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ABSTRACT

When using ecological momentary assessment data (EMA), missing data is perva-

sive as participant attrition is a common issue. Thus, any EMA study must have a

missing data plan. In this paper, we discuss missingness in time series analysis and

the appropriate way to handle missing data when the data is modeled as a discrete

time continuous measure state-space model. We found that Missing Completely At

Random and Time-dependent Missing At Random data have less bias and variabil-

ity than Missing At Random, Autoregressive Time-dependent Missing At Random,

and Missing Not At Random. The Kalman filter excelled at handling missing data.

Contrary to the literature, we found that, with default package settings, multiple

imputation struggled to recover the parameters.
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1. Introduction

Missing data is ubiquitous in psychological data, no matter cross-sectional or time se-

ries. This is problematic as many statistical methods are not directly applicable to data

sets with missing data, and those that are face problems with statistical power, valid-

ity, and accuracy of parameter estimates when missing data is handled inappropriately

(El-Masri & Fox-Wasylyshyn, 2005). There is often confusion regarding determining

the pattern of missingness from the original patterns in Rubin (1976), further bol-

stering the above problems in that if certain types of missingness are ignored, they

will result in severely biased parameter estimates, which in turn can result in spurious

findings. Even when correctly determining the pattern of missingness, the volume of

missing data imputation methods available may leave psychological researchers puz-

zled about which method is most appropriate for their data.

While missing data occurs and creates problems in the cross-sectional case, this is

amplified in the case of intensive longitudinal or time series data, particularly ecological

momentary assessment (EMA) data. EMA data is time series data that is collected at

multiple time points in the participant’s natural environment, usually multiple times

a day over several weeks (Shiffman, Stone, & Hufford, 2008). While EMA is popular

in clinical populations, it is capable of measuring any phenomenon that is thought to

change over time such that daily patterns may differ from weekly patterns or within

day patterns differ from between day patterns. For example, we might look for trends

in cigarette smoking, mood, or social activities. In the case of cigarette smoking, you

may see differences within a day (e.g, smoking less in the morning) or differences

throughout the week (e.g., smoking more on the weekend than on weekdays). Similar

patterns may hold for the case of social activities as well. EMA studies are said to be

ecologically valid in that data is collected in natural environments rather than in a

laboratory setting (Shiffman et al., 2008). It also avoids issues with participants having

to remember thoughts, feelings, and behaviors as they would if they were questioned

in a laboratory setting because EMA can ask about the events in real-time. A major

challenge of EMA data collection is participant attrition. To adequately model the

data, we need participants to faithfully respond to the measures for a large number
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of time points. As participants do not typically fulfill this ideal, the EMA researcher

must have a response to the problem of missingness.

There are a variety of ways of modeling EMA data, from observed variable time

series models, to the use of mixed effects models. One general framework for analyzing

the temporal dynamics of EMA data is state-space modeling. A state-space model is

one where the observed data, in this case the measures collected in the EMA study,

are measurements from an underlying latent process. In this framework, the temporal

dynamics of the EMA data are fully captured in the temporal relations between these

latent states. While state-space modeling is a more general framework than dynamic

structural equation modeling, they are comparable.

Here we use a discrete time continuous measure state-space model, represented via

the following equations:

xt+1 = Axt + vt (1)

vt ∼ Np(0p,Q) (2)

yt = Hxt +wt (3)

wt ∼ Np(0p,R) (4)

where there are p states, T time points, and l indicators xt is the p × 1 matrix of

states at time t, A is the p×p matrix of transition coefficients, Q is the p×p covariance

matrix for the state error, z is the measurement at time t, H is the l × p matrix that

maps states to measurements, and Rt is the l × l covariance matrix for measurement

error.

This model was chosen due to its simplicity, acting as a first step in exploring the

role of missing data in EMA analysis via state-space models. This discrete time model

assumes equal intervals of data collection, an idealization of EMA data collecting

processes. In addition, we assume that the measured variables are continuous, another

simplifying assumption. These idealizations serve to help assess the impact of missing

data in EMA studies at a basic level.
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The purpose of this paper is to understand the impacts of different types of missing

data on the analysis of EMA-like data and offer guidelines for the use of missing

data imputation methods in those cases. First, we review missing data mechanisms

and discuss how they can occur in EMA data. Second, we perform a Monte-Carlo

simulation study of the impacts of different missingness mechanisms on the statistical

modeling of EMA-like synthetic data, comparing the ability of several missing data

imputation techniques in the time series case. We conclude by providing guidance to

the psychological researcher regarding appropriate missing data approaches.

1.1. Mechanisms of Missingness

Missing data are generally divided into three categories, Missing Completely At Ran-

dom (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR),

which first appear in Rubin (1976).

To understand MCAR, consider an example: A study is run to understand anhedonia

in an in-patient schizophrenia spectrum disorder sample. Data collection of the Snaith-

Hamilton Pleasure Scale (SHAPS: Snaith et al., 1995) is scheduled for a single day,

and on that day, the researcher discovers that a small percentage of the patients have

the flu and cannot participate. Thus, you have missing values for those participants.

Notice that the missingness mechanism is not related to observed variables: having the

flu is unconnected to the SHAPS scores. Even so, the careful reader may protest: this

relies on the assumption that having the flu is totally unrelated to to anhedonia or any

other variable that we have collected. The strength of this assumption is indicative of

the rarity of the MCAR mechanism occurring in a dataset.

When the missingness mechanism of a given variable is MCAR, there is no rela-

tionship between which data elements are missing and any other observed aspect of

the data (Bannon Jr., 2015).Thought of statistically, the marginal distribution of the

observed sample would be the same as the marginal distribution of the complete data

on A (see Figure 1, Panel B). In other words if, for a variable A, the missingness

mechanism is MCAR then the probability that a given element of A is missing is in-

dependent of the observed/missing values of A and the other observed values in the

data set (El-Masri & Fox-Wasylyshyn, 2005). We can think of an MCAR mechanism
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as though an analyst randomly selected a number of entries in a given variable, with

equal probability of selecting any entry, and deleted them from the dataset. MCAR,

while possibly being the simplest mechanism to understand, is rarely seen in empirical

data outside of planned missingness designs (T. D. Little, Jorgensen, Lang, & Moore,

2014).

A. Complete B. MCAR

C. MAR D. MNAR

Figure 1.: The above graphs show variables correlated at .3 with A. complete data, B.
MCAR-deleted data, C. MAR-deleted data, and D. MNAR-deleted data. The black
dots represent the data that is present in the sample and the pink dots represent data
that is missing. Variable Y is the variable with missing data (in B-D) and variable X
is a variable with complete data. Note that in Panel B, the marginal distributions of
the MCAR missing data are the same as the marginal distributions of the non-missing
data, while in Panel C and D, the marginal distributions of the non-missing data are
considerably different from the original complete data marginal distribution.

This can be seen in Figure 1 where Y is our variable with missingness, Panel A

shows the complete data, and Panel B shows the MCAR data with the pink points as

the missing data and the pink marginal distribution as the missing distribution (black
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is the observed data). First, notice that the missingness is equiprobable across the

sample: there is no clustering dependent on Y or X. In our example, this would mean

our missingness is not related to SHAPS score, Y , or the additional predictor, X. Also

notice how neatly the marginal density distributions of observed and missing data map

onto each other. Recall, the distribution of the observed sample will be the same as

the distribution of the missing sample, and we see that here. This plot demonstrates

why MCAR missingness mechanisms are less problematic than the other missingness

mechanisms, insofar as the marginal distribution of Y does not change even in the

face of missingness.

Take again the example of a study of anhedonia levels in a schizophrenia spectrum

disorder sample. In this case, the study also collects a variable indicating whether

the individuals have schizophrenia or schizoaffective-depressive subtype (character-

ized both by schizophrenic and depressive symptoms). The Beck Depression Inventory

(BDI: Beck, Ward, Mendelson, Mock, & Erbaugh, 1961) is also collected. On the day of

data collection, most of the schizophrenia patients are in schizophrenia-specific therapy

group and unavailable to participate. Depression is strongly correlated with anhedo-

nia, (Martino et al., 2018) so the missingness of the SHAPS score variable is related

to the other variables, diagnosis and BDI, in that one would expect to see higher BDI

scores in the schizoaffective sample than the schizophrenia sample. Hence, with the

parts of the schizophrenia sample with low BDI scores missing SHAPS scores, we see

MAR missingness. There is nuance here in that, although, the missingness mechanism

is in line with the relationship among the variables, MAR is still possible when the

prediction of missingness comes apart from predicting the value of the variable (though

is still related to the missingness). Still, for the sake of this example, we consider the

former case.

A MAR mechanism occurs when the missingness of a variable is related to the

observed values of variables other than the outcome variable. MAR is similar to MCAR

in that the missingness of a variable is not related to the value of the variable with

missing data. As such, for MAR, although the missingness is systematic (Bhaskaran

& Smeeth, 2014; Newman, 2014), the randomness of MAR arises in that once we

condition on the other observed variables, the missingness is random.
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Imagine in Figure 1.A and 1.C, Y is the SHAPS score and X is BDI score. Notice

the clustering for the low levels of depression: the most missingness occurs in samples

with low depression. Notice that here, unlike with an MCAR missingness mechanism,

the distributions between observed and missing data begin to differ, and therefore the

distribution of the observed data is not the same as the distribution of the complete

data. This difference is the reason why MAR missing data leads to bias in modeling:

The observed data is not representative of the actual population.

Returning to the above example, we again collect data on the SHAPS, but also age,

sex, diagnosis, BDI, and time-in-hospital variables. Unfortunately, we miss the full

SHAPS battery for some individuals. Upon reflection, we realize that people who are

low on anhedonia are less likely to volunteer to fill out our measure because they are

unlikely to seek help (and we are collecting in an in-patient unit). Thus, our missingness

is directly related to the SHAPS itself, and our data is MNAR. Furthermore, for

individuals in the observed sample and individuals in the missing data sample who

share the same age, sex, diagnosis, and time-in-hospital, we see different distributions

of SHAPS scores.

Now, imagine Y is SHAPS score and X is BDI for Figure 1.D. Unlike the previous

example, we are hypothesizing that the missingness is related to the SHAPS score with

those with low scores less likely to participate. We see this clustering in the graph in

the negative values for the x-axis, showing that there is a pattern to the missingness.

We see even greater differences in the marginal density distributions for observed

and missing data. As with MAR, the differences in the marginal distributions of the

observed data vs. complete data is showing that the observed data is not representative

of the population when afflicted by MNAR missingness.

An important first step to handling missing data is to understand missing data

mechanisms. Much missing data advice is aimed towards MCAR, MAR and cross-

sectional data. In the next section, we will consider missing data in time series analysis,

which includes novel missingness mechanisms in addition to the classical mechanisms

of Rubin (1976), before continuing on to techniques that can be used to handle missing

data in time series analysis.
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1.2. MCAR, MAR, and MNAR for time series

The above mechanisms of missingness apply as well to time series data. Imagine you

are interested about change in SHAPS scores over time. You visit the inpatient unit

once a week to collect scores. Sometimes when you come, some patients are having

recreation time. Thus, you have a time series of SHAPS scores with occasional missing

points for each individual. This is a case of MCAR for time series: the missingness is

not related to the score or other variables in the model.

Imagine the hospital has separate therapy groups for schizophrenia and

schizoaffective-depressive subtype disorder, and they alternate meeting during your

collection times. At some time points, you miss the schizophrenia sample and at oth-

ers, you miss the schizoaffective-depressive subtype sample, resulting in missing obser-

vations across time. This is a case of MAR: the missingness is related to the variables

without missingness, that is, diagnosis, but not the variable with missing, the SHAPS

scores.

Unique to time series, time-dependent missing at random, TMAR, occurs when

the missingness depends only on the time variable in the model. This differs from

traditional MAR in that you see periodicity in missingness and, also, missingness

on consecutive data points with TMAR missingness. This occurs commonly in EMA

studies when data is collected on uneven schedules. For example, imagine we collect

data throughout the day and include one late night time point. Patients who go to

sleep early may be less likely to participate at this time point, and depending how

close the preceding point is, we may see missingness in that point as well. Notice there

will be periodicity in the missingness in that this particular point (or points if they’re

close together) will be consistently missed.

Another form of MAR for time series, autoregressive TMAR or ATMAR, occurs

when the missingness on a variable at time t is dependent upon the previous values of

the variable. It is similar to MNAR in that the variable with missingness is causing its

own missingness; however, it is similar to MAR in that on might observe values before

the missing value which can then be used in imputation. Imagine SHAPS scores being

collected at two time points. At the first time point, an individual has a high SHAPS

score. At the second time point, the SHAPS score is missing. The researcher must
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answer the question: Is the high SHAPS score related to the later missing SHAPS

score? If this answer is yes, then the missingness is ATMAR. If the answer is no, but

the high SHAPS score is related to another variable in the model, including time, then

the missingness would be MAR or TMAR. If the missingness is not related to any of

the variables, which is typically unrealistic, the missingness would be MCAR.

Finally, you collect SHAPS scores, age, sex, diagnosis, and time-in-hospital every

week. You notice the hospital has an ”anhedonia support group” that meets sometimes

when you collect. Thus, on those occasions, you miss collecting the data of those who

attend this support group. You realize that this might be problematic for analysis

because the missingness is related to the value of your SHAPS variable. This is a case

of MNAR: the missingness of the missing variable, SHAPS scores, is related to the

value of the missing variable.

The careful reader may notice that there are fuzzy boundaries between times series

MAR and MNAR. For example, ATMAR could also be considered as a time of MNAR

in that if the missingness is dependent on the previous value of an autoregressive

process, then its marginally related to the value that is missing. Hence, though we

classify ATMAR as MAR, it is equally considered to be a form of MNAR. This link

between MAR, ATMAR, and MNAR is further solidified in the following study.

While there are some commonalities between cross-sectional and time series miss-

ingness, time-dependent missingness is unique to time series analysis. Because of this,

methods of missing data imputation differ between cross-sectional and time series data.

This will be considered in the next section.

1.3. Missing data methods for time series

There are a number of methods proposed for handling missing data. The least so-

phisticated of these is known as listwise deletion, in which all variable values for a

given participant at time t are deleted if any one of those variables has missing data.

Additionally, mean, mode, or median imputation is often used to replace the missing

value with the relevant summary statistic. Generally, these methods are inappropriate

for any form of missingness other than MCAR due to differences between the observed

and complete distributions, but they are particularly unsuitable for time series data
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because they ignore the time-dependency of the data. Here,we will consider multiple

imputation methods, which use information from the observed other variables in the

model to inform the generation of the missing data imputation values, multiple impu-

tation by chained equations (MICE: Ji, Chow, Schermerhorn, Jacobson, & Cummings,

2018). We will also consider single imputation methods which take into account the

temporal dependency in EMA data: the Kalman filter and a variety of methods using

the Expectation Maximization algorithm (EM: Dempster, Laird, & Rubin, 1977),

chosen due to their citation popularity and the availability of R packages.

1.4. MICE

MICE (Ji et al., 2018) is a multiple imputation method in which missing data values are

drawn through variable-by-variable iterations over conditional densities with Markov

Chain Monte Carlo (MCMC) techniques. Mathematically, consider Y, to be a matrix

of dependent variables for all individuals and X to be a matrix of the covariates for

all individuals. Then, Yo and Xo are the observed variables and Ym and Xm are the

missing variables. With θ as the vector of unknown parameters, the ith iteration of

the chained equation is a Gibbs sampler, a MCMC algorithm for sampling from a

multivariate distribution, that iteratively draws from the distributions

θi ∼ P (θ|Yo,Xi−1) (5)

Ym(i) ∼ P (Y|Yo,Xi−1, θi) (6)

Xm(i) ∼ P (X|Xo,Yi, θi) (7)

Here, the draws for the missing variables, Ym(i) andXm(i) are conditional on the non-

missing dependent and independent variables, respectively, and the complete imputed

data from the independent and dependent variables, respectively, and the draws from

the parameter distribution. It is assumed that the relations among the variables follow

a general or generalized linear model, though there is flexibility depending on the

distributional characteristics of the data.

The default imputation method in MICE for numerical variables is predictive mean
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matching (PMM: R. J. A. Little, 1988; Rubin & Schenker, 1986; van Buuren &

Groothuis-Oudshoorn, 2011) . To summarize the relevant details of this approach,

PMM begins by first fitting Bayesian regression models predicting the target variable

Y by the covariates X (in this application, these are linear regression models) to ob-

tain the posterior distributions of regression parameters. Then, for each given missing

value of Y , Yj [mis], pairwise distances are calculated as |Xi[obs]β̂ −Xj [mis]β̇|. From

there, candidate observed values of Y are selected from cases with the minimum cal-

culated distance. The missing value Yj [mis] is then imputed by randomly sampling

one of those observed values (with probability proportional to the distance metric).

Note that this method imputes missing values with values drawn from observed data,

rather than sampling from some theoretical distribution. Also note that this approach

does not account for model temporal dependency when applied to timeseries data.

Simulation studies on the procedure (Ji et al., 2018) have shown recovery of point

estimates with less bias than listwise deletion. MICE results in multiple imputed

datasets, requiring the aggregation of results across datasets during analysis. It has also

seen success with binary responses (Hardt, Herke, Brian, & Laubach, 2013; Zaninotto

& Sacker, 2017), in models with interactions (Zaninotto & Sacker, 2017), and when im-

puting missing scale items not the individual-level, but at the level of scale summaries

(Plumpton, Morris, Hughes, & White, 2016).

An alternative multiple imputation method not considered here is the the {Amelia}

R package (Honaker, King, & Blackwell, 2011), which is able to fit polynomial trends

to timeseries data. This would improve imputation in situations where there are clear

polynomial trends, such as panel longitudinal studies, where the trajectory over time

is often of greatest interest. However, Amelia II is limited to deterministic time trends,

which are separate from the autoregressive effects of interest here. Hence, we do not

consider Amelia here.

As MICE is a multiple imputation method, a method that imputes i many datasets,

it requires some way of compiling and comparing the multiple imputed data sets. The

standard way appears in Rubin (1996) and is summarized here. The actual posterior

distribution defined by θ is the average of the posterior predictive distributions of the

missing data, given by the observed data. It follows that the posterior mean of the
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distribution defined by θ is the average of the posterior means of the multiply imputed

data sets and the variance of the posterior distribution defined by θ is the average

of the variances of the multiply imputed data sets plus the variance of the multiply

imputed data sets. In this way, i many data sets which have been multiply imputed

can be analyzed as one data set.

1.5. Expectation Maximization

The EM algorithm is a general purpose estimating technique that was originally de-

veloped in the context of estimating missing data (Dempster et al., 1977). The EM

algorithm can be used in tandem with single or multiple imputation. Instead of di-

rectly estimating the values of the missing data elements, the approach of Junger and

Ponce de Leon (2015) uses the EM algorithm to estimate the distributional character-

istics of the missing data, and then to sample from that distribution.

The approach of Junger and Ponce de Leon (2015) can be summarized as follows:

Define a vector of all the variables at time t, xt, and split it so that the first n variables

are the ones with missing values and the remaining, up to p, are the observed values,

xt = (xt1, xt2, . . . , xtn, xtn+1, . . . , xtp). As such, there are two mean parameters, one

for the missing values at time t and the other for the observed values,

µtm

µto

 (where

µtm is the mean for the missing values and µto is the mean for the observed values)

and a 2× 2 covariance matrix defined over some set of time windows to allow for non-

stationarity in the time series. For simplicity’s sake, we suppress the window notation,

and denote the covariance matrix as Σ.

At each expectation step of the EM algorithm, missing values (xt1) are imputed

with the following expected value:

xt1 = E[Xt1|xt2, µt,Σ] = µtm +Σ12σ
−1
22 (xt2 − µto) (8)

Following the imputation of the missing values during each expectation step, max-

imum likelihood estimates of µtm,µto and Σ are computed, with µtm and µto being

computed using a specific level estimation model.
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There are a number of ways of estimating µtm and µto. Indeed, Junger and Ponce de

Leon (2015) note that any time series filtering method can be used. They provide three

different estimation models that are tested here. First, an autoregressive integrated

moving average (ARIMA) model can be used by finding the d-th order difference and

using the mean estimate of the one-step ahead prediction. Second, a natural cubic

spline with curve, g, can find an initial mean as g(xt) gives an estimate. Finally,

Junger and Ponce de Leon (2015) propose the use of a generalized additive model

(GAM: Trevor Hastie & Robert Tibshirani, 1986), which are flexible regression type

models that allow for non-linear relations to be automatically fit.

1.6. Kalman Filtering

Kalman filtering is a baseline method for handling multivariate missing time series data

modeled as a state-space model. While it is not a missing data imputation method in

the traditional sense in that it does not impute values for the observed variables, it is

used as a solution to issues arising from missing data. It is a natural part of estimating

state-space models, as state-space models require estimates of the latent states (which

is provided by filtering). However, Kalman filtering also provides a missing data im-

putation method at the level of states as it allows for the prediction of states from

previous values. This method recursively estimates latent states at time t, xt, and and

a covariance matrix of states at time t, Pt. For the time update xt and Pt are updated

as follows:

P̄t+1 = APtA
′ +Q (9)

x̄t+1 = Axt (10)

and for the measurement update, they are updated as follows:
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Pt+1 = [(P̄t+1)
−1 +H′R−1

t+1H]−1 (11)

x̄t+1 = x̄t+1 +Pt+1H
′R−1(zt+1 −Ht+1x̄t+1 (12)

We may be concerned about the measurement update due to its reliance on zt+1,

which may be missing given our current set-up. However, notice that the time update

does not depend on the observed variables. Thus, Xt and Pt can be updated even in

the presence of missing data if we forgo the measurement update and rely, merely,

on the time update. Hence, we can still use the Kalman filter on missing data with

our updates occurring at the time level. Note that Kalman filtering is a single pass

imputation method that is purely based on the estimated state dynamics, rather than

any information being used from other variables in the system. This will be used as

our baseline method in the simulation.

The preceding missing data imputation methods provide both single and multiple

imputation approaches to time series data, taking into account the time dependencies

characteristic of such data. In the context of cross-sectional data, multiple imputation

tends to be recommended over single imputation (Sinharay, Stern, & Russell, 2001). In

the case of single imputation, point estimates cannot take into account the uncertainty

of the missing data values, resulting in negative bias, while, for multiple imputation,

as i many data sets are estimated, such uncertainty can be accounted for. In the

proceeding section, we propose a simulation to examine if this recommendation holds

for multivariate time series data.

2. Methods

We examined how missing data mechanisms impact the recovery of parameter esti-

mates, by performing a Monte-Carlo simulation. In this simulation, data was generated

and a portion of the data was deleted to create MCAR, MAR, TMAR, ATMAR, and

MNAR samples with β coefficients from the corresponding logistic regressions found

via grid search. The resulting data sets were analyzed in a discrete time continuous

15



measure state-space model with Kalman filtering as a baseline method and compared

with multivariate time series data imputation methods

2.1. Data Generating Model

The data generating model for this simulation is the discrete time state-space model

with linearly related normally distributed states and normally distributed observa-

tions. This model can be viewed as a dynamic factor model. To keep the simulation

simple, we simulated a 2 state, 3 indicators per state model of the following form:

xt+1 = Axt + vt (13)

vt ∼ Np(0p,Q) (14)

zt = Hxt +wt (15)

wt ∼ Np(0p,R) (16)

where xt is the 2×T matrix of states A is the 2×2 matrix of transition coefficients,

0p is the 2x1 mean zero vector, Q is the p×p covariance matrix for the state error, z is

the measurement at time t, H is the 6× 2 matrix that maps states to measurements,

and Rt is the 6× 6 covariance matrix for measurement error.

2.2. Conditions

There were be 2 states with 3 items per state. The state error covariance Q is set to

identity for all conditions. Measurement error is operationalized by choosing values in

the error covariance matrix R =

σ2 0

0 σ2

 and the loading matrix H matrix is of

the form

λ λ λ 0 0 0

0 0 0 λ λ λ

 such that the following equality holds: σ2 + λ2 = 1.

We varied the measurement error in 2 conditions: low (σ2 = .25, λ2 = .75) and high

measurement error (σ2 = .75, λ2 = .25)

The A matrix (containing autoregressive and crosslagged effects) takes the form
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α γ

0 α

, where α ∈ {.2,.7} to examine differing strengths of autoregressive relations

and γ ∈ {0, .15, .3} (fully crossed) to examine how missingness mechanisms interact

with cross-lagged relations (no relation between states, moderate relation between

states, and strong relationship between states).

2.2.1. MCAR

For the MCAR mechanism, we simulated 2 levels of missingness: 15% and 30%. All

indicators for the state x1 with the targeted indices were set to NA, corresponding

with all direct information about state x1 being missing.

2.2.2. MAR, TMAR, and ATMAR

For the MAR data, a logistic regression was run with the two states as predictors with

positive coefficients, then the probability of missingness was set to

p(y1t, y2t, y3t = NA) =
1

1 + exp(β0 + βMARx2t)

Indices of missingness were chosen based on the probabilities of missingness, β0 ∈

{4, 1.5} and βMAR ∈ {−3.5,−3} for 15% 30% missingness at +1σ above the mean of

x2, respectively.

For TMAR data, we assumed there are 50 days with 10 time points per day, and an

auxiliary variable D ∈ {1 : 10} was calculated. A logistic regression for the probability

of state x1 indicators (y1t, y2t, y3t) being missing as a function of D is

p(y1t, y2t, y3t = NA) =
1

1 + expβ0 + βTMARDt

with β0 ∈ {3, 2} and βTMAR ∈ {−.2,−.2} for 15% 30% missingness for D = 1,

respectively.

For an ATMAR condition, we used a logistic function with the the probability of
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missingness set to

p(y1t, y2t, y3t = NA) =
1

1 + expβ0 + βATMARx1(t−1)

with β0 ∈ {4, 1, 5} and βATMAR ∈ {−3.5,−3} for 15% 30% missingness at x1 = 1,

respectively. Note, this condition, while labeled as MAR, mixes MAR and MNAR

mechanisms, as the values for y1[t−1], y2[t−1], y3[t−1] can be observed or missing.

2.2.3. MNAR

Recall that the difference between MAR and MNAR is that in MAR the missingness

is dependent on other variables and, in MNAR, the missingness is dependent on the

variable from which the data is missing. Thus, we used a similiar model of generating

missing data for MAR and MNAR. We set up an logistic regression with our variable

of interest as our dependent variable and our variable of interest as our predictor, then,

the probability of missingness was set to

p(y1t, y2t, y3t = NA) =
1

1 + expβ0 + βMNARX1t

with β0 ∈ {4, 1.5} and βMNAR ∈ {−3.5,−3} 15% and 30% missingness at X1 = 1,

respectively.

2.3. Missing data imputation

The missing data imputation methods that were used were the Kalman filter ({dlm} R

package: Petris, 2010), MICE ({mice} R package: van Buuren & Groothuis-Oudshoorn,

2011), and the EM algorithm with initializations of ARIMA, regression, and natural

cubic spline ({mtsdi} R package: Junger & Ponce de Leon, 2015)). Default settings

were used in all cases. For both MICE, the imputation models for y1, y2 and y3 were

calculated using only y4, y5 and y6 (as each of y1, y2, y3 are set as missing simulta-

neously.). This has implications for the performance of the imputation methods. In

order for y4-y6 to have use in imputation, they need to have to have cross-sectional
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predictive ability on y1-y3. This only occurs when γ is non-zero, and, even then, the

dependence would be weak.

2.4. Simulation overview

A 2(measurement error conditions)×2(α conditions)×3(γ conditions) cell design was

run for 100 replications for each cell to produce the raw timeseries (before missingness),

with 500 timepoints per replication. The 10 conditions of missingness mechanisms were

then applied to the previously simulated raw data. For each of the 10 datasets with

missing data per replication, the 7 missing data imputation methods were applied.

For missing data imputation methods that generated multiple imputed datasets (i.e.,

MICE), 10 imputed datasets were generated, and parameter estimates/standard errors

will be combined according to the standard practice of Rubin (1996).

2.5. Simulation Models and Outcomes

Using the {dlm} R package (Petris, 2010), discrete time normally distributed

state/measurement state-space models described in Equations 12-15 were fit, with the

following free and fixed parameters: Â =

α̂ γ̂

0 α̂

, Ĥ =

λ̂1 λ̂2 λ̂3 0 0 0

0 0 0 λ̂4 λ̂5 λ̂6

,

R̂ =

σ̂2 0

0 σ̂2

 and for identification purposes, the state error covariance matrix is

fixed at I2.

The following were computed for each cell for α, γ, σ and λ.

2.5.1. Median bias

∆θ = Median(θ − θ̂)

where the θ are the true values of the parameter that are the assumed matrices and

θ̂ are the estimated parameters. Bias is found, then the median of each condition is

found.
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2.5.2. Median absolute relative bias

∆θRel =
|θ − θ̂|

θ

where the θ and θ̂ values are as above. Relative bias is found, then the median of

each condition is found.

2.5.3. Standard error and coverage

The bias in standard error, SE, of estimates is contained in the Supplementary Ma-

terials.

Confidence intervals will be calculated as follows:

[θ̂ − 1.96SE, θ̂ + 1.96SE]

where x is the mean of a condition and SE is defined as above. The coverage for a

given parameter θ is the number of replications where the above confidence interval

contains the true parameter θ.

3. Results
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Table 1.: Median bias for α11, σ1, σ2, σ3, λ11, λ12, and λ13 for the γ = 0 and 30%
missingness condition. MCAR, ATMAR, and MAR were excluded as TMAR behaves
similarly to MCAR and ATMAR and MAR perform similarly to MNAR. Outliers,
defined as the absolute value of the bias being greater than 1, were excluded (6 points)

Missingness Imputation True α True λ2 α11 σ1 σ2 σ3 λ11 λ12 λ13

MNAR M 0.2 0.75 -0.144 0.005 0.004 0.003 0.192 0.187 0.194
TMAR M 0.2 0.75 0.092 0.008 0.005 -0.005 0.005 0.012 0.01
MNAR M 0.7 0.75 0.153 -0.007 0 0.011 -0.056 -0.059 -0.071
TMAR M 0.7 0.75 0.333 0.004 0 0.009 -0.433 -0.452 -0.454
MNAR M 0.2 0.25 -0.311 -0.041 -0.025 -0.016 0.144 0.144 0.129
TMAR M 0.2 0.25 0.099 0.004 0.017 0.001 -0.015 -0.011 -0.001
MNAR M 0.7 0.25 -0.035 -0.045 -0.035 -0.034 0.083 0.099 0.099
TMAR M 0.7 0.25 0.306 0.017 -0.004 0.015 -0.159 -0.147 -0.159
MNAR K 0.2 0.75 -0.197 -0.006 -0.004 0.005 0.216 0.221 0.21
TMAR K 0.2 0.75 -0.008 0.002 0.001 -0.002 0.016 0.015 0.005
MNAR K 0.7 0.75 -0.005 0.011 0.006 -0.008 0.221 0.213 0.227
TMAR K 0.7 0.75 0.007 0.004 0.007 0.005 0.001 0.002 0.013
MNAR K 0.2 0.25 -0.355 -0.022 -0.018 -0.017 0.134 0.128 0.124
TMAR K 0.2 0.25 -0.011 0.016 0.014 0.014 -0.001 0.012 0.019
MNAR K 0.7 0.25 -0.093 -0.015 -0.024 -0.006 0.127 0.129 0.127
TMAR K 0.7 0.25 0.001 -0.002 0.007 0.017 0.011 0.006 0.007
MNAR EM-Spline 0.2 0.75 -0.262 0.078 0.08 0.08 0.368 0.374 0.373
TMAR EM-Spline 0.2 0.75 0.035 0.066 0.069 0.076 0.229 0.229 0.224
MNAR EM-Spline 0.7 0.75 -0.092 0.04 0.05 0.056 0.424 0.419 0.42
TMAR EM-Spline 0.7 0.75 -0.067 0.05 0.042 0.046 0.204 0.194 0.199
MNAR EM-Spline 0.2 0.25 -0.699 0.203 0.204 0.198 0.233 0.232 0.231
TMAR EM-Spline 0.2 0.25 0.053 0.228 0.23 0.236 0.076 0.074 0.072
MNAR EM-Spline 0.7 0.25 -0.201 0.233 0.225 0.224 0.202 0.206 0.202
TMAR EM-Spline 0.7 0.25 -0.098 0.183 0.185 0.179 0.091 0.094 0.101
MNAR EM-Regression 0.2 0.75 -0.231 0.071 0.066 0.069 0.338 0.34 0.34
TMAR EM-Regression 0.2 0.75 0.063 0.067 0.074 0.069 0.194 0.185 0.197
MNAR EM-Regression 0.7 0.75 0.042 0.071 0.065 0.073 0.188 0.194 0.192
TMAR EM-Regression 0.7 0.75 0.231 0.072 0.074 0.063 -0.081 -0.084 -0.072
MNAR EM-Regression 0.2 0.25 -0.583 0.158 0.162 0.168 0.214 0.22 0.209
TMAR EM-Regression 0.2 0.25 0.071 0.206 0.196 0.199 0.067 0.069 0.075
MNAR EM-Regression 0.7 0.25 -0.119 0.197 0.171 0.172 0.157 0.166 0.155
TMAR EM-Regression 0.7 0.25 0.186 0.195 0.203 0.198 -0.004 -0.005 -0.01
MNAR EM-ARIMA 0.2 0.75 -0.25 0.081 0.08 0.084 0.368 0.36 0.362
TMAR EM-ARIMA 0.2 0.75 -0.008 0.077 0.074 0.076 0.219 0.218 0.226
MNAR EM-ARIMA 0.7 0.75 -0.051 0.083 0.084 0.081 0.36 0.37 0.367
TMAR EM-ARIMA 0.7 0.75 0.012 0.054 0.051 0.059 0.141 0.149 0.139
MNAR EM-ARIMA 0.2 0.25 -0.629 0.188 0.206 0.207 0.231 0.22 0.215
TMAR EM-ARIMA 0.2 0.25 0.014 0.222 0.24 0.214 0.074 0.07 0.087
MNAR EM-ARIMA 0.7 0.25 -0.159 0.241 0.247 0.244 0.174 0.178 0.175
TMAR EM-ARIMA 0.7 0.25 0.044 0.216 0.213 0.202 0.055 0.055 0.058
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Table 2.: Median bias for α11, σ1, σ2, σ3, λ11, λ12, and λ13 for the γ = 0.3 and
30% missingness condition. TMAR, ATMAR, and MNAR were excluded as TMAR
behaves similarly to MCAR and ATMAR and MNAR perform similarly to MAR.
Outliers, defined as the absolute value of the bias being greater than 1, were excluded
(6 points)

Missingness Imputation True α True λ2 α11 σ1 σ2 σ3 λ11 λ12 λ13

MNAR M 0.2 0.75 -0.144 0.003 0.005 0 0.165 0.161 0.164
TMAR M 0.2 0.75 0.102 0.001 0.003 -0.001 -0.03 -0.028 -0.043
MNAR M 0.7 0.75 0.094 -0.004 0.004 0 -0.199 -0.216 -0.233
TMAR M 0.7 0.75 0.336 0.003 0.01 0.001 -0.717 -0.724 -0.734
MNAR M 0.2 0.25 -0.313 -0.044 -0.04 -0.026 0.131 0.136 0.135
TMAR M 0.2 0.25 0.099 -0.001 0.001 0.006 -0.007 -0.015 -0.005
MNAR M 0.7 0.25 -0.057 -0.039 -0.062 -0.037 0.024 0.035 0.025
TMAR M 0.7 0.25 0.325 0.003 -0.009 0.016 -0.252 -0.233 -0.246
MNAR K 0.2 0.75 -0.197 0.004 -0.002 0.003 0.211 0.207 0.206
TMAR K 0.2 0.75 0 -0.002 -0.011 0.005 0.007 0.021 0.011
MNAR K 0.7 0.75 -0.005 0.003 0 -0.001 0.167 0.173 0.176
TMAR K 0.7 0.75 0.009 0.001 -0.004 0.004 0.012 -0.005 0
MNAR K 0.2 0.25 -0.292 0.008 -0.01 -0.007 0.098 0.105 0.095
TMAR K 0.2 0.25 0.008 0.013 0.009 0.016 0.005 0.002 -0.001
MNAR K 0.7 0.25 -0.054 0.001 -0.004 0.009 0.084 0.078 0.087
TMAR K 0.7 0.25 -0.007 0 0.017 0.003 0.003 0.001 0
MNAR EM-Spline 0.2 0.75 -0.279 0.081 0.078 0.081 0.356 0.343 0.346
TMAR EM-Spline 0.2 0.75 0.013 0.065 0.068 0.069 0.211 0.207 0.207
MNAR EM-Spline 0.7 0.75 -0.103 0.029 0.03 0.035 0.366 0.365 0.363
TMAR EM-Spline 0.7 0.75 -0.051 0.047 0.042 0.045 0.093 0.095 0.088
MNAR EM-Spline 0.2 0.25 -0.767 0.205 0.189 0.2 0.243 0.242 0.242
TMAR EM-Spline 0.2 0.25 0.014 0.238 0.212 0.216 0.058 0.069 0.074
MNAR EM-Spline 0.7 0.25 -0.198 0.207 0.217 0.215 0.187 0.183 0.185
TMAR EM-Spline 0.7 0.25 -0.058 0.159 0.158 0.182 0.072 0.068 0.065
MNAR EM-Regression 0.2 0.75 -0.227 0.065 0.071 0.07 0.308 0.303 0.314
TMAR EM-Regression 0.2 0.75 0.063 0.065 0.073 0.066 0.167 0.157 0.164
MNAR EM-Regression 0.7 0.75 0.249 0.051 0.061 0.071 -0.771 -0.86 -0.81
TMAR EM-Regression 0.7 0.75 0.329 0.075 0.062 0.069 -0.751 -0.759 -0.75
MNAR EM-Regression 0.2 0.25 -0.448 0.187 0.164 0.167 0.172 0.177 0.171
TMAR EM-Regression 0.2 0.25 0.098 0.198 0.21 0.22 0.062 0.06 0.058
MNAR EM-Regression 0.7 0.25 0.461 0.21 0.173 0.169 -0.133 -0.238 -0.183
TMAR EM-Regression 0.7 0.25 0.339 0.211 0.19 0.202 -0.159 -0.151 -0.156
MNAR EM-ARIMA 0.2 0.75 -0.273 0.086 0.086 0.082 0.345 0.353 0.364
TMAR EM-ARIMA 0.2 0.75 -0.001 0.071 0.075 0.075 0.205 0.208 0.206
MNAR EM-ARIMA 0.7 0.75 -0.08 0.079 0.078 0.086 0.305 0.306 0.308
TMAR EM-ARIMA 0.7 0.75 -0.006 0.045 0.038 0.047 0.088 0.085 0.083
MNAR EM-ARIMA 0.2 0.25 -0.523 0.206 0.205 0.209 0.193 0.194 0.187
TMAR EM-ARIMA 0.2 0.25 -0.011 0.226 0.218 0.222 0.072 0.083 0.076
MNAR EM-ARIMA 0.7 0.25 -0.158 0.24 0.258 0.26 0.15 0.153 0.149
TMAR EM-ARIMA 0.7 0.25 0.003 0.199 0.182 0.19 0.037 0.044 0.05
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Table 3.: Coverage, or percentage of the true parameters which fall within the confi-
dence interval, for α, γ, and λ for the γ = 0 and 30% missingness condition. MCAR
was excluded as it behaves similarly to TMAR, and ATMAR and MAR were excluded
as they behave similarly to MNAR.

Missingness Imputation True α True λ2 α γ λ
MNAR EM-Regression 0.2 0.75 0.1 0.98 0.157
MNAR EM-Regression 0.2 0.25 0.222 0.949 0.337
MNAR EM-Regression 0.7 0.75 0.62 0.87 0.51
MNAR EM-Regression 0.7 0.25 0.292 0.883 0.629
TMAR EM-Regression 0.2 0.75 0.71 0.95 0.863
TMAR EM-Regression 0.2 0.25 0.84 0.94 0.497
TMAR EM-Regression 0.7 0.75 0 0.8 0.373
TMAR EM-Regression 0.7 0.25 0.2 0.81 0.337
MNAR EM-Spline 0.2 0.75 0.01 0.96 0.04
MNAR EM-Spline 0.2 0.25 0.13 0.99 0.4
MNAR EM-Spline 0.7 0.75 0.23 0.94 0.007
MNAR EM-Spline 0.7 0.25 0.05 1 0.693
TMAR EM-Spline 0.2 0.75 0.81 0.97 0.803
TMAR EM-Spline 0.2 0.25 0.91 0.98 0.487
TMAR EM-Spline 0.7 0.75 0.43 0.98 0.88
TMAR EM-Spline 0.7 0.25 0.32 0.9 0.383
MNAR EM-ARIMA 0.2 0.75 0.01 0.99 0.067
MNAR EM-ARIMA 0.2 0.25 0.15 0.99 0.42
MNAR EM-ARIMA 0.7 0.75 0.667 0.96 0.037
MNAR EM-ARIMA 0.7 0.25 0.22 0.99 0.707
TMAR EM-ARIMA 0.2 0.75 0.83 0.96 0.847
TMAR EM-ARIMA 0.2 0.25 0.848 0.99 0.498
TMAR EM-ARIMA 0.7 0.75 0.889 0.99 0.828
TMAR EM-ARIMA 0.7 0.25 0.82 0.94 0.343
MNAR M 0.2 0.75 0.28 0.97 0.96
MNAR M 0.2 0.25 0.84 1 0.807
MNAR M 0.7 0.75 0.13 0.97 0.493
MNAR M 0.7 0.25 0.8 0.97 0.727
TMAR M 0.2 0.75 0.77 0.99 0.567
TMAR M 0.2 0.25 0.93 0.97 0.453
TMAR M 0.7 0.75 0 0.93 0.333
TMAR M 0.7 0.25 0.02 0.94 0.333
MNAR K 0.2 0.75 0.15 0.91 0.887
MNAR K 0.2 0.25 0.33 0.96 0.58
MNAR K 0.7 0.75 0.9 0.95 0.84
MNAR K 0.7 0.25 0.6 0.98 0.71
TMAR K 0.2 0.75 0.96 0.94 0.487
TMAR K 0.2 0.25 0.88 0.96 0.46
TMAR K 0.7 0.75 0.91 0.96 0.48
TMAR K 0.7 0.25 0.94 0.96 0.34
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Table 4.: Coverage, or percentage of the true parameters which fall within the confi-
dence interval, for α, γ, and λ for the γ = 0.3 and 30% missingness condition. MCAR
was excluded as it behaves similarly to TMAR, and ATMAR and MAR were excluded
as they behave similarly to MNAR.

Missingness Imputation True α True λ2 α γ λ
MNAR EM-Regression 0.2 0.75 0.03 0.05 0.3
MNAR EM-Regression 0.2 0.25 0.23 0.64 0.357
MNAR EM-Regression 0.7 0.75 0.215 0.42 0.396
MNAR EM-Regression 0.7 0.25 0.196 0.451 0.377
TMAR EM-Regression 0.2 0.75 0.77 0.85 0.89
TMAR EM-Regression 0.2 0.25 0.8 0.84 0.427
TMAR EM-Regression 0.7 0.75 0 0.84 0.333
TMAR EM-Regression 0.7 0.25 0.01 0.838 0.36
MNAR EM-Spline 0.2 0.75 0 0.1 0.057
MNAR EM-Spline 0.2 0.25 0.071 0.768 0.35
MNAR EM-Spline 0.7 0.75 0.07 0.05 0.11
MNAR EM-Spline 0.7 0.25 0.02 0.18 0.763
TMAR EM-Spline 0.2 0.75 0.72 0.69 0.853
TMAR EM-Spline 0.2 0.25 0.93 0.92 0.433
TMAR EM-Spline 0.7 0.75 0.57 0.57 0.66
TMAR EM-Spline 0.7 0.25 0.57 0.9 0.347
MNAR EM-ARIMA 0.2 0.75 0 0.11 0.07
MNAR EM-ARIMA 0.2 0.25 0.153 0.816 0.408
MNAR EM-ARIMA 0.7 0.75 0.214 0 0.207
MNAR EM-ARIMA 0.7 0.25 0.02 0.03 0.68
TMAR EM-ARIMA 0.2 0.75 0.81 0.83 0.897
TMAR EM-ARIMA 0.2 0.25 0.859 0.919 0.468
TMAR EM-ARIMA 0.7 0.75 0.889 0.556 0.65
TMAR EM-ARIMA 0.7 0.25 0.76 0.89 0.333
MNAR M 0.2 0.75 0.28 0.08 0.963
MNAR M 0.2 0.25 0.66 0.84 0.723
MNAR M 0.7 0.75 0.44 0 0.34
MNAR M 0.7 0.25 0.85 0.05 0.6
TMAR M 0.2 0.75 0.61 0.72 0.437
TMAR M 0.2 0.25 0.93 0.89 0.383
TMAR M 0.7 0.75 0 0.65 0.333
TMAR M 0.7 0.25 0 0.9 0.333
MNAR K 0.2 0.75 0.19 0.85 0.913
MNAR K 0.2 0.25 0.43 0.87 0.647
MNAR K 0.7 0.75 0.88 0.81 0.91
MNAR K 0.7 0.25 0.77 0.75 0.483
TMAR K 0.2 0.75 0.96 0.97 0.513
TMAR K 0.2 0.25 0.91 0.93 0.403
TMAR K 0.7 0.75 0.97 0.98 0.44
TMAR K 0.7 0.25 0.94 0.95 0.337
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We found the following general trends in the recovery of the autoregressive, cross-

lagged, loadings, and measurement error parameters. First, as one might expect, there

is greater bias with great percentage of missing. Second, the parameters associated

with missingness (i.e. α11, γ12, λ11 − λ13, and σ1 − σ3) show more bias than the

complete parameters: if a parameter depends on missing data for its estimation, it

shows more bias. Third, increasing the strength of the true parameters results in

more bias. Fourth, the Kalman filter performed well for missing data for discrete time

continuous measure state-space models, while MICE performed poorly. Finally, the

missingness mechanisms can be divided into two groups based on the amount of bias

and variability they show with less bias and variability being associated with MCAR

and TMAR and more bias and variability associated with MAR, ATMAR, and MNAR.

These trends are seen in each of the parameters’ recovery.

Tables 1 and 2 are tables of the median bias for α11, σ1, σ2, σ3, λ11, λ12, and λ13

at 30% missingness for γ = 0 and γ = .3, respectively. As we saw similar trends for

MCAR and TMAR, and MAR, ATMAR, and MNAR, only MCAR and MAR are

shown. Due to very poor imputation on the part of EM-Regression, there were some

extreme outliers which were omitted from the table. Notice that bias in α increases

with the strength of the autoregressive effect. The σs generally show low bias, while

the bias in λ increases with the strength of the loadings. Note, the zeroes seen on the

table were not true zeroes, but arose as a result of rounding to three decimal places.

Tables 3 and 4 are tables of the coverage for α, γ and λ. Notice that γ falls into the

confidence interval typical for low values of γ, though the success rate decreases with

a higher value of γ. The success of recovering α and λ is dependent upon imputation

method and missingness mechanism. For both parameters, the EM-Regression imputa-

tion method performed the worst. For α with no cross-lagged effects, the Kalman filter

with TMAR missingness performed the best. For λ with no cross-lagged effects, the

EM-ARIMA imputation method with TMAR missingness performed the best. Similar

trends held for α and λ with strong cross-lagged effects.

25



3.1. State Autoregression Parameters (α)

Figure 2.: The above graphs shows the bias of the estimated α (on the y-axis) by the
true α (on the x-axis for γ = 0. The respective missingness mechanisms are shown:
complete data (orange), MCAR (sky blue), TMAR (green), MAR (yellow), MNAR
(dark blue), and ATMAR (dark orange). The outlines on the box plots show the
differing loading conditions: light grey for low loadings/high measurement error and
black for high loadings/low measuremenent error. As the y-axis was restricted to range
from -.5 to .5, 953 outliers were removed, primarily from the EM-Regression condition.
For the box plots, the bottom of the box is the first quartile, the central line is the
median, the top of the box is the third quartile, the whiskers extend 1.5(Interquartile
Range), and the dots beyond the whiskers are outliers.
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Figure 3.: The above graphs shows the bias of the estimated α (on the y-axis) by the
true α (on the x-axis for γ = .3. The respective missingness mechanisms are shown:
complete data (orange), MCAR (sky blue), TMAR (green), MAR (yellow), MNAR
(dark blue), and ATMAR (dark orange). The outlines on the box plots show the
differing loading conditions: light grey for low loadings/high measurement error and
black for high loadings/low measuremenent error. As the y-axis was restricted to range
from -.5 to .5, 1191 outliers were removed, primarily from the EM-Regression condition.
For the box plots, the bottom of the box is the first quartile, the central line is the
median, the top of the box is the third quartile, the whiskers extend 1.5(Interquartile
Range), and the dots beyond the whiskers are outliers.

We found that α11, the autoregressive parameter associated with missing data, had

greater bias than α22, the autoregressive parameter associated with complete data,

though in Figures 4 and 5 we only include α11. These figures show the bias of the

α11 parameter estimates with respect to λ2 and missingness mechanisms, for γ = 0

and γ = .3 respectively. For all graphs, the trend in γ was linear (i.e., the relationship

between γ = 0 and γ = .3 is merely a more extreme version of the relationships

between γ = 0 and γ = .15, and γ = .15 and γ = .3), so, for all of the graphs, we only

consider the γ = 0 and γ = .3 conditions. In Figure 4, we see that there is no effect

of λ, but bias increases as the true value of the autoregressive effect increases. There

is greater bias when increasing the amount of missingness. The Kalman filter is the

most successful method for recovering the autoregressive effects, while the multiple

imputation methods struggle. Notice that the MCAR graph is similar to the TMAR

graph in that they have less bias and variability than the MAR graph which is similar
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to the the ATMAR and MNAR graphs in that they have greater bias and variability.

In Figure 5, for the conditions that struggle to recover α (i.e., EM-regression with

high autoregressive effects), there is an effect of γ, otherwise there is not; however,

as the strength of the true autoregressive effect increases, the bias increases. With an

increase in percent of missingness comes an increase in bias. Again, the Kalman filter

succeeds, where the multiple imputation methods fail, and the MAR/ATMAR/MNAR

data shows greater bias and variability. We do not see an effect of γ.

3.2. State Cross-Lag Parameter (γ)

Figure 4.: The above graphs shows the bias of the estimated γ (on the y-axis) by the
true γ (on the x-axis for α = .2. The respective missingness mechanisms are shown:
complete data (orange), MCAR (sky blue), TMAR (green), MAR (yellow), MNAR
(dark blue), and ATMAR (dark orange). The outlines on the box plots show the
differing loading conditions: light grey for low loadings/high measurement error and
black for high loadings/low measuremenent error. As the y-axis was restricted to range
from -.5 to .5, 446 outliers were removed, primarily from the EM-Regression condition.
For the box plots, the bottom of the box is the first quartile, the central line is the
median, the top of the box is the third quartile, the whiskers extend 1.5(Interquartile
Range), and the dots beyond the whiskers are outliers.
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Figure 5.: The above graphs shows the bias of the estimated γ (on the y-axis) by the
true γ (on the x-axis for α = .7. The respective missingness mechanisms are shown:
complete data (orange), MCAR (sky blue), TMAR (green), MAR (yellow), MNAR
(dark blue), and ATMAR (dark orange). The outlines on the box plots show the
differing loading conditions: light grey for low loadings/high measurement error and
black for high loadings/low measuremenent error. As the y-axis was restricted to range
from -.5 to .5, 748 outliers were removed, primarily from the EM-Regression condition.
For the box plots, the bottom of the box is the first quartile, the central line is the
median, the top of the box is the third quartile, the whiskers extend 1.5(Interquartile
Range), and the dots beyond the whiskers are outliers.

We found that γ12, the cross-lag relation from X1 (the variable with missing indica-

tors) to X2. had more bias that γ21, the γ associated with complete data (and set

to null), though Figures 6 and 7 only depict γ12. These figures show the bias of the

γ12 parameter with respect to λ2 and missingness mechanisms for α = .2 and α =

.7 respectively. In Figure 6, we see that the bias increases with an increase in the

strength of the true γ parameter. Increasing the percent missingness increases bias.

γ is recovered well for MCAR and TMAR, but there is more variability and bias in

MAR, ATMAR, and MNAR. Again, we see that the Kalman filter excels at recovering

the γ parameter, while MICE struggle. In Figure 7, we see increasing the strength

of the true γ parameter increases the bias. With an increase in percent missingness,

comes an increase in bias. MCAR and TMAR are successful at recovering the γ pa-

rameter, while MAR, ATMAR, and MNAR show greater bias and variability. Finally,

the Kalman filter is again the best method for handling missing data, while MICE
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shows more bias. We do not see an effect of α.

3.3. Measurement Loadings and Error (λ and σ)

For σ2, we saw similar bias between σ1, σ2, and σ3, the σs associated with missingness,

which was higher than the similar biases σ4, σ5, and σ6, the σs associated with com-

plete data. Due to this similarity, σ1, σ2, and σ3 are treated as one variable in Figures

1 and 2 in the supplementary materials. These graphs show the bias of σ2 with respect

to λ2 and missingness mechanisms for α = .2 and α = .7 respectively. In Figure 1 in

the supplementary materials, there is greater variability with greater measurement

error. Increasing percent missingness increases bias. We see lesser bias and variability

in MCAR and TMAR and greater bias and variability in MAR, ATMAR, and MNAR.

Unlike in the previous cases, the Kalman filter and MICE can all recover the σ pa-

rameters. In Figure 2 in the supplementary materials, again we see that increasing the

strength of the measurement error and the percentage of missingness results in greater

bias. MCAR and TMAR show lesser bias and variability, while MAR, ATMAR, and

MNAR show greater bias and variability. Again, we see the contrary result that, in

addition to the Kalman filter and MICE can recover the σ parameter. For Figures 1

and 2 in the supplementary materials, we do not see an effect of α.

For λ2, we saw similar bias between λ11, λ12, and λ13, the λs associated with missing-

ness, which was higher than the similar biases λ24, λ25, and σ26, the σs associated with

complete data. Due to this similarity, λ11, λ12, and λ13 are treated as one variable in

Figures 3 and 4 in the supplementary materials . These graphs show the bias of λ2 with

respect to γ and missingness mechanisms for α = .2 and α = .7 respectively. In figure

3 in the supplementary materials, we see no effect of γ, though increasing the strength

of the loadings and the percent of missingness results in greater bias. MAR, ATMAR,

and MNAR have greater variability and bias than MCAR and TMAR. Again, the

Kalman filter excels whereas MICE struggles. In Figure 4 in the supplementary ma-

terials, we also see increased bias for the λs associated with missingness as compared

to the λs associated with complete data. We see no effect of γ, though increasing

the strength of the loadings and the percentage of missingness increases bias. We see

the same missingness groupings as MCAR and TMAR are associated with lesser bias
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and variability and MAR, ATMAR, and MNAR are associated with greater bias and

variability. Finally, Kalman filter again recovers the λ parameter, while MICE fails to

successfully recover the λ parameter. Comparing the two graphs, we see no effect of

α.

4. Discussion

Overall, we offer the following recommendations for handling missing EMA data in

discrete time continuous measure state-space models. The Kalman filter is a good

choice for missing data imputation: the approach resulted in the smallest parameter

bias no matter the underlying missing data mechanism. With the default settings,

multiple imputation methods (i.e., MICE) struggle to recover the autoregressive and

cross-lagged effects, with bias in parameter recovery particularly high in MNAR and

ATMAR settings. Finally, you have less to worry about if you find your data is MCAR

or TMAR as opposed to MAR, ATMAR, or MNAR, though if handled with the

Kalman filter, there is little difference between these conditions.

First, it was expected that the bias would be greater for the parameters associated

with missingness than the parameters associated with complete data and for stronger

true parameters. These former parameters are more impacted by missing observations

whereas the latter parameters rely on complete, unaltered information. Thus, we ex-

pect to see more bias in these conditions. Second, it also makes sense that as the

strength of the parameters increases, the bias increases. However, particularly for the

estimates of the autoregressive and cross lagged parameters, larger magnitude effects

led to improved performance of the Kalman filtering approach. Third, it is expected

that increased missingness results in increased bias. In these conditions, there are

simply fewer of the true values, allowing for more opportunities for biased estimates.

Fourth, the Kalman filtering approach performed best out of all the methods. Recall

that the Kalman filter estimates the expected values of states using both previous val-

ues of states and observed measurements. As such, the Kalman filter (and, also, other

filtering methods) explicitly works on the level of unobserved states, while the other

imputation methods are all attempting to impute the missing observed variables. This
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explains the improved performance of the Kalman filter for strong autoregressive and

cross-lagged relations. When the states are strongly linked in time, that means your

prediction of the states at a timepoint with missing data will be better (because you

know that the states are very similar to previous timepoints). An important limitation

here is that we knew the true data generating process was a state-space model, which

has implications for how the observed data is related to the unobserved states. Given

that, it makes sense that the Kalman filter is performing well in this settingm, but,

for other time series models and in empirical settings, the performance of the Kalman

filter will likely be worse than what is observed here.

Fifth, it was a surprise that MICE could not recover the autoregressive and cross-

lagged parameters, but performed well with the measurement error parameter. Multi-

ple imputation is generally the recommended method for handling missing data, so it is

unexpected that it performed poorly. Furthermore, we used the default settings in the

functions as we expect most users to do the same. Because of the general performance

of multiple imputation with the default settings, we do not recommend using these

packages for imputation with the default settings. Even so, recall what MICE does:

it is a cross-sectional method which builds the imputation model without considering

temporal relations. Hence, it makes sense that it can recover the measurement error

(as this is purely cross-sectional), but struggles with recovering the dynamics.

Sixth, the EM algorithms, particularly EM-ARIMA and EM-Spline performed well

with lower levels of missing data (i.e., 15% missingness), though struggled with

higher levels of missingness (i.e., 30% missingness). EM-Regression generally per-

formed poorly, and, from many of the analyses for this method, we had to remove

outliers. Because the success of the EM-Regression method depends on the predictive

relationship between y4-y6 and y1-y3, and given that this varies with γ (in that low

values of γ would correspond to less predictive power), it makes sense that this method

struggled.

Finally, we see a division between MCAR/TMAR and MAR/ATMAR/MNAR. Re-

call that MCAR and TMAR are both missing data mechanisms that do not rely on

other variables in the model for their missingness. Hence, it is expected that they

would perform similarly. However, we reiterate the warning that most if not all miss-
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ing data will not be MCAR (and will rarely be purely TMAR). Additionally, MNAR

and ATMAR performed approximately the same (notably with Kalman filtering re-

sulting in the lowest bias). This is likely because MNAR and ATMAR are two aspects

of the same type of missingness mechanisms. Where MNAR is missingness based on

the missing variables value, ATMAR is missingness based on a previous timepoint’s

value (which may or may not be missing). This results in a danger, as not taking

into account temporal dependency might result in reduced model performance, and

an opportunity, as temporal dependency offers more information to impute missing

values from. Further research on missingness mechanisms and how they unfold across

time should be pursued.

The reader may having the following concerns about this project: the use of default

methods for MICE, no varying of states and indicators or number of time points, and

what if the phenomenon is continuous. First, we used the default settings for MICE

as this will be the most common choice by users of the software, and that the default

settings (with use predictive mean matching) have been shown to be effective across

a number of settings. Second, we did not increase the number of states or indicators,

as we expect the bias and issues to increase with an increasing number of states,

and we expect the measurement to improve with an increasing number of indicators

(which will likely result in lower bias, but not necessarily for the multiple imputation

methods). Third, we evaluated only one sample size (500 time points) as we assume

that any bias due to missingness will be exacerbated with smaller numbers of time

points. Fourth, there are limits to imputation. If you are modeling a continuous process

as discrete, you are missing all of the infinitesimal points between the discrete time

points. There are limits to how much missing data can be handled by an imputation

method (see below), and this would be a case where it would be best to just use a

continuous time model.

For future directions, first, we would like to further evaluate the use of multiple

imputation methods for time series and state-space data as this analysis relied on the

default setting and, also, include Amelia in our analyses. These methods are flexible,

which implies that, with different base modeling choices, we could theoretically improve

performance. However, this would be specific to different datasets and models. Second,
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it is often recommended that the way to handle missing data in a state-space model is

to fit a continuous time model. As a next step, we will compare the best discrete time

missing data method, the Kalman filter, to a continuous time model. For a continuous

time model, a Kalman Bucy filter is used which discretizes the continuous time into

small intervals. If the underlying process is discrete, then this would simplify into

the Kalman. However, if it is not, we expect to see differences in the discrete and

continuous time models. Finally, we see that the Kalman filter is successful at 30%,

but we are interested to see what the limit for amount of missingness is for the Kalman

filter in order to provide better recommendations. Thus, we will be testing increasing

amounts of missingness to see when the Kalman filter fails.
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