figure 2.2, a short pulse of perpendicular magnetic field B1(ω0, t) is ap-

plied. The spin will precess about the new effective field, the combination of the

static B0 and the resonant B1 and thus rotate the spin away from the main exter-

nal field into the transverse plane by an angle θ, referred to as the flip angle. The

duration and amplitude of the transverse RF field determine θ.

In the quantum description, the resonant field drives transitions between spin

eigenstates in the particles and has the net effect of altering the relative weighting

of the states, thereby changing the expectation value of the magnetic moment. In

the presence of a transverse RF field,
−→
B Trans(t) = B1(cos ω0tx̂ + sin ω0tŷ), the spin

Hamiltonian becomes:

H(t) = −−→µ · −→B Total(t) = −
γh̄
2
(B1σx cos ω0t + B1σy sin ω0t + B0σz) . (2.21)

The wavefunction for this system is given by:

Ψ(t) = ∑
m=±1/2

cm(t)Ψme−
i
h̄ Emt . (2.22)

The wave variables cm(t) satisfy the Schrödinger equation:

dc−1/2

dt
=

i
2

ω0c+1/2, (2.23)

with solutions as follows:

c+1/2 = a sin
ω0t

2
+ b cos

ω0t
2

(2.24)

c−1/2 = −ib sin
ω0t

2
+ ia cos

ω0t
2

, (2.25)
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where a and b are arbitrary constants. The normalization condition of:

1 = (|a|2 + |b|2), (2.26)

allows a and b to be written as:

a = cos(Θ/2)e−iα, b = sin(Θ/2)e−iφ (2.27)

where Θ, α, and φ are determined by initial conditions.

The eigenstates for the Hamiltonian are used to calculate a new expectation

value for the magnetic moment 〈−→µ (t)〉. The behavior of the spin in response to

the transverse field can be derived more easily in a reference frame rotating about

the ẑ axis at the resonant frequency ω0 pictured in Figure 2.3. The rotating frame

of reference is often denoted by x̂′-ŷ′. In this frame, the magnetic moment and

transverse RF field are constant in time. The spin matrices translate between the

rotating frame and the laboratory frame as follows:

σx′ = cos ω0tσx − sin ω0tσy, σy′ = sin ω0tσx + cos ω0tσy . (2.28)

We can solve for the new expectation value of µx′ ,

〈Ψ|µ′x(t)|Ψ〉 = ∑
m

∑
m′

c∗m′Ψ
†
m′γ

h̄
2

σx′cmΨme
i
h̄ (Em′−Em)t . (2.29)

Substituting in the values of the cm from Equations 2.25 and 2.27 we have:

〈µx′(t)〉 =
γh̄
2

sin Θ cos (α− φ− π/2), (2.30)

where Θ can be thought of as the initial polar angle and Φ ≡ (α− φ− π/2) the
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Figure 2.3: A reference frame which is rotating at the resonant frequency ω0 with
respect to the laboratory.

initial azimuthal angle. The values of 〈µy′(t)〉 and 〈µz(t)〉 are as follows:

〈µy′(t)〉 =
γh̄
2

cos Θ sin ω0t + sin Θ sin Φ cos ω0t, (2.31)

〈µz(t)〉 =
γh̄
2

cos Θ cos ω0t− sin Θ sin Φ sin ω0t . (2.32)

In the presence of a transverse field, the magnetic moment expectation value has a

constant component in the x̂′ direction, and is precessing about that axis at ω0. The

classical picture of a spin tipped by the angle θ = ω0t is preserved in the quantum

formalism. In practice the flip angle θ is specified for a given application, and the

RF pulse strength and duration are calculated based on the particular system being

used for the experiment.

The connection between the quantum mechanical expectation value of the mag-

netic moment and the classical magnetization vector allows for consideration of

the latter to be generally sufficient to describe the behavior of the system. For the

remainder of the discussion, I will refer to a spin’s (or collection of spins’) magne-
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tization
−→
M, rather than the quantum magnetic moment. For spin 1/2 particles, the

two quantities are related by:

Mi(t) = NPµi(t), (2.33)

where N is the number of particles, and P is the ensemble polarization. The sig-

nal S(t) measured by NMR is proportional to the magnetization in the transverse

plane:

S(t) ∝ MT(t) = Mx(t) + iMy(t) . (2.34)

After the RF pulse ends, the magnetization precesses around the main field as

it decays back to the equilibrium alignment. This decay process is characterized

by two time constants T1 and T2, listed in Table 2.2 for hydrogen nuclei in various

tissues as well as helium-3 and xenon-129 [19–22]. The magnetization in the ẑ

direction Mz(t) relaxes towards the Boltzmann thermal equilibrium value M0 with

a time constant known as T1:

∂Mz

∂t
=

M0 −Mz

T1
. (2.35)

The longitudinal magnetization is given by:

Mz(t) = Mz(0)e
− t

T1 + M0(1− e−
t

T1 ) . (2.36)

The precession and decay are measured in the transverse plane, with the signal

referred to here as a free induction decay (FID). In the x̂-ŷ plane, the magnetiza-

tion components Mx(t) and My(t) relax toward equilibrium (which in this plane

is zero) with a time constant known as T2. However given an ensemble of spins,

the detected signal goes to zero faster than the individual spins’ transverse mag-
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netizations. This signal loss is primarily due to random small magnetic field inho-

mogeneities,
−→
B (−→r ) = (B0 ± ε(−→r ))ẑ, which cause the spins to accumulate phase

differences as they precess at slightly different frequencies. The phase differences

result in a diminishing vector sum, which goes to zero faster than T2 as the spins

"fan out" as shown in Figure 2.4a. Spins which precess at ω0 = γB0 are referred to

as on-resonance, whereas spins with either a higher or lower precession frequency

are known as off-resonant spins.

(a) Phase Accumulation (b) Phase Reversal

Figure 2.4: Signal evolution due to magnetic field inhomogeneities. In the rotat-
ing frame, on-resonance spins are stationary, while spins with higher (lower) res-
onant frequencies precess counter-clockwise (clockwise). (a) Magnetic field inho-
mogeneities result in a variety of precession frequencies in the sample. The net sig-
nal is a coherent sum of all of the transverse magnetization vectors, which is lower
than the sum of the individual magnitudes. (b) The spins from (a) are shown im-
mediately after an RF pulse which has induced 180◦ rotation about the ŷ′ axis. The
accumulated phase of each spin has been reversed, and they continue to evolve
with the same frequency offset.

It is a convenient simplification to consider the net transverse magnetization

evolution as an exponential decay with a time constant of T∗2 , but the true temporal

behavior can be much more complicated [23]. Under the assumption of exponen-
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tial decay, we can solve for Mx(t) and My(t) using:

∂Mx

∂t
= ω0My −

Mx

T∗2
, (2.37)

∂My

∂t
= ω0Mx −

My

T∗2
. (2.38)

The x̂ and ŷ components of
−→
M(t) are:

Mx(t) = e
− t

T∗2 (Mx(0) cos ω0t + My(0) sin ω0t), (2.39)

My(t) = e
− t

T∗2 (My(0) cos ω0t−Mx(0) sin ω0t), (2.40)

and the total transverse component is given by:

MT(t) = Mx(t) + iMy(t), (2.41)

MT(t) = MT(0)e
−(iω0+

1
T∗2

)t
. (2.42)

If the magnetic field inhomogeneities which cause dephasing are constant in

time, the net signal decay due to loss of coherence can be reversed by applying

an additional RF pulse of flip angle 180◦ and waiting an appropriate amount of

time. Figure 2.4b shows the state of the spins from Figure 2.4a immediately af-

ter a 180◦ pulse about the ŷ′ axis. The phases of the spins are reversed, but they

continue to evolve with their previous precession frequencies. The phase accumu-

lation “rewinds”, and the net signal recovers to the level that each spin has lost

due to the T2 time constant. Figure 2.5 graphs the RF excitation on the top graph,

and the measured transverse signal on the bottom. The oscillating signal measured

in the lab frame (blue dotted line) and the demodulated signal corresponding to

the rotating frame magnetization (blue solid line) demonstrate the signal reduction
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due to off-resonant spins. At t = TE/2 the refocusing RF pulse is applied, and the

net signal begins to increase. The red line shows the T2-decay curve, which the

measured signal reaches at t = TE, the so-called echo time. The signal peak at

t = TE is referred to as a spin echo [24]. The time constant of the reversible portion

of the decay is often referred to as T2’. The relation between the transverse time

constants is:
1

T∗2
=

1
T2

+
1
T′2

. (2.43)

Spin-echo pulse sequences with 180◦ refocusing-RF pulses are not commonly used

with hyperpolarized media, therefore the values listed in Table 2.2 for helium and

xenon are measurements of T∗2 , not T2. However, RF pulses with flip angles less

than 180◦ can generate partial refocusing effects. The partial refocusing of off-

resonant phase accumulation plays an important role in steady state free preces-

sion (SSFP) signal dynamics which are discussed in Chapter 4.

Tissue T1(1.5 T) T2(1.5 T) T1(3 T) T2(3 T)
1H in muscle 1000 ms 45 ms 1400 ms 50 ms

Fat 290 ms 160 ms 360 ms 130 ms
Tissue T1(1.5 T) T∗2 (1.5 T) T1(3 T) T∗2 (3 T)

3He in lung 20 s 28 ms – 14 ms
129Xe in lung 30 s 50 ms – 27 ms

Table 2.2: Time constants for common MR tissues.

We have shown that the presence of random magnetic field inhomogeneities

can result in a reduction of signal coherence in the NMR measurement. However,

systematic magnetic field variations such as a linear field gradient would lead to

systematic precession frequency differences. The next section details how applied

magnetic field gradients can be used to localize spins through the resulting inter-

ference patterns and produce magnetic resonance images.
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Figure 2.5: Transverse magnetization evolution to produce a spin echo. The signal
is measured at the echo time t = TE, and the 180◦ pulse is applied at t = TE/2. The
red dashed line shows the T2 decay rate, the dashed blue line shows the laboratory
signal, and the solid blue line is the “rotating frame” or demodulated signal.
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2.3 Imaging

In NMR, the precession frequency of nuclear spins depends on the applied mag-

netic field. By adding a magnetic field gradient
−→
G (−→r , t) to the main field, the

spin’s frequency can be used to identify its location along the gradient direction.

The added magnetic field is in the same direction as the main field (ẑ in our case),

but the size of the field varies linearly with position along the gradient axis. For a

time-dependent gradient along the x̂ direction, the total applied field is given by:

−→
B (x, t) = (B0 + Gx(t) ∗ x)ẑ, (2.44)

where here Gx(t) =
∂Bz(t)

∂x is the magnetic field gradient in the x̂ direction.

(a) Magnetic field as a function of position. (b) Phase of spins.

Figure 2.6: Phase dispersion and precession frequency due to a magnetic field gra-
dient. The gradient G(x) alters the holding field value experienced by the spins
based on their x̂ location to be either greater than or less than B0, which leads to a
precession frequency greater than or less than ω0.

Across the sample along the gradient axis, the magnetic field will vary from

less than B0 to greater than B0, as shown in Figure 2.6a. The spins at the different
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locations precess at different frequencies (Figure 2.6b). When the signal is mea-

sured (and the ω0 component factored out), it consists of components at each of

the different frequencies:

S(t) =
∫

M(x)e−iγGxtdx, (2.45)

where M(x) is the position-dependent magnetization. The amplitude of a partic-

ular component frequency is proportional to the density of spins at the location

which corresponds to that frequency, and this amplitude can be recovered by tak-

ing the Fourier transform of the acquired signal. It is convenient to replace time as

the Fourier variable linked to position with the quantity:

k ≡ γ

2π

∫ t

0
G(t′)dt′ . (2.46)

The variable k corresponds to a spatial frequency. For the case of a constant gradi-

ent in one dimension, k = γGt
2π , which we can substitute into Equation 2.45:

S(k) =
∫

M(x)e−i2πkxdx, (2.47)

By sampling many values of k, we can obtain the magnetization density through

an inverse Fourier transform of the signal:

M(x) =
∫

S(k)ei2πkxdk, (2.48)

To create a nuclear magnetic resonance image, magnetic field gradients are applied

in multiple directions,
−→
k (t) =

γ

2π

∫ t

0

−→
G (t′)dt′, (2.49)
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where
−→
G (t) =

∂Bz(t)
∂x

x̂ +
∂Bz(t)

∂y
ŷ +

∂Bz(t)
∂z

ẑ, (2.50)

and the signals obtained at the different gradient strengths are combined.

The process of sampling at different values of spatial frequency is referred to

as covering k-space. The correspondence between k-space acquisition and image

formation can be understood as follows: when a gradient is applied, there will

be a pattern of signal coherence across the sample that depends on the phase ac-

cumulation at each location, which is related to the strength and duration of the

magnetic field gradients. Figure 2.7 (a-c) illustrate several different signal coher-

ence patterns, and the corresponding k values are marked in (d) by the large circles.

The black arrows represent a typical k-space acquisition scheme, where the k-space

data for each line is acquired sequentially from bottom to top to cover a range of

spatial frequencies.

Figure 2.8 is a pulse sequence diagram, which illustrates the timing of an MRI

acquisition. The time between successive RF pulses is known as the repetition time

TR. The area under the curve of the gradient is the gradient moment, which de-

termines the region of k-space that is sampled during each acquisition. The most

common method of covering a two-dimensional spatial frequency range is Carte-

sian sampling shown in Figure 2.7d, in which the ŷ gradient is stepped from the

largest negative value to the largest positive value in constant intervals for each

TR, and is referred to as the phase-encode gradient (GPE) in Figure 2.8. Each ŷ step

in the phase-encode gradient yields data on a line in k-space as the x̂, or read-out

gradient GRead is swept negative to positive. The data acquisition window (DAQ)

is open during the read-out gradient sweep, and the echo time TE refers to the

time point at which the x̂ gradient moment is zero. To provide selectivity in the

ẑ direction, either a slice selective gradient GSlice can be applied during the RF
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(a) Small Gradient in x̂ (green point). (b) Small Gradient in ŷ (red point).

(c) Large Gradient in both x̂ and ŷ (blue
point).

(d) Points on K-Space plane

Figure 2.7: Sample phase coherence maps and the corresponding k-space points.
(a) A weak gradient in x̂ (green point) produces a broad vertical coherence pattern,
(b) a weak gradient in ŷ (red point) produces a broad horizontal coherence pattern,
(c) a strong combined gradient (blue point) produces a fine diagonal coherence
pattern.
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pulse which causes only a segment of the particles to have their magnetizations

tipped into the transverse plane (as shown in Figure 2.8), or ẑ gradients can also be

stepped through similar to ŷ gradients (not shown, referred to as partition-encode

gradients).

Figure 2.8: A magnetic resonance image pulse sequence diagram. The RF appli-
cation repeated every t = TR tips the magnetization into the transverse plane.
The gradient applied during the RF pulse, GSlice, selects a portion of the sample to
be measured along the gradient direction. Phase-encode (PE) and read-out (Read)
gradients are applied to induce precession frequency differences across the sample.
The data acquisition (DAQ) is centered at t = TE.

The signal size S(
−→
k ) measured for each value of k applied during the acqui-

sition is related to how closely the coherence pattern created by the gradients

matches features found in the sample,

S(
−→
k ) =

∫
MT(
−→r )e−i2π

−→
k ·−→r d−→r , (2.51)

where MT(
−→r ) is the transverse magnetization.
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Figure 2.9a shows k-space data from an MRI acquisition. This image is formed

by displaying the natural log of the signal size versus the k-value to bring out

the low values on the edges of k-space. Central k-space points have low gradient

strengths, and points away from the center have large gradient strengths. By tak-

ing the Fourier transform of the k-space data, the relative contribution from each

spatial frequency can be determined:

MT(
−→r ) =

∫
S(
−→
k )ei2π

−→
k ·−→r d

−→
k . (2.52)

The final image is a coherent superposition of all of the signal interference patterns

produced by the gradients.

The equations above treat k as a continuous variable, but in practice it is stepped

through discretely. The pattern made by stepping through k-space determines sev-

eral factors about the reconstructed image. Large gradients produce rapid changes

in phase, which will result in high resolution in the final image. Very fine steps

in k-space or gradient strength allow a large field of view to be included in the

image. Figure 2.9b is the Fourier transform of the data in Figure 2.9a, an MRI of

the torso of a volunteer imaged for this work. The image shows bright signal in

the heart and major blood vessels. Also present in the field of view are various

muscles, organs, bone, and fat, each with varying degrees of brightness. The lung

tissue region is dark, as the density of hydrogen nuclei is too low in this region to

generate measurable signal.

MR imaging of the body provides information about the density of hydrogen

nuclei in a particular region. There are a variety of techniques that can be applied to

gain more information from the image than spin density. Diffusion MR is capable

of distinguishing particles based on how far they have moved during the imaging

process. This technique will be the topic of Section 2.5.
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(a) K-Space data. (b) MRI.

Figure 2.9: (a) K-space data (displayed on a logarithmic scale to enhance low val-
ues): The signal at each point determines how much the corresponding spatial fre-
quency contributes to the final image. (b) The Magnetic Resonance Image shows
the density of 1H spins in each location, and it is the Fourier transform of the k-
space data shown in (a).

2.4 Hyperpolarized Gas MRI

Lung tissue has a low density of hydrogen nuclei compared to other tissue in the

body, making it difficult to image with conventional 1H MRI. Hyperpolarized gas

MRI is a technique in which the airspaces in the lungs can be imaged after a sub-

ject inhales a noble gas which has been polarized above the thermal equilibrium

value [2].

Both helium-3 and xenon-129 are commonly used as imaging gases [25], but the

work in this thesis focused on helium-3 as the target for MR. The process of pro-

ducing highly polarized helium-3 is the subject of Chapter 3. The signal increase

from thermal equilibrium polarization to hyperpolarization allows for a compen-

sation of the density reduction when switching from hydrogen nuclei to gases. Ta-

ble 2.3 lists the densities and polarizations for hydrogen nuclei in body tissue and
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Nucleus Density P
1H 105 mole/cm3 PThermal = 10−6

3He 50 mole/cm3 PHP = 0.1-1

Table 2.3: Density and polarization for hydrogen nuclei in body tissue and hyper-
polarized helium-3 gas.

helium-3 gas in the lung. The density reduction between liquid to gas is a factor

of 103-104, whereas the polarization increase from thermal equilibrium magnetiza-

tion to hyperpolarized magnetization contributes a factor of 106. Magnetization is

proportional to the product of density and polarization (Equation 2.33), meaning

hyperpolarized gas MR has the potential to generate a larger magnetization (and

thus a larger signal) than conventional MR with thermally polarized hydrogen nu-

clei.

There are several differences between hyperpolarized gas MR and conventional

1H MR, the first being the time evolution of the longitudinal magnetization. In

both cases, the magnetization approaches the thermal equilibrium value with the

time constant of T1. However, in the case of hydrogen nuclei the magnetization

increases towards thermal equilibrium while the hyperpolarized helium-3 magne-

tization decreases from the hyperpolarized value towards thermal equilibrium as

illustrated in Figure 2.10.

The signal in conventional MR can be considered renewable as it regrows to-

ward equilibrium after each RF pulse. By waiting a few seconds in between exci-

tations, the polarization can recover to the maximum level, depending on T1. In

contrast, the hyperpolarized signal is non-renewable and decays in the lung with

T1 ≈ 20 s. The first consequence of this signal behavior is that data acquisition

must be completed before the signal has decayed. Since hyperpolarized gas MR

in vivo is typically performed at breath-hold, acquisition times are further limited
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(a) (b) (a) zoomed in to show 1H.

Figure 2.10: Time evolution of longitudinal magnetization in thermal equilibrium
and hyperpolarized cases. (a) In the lung, the helium-3 signal decays from hyper-
polarized to thermal equilibrium polarization PThermal(He3) = 7x10−6 with the
time constant T1 = 20s. (a) In body tissue, the hydrogen signal grows towards
thermal equilibrium PThermal(H1) = 5x10−6 with a time constant T1 = 1s.

by this requirement to ≤ 20 s in healthy subjects, whereas ≤ 10 s is preferable for

subjects with impaired lung function.

An additional consideration when working with hyperpolarized magnetiza-

tion is the size and duration of the RF excitation pulses used to tip longitudinal

magnetization into the transverse plane. As discussed in Section 2.2, the flip angle

θ is determined by the RF pulse amplitude and duration, and the signal measured

is proportional to sin θ, with the remaining longitudinal magnetization propor-

tional to cos θ. In conventional MR it is common to use θ ∼ 90◦ and a long repeti-

tion time to generate the maximum transverse signal.

For hyperpolarized gas MR, every RF pulse diminishes the available longitu-

dinal magnetization, so low flip angles are typically used so as not to exhaust the

available magnetization too quickly. An efficient flip angle choice would reduce

the longitudinal magnetization at such a rate that the signal is nearly gone by the

last excitation. The optimal flip angle can be calculated based on the number of

excitations in the pulse sequence [26].
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The gyromagnetic ratio is lower for helium-3 than hydrogen nuclei, meaning

that the spins precess at a lower frequency in the same holding field generated

(see Table 2.1). For conventional MR, the RF excitations and data acquisition are

executed by magnetic coils and amplifiers that commonly have a narrow operat-

ing frequency range around the 1H resonance frequency to reduce noise. In order

to perform hyperpolarized gas MR on a clinical scanner dedicated amplifiers and

coils for helium-3 must be built or purchased. Figure 2.11 shows two examples

of helium-3 coils used in this work, a homebuilt birdcage-style coil [27] used for

phantom studies, and a commercial coil used with human subjects (Rapid Biomed-

ical, Rimpar Germany).

(a) Helium-3 Coil for phantoms. (b) Helium-3 Coil for subjects.

Figure 2.11: Specialized coils used for MRI with hyperpolarized helium-3. (a)
Homebuilt birdcage-style coil used in phantom studies. (b) Commercial coil used
with human subjects.

An MR image acquired with hyperpolarized gas is shown in Figure 2.12b, along

with a conventional 1H image taken in the same subject. Both images were ac-

quired at breath hold, with the subject inhaling a dose of hyperpolarized xenon-

129 prior to the gas image. The conventional image has dark regions where the

lungs are located, due to the low density of tissue this area. The hyperpolarized
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gas image shows the ventilated airspaces of the lung, so this type of image is often

referred to as a ventilation image.

(a) 1H MRI (b) HP 129Xe MRI

Figure 2.12: 1H (a) and hyperpolarized 129Xe (b) MR images of a healthy volun-
teer. The lung tissue contributes no signal to the conventional MRI, but the lung
airspaces can be imaged by inhaling hyperpolarized gas prior to imaging.

The resolution for 2-D human ventilation images is typically a few millimeters

in the plane of the image, with slices 10-20 mm thick. The ventilation image pro-

vides regional information regarding both lung structure and function. This type

of image is very useful for showing regional ventilation patterns in diseases such

as asthma [28] and cystic fibrosis [5], where poorly ventilated areas can be iden-

tified by the lack of helium-3 signal. For a disease like emphysema, ventilation

imaging alone provides a resolution that is too coarse to directly observe tissue

destruction. The next section describes diffusion-weighted imaging, which allows

the fine structure of the lung below the resolution limit to be probed, based on its

influence on gas diffusion.
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2.5 Diffusion-weighted Imaging

Throughout the course of any MR acquisition, the particles being detected (liquid

water in the case of 1H MR, or helium-3 atoms in the case of hyperpolarized gas

MR) are constantly moving. As the particles undergo this random diffusion, they

experience slightly different magnetic fields at different times due to magnetic field

inhomogeneities. The different field values alter the spins’ precession frequencies,

which results in an accumulation of relative phase between different particles that

reduces net signal coherence. The farther particles move in a given period, the

more field variation they can experience, resulting in more phase dispersion. Since

the motion is random, the phase dispersion cannot be reversed by the application

of spin echo pulses. This effect is present to some degree in every MR acquisition,

and effectively shortens T2.

Applied magnetic field gradients also produce a location-based frequency de-

pendence resulting in phase dispersion. This phenomenon is exploited in diffusion-

weighted MRI. Figure 2.13 illustrates the relationship between gradient applica-

tion and phase dispersion, where in (a, c, and e) the label Bi indicates the field at

the x̂ location of particle i. When a linear magnetic field gradient +G is applied

(Figure 2.13a), the particles accumulate relative phase according to their location

(Figure 2.13b). In the absence of diffusion, the phase dispersion can be reversed by

the application of the opposite gradient −G, as shown in Figure 2.13c-e. If instead

the spins are allowed to move during the time between the application of G and

−G, some will not experience the exact opposite magnetic field value (Figure 2.13f-

g). During the application of −G, the spins alter their precession frequencies, but

the new frequencies do not bring spins which have moved between +G and −G

back into full coherence, as shown in Figure 2.13h.

Diffusion-sensitization is created in hyperpolarized gas MR through the ap-
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(a) Magnetic field as a function of position
when gradient pulse +G is applied.

(b) Phases and precession frequen-
cies of spins after gradient pulse
+G has been applied.

(c) Magnetic field as a func-
tion of position when gradi-
ent pulse −G is applied.

(d) Phases and preces-
sion frequencies during
application of gradient
pulse −G.

(e) Phases and preces-
sion frequencies after
gradient pulse −G has
been applied.

(f) Magnetic field as a func-
tion of position when gradi-
ent pulse−G is applied in the
presence of diffusion.

(g) Possible phases and
precession frequencies
during application gra-
dient pulse −G in the
presence of diffusion.

(h) Possible phases and
precession frequencies
after gradient pulse −G
has been applied in the
presence of diffusion.

Figure 2.13: Magnetic field gradients and phase accumulation. (a) A gradient
pulse +G alters the magnetic field based on position, such that after it is applied
spins have different precession frequencies (b). Subsequently, the opposite gradi-
ent pulse −G (c) reverse the precession frequencies of the spins (d) in the absence
of diffusion, resulting in total coherence (e). If some spins diffuse before the ap-
plication of the reversed gradient pulse −G (f), the spins do not all reverse the
accumulated phase completely (g), resulting in a diminished total signal (h).
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plication of a bipolar diffusion gradient, which consists of a gradient with positive

(or negative) moment followed by a gradient with the equal and opposite moment.

During a diffusion-weighted MR acquisition shown in Figure 2.14, a bipolar dif-

fusion gradient (GDi f f ) is applied before the signal is measured in one of the two

component images [29]. The time that separates the two halves of the diffusion

gradient is the diffusion time, referred to here as ∆. The net phase accumulation

due to this gradient pair will be zero for a particle that has not moved during ∆,

and non-zero for a particle that has moved.

Figure 2.14: A standard Diffusion-weighted MRI pulse sequence diagram for use
with hyperpolarized gas. In addition to the RF pulse and imaging gradients used
in conventional MRI, a bipolar diffusion gradient GDi f f is applied before the data
acquisition. The image acquired with this pulse sequence is compared to an image
acquired without any diffusion gradients. The diffusion gradient can be applied
on any physical axes.

The measured signal is reduced due to the phase dispersion by an amount that



2.5 Diffusion-weighted Imaging 37

depends on the diffusivity D as well as characteristics of the gradients being ap-

plied. After the application of a diffusion-sensitizing gradient G(t), the transverse

magnetization is modified from Equation 2.42 as follows:

MT(t) = MT(0)e
−(iω0+

1
T∗2

)t
e−bD, (2.53)

where

b ≡ γ2
∫ t

0
dt′′

( ∫ t′′

0

−→
G (t′)dt′

)2

. (2.54)

The variable b parameterizes the amount of diffusion attenuation induced by a

specific gradient. The equations defining b in terms of the parameters describing

several possible single-axis bipolar gradient configurations shown in Figure 2.15

are given in Table 2.4 [23].

(a) Rectangular Gradient
Pulse

(b) Trapezoidal Gradient
Pulse

(c) Sinusoidal Gradient Pulse

Figure 2.15: Gradient pulse shapes (a) rectangular, (b)trapezoidal, and (c)
sinusoidal.∆ is the diffusion time, the time between lobe centers. δ is the lobe
duration, G is the magnitude, and ζ is the trapezoidal ramp up time.

In practice, the signal is measured in scans with (S1) and without (S0) applied

diffusion gradients. The ratio of the two signals can be used extract the ADC of the

particles in the space, either on a pixel by pixel basis in an MRI or in a global NMR

measurement using Equation 2.53:

ADC = −
log S1

S0

b
. (2.55)
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Shape Equation
Rectangular b = γ2G2δ2(∆− δ/3)
Trapezoidal b = γ2G2 [δ2(∆− δ/3) + ζ3/30− δζ2/6

]
Sinusoidal b = 4π−2γ2G2δ2(∆− δ/4)

Table 2.4: B-Values for Common Gradient Shapes
γ–gyromagnetic ratio, G–Gradient Amplitude, δ–Gradient lobe duration, ∆–Time
between lobe centers, ζ–Trapezoidal Gradient ramp time

Figure 2.16 shows an example of an ADC map acquired with hyperpolarized helium-

3 in a healthy subject. Two ventilation image acquisitions were interleaved line

by line, with one containing a trapezoidal diffusion gradient with ∆ = 1.58 ms,

ζ = 300 µs, and b = 1.6 s/cm2 between the excitation and read-out gradient, as

shown in Figure 2.14. The in-plane resolution of the images is 6.6x6.6 mm and the

slice thickness is 25 mm.

Figure 2.16: Diffusion-weighted MRI of the lung in a healthy volunteer. The im-
ages are acquired without diffusion gradients (Image 0) and with diffusion gradi-
ents (Image 1). The ADC map is calculated from the ratio of the two images using
the b-value associated with the gradient applied. The data was acquired using a
diffusion time of ∆ = 1.58 ms, b = 1.6 s/cm2. The measured values show low dif-
fusion (ADC ∼ 0.2 cm2/s) in the alveoli where the gas is very restricted, and high
diffusion ADC ∼ 0.8 cm2/s in the trachea where the gas is free to move during the
scan.
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There is a general signal decline between Image 0 and Image 1 due to diffu-

sion attenuation. The largest difference between the two images appears in the

airways, which are barely visible in the second image. The ADC was calculated

pixel by pixel from the two images using Equation 2.55. The measured values of

the apparent diffusion coefficient reveal information about the lung structure, as

the airway values of ADC ∼ 0.8 cm2/s indicate nearly free diffusion in this re-

gion and the values of ADC ∼ 0.2 cm2/s in the bulk of the lung suggest a very

restrictive diffusing environment.

By measuring diffusion coefficients in healthy and diseased lungs, characteris-

tics of the lung airspaces can be determined. In healthy lungs ∼ 95% of the total

gas is in the alveoli, which have a very uniform structure of small airspaces and

therefore are highly restrictive to gas diffusion, resulting in low diffusion coeffi-

cients. In emphysematous lungs, the walls between alveoli break down to create

larger airspaces that are less restrictive to gas diffusion, resulting in larger values

of D.

As mentioned in Chapter 1, in confined spaces the diffusivity depends on mea-

surement time. For very short diffusion times particles away from the walls diffuse

as if they were in free space, while particles near the walls are restricted in their

movement. At long diffusion times, all of the particles will encounter a wall and be

restricted. In a simple spherical model for the alveoli, the number of particles that

are influenced by the wall is related to the proportion of particles that can strike a

wall during the measurement time (Figure 2.17).

The diffusivity measurements are sensitive to different degrees of restriction,

but in general that sensitivity cannot be translated into specific information about

the environment. However Mitra, et al [30, 31] have shown that the diffusion coef-
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Figure 2.17: Simple model of diffusion in a sphere showing the striking distance
to the surface. Spins in the center portion of the volume will not encounter a wall
with a diffusion time of ∆. Spins between the dotted line and the wall will be
restricted, resulting in a lower measured ADC on the edges of the volume. As ∆
increases, the restricted area grows and the average ADC decreases.

ficient behaves as follows:

D(t) = D0[1− α
S
V

√
D0∆], α =

4
9
√

π
, (2.56)

for measurement times that fit the short-time scale criterion:

∆ ≤ 1
( S

V )
2D0

(2.57)

where ∆ is the diffusion time, S/V is the surface-to-volume ratio of the space, and

D0 is the free diffusion coefficient of the gas. In this region of diffusion times, the

diffusivity can be directly related to structural parameters of the diffusing environ-

ment.

As the particles are allowed to diffuse for more time, eventually all of the par-

ticles will be within the striking distance of a wall and the time dependence of the



2.5 Diffusion-weighted Imaging 41

αnarrow αsquare αtriangle αsine
0.253 0.317 0.297 0.298

Table 2.5: α values for wide gradient pulses. αnarrow = 4
9
√

π
.

diffusivity approaches what is known as the tortuosity limit [32]:

D(t→ ∞) =
D0

α
, (2.58)

where α is the tortuosity of the space.

Previous work using both of these theoretical diffusivity curves to calculate

structural parameters from gas diffusion measurements was pioneered by Mair

et al [33–35]. Using glass bead phantoms and porous rock samples, Mair mea-

sured the time dependence of the xenon-129 diffusion coefficient, observing both

the short-time scale S/V behavior and the long-time scale
√

φ behavior, with some

important systematic effects. Equation 2.56 applies to porous media regardless of

geometry, provided that the total system diameter L is large compared to the bead

diameter d, L >> d2, and the gradient pulses fulfill the narrow-pulse criterion,

δ << ∆ [30]. When these conditions were violated, the measured ADC deviated

from the expected values.

Carl et al were able to characterize effects due to violation of the narrow pulse

criterion through simulations and experiments measuring the helium-3 diffusion

coefficient in glass bead phantoms [36]. The use of wide pulses relative to the

diffusion time can be compensated for by using a value of α appropriate for the

pulse shape in equation 2.56. The α values for various gradient pulse shapes are

listed in Table 2.5.

The goal of this thesis is to develop a method for making hyperpolarized gas

diffusion measurements at diffusion times of ∆ < 1 ms, where the diffusivity
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should be sensitive to a length scale closer to the alveolar size in humans. The

short diffusion times impart a much lower diffusion attenuation than the con-

ventional ∆ values, due to the gradient slew-rate limitations on the scanner. To

increase the net attenuation, a technique has been implemented by Carl et al in

which short-duration gradients are repeated several times in the TR period, with

each still maintaining the short time-scale dependence [37].

This work explores an alternate method of measuring the small diffusion at-

tenuation created by short diffusion times. Using a sequence technique known as

steady-state free precession the sensitive measurement is made on a large, nearly

constant signal. The full description of the method will be detailed in Chapter 4.



Chapter 3

Hybrid Rubidium/Potassium Helium

Polarizer for Medical Imaging

In order to perform hyperpolarized-gas magnetic resonance imaging, it is neces-

sary to produce a polarized noble gas. Polarization of noble gases is typically

achieved by one of two processes- Spin-Exchange Optical Pumping (SEOP) [38]

or Metastable Exchange Optical Pumping (MEOP) [39]. The first hyperpolarized-

gas MR images were taken with 129Xe at PXe ∼ 25% polarization in 1994 [2]. Over

the last two decades, helium-3 has become the more common gas for human lung

imaging and until the work described in this chapter, the polarization performance

was PHe ∼ 40% in SEOP-based systems [3] and PHe ∼ 50% in MEOP-based sys-

tems [40]. In the following chapter, we describe a new SEOP-based helium-3 po-

larizer for use in medical imaging experiments which produces 3 L of helium-3 at

PHe > 60%, the Hybrid Polarizer.

In building a new SEOP 3He polarizer, we looked to recent atomic and nuclear

physics experiments for methods to increase performance. The most important

advances incorporated into the hybrid polarizer are line-narrowed lasers, a hybrid

alkali-metal mixture, and the benefits of extensive optimization. It is the combi-
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nation of these features that produces high helium-3 polarization and volume in

the Hybrid Polarizer. With the scarcity and rising price of helium-3 [41], higher

performance polarizers take on new importance for their ability to more efficiently

use 3He. This chapter will first discuss the process of SEOP for producing hyper-

polarized helium-3. I will then describe the design of a medical-imaging polarizer,

with the specifics of the Hybrid Polarizer featured. The main components that

improve helium polarization, the lasers and the alkali mixture, will be detailed in

Sections 3.3 and 3.4. The helium-3 polarization measurement and calibration will

be explained in Section 3.5, and the polarizer performance results are presented in

Section 3.6.

3.1 Spin-Exchange Optical Pumping

In the process of spin-exchange optical pumping, hyperpolarized helium-3 is pro-

duced via spin-exchange collisions with optically pumped alkali metal atoms. His-

torically, the most common alkali metal used in SEOP was rubidium, which is ideal

for several reasons: it has a wide energy spacing between the D1 and D2 transi-

tions, it has a transition wavelength that can be easily reached by commercially-

available lasers, and it has a high vapor pressure among alkali metals. The rubid-

ium and helium are placed in a glass cell with a small amount of nitrogen, and

the total gas pressure in the cell can be up to ∼ 10 atm. The cell is placed in an

oven within a magnetic field, in our case B0 ≈ 20-30 G, and the oven is heated to

vaporize the rubidium. Figure 3.1 illustrates the energy levels of rubidium-87. The

hyperfine structure energy levels are the result of the coupling between the elec-

tron and nuclear magnetic moments,
−→
F =

−→
I +
−→
J . In the presence of a magnetic

field, the magnetic sublevels of the rubidium atom separate due to the Zeeman ef-

fect and are characterized by the quantum number mF. Circularly polarized laser
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Figure 3.1: Energy levels of the Rb87 atom (I = 3/2) [42].
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light is directed at the cell, tuned to the rubidium electron D1 transition.

Figure 3.2: Optical Pumping of Rubidium [43]. Nuclear contributions are sup-
pressed in this depiction.

The interaction between the incident light and the atom can be considered

“sudden” with respect to the nuclear spin [44], and as such the hyperfine struc-

ture is not addressed in the following discussion. The incident light excites the

electron from the 5S ground state by transferring angular momentum to the va-

lence electron as shown in Figure 3.2. This angular momentum transfer, ∆mJ = ±1

where the sign is determined by the circular polarization of the laser, restricts the

excitation to one of the ground state levels that are present in the magnetic field,

here mJ = −1
2 . From the 5P1

2
excited state, decay back to the ground state is me-

diated by the addition of nitrogen gas which transfers the released energy into its

rotational degrees of freedom, allowing for non-radiative quenching of the excited

atoms [45]. This ensures there are no unpolarized photons in the cell. The system

reaches an equilibrium with all of the rubidium atoms in the ground state which

can not be excited by the incident light. Collisions between atoms result in some
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mixing of the mJ levels in both the 5P1
2

and the 5S 1
2

energy states, decreasing the

equilibrium from a completely aligned state. Equilibrium polarization is reached

in milliseconds at the temperatures and laser powers used in the Hybrid Polarizer.

The saturation alkali polarization PRb is given by:

PRb(t→ ∞) = PCirc ∗ cos θ
Rop(
−→r )

Rop(
−→r ) + Γsd

, (3.1)

where PCirc is the circular polarization of the incident light, θ is the angle be-

tween the light and the magnetic holding field direction. The optical pumping

rate Rop(
−→r ) is determined by the photon spectral flux density Φ(ν,−→r ) and the

photon absorption cross section σ(ν) by:

Rop(
−→r ) =

∫
Φ(ν,−→r ) ∗ σ(ν) dν . (3.2)

The spin destruction rate Γsd is given by:

Γsd = ∑
N

κRb−N
sd [N], (3.3)

where the sum is over the rates due to each type of atom present, with density [N],

weighted by the associated spin-destruction rate constant κRb−N
sd . The key factors

in equation 3.1 that can be adjusted to optimize PRb are the circular polarization

of the laser, the laser power, and the photon absorption cross section. The photon

absorption cross section can be adjusted by raising (lowering) the pressure of the

gases in the cell to widen (narrow) the absorption peak.

Once the rubidium atom has been polarized, it is able to transfer that polariza-

tion to the helium-3 nucleus via binary collisions. The build up of helium polar-

ization is a slow process, usually accomplished overnight for a medical imaging
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session the next day and is referred to as a “spinup”. The helium-3 polarization

PHe increases as:

PHe(t) = PHeSat(1− e−
t

Tup ), (3.4)

where Tup is defined here as the “spinup time constant”, and PHeSat is the satura-

tion 3He polarization given by:

PHeSat = PRb ∗
γse

γse + Γsd
, (3.5)

where γse is the spin-exchange rate:

γse = κse[Rb] (3.6)

and the spin-exchange rate constant for helium-rubidium has been measured to be

κse = 6.7± 0.610−20 cm3/s [46]. At the operating temperatures of helium-3 SEOP

polarizers utilizing rubidium alone (T ∼ 190 ◦C), [Rb] ≈ 6.2 ∗ 1014 atoms/cm3 and

γse ≈ 1
6.7 hours.

The spin-destruction rate Γsd for helium-3 has contributions from collisions,

field inhomogeneities, and wall relaxation:

Γsd = Γcollisions + Γ f ield + Γwall . (3.7)

Γsd can be measured as a cell performance predictor by what is known as a “spin-

down”, measuring the decay of helium-3 polarization at room temperature with

the lasers turned off. From Equation 3.5, cells with smaller values of Γsd will

have higher helium-3 saturation polarizations. When seeking to improve the fi-

nal helium-3 polarization in the SEOP process, one can either increase the spin-

exchange rate γse, or decrease the spin-destruction rate, Γsd. In building the hybrid
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polarizer we focused on the former to improve 3He polarization, in addition to

increasing capacity and adding improved diagnostics.

3.2 Hybrid Polarizer Design

Systems for polarizing helium-3 with SEOP generally include a laser system, a po-

larization cell in an oven, a magnetic field, and an electronics system (Figure 3.3).

When such systems are used for atomic or nuclear physics experiments, they typ-

ically include a sealed glass polarization cell [47, 48]. For use in imaging, a po-

larizer needs a polarization cell which can dispense helium-3, and a gas handling

system. The polarization cell used by the Hybrid Polarizer was a spherical glass

cell ∼ 350 mL in volume made of alumina-silicate glass. The cell contained a small

quantity of alkali metal, as well as helium gas which was replenished when neces-

sary via a glass valve which extended out of the spherical cell connected by a nar-

row capillary. The cell was suspended in a ceramic oven with windows for light

transmission. The oven was surrounded by several sets of coils- the main holding

field coils, NMR drive coils, NMR pickup coils, and EPR drive coils as shown in

Figure 3.4. On the Hybrid Polarizer there was also a set of counter-wound gradi-

ent coils that served to decrease observed “masing” effects which limited helium-3

polarization and are discussed in Appendix A.

Each time the hybrid polarizer was used for imaging, the helium-3/nitrogen

mixture was added to the cell so that the pressure reached ∼ 120 psig. The oven

was heated via forced air with two heaters (PureFlow PF-12 1200 W HotWatt, Dan-

vers MA), and the holding field of Bmain = 25 G was supplied by a Helmholtz

coil pair (Walker Scientific, Worchester MA) powered by a 36 V-12 A power supply

(BOP 36-12 Kepco, Flushing NY). The hybrid polarizer was equipped with four

lasers (25 W Comet VBG-locked diodes Spectra-Physics, Santa Clara CA). Typical
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(a) Schematic

(b) Actual

Figure 3.3: Hybrid Polarizer.
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(a) Schematic (b) Actual

Figure 3.4: Polarization cell in the ceramic oven. Various coils shown are used for
monitoring the helium-3 polarization.

operation involved the use of three of these lasers to provide circularly polarized

light. The specific lasers used were alternated to extend the lasers’ lifetimes. They

will be discussed in more detail in the next section.

The hybrid polarizer was equipped with a gas-handling system (Figure 3.5)

that supplied the polarization cell with the appropriate helium-3 and nitrogen mix-

ture for polarization, and provided a pathway for dispensing the helium for imag-

ing. There were two main parts to the system: the fill manifold and the dispense

manifold. The filling manifold connected the helium bottle to the cell through a

regulator. The dispense manifold connected the cell to the vacuum pump, medical

nitrogen, and the outlet.

Throughout the process of polarizing the helium-3, the signal was monitored

using NMR as described in Section 3.5. After several hours of pumping, the oven

was cooled using forced air at room temperature. To ensure that no alkali metal

was removed from the cell, the cell valve was not opened until the oven had been
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Figure 3.5: The gas system layout of the hyprid polarizer. The manifold consisted
of stainless steel Swagelok tubes, fittings, and valves from valves V1-V9. The re-
maining components were plastic Swagelok tubes, fittings, and valves. Specific
parts can be found listed in Appendix B.

below 40 ◦C for 30 minutes. After leaving the dispense manifold, the helium-3

passed through a Teflon filter to ensure no alkali metal was being passed to sub-

jects. The amount of gas dispensed was measured in a plastic syringe, and dis-

pensed 3He was mixed with medical-grade nitrogen when dosed to subjects for

imaging to increase the total volume of gas inhaled. The helium polarization was

measured in a separate calibration station to verify the hybrid polarizer calibration.

3He quantities used in imaging varied based on polarization and imaging applica-

tion from 50-500 mL and the total volume inhaled varied based on the subject and

technique as well.

Several components of this design were improved based on the performance of
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the helium-3 target cells in the E02-013 experiment (Gn
E 2005-2006) [49] at Thomas

Jefferson National Accelerator Facility (Newport News VA). As previously men-

tioned, the lasers and alkali metal mixture are features that enable the hybrid po-

larizer to produce highly polarized helium-3. In addition, the polarization cell

capacity of 3 L per batch was larger than the commercial helium-3 SEOP polar-

izer previously used at U.Va., which produced ∼ 1.6 L per batch. The optical

setup of the Hybrid Polarizer was very different from previous helium-3 SEOP

polarizers, in order to maximize efficient use of laser power. Lastly, measurement

and calibration of the helium polarization were performed using Adiabatic Fast

Passage NMR and Electron Paramagnetic Resonance frequency shift calibration.

These techniques provided a helium polarization measurement that could be cal-

ibrated under various conditions in situ. All of these features will be outlined in

more detail below.

3.3 Lasers and Optics

When previous helium-3 SEOP polarizers were designed, rubidium was chosen

as the pumping alkali metal primarily because of its relatively low vapor pressure

curve and transition properties which worked well with commercially available

lasers. The most important change in the last ten years has been the availability

of spectrally-narrowed lasers. The spectra of the newest diode lasers are an or-

der of magnitude narrower, 0.2 nm compared to 2.0 nm on so-called broadband

lasers (Figure 3.6). The narrowed spectra more closely match the rubidium ab-

sorption cross section, which is about 0.3 nm at operating temperature and cell

pressure [43]. There is evidence in the literature that simply moving from broad-

band lasers to narrowed lasers can result in a 40% increase in 3He polarization [50].

The lasers on the hybrid polarizer were Volume Bragg Grating-locked Comet line-
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Figure 3.6: Spectral Density of narrowed lasers (blue) versus broadband diode
lasers (red), with the rubidium D1 transition wavelength (black).

narrowed diode lasers centered at 794.8 nm with a linewidth of 0.2 nm (Spectra-

Physics, Santa Clara CA). The central wavelength of the laser was determined by

the diode current and temperature, and could be adjusted to match the rubidium

D1 transition, which shifted to lower wavelengths when in the presence of high-

pressure helium.

The two functions of the optics setup shown in Figure 3.7 were to converted

the linearly polarized light from the diodes to circularly polarized light for optical

pumping, and to direct the light onto the polarization cell. Circular polarization

was achieved through a linear beam-splitting cube and a quarterwave plate. The

beam path was directed by the placement of mirrors and lenses. The lens place-

ment in the Hybrid Polarizer serves to focus and overlap the beams from each laser

on the center of the cell. The lasers are coupled together through a 5-to-1 fiber com-
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Figure 3.7: Hybrid polarizer optics layout (not to scale) includes three mirrors (M),
a beam-splitting cube, three quarterwave plates (QWP), two lenses (L) and a five-
to-one fiber combiner.

biner (Avantes, Broomfield CO) which positions the individual laser fibers close

to each other. Laser light exited the combiner as five distinct beams. Through the

use of Fourier optics, the uniform angular distribution of the source beams enables

their conversion into a spatial homogeneous beam at the center of the cell [51]. The

location of the first lens L1 determines the beam size at the center of the cell, and

the second lens (L2) controls the overlap of the beams. This technique allows opti-

cal coverage of the cell that is far more homogeneous than simply using the output

of the fiber combiner unchanged, as demonstrated in Gaussian beam simulations

shown in Figure 3.8.
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(a) Beam Intensity Profile at the first lens (b) Beam Intensity Profile at the center of the cell

Figure 3.8: Simulations showing the profiles of the beams at (a) L1 and (b) the
center of the cell [52].
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3.4 Hybrid SEOP

In Hybrid Spin-Exchange Optical Pumping, potassium is added to the rubidium

in the polarization cell to increase the efficiency of transferring polarization to the

helium-3 [53]. Whereas only ∼ 2% of the spin of a rubidium atom is ultimately

transferred to the helium-3 nuclei, the spin exchange efficiency approaches 25%

for potassium and helium-3 [54]. An important feature of hybrid SEOP is that

alkali metals readily spin exchange with each other so the potassium polarization

will be nearly equal to that of the rubidium. By using a mixture that is rich in

potassium and lean in rubidium, the same lasers used in rubidium-only SEOP can

be used, but with a much higher spin-exchange efficiency for polarizing helium-3

(Figure 3.9).

Figure 3.9: Hybrid spin-exchange between helium-3 and rubidium or potassium.

The ratio of potassium to rubidium in the alkali mixture can have a great effect

on how much advantage is gained from hybrid pumping. When the hybrid mix-
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ture contains too large an amount of potassium, there is not enough rubidium to

be pumped by the lasers and keep the alkali polarization high. If the mixture con-

tains too little potassium the extra efficiency does not significantly impact the final

helium-3 polarization. Studies performed by our group have produced a guideline

that the optimal ratio of potassium to rubidium for helium-3 polarization is ∼ 6/1

at operating temperature, but that strict control is not necessary as substantial im-

provement is attained over a relatively wide range of mixtures [43].

For a traditional rubidium SEOP polarizer the cell is usually held at ∼ 190◦ C

during pumping, which gives a rubidium density of [Rb] ∼ 1015 atoms/cm3. Due

to the higher vapor pressure of potassium, the oven temperature for hybrid SEOP

should be increased, in our conditions to 240◦ C [42]. Finding the optimal set

temperature was part of the commissioning process covered in Section 3.6.

3.5 Measurement and Calibration

The helium polarization in the cell is monitored periodically throughout the spinup

using NMR. The Hybrid Polarizer used Adiabatic Fast Passage (AFP) NMR [55]

due to the large signal-to-noise ratio in this method, and calibrated the NMR mea-

surement using Electron Paramagnetic Resonance (EPR) [56].

3.5.1 AFP

In Adiabatic Fast Passage, the helium-3 spins are flipped 180◦ and back during the

course of one measurement. On the Hybrid Polarizer, the spin flip was accom-

plished by applying a transverse RF field B1 at a frequency ω0 which is slightly

above the Larmor frequency of the holding field BHold = 25 G. The holding field

was increased past the resonance field B0 and then ramped back down to the orig-
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inal level. The effective magnetic field in the rotating frame of the helium-3 nuclei

becomes:
−→
B e f f = [Bmain(t)− B0]ẑ + B1(ω0)x̂′, (3.8)

where Bmain(t) described the field sweep. A set of perpendicular “pickup” coils

detected the signal in the transverse plane increased as the spins go past, resulting

in two peaks as the spins flip over and flip back. Figure 3.10 displays an AFP

measurement trace from the Hybrid Polarizer. The red line indicates the value of

the holding field, and the blue curve shows the signal detected by the pickup coils.

Figure 3.10: Sample AFP trace: The 3He transverse magnetization signal is shown
in blue, and the holding field magnitude is shown in red.

The name Adiabatic Fast Passage derives from two competing timing require-

ments which serve to minimize polarization loss during a measurement. In order

for the field sweep to be considered adiabatic, the main field must not change
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much per revolution of the helium-3 spins so that the spins can follow it:

Ḃmain

B1
� ω0 . (3.9)

The fast requirement of the field sweep timing relates the changing magnetic field

to the spin-relaxation rate. Magnetic field inhomogeneities lead to spin relaxation,

and the relative size of inhomogeneities is largest when the effective magnetic field

is the smallest, when Bmain(t) = B0. The longitudinal spin-relaxation rate in the

rotating frame depends on the size of the inhomogeneities compared to the trans-

verse RF field, and how quickly the gas explores the area as follows [57]:

1
T1r

= D
|∇Bz|2

B2
1
� Ḃmain

B1
, (3.10)

where T1 is the spin-relaxation time constant, D is the gas diffusivity, and ∇Bz is

the gradient of Bz. When the sweep parameters are chosen to meet both of the

above conditions,

D
|∇Bz|2

B2
1
� Ḃmain

B1
� ω0, (3.11)

the AFP NMR process can result in a minimal polarization loss per measurement.

The diffusion coefficient and field variation are fixed by the system, but the

other parameters are can be varied. In the use of the Hybrid Polarizer, the AFP

condition was satisfied by the following values

D ≈ 0.2 cm2/s ∇B2
z ≈

(
10 mG

cm

)2

B1 ≈ 100 mG Ḃmain =
10 G
6 s

ω0 = 2π ∗ 100 kHz

0.002 Hz� 16.67 Hz� 2π ∗ 100 kHz (3.12)
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We measured helium-3 signal losses of 1% per measurement in the initial tests of

the Hybrid Polarizer, but those losses increased over the course of the experiments

in this work. These results are discussed in more detail in Section 3.6.

Figure 3.11: Electronics used to make an NMR AFP measurement. A function
generator (FG) controls the main field sweep input to the power supply (PS). The
transverse field is controlled by the NMR Drive FG and amplifier. The signal from
the pick up coils is amplified before being combined with an optional cancellation
signal at the lock-in amplifier. Specific model numbers and settings can be found
listed in Appendix B.

The timing and execution of an AFP NMR measurement was controlled by a

LabVIEW program (National Instruments, Austin TX). The electronics required

are illustrated in Figure 3.11. A complete listing of model numbers and settings is

provided in Appendix B. The measurement began with the main field at its default

value BHold = 25 G. Referring to labels in Figure 3.11, first the NMR drive func-

tion generator (FG) was activated, then the main field FG was triggered to sweep
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up through resonance and back down, Bmain(t) = 25 � 35 G. The signal from

the pickup coils was sent to a pre-amp before being sent to lock-in amplifier. An

additional input to the lock-in was used as a background cancellation tool. A sine

wave signal at the NMR drive frequency with a variable amplitude and phase was

generated by a home-built A-Φ box. This source was used to cancel any spurious

signal received by the pickup coils due to imperfect alignment. Without this back-

ground cancellation signal, the AFP trace would sit on top of a background that

could be eliminated in data analysis, but might lead to amplifier saturation.

The signal peaks from the up and down legs of the holding field sweep (Fig-

ure 3.10) were each fit to a Lorentzian function:

y = A
w√

(x− x0)2 + w2
, (3.13)

where A is the peak amplitude parameter, w is the peak width, and x0 is the peak

center. The amplitude fit parameter was plotted against time to produce a spinup

plot as shown in Figure 3.12. Measurements were made more frequently early in

the pumping, when the polarization was changing most rapidly with time. As the

signal increased, the points were taken further apart in time. The spinup curve

was fit to:

R(t) = Rmax ∗ (1− e−
t−t0
Tup ), (3.14)

where Rmax is the saturation amplitude, t0 is the time offset from zero polarization,

and Tup is the spinup time constant. The values of Rmax and Tup were used to

characterize cells and optimize performance, but it is useful to convert Rmax to

absolute helium polarization to compare performance under different conditions.
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Figure 3.12: A calibrated helium-3 spinup from 08/10/2010: Toven = 230 ◦C, Pcell =
120 psig, 3 COMET Lasers. Spinup fit parameters: Rsat = 18.18 mV, Psat = 65.4%,
Tup = 3.9 hrs.

3.5.2 EPR

A calibration technique based on Electron Paramagnetic Resonance (EPR) is used

in the Hybrid Polarizer to convert an AFP peak amplitude to an absolute helium-3

polarization. EPR calibration involves monitoring the alkali metal electron tran-

sition frequency between Zeeman levels under two different magnetic field con-

ditions. The net magnetization of the helium-3 nuclei produces its own magnetic

field which can add to or subtract from the main holding field. A change in the

magnetic field alters the resonant frequency of the alkali metal valence electrons’

Zeeman transitions (figure 3.1). The spacing between the mF levels varies approx-

imately linearly with field at the low magnitude of the Hybrid Polarizer’s hold-

ing field, B0 = 25 G, but our calibration also accounts for quadratic terms [58].

The largest portion of the helium-generated field’s effect on the alkali metal fre-

quency comes from alkali-3He collisions, with a smaller portion due to long-range
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interactions of the gas [59], [60]. The calibration is performed by monitoring this

frequency while the direction of the helium-3 field is reversed. The change in fre-

quency is proportional to the field generated by the helium magnetization. This

field magnitude can be converted to an absolute 3He polarization.

The EPR calibration method takes advantage of the fact that even with the ad-

dition of nitrogen as a buffer, some of the alkali electrons in the excited states de-

cay via photon emission. Due to collisional mixing, both D1 and D2 photons are

produced [61]. The rubidium D2 photons are monitored during an EPR measure-

ment, to avoid the large background created by the scattering of the pump beam

at the D1 wavelength. During steady state pumping the intensity of photon emis-

sion is relatively low, as most of the atoms are in the outer most mF level. Upon

the application of a resonant field, electrons are driven to adjacent levels which

enables them to be pumped again by the laser. This results in an increase in D2

fluorescence. The light passes through a window on the bottom of the oven and is

collected by a photodiode mounted under the oven, which has an optical filter to

select the D2 wavelength and block the pump light background.

The electronics setup for an EPR measurement is illustrated in Figure 3.13, and

a complete listing of model numbers and settings is provided in Appendix B. To be-

gin the EPR calibration procedure an RF field was generated from the EPR voltage-

controlled oscillator (VCO). The output of the EPR VCO was modulated at a low

frequency ∼ 200 Hz by the EPR MOD FG, which also served as a reference for the

lock-in amplifier receiving the photodiode signal. The alkali transition frequency

was determined via a frequency-modulated (FM) sweep, in which the frequency

of the transverse field was incrementally increased and the photodiode output was

recorded at each step. The resulting lock-in output signal is shown in Figure 3.14.

The trace due to an FM sweep is the derivative of the intensity of the light, so it



3.5 Measurement and Calibration 65

Figure 3.13: EPR electronics setup on the hybrid polarizer. The EPR Voltage-
Controlled Oscillator function generator (FG) is used to generate the field to drive
alkali electron transitions. The output of the EPR VCO FG is modulated by the
MOD FG which allows the photodiode signal to be easier to detect isolate from
the laser background. The transition frequency of the VCO is determined by a fre-
quency sweep. During the measurement, the photodiode signal drives a propor-
tional integration (PI) circuit which changes the VCO frequency as the helium-3
spins are flipped by the NMR drive.

goes through zero at resonance [54, 62].

The EPR transition occurs at a slightly different frequency for each metal species

present in the alkali mixture, as indicated by the multiple peaks present in Fig-

ure 3.14. This signal was generated measuring the intensity of rubidium D2 light,

but the transitions were induced by depolarizing different alkali species their unique

frequencies. The species that are present in the hybrid metal mixture are rubidium-

87 (peak labeled A), rubidium-85 (not pictured), potassium-39 (large peak), and

potassium-41 (peak labeled B). EPR measurements on the Hybrid Polarizer were
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Figure 3.14: An EPR FM Sweep trace. The frequency of the RF field was increased,
and the photodiode signal recorded at each step. The amplitude of the lock-in
signal crosses zero as the D2 fluorescense reaches a maximum. There are spikes
representing transitions of each of the alkali species in the cell: 39K (large peak),
41K (A), and 87Rb (B).

made by inducing transitions in potassium-39, as it produced the largest signal.

The exact transition frequency was determined by fitting the trace to a line as it

crosses through zero.

To make a calibration measurement, the EPR VCO was set to the measured

transition frequency. The lock-in output was sent to a Proportional-Integration

(PI) Feedback circuit [63]. When activated by a switch, the PI circuit sent a signal

to the VCO control input which adjusted the center frequency of the EPR drive

to keep the lock-in signal at zero. As the effective field experienced by the alkali

metal changed, the EPR drive field was no longer resonant and the lock-in signal

increased/decreased. The PI circuit forced the EPR drive FG to change its central

frequency so that the signal went back to zero. A frequency counter was used to

track the changing central frequency of the VCO during the measurement.

Once the VCO frequency had been set, the calibration procedure was as fol-
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lows:

1. Take an AFP measurement.

2. Turn on the EPR drive field, begin monitoring the EPR frequency and activate

the feedback circuit via a switch.

3. Turn on the NMR drive and flip the 3He spins by sweeping the frequency

through resonance (keeping the main field constant).

4. Turn off the NMR drive and monitor the new frequency.

5. Turn on the NMR drive and flip the spins back with another frequency sweep.

6. Turn off the NMR drive and monitor the final frequency.

7. Turn off the EPR drive field.

8. Take another AFP measurement.

Figure 3.15 displays a representative EPR measurement. The black arrows repre-

sent the direction of the holding field, and the red arrows represent the direction

of the magnetic field due to the polarized helium-3. Frequency data from each

segment was averaged to calculate a change in frequency.

The equations used for converting the change in frequency to a magnetic field

strength are detailed in Appendix B. Once the helium-3 magnetic field strength

BHe had been calculated, it was directly converted into a helium-3 polarization PHe

using the formula:

PHe =
2

κ0 ∗ [3He]
∗ 3 ∗ BHe

2µ0
, (3.15)

where µ0 is the permeability of free space, [3He] is the density of helium-3, and κ0
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Figure 3.15: EPR frequency counter measurement while performing a calibration
measurement. The black arrow indicates the direction of the main field, and the
red arrow indicates the direction of the field induced by polarized 3He.

is the empirical shift constant:

κ0 = 5.99 + 0.0086(T − 200 ◦C), (3.16)

and T is the polarization cell temperature in Celsius. Once the polarization was

measured, it was used to calibrate the AFP measurements taken immediately be-

fore and after the measurement. There were helium-3 polarization losses associ-

ated with each of the frequency-sweep spin flips, as well as during the period the

spins remain flipped. Each AFP peak height was matched with its corresponding

frequency change, and the average calibration constant was used. This method of

calibration of the helium-3 polarization could be repeated easily as new operating

parameters were used, such as oven temperature and cell pressure.
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3.6 Optimization and Performance

In order to determine the peak performance of the hybrid polarizer, spinups were

performed using three lasers with the oven at different set temperatures. Met-

rics such as saturation polarization and spinup time constant from the spinup fit

were calculated, but for optimization we looked at the helium-3 polarization af-

ter ∼ 15 hours of pumping. This parameter, P15, was relevant due to the manner

in which the Hybrid Polarizer was commonly used for medical imaging, with the

cell pumped overnight for a study in the morning. We also measured the helium-3

polarization after five hours of pumping, P5, for information about performance of

the polarizer for the situation in which a second imaging session was planned for

the same day. The results of these temperature tests are presented in Figure 3.16.

The optimum oven set temperature for Hybrid Cell 1 (HC1) with three lasers was

Toven = 225 ◦C. In the shortened spinup case, we found that it was best to use the

highest oven temperature Toven = 240 ◦C, which gave the fastest spinup rate.

Figure 3.16: Temperature optimization results for Hybrid Cell 1 with three lasers.
Helium-3 polarization after five and 15 hours, as well as fit parameters Psat and Tup
are plotted versus oven set temperature.
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Over the last three years, the hybrid polarizer has been used to provide gas for

human, animal, and phantom helium-3 MR studies. Gas dispensed was consis-

tently measured to have 3He polarization above 50%, but there has been a notice-

able decline from the initial performance as illustrated in Figure 3.17a. In addition

to the polarization decline, the losses per AFP measurement increased from 1.3%

to 7%, and the EPR FM sweep amplitude decreased by a factor of 100, which made

calibration difficult. These effects are illustrated in Figure 3.18.

Starting in April–May 2011, we reduced the frequency with which AFP mea-

surements were made once the signal neared saturation, to reduce polarization

loss due to the measurements. The polarization measurements on Figure 3.17a

from that period and beyond represent the final point acquired during the spinup,

often 2–3 hours before pumping was stopped. Independent measurements of dis-

pensed gas polarization lead us to the conclusion that the hybrid polarizer was

consistently reaching∼50% helium-3 polarization with HC1, but not much higher.

The gradual decline in performance led us to change the cell in June 2011.

Upon removing HC1 from the hybrid polarizer, we observed that the alkali

metal had formed a large pool on the bottom and sides of the polarization cell

throughout the course of its use (Figure 3.19a). We believe that some of the per-

formance loss was due to this alkali pool. The metal obscured the cell from the

EPR photodiode and possibly shielded the cell during AFP measurements. With

the installation of the next cell Hybrid Cell 2 (HC2), the hybrid polarizer was once

again be able to produce > 60% polarized 3He, as shown in Figure 3.17b. AFP

losses decreased with the new cell, and the EPR FM sweep amplitudes recovered

to approximately the same level as the initial measurements of HC1. It should be

noted that at the same time as the cell change we began using all four available

lasers to polarize, as performance of the lasers decreased over time as well.
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(a) HC1

(b) HC2

Figure 3.17: Hybrid polarizer performance over time. Data points on these plots
were taken from overnight spinups, so the durations range from 11–24 hours. The
blue points were taken at the standard pressure (P = 120 psig) using 3/4 lasers
(HC1/HC2). The red points have either a different pressure or different number of
lasers. The cell set temperature for all points was 225-235 ◦C.
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(a) AFP Loss per measurements from 2008 and 2011. Five AFP measurements are made
at one minute intervals. The points are normalized to the first measurement and fit to a
line which has a slope of percent loss per measurement.

(b) EPR FM sweep signal amplitude mea-
sured in Feb 2010.

(c) Same graph as (b), zoomed in to show Jan
2011 data.

Figure 3.18: Hybrid polarizer diagnostic performance indicators. The AFP loss per
measurement increased and the EPR FM sweep signal declined throughout the
three-year lifetime of HC1.
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(a) Picture of HC1 after removal in June 2011. (b) Picture of HC2 before installation.

Figure 3.19: Comparison of alkali metal pool in two polarizer cells.
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3.7 Conclusions

The Hybrid Polarizer represents a significant advance in performance over pre-

vious helium-3 polarizers used in medical imaging. Its peak performance was

∼ 65% helium-3 polarization overnight for 3.0 L of gas. The main features that

drive this improvement are the use of narrowed lasers, hybrid alkali SEOP, and a

well-optimized system. The larger capacity of the Hybrid Polarizer allows for the

possibility of more than one imaging session per day if all of the gas is not used

in the first session, as the polarization in the afternoon does not drop far from its

peak value. The fast spinup time associated with hybrid SEOP means that the po-

larization cell could also be refilled and pumped to ∼ 40% helium-3 polarization

in a few hours for a second same-day study if all of the gas were used in the first

session.

The work of optimizing the technology used of the Hybrid Polarizer was ini-

tially done for nuclear target experiments, and the field of helium-3 lung imaging

has been able to share in the benefits. The Hybrid Polarizer enables more effi-

cient use of helium-3 in imaging as the cost of the gas is on the rise. Two of the

key features on the Hybrid Polarizer, the narrowed lasers and the hybrid alkali

mixture, could be added to existing helium-3 SEOP polarizers with relatively little

effort and should produce significant polarization gains across the helium-3 lung

imaging community.



Chapter 4

Steady State Free Precession

The term steady state free precession (SSFP) describes a class of pulse sequences

which are coherent, which means the magnetization vector acted on by each RF

excitation has both a longitudinal and transverse component [64]. The repetition

time (TR) between excitation RF pulses is shorter than the transverse magnetiza-

tion decay constant (TR < T2) and the signal measured in the transverse plane

consists of a mixture of the longitudinal and transverse magnetizations from the

previous excitation. In contrast, incoherent pulse sequences drive the transverse

magnetization to zero before the next excitation either by waiting long enough for

it to decay (TR >> T2), by actively destroying the magnetization coherence by ap-

plying a dephasing gradient pulse (gradient spoiling), or by constantly changing

the axis of each RF excitation pulse (RF spoiling). Therefore, the signal measured

by an incoherent pulse sequence depends only on the longitudinal magnetization

immediately before the RF excitation.

Coherent pulse sequences generally yield higher signal than incoherent pulse

sequences due to the transverse magnetization being “recycled” by the RF excita-

tion into the next TR period. The SSFP pulse sequence produces the highest sig-

nal per unit time in conventional MR of thermal-equilibrium magnetization [65].
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SSFP pulse sequences have also been used for hyperpolarized gas MR ventilation

imaging, and can yield a three-fold increase in signal-to-noise ratio over incoherent

pulse sequences [66].

This thesis presents the first use of SSFP pulse sequences to generate diffusion-

weighted images of hyperpolarized gases. For reasons that will be discussed in

Section 4.2, it is highly advantageous to use the minimum repetition time possible

when imaging hyperpolarized gases with an SSFP pulse sequence (TR ≤ 4 ms).

Such short values of TR make it difficult or impossible to accommodate the bipo-

lar diffusion gradients commonly used in previous hyperpolarized gas diffusion

MR, which have diffusion times of ∆ = 1-2 ms (Chapter 2), in the same TR period

as imaging gradients. In order to incorporate diffusion-weighting into an SSFP

pulse sequence, one is therefore forced use shorter diffusion times. Since we are

motivated to measure ADC values at shorter diffusion times, due to the potential

for enhanced sensitivity to disease-related alterations of lung microstructure, and

the high signal levels generated by SSFP pulse sequences will enhance our ability

to measure the small signal attenuation that can be generated by the diffusion gra-

dients achievable at short diffusion times, SSFP pulse sequences are an attractive

option for measuring short time-scale diffusion.

This chapter describes the behavior of hyperpolarized magnetization under the

influence of an SSFP pulse sequence, and the use of this behavior to develop meth-

ods for incorporating diffusion-weighting into the SSFP pulse sequence. First, I

provide a description of RF excitation as it is implemented in an SSFP pulse se-

quence. Next, I discuss the equations used to model the effect of an SSFP pulse

sequence (shown in Figure 4.2) on thermal equilibrium magnetization. In Sec-

tion 4.3, I use the same formalism to derive a closed-form expression for the steady

state behavior of hyperpolarized magnetization. We introduce diffusion sensitiza-
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tion through several different methods and derive the altered steady state mag-

netization behavior for each. Each closed-form expression was compared with

magnetization simulations to verify the results and guide the pulse sequence de-

sign. The steady state equations were derived assuming on-resonant spins, but the

effects of off-resonant magnetization were incorporated into the simulations and

contributed greatly to determining how useful a particular method would be for

obtaining quantitative measurements of hyperpolarized-gas diffusion in the lung.

The resulting diffusion-weighted SSFP pulse sequences represent a balance of con-

siderations such as minimal TR and data acquisition timing within the TR period.

4.1 RF Excitation

In Chapter 2, I discussed how a perpendicular resonant field will induce rotation

of a spin out of alignment with the main magnetic field into the transverse plane.

The relative phase between the applied RF pulse and the rotation of the particle

determines the direction of that rotation, as illustrated in Figure 4.1. The transverse

magnetization MT is not precessing in the rotating frame of x̂′− ŷ′. Our convention

is that an RF excitation of flip angle θ with zero phase produces counter-clockwise

rotation about the x̂′-axis, and an RF pulse with a phase of 180◦ (−θ) produces

clockwise rotation about the x̂′-axis.

In the SSFP pulse sequences we explored, the magnitude of the flip angle is the

same for each RF pulse, but the phase alternates by 180◦ between successive exci-

tations. The switching can be thought of in two ways: either the sign of the angle

rotation is constant, but the axis about which the spins rotate changes 180◦, or the

axis of rotation is constant but the sign of the rotation angle alternates (switching

between ±θ). The result of an RF excitation with alternating phase is to produce

transverse magnetization with alternating phase as well (Figure 4.1).
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(a) +θ (b) −θ

Figure 4.1: The rotating frame x̂′ − ŷ′ is determined by the resonant frequency of
the spins in the holding field, ω0 = γB0. The transverse magnetization MT is ro-
tated counter-clockwise about the x̂′-axis by a positive flip angle (a), and clockwise
by a negative flip angle (b).

4.2 Magnetization Evolution under Steady State Free

Precession

When an SSFP pulse sequence like the one shown in Figure 4.2 is applied to ther-

mal equilibrium polarization, the magnetization evolution eventually reaches a

steady state in which the longitudinal and transverse components of the magne-

tization following each RF excitation are constant. Due to the alternating phase

of the RF excitations, the transverse signal will experience some refocusing of off-

resonant phase accumulation, similar to the effect in spin echo pulse sequences

discussed in Chapter 2. The refocusing due to RF phase alternation occurs even

for the low flip angles used with hyperpolarized magnetization. Figure 4.3 demon-

strates the alternating behavior of the signal, with T1 and T2 relaxation suppressed.

Throughout the time between RF pulses, the transverse and longitudinal compo-
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Figure 4.2: A non-imaging version of a steady state free precession pulse sequence
with excitation RF pulses that alternate between flip angles of ±θ.

nents are relaxing toward thermal equilibrium. However, the signal is the same

after each RF excitation at any point in the TR period.

The magnetization evolution under the influence of an SSFP pulse sequence is

modeled as follows: we begin by assuming a purely longitudinal initial magneti-

zation,

M(0) =


0

0

Mi

 , (4.1)

where the components of the vector M are the magnitudes of the magnetization in

the x̂′, ŷ′, and ẑ directions. In the case of thermal equilibrium polarization, Mi ≡

M0 the thermal equilibrium value of magnetization. To take full advantage of the

refocusing effects of alternating the excitation RF phase, the signal is measured at
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Figure 4.3: In steady state, the magnetization vector alternates orientation between
±θ/2. The relaxation behavior has been suppressed in this picture.

t = TR/2. The measured signal evolves from one TR period to the next via the

following matrix equation:

M(n + 1) = Γhal f ∗ R±(θ) ∗ Γhal f ∗M(n), (4.2)

where M(n) is the magnetization vector after the n-th RF excitation pulse, Γhal f is a

relaxation matrix for evolving the magnetization through half of a TR period, and

R± is the rotation matrix associated with each RF pulse, which alternates between

±θ. The RF excitations are assumed to rotate the magnetization about the x̂′-axis,
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for which the rotation matrix is:

R±(±θ) =


1 0 0

0 cos θ ± sin θ

0 ∓ sin θ cos θ

 . (4.3)

A positive flip angle +θ corresponds to a counter-clockwise rotation about x̂′. The

relaxation matrix is:

Γhal f =


e−

TR/2
T2 0 0

0 e−
TR/2

T2 0

0 0 e−
TR/2

T1 + M0(1− e−
TR/2

T1 )

 . (4.4)

In hyperpolarized magnetization, the thermal equilibrium polarization is negli-

gible compared to the hyperpolarized longitudinal magnetization (M0 ≈ 0) and

Γhal f becomes:

Γhal f =


e−

TR/2
T2 0 0

0 e−
TR/2

T2 0

0 0 e−
TR/2

T1

 . (4.5)

The simulations of magnetization evolution that will be described in this chap-

ter are based on iteratively applying Equation 4.2 to a magnetization vector using

the matrices defined in Equation 4.3 and either Equation 4.4 or 4.5. Each simulation

began with the initial magnetization vector shown in equation 4.1, with Mi = 1.

The x̂′, ŷ′, and ẑ components of the magnetization were calculated at three time

points in each TR period, which are denoted by the vectors M+(n) (immediately

following the n-th RF excitation), M(n) (at t = TR/2), and M−(n + 1) (immedi-

ately before the next RF pulse).

We first simulated the evolution of the magnetization vector for thermal equi-



4.2 Magnetization Evolution under Steady State Free Precession 82

librium polarization. The input parameters to the simulation were chosen to be

physically realistic: TR = 5 ms, θ = 5◦, T1 = 2 s and T2 = 100 ms. The simula-

tion ran for 2000 RF excitations. At the end of this simulation, the evolutions of

the M+(1999) and M+(2000) magnetization vectors were then evolved over their

respective TR periods using the relaxation matrix:

M(t) =


e−

t
T2 0 0

0 e−
t

T2 0

0 0 e−
t

T1 + M0(1− e−
t

T1 )

 ∗M+(2000). (4.6)

The results of this calculation are shown in Figure 4.4. The magnitude of the trans-

verse magnetization, My′(t) is plotted versus the magnitude of the longitudinal

magnetization, Mz(t), over the course of consecutive TR periods. The signal evo-

lution begins at position 1, immediately following an RF pulse of flip angle +θ.

From position 1 to 2 relaxation occurs, resulting in an increased longitudinal com-

ponent and a decreased transverse component. The RF excitation of−θ rotates the

vector from position 2 to 3. Relaxation from position 3 to position 4 again increases

the longitudinal component and decreases the transverse component.

This simulation allows us to understand the qualitative features of the steady-

state magnetization for representative physical parameters. We see that the mag-

netization reaches a steady state in which:

M(n) = M(n + 1) . (4.7)

The equilibrium magnetization M(∞) must satisfy Equation 4.2:

M(∞) = Γhal f ∗ R±(θ) ∗ Γhal f ∗M(∞) . (4.8)
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Figure 4.4: Simulated magnetization magnitude at steady state (after 2000 RF exci-
tations) during two consecutive TR windows for thermal equilibrium polarization.
Magnetization evolves from 1 to 2 and 3 to 4 via T1 and T2 relaxation (dotted gray
lines). Rotation due to RF excitations (dashed lines) move the magnetization vec-
tor from 2 to 3 and 4 to 1. Simulation parameters were: TR = 5 ms, T1 = 2 s,
T2 = 100 ms, and θ = 5◦.

Using this equality and Equations 4.3 and 4.4, the steady state transverse magneti-

zation (My′(∞)) can be calculated for the general case:

My′(∞) = M0e−
TR
T2 (1− e−

TR
T1 )

sin θ(1− e−
TR
T2 )

x
, (4.9)

where:

x ≡ (1− e−
TR
T1 cos θ)(1− e−

TR
T2 )− e−

TR
T2 (e−

TR
T1 − cos θ)(e−

TR
T2 − 1) . (4.10)

Equation 4.9 is well-studied, and used in conventional MR to optimize the

choice of SSFP pulse sequence parameters. We use the same formalism to guide a

derivation of the steady state signal for hyperpolarized magnetization in the next

section.
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4.3 Steady State Free Precession in Hyperpolarized Gas

(a) Longitudinal Magnetization (b) Transverse Magnetization

Figure 4.5: Simulated (a) longitudinal and (b) transverse magnetization for hyper-
polarized media and an SSFP pulse sequence with TR = 2ms, T1 = 20s, T2 =
100ms, and θ = 5◦.

The difference between thermal equilibrium magnetization and hyperpolarized

magnetization is that the longitudinal component decays instead of regrowing fol-

lowing each RF excitation, as reflected in Equation 4.5. We next simulated the

evolution of hyperpolarized magnetization using the formalism developed in the

previous section. Once again, the input parameters were chosen to be physically

realistic: TR = 5 ms, T1 = 20 s, T2 = 100 ms, and θ = 5◦ and the simulation ran for

2000 RF excitations. At the end of the simulation the evolutions of the M+(1998),

M+(1999), and M+(2000) magnetization vectors were then calculated over their

respective TR periods using the relaxation matrix in Equation 4.6 but with M0 = 0.

The simulated magnetization is shown in Figure 4.5 versus RF excitation n. The

longitudinal component after each RF excitation (Figure 4.5a) has an exponential

decline due to both T1 and the excitation RF pulses. The transverse magnetization
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in Figure 4.5b initially oscillates in the approach to steady state before reaching a

constant rate of decay.

Figure 4.6 illustrates the magnetization behavior during the time between RF

pulses once the system has reached steady state, over the course of three consec-

utive TR periods for hyperpolarized magnetization. For the purposes of demon-

stration, T2 was shortened to 50 ms to emphasize the transverse signal decay. The

signal evolution begins at position 1, immediately following an RF pulse of flip

angle +θ. From position 1 to 2 relaxation occurs, resulting in a decreased longitu-

dinal and transverse magnetization magnitudes. The RF excitation of −θ rotates

the vector from position 2 to 3. Relaxation from position 3 to position 4 again de-

creases both the longitudinal and transverse magnitudes. The RF excitation of +θ

rotates the vector from position 4 to 5. Another period of relaxation from position

5 to 6 reduces both components.

Figure 4.7 plots the steady state transverse magnetization ratio My′(n+ 1)/My′(n)

from the SSFP magnetization simulation in Figure 4.5b. This plot shows that the

ratio of consecutive transverse magnetizations is constant, even as the absolute

signal levels decline.

As in the thermally-polarized case, our simulation allows us to understand

the qualitative features of the magnetization evolution in the hyperpolarized case.

Now we can use Equations 4.2, 4.3, and 4.5 to derive a closed-form expression for

the steady state signal ratio M(n + 1)/M(n) produced by an SSFP pulse sequence

acting on hyperpolarized magnetization. We use the steady state nature of the

system,
M(n + 1)

M(n)
=

M(n + 2)
M(n + 1)

, (4.11)

to derive an expression for the ratio strictly in terms of TR, T1, T2, and θ. We use

the following shorthand notation for expressions which appear in the relaxation
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Figure 4.6: Simulated magnetization magnitude at steady state (after 2000 RF exci-
tations) during three consecutive TR windows for hyperpolarized magnetization.
Simulation parameters were TR = 5 ms, T1 = 20 s, T2 = 50 ms, and θ = 5◦. The
dashed lines represent the rotation effects of an RF excitation pulse and the dotted
gray lines represent relaxation effects from T1 and T2 during the TR period.

and rotation matrices:

E1 ≡ e−
TR
T1 , E2 ≡ e−

TR
T2 , s ≡ sinθ, c ≡ cosθ (4.12)

√
E1 ≡ e−

TR/2
T1 ,

√
E2 ≡ e−

TR/2
T2

. Here we assume that the magnetization is already at steady state, and thus has
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Figure 4.7: Simulated transverse signal ratio My′(n + 1)/My′(n) for hyper-
polarized media and an SSFP pulse sequence with TR = 2ms, T1 = 20s, T2 =
100ms, and θ = 5◦.

both transverse and longitudinal components:

M(n) =


0

My′

Mz

 . (4.13)

The magnetization is measured at t = TR/2, and evolves between measurements

as described previously:

M(n + 1) = Γhal f ∗ R−(θ) ∗ Γhal f ∗M(n), (4.14)

where we have arbitrarily chosen to start with R−(θ). We apply the relaxation and

rotation matrices to M(n) in order to obtain M(n + 1):

M(n + 1) =


0

cE2My′(n)− s
√

E1E2Mz(n)

s
√

E1E2My′(n) + cE1Mz(n)

 . (4.15)
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Next we apply Equation 4.2 with R+(θ) to M(n + 1) to get M(n + 2):

M(n + 2) = Γhal f ∗ R+(θ) ∗ Γhal f ∗M(n + 1) (4.16)

=


0

cE2My′(n + 1) + s
√

E1E2Mz(n + 1)

−s
√

E1E2My′(n + 1) + cE1Mz(n + 1)

 . (4.17)

Substituting the components of M(n + 1) from Equation 4.15:

M(n + 2) =


0

(c2E2
2 + s2E1E2)My′(n) + cs

√
E1E2(E1 − E2)Mz(n)

cs
√

E1E2(E1 − E2)My′(n) + (s2E1E2 + c2E2
1)Mz(n)

 . (4.18)

We focus on the transverse (ŷ′) component, as it is proportional to the signal mea-

sured by the MR scanner. The left side of Equation 4.11 becomes:

My′(n + 1)
My′(n)

= cE2 − s
√

E1E2
Mz(n)
My′(n)

. (4.19)

We can rearrange Equation 4.11 as follows:

My′(n + 1) ∗My′(n + 1) = My′(n + 2) ∗My′(n), (4.20)

and use the expression for My′(n + 2) to solve for the quantity Mz(n)
My′ (n)

. Substituting

in the expressions for My′(n + 1) and My′(n + 2) into Equation 4.20 and simplify-

ing, we have:
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−csE2
√

E1E2My′Mz + s2E1E2M2
z

= (s2E1E2)M2
y′ + cs

√
E1E2(E1)MzMy′ . (4.21)

Now we rearrange terms and divide by M2
y′ to get an expression involving Mz/My′ :

s2E1E2

(
Mz

My′

)2

− cs
√

E1E2(E2 + E1)
Mz

My′
− s2E1E2 = 0 . (4.22)

Solving this quadratic equation for Mz/My′ :

Mz

My′
=

cs
√

E1E2(E1 + E2)±
√

c2s2E1E2(E2 + E1)2 + 4s4E2
1E2

2

2s2E1E2
(4.23)

=
c(E1 + E2)±

√
c2(E2

2 + E2
1) + 2E1E2(1 + s2)

2s
√

E1E2
. (4.24)

Finally, we substitute Equation 4.24 into Equation 4.19 to get a closed-form expres-

sion for the ratio My′(n + 1)/My′(n) in terms of T1, T2, TR, and θ:

My′(n + 1)
My′(n)

= − c
2
(E1 − E2)±

√
c2(E2

2 + E2
1) + 2E1E2(1 + s2)

2
. (4.25)

Equation 4.25 defines the relationship between any two consecutive signal magni-

tudes assuming on-resonance magnetization. The ratio is a negative number since

the transverse components alternate sign at each RF excitation. The expression has

a complicated dependence on both the pulse sequence parameters TR and θ and

the relaxation parameters T1 and T2. In Figure 4.8, we have plotted the absolute
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values of both the solutions (±) and the magnetization simulation for parameters

common in hyperpolarized helium-3 MR in humans: T1 ≈ 20s, T2 ≈ 100ms, and

θ = 5◦.

(a) (b) (a) on smaller scale

Figure 4.8: Plot of simulation results (blue points) and Equation 4.25 minus/plus
solutions (red dashed line/black dotted line) versus TR. (a) Shows all three plots,
and (b) has been zoomed in to show the overlap of the magnetization simulation
and Equation 4.25 (-). Relaxation and excitation values used were T1 = 20s, T2 =
100ms, θ = 5◦.

The (-) solution matches the output of our simulation, so we take this to be the

correct physical description of the system:

My′(n + 1)
My′(n)

= − c
2
(E1 − E2)−

√
c2(E2

2 + E2
1) + 2E1E2(1 + s2)

2
. (4.26)

For the relaxation and excitation parameters simulated, the steady state ratio My′(n+

1)/My′(n) = 0.9993 ∼ 0.9999 is only slightly less than unity for the range of repe-

tition times plotted in Figure 4.8. By contrast, in an incoherent pulse sequence the

consecutive signal ratio equals cos θ, which here would be My′(n + 1)/My′(n) =

0.996 for θ = 5◦. The order of magnitude difference in signal loss between pulses

of the same flip angle in SSFP versus incoherent pulse sequences means that SSFP
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pulse sequences can use larger flip angles to obtain the same rate of signal decline

over the course of an acquisition. That is, it takes a larger flip angle to “use up”

the available hyperpolarized magnetization by the end of the scan. Since larger

flip angles generate larger transverse magnetization and thus higher signal, SSFP

pulse sequences are capable of producing higher signal-to-noise ratio in the ac-

quired data.

4.4 Effects of Off-resonant Magnetization

In addition to the potential SNR advantage of SSFP over incoherent pulse se-

quences, there are other tradeoffs which will factor into our design of diffusion-

weighted SSFP pulse sequences. A disadvantage of coherent pulse sequences such

as SSFP is sensitivity of the signal size to off-resonant magnetization. Spins which

precess at the frequency of the rotating frame x̂′-ŷ′ (ω0) are said to be on-resonance,

while spins with either a higher or lower precession frequency are known as off-

resonant spins. The rotating-frame frequency is input to the MR scanner, and it de-

termines the excitation frequency of the RF pulse and the demodulation frequency

of the data acquisition. Most importantly for our application, it also determines the

phase of the RF excitation and thus the axis about which the flip angle is applied.

The transverse components of on-resonance spins are stationary in the rotating

frame. Off-resonance spins rotate in this frame and thus accumulate phase during

the TR period, mixing the ŷ′ and x̂′ components of the transverse magnetization.

During the TR period, an off-resonant spin rotates in the x̂′-ŷ′ plane through an

angle we will refer to as β. To demonstrate the effects of off-resonant magnetization

on the steady state signal, we modified the our simulation to allow for a rotation

of the transverse magnetization component by an angle β during each TR period.

Figure 4.9a shows the simulated steady-state evolution of the transverse mag-
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netization for several different values of β: 100◦ (red and blue curves), 130◦ (green

and black curves), or 160◦ (purple and orange curves). The magnetization evolved

from the point labeled with a plus sign to the point labeled with a diamond for

each curve, with the t = TR/2 point labeled with a circle. The transverse magne-

tization now has both ŷ′ and x̂′ components, in contrast to the simulations plotted

in Figures 4.4 and 4.6. Figure 4.9b shows the total transverse magnitude MT =√
M2

y′ + M2
x′ measured at t = TR/2 for the full range of possible precession angles

β = −180◦ → +180◦ at two different flip angles, θ = 5◦ (blue circles) and θ = 10◦

(red stars).

(a) Magnetization Evolution during TR. (b) Magnetization Vs β

Figure 4.9: (a) Plot of simulated transverse magnetization (ŷ′ vs. x̂′) for two
consecutive TR periods in the presence of off-resonance: β = [100◦, 130◦, and
160◦]per TR. (b) The total transverse magnetization measured at t = TR/2 from
β = [−180 → +180] for θ = 5◦, 10◦. Simulation parameters for hyperpolarized
magnetization were TR= 2ms, T1 = 20s, and T2 = 100ms.

For off-resonance precession angles of β ≤ 100◦ per TR, the transverse mag-

netization magnitude measured at t = TR/2 is nearly equal to the value in the

on-resonance case (β = 0), as shown in Figure 4.9b. Thus at this flip angle, the

measured signal will be relatively insensitive to off-resonant magnetization when

β ≤ 100◦ per TR. For larger values of β, the transverse magnetization is much

lower than the on-resonance value at all times throughout the TR period.
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When using an SSFP pulse sequence to create an image, regions in which β ∼

180◦ per TR will not have appreciable signal, leading to dark areas in the final im-

age. The main source of off-resonant magnetization precession is relatively smooth

spatial variations in the main holding field of the MR scanner. Since the minimum

signal occurs along contour lines where the resulting frequency offset corresponds

to β = 180◦, this effect usually appears in SSFP images as curved lines of greatly

reduced signal, often referred to as “banding artifacts”. The most common (and

effective) means of suppressing off-resonance effects in an SSFP imaging pulse se-

quence is to reduce TR, which reduces β proportionally. Another method of reduc-

ing signal loss due to off-resonant magnetization is to improve the active magnetic

field shim to reduce macroscopic field variation across the sample, although this

approach is impractical for hyperpolarized gas imaging. Since the off-resonance

precession angle β is also proportional to gamma, SSFP acquisitions are more sus-

ceptible to banding artifacts at higher holding fields.

While macroscopic field variations generally produce gentle variations in β

across the imaged volume, microscopic field inhomogeneities will result in a range

of β values that exist within a given sampling region. This type of environment is

present in the lungs, where there are susceptibility-induced magnetic field gradi-

ents at the air/tissue interfaces. For a collection of β values in the same sampling

region, the measured signal is a coherent average over the magnitudes shown in

Figure 4.9b. The effect of microscopic field variations is to reduce the net signal

compared to the on-resonance value. When making diffusion measurements in

the lung, both macroscopic and microscopic field variations are present. In devel-

oping an SSFP-based method for measuring diffusion in hyperpolarized gas MR,

we therefore evaluated our pulse sequences under both of these conditions.
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4.5 Preliminary SSFP Measurements

Our calculations and simulations indicate that the ratio of consecutive signals at

steady state should be M(n + 1)/M(n) = 1 for magnetization at thermal equi-

librium, and M(n + 1)/M(n) < 1 for hyperpolarized magnetization. To confirm

this theoretical result, we collected data using the basic global (non-imaging) SSFP

sequence shown in Figure 4.2 in both a plastic water bottle phantom and a glass

sphere phantom filled with hyperpolarized helium-3. A 1.5 T Siemens Magne-

tom Avanto MR scanner was used to acquire data (Siemens Medical Solutions,

Malvern PA). The pulse sequence used for these tests had the following parame-

ters: TRH1 = 2.0ms, TRHe3 = 2.1ms, θH1 = 2◦, θHe3 = 4◦, RF pulse duration =

100µs, and RF phase = 0◦/180◦. Figure 4.10 shows the signal measured at t =

TR/2 using the SSFP pulse sequence in (a) the water sample and (b) the hyper-

polarized helium-3 sample. Figure 4.10c graphs the ratio of consecutive points

M(n + 1)/M(n) from the helium-3 data.

The raw data from these tests show a systematic difference between signal mea-

surements acquired after RF pulses with flip angles of +θ and −θ. In Figure 4.10a

and (b), the blue points represent data taken after an excitation RF pulse with the

phase set to 0◦ (+θ), and the red points represent RF phase set to 180◦ (−θ). The

size of the difference between red and blue points is similar in water and helium,

∼4% of the total signal level.

While such a “baseline difference” has not been reported previously in a global

acquisition, it seems to be present in data taken by Wild, et al in the form of the

small oscillations in global MR data (Figure 2, reference [67]). This baseline dif-

ference appears similar to an effect observed in conventional 1H SSFP imaging,

in which small oscillations in steady-state signal corresponding to RF phase are

known to cause a type of imaging artifacts referred to as N/2 ghosts. The N/2
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ghost artifacts can be removed by repeating phase-encode lines in each RF phase

position (±θ) and averaging them before taking a Fourier transform to create the

image.

The source of these RF phase-dependent oscillations is traditionally believed to

be eddy currents produced by the imaging gradients [68]. However, as no gradient

pulses were applied in our experiment, eddy currents due to gradients cannot be

the cause of the altered steady state we observe. It has been suggested that imper-

fection in the excitation RF pulses, such as a phase difference between pulses not

equal to 180◦, can result in oscillations in the steady state [69].

As outlined in Section 2.5, the ADC value is typically calculated from the ra-

tio of two consecutive MR acquisitions, one with diffusion-weighting and one

without. Thus, a baseline difference in signal levels correlated with alternating

RF phase angles would compromise our ability to extract an accurate ADC value

from a diffusion-weighted SSFP pulse sequence. To better understand this poten-

tial confounder, we performed additional tests of the non-diffusion-weighted SSFP

pulse sequence to investigate the size and dependence of the baseline asymmetry.

As shown in Figure 4.10c, the steady state ratio of consecutive measurements

in a system with a baseline asymmetry alternates between values above and below

one. The convention for the results presented below is to only show one of these

ratios, red points divided by blue points. This gives a ratio of less than one for RF

phase set to 0◦/180◦. The pulse sequence used for our next series of tests had the

following default parameters: TR = 2.1ms, θ = 4◦, RF pulse duration = 100µs,

and RF phase = 0◦/180◦. We varied each of these parameters separately to see the

dependence of the baseline asymmetry on each. We performed these tests using a

hyperpolarized helium-3 phantom on the 1.5 Tesla MRI scanner and using a water

phantom on the 1.5 T and 3 T scanners. Figure 4.11 shows the ratio of the steady
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Figure 4.10: Raw global SSFP data from (a) water and (b) hyperpolarized 3He. (c)
Ratio of consecutive signals from helium data in (b).
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state signal as function of (a) RF phase angle, (b) RF pulse duration, (c) TR, and (d)

flip angle.

(a) Vary RF Phase Angle (b) Vary RF Duration

(c) Vary TR (d) Vary θ

Figure 4.11: Steady-state ratio baseline asymmetry vs (a) RF phase, (b) RF duration,
(c) TR, and (d) θ. Data was taken in a water phantom on both the 1.5T and 3T
scanners, and in a hyperpolarized 3He phantom at 1.5T. Unless noted: TR =
2.1ms, θ = 4◦, RF pulse duration = 100µs, and RF phase = 0◦/180◦.

In all three of the phantom-scanner tests we performed, the size of the base-

line asymmetry has clearly depends on each of the varied parameters. As the RF

phase angle (a) changes, the flip-angle axis of rotation is being varied in the x’y’-

plane. Over the course of the 360◦ cycle, the rotation axis changes from about

x̂′ (RF phase= 0◦) → ŷ′ (RF phase= 90◦) → −x̂′ (RF phase= 180◦) → −ŷ′ (RF
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phase= 270◦)→ x̂′ (RF phase= 360◦). Our experiment shows the measured signal

ratio goes from less than one to greater than one and back to its initial value. The

angular dependence is slightly different for the two scanners (1.5 T and 3 T), as ev-

idenced by the different zero-crossing for the 3 T water data compared to both the

helium-3 and water data at 1.5 T. It appears that the baseline asymmetry can be

minimized by careful selection of the RF phase angles to the zero-crossing, located

at approximately 100◦ and 280◦ for the 1.5 T MR scanner.

As for the other parameter spaces we explored, the regimes in which the asym-

metry is the smallest are also regimes in which it is less desirable to operate when

using hyperpolarized magnetization. Increasing RF pulse duration (b) or TR (c)

does reduce the size of the asymmetry, however increased TR would lead to an

increase in the effects of off-resonant magnetization on the signal. The use of large

flip angles (d) also seems to reduce the baseline asymmetry, but large values of θ

could quickly exhaust the signal available from the hyperpolarized gas.

In summary, we measured the baseline difference in SSFP signal levels due

to RF phase on two different MRI scanners and using several different RF coils.

Although we were unable to determine the origin of the baseline difference, by

characterizing the behavior of the asymmetry we were able to devise a strategy for

minimizing its effect on our steady state ratio, which is detailed in Section 5.4.
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4.6 Diffusion-weighted SSFP with Hyperpolarized Mag-

netization

Although this thesis presents the first application of SSFP to hyperpolarized gas

diffusion MR, SSFP diffusion-weighted pulse sequences have been implemented

for conventional MR, primarily for use in the brain [70–72]. McNab and Miller

provide a thorough review of the technique in reference [73]. The most common

method of inducing diffusion attenuation in an SSFP pulse sequence is to apply

a single diffusion gradient lobe during one TR period, and apply the rephasing

gradient lobe during a different TR period several RF excitations later. The large

temporal separation of the two gradient lobes is necessary to generate measurable

diffusion attenuation, due to the very low diffusion coefficient of water. However,

the coherent nature of the SSFP pulse sequence means that each RF excitation con-

verts some fraction of the existing longitudinal magnetization into transverse mag-

netization and vice versa. Since only the transverse component of the magnetiza-

tion is affected by the diffusion-sensitizing gradient pulses, and the magnetization

in a given sampling region is continually being split along different “pathways”

that spend different amounts of time in the transverse plane, there is no universal

diffusion time ∆. The diffusion gradient lobes do not have a well-defined b value,

therefore it is difficult to extract ADC measurements from this type of diffusion-

weighted SSFP pulse sequence.

The diffusion coefficient of helium-3 gas is several orders of magnitude larger

than that of liquid water ( 1.1), which means that ample diffusion attenuation can

be achieved by a single bipolar gradient contained in one TR period. By being

able to induce the diffusion attenuation within one TR period, we can incorporate

diffusion sensitization into an SSFP pulse sequence and still have a well-defined
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diffusion time and b-value, which should allow us to extract quantitative ADC

measurements. Furthermore, the SSFP pulse sequence should enhance our ability

to measure small diffusion attenuations at short diffusion times, as the signal size

is larger (and thus has higher SNR) than in an incoherent diffusion-weighted pulse

sequence.

We explored four methods of inducing diffusion sensitization in the SSFP se-

quence: (1) apply a bipolar diffusion gradient after every RF pulse and measure

the signal before and after the gradient, (2) apply the diffusion gradient after every

other RF pulse and compare the signal measured in diffusion-weighted TR periods

to non-diffusion-weighted TR periods, (3) apply the diffusion gradient after every

third RF pulse and compare the signals measured in the other two TR periods, and

(4) apply the diffusion gradient in either the first half or the second half of each TR

period and compare the signal measured at the center of each TR period. Each of

these methods produces a different effect on the steady-state magnetization, and

has advantages and drawbacks for extracting accurate ADC measurements which

are explored below.

4.6.1 Symmetric Diffusion-Weighted SSFP

The first method we explored for measuring hyperpolarized gas diffusion with

an SSFP pulse sequence consists of applying a bipolar diffusion gradient in each

TR period. The signal is sampled both before and after the diffusion gradient is

applied, and the ratio of the two signal levels is expected to be proportional to the

product of the diffusion attenuation and transverse relaxation. The magnetization

immediately after the n-th RF pulse is referred to as M+(n). The magnetization

evolves throughout the TR window to just before the next RF pulse, where it is
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labeled M−(n + 1). To extract a diffusivity measurement, we assume:

M−(n + 1) = M+(n)e
− TR

T2 e−bD (4.27)

We refer to this pulse sequence as the “Symmetric” diffusion-weighted SSFP pulse

sequence, as there is the same amount of signal attenuation in every TR period,

producing a steady state magnetization vector that flips symmetrically about the ẑ-

axis, similar to the illustration in Figure 4.3. Because the same amount of relaxation

and diffusion attenuation occurs in every TR period, this pulse sequence design

maintains a steady state in which the ratio of consecutive pulses is a constant.

In order to extract an ADC measurement from the steady state ratio of M−(n +

1)/M+(n) given in Equation 4.27, the transverse relaxation must be accounted

for by making an independent measurement of T2. In order to determine if this

method can produce accurate ADC measurements, we simulated the evolution

of hyperpolarized magnetization under the influence of the Symmetric diffusion-

weighted SSFP pulse sequence. Diffusion attenuation was incorporated into the

relaxation matrix of Equation 4.5 by replacing E2 → E2 ∗ ED = e−
TR
T2 e−bD. We

simulated the magnetization evolution for several values of diffusion attenuation

bD using TR = 2 ms, T1 = 20 s, T2 = 100 ms, and θ = 5◦.

Figure 4.12 shows the results of the magnetic simulation versus bD. As ex-

pected, the ratio M−(n + 1)/M+(n) is lower than the diffusion attenuation by a

constant factor due to T2-decay. When this transverse decay is factored out through

an independent measurement, the ratio can be used to calculate an ADC.

An important feature for any diffusion-weighted SSFP pulse sequence is how

the ADC measurement is affected by the presence of off-resonant magnetization.

As mentioned previously, substantial magnetic field variations are present in the

lung due to the magnetic susceptibility differences at the air/tissue interfaces. The
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Figure 4.12: Plot of signal ratio M−(n + 1)/M+(n) resulting from the simulation
of Symmetric diffusion SSFP vs applied diffusion attenuation. The signal ratio is
equal to the diffusion attenuation when adjusted for transverse relaxation.

signal measured in an SSFP pulse sequence contains both transverse and longi-

tudinal magnetization recycled from the previous RF pulses. In the presence of

magnetic field variations, the previous transverse component will be experiencing

refocusing throughout the TR period, in addition to relaxation due to T2 and atten-

uation due to diffusion gradient. In contrast, the longitudinal component will only

be declining due to transverse relaxation and diffusion attenuation, not refocusing.

The interaction between these different signal evolutions has the potential to affect

the signal ratio used for ADC measurement.

We added the ability to simulate off-resonant spins to our simulation of mag-

netization evolution during an SSFP pulse sequence in order to determine if this
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method of measuring diffusion attenuation is robust in an environment with off-

resonant magnetization. Instead of a single vector representing the magnetization

being measured M, a matrix of 101 vectors Mj were acted upon by the relaxation

and rotation matrices. Each vector was initialized to have only longitudinal mag-

netization, and was acted on by the rotation matrix as described before. During the

transverse evolution, each of the vectors Mj was rotated in the transverse plane

through an angle of β j/2 over each half of the TR period in addition to experi-

encing transverse relaxation. Two cases of off-resonant magnetization were con-

sidered, off-resonant precession due to macroscopic magnetic field variations and

precession due to microscopic magnetic field variations. To represent a frequency

mismatch due to macroscopic field inhomogeneities, the same β value was ap-

plied to all of the vectors, β j = β. The effect of microscopic field variations was

simulated by rotating the vectors by a collection of β j values centered about zero,

ranging from +βmax to −βmax, ∑101
j=1−βmax +

j−1
50 . In both cases, at the end of the

simulation the magnetization was averaged over all of the vectors Mj.

In the case of a single off-resonance precession angle β experienced by every

vector, the simulation shows that the ratio of M−(n + 1)/M+(n) is proportional to

the diffusion attenuation, and thus can be used to calculate an ADC if T2 is known.

However, Figure 4.13 shows the resulting ratio if there are multiple spins with

different values of β. The ratio is no longer proportional to diffusion attenuation

and therefore cannot be used to calculate an ADC. These results can be understood

as follows: in the single-β case the net transverse magnetization rotates about the

ẑ axis during the TR period, but otherwise maintains phase coherence and thus

the signal magnitude is preserved. In the multiple β case, the signal is reduced

at the end of the TR period due to loss of phase coherence, as the net signal is a

summation over vectors that have each precessed a different amount. Therefore
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the signal has decreased more than by the diffusion attenuation alone, reducing

the measured ratio as shown in Figure 4.13 and resulting in an overestimation of

the ADC.

Figure 4.13: Plot of signal ratio M−(n+ 1)/M+(n) resulting from the simulation of
Symmetric diffusion SSFP vs increasing spread of off-resonance precession angle
β. The ratio deviates from the applied diffusion attenuation as a larger spread of
off-resonant precession angles are averaged together.

Thus we see that the Symmetric diffusion-weighted SSFP is a straight forward

way to generate diffusion-weighting, but it is not well-suited to making ADC mea-

surements in the lung. Furthermore, the comparison of signals measured at differ-

ent times in the TR period requires in an independent measurement of transverse

relaxation T2 in order to calculate an ADC from the signal ratio. In an incoherent

pulse sequence, this can be achieved by omitting diffusion-sensitizing gradient in

every other TR period and measuring the signal ratio in the absence of diffusion



4.6 Diffusion-weighted SSFP with Hyperpolarized Magnetization 105

attenuation. However, it will be seen in the next section that in a coherent pulse

sequence, alternating TR periods with and without diffusion attenuation leads to

a highly asymmetric steady state which further complicates the measurement.

4.6.2 Asymmetric Diffusion-Weighted SSFP

Figure 4.14: In steady state, the magnetization vector alternates asymmetrically.
The relaxation behavior has been suppressed in this picture.

The next method we developed for introducing diffusion sensitization into the

SSFP pulse sequence mimics the way in which diffusion measurements are made

with incoherent pulse sequences, by alternating acquisitions with and without dif-

fusion gradients. However, because the sign of the flip angle also alternates every

acquisition, the diffusion attenuation occurs only when the (on-resonance) trans-

verse magnetization vector is on one side of the x̂′ axis. Since the diffusion attenu-
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ation is applied asymmetrically with respect to the axis of symmetry as shown in

Figure 4.14, we refer to this method as the “Asymmetric” diffusion-weighted SSFP

pulse sequence.

The simulated magnetization evolution of the Asymmetric diffusion-weighted

SSFP pulse sequence is plotted in Figure 4.15. The asymmetric signal attenua-

tion results in a very different steady state than the symmetric case shown in

Figure 4.5. Our simulation shows that in this steady state the magnitude of the

transverse magnetization is alternating between two levels, although in the hyper-

polarized case both levels are decreasing (Figure 4.15a). Figure 4.15b shows the

simulated magnetization over four consecutive TR periods after the system has

reached steady state. The ratio of the two signal levels is constant at steady state.

This ratio depends on the balance between asymmetric magnetization attenuation

(due to diffusion) and symmetric attenuation (due to relaxation).

Our simulation indicates that the steady-state signal ratio My′(n + 1)/My′(n)

can actually be much lower than the signal ratio between diffusion-weighted and

non-diffusion weighted signals measured with an incoherent diffusion-weighted

pulse sequence:

RIncoherent =
S(DW)

S(NDW)
= e−b∗D, (4.28)

where S(DW) is the signal from a TR period which contains a bipolar diffusion

gradient, and S(NDW) is the signal a TR period with no diffusion gradient. The

degree to which My′(n + 1)/My′(n) in the Asymmetric diffusion-weighted SSFP

pulse sequence is less than e−b∗D depends on the relative size of the symmetric at-

tenuation (due to T1, T2, and θ) compared to the diffusion attenuation. The poten-

tial for enhanced sensitivity to diffusion made the Asymmetric diffusion-weighted

SSFP pulse sequence attractive for making measurements at very short diffusion

times, where the achievable diffusion attenuation is small due to scanner gradient
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(a) My′ vs RF pulse (b) My′ vs Mz

Figure 4.15: Simulated magnetization (a) versus RF pulse and (b) components
over several TR periods for hyperpolarized media and an asymmetric diffusion-
weighted SSFP pulse sequence with TR = 2ms, T1 = 20s, T2 = 50ms, and θ = 5◦.
In (a) the signal alternates between the two levels after each RF pulse. In (b)The
magnetization evolves sequentially from position 1 to position 8, and the dashed
lines represent RF excitation rotation while the dotted gray lines represent relax-
ation.

limitations. However, extracting quantitative ADC measurements from the signal

ratio My′(n+ 1)/My′(n) is very complicated as the expression for the ratio will de-

pend on several unknown parameters in addition to D. We will derive the steady

state ratio My′(n + 1)/My′(n) for the Asymmetric diffusion-weighted SSFP pulse

sequence, and explore how the ratio is affected by the presence of off-resonance

magnetization.

The simulations of the symmetric application of diffusion gradients in the pre-

vious section illustrated the importance of measuring the signal at t = TR/2. Fig-

ure 4.16 shows the timing of the Asymmetric diffusion-weighted SSFP pulse se-

quence. The diffusion gradients are applied before and after the data acquisition

to maximize the applied diffusion attenuation while maintaining a centered data

acquisition. To incorporate diffusion attenuation into our equations and simula-
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Figure 4.16: Asymmetric diffusion-weighted SSFP pulse sequence diagram. Diffu-
sion gradients (GD) are applied in every other TR window both before and after
the DAQ, in order to measure the signal at t = TR/2.

tion, we model it as an additional transverse relaxation:

ED ≡ e−b∗D, ΓD−1/2 =


√

E2ED 0 0

0
√

E2ED 0

0 0
√

E1

 . (4.29)

The progression of the magnetization is modified from the non-diffusion weighted
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case as follows:

M(n + 1) = ΓD−1/2 ∗ R−(θ) ∗ Γhal f ∗M(n), (4.30)

M(n + 2) = Γhal f ∗ R+(θ) ∗ ΓD−1/2 ∗M(n + 1), (4.31)

and

M(n + 3) = ΓD−1/2 ∗ R−(θ) ∗ Γhal f ∗M(n + 2) . (4.32)

(4.33)

Due to the asymmetry of the diffusion timing the steady state ratio becomes:

M(n + 1)
M(n)

=
M(n + 3)
M(n + 2)

. (4.34)

Using this equation, we can solve for the transverse component My′(n+ 1)/My′(n)

in terms of T1, T2, TR, θ, b, and D. We begin with some steady state magnetization:

M(n) =


0

My′

Mz

 . (4.35)

Solving for M(n + 1):

M(n + 1) = ΓD−1/2 ∗ R−(θ) ∗ Γhal f ∗M(n) (4.36)

=


0

cE2
√

ED My′ − s
√

E1E2ED Mz

s
√

E1E2My′ + cE1Mz

 . (4.37)
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Now we can solve for the left side of equation 4.34:

My′(n + 1)
My′(n)

= cE2
√

ED − s
√

E1E2ED
Mz

My′
. (4.38)

We solve for Mz
My′

by getting expressions for M(n + 2) and M(n + 3) and rearrang-

ing Equation 4.34. We determine M(n + 2):

M(n + 2) = Γhal f ∗ R+(θ) ∗ ΓDhal f ∗M(n + 1) (4.39)

=


0

cE2
√

ED My′(n + 1) + s
√

E1E2Mz(n + 1)

−s
√

E1E2ED My′(n + 1) + cE1Mz(n + 1)

 (4.40)

Substituting the values for M(n + 1) from Equation 4.37, we have:

M(n + 2) =


0

(c2E2
2ED + s2E1E2)My′ + cs

√
E1E2(E1 − E2ED)Mz

cs
√

E1E2(E1 − E2ED)My′ + (s2E1E2ED + c2E2
1)Mz

 . (4.41)

Now we solve for M(n + 3):

M(n + 3) = ΓDhal f ∗ R−(θ) ∗ Γhal f ∗M(n + 2) (4.42)

=


0

cE2
√

ED My′(n + 2)− s
√

E1E2ED Mz(n + 2)

s
√

E1E2My′(n + 2) + cE1Mz(n + 2)

 . (4.43)
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Substituting the values for M(n + 2) from Equation 4.41, we have:

M(n+ 3) =



0

(c3E3
2ED
√

ED + cs2E1E2
2
√

ED)My′ + c2E2s
√

E1E2ED(E1 − E2ED)Mz

−(cs2E1E2
√

ED(E1 − E2ED)My′ + (s3E1E2ED
√

E1E2ED + c2sE2
1
√

E1E2ED)Mz)

(c2sE2
2ED
√

E1E2 + s3E1E2
√

E1E2)My′ + cs2E1E2(E1 − E2ED)Mz

+c2s
√

E1E2(E2
1 − E1E2ED)My′ + (cs2E2

1E2ED + c3E3
1)Mz


(4.44)

=



0

cE2
√

ED(c2E2
2ED + s2(E1E2 − E2

1 + E1E2ED))My′

+s
√

E1E2ED(c2(E1E2 − E2
2ED − E2

1)− s2E1E2ED)Mz

s
√

E1E2(s2E1E2 + c2(E2
1 − E1E2ED + E2

2ED))My′

+cE1(c2E2
1 + s2(E1E2ED + E1E2 − E2

2ED))Mz


. (4.45)

With these expressions, we can substitute into the transverse component of Equa-

tion 4.34:
My′(n + 1)

My′(n)
=

My′(n + 3)
My′(n + 2)

, (4.46)

and solve for Mz
My′

in Equation 4.38. Rearranging our terms in Equation 4.46:

My′(n + 1) ∗My′(n + 2) = My′(n + 3) ∗My′(n), (4.47)

we can substitute in the components of My′(n + 1), My′(n + 2), and My′(n + 3) in
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terms of My′ and Mz alone:

(cE2
√

ED My′−s
√

E1E2ED Mz)

∗((c2E2
2ED + s2E1E2)My′+cs

√
E1E2(E1 − E2ED)Mz)

= cE2
√

ED(c2E2
2ED+s2(E1E2 − E2

1 + E1E2ED))M2
y′ (4.48)

+s
√

E1E2ED(c2(E1E2 − E2
2ED − E2

1)− s2E1E2ED)MzMy′ .

We simplify both sides of the expression:

cE2
√

ED(c2E2
2ED + s2E1E2)M2

y′

+s
√

E1E2ED(c2(E1E2−2E2
2ED)− s2E1E2)MzMy′

−cs2E1E2
√

ED(E1 − E2ED)M2
z

= cE2
√

ED(c2E2
2ED + s2(E1E2 − E2

1 + E1E2ED))M2
y′ (4.49)

+s
√

E1E2ED(c2(E1E2 − E2
2ED − E2

1)− s2E1E2ED)MzMy,

and rearrange terms:

0 =cs2E1E2
√

ED(E1 − E2ED)M2
z

+s
√

E1E2ED(c2E2
2ED + s2E1E2)MzMy′

−s
√

E1E2ED(c2E2
1 + s2E1E2ED)MzMy′ (4.50)

+cs2E1E2
√

ED(E2ED − E1)M2
y′ .
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Dividing by M2
y′ , we have a quadratic equation involving Mz

My′
:

0 =cs2E1E2
√

ED(E1 − E2ED)
( Mz

My′

)2

+s
√

E1E2ED
(
c2(E2

2ED − E2
1) + s2(E1E2 − E1E2ED)

) Mz

My′
(4.51)

−cs2E1E2
√

ED(E2ED − E1) .

Solving the quadratic equation for Mz
My′

:

Mz

My′
=
−s
√

E1E2ED
(
c2(E2

2ED − E2
1) + s2(E1E2 − E1E2ED)

)
±
√

X
2cs2E1E2

√
ED(E1 − E2ED)

, (4.52)

where

X ≡ s2E1E2ED
(
c2(E2

2ED − E2
1) + s2(E1E2 − E1E2ED)

)2
+ 4c2s4E2

1E2
2ED(E1 − E2ED)

2 .

Simplifying the expression for X:

X = s2E1E2ED[c4(E2
2ED − E2

1)
2 + s4(E1E2 − E1E2ED)

2

+2c2s2(E1E3
2ED − E3

1E2 − E1E3
2E2

D + E3
1E2ED) (4.53)

+4c2s2E1E2(E3
1E2 − 2E2

1E2
2ED + E1E3

2E2
D)]

= s2E1E2ED[c4(E2
2ED − E2

1)
2 + s4(E1E2 − E1E2ED)

2

+2c2s2(E1E3
2ED + E3

1E2 + E1E3
2E2

D + E3
1E2ED − 4E2

1E2
2ED)] (4.54)
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= s2E1E2ED[c4(E2
2ED − E2

1)
2 + s4(E1E2 − E1E2ED)

2

+2c2s2((E3
1E2 + E1E3

2ED)(1 + ED)− 4E2
1E2

2ED
)
] . (4.55)

Now we can insert the expression for Mz
My′

into Equation 4.38:

My′(n + 1)
My′(n)

= cE2
√

ED

−s
√

E1E2ED ∗
−s
√

E1E2ED
(
c2(E2

2ED − E2
1) + s2(E1E2 − E1E2ED)

)
± s
√

E1E2ED ∗
√

X
2cs2E1E2

√
ED(E1 − E2ED)

,

(4.56)

where

X ≡ c4(E2
2ED − E2

1)
2 + s4(E1E2 − E1E2ED)

2

+2c2s2((E3
1E2 + E1E3

2ED)(1 + ED)− 4E2
1E2

2ED
)

. (4.57)

Simplifying the expression for My′(n + 1)/My′(n):

My′(n + 1)
My′(n)

= cE2
√

ED

+s2E1E2ED ∗
(
c2√ED(E2

2ED − E2
1) + s2√ED(E1E2 − E1E2ED)

)
∓
√

X
2cs2E1E2

√
ED(E1 − E2ED)

, (4.58)

(4.59)

My′(n + 1)
My′(n)

= cE2
√

ED

+
√

ED ∗
(
c2(E2

2ED − E2
1) + s2(E1E2 − E1E2ED)

)
∓
√

X
2c(E1 − E2ED)

. (4.60)

(4.61)
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Equation 4.60 describes the ratio of consecutive transverse magnetizations which

results from introducing diffusion attenuation into alternating TR periods. The ra-

tio of the next pair of signals My′(n + 2)/My′(n + 1) would be the reciprocal as

the diffusion attenuation switches from numerator to denominator. Equation 4.60

has a complicated dependence on the relaxation, excitation, and diffusion param-

eters, so it is instructive to plot the result. We simulated the Asymmetric diffusion-

weighted SSFP pulse sequence on hyperpolarized magnetization, and the results

of the simulation are plotted versus bD in Figure 4.17 with Equation 4.60. The mi-

nus (-) expression (red stars) again matches the simulation of the magnetization

(blue points). The ratio of consecutive signals is much less than the incoherent sig-

nal ratio e−b∗D (black line) indicating that ADC maps made using this sequence

would have increased contrast compared to conventional incoherent ADC maps.

The enhancement of contrast due to diffusion would aid in the measurement dif-

fusion attenuation due to short-time scale gradients.

Due to the complexity of Equation 4.60, extracting an ADC value from data

acquired with the Asymmetric diffusion-weighted SSFP pulse sequence requires

knowledge of T1, T2, and θ. These parameters are not necessarily uniform through-

out a sample, which makes the Asymmetric diffusion SSFP pulse sequence im-

practical for quantitative measurements. However it is a promising option for

diffusion-weighted imaging due to the high contrast, which would be useful in

comparing healthy and diseased lung areas even if the signal ratio did not trans-

late into an ADC value.

The behavior of My′(n + 1)/My′(n) in the presence of off-resonance magneti-

zation is an important feature to study, as off-resonance magnetization is unavoid-

able in the lung. We incorporated off-resonance magnetization into our simulation

using the same basic methods described in the previous section. The results are
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Figure 4.17: Plot of signal ratio resulting from the simulation of Asymmetric diffu-
sion SSFP (blue points), diffusion attenuation (black line), and Equation 4.60 (red
line) versus b*D. T1 = 20s, T2 = 100ms, θ = 5◦.

plotted in Figure 4.18a for a single off-resonance precession angle β, and in Fig-

ure 4.25b for the superposition of a range of off-resonance precession angles. The

simulated ratio values are plotted as blue points, along with the calculated steady-

state ratio from Equation 4.60 as the red line, and the incoherent ratio e−b∗D as the

black line.

These results show that the significant contrast enhancement the occurs for

on-resonance magnetization is greatly reduced even for small off-resonant pre-

cession angles, and becomes less than the incoherent ratio e−b∗D for a single β >

10◦ per TR. Thus an extremely uniform holding field would be necessary to make

this diffusion-weighted pulse sequence work in practice.
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(a) Frequency Offset (b) Frequency Spread

Figure 4.18: Plot of signal ratio resulting from the simulation of Asymmetric dif-
fusion SSFP (blue points), e−b∗D (black line), and equation 4.60 (red line) versus
off resonance width, in degrees per TR. The parameters used in simulation and
calculation were: T1 = 20s, T2 = 100ms, θ = 5◦, TR = 2ms. (a) shows the effect of
a single β, (b) shows effect of averaging over a collection of β values.
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4.6.3 Group of Three Diffusion-Weighted SSFP

Figure 4.19: Simulated magnetization for the Group of Three diffusion-weighted
SSFP pulse sequence with TR = 2ms, T1 = 20s, T2 = 50ms, and θ = 5◦. The mag-
netization evolves sequentially from position 1 to position 12, and the dashed lines
represent RF excitation rotation while the dotted gray lines represent relaxation.

The next method we explored for quantitative obtaining quantitative measure-

ments of ADC values involves applying the diffusion gradient after every third

pulse and measuring the signal in the TR periods that do not contain diffusion

gradients. Figure 4.19 shows the magnetization evolution through six TR periods.

The periods between 1/2, 3/4, 7/8, and 9/10 experience relaxation only, whereas

the periods between 5/6 and 11/12 experience both relaxation and diffusion at-

tenuation. The steady state that develops has constant signal ratio between the TR
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periods in which there was no diffusion attenuation:

S(3→ 4)
S(1→ 2)

=
S(9→ 10)
S(7→ 8)

, (4.62)

where S(1 → 2) is the signal measured between time points 1 and 2, etc. The

size of the steady state ratio is again determined by a combination of diffusion and

relaxation parameters. The signal evolution during the TR periods displayed on

the graph with the larger transverse attenuation (5/6 and 11/12) cannot actually be

measured, as the magnetization is dephased during the application of the diffusion

gradients.

Figure 4.20: Group of Three diffusion-weighted SSFP pulse sequence diagram. Dif-
fusion gradients (GD) are applied in every third TR window (3 and 6), and the
signal ratio of the other two windows (2/1 and 5/4) reaches a steady state that is
strongly weighted by diffusion.

To be able to extract diffusivity measurements from the measured signal ratio
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in this pulse sequence, we must first derive the expression for the steady state

signal ratio My′(n + 1)/My′(n), and then examine the behavior of the ratio in the

presence of off-resonant magnetization.

The progression of the magnetization as measured at TR/2 is as follows:

M(n + 1) = Γhal f ∗ R−(θ) ∗ Γhal f ∗M(n), (4.63)

M(n + 3) = Γhal f ∗ R−(θ) ∗ ΓD ∗ R+(θ) ∗ Γhal f ∗M(n + 1), (4.64)

and

M(n + 4) = Γhal f ∗ R+(θ) ∗ Γhal f ∗M(n + 3), (4.65)

(4.66)

where M(n + 2) is not calculated because it cannot be measured by the scanner.

The Group of Three diffusion pattern results in an altered steady state ratio given

by:
M(n + 1)

M(n)
=

M(n + 4)
M(n + 3)

. (4.67)

Using this equation, we will solve for My′(n + 1)/My′(n) in terms of T1, T2, TR, θ,

b, and D. We begin in steady state with transverse and longitudinal magnetization:

M(n) =


0

My′

Mz

 . (4.68)

First we evolve the magnetization to M(n + 1):

M(n + 1) = Γhal f ∗ R−(θ) ∗ Γhal f ∗M(n) (4.69)
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=


0

cE2My′ − s
√

E1E2Mz

s
√

E1E2My′ + cE1Mz

 . (4.70)

Now we can solve for the left side of Equation 4.67:

My′(n + 1)
My′(n)

= cE2 − s
√

E1E2
Mz

My′
. (4.71)

On to the right side of Equation 4.67, beginning with M(n + 3),

M(n + 3) = Γhal f ∗ R−(θ) ∗ ΓD ∗ R+(θ) ∗ Γhal f ∗M(n + 1) (4.72)

=



0

My′
(
c3E3

2ED + cs2(E1E2
2ED + E1E2

2 − E2
1E2)

)
+

Mz
(
c2s(E1E2ED

√
E1E2 − E2

2ED
√

E1E2 − E2
1
√

E1E2)− s3E1E2
√

E1E2
)

My′
(
c2s(E2

2ED
√

E1E2 − E1E2
√

E1E2 + E2
1
√

E1E2) + s3E1E2ED
√

E1E2
)

+Mz
(
c3E3

1 + cs2(E2
1E2 + E2

1E2ED − E1E2
2ED)

)



.

(4.73)

Solving for M(n + 4):

M(n + 4) = Γhal f ∗ R+(θ) ∗ Γhal f ∗M(n + 3) (4.74)
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=



0

My′

(
c4E4

2ED + s4E2
1E2

2ED

+c2s2(E3
1E2 + E1E3

2 + 2(E1E3
2ED − E2

1E2
2))

)
+Mz

(
c3s(E3

1
√

E1E2 − E2
1E2
√

E1E2 − E3
2ED
√

E1E2 + E1E2
2ED
√

E1E2)

+cs3(E2
1E2
√

E1E2 − E1E2
2
√

E1E2 − E1E2
2ED
√

E1E2 + E2
1E2ED

√
E1E2)

)

My′

(
c3s(E3

1
√

E1E2 − E2
1E2
√

E1E2 − E3
2ED
√

E1E2 + E1E2
2ED
√

E1E2)

+cs3(E2
1E2
√

E1E2 − E1E2
2
√

E1E2 − E1E2
2ED
√

E1E2 + E2
1E2ED

√
E1E2)

)
+Mz

(
c4E4

1 + s4E2
1E2

2

+c2s2(E3
1E2ED + E1E3

2ED + 2(E3
1E2 − E2

1E2
2ED))

)



.

(4.75)

By rearranging the transverse component of Equation 4.67, we have:

My′(n + 1) ∗My′(n + 3) = My′(n + 4) ∗My′(n), (4.76)

My′(n + 1) ∗My′(n + 3)−My′(n + 4) ∗My′(n) = 0 . (4.77)

We again solve for the ratio of Mz
My′

, and substitute that into Equation 4.71. First we
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substitute the expression for My′(n + 4):

My′(n + 4) ∗My′(n) = M2
y′

(
c4E4

2ED + s4E2
1E2

2ED

+c2s2(E3
1E2 + E1E3

2 + 2(E1E3
2ED − E2

1E2
2)
))

+My′Mz
√

E1E2

(
c3s
(
E3

1 − E2
1E2 − E3

2ED + E1E2
2ED

)
+cs3(E2

1E2 − E1E2
2 − E1E2

2ED + E2
1E2ED

))
, (4.78)

and the expressions for My′(n + 1) and My′(n + 3):

My′(n + 1) ∗My(n + 3) = M2
y′

(
c4E4

2ED + c2s2(E1E3
2ED + E1E3

2 − E2
1E2

2)

)
+My′Mz

√
E1E2

(
c3s(E1E2

2ED − 2E3
2ED − E2

1E2) + cs3(E2
1E2 − 2E1E2

2 − E1E2
2ED)

)
+M2

z

(
s4E2

1E2
2 + c2s2(E1E3

2ED + E3
1E2 − E2

1E2
2ED)

)
.

(4.79)

We now substitute our expressions for My′(n + 1) ∗ My(n + 3) and My′(n + 4) ∗

My(n) into Equation 4.77:

0 = M2
z

(
s4E2

1E2
2 + c2s2(E1E3

2ED + E3
1E2 − E2

1E2
2ED)

)
−My′Mz

√
E1E2

(
c3s(E3

1 + E3
2ED) + cs3(E2

1E2ED + E1E2
2)

)
−M2

y′

(
c2s2(E3

1E2 + E1E3
2ED − E2

1E2
2) + s4E2

1E2
2ED

)
. (4.80)
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Rearranging terms and dividing by My′ , we have a quadratic equation in Mz/My′ :

0 =

(
Mz

My′

)2

s2E1E2

(
s2E1E2 + c2(E2

2ED + E2
1 − E1E2ED)

)
− Mz

My′
cs
√

E1E2

(
c2(E3

1 + E3
2ED) + s2(E2

1E2ED + E1E2
2)

)
−s2E1E2

(
c2(E2

1 + E2
2ED − E1E2) + s2E1E2ED

)
. (4.81)

Solving the quadratic equation for Mz/My′ gives:

Mz

My′
=

cs
√

E1E2

(
c2(E3

1 + E3
2ED) + s2(E2

1E2ED + E1E2
2)

)
±
√

X

2s2E1E2

(
s2E1E2 + c2(E2

2ED + E2
1 − E1E2ED)

) , (4.82)

where

X ≡ c2s2E1E2

(
c2(E3

1 + E3
2ED) + s2(E2

1E2ED + E1E2
2)

)2

+4 ∗ s4E2
1E2

2

(
s2E1E2 + c2(E2

2ED + E2
1 − E1E2ED)

)
∗
(

c2(E2
1 + E2
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)
(4.83)

= c6s2E1E2
(
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1 + E3
2ED

)2
+ 4s8E4

1E4
2ED

+2c4s4E2
1E2

2

(
E4

1(ED + 2)− E3
1E2(1 + 2ED)− E1E3

2ED(ED + 2) + 6E2
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2ED(1 + 2ED)

)
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1

(
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(
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(
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(4.84)

Mz

My′
=

c3(E3
1 + E3

2ED) + cs2(E2
1E2ED + E1E2

2)±
√

X

2s
√

E1E2

(
s2E1E2 + c2(E2

2ED + E2
1 − E1E2ED)

) (4.85)

Finally we substitute this equation for Mz/My′ into equation 4.71, and have an
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expression for the steady state ratio in terms of T1, T2, TR, θ, b, and D:

My′(n + 1)
My′(n)

= cE2 −
c3(E3

1 + E3
2ED) + cs2(E2

1E2ED + E1E2
2)±

√
X

2
(

s2E1E2 + c2(E2
2ED + E2

1 − E1E2ED)

) (4.86)

Equation 4.86 has a very complicated dependence on parameters which make

it difficult to determine how the ratio will depend on diffusion. The (-) expression

is plotted in red versus b ∗D in Figure 4.21 with blue points representing the simu-

lation of the magnetization evolution using the Group of Three diffusion-weighted

SSFP pulse sequence, and the incoherent ratio e−bD is the black line.

Figure 4.21: Plot of signal ratio resulting from the simulation of Group of Three
diffusion SSFP (blue points), e−bD (black line), and Equation 4.86 (red line) versus
b*D. Simulation and calculation parameters were: TR = 2 ms T1 = 20 s, T2 =
100 ms, θ = 5◦.

Despite the complicated dependence on system parameters reflected in Equa-
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tion 4.86, the signal ratio appears to be dominated by the diffusion attenuation

in the regime of relaxation values T1 and T2 common in hyperpolarized helium-3

MR in the lungs. If the expression was not dominated by diffusion attenuation, it

would be difficult to calculate an ADC value from the measured signal ratio given

by Equation 4.86, because T1, T2, and θ must be known. However for realistic

values of these parameters, the ratio expression can be approximated as:

My′(n + 1)
My′(n)

= ED = e−b∗D, (4.87)

which should allow us to obtain quantitative diffusion measurements from the

Group of Three diffusion-weighted SSFP pulse sequence for on-resonant magneti-

zation.

The next step in evaluating the Group of Three method is to determine how the

ratio My′(n + 1)/My′(n) changes in the presence of off-resonant magnetization.

Figure 4.22 shows the results of the magnetization simulation under the Group of

Three diffusion-weighted SSFP pulse sequence with off-resonant magnetization.

The magnetization behavior is simulated for a particular value of diffusion atten-

uation, b ∗ D = 0.05. In Figure 4.22a, one can see there is a transition point at

β = 60◦. Magnetization vectors which undergo an off-resonance precession of

β ≤ ±60◦ per TR have steady state signal ratios that are less than one. For off-

resonance precession angles of β > ±60◦ per TR, the steady-state signal ratio is

greater than one, a reversal of the expected contrast.

In Figure 4.22b, one can see that for a uniformly distributed collection of off-

resonance precession angles |β| < 70◦ per TR, the simulated ratio is close to or less

than the calculated value. For a larger spread of off-resonance precession angles,

the ratio measured will be greater than the diffusion attenuation, resulting in an

underestimation of the diffusion coefficient.
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(a) Frequency Offset (b) Frequency Spread

Figure 4.22: Plot of signal ratio resulting from the simulation of Group of Three
diffusion SSFP (blue points), diffusion attenuation (black line), and Equation 4.86
(red line) versus off resonance width, in Hz. T1 = 20s, T2 = 100ms, θ = 5◦,
TR = 2ms. (a) shows the effect of a single β, (b) shows effect of averaging over a
collection of βs.

Because the data acquisition window and the diffusion-sensitizing gradients

are contained in different TR periods in the Group of Three diffusion-weighted

SSFP pulse sequence, this pulse sequences permits shorter values of TR to be

achieved than any of the other three variations considered here. Therefore it is

possible that for short enough diffusion times, the range of off-resonant precession

angles present in human lungs will be low enough to allow accurate ADC mea-

surements to be made. We tested the Group of Three technique in phantoms and

human subjects and the results are presented in Chapter 5 and Chapter 6.

4.6.4 Before/After Diffusion-Weighted SSFP

The final method we developed to combine SSFP with diffusion sensitization in-

volves applying diffusion gradients in every TR window, similar to the Symmetric

diffusion-weighted SSFP pulse sequence. In the Before/After diffusion-weighted

pulse sequence, however, the transverse signal is measured either before or after

the gradient is applied, depending on the TR period as shown in Figure 4.23. In
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Figure 4.23: Before/After diffusion-weighted SSFP pulse sequence diagram. The
diffusion gradients (GD)are applied either before (2 and 3) or after (1 and 4) the
centered DAQ. By alternating the order of the gradients after-before-before-after
and taking the average ratio of S(be f ore)/S(a f ter), this method normalizes for
signal decline and baseline RF asymmetry.

order to avoid sensitivity to relaxation, the signal is measured at the same time

(t = TR/2) during every TR period. To accommodate both of these features the

diffusion gradients are placed in either the first half or the second half of the TR pe-

riod, depending on the desired ordering. The minimum repetition time for the Be-

fore/After method must therefore accommodate two bipolar diffusion gradients,

the data acquisition window, and the RF excitation pulse, which is much larger

than required for the Group of Three pulse sequence presented in the previous

section.

The steady state ratio of My′(n + 1)/My′(n) is purely determined by the diffu-
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sion attenuation,
M(before)
M(after)

= e−b∗D (4.88)

as the transverse relaxation is the same for both signals. As in the Symmetric dif-

fusion pulse sequence, the is no alternating between different signal levels in the

Before/After diffusion-weighted SSFP pulse sequence. There is the same amount

of signal attenuation in every TR period. We theorized that the constant decay

combined with the measurement of the signal at t = TR/2 would eliminate sen-

sitivity of the steady state ratio to off-resonant magnetization. We explored the

behavior of the magnetization under the Before/After diffusion-weighted pulse

sequence using our magnetization simulation. The results of the simulation are

plotted in Figure 4.24 for on-resonant magnetization.

Figure 4.24: Plot of signal ratio resulting from the simulation of Before/After
diffusion-weighted SSFP (blue points) and diffusion attenuation (red line) versus
b*D. T1 = 20s, T2 = 100ms, θ = 5◦.
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As expected, the Before/After diffusion-weighted SSFP pulse sequence pro-

duces a signal ratio equal to the diffusion attenuation in the absence of off-resonance

magnetization. We incorporated off-resonant magnetization into the simulation as

before, and plotted the signal ratio in Figure 4.25.

(a) Frequency Offset (b) Frequency Spread

Figure 4.25: Plot of signal ratio resulting from the simulation of Before/After
diffusion-weighted SSFP (blue points) and diffusion attenuation (red line) versus
off-resonant precession angle, in degrees/TR. T1 = 20s, T2 = 100ms, θ = 5◦,
TR = 2ms, b ∗ D = 0.05. (a) shows the effect of a single β, (b) shows effect of
averaging over a collection of β values.

The ratio of M(be f ore)/M(a f ter) is robust against off-resonant precession, a

clear benefit of the central sampling method compared to the Symmetric diffusion

pulse sequence. This effect is illustrated by looking at the signal size at t = TR/2

as a function of off-resonance angle β in Figure 4.26. The magnitude of the signal

at t = TR/2 goes down as β increases, so off-resonant spins do not contribute as

much to the value when averaging spins together.
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Figure 4.26: Plot of transverse magnetization magnitude at resulting from simu-
lation of Before/After diffusion-weighted SSFP (blue points) vs off-resonance pre-
cession angle β.
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4.7 Conclusions

In examining the effect of an SSFP pulse sequence on hyperpolarized magnetiza-

tion, we have shown that in the absence of diffusion attenuation, the magnetiza-

tion reaches a steady state in which the ratio of consecutive signals approaches a

constant value which depends on relaxation time constants T1 and T2 and pulse

sequence parameters TR and θ. For a given combination of these parameters, the

ratio of transverse magnetization in consecutive TR periods, My′(n + 1)/My′(n),

is much closer to unity in coherent SSFP pulse sequences than in incoherent pulse

sequences, due to the recycling of the previous transverse magnetization. This

smaller signal decline per RF excitation leads to the ability to use larger flip angles,

which results in higher SNR than is possible using an incoherent pulse sequence.

The increased SNR achievable using SSFP pulse sequences lead us to develop a

diffusion-weighted application of SSFP for hyperpolarized gases at short diffusion

times. The high diffusivity of helium-3 means that measurable diffusion attenua-

tion can be imparted by a bipolar pair of diffusion gradients executed in a single

TR period. We investigated several methods of incorporating diffusion sensitiza-

tion into an SSFP pulse sequence while maintaining a short diffusion time.

Each of the methods we investigated produced well-behaved diffusion-weighted

contrast in the presence of strictly on-resonant magnetization. In the case of the

Symmetric and the Before/After diffusion-weighted SSFP pulse sequences, the

ADC value was straight forward to calculate from the steady state signal ratio

My′(n+ 1)/My′(n). By contrast, the Asymmetric and the Group of Three diffusion-

weighted SSFP pulse sequences produced very different steady state magnetiza-

tion behaviors in which the signal attenuation was not the same after each pulse,

leading to complex signal ratio expressions. The complicated dependence of the

ratio My′(n + 1)/My′(n) on parameters other than D makes quantization of diffu-
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sion difficult in the Asymmetric diffusion-weighted SSFP pulse sequence, whereas

simplification is possible for the Group of Three version for the values of the relax-

ation time constants T1 and T2 present when using hyperpolarized helium-3 MR

in the lung.

The simulations of magnetization behavior in the presence of off-resonant mag-

netization helped further clarify the strengths and weaknesses of each of the pulse

sequences we developed for SSFP diffusion weighting. Only the Before/After

diffusion-weighted pulse sequence creates a steady state ratio that is robust against

the presence of off-resonant magnetization. Each of the other diffusion-weighted

SSFP pulse sequences creates a steady state ratio which deviates from the calcu-

lated value for off-resonant spins.

In our investigation of the non-diffusion weighted SSFP pulse sequence, we

discovered a previously unreported baseline asymmetry between transverse sig-

nals measured at alternating RF phase angles. The presence of a baseline asymme-

try would compromise our ability to make diffusion measurements from steady

state signal ratios, so we studied the effect and developed a technique to reduce

our sensitivity to it, which will be discussed in Chapter 5.



Chapter 5

SSFP Measurements of

Time-Dependent Diffusion

Our exploration of diffusion-weighted steady state free precession (SSFP) for hyper-

polarized gases in the previous chapter produced several methods of incorporat-

ing diffusion-sensitizing gradients into an SSFP pulse sequence. The Asymmetric

diffusion-weighted SSFP pulse sequence provides a great enhancement of contrast

between diffusion-weighted and non-diffusion-weighted acquisitions when com-

pared to incoherent diffusion-weighted pulse sequences, but the degree of con-

trast is highly sensitive to the presence of off-resonant magnetization. The Group

of Three diffusion-weighted SSFP pulse sequence also produces results that are

sensitive to off-resonant magnetization, but it has the shortest minimum TR of

our candidate diffusion-weighted SSFP pulse sequences and may therefore not

have significant off-resonant phase accumulation. The Before/After diffusion-

weighted SSFP pulse sequence was developed to be insensitive to the presence

of off-resonant magnetization for the purposes of calculating an ADC.

In this chapter, we use the SSFP pulse sequences developed in Chapter 4 to

make diffusion measurements. As described in Chapter 2, the diffusion coefficient
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D depends on the measurement time in the presence of restriction, D = D(t). To

test the ability of diffusion-weighted SSFP pulse sequences to produce accurate

diffusion measurements, we measured the time-dependent diffusion coefficient of

helium-3 in spherical glass phantoms. We developed versions of the Group of

Three and Before/After diffusion-weighted SSFP pulse sequences that measured

the ADC at multiple short diffusion times in a single scan. The phantoms were

completely filled with glass beads of either 1 mm, 2 mm, or 3 mm diameter. For

densely packed spherical beads, the theoretical behavior of the time-dependent

diffusivity is known, which allowed us to assess the accuracy of our ADC mea-

surements at short diffusion times. We then tested the multi-diffusion time SSFP

pulse sequence in human volunteers, to observe the time dependence of diffusiv-

ity in the lung and to better understand the range of diffusivities we should expect

to observe in diffusion-weighted SSFP imaging measurements made in the short

time-scale regime.

5.1 Time Dependence of the Restricted Diffusion Co-

efficient

Mitra, et al have shown that for very short diffusion times t, the time-dependent

diffusivity D(t) depends linearly on the square-root of the diffusion time, with a

slope proportional to the surface-to-volume ratio (S/V) of the space available for

diffusion [30],

D(t) = D0[1−
4

9
√

π

S
V

√
D0t], (5.1)

for t <<
1

(S/V)2D0
≡ t0, (5.2)
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where t0 represents a transition diffusion time between the short time-scale linear

region, and the non-linear region. The theoretical value of S/V for a dense pack of

spherical beads of diameter d is given by [34]:

S
V

=
6(1− φ)

dφ
. (5.3)

The parameter φ is the porosity of the space, defined as the fraction of empty space

in the volume available for diffusion. In our bead phantoms, the diffusing space

consists of the relatively large gaps or pores between the beads, which are con-

nected to each other by very narrow pathways along the edges of the beads. For

a random dense pack of identical spheres, the theoretical minimum porosity is

φ = 0.39 [34], independent of sphere diameter. The larger beads create larger

pores, but there is a higher number of pores in a phantom filled with smaller beads.

In order to extract an S/V ratio from time-dependent ADC data, multiple mea-

surements must be made in the linear region governed by Equation 5.2 to perform

a linear fit and calculate a slope. We calculated t0 for each bead phantom to give

an idea of the short time-scale region extent. We do not expect the diffusion coeffi-

cient to vary linearly all the way up to t0, but it is unclear from Equation 5.2 how

far below t0 the linear behavior ceases. The calculated values of t0 are presented in

Table 5.1 for both pure helium-3 and helium-3 dilute in air. For comparison, t0 is

also estimated for healthy human lungs, with S/V = 250 cm−1 [74]. Since the mo-

tivation for the short time-scale diffusion measurements is for in vivo applications

in the lung, we only consider gas mixtures at atmospheric pressure, in contrast to

previous applications [35, 36].

As we will see later, the minimum diffusion time at which we were able gen-

erate measurable diffusion attenuation using our diffusion-weighted SSFP pulse

sequence was ∆ ∼ 300 µs. For the 1 mm and 2 mm-bead phantoms, the calculated
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Gas D0 Object t0

Pure 3He 1.9cm2/s
3mm Beads 540µs
2mm Beads 240µs
1mm Beads 60µs

3He Dilute in air 0.88cm2/s

3mm Beads 1160µs
2mm Beads 510µs
1mm Beads 130µs

Healthy Alveoli 20µs

Table 5.1: Short time-scale limits for helium-3 in bead phantoms and healthy hu-
man lungs.

values of t0 are below 300 µs for pure helium-3 diffusion, indicating that we would

not be able to make measurements in the linear region to calculate an S/V ratio. In

the case of diluted helium-3, we may be able to access the linear regime in the 2 mm

and 3 mm-bead phantoms, but that ability greatly depends on how much less than

t0 the linear region of diffusion time is. We are interested in verifying the accu-

racy of ADC measurements made with a diffusion-weighted SSFP pulse sequence

by comparing experimental results to theoretical time-dependent diffusivity, and

the calculations in Table 5.1 indicate that it is unlikely that we will be able to use

the linear short time-scale region to do so with helium-3 at atmospheric pressure.

In addition, experimental measurements of helium-3 in human lungs will be even

further from the linear regime than in the bead phantoms.

At very long diffusion times, the diffusion coefficient in a system of well-connected

pores, such as exists in the bead phantoms, approaches a constant value that is

known as the tortuosity limit [32]:

D(∆) =
D0

α
, (5.4)

for ∆ >
L2

D0
. (5.5)
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The constant α quantifies the tortuosity of the space, a geometric factor describing

the crookedness of the diffusion path, i.e., how much longer the path is than the

direct length from starting position to ending position. At long diffusion times in

a well-connected restrictive space, the diffusivity can be thought of as the free dif-

fusion coefficient reduced by the path-increase factor α [75]. In a pack of spherical

beads, α = 1/
√

φ [34], which is once again independent of sphere diameter. The

diffusion time at which Equation 5.4 becomes valid is related to the free diffusivity

D0, and a diffusion length L that is some fraction of the pore space. In the case of

spherical beads, Mair et al observed L = (0.3 → 1.0) ∗ d for various bead diame-

ters d [34]. When the diffusion time reaches values described by Equation 5.5, the

diffusivity is insensitive to the pore size of the surrounding environment. There-

fore, long time-scale diffusion is not of great interest when trying to distinguish

between samples with similar connectivity but varying pore size.

In the region between the short time-scale linear behavior and the long time-

scale tortuosity limit, the so-called Padé approximation can be used to model the

behavior of the diffusion coefficient [76, 77]. The Padé approximation is an inter-

polation between the known short time-scale and long time-scale behavior:

D(t)
D0

= 1− (1−
√

φ) ∗
4

9
√

π
S
V
√

D0t + (1−√φ) D0t
D0θ

(1−√φ) + 4
9
√

π
S
V
√

D0t + (1−√φ) D0t
D0θ

. (5.6)

The Padé equation (Equation 5.6) contains a parameter θ, which has the unit

of time and represents the point at which the time dependence of the diffusivity

transitions between the short and long time-scale regimes. The θ parameter will be

different for different structural environments, such as bead sizes. Instead of using
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Figure 5.1: The time dependence of the diffusion coefficient of helium-3 under re-
stricted diffusion. The blue line represents the free diffusion coefficient D0 and the
black line is the long time-scale tortuosity limit,

√
φ ∗D0. The dashed red line is the

short time-scale linear dependence. The red solid line is the Padé equation, which
results from an interpolation between the short and the long time-scale regions.
The vertical dotted red line is the square root of the diffusion time t0. The linear
behavior of the diffusivity breaks down well before the calculated

√
t0.

θ as a fit parameter, the use of the unitless Padé length,

Lp =

√
D0θ

d
, (5.7)

separates out the dependence on bead diameter d. The Padé length was origi-

nally given as Lp = 0.145 by Latour et al [76] for water-infused glass beads using

an estimation for the tortuosity limit. It was later calculated by Mair et al, using

measured short time-scale and long time-scale xenon-infused glass bead data, to

be Lp = 0.132 [35]. The graph of the Padé equation in Figure 5.1 shows that the

time-dependent diffusivity curve deviates from the linear region at approximately
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1
2
√

t0. Therefore, in order to calculate a surface-to-volume ratio, one would need

to measure the ADC at several points below t0
4 to perform a linear fit. Our exper-

iment to verify the accuracy of ADC values calculated from a diffusion-weighted

SSFP pulse sequence was designed to make diffusion measurements at the short-

est practical diffusion times, which fall in the transition region between the short

and the long time-scales for helium-3 at atmospheric pressure. Therefore we used

the Padé equation to interpret our measurements of time-dependent diffusion.

5.2 General Experimental Methods

Figure 5.2: Spherical glass phantoms used for global ADC measurements of re-
stricted diffusion. The empty cell on the left is a free-diffusion phantom, and the
phantom on the right is filled with 1 mm diameter beads. Additional phantoms
with 2 mm and 3 mm beads were also used.

We performed pulse sequence tests and made global ADC measurements in

four spherical glass phantoms. The phantoms used for these experiments con-

sisted of four 100 mL glass spheres, three of which were filled with glass beads

of diameters 1, 2, or 3 mm (Figure 5.2). The empty phantom provided measure-

ments of the free diffusion coefficient of the gas, while the bead-filled phantoms

provided measurements of restricted diffusion, similar to lung tissue. Before each
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measurement session, helium-3 was polarized with the Hybrid Helium Polarizer

(Chapter 3) to∼60%. The phantom to be used was connected to a 250 mL Tedlarr

plastic bag which served as a gas reservoir, as shown in Figure 5.3. The reservoir

was used to provide a supply of helium-3 at atmospheric pressure that could be

drawn into the glass phantom. This arrangement ensured that the gas pressure

inside the phantom was atmospheric at the time of measurement, and also permit-

ted the hyperpolarized helium-3 to be kept in the relaxation-friendly environment

of the Tedlarr bag during transport to the scanner and positioning in the coil.

Both the phantom and bag were first evacuated through the gas-handling sys-

tem of the hybrid polarizer, and the phantom valve was closed. The reservoir bag

was then filled with a volume of 3He, slightly larger than the empty volume of the

phantom cell (VHe3 ∼ 40 mL for the bead-filled phantoms and VHe3 ∼ 120 mL for

the free-diffusion phantom) measured by a 1.5 L syringe. The rig was placed in the

1.5 T MR scanner (Avanto, Siemens Medical Solutions, Malvern PA) with a home-

built RF coil tuned to the helium-3 resonance. The phantom was positioned in the

coil and immediately before data collection, the reservoir valve and the phantom

valve were opened to draw 3He from the reservoir bag into the phantom.

The resonant frequency of the gas in the phantom was determined using the

frequency adjustment tool on the MR scanner. This tool applies an excitation RF

pulse at a user-specified frequency and amplitude, and then displays the resulting

free-induction decay (FID) as well as its Fourier transform, which shows the fre-

quency profile of the measured signal. The applied voltage of the RF excitation was

set to the minimum value V = 0.1 V, resulting in a very low flip angle excitation.

The peak signal was recorded, and the system frequency was set to the frequency

of the peak. After the calibration was performed, the pulse sequence was applied.

Data were analyzed using Matlab software (MathWorks, Natick MA).
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Figure 5.3: Schematic of setup used to dispense polarized helium-3 to each phan-
tom.

5.3 Bead-Phantom Relaxation Measurements

When designing the diffusion-weighted SSFP pulse sequences which were used to

make ADC measurements in our bead phantoms, we had to consider the environ-

ment the magnetization would experience, specifically T1 and T∗2 . In contrast to

the human hyperpolarized gas MR, there was no breath-hold timing requirement

when working with phantoms. However, there was still the requirement that the

measurement must be completed before the longitudinal signal decayed to zero.

We wanted to apply the exact same pulse sequence in each of our phantoms, so

the total acquisition time of the sequence was therefore limited by the phantom

with the shortest T1. Furthermore, in order for the pulse sequence to be coherent

and take advantage of the recycled transverse magnetization, TR must be shorter

than T∗2 . The repetition time of our diffusion-weighted SSFP pulse sequence was
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therefore limited by the phantom with the shortest T∗2 .

We measured the longitudinal relaxation T1 in our bead phantoms using the

frequency-adjustment tool on the scanner, by recording the peak signal from an

excitation RF pulse applied every five seconds. The expected signal relationship

between consecutive points is

S(n) = S(n− 1)e−
t

T1 cos θ, (5.8)

where S(n) is the peak signal after the n-th excitation, t is the time between ex-

citations, and θ is the applied flip angle. We used the minimum voltage in the

frequency-adjustment tool V = 0.1 V to minimize the flip angle and ensure that

cos θ ∼ 1. The signal measurements were normalized to the first of the series, then

the natural logs of the data were fit to a line. The slope of this line was the inverse

of the time constant. The results of the relaxation measurements are presented in

Figure 5.4a. The shortest values of T1 were measured in the 1 mm and 2 mm bead

phantoms, T1(1mm) = 11.9 s and T1(2mm) = 11.4 s.

(a) Global bead T1. (b) Global bead T∗2 .

Figure 5.4: Measurements of longitudinal and transverse magnetization decay
were made in each phantom. (a) Longitudinal decay was measure by applying
an excitation RF pulse at a constant interval and recording the peak signal size. (b)
Transverse magnization relaxation was measured by applying an excitation pulse
and fitting the decay measured during the acquisition window.
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The transverse relaxation was determined by fitting the signal decline during

a data acquisition window. We applied a simple SSFP pulse sequence which con-

sisted of slice-selective RF excitations and data acquisition periods repeated sev-

eral hundred times. The signal was sampled every 5 µs for the duration of the

DAQ window, in this case 200 µs. The expected signal decline is:

S(t) = S0e
− t

T∗2 , (5.9)

where S0 is the initial signal. A region of 20 samples was selected, and the signal at

each point was normalized to the first point in the selected region. The normalized

signal values were averaged over all of the RF excitations collected in the scan.

The standard error in the mean of all of the excitations gave a measure of statis-

tical error, represented by the error bars on the points on Figure 5.4b. The statistical

error was an additional input to the linear fit of the natural log of the normalized

signal measurements. The shortest value of T∗2 was measured in the 3 mm bead

phantom, T∗2 (3mm) = 5.2 ms. We used these relaxation measurements to guide

the design of our SSFP pulse sequences, in particular having a TR < 5 ms, and a

total acquisition times Tacq ≤ 10 s.

5.4 Pulse Sequence Tests

We tested three diffusion-weighted SSFP pulse sequence variations using our phan-

toms. First, we tested the Asymmetric SSFP diffusion-weighted pulse sequence

shown in Figure 4.16 in the free-diffusion phantom, expecting to measure a larger

difference between diffusion-weighted and non-diffusion-weighted acquisitions

than e−b∗D. Our simulations in Chapter 4 showed that the Asymmetric SSFP

diffusion-weighted pulse sequence only produced high contrast for on-resonance
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magnetization. The free-diffusion phantom contained the fewest air/glass inter-

faces of our phantoms, and was expected to have the smallest background mag-

netic field gradients due to susceptibility changes and therefore the least off-resonant

magnetization. The diffusion gradients were applied both before and after the

DAQ window, which was centered at t = TR/2. We made diffusion-weighted

measurements at a single diffusion time, ∆ = 400 µs, and the amplitude of the

diffusion gradients was varied from GD = 5 − 20 mT/m. The ratio of consecu-

tive pulses was calculated for each RF excitation, then averaged over the number

of repetitions in each scan. The results of this test are plotted in Figure 5.5 ver-

sus the b-value, calculated from the applied diffusion gradients according to the

trapezoidal b-value equation listed in Table 2.4.

The average signal ratio is far less than the steady state ratio M(n + 1)/M(n)

predicted by equation 4.60. We see that even in our optimal environment with re-

spect to off-resonant magnetization, the enhanced contrast potential in the Asym-

metric diffusion-weighted SSFP pulse sequence is not realized. Due to the lack of

contrast enhancement in this test, and the inability to extract an ADC from Asym-

metric diffusion-weighted SSFP measurements, we eliminated Asymmetric diffu-

sion as a candidate pulse sequence.

In Section 4.5, we discussed a baseline difference between signal levels mea-

sured after RF excitations depending on the direction, ±θ, or RF phase setting

0/180◦. When acquiring data with either the Group of Three diffusion-weighted

SSFP pulse sequence or the Before/After diffusion-weighted SSFP pulse sequence,

we were able to employ two tactics to minimize the effect of the baseline signal

differences. First, we set our RF phase to the zero-crossing angles, measured on

the 1.5 T scanner to be ∼100◦/280◦, to minimize the size of the effect. However

since we do not know the origin of the asymmetry, we do not know how it might
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Figure 5.5: Plot of results (blue points) and equation 4.60 (red line) versus b. TR =
2.4 ms, θ = 2◦, ∆ = 400 µs, RF Width = 400 µs. For the calculation: T1 = 20 s,
T2 = 100 ms, and D = 1.9 cm2/s.

change with hardware, time, etc. So additionally, we acquired data with diffusion-

weighting in each combination of the RF phase before taking ratios to calculate

diffusion attenuation (S(100◦)+S(280◦)
S(280◦)+S(100◦) ) to cancel out any residual difference. This

strategy leads to a doubling of our acquisition time for our measurements.

We made time-dependent (multiple-∆) diffusion measurements of 3He at at-

mospheric pressure in two of the spherical glass phantoms, one with free diffusion

and one with diffusion restricted by 3 mm-diameter glass beads using the Group

of Three diffusion-weighted SSFP pulse sequence. The global measurement was

made using a slice-selective RF excitation pulse, which served to reduce the ex-

tent of the measurement to a centered 20 mm section of the phantoms to avoid
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exciting any freely diffusing helium-3 present in the stem of the phantoms. The

simulations in Chapter 4 indicate that the steady-state signal ratio is sensitive to

the presence of off-resonant magnetization. However, because the Group of Three

diffusion-weighted SSFP pulse sequence separates the TR periods with diffusion-

sensitizing gradients from TR periods with data acquisition windows, we were

able to use a very short repetition time, TR = 1.76 ms. We were optimistic that

the off-resonant magnetization would not have time to accumulate much phase

in our selected slice, and therefore would not significantly distort the signal ratio.

The scan consisted of many excitations at each diffusion time ∆, which were aver-

aged together. Using the Group of Three diffusion-weighted SSFP pulse sequence

shown in Figure 4.20, the ratio of S(2)/S(1) had the opposite baseline bias as the

ratio S(5)/S(4). These values were averaged to eliminate the RF phase baseline:
S(2)+S(5)
S(1)+S(4) . Each DAQ window consisted of 40 samples acquired during the TR pe-

riod. On a sample-by-sample basis, the S(2) and S(5) excitations were averaged,

and the corresponding S(1) and S(4) excitations were combined. The signal ratio

was calculated from these values and averaged over the number of repetitions per-

formed at each value of ∆. Lastly, the ratio was averaged over the data acquisition

window samples, with the standard error in the mean of the DAQ window sam-

ples providing a measure of statistical error. The ADC value was calculated from

the ratio as follows,

ADC(∆) = − log R(∆)
b(∆)

, (5.10)

where b(∆) was calculated from the applied diffusion gradients. We expected to

measure D0 ≈ 1.9 cm2/s in the empty phantom, and values between D0 and the

tortuosity limit
√

φ ∗ D0 = 0.63D0 in the 3 mm-bead phantom. The results of this

test are plotted in Figure 5.6.

In the empty phantom, we measured ADC = 1.902± 0.005 cm2/s, similar to
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Figure 5.6: Plot of Free Diffusion Phantom Data (blue points) and 3mm-Bead
Phantom Data (red points); the theoretical boundaries D0 (blue dots) and tortu-
osity limit (green dashes); and the short ∆ time dependence (red dashed line).
TR = 1.76 ms, θ = 6◦, ∆ = 360, 480, 600, 720 µs.

the previously measured self-diffusion coefficient of helium-3 [78]. In the 3 mm-

bead phantom however, the measured ADC was lower than the calculated tortu-

osity limit. These results might be explained by significant off-resonant phase ac-

cumulation during the TR window in the 3 mm-bead phantom even for the short

repetition time used, TR = 1.76 ms. The resulting ADC values are well below the

expected values, which our simulation from Section 4.6.3 indicates is consistent

with off-resonant precession angles greater than β = 60◦/TR. Based on this test,

we used the Before/After diffusion-weighted SSFP pulse sequence for the remain-

der of our time-dependent diffusion measurements, due to its theoretical ability to

produce a steady state signal ratio that is independent of off-resonance precession

angle β, as suggested by our magnetization simulation results in Chapter 4.

The Before/After pulse sequence shown in Figure 4.23, in which the gradient
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timing is alternated: (1) after the DAQ window, (2) before the DAQ window, (3)

before the DAQ window, (4) after the DAQ window, is able to correct for baseline

offset due to RF phase asymmetry. The two sets of acquisitions produced by this

pulse sequence are averaged to produce the steady state ratio:

R =
SAvg(Before)
SAvg(After)

=
S(2) + S(3)
S(1) + S(4)

, (5.11)

where S(1) is the signal measured during a TR period with diffusion gradient

timing (1) described above, S(2), etc. We repeated the test performed with the

Group of Three diffusion-weighted SSFP pulse sequence in the free diffusion phan-

tom and the 3 mm-bead phantom using the Before/After diffusion-weighted SSFP

pulse sequence, and the results of this test are presented in Figure 5.7. We mea-

sured similar values in the free-diffusion phantom with the Before/After pulse

sequence as we had with the Group of Three pulse sequence. However, we were

able to measure plausible values for the 3 mm-bead phantom ADC, despite hav-

ing a longer repetition time (TR = 3.64 ms) than used in the Group of Three SSFP

diffusion pulse sequence. The ADC values measured in the 3 mm-bead phantom

lay above the theoretical S/V line, indicating that these measurements were made

in the transition region governed by the Padé approximation.
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Figure 5.7: Plot of Free-Diffusion Phantom Data (blue points) and 3 mm-bead
Phantom Data (red points) obtained with the Before/After diffusion-weighted
SSFP pulse sequence; the theoretical boundaries D0 (blue dots) and tortuosity limit
(green dashes); and the short ∆ time dependence (red dashed line). TR = 3.64 ms,
θ = 6◦, ∆ = 360, 480, 600, 720 µs. Also plotted are the data points acquired us-
ing the Group of Three pulse sequence in the free diffusion phantom (black dia-
monds) which agree with the values measured by Before/After, and in the 3 mm-
bead phantom (black stars), which lie significantly below the theoretically possible
range.



5.5 Systematic Effects in Diffusion-weighted SSFP 151

5.5 Systematic Effects in Diffusion-weighted SSFP

Under the influence of an SSFP pulse sequence, the magnetization evolution takes

some time to reach its steady-state signal level. Since quantitative ADC measure-

ments require magnetization evolution to be in steady state, we needed to allow

for this transition in our pulse sequence design. The magnitude of the steady state

signal level can be different for different degrees of signal attenuation during the

TR period, such as would be produced by changing the diffusion gradient ampli-

tude or ∆ value. In an effort to study the magnetization evolution due to diffusion

attenuation at multiple values of ∆, we designed a pulse sequence in which we

gradually changed the diffusion gradient amplitude at a particular value of ∆, then

changed the diffusion time and repeated the process. The basic unit of four TR pe-

riods in the Before/After diffusion-weighted SSFP pulse sequence has alternating

diffusion gradient timing: (1) after the DAQ window, (2) before the DAQ window,

(3) before the DAQ window, and (4) after the DAQ window. This unit of four RF

excitations was repeated twenty times at a particular value of diffusion gradient

amplitude, and then the amplitude was incrementally changed. The amplitude

series used in this test is shown in Figure 5.8a, and the diffusion times of the gradi-

ents are shown in Figure 5.8b. We included diffusion gradients which consisted of

a positive lobe followed by a negative lobe (referred to as positive-polarity gradi-

ents) and diffusion gradients which consisted of a negative lobe followed by a pos-

itive lobe (negative-polarity gradients) in our amplitude test. The gradual change

in diffusion gradient amplitude was expected to reduce the number of pulses re-

quired to get the magnetization evolution into the steady-state level.

We tested this pulse sequence in the both the free-diffusion phantom and the

3 mm-bead phantom using hyperpolarized helium-3. The raw data acquired from

the amplitude-ramp test in the free-diffusion phantom are presented in Figure 5.9a,
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where each point is the average of the signal over the DAQ window, and the

different colors correspond to the (1) after, (2) before, (3) before, (4) after cycling

of diffusion gradient applications. As the diffusion gradient amplitude increases

(Figure 5.8a), the signal amplitude decreases for data acquired when a diffusion

gradient has been applied before the DAQ (2 and 3) and increases for data acquired

when the diffusion gradient is applied after the DAQ (1 and 4). The larger ∆ value

applied in the second half of the acquisition (Figure 5.8b) results in a larger sepa-

ration between before and after points. Figure 5.9b shows a small section of the data

in Figure 5.9a, in which the raw signal diverges during the transition period and

then approaches steady state at each amplitude step, even though the changes in

amplitude are small. Our attempt to keep the transverse magnetization in steady

state did not succeed. The ratio of consecutive signals during the transition period

does not reflect the steady state characteristics of the system. Therefore only points

after the transition region were averaged to calculate the ADC value.

Additionally, we noted that there is a measurable difference between the ratio

measured when the bipolar diffusion gradient has a positive polarity compared to

when the gradient has a negative polarity. In Figure 5.10, the steady-state ratios

from signals when the diffusion gradients had a positive lobe first are averaged

separately from acquisitions with negative diffusion gradient lobe first. The ratio

is again calculated by:

R =
S(2) + S(3)
S(1) + S(4)

, (5.12)

on a sample by sample basis throughout the DAQ window. The repetitions at each

amplitude where averaged once the signal level had reached steady state, and then

the data were averaged across the DAQ samples. The standard error in the mean

of the DAQ samples was used as a measure of statistical error, represented by the

error bars on the points in Figure 5.10. The average ratio is plotted versus the
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b-value of the applied diffusion gradient. The average ratio increases for both po-

larities with increasing b-value, however there is a systematic difference between

the positive polarity ratio (blue crosses) and the negative polarity ratio (red cir-

cles). This analysis indicates that the Before/After diffusion-weighted SSFP pulse

sequence is sensitive to systematic effects due to gradient polarity. A common

technique for dealing with such effects is to acquire data in both polarity configu-

rations and average the results. We adopted this approach in our pulse sequence

design.

Figure 5.11a shows the signal ratio versus b-value curves measured in the 3 mm-

bead phantom and the free-diffusion phantom, after averaging across gradient po-

larity and DAQ samples. We expect the signal decline to be exponential, although

it can be close to linear for low diffusion attenuation (b ∗ D ≤ 0.1). Figure 5.11b

shows the corresponding ADC value calculated from the natural log of each data

point in Figure 5.11a divided by the b-value at that point, as well as the slope of

a linear fit to the natural log of all of the data. In both methods of calculating the

ADC, the point generated by having the gradient amplitude set to zero was not in-

cluded in the calculation. Looking at the data from the 3 mm-bead phantom (blue

points), the ADC values calculated by the individual points are centered about the

value obtained by fitting the data to a line (green line). When we calculated an

ADC from the free-diffusion phantom data, the values from each amplitude point-

by-point (red points) are systematically lower than when we fit all of the data to a

line (black line). In looking at the ratios in Figure 5.11a, the free diffusion phantom

exhibits a systematic offset at the lower diffusion gradient amplitudes, resulting in

a ratio greater than one (and thus a negative ADC value) for the lowest non-zero

gradient amplitude. Comparing the ADC values obtained in the free-diffusion

phantom to previously measured values for helium-3 self diffusion [78, 79], we
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believe that the calculated slope of the free-diffusion phantom data is a reliable

measurement of the free diffusion coefficient, even in the presence of the system-

atic offset. In the 3 mm-bead phantom, the offset has not been observed and both

methods yield the same measurement of the restricted diffusion coefficient.

The results from these tests lead us to redesign our diffusion gradient ampli-

tude course for tests in the bead phantoms. Instead of slowly increasing the ampli-

tude of the gradient to gently transition between different steady states, we simply

measured the attenuation at a large gradient amplitude and repeated the measure-

ment several times to ensure that the system reached steady state. By reducing the

number of amplitude steps in our measurement, we were able to make ADC mea-

surements at a large number of finely-spaced diffusion times while still keeping

our total acquisition time below the longitudinal relaxation time constant in the

smallest beads (Tacq ≤ 10 s). In order to make accurate measurements in the free

diffusion phantom, we continued to use the amplitude ramp and calculated an

ADC value from the slope, but this design resulted in fewer values of ∆ measured

over the same acquisition time.
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(a) Amplitude v RF Pulse

(b) ∆ v RF Pulse

Figure 5.8: Amplitude ramp used in time-dependent ADC measurements de-
signed to transition between different steady-state levels gradually. The diffusion
time is increased between the second and third peaks.
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(a)

(b) Zoomed in from (a)

Figure 5.9: (a) Raw data from amplitude-ramp test in free-diffusion phantom with
pure helium-3. Points (2) and (3) had a diffusion gradient before the DAQ in the
TR period, and points (1) and (4) had a diffusion gradient after the DAQ in the TR
period. (b) Zoomed in to show the transition between amplitude steps requires
several pulses (indicated by red ovals) to reach the steady-state signal level.
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Figure 5.10: Ratio versus b-value for each gradient polarity from amplitude-ramp
test in 3 mm-bead phantom filled with pure helium-3. The positive-polarity diffu-
sion gradients (blue crosses) produce a smaller steady-state signal ratio than the
negative polarity diffusion gradients (red circles).
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(a) Signal Ratios

(b) ADCs

Figure 5.11: (a) Ratio versus b-value in 3 mm-bead phantom and free diffusion
phantom filled with pure helium-3 measured at ∆ = 600 µs. (b) ADC values cal-
culated from natural log of ratios in (a) point-by-point (PbP, points) and from the
slope of a linear fit to all of the data (lines) for each phantom. The values from
both methods are similar in the 3 mm-bead phantom, whereas in the free-diffusion
phantom the point-by-point ADCs are systematically lower than the slope ADC
value.
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5.6 Time-dependent Diffusion Measurements in Bead

Phantoms

Using the results of the previous section, we designed a diffusion-weighted SSFP

pulse sequence to test the accuracy of measured ADC values in all three of our

glass bead phantoms. We measured helium-3 diffusion at increasing diffusion

times with the Before/After diffusion-weighted SSFP pulse sequence to map out

the time dependence of the diffusion coefficient. The diffusion time, diffusion gra-

dient amplitude, and b-value evolution are shown in Figure 5.12. The longest dif-

fusion times measured were capable of generating significant diffusion attenuation

at the maximum gradient amplitude accessible by the MRI scanner. The high diffu-

sion attenuation had the potential to diminish our signal before all of the diffusion

times had been measured. To prevent this, we limited the gradient amplitude so

that the largest b-value applied during the scan was b = 0.08 s/cm2, resulting in

smaller diffusion amplitudes for the longest ∆ values, as shown in Figure 5.12b.

The pulse sequence parameters used were TR = 3.64 ms, θ = 6◦, excitation RF

pulse duration = 100 µs, and we measured the signal in a transverse slice 20 mm

thick. Measurements were made from ∆ = 300 → 800 µs in 20 µs increments,

and the diffusion gradient timing series of (1) after, (2) before, (3) before, (4) after

was repeated twenty times using the positive diffusion-gradient polarity, then ten

times with the negative polarity. The first ten repetitions at the positive diffusion-

gradient polarity were sufficient for the signal level to reach the steady state, and

were therefore not included in the ADC analysis. Ratios were calculated identi-

cally to the amplitude-stepped acquisitions described in Section 5.5. The ADC was
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(a) Diffusion Time

(b) Diffusion Amplitude

(c) b-value

Figure 5.12: Diffusion gradient progression for multiple diffusion time ADC mea-
surements in the bead phantoms. The ∆ values were increased throughout the
scan, and the amplitude was calculated to be the maximum allowed by the scan-
ner, unless the b-value was to be greater than b = 0.08 s/cm2, then the amplitude
was set to ensure b = 0.08 s/cm2.
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calculated from each of the average ratios as follows:

ADC(∆) = − log R(∆)
b(∆)

. (5.13)

The ADC values are plotted vs
√

∆ in Figure 5.13, along with data acquired in the

free-diffusion phantom (D0(avg) = 1.91 cm2/s) and the theoretical tortuosity limit

(
√

0.39 ∗ D0(avg)).

Figure 5.13: ADC measurements of pure helium-3 in glass-bead phantoms. The
free-diffusion line is plotted at D0 = 1.91 cm2/s, the average of the measurements
made in the empty phantom. The tortuosity limit line was generated using the
theoretical minimum porosity, φ = 0.39.

Each of the phantoms shows the expected time dependence in the diffusion co-

efficient, and the different structures are clearly separated in this measurement

regime. There are systematic increases in the ADC for the largest values of ∆

in each of the bead phantoms. We believe this increase is due to systematics

caused by the low diffusion amplitudes applied to restrict the maximum b-value
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to b = 0.08 s/cm2. In this region, it is possible that the background gradients

due to susceptibility differences between the glass beads and the surrounding air

are larger than the applied diffusion gradients. The background gradients would

add to the net diffusion attenuation, artificially increasing the measured ADC as

seen in our data. Lastly, a discontinuity can be observed in the data taken in the

3 mm-bead phantom. Due to the steady-state nature of the data acquisition, this

discontinuity is likely due to some anomaly that disturbed the steady state, but it

isn’t possible to say more without repeating the experiment.

As mentioned previously, the theoretical porosity of dense random-packed spheres

is φ = 0.39. However, our beads were likely less densely packed than the theoret-

ical ideal, as there appeared to be some movement in the pack when the phan-

toms were shaken. A non-ideal bead pack would increase φ from the theoretical

value. We had the ability to measure the diameters of beads from the stock used

to fill the phantoms, and the measured diameters were: d(3) = 3.08± 0.02 mm,

d(2) = 1.98± 0.14 mm, and d(1) = 1.13± 0.05 mm. Using our measured values

of D0 and d, we fit our ADC values to the Padé equation to calculate a value of

porosity for each phantom using:

D(∆) = D0(1− (1−
√

φ) ∗
4

9
√

π

6(1−φ)
dφ

√
D0∆ + (1−√φ) D0∆

(Lpb)2

(1−√φ) + 4
9
√

π

6(1−φ)
dφ

√
D0∆ + (1−√φ) D0∆

(Lpb)2

).

(5.14)

The measured ADC values and corresponding Padé fits are shown in Figure 5.14,

and the input parameters and fit values are listed in Table 5.2.

The Padé curves match the ADC values for each bead phantom. The largest

possible porosity for a close-pack of spheres occurs in a simple cubic lattice pack,

with φ = 0.52 [80]. The φ values from the Padé fit to our data were well below the

upper limit, and closer to the theoretical dense pack which was consistent with our
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Figure 5.14: ADC data and Padé curves for pure helium-3 in glass bead phantoms.
The free diffusion line is plotted at D0 = 1.91 cm2/s, the value determined by the
average of measurements made in the empty phantom. The tortuosity limit was
generated using the theoretical minimum porosity, φ = 0.39. The Padé curves are
fit to the porosity of each phantom.

observation of the phantoms. The 1 mm-bead phantom had the largest calculated

porosity φ1 = 0.425, and that phantom indeed had the most amount of mobility in

the beads under agitation.

Our conclusion from the global test of the Before/After diffusion-weighted

SSFP pulse sequence is that the ADC was being accurately measured with this

technique. We observed systematic effects related to gradient polarity, as well as

effects in the presence of low gradient amplitudes. The pulse sequence was de-

signed to incorporate measurements of both diffusion gradient polarities and av-

erage the results, which appear to have successfully eliminated systematic errors

due to polarity effects. The systematic effects in the instances of low gradient am-

plitudes are likely related to interference from susceptibility interfaces. Such effects

should be much smaller in vivo, as the susceptibility difference is smaller between
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Input Parameters Output Parameter
Bead Size Lp D0 Diameter φ

1 mm 0.132 1.91 cm2/s 1.13 mm 0.425± 0.003
2 mm 0.132 1.91 cm2/s 1.98 mm 0.405± 0.002
3 mm 0.132 1.91 cm2/s 3.08 mm 0.398± 0.002

Table 5.2: Padé equation parameter values for the bead phantoms. The value of
the Padé length measured by Mair et al and D0 = 1.91 cm2/s measured in the free-
diffusion phantom were used in the fit. An independent measurement of bead
diameters was used to determine d for each phantom. The data was fit to the Padé
equation (Equation 5.14), with the porosity φ as the free parameter for each bead
phantom.

lung tissue (χm = −9 ppm [65]) and air (χm = 0.14 ppm [81]) than between glass

(χm = −16 ppm [82]) and air.

5.7 Time-dependent Diffusion Measurements in Hu-

man Subjects

We performed time-dependent ADC measurements in human subjects using the

same Before/After diffusion-weighted SSFP pulse sequence used in the bead phan-

toms. We lowered the flip angle lowered to θ = 2◦ to reduce signal attenuation per

pulse and ensure that the SNR did not decrease for the later values of diffusion

time measured. The data were acquired in a sagittal slice centered in the right

lung, selected to reduce the sensitivity to motion from the heart during the ac-

quisition. The subjects were given a gas mixture consisting of ∼5-10% 3He and

the balance medical-grade nitrogen. We measured the time-dependent ADC in

two healthy subjects and one subject who had been diagnosed with Chronic Ob-

structive Pulmonary Disease (COPD). The ADC values measured are presented in

Figure 5.15.
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Figure 5.15: ADC v Diffusion Time in 3 subjects: two healthy volunteers, and
one subject diagnosed with Chronic Obstructive Pulmonary Disease (COPD). The
ADC values are similar in the healthy subjects, and COPD subject shows a very
different time-dependence of diffusivity. The results here suggest that the COPD
subject has significantly different fine lung structure compared to the healthy sub-
jects.

The healthy subjects (green diamonds and black stars) agree well with each

other, each showing a decrease in ADC value as ∆ increases. As we had expected,

there was no systematic rise in the ADC values measured at long diffusion times

in the lungs. The long ∆ values had the same low diffusion gradient amplitudes

that were applied in the bead phantoms. However the background gradients in

the lung are smaller, so they contribute less additional diffusion attenutation.

The subject with COPD (red open circles) has a much flatter time-dependence

of the diffusivity, suggesting that the fine structure of the lung tissue is signifi-

cantly different from the healthy volunteers. The ADC values measured in the
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COPD subject with diffusion times above ∆ = 400 µs are larger than the healthy

subject values, which is consistent with a less restrictive diffusion environment

due to tissue destruction. The ADC values measured in the healthy subjects sug-

gest that the diffusivity will reach the free diffusion coefficient D0 = 0.88 cm2/s at

a diffusion time greater than ∆ = 0 s. The ADC values measured in the COPD sub-

ject with diffusion times below ∆ = 400 µs are lower than with the healthy ADC

values. Taking these two trends into consideration, it appears that the values of

ADC measured at ∆ < 400 µs may be susceptible to systematic effects.

5.8 Conclusions

The results of our diffusion-weighted SSFP tests show that the Before/After diffusion-

weighted SSFP pulse sequence was able to accurately measure the small diffusion-

weighted attenuation produced at short diffusion times. In the glass bead phan-

toms, we were able to use the measured ADC values to calculate the porosity φ of

the different phantoms.

In the test in human subjects, the time dependence of the diffusion coefficient

was measured, but we do not have a theoretical description to compare the be-

havior to. The alveoli are not ideal spherical structures, and therefore the sim-

plified geometric formulas which are applicable to bead phantoms, Equations 5.1

and 5.4, cannot be used to extract physiological parameters related to lung struc-

ture. However, the time-dependence of the diffusion coefficient was measured in

healthy lungs and we determined that measurements of the diffusion coefficient

at ∆ > 400 µs have a behavior similar to that seen in the bead phantoms. In the

subject with COPD, the time-dependence of the diffusivity was markedly differ-

ent, and the larger ADC values measured were consistent with a less restricted

environment due to emphysema.
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The severity of tissue destruction associated with COPD varies regionally in the

lung. Global ADC measurements, however, average over the regional variation

and provide limited information about the disease. Diffusion-weighted images

have the potential to contribute more to diagnosis and treatment development due

to the regional information about lung structure. The global, time-dependent ADC

measurements made here can be used as a guide to the values of ADC to expect

when imaging at a specific value of the diffusion time ∆, which is the subject of the

next chapter.



Chapter 6

Hyperpolarized Gas MRI with

Diffusion-weighted SSFP Pulse

Sequences

Our global experiments in the previous chapter demonstrated that we are able

to accurately measure free and restricted diffusivities using a diffusion-weighted

SSFP pulse sequence. However for assessing lung structure changes due to em-

physema, global measurements offer incomplete information by averaging over

regional differences in air space geometry. By making an ADC map from diffusion-

weighted images, regional information about diffusivity can be obtained. In this

chapter, we use diffusion-weighted SSFP pulse sequences to make ADC maps

at short diffusion times, which have the potential to be more sensitive to small

changes in lung structure.

We created imaging pulse sequences based on two of the diffusion-weighted

SSFP pulse sequences developed in Chapter 4, and used them to acquire ADC

maps in human volunteers and in our free-diffusion phantom. The Before/After
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SSFP Diffusion pulse sequence provides ADC measurements that are robust against

the effects of off-resonant spins, but the minimum timing requirements result in a

relatively long repetition time (TR) for an SSFP pulse sequence. The long repetition

time could potentially lead to off-resonance precession angles of β = 180◦ per TR

in some regions of the image, which would result in a loss of signal in those re-

gions. The Group of Three diffusion-weighted SSFP pulse sequence can have a

much shorter TR since the diffusion gradients and the DAQ window are in sep-

arate TR periods. However, the measured diffusion-weighted signal ratio can be

distorted by the effects of off-resonant spins when using this sequence. We eval-

uated the images and ADC maps produced using both the Group of Three and

the Before/After SSFP imaging pulse sequence to assess the degree to which off-

resonant magnetization affects the results in each case.

6.1 SSFP Imaging Considerations

Our global SSFP diffusion measurements in Chapter 5 were repeated many times

throughout the acquisition to ensure that the magnetization was in steady state

and to provide a large number of measurements that could be averaged to reduce

statistical errors. To acquire an image, the repetition of RF excitations is used to

sample k-space with imaging gradients. As discussed in Chapter 2, typical MR

imaging is performed by acquiring one line of k-space per TR period, increment-

ing the phase-encode gradient size after each RF pulse, until the range of values

necessary to make the image has been covered. In order to make diffusion mea-

surements with our SSFP pulse sequences, we needed to acquire multiple images

and combine them to form steady state ratios that gave diffusion measurements

and canceled out baseline RF differences, similar to how data was combined for

the non-imaging experiments in Chapter 5.
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If one were to acquire all of the data for each image serially, there would be

a systematic signal difference between images due to the hyperpolarized magne-

tization decaying towards equilibrium. There could also be other differences be-

tween serially-acquired images, for example due to motion of the subject. There-

fore, the multiple image acquisitions were interleaved line-by-line to minimize the

time between the images. For each line of k-space, identical imaging gradients

were repeated the necessary number of times (six for Group of Three, four for

Before/After) before incrementing to the next line. Because we needed the mag-

netization to be in steady-state to achieve the desired diffusivity contrast, we also

added an extra 10-20 “warm-up” RF excitations to the beginning of each scan be-

fore we began acquiring data, to give the magnetization time to evolve into the

steady state.

6.2 Experimental Methods

To start each measurement session, helium-3 was polarized using our Hybrid He-

lium Polarizer (see Chapter 3) to∼60%. In phantom imaging sessions, the helium-

3 dosing procedure was performed in the same manner as described in Chapter 5.

For imaging sessions with human subjects, a dosing bag was attached to the polar-

izer outlet via a short length of 1
4 -inch Tygon tubing, evacuated, and pre-filled with

a measured amount of medical-grade nitrogen gas. The subject was positioned

supine in the 1.5 T MR scanner (Avanto, Siemens Medical Solutions, Malvern PA)

in an RF coil tuned to the helium-3 resonance (Rapid Biomedical, Rimpar Ger-

many), and conventional 1H images were acquired to determine the lung position.

A measured dose of 3He was then dispensed into the dosing bag, the tube was

disconnected from the polarizer outlet, and the bag was brought into the scanner

room. The subject inhaled the mixture of nitrogen and polarized helium-3 from
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the dosing bag through the 1
4 -inch tube. The imaging scan was then performed at

breath-hold.

The data were processed using Matlab software. To create an ADC map from

the raw data, first a multidimensional Fourier transform was performed to convert

the k-space data into four separate helium-3 images. The appropriate diffusion-

weighted image ratio was then calculated pixel-by-pixel from the helium-3 images.

In order to mask out background pixels, the image ratio was only calculated at

pixel locations for which the signal magnitude exceeded a calculated threshold,

chosen here to be a = 0.1 ∗ (Max Signal in Image). From the ratio map R, an ADC

map was calculated as follows:

ADC = − log R
b

, (6.1)

where b was the b-value of the diffusion-sensitizing gradient.

6.3 Group of Three Imaging Test

Our previous global tests of the Group of Three diffusion-weighted SSFP pulse

sequence produced accurate ADC measurements in the free-diffusion phantom,

but implausible ADC values in the 3 mm-bead phantom. We believe the pres-

ence of susceptibility-induced background gradients caused the inaccurate mea-

surements. Due to the reduced susceptibility mismatch between lung tissue and

air compared to glass and air, we expected the size of the susceptibility-induced

background gradients in the lung airspaces to be smaller than those in our bead

phantoms. Therefore the range of off-resonance frequencies and thus the resulting

effects on the steady-state signal ratio were also expected to be smaller in vivo.

Imaging gradients were incorporated into the Group of Three diffusion-weighted
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Figure 6.1: Imaging implementation of the Group of Three SSFP diffusion-
weighted pulse sequence. Four images are interleaved, with diffusion-sensitizing
gradients in TR periods with no data acquisition.

SSFP pulse sequence during TR periods containing the data acquisition windows

as shown in Figure 6.1. The pulse sequence imaging parameters were chosen to

yield three-dimensional images with isotropic resolution. As described in Chap-

ter 2, there are two ways obtain three dimensional k-space information: slice-

selective imaging and partition-encoded imaging. In slice selective imaging, a

gradient is applied during the excitation RF pulse which results in only a portion

of the spins being tipped into the transverse plane. In partition-encoded imaging

shown in Figure 6.1, the third gradient axis (partition) is stepped through simi-

larly to the phase-encode gradient. Images acquired in this matter can be viewed

as slices from any of the three principal axes: phase-encode, read-out, or partition.
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The Group of Three SSFP diffusion-weighted imaging (DWI) pulse sequence inter-

leaved four image acquisitions and two diffusion-sensitizing gradient TR periods

at each phase-encode and partition step. By averaging images with opposite RF

phase angles and similar diffusion-weighting, the baseline signal asymmetry due

to RF phase was cancelled out:

R =
I(2) + I(5)
I(1) + I(4)

, (6.2)

where I(1) is the image formed in the first TR period per line, etc. and R is the

diffusion-weighted signal ratio.

We used the Group of Three diffusion-weighted SSFP imaging pulse sequence

described above to make diffusion measurements in a healthy human subject. For

this test, the inhaled dose consisted of 300 mL of helium-3 was diluted with 1.6 L of

medical grade nitrogen, which lowers the free diffusion coefficient of the helium-

3 gas to D0 = 0.88 cm2/s. The pulse sequence parameters were: TR = 1.22 ms,

θ = 6◦, 3D isotropic resolution 7.5x7.5x7.5 mm, RF pulse width= 240 µs, a readout

bandwidth of BW = 2440 Hz/px, ∆ = 560 µs, GDi f f = 32 mT/m, and a b-value

of b = 0.23 s/cm2. The raw images could be reconstructed in any of the three

imaging planes: coronal (viewed from the front of the subject), sagittal (viewed

from the side of the subject), and transverse (viewed from the top of the subject).

Central segments in each of these orientations from the first of the four interleaved

images are shown in Figure 6.2a.

The raw lung ventilation images from the test of the Group of Three SSFP DWI

do not have any obvious stripes or bands of reduced signal, suggesting that the

repetition time TR = 1.22 ms was short enough to prevent off-resonant phase ac-

cumulation from reaching β = 180◦ per TR at any point. The different levels of

signal intensity (particularly evident top-to-bottom in the sagittal slice) over the



6.3 Group of Three Imaging Test 174

lung are consistent with expected ventilation inhalation, and do not appear to be

pathological. The four interleaved images were combined pixel-by-pixel according

to Equation 6.2 to produce a ratio map, shown in Figure 6.2b.

In some regions the signal ratio is greater than one- a reversal of the expected

contrast due to diffusion. The regions with a ratio above one are at the top and bot-

tom of the lungs, which are farthest from the center of the scanner bore where the

magnetic field is most uniform. Based on our simulations of the Group of Three

SSFP pulse sequence, a signal ratio greater than one can be caused by the presence

of off-resonant spins with a precession angle of β > 60◦ per TR, as discussed in Sec-

tion 4.6.3. To test this prediction, we conducted an experiment in the free-diffusion

phantom in which we intentionally induced off-resonant precession by increasing

the system frequency on the scanner from the measured value f0. For instance,

a precession angle of β ≈ 60◦ per TR can be achieved using a resonant frequency

offset ∆ f0,

∆ f0 =
1

TR
∗ 60

360
=

1
1.46 ms

∗ 0.167 ≈ 110 Hz. (6.3)

That is, if ∆ f0 = 110 Hz the spins at the center of the scanner would be expected

to precess β ≈ 60◦ per TR. According to our simulations, any spins with larger

precession angles should generate signal ratios greater than one, and spins with

smaller precession angles should generate signal ratios less than one. The pulse

sequence parameters used for this imaging test were: TR = 1.46 ms, θ = 4◦,

3D isotropic resolution 4x4x4 mm, RF pulse width= 240 µs, a readout bandwidth

of BW = 2440 Hz/px, ∆ = 480 µs, GDi f f = 32 mT/m, and a b-value of b =

0.09 s/cm2. We acquired diffusion-weighted images at three frequency settings:

∆ f0 = 0 Hz, ∆ f0 = 110 Hz, and ∆ f0 = 130 Hz. Signal ratio maps from the four

images were generated as previously described and are shown in Figure 6.3.

The ratio maps from the frequency-centered acquisition (∆ f0 = 0 Hz) have a
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uniform mean ratio that is less than one (Figure 6.3a), as expected. In the acqui-

sition centered at ∆ f0 = 110 Hz (b), the ratio map shows values both greater than

and less than one. The ratio maps from the ∆ f0 = 130 Hz acquisition have values

that are all greater than one. The results of this test support our simulation re-

sults that the Group of Three diffusion-weighted SSFP pulse sequence produces

signal ratios greater than one in the presence of off-resonant precession angles

β ≥ 60◦ per TR.

Looking again at our signal ratio maps from the human subject test (Figure 6.2b),

the majority of the lung area has a ratio close to or less than one. It is only the top

and bottom of the lung which seem to experience the large off-resonant precession

angles. This feature suggests that the magnetic field variations which drive the

precession are macroscopic variations, not microscopic gradients caused by sus-

ceptibility interfaces at air-tissue boundaries throughout the lung. Using the as-

sumption that the off-resonance magnetization precession is at the transition point

of β = 60◦ per TR near the top of the lung where we see values cross over from less

than one to greater than one, we can calculate the size of the scanner holding field

variation that would lead to that amount of precession:

∆ f0(β = 60◦/TR) = 110 Hz,
γHe3

2π
= −32.43 MHz/T, (6.4)

∆B0 =
∆ f0

γ/2π
= 3.4 µT, (6.5)

∆B0

B0
=

3.4 µT
1.5 T

= 2.3 ppm . (6.6)

Our calculated field variation of 2.3 ppm is close to the specified tolerance of the

scanner of ∆B0/B0 < 1.5 ppm.

With a more uniform magnetic holding field, it is possible that the off-resonant

precession could be reduced such that the Group of Three SSFP DWI pulse se-
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quence would produce purely diffusion-weighted maps, rather than the combina-

tion of diffusion-weighting and off-resonant precession-weighting we see with the

current system.
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(a) Images

(b) Ratio Maps

Figure 6.2: Lung ventilation images (a) and signal ratio maps (b) made with the
Group of Three SSFP DWI in healthy subject 1219. The raw images are from the
first of the four interleaved images, and show a variation in signal intensity consis-
tent with normal ventilation non-uniformity (particularly evident top-to-bottom
in the sagittal and axial slices). The signal ratios are greater than one at the top
and bottom of the lungs, which is the opposite of the expected diffusion-weighted
contrast.
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(a) Frequency-Centered Ratios

(b) ∆ f0 = 110 Hz

(c) ∆ f0 = 130 Hz

Figure 6.3: Signal ratio maps and mean values from the (a) frequency-centered
and (b)-(c) off-centered acquisitions using the Group of Three SSFP DWI pulse
sequence, reconstructed in each imaging plane. In the frequency-centered ac-
quisition (a), the signal ratios are less than one, which is the expected direction
of contrast. In (b) some signal ratios are greater than 1 and others less than 1,
consistent with a range of precession angles that straddles the transition point of
β = 60◦ per TR. In (c), the signal ratios are all greater than 1, which is the opposite
of the expected contrast and indicative of precession angles of β > 60◦ per TR.
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6.4 Before/After SSFP DWI

Figure 6.4: Imaging implementation of the Before/After SSFP diffusion-weighted
pulse sequence. The sequence produces four interleaved images, with diffusion-
sensitizing gradients applied in the slice direction (1) after, (2) before, (3) before,
and (4) after the data acquisition.

The Before/After diffusion-weighted SSFP pulse sequence was designed to ac-

curately measure the diffusivity in the presence of off-resonant magnetization. We

added slice-selective imaging gradients to the Before/After diffusion-weighted

SSFP pulse sequence as shown in Figure 6.4. The diffusion-sensitizing gradients

are in the same direction as the slice selective gradients. Like the Group of Three

method, this sequence also produces four images but there are diffusion-sensitizing

gradients, imaging gradients, and data acquisition windows in every TR period.

Images 2 and 3 have the same diffusion-weighting but opposite RF phase angles,

as do images 1 and 4. The images are combined to produce a ratio map as follows:

R =
I(2) + I(3)
I(1) + I(4)

(6.7)
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We used our SSFP magnetization simulation from Chapter 4 to determine the

optimal flip angle for the Before/After SSFP DWI pulse sequence for various de-

grees of diffusion attenuation. For a constant flip angle, the transverse magneti-

zation generated by each RF excitation pulse declines throughout the acquisition.

Because the magnetization evolution is coherent, the rate of decline depends on

both the flip angle used and the rate of transverse relaxation. For a given rate of

transverse relaxation, which is dominated by the diffusion-induced signal attenu-

ation in our case, the optimal flip angle is the value that yields the highest average

signal over the course of the acquisition. To determine this value, we calculated

the size of transverse magnetization after 114 RF excitations, which corresponds to

the central line of k-space data for each slice which consists of 228 RF excitations

(20 RF excitations for the magnetization to reach steady state and 52 phase-encode

lines interleaved for each of the 4 images). The results of our simulation are plotted

versus applied flip angle for varying values of diffusivity in Figure 6.5. Our simu-

lation indicated that we should expect an optimal flip angle of θ ≈ 27◦ in the small

lung airspaces (D ∼ 0.3 cm2/s), and θ ≈ 20◦ in the major airways which have

essentially free diffusion (D ∼ 0.9 cm2/s). We used θ = 20◦ for our Before/After

SSFP DWI pulse sequence.

The first Before/After SSFP DW images were taken in a healthy volunteer us-

ing the following parameters: RF pulse duration = 300 µs, 2D imaging in 20 mm

slices with in-plane resolution of 6.6x6.6 mm, and a readout bandwidth of BW =

780 Hz/px, ∆ = 500 µs, GDi f f = 27 mT/m, and b = 0.1 s/cm2. The minimum

repetition time achievable for the Before/After SSFP DWI pulse sequence using

these parameters was TR = 4.2 ms. The imaging procedure was the same as

in the Group of Three imaging test, and the subject inhaled a mixture of 350 mL

hyperpolarized helium-3 and 1.15 L medical grade nitrogen. Ventilation images
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Figure 6.5: Simulation of the magnetization at the central line acquisition of the Be-
fore/After diffusion-weighted SSFP pulse sequence versus flip angle for different
values of diffusivity D. Using dilute helium-3, the expected values of diffusivity
at ∆ = 500 µs are D ≈ 0.3 cm2/s in the alveoli and D ≈ 0.8 cm2/s in the large
airways.

and ADC maps from a central lung slice and a posterior lung slice are shown in

Figure 6.6.

The ventilation images in Figure 6.6(a-b) produced by the Before/After SSFP

DWI pulse sequence are uniform overall, however the central-slice ventilation

image (a) has a dark stripe in the lower left lung near the diaphragm. This fea-

ture is consistent with signal drop-out caused by off-resonance precession due to

susceptibility-induced gradients at the base of the lung. The ADC maps in Fig-

ure 6.6(c-d) show a uniformly low diffusivity in the lung parenchyma, ADC ≈

0.26 cm2/s. The combination of diffusivity and b-value applied here generated a

steady state ratio:

R = e−b∗D = e−0.1∗0.26 = 0.974 . (6.8)

In the trachea (see Fig. 6.6c), the measured diffusivity ADC ≈ 0.8 cm2/s is close to

the free diffusion coefficient of helium-3 dilute in air.
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(a) Central Lung Image (b) Posterior Lung Image

(c) Central Lung ADC Map (d) Posterior Lung ADC Map

Figure 6.6: Raw ventilation images I(1) (a-b) and ADC maps (c-d) from Be-
fore/After SSFP DWI in healthy subject 1226. The measured diffusivity is uni-
formly low in the bulk of the lung. ADC values close to the free diffusion coeffi-
cient of D0 ≈ 0.8 cm2/s are measured in the trachea and main bronchi.
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We also made diffusion-weighted measurements with the Before/After SSFP

DWI pulse sequence described above in a volunteer who had been diagnosed with

emphysematous Chronic Obstructive Pulmonary Disease (COPD) and a volunteer

who was a heavy smoker but had not been diagnosed with COPD. Both subjects

had reduced inspiratory capacity and were thus given gas mixtures with lower

total volumes compared to the healthy subject: 300 mL of helium-3 and 400 mL of

medical grade nitrogen for the COPD subject and 300 mL of helium-3 and 290 mL

of medical grade nitrogen for the smoking subject. Ventilation images and ADC

maps from a central lung slice and a posterior lung slice are shown for the COPD

subject in Figure 6.7 and for the smoking subject in Figure 6.8.

The raw images of the COPD subject clearly show the regional nature of the air-

flow obstruction in COPD, as the lung was not uniformly ventilated with helium-3.

The ADC values are elevated compared to the healthy subject, ADC ≈ 0.41 cm2/s,

and less uniformly distributed. In the smoking subject, the ventilation images also

show areas of impaired ventilation (Figure 6.8a-b). However, the ADC values mea-

sured in the smoking subject appear very uniform and are only slightly elevated,

(ADC ≈ 0.31 cm2/s versus ADC ≈ 0.26 cm2/s in the healthy subject).

As described in Chapter 1, COPD is broadly categorized by two major char-

acteristics: airway obstruction (chronic bronchitis) and alveolar tissue destruction

(emphysema). Ventilation images alone can provide evidence of airway obstruc-

tion, by showing regions which do not receive helium-3 during inhalation. The

ADC maps provide complementary information, by showing regional ADC dif-

ferences indicative of airspace enlargement due to emphysematous tissue destruc-

tion. In the COPD subject, both of disease components are evident in our images.

By contrast, the ventilation images from the smoking subject show evidence of air-

way obstruction consistent with their reduced inspiratory capacity, but the ADC
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maps suggest the absence of emphysema.

(a) Central Lung Image (b) Posterior Lung Image

(c) Central Lung ADC Map (d) Posterior Lung ADC Map

Figure 6.7: Raw ventilation images I(1) (a-b) and ADC maps (c-d) from Be-
fore/After SSFP DWI in COPD subject 1238. The ventilation images show many
areas which are poorly ventilated due to disease. The ADC maps reveal mea-
sured diffusivities that are elevated compared to the healthy subject and are non-
uniformly distributed.
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(a) Central Lung Image (b) Posterior Lung Image

(c) Central Lung ADC Map (d) Posterior Lung ADC Map

Figure 6.8: Raw ventilation images I(1) (a-b) and ADC maps (c-d) from Be-
fore/After SSFP DWI in smoking subject 1233. The ventilation images show that
many areas are poorly ventilated, similar to the COPD subject. However, the mea-
sured diffusivities are lower and much more uniform than the emphysematous
COPD subject, and are only slightly higher than the healthy subject.



Chapter 7

Conclusions

Diffusion-weighted magnetic resonance images of inhaled hyperpolarized gas pro-

vide a visualization of regional differences in lung microstructure by distinguish-

ing between areas with restriction to gas movement and areas with freely moving

gas. The measured diffusion coefficient increases in regions where the gas is less

restricted. In the presence of emphysema, alveolar walls break down, creating

larger diffusion spaces which can be detected using hyperpolarized gas diffusion-

weighted MRI. A key characteristic of diffusion in a restrictive environment is

that the measured diffusivity depends on the time over which the measurement

is made, in addition to the degree of restriction. Previous measurements of diffu-

sivity in human lungs were focused in a range of diffusion times of ∆ ∼ 1-2 ms,

acquired using incoherent pulse sequences. The goal of this thesis was to develop

a technique for making diffusivity measurements in the lung at shorter diffusion

times.

The method we chose to explore was to incorporate diffusion-sensitization into

Steady State Free Precession (SSFP) pulse sequences. SSFP pulse sequences can

provide a greater signal-to-noise ratio than incoherent pulse sequences, due to

the recycling of transverse magnetization from one excitation to the next. The
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higher SNR can benefit diffusion measurements made with short diffusion times

(∆ < 1 ms), which have a reduced capacity to generate signal attenuation. A con-

sequence of the coherent nature of SSFP pulse sequences is a sensitivity to off-

resonant magnetization. The effects of off-resonant magnetization can be mini-

mized by using the shortest repetition time possible. Therefore, the SSFP technique

is well suited to making diffusion measurements at short diffusion times.

In order to facilitate the development of a short time-scale diffusion pulse se-

quence, the first part of my work was the construction and commissioning of the

Hybrid Helium-3 Polarizer. The Hybrid Polarizer provides a supply of highly po-

larized helium-3 at nearly 1.5 times the polarization (PHe3 ∼ 60% versus∼ 40%) in

more than double the batch size (3 L versus 1.3 L) than any SEOP-based helium-

3 polarizer used for medical imaging in the published literature. This signifi-

cantly higher polarization means that the same image SNR can be obtained using

a smaller helium-3 dose per scan. The more efficient use of helium-3 for medical

imaging is important due to the current scarcity of helium-3, illustrated in Fig-

ure 7.1.

For thermally polarized magnetization, it is well known that the application

of an SSFP pulse sequence leads to a steady state in which the transverse magne-

tization level after every pulse is constant. By simulating evolution of the mag-

netization vector under the influence of an SSFP pulse sequence, we were able to

determine that a different steady state is reached for hyperpolarized magnetization

in which the signal declines from one excitation to the next, but the ratio between

consecutive pulses is constant:

M(n + 1)
M(n)

=
M(n + 2)
M(n + 1)

. (7.1)

We used this result to derive a closed-form expression for this equilibrium ratio
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Figure 7.1: The declining stock of US helium-3 reserves [41].

for the case of on-resonance magnetization, and used numerical simulations to

study how it changes in the presence of off-resonance magnetization. The ratio

depends on pulse sequence parameters such as flip angle and repetition time, so

there is the potential that our result can be used to optimize SSFP pulse sequences

by manipulating these parameters.

We developed several methods of inducing diffusion-weighted contrast in the

steady state free precession sequence: the Symmetric, Asymmetric, Group of Three

and Before/After diffusion-weighted SSFP pulse sequences. We explored the in-

fluence of off-resonant spins on each of these pulse sequences and were able to

identify the most promising candidates for measuring diffusion attenuation. The
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Asymmetric and Group of Three techniques employ a variable signal attenuation

between different TR periods, which results in a steady state signal that alternates

between two or more signal levels while declining towards thermal equilibrium.

There are interesting and potentially useful features which come out of this behav-

ior such as the enhanced diffusion contrast in the Asymmetric method, however

these pulse sequences are particularly sensitive to the effects of off-resonance mag-

netization, and thus not ideal for use in the lung. Our results showed that the Be-

fore/After method of introducing diffusion attenuation was the most insensitive

to off-resonance magnetization, and therefore was the most promising option for

measuring restricted diffusion in porous environments such as the lung.

We acquired time-dependent diffusivity measurements in glass-bead phantoms

using a global Before/After diffusion-weighted SSFP pulse sequence over a range

of ∆ = 300-800 µs. We fit these measurements to the theoretical time dependence of

D(t) in the region between the linear short-time scale and the constant long-time

behavior in order to extract a measurement of the porosity φ of the bead packs,

which is a quantifiable structural parameter. The surface-to-volume ratio of the

pore space is another quantifiable structural parameter that can be extracted from

diffusivity measurements, as the slope of the short time-scale linear region of the

time-dependent diffusivity curve is to proportional to S/V. We determined that

for packs of spherical beads, the range of diffusion times at which the time depen-

dence of the diffusivity is dominated by the linear behavior is:

t ≤ t0

4
=

1
4(S/V)2D0

. (7.2)

We were not able to reach this limit using helium-3 in our bead phantoms,

however if measurements were made with xenon gas (D0 = 0.06cm2/s), the linear

region would be expected to extend to more accessible diffusion times even in the
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most restrictive 1 mm-bead phantom, t0
4 = 470 µs.

We also acquired time-dependent diffusivity measurements in human subjects

using the same Before/After diffusion-weighted SSFP pulse sequence over the

same range of ∆ = 300-800 µs. These measurements suggested that the time-

dependence of the diffusivity in human lungs exhibits similar behavior to that ob-

served in the bead phantoms. The shape of the time-dependent diffusivity curve

was markedly different for the subject with COPD compared to the healthy sub-

jects.

Figure 7.2a graphs the theoretical time dependence of diffusivity for our three

glass-bead phantoms. In Figure 7.2b, the relative difference between the 1 mm-

bead phantom curve and both the 2 mm and 3 mm curves are plotted versus dif-

fusion time, revealing a peak near ∆ ∼ 400 µs. The shape of this relative differ-

ence curve indicates that diffusion measurements made at the peak time would

be maximally sensitive to changes in diffusion restriction. Global time-dependent

diffusivity measurements in human subjects could be used to generate such a plot

for lung diffusivity, which would then serve as a guide for the optimal diffusion

time at which to make ADC maps.

We made ADC maps in volunteer subjects using a diffusion time of ∆ = 500 µs,

which is a much shorter diffusion time than previously reported in humans. These

initial results clearly reveal differences in restricted diffusion between the healthy

subject and the subject with emphysema. Now that basic sensitivity has been

demonstrated, further optimization of the Before/After SSFP DWI pulse sequence

parameters could include working to increase imaging resolution and to decrease

repetition time.

In both imaging pulse sequences we developed (the Before/After and the Group

of Three SSFP DWI), the presence of off-resonant magnetization affected the ability
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(a) Diffusivity (b) Relative Difference

Figure 7.2: (a) Calculated diffusivity versus diffusion time for several degrees of
restriction in glass beads. (b) Relative difference between the 1 mm-bead phantom
curve and the 2 mm and 3 mm curves from (a) show a peak sensisivity near ∆ ∼
400 µs.

of the sequence to produce accurate ADC measurements. When using the Group

of Three SSFP DWI pulse sequence, we demonstrated that off-resonant precession

of β > 60◦ per TR resulted in signal ratios with the opposite contrast to the applied

diffusion weighting. In images produced with the Before/After SSFP DWI pulse

sequence, regions with off-resonant precession approaching β = 180◦ per TR had

greatly reduced signal, which appeared to distort the calculated diffusivity. Both

of these undesired effects could be reduced by shortening TR.

The precession frequency, and thus the off-resonant phase accumulation for a

given repetition time, is determined by both the magnetic field and the gyromag-

netic ratio of the particle. Xenon-129 has a lower gyromagnetic ratio than helium-3,

so for the same degree of magnetic field inhomogeneity, xenon-129 will accumu-

late a smaller phase difference than helium-3 over the same TR. Thus, diffusion-

weighted SSFP images made with hyperpolarized xenon-129 have the potential

to be less susceptible to off-resonance effects caused by magnetic field inhomo-

geneities.

Reducing the size of magnetic field inhomogeneities is another strategy for re-
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ducing off-resonance magnetization effects. In the 1.5 T scanner used in this work,

our Group of Three imaging results indicated that the field inhomogeneities ex-

ceeded ∼ 2.3 ppm in some regions of the lung. An MR scanner with a holding

field of B0 = 0.75 T with the same relative inhomogeneity would have half of the

absolute field difference. The smaller changes in field should result in less phase

accumulation during the same TR period.

The combination of efficient use of hyperpolarized magnetization with an SSFP

pulse sequence and high initial helium-3 polarization from the Hybrid Polarizer

has recently been used to generate high-quality helium-3 ventilation images, shown

in Figure 7.3, while reducing the dose of helium-3 from the standard of 300-400 mL

to only 100 mL. This remarkable result is a strong indication of the potential that

exists to improve hyperpolarized gas MR by incorporating new techniques from

both the MR and the nuclear physics communities.
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Figure 7.3: Ventilation images acquired using 100 mL of 3He from the Hybrid Po-
larizer (and supplemental nitrogen to increase total inhaled volume) using an SSFP
pulse sequence. In plane resolution is 3.3x3.3 mm with 10 mm thick slices. The
SNR of these images is comparable to that is images made with 3-4 times more
helium-3 using incoherent imaging and lower gas polarization [83].



Appendix A

Hybrid Polarizer Limitations: Masing

and the X-Factor

Two important components limit the performance of the new hybrid polarizer,

masing and each cell’s X-factor. These concepts are important to consider when

trying to optimize the helium-3 polarization.

A.1 Masing

Masing is a term used to describe the behavior which limits the maximum polar-

ization a substance can achieve while being pumped to the high energy state, in

which the magnetic field due to the particles is antiparallel to the main alignment

field. As the polarization reaches a threshold level, spontaneous spin flips increase

in probability. Each spontaneous flip from the high state to the low state releases

an unpolarized photon, which is then able to stimulate spin flips in other particles.

The system can not maintain a polarization above this threshold in the high energy

state. However, if a system which mases is polarized by pumping the low energy

state, the maximum polarization is not affected by the masing threshold as sponta-
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neous spin flips are far less frequent in the low energy state. This phenomenon has

been observed at the SEOP setup in the physics building and several JLab experi-

ments [58], and was described in [84] as being attributed to a coupling between the

helium-3 magnetization and a set of transverse coils. Tests in the physics lab have

not shown this link, as the behavior seems constant even as the distances between

the cell and coils are changed.

During the first test of the hybrid polarizer we were unsure to which of the

energy states we were pumping the helium-3 nuclei, so we were prepared for the

possibility that our cell might mase. After several hours of pumping, the polar-

ization signal exhibited a characteristic of masing, the abrupt flat top seen in Fig-

ure A.1a. We varied the NMR amplitude towards the end of this test to ensure

that we had sufficient signal to measure, which caused the rise and subsequent

decline in signal as the measurements were made. At this point we suspected the

cell was masing, so we shut off the lasers and rotated the quarterwave plates by

90◦. This step reverses the circular polarization of the light, which changes the

state that is being pumped. The result is the data shown in Figure A.1b, which has

the expected exponential signal increase over time.

This test confirmed that the cell was masing. To reduce this effect, we have in-

corporated a pair of counter-wound gradient coils around the main holding field

coils. The coils consist of 9 turns each of XX gauge copper wire, and are secured

to the holding field coils with Kapton high temperature resistant tape (see Fig-

ure A.2). The coils are powered by a XX Xv XAmp power supply. The strength

of the field provided by the gradient coils needs to balance the priorities of being

strong enough to create a transition frequency gradient to reduce the propagation

of spin flips with being small enough to not contribute to large polarization during

AFP measurements. We estimate that this field should be in the range of 10mG/cm.
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(a) Pumping the HI state (b) Pumping the LO state

Figure A.1: The NMR signal measured from the first attempts at using the hybrid
polarizer. The quarterwave plates were rotated 90◦ between runs, which reverses
the circular polarization and changes the state being pumped. The cell mases in (a),
plateauing at a relatively low signal level. When the low energy state is pumped
(b), the polarization increases with the expected exponential dependence.

For our first test we varied the gradient coil current and monitored the AFP losses

while pumping the low energy state, selecting the current which minimized the

loss (IG = 2.5A).

For a more thorough test of the masing effect, we arranged for our system to

pump the high energy state by reversing the holding field direction. Once the

polarizer was put into commission, this method of changing the pump state is

preferred over adjusting the quarterwave plate angle, as imprecise settings can

reduce the degree of circular polarization of the pump light. We began pumping

the cell with the gradient coil current set to IG = 2.5A. With these settings the cell

was still able to mase, although the threshold signal level increased compared to

the original test with no gradient coil. After it was clear the cell had reached the

masing threshold, we increased the gradient coil current by 0.5A. The results of

this test are shown in Figure A.3. For each value of th coil current, the saturation

signal is higher than the previous signal until the gradient current reaches IG =

5.0A. At this point, the losses between NMR points increases and the saturation

signal is reduced.
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Figure A.2: The gradient coils installed on the hybrid polarizer. Their are 9 turns
of copper wire in each coil, with black arrows indicating the direction of current
flow.

In order to minimize the effects of masing, the hybrid polarizer is routinely

operated in the low energy pumping state with the gradient coil current set to

IG = 2.5A. We chose this value due to our experiences with large AFP losses de-

scribed in Section 3.6. When pumping to the low energy state, masing occurs dur-

ing the AFP measurement when the spins are flipped if they are polarized above

the masing threshold. This means the AFP loss per measurement increases as the

polarization of the helium-3 nuclei increases. We chose the gradient coil current

that balanced this AFP loss at high polarizations with the baseline AFP loss at

below threshold polarizations, which are larger when the gradient coil current is

increased.
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Figure A.3: NMR signal amplitude as the gradient coil current is increased. The
signal was considered to have reached a threshold when the NMR signal remained
constant or decreased from one point to the next. The current setting with the
highest saturation signal was IG = 4.5A.

A.2 X-Factor

Babcock et al have suggested an alteration to the achievable helium-3 saturation

polarization given in equation 3.5 [85]. There exists an additional surface-relaxation

mechanism which scales with cell surface-to-volume ratio and alkali metal density.

The additional relaxation reduces the helium-3 saturation polarization

PHeSat = PRb ∗
γse

γse(1 + X) + Γsd
(A.1)

where the X factor accounts for the additional relaxation and appears to scale with

surface-to-volume ratio and alkali density. When determining the quality of a po-

larization cell, it is useful to determine the X factor for that cell. Having the X

factor allows for a better judgment on how close the hybrid polarizer’s set up is to

optimal for that particular cell.
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In solving for X we make an approximation for the spin-exchange rate

γse =
Γup − Γsd

1 + X
(A.2)

where Γup = 1/Tup, the spinup time constant. We also replace PRb with PA for

average alkali metal polarization due to the addition of potassium in the hybrid

polarizer.

X =
PA

PHeSat
(1− Γsd

Γup
)− 1 (A.3)

Each of the parameters in equation A.3 can be determined from either a spinup

or a spindown except the alkali polarization. The hybrid polarizer lacks the diag-

nostic tools used in other labs to measure alkali polarization. We calculate X with

PA = 1 and set an upper bound on the X factor for the cell based on the saturation

polarization and the spinup and spindown time constants.

Table A.1 lists the X factor values calculated whenever the hybrid polarizer had

a paired spinup and spindown performed with the same gas mixture. The average

X factor measured in HC1 XAvg(HC1) = 0.44. For HC2, the first measurement of

X = 0.27 may have been influenced by a large cloudy substance covering the alkali

metal pool which accumulated while the cell was in storage.
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Cell Date Pressure (psig) Γup (1/hrs) PHeSat Γsd (1/hrs) X Factor
HC1 05/26/2008 120 1/3.54 65.4 1/49.2 0.42

06/02/2008 120 1/4.86 59.6 1/47.2 0.51
11/14/2008 120 1/3.68 59.4 1/37.1 0.52
08/10/2009 120 1/3.81 63.6 1/35.6 0.40
08/14/2009 41.4 1/3.85 65.4 1/44.2 0.40
08/09/2010 120 1/3.86 66.0 1/39.4 0.37
02/13/2011 110 1/3.54 60.0 1/33.4 0.49

HC1 AVG 0.44
HC2 06/28/2011 120 1/4.8 62.2 1/22.8 0.27

07/03/2011 120 1/4.0 60.9 1/27.8 0.41
Cell Date Pressure (psig) Γup (1/hrs) PHeSat Γsd (1/hrs) X Factor

Table A.1: Spinup and spindown parameters for HC1 and HC2 and the calculated
X factors.
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Hybrid Polarizer Components

The following section provides information about specific components which were

used in the construction and operation of the Hybrid Polarizer.

B.1 Gas System Details

The gas system is divided into two sections, the upper and the lower gas systems.

The lower system is made of stainless steel tubing and has VCR connections and

valves. It contains the 3He Bottle, the vacuum pump, and the UHP Nitrogen. The

upper system is made of aluminum tubing and has primarily Swagelok connec-

tions and valves.
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Figure B.1: Lower Gas System
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Item Description
3He Bottle High pressure bottle containing ∼53L of helium. Pressure usu-

ally ranges from 1800psi to 100psi. Serial number of the bottle
must be noted on every batch dispensed and should be recorded
in the logbook when a bottle is attached or removed.

V1 Valve 1- isolates the line to the bottle from the rest of the gas
system.

V2 Valve 2- connects the Vacuum Manifold to the Regulator HI and
the bottle.

V3 Valve 3- isolates the Regulator HI from the rest of the system
when the regulator is closed.

REG-HI A transducer that displays the pressure on the high side of the
regulator, which is also the 3He Bottle pressure. (psia)

Regulator Tescom Regulator: INMAX = 3500psi, OUTMAX = 150psi
REG-LO A transducer that displays the pressure on the low side of the

regulator, which is also the cell pressure. (psig)
V4 Valve 4- connects the Regulator LO to V10, which leads to the

cell.
V5 Valve 5- connects the Vacuum Manifold to the Regulator LO and

V10, which leads to the cell.
V6 Valve 6- connects the Vacuum Manifold to V13, which leads to

the outlet.
V7 Valve 7- connects to the Ultra High Purity (UHP) Nitrogen,

which is used for purging the gas system.
V8 Valve 8- outlets to the room. Used for setting the UHP N2 flow to

an acceptable level.
V9 Valve 9- connects to the vacuum pump.

VAC Vacuum Pressure Gauge (mT)
V10 Valve 10- connects the cell to the lower gas system, specifically

the Regulator LO side.
V11 Valve 11- connects the cell to the outlet.
V12 Valve 12- connects the outlet to the Medical Grade (med) Nitro-

gen.
V13 Valve 13- connects the outlet to the lower gas system, specifically

the vacuum pump.
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Figure B.2: Upper Gas System
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B.2 Electronics

In this section, I have provided a list of the electronics components installed in the

Hybrid Polarizer, including the default settings. In addition, the equations used

by the LabVIEW programs for fitting are listed below.

Figure B.3: Hybrid Polarizer Electronics Rack
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Table B.1: Electronics Settings

Device Name Manufacturer Name State Settings
NMR Lockin SRS SR830 DSP Always ON A- NMR Pre-Amp

& Scope; B- A-
Φ Direct Out &
Scope; A-B, AC
Coupling, Ground;
τ=10ms, 6db/Oct;
Sens=50mV, Reserve:
Normal; Filters- Line,
LineX2; Ch.1-X, Ch.2-
Y, Output- X & Y; Ref
IN- NMR RF FG
SYNC Out, Pos Edge

A-Φ Circuit None Always ON Sig. Gen. IN- NMR
RF FG OUT; Direct
Out- NMR Lockin &
Scope; Direct Out;
(Lead/Lag and Gain
subject to change)

Feedback Circuit None Always ON Circuit 1: unused;
Circuit 2: Vin- un-
plugged (except dur-
ing EPR Take Data);
INT- Off (except dur-
ing EPR Take Data);
Rel. Gain- 1.5; Total
Gain- 5.0; Vmod- EPR
MOD FG Out; Vout-
154:1 Divider to EPR
RF FG MOD input

BNC 2090 NI BNC 2090 Always ON Analog Inputs: AI2-
Oven Temp. AI3-
EPR Lockin X Out-
put; AI4- EPR Lockin
Y Output (Always
use a BNC terminator
on the input below
the one that you are
using to avoid large
floating voltages.)
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Device Name Manufacturer
Name

State Settings

EPR Lockin SRS SR830
DSP

Always ON A-Photodiode; A, AC
Coupling, Float; τ=100ms,
6db/Oct; Sens=100µV Re-
serve: Low-Noise; Filters-
Line, LineX2; Ch.1-X,
Ch.2- Y, Output- X & Y; Ref
IN- EPR MOD FG SYNC,
Pos Edge

NMR RF FG HP 3325A Always ON Settings controlled by
computer: Freq=100kHz,
Amp=550mV

Scope Tektronics
TDS 2012B

Always ON Ch. 1- A-Φ Direct Out; Ch.
2- NMR Lockin A; Trigger-
Ch. 1; AC Coupling;
M=10µs; Amp=100mV

Keithley Keithley
Multimeter
2000

Always ON Rear Input from Shunt Re-
sistor; if display is frozen,
push LOCAL

EPR RF FG Fluke 80 OFF unless
doing EPR

VCO Mode; settings con-
trolled by computer: Freq
∼20MHz, Amp ∼2V

EPR Counter Agilent
53131A

Always ON Ch. 1- EPR RF FG SYNC;
Gate Time=50ms

EPR MOD FG Agilent
33220A

Always ON Output- VMOD on Feed-
back Circuit; SYNC- EPR
Lockin REF IN; settings
controlled by computer:
Freq=200Hz, Amp=1.0Vpp

Holding Field FG Agilent
33220A

Always ON Output- Kepco Voltage
Programming Input;
settings controlled by
computer: Ramp, Burst,
Manual Trigger
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Device
Name

Manufacturer
Name

State Settings

Holding
Field Power
Supply

Kepco
36V/12A
BOP

Always ON Voltage and Current Con-
trol OFF; Voltage Mode;
Voltage Programming
Input- Holding Field FG;
Rear Output to coils and
shunt; positive voltage
from FG gives negative
voltage in Power Supply
which creates positive
Field

Omega
Tempera-
ture Display

None Always ON 1- Heater A; 2- Heater B; 3-
Cell Stem

Interlock
/Heater
Control

None Always ON Inputs- Oven temp, Com-
biner temp, Cube temp,
Flowmeters; Outputs-
Heaters A and B, Oven
temp (analogue), Laser
Interlock

Gradient
Coil Power
Supply

BK Preci-
sion 1621A

Always ON Wire labelled (+) plugged
into (+); (−) and GND
shorted; Current=2.5A

NMR Pre-
Amp

SRS SR560 Always ON A- Pick-Up A, B- Pick-
Up B, A-B; 50Ω Output-
NMR Lockin A; Bandpass
Filter: 10kHz − 300kHz;
Low Noise, 50x Gain, Line
Power

NMR RF
AMP

T & C
Power AG
Series

Always ON Input- NMR RF FG;
Output- NMR RF Coils;
RF Output- ON; Freq-
0.100MHz; Power- 40%;
Mode- MGC; Source- EXT

EPR RF
AMP

AR Amp OFF except
when doing
EPR

Input- EPR RF RG,
Output- EPR RF Coils;
Gain ∼ 3.5
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B.3 LabVIEW Programs

This section gives some information about the LabVIEW programs used in operat-

ing the Hybrid Polarizer. Shortcuts to the vis can be found in the Desktop Folder

hybrid_polarizer_vis. Most end in _polarizer because they were editted

from a version created in physics. Many begin with j because they were created

by Jaideep Singh. If you wish to make any changes to a vi, append a number the

the file name and save it as a new vi.

B.4 NMR

Program Description
jmultnmr_polarizer.vi Controls DAQ for NMR and records the

oven temperature. This vi has the
ability to take a single NMR or mul-
tiple NMRs in the form of a Spin Up
or Spin Down. Saves 4 files for each
sweep, the .txt file is used in the
jnmronedata_polarizer.vi program.

jfieldtools_polarizer.vi Sets parameters for NMR Sweeps and
Holding Field Value.

jnmronedata_polarizer.vi Fits peaks from an NMR Sweep and can
save files for a Spin Up or Spin Down Fit.

nmrspinupfitter.vi Reads the file generated by
jnmronedata_polarizer.vi and fits to
an exponential curve, giving the saturation
signal and Spin Up Time Constant.
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B.5 EPR

Program Description
jfmsweep_polarizer.vi First program used in EPR to locate the al-

kali transition frequency. Saves a file with
VCO freq, Counter freq, and EPR Lockin X
& Y.

jeprtakedata_polarizer.vi Controls the NMR FG and records the data
during the EPR spin flip. Saves a file with
the Counter freq, and counts.

jepranalrbk_polarizer.vi Calculates 3He polarization from fre-
quency shift data. Uses the file generated
by jeprtakedata_polarizer.vi,
and density, temperature, and volume
information provided by the user.

B.6 Other

Program Description
nmrspindownfitter.vi Reads the file generated by

jnmronedata_polarizer.vi and
fits to an exponential curve, giving a cell
lifetime and starting polarization.

alkalipolarization.vi Takes data and controls settings for the al-
kali polarization sweep.

pol_fitter.vi Fits the data from
alkalipolarization.vi and gives
an alkali polarization.
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B.7 EPR Equations

The size of the shift in the alkali metal EPR frequency can be directly converted

into a helium polarization using the following formulas [58]:

BHe =
B↑↑ − B↑↓

2
(B.1)

BHe =
−b− s ∗

√
b2 − 4c

2
(B.2)

b = −
gµB

(
A

2k+1 − sh ∗ ∆νHe

)
− gKµN

(
2kA

2k+1 − sh ∗ ∆νHe

)
s(gµB)(gKµN)

(B.3)

c =
sh ∗ ∆νHe(A− sh ∗ ∆νHe)

gµBgKµN
(B.4)

BHe =
2µ0

3
MHe, MHe = κ0 ∗ [3He]gµN

PHe

2
(B.5)

Constant Value Constant Value
h 6.626*10−34 J · s g 2.002

hfs 461.71972 k 3/2
s -1(or 1) mm 0.39146

gK mm/k A hfs*106 ∗ h
κ00 4.541 κ0T 0.00924
µHe −2.12762 ∗ µN κ0 κ00 + κ0T ∗ T

Table B.2: Values are given for 39K

Once the helium-3 magnetic field strength BHe has been calculated, it can be

directly converted into a helium-3 polarization PHe using

PHe =
2

κ0 ∗ [3He]
∗ 3 ∗ BHe

2µ0
(B.6)

where µ0 is the permeability of free space, [3He]is the density of helium-3, and κ0
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is the empirical shift constant

κ0 = κ00 + κ0T ∗ T (B.7)

κ0 has both a temperature-independent contribution κ00 and a temperature-dependent

contribution κ0T

κ00 = 4.541, κ0T = 0.00924 (B.8)
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