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Abstract 

Connecting the spectral variability in aerial remote sensing imagery to plant communities 

across time and space has great potential for conservation efforts. Variability among species at 

different points in the growing season, across years, across platforms, and across scales can 

elucidate the best times and approaches to detect invasive plant species for management efforts. 

Spectral variability within species can be used to better understand functional trait variation and 

ecosystem functioning through remote sensing. Variability in images can also be used to 

understand plant community dynamics across time and space.  

This dissertation explores the temporal and spatial variability in species-specific spectral 

signatures and vegetation communities in northwestern Virginia at the biological field station 

Blandy Experimental Farm, which contains 80 ha of fields in various stages of succession with 

abundant invasive plant species. The first two chapters explore the remote detection of three 

invasive plant species that outcompete and displace native plants and that are of interest to land 

managers in Virginia and much of the U.S., Ailanthus altissima (tree of heaven), Elaeagnus 

umbellata (autumn olive), and Rhamnus davurica (Dahurian buckthorn). First, within a single 

growing season using fine resolution drone-based imagery, then across multiple growing seasons 

using aerial hyperspectral imagery collected by fixed-wing aircraft by the National Ecological 

Observatory Network (NEON), a different platform, sensor, and spatial resolution. 

The results demonstrate that both UAV and NEON (fixed-wing aircraft) hyperspectral 

imagery can be used to detect the three species of interest, however, accuracies varied over time 

and were greatest when algorithms were produced using in situ data (e.g. from the same platform, 

on the same date). Drone-based algorithms were most consistent across the growing season for E. 

umbellata, while NEON-based detection was least consistent. NEON-based detection of R. 
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davurica was most consistent across growing seasons and platforms. A. altissima algorithms were 

also relatively consistent across years but used different spectral features in the drone-based and 

NEON-based algorithms. These results demonstrate the usefulness of flexible sampling times 

within and across growing seasons. 

The last two chapters explore the partitioning of spectral variability at different scales and 

their ecological implications. First, at multiple organizational scales (at the leaf, canopy, species, 

and community levels) within a single growing season in drone-based images, then at multiple 

spatial scales (within and among plots) by pairing field surveys of species composition and NEON-

based images. Within a growing season, spectral variability in biochemical-associated spectral 

regions within individual canopies and among canopies of the same species exceeded among-

species variability, suggesting a lack of agreement with the SVH as biochemical traits become 

increasingly variable at finer organizational scales as leaves mature over a growing season. 

Spectral variability within plots was greater in biochemical traits than in structural traits, but 

among-plot spectral variability was greater in structural traits than biochemical traits, suggesting 

vegetation communities are stable in different traits at different scales. These violations of the SVH 

were driven by both spatial and temporal factors. 

This dissertation demonstrates that species-based assumptions about traits and spectra are 

not necessarily accurate across space and time and the importance of considering the wide range 

of spectral and trait variability within a species. Understanding trait variation at different scales 

and times can facilitate answering major questions in community ecology to further the 

understanding of plant communities and ecosystems. Spectroscopy can be used to this end and will 

benefit from increasingly available hyperspectral airborne data and new satellite missions. 
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Chapter 1: Introduction 

Global environmental change, including land-use change, climate change, and the spread 

of invasive species, particularly invasive plant species, threaten the biodiversity of ecosystems 

globally (Bellard et al., 2013; W. Dawson et al., 2017; Gaertner et al., 2009; Kimothi & Dasari, 

2010; Peerbhay et al., 2016; Pyšek et al., 2017; Seebens et al., 2017). Changes in community 

composition and biodiversity caused by invasive plants alter the functioning, stability, and 

ecosystem services provided by ecosystems (Cardinale, 2011). Invasive plants disrupt anticipated 

carbon, nutrient, water, and energy cycles by altering the biogeochemistry (e.g. soil chemistry) and 

structure (e.g. structural heterogeneity) of an ecosystem. They inhibit the growth of native species, 

which interrupts resources for native wildlife and insects. They can also harm agricultural systems 

or human health directly, or indirectly via synergistic relationships with other invasive species. 

From an ecological, conservation, and ecosystem services perspective, invasive plants are 

important and acknowledged as a global conservation priority. 

 In Virginia, the estimated annual cost of invasive species is $1 billion (Virginia Invasive 

Species Advisory Committee, 2018). Invasive tree and shrub species, including Ailanthus altissima 

(tree of heaven), Elaeagnus umbellata (autumn olive), and Rhamnus davurica (Dahurian 

buckthorn) outcompete and displace native plants. They impact soil chemistry, moisture, and 

nutrient cycling (Heneghan et al., 2006; Knight et al., 2007; Mascaro and Schnitzer, 2007; 

Malinich et al., 2017; Naumann et al., 2010), and they encourage the encroachment of other plant 

species that thrive in high-nutrient environments (Gómez-Aparicio & Canham, 2008). A. altissima 

is of particular interest more recently, as it is a preferred host of the agriculturally-costly spotted 

lanternfly, which feeds on apples, peaches, grapes, and hops crops (Virginia Invasive Species 

Advisory Committee, 2018).  
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The global and local interest in managing invasive plant species and protecting biodiversity 

makes ecosystem observation and biodiversity monitoring imperative. This need can be met in two 

ways: through field-based observation, or through remote sensing via satellite, fixed-wing aircraft, 

or unmanned aerial vehicles (UAVs, or drones). Field-based surveys are accurate but are labor-

intensive and therefore also cost-prohibitive over large scales (Kays et al., 2015; Pimm et al., 

2015). Satellite remote sensing can monitor large areas over time but may lack fine-scale details. 

UAVs and fixed-wing aircrafts can provide higher spatial resolution than satellites for regional or 

landscape scales.  

Imaging spectroscopy, or hyperspectral remote sensing, can be used in concert with aerial 

platforms. Hyperspectral remote sensing has become increasingly popular for ecosystem 

observation (Féret & Asner, 2014; R. Wang & Gamon, 2019), as it provides significant detail about 

plant traits (Gregory P. Asner & Martin, 2008a; Ustin & Gamon, 2010). Biochemical 

characteristics and traits of vegetation, e.g. photosynthetic pigments, water, proteins, structural 

compounds interact in specific ways with solar radiation, which produce a specific “spectral 

signature” that is detected in hyperspectral remote sensing (Cavender-Bares et al., 2016; McManus 

et al., 2016). Although green plants have similar spectral signatures, differences in chemical, 

physiological, and structural properties can cause subtle differences in reflectance signatures, 

which should cause spectra to differ more among distantly related groups than among close 

relatives (Cavender-Bares et al., 2016; McManus et al., 2016; Schweiger et al., 2018). The positive 

relationship between spectral variability and species diversity, known as the spectral variation 

hypothesis (SVH; Palmer et al., 2002), is grounded in functional variation, with the assumption 

that functions and therefore spectra differ most among species. Spectral signatures of vegetation 

are not only shaped by genetics, however; they are also shaped by the abiotic and biotic 
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characteristics of the surrounding environment (Laliberté et al., 2020; Z. Wang et al., 2020) as well 

as physical factors inherent to the sensor and platform used. 

The long-term evolutionary history of a plant species, including the historical climate and 

disturbance regimes of its environment, are preserved through the genotype. The physical 

expression of the genotype, known as “the phenotype” is shaped by environmental conditions and 

species interactions. A spectral signature is one way a phenotype is expressed. Because genetics 

and environmental conditions both affect a phenotype, a single genotype can have many 

phenotypes. This variability is known as phenotypic plasticity (Bradshaw 1965; Scheiner 1993; 

Des Marais et al. 2013). Phenotypic plasticity can occur across both time and space (e.g. over a 

growing season, across multiple growing seasons, within a single canopy, across multiple biomes, 

globally). Characteristics can differ more within a species than among species, due to factors 

including phenology, biochemical variability, or structural variability. Biological features that can 

impact spectra can be long-term traits such as canopy architecture, or short-term characteristics 

such as leaf angle, all of which interact with reflected light and therefore impact spectra. In addition 

to the biochemical traits and responses that affect the spectral signatures of vegetation, physical 

factors can also affect how vegetation reflects incoming solar radiation and how that reflected 

radiation is then perceived by a sensor. Lighting conditions, sensor viewing geometry, spatial 

resolution (Huelsman et al. 2024, in preparation), and spectral resolutions can all affect a spectral 

signature. If the spatial resolution (i.e. size of pixels) is greater than the size of plant canopies, 

linking certain reflectance signatures to species or diversity may also be less straightforward.  

Hyperspectral remote sensing is an efficient and robust approach to ecosystem observation 

(Cavender-Bares et al., 2020; Foody & Cutler, 2003; Nagendra, 2001; Pettorelli et al., 2014; 

Rocchini et al., 2010; Skidmore et al., 2021), with great potential to both monitor biodiversity and 
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use in invasive species management applications. Despite this potential, the utility of hyperspectral 

remote sensing has been underexamined. Evaluating how spatial and temporal scales affect remote 

sensing is an imperative step toward leveraging existing spectral imagery to increase 

understanding of ecosystem health and to improve conservation efforts through meaningful and 

accurate monitoring approaches. Blandy Experimental Farm, a biological field station in 

northwestern Virginia, United States (39.06oN, 78.07oW) provides an opportunity to assess the 

spatial and temporal variability in spectral signatures across multiple years and using multiple 

platforms in successional fields and forests with abundant invasive plant species. 

This dissertation explores the utility of hyperspectral remote sensing in invasive plant 

species detection and the implications of temporal and spatial variability in this practical 

application. Then it explores the underlying patterns in variability at different spatial and temporal 

scales that are vital to understand if remote sensing is to be used to make conclusions about 

ecosystem health, trait diversity, and biodiversity. I address the main questions: 

1. When in the growing season and what features allow for the detection of the invasive 

plant species A. altissima, E. umbellata, and R. davurica in fine-scale hyperspectral 

imagery collected by UAV? 

2. To what extent can A. altissima, E. umbellata, and R. davurica be detected in coarser-

scale hyperspectral imagery collected by fixed-wing aircraft?  

3. When in the growing season and in what spectral regions is spectral variability within 

species (within individual canopies and among individuals of a species) greater than 

variability among species in successional plant communities? 

4. What do alpha, beta, and gamma biodiversity and spectral diversity suggest about 

ecosystem dynamics in an early successional plant community? 
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In chapter 2, I utilize a drone to collect hyperspectral imagery in heterogeneous plant 

communities and incorporate species-specific phenology into the methods for a more robust 

approach to developing effective detection algorithms for the invasive plant species A. altissima, 

E. umbellata, and R. davurica. I provide a methodological foundation to develop detection 

algorithms, which can be used to further the understanding of the spatial patterns of invasive plant 

species in the landscape for management purposes. I also compare the most important spectral 

features that led to accurate detection of each species over a single growing season, which can be 

used to maximize the reliability and accuracy of detection. 

In chapter 3, I assess the interoperability, scalability, and similarities between drone-based 

and fixed-wing aircraft-based detection algorithms. Images collected by drone often have much 

finer spatial resolution than images collected by fixed-wing aircraft, which is potentially beneficial 

for capturing fine-scale details but comes at the cost of smaller spatial extents. To determine the 

applicability of fine-scale algorithms at the landscape scale, I apply the drone-based detection 

algorithms established in chapter 2 to coarser resolution images collected by the National 

Ecological Observatory Network (NEON), which not only cover a larger area but also include 

multiple years of images. I then create new algorithms using the NEON images and compare the 

most important spectral features that led to accurate detection of each species over a single growing 

season. 

In chapter 4, I take advantage of the very fine spatial resolution of drone-based imagery, in 

which pixels are approximately the size of individual leaves, to examine the effects of seasonality 

and organizational scale on spectral variability and agreement with the SVH. I partitioning spectral 

variability in hyperspectral drone imagery collected over the course of a growing season to 

different levels of organization: within individual canopies, among canopies within the same 
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species, among species, and among communities. I also examine temporal and spectral patterns in 

species-specific variability at finer scales. 

In chapter 5 I again examine the SVH using plot-level species composition data and 

coarser-scale remote images (from NEON). I use the species composition data to calculate 

biodiversity metrics and then compare them to spectral variability within plots, among plots, and 

across the landscape. I also assess the plot-level (alpha-level) biodiversity and spectral diversity 

metrics to determine what may drive agreement or disagreement with the SVH at this scale and in 

this ecosystem. 

Genetic information can be inferred from the spectral phenotype and used for invasive 

plant species detection, although spectra are impacted by more than just species identity. 

Variability in spectra across space and time, however, suggest that the accuracy of and key spectral 

features in detection algorithms may vary, and there may be better combinations of times and/or 

spectral features to use in detection. This inherent temporal, spatial, and spectral variability within 

species also suggests that species-based assumptions about traits that ignore within-species 

variability, including the SVH, are not necessarily accurate. This dissertation uses the phenotype 

to explore the temporal and spatial variability in species-specific spectral signatures and the 

temporal and spatial patterns in variability at different scales using relatively novel airborne 

platforms.  
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Chapter 2: Using phenology to improve invasive plant detection in fine-scale hyperspectral 

drone-based images: A case study in temperate successional fields  

 

 

 

 

 

Abstract  

Reducing the spread of invasive plants is of global interest but requires extensive ecosystem 

monitoring. Traditional approaches to invasive species monitoring, such as ground surveys or 

satellite remote sensing, can be cost prohibitive, labor intensive, or lack fine-scale details. 

Unoccupied aerial vehicles (UAVs) and hyperspectral remote sensing can be useful tools, 

providing greater coverage than ground surveys and finer spatial resolution than satellites. I 

utilized a UAV equipped with a Nano-Hyperspec imager to collect fine resolution (3 cm) 

hyperspectral images on seven dates from April to November during the 2020 growing season. I 

used these images to develop hyperspectral detection algorithms for three different invasive plant 

species within heterogeneous vegetation communities with 12 other native and nonnative plant 

species. The three species are invasive in much of the U.S., and specifically in Virginia, where the 

data were collected: Ailanthus altissima (tree of heaven), Elaeagnus umbellata (autumn olive), 

and Rhamnus davurica (Dahurian buckthorn). Given that invasive plants likely differ from native 

species in phenology, photosynthetic rates, and nutrient concentrations, I anticipated that 

hyperspectral data would capture differentiating biophysical and biochemical characteristics. I 

examined when each species could be accurately detected and what spectral features allowed for 
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detection in seven algorithms over the growing season. All three species could be detected well in 

June. Only E. umbellata had consistently accurate algorithms (6 of the 7) and used consistent 

features (blue, green, red, and red edge) across the growing season. A. altissima and R. davurica 

were both detectable mid- and late-growing season, with little overlap in key spectral features, 

indicating the usefulness of including dates outside of peak greenness in data collection and 

algorithm generation to incorporate species-specific phenological traits. I demonstrate that UAV 

hyperspectral imagery can be used to accurately detect invasive plant species in heterogeneous 

plant communities, incorporating phenology into detection algorithms. These methods provide a 

foundation for land managers and communities to monitor ecosystems, find new occurrences and 

populations of invasive plants that have not yet dominated local ecosystems, determine and 

prioritize management approaches, as well as understanding the ecological impact of invasive 

plant species on vegetation communities. 
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1. Introduction 

Invasive plants threaten the biodiversity of ecosystems globally (Bellard et al., 2013; W. 

Dawson et al., 2017; Gaertner et al., 2009; Kimothi & Dasari, 2010; Peerbhay et al., 2016; Pyšek 

et al., 2017; Seebens et al., 2017). Reducing the spread of invasive plants is of global interest but 

requires extensive ecosystem monitoring. Traditional approaches to monitoring are satellite-based 

and ground-based, each of which have caveats. The coarse resolution of satellite images fails to 

detect fine-scale features and individuals. On the other hand, ground surveys are detail-oriented 

but labor requirements inhibit data collection over large areas. Ecological observations have been 

limited both spatially and temporally due to cost-prohibitive and labor-intensive survey methods 

(Kays et al., 2015; Pimm et al., 2015). 

Data provided by unoccupied aerial vehicles (UAVs) have higher spatial resolution than 

satellite-based data as well as greater spatial coverage than ground surveys (Alvarez-Vanhard et 

al., 2021), merging advantages of traditional satellite-based and ground-based monitoring (Sun & 

Scanlon, 2019). Thus, UAVs are becoming an increasingly popular platform to observe 

ecosystems, including invasive plant species monitoring. As the high spatial resolution of UAV 

images was not found to impede detection of invasive plants due to spectral variability (Huelsman 

et al., 2023), it instead can serve to detect small plants early in an invasion, increasing the 

possibility for earlier intervention and mitigation of impacts (Reaser et al., 2020). UAVs also 

provide the ability to survey more remote areas in a repeatable and standardized way (Besson et 

al., 2022), providing timely and accurate maps for detection and monitoring that can influence 

management decisions (Rodriguez et al., 2021). 

In addition to the limitations in spatial resolution of most traditional satellite-based 

monitoring, there are also spectral limitations. Much of the remotely sensed data provided by 
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satellite is multispectral, consisting of 4 to 20 discrete spectral bands. Hyperspectral data, on the 

other hand, includes many adjacent bands that are narrower than multispectral bands. Plants vary 

in biophysical and biochemical properties (Matongera et al., 2016; Z. Wang et al., 2020; Yang et 

al., 2016), and pigments, proteins, and structural molecules associated with those properties all 

interact with light differently to impact spectra (Homolova et al., 2013). Thus, the high spectral 

resolution of hyperspectral data provide a detailed “electromagnetic signature,” which can provide 

information on a variety of plant functional and structural traits (Gregory P. Asner et al., 2015; Hill 

et al., 2019; Homolova et al., 2013). 

With current understanding of plant chemical and structural properties, hyperspectral data 

can be used not only to detect general assemblages of plants (Hochberg et al., 2015; Sanchez-

Azofeifa et al., 2013; Schmidt & Skidmore, 2003) but also to differentiate among species (M. 

Clark et al., 2005; Cochrane, 2000). Relative to native plants at the same sites, invasive plants tend 

to have higher specific leaf areas, photosynthetic rates, growth rates, and leaf nutrient and pigment 

concentrations (Ehrenfeld, 2004; Ehrenfeld et al., 2001), which should lead to spectral differences 

(Gregory P. Asner & Martin, 2008b; Azadnia et al., 2023; Chance et al., 2016; Ely et al., 2019; 

Kothari et al., 2023; Mahlein et al., 2010; Mutanga et al., 2004; Serbin et al., 2014; Thenkabail et 

al., 2014; Xiao et al., 2014). In addition to the theoretical underpinnings, hyperspectral imagery 

has also been used to identify invasive plant species (Aneece & Epstein, 2017; G. Asner & 

Vitousek, 2005; Gregory P. Asner & Martin, 2008b; Castro et al., 2004; Chance et al., 2016; 

Kganyago et al., 2017; Skowronek et al., 2017).  

Hyperspectral imagery is useful for detecting plant traits, and when used in concert with a 

drone, imagery can capture temporal variability in those traits, as the flexible operation of UAVs 

allows for flights to take place readily at multiple points in the growing season (Castro‐Esau et al., 
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2006; Ecke et al., 2022). Because properties change over the course of a growing season (e.g. 

phenological traits) and respond to changes in environment (e.g. drought), reflectance spectra 

should also be expected to change. The use of UAVs for hyperspectral image collection 

incorporates temporal variability and phenological features, which may further improve invasive 

plant detection during certain times of the year. 

Whereas a few drone-based studies have been successful in identifying individual plant 

species, this has often been accomplished with traditional photography or in large monocultures, 

where it is straightforward to differentiate the species of interest from the neighboring plants 

(Huang & Asner, 2009). Using hyperspectral imagery in concert with a drone is novel, and in 

recent years this methodology has been used to monitor invasive milkweed in Hungary (Papp et 

al., 2021), invasive plants in Russia using vegetation indices (Dmitriev et al., 2022), aquatic weeds 

in France (Diruit et al., 2022), and for early detection of insect infestation in forests in Northeast 

China (Gao et al., 2023). Sabat-Tomala et al. (2022) used hyperspectral datasets from three times 

in a growing season to detect invasive plant species in Southern Poland, with a spatial resolution 

of 0.5 m. 

This project incorporates the fine spatial resolution and high coverage data that can be 

collected with a UAV with the fine spectral resolution of hyperspectral imagery to detect three 

plant species that are invasive in much of the U.S., and specifically in Virginia where this study is 

focused: Ailanthus altissima (tree of heaven), Elaeagnus umbellata (autumn olive), and Rhamnus 

davurica (Dahurian buckthorn). Given that A. altissima, R. davurica, and E. umbellata are invasive 

and are therefore likely to have high photosynthetic rates and leaf nutrient concentrations, and that 

hyperspectral data serve as an indication of these biophysical and biochemical characteristics of 
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plants (Matongera et al., 2016), these characteristics should aid in differentiation from other 

species. 

Although others have successfully differentiated some of these three invasive plant species 

using hyperspectral imagery, all were done either in the lab (Burkholder et al., 2011) or near the 

ground using handheld spectrometers (Aneece & Epstein, 2017). I not only utilized a drone to 

collect hyperspectral imagery in heterogeneous plant communities but also incorporated species-

specific phenology into these methods for a more robust attempt to develop effective detection 

algorithms. Plant phenology can be a useful tool in invasive species detection, as species vary in 

their timing of leaf-out, flowering, and fall senescence, and invasive species also tend to have 

longer growing seasons than native species. In answering the following questions on how to 

accurately detect these species of interest, I provide a methodological foundation for their detection 

and management, as well as further the understanding of their spatial and temporal patterns on the 

landscape: 

1. When in the growing season are A. altissima, E. umbellata, and R. davurica most 

differentiable from other species in fine-scale hyperspectral imagery collected by UAV? 

2. What are the spectral features that allow for differentiation of A. altissima, E. umbellata, 

and R. davurica individuals over the growing season? 

3. Do A. altissima, E. umbellata, and R. davurica have consistent spectral features that allow 

for their detection across the growing season?   
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2. Methods 

2.1 Study site 

Data were collected at the ~280 ha biological field station Blandy Experimental Farm 

(BEF) in northwestern Virginia (39.06oN, 78.07oW). Aerial images were collected over three 1-ha 

fields in early- to mid-successional stages (approximately 20 to 30 years following last 

disturbance), based on their abundance of the invasive plant species of interest, A. altissima, E. 

umbellata, and R. davurica (Huelsman et al. 2023).  

 

 

Figure 1. Locations of fields in which hyperspectral data were collected during the 2020 growing 

season. A field in early secondary succession, an intermediate early-to-mid successional field, and 

a mid-successional field, shown in green, blue, and purple, respectively (aerial image from Google 

Maps satellite view). 
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2.2 Data collection and image post-processing 

Hyperspectral images were collected during the 2020 growing season using a DJI Matrice 

600 Pro drone equipped with a high-precision GPS system and a VNIR imaging spectrometer 

(Nano-Hyperspec, Headwall Photonics, Bolton, MA) with a spectral range of 400 to 1000 nm and 

a spectral resolution of 2-3 nm (a total of 270 spectral bands). Images were collected by the Nano-

Hyperspec imaging spectrometer on the UAV, programmed to capture images using HyperSpec III 

software (Headwall Photonics, Bolton, MA) over consistent, straight flightlines at 48 m altitude. 

Flights were planned using Universal Ground Control Software  (UgCS), resulting in images with 

spatial resolution of about 3 cm. 

Images were collected as weather permitted from early season leaf-out through fall 

senescence approximately every four weeks: DOY 106 (April 15), DOY 134 (May 13), DOY 160 

(June 8), DOY 178 (June 26), DOY 249 (September 6), DOY 276 (October 2), DOY 309 

(November 4). To reduce bidirectional reflectance distribution function (BRDF) effects, images 

were collected midday between 10h and 15h, under consistent sky conditions, and from nadir to a 

10.55 degree viewing angle (the total field of view of the sensor was 21.1 degrees). A mosaic of 

multiple images was created with SpectralView software (Headwall Photonics, Bolton, MA) after 

images were adjusted for incoming and scattered solar radiation using a dark reference and grey-

scale tarp, and terrain and perspective effects were removed via orthorectification (Huelsman et 

al. 2023).  

 

2.3 Image sampling & data cleaning 

Vegetation surveys were conducted in each field to determine common species and develop a 

robust spectral dataset of vegetation representing the variety and complexity of plant communities. 
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Up to eight individuals of 15 different species, genera, or plant type across trees, shrubs, forbs, and 

graminoids (A. altissima, E. umbellata, Gleditsia triacanthos, Galium verum, Maclura pomifera, 

Juglans nigra, Juniperus virginiana, Lonicera japonica, Lonicera maackii, Pinus virginiana, 

Rhamnus davurica, Rubus spp., Solidago altissima, Symphoricarpos orbiculatus, and graminoids) 

were identified in each field using a high-precision Trimble GPS (measurement accuracy of 0.5 

m) and used to identify and catalogue individuals in images. In cases where fewer than eight 

individuals were present, as many as were present were sampled. Some species that were common 

in the training fields were included for robustness of the training algorithm but were not present in  

the testing field images (e.g. G. verum and P. virginiana; Table 1). From each catalogued  

 individual plant in images from each of the seven dates, 15 well-lit pixels were selected to provide 

reflectance data.  

To remove outliers, the mean reflectance across all wavelengths for each pixel and canopy 

were compared for each data collection date. Any pixel within a canopy that differed more than 

25% from the canopy mean was removed from the dataset, as it was assumed the given reflectance 

spectra was not representative (Huelsman et al. 2023). This threshold was chosen for two reasons: 

first, it was equal to a difference of about 2 standard deviations from the mean and removed 

approximately 5% of pixels from the entire growing season dataset, with balanced representation 

of overall lower and higher reflectance; and second, it was approximately equal to the “saturation 

point” of pixels removed, above which, few additional pixels would be removed (Figure S1). 

Canopies that included but were not dominated by secondary liana (vine) species, such as C. 

orbiculatus or L. japonica, were also removed from analysis to focus on purer pixels. Pixels 

sampled from images with changes in light conditions were also removed, as these impacted the 

magnitude of reflectances measured. 
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Table 1. Number of individuals of each species visible in hyperspectral images collected and from 

which 15 well-lit and representative pixels were sampled to then be used for training and testing. 

Species of interest are presented in bold. 

 

 

  

Species Growth Form Training Individuals Testing Individuals 

A. altissima Tree 10 3 

E. umbellata Shrub 9 8 

G. verum Forb 7 0 

G. triacanthos Tree 7 5 

Graminoid spp. Graminoid 6 1 

J. nigra Tree 8 1 

J. virginiana Tree 6 4 

L. japonica Vine 5 3 

L. maackii Shrub 9 8 

M. pomifera Tree 4 7 

P. virginiana Tree 3 0 

R. davurica Shrub 16 8 

Rubus spp. Shrub 8 8 

S. altissima Forb 3 0 

S. orbiculatus Vine 8 3 
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2.4 Analysis and classification 

To determine when during the growing season A. altissima, E. umbellata, and R. davurica 

are most differentiable from other plant species, I used a Partial Least Squares Discriminant 

Analysis (PLS-DA) model to classify individual trees and shrubs using the mixOmics package in 

R (Rohart et al., 2016). PLS-DA is a machine learning tool, which handles large datasets and 

collinearity well, two features inherent to spectral data. It applies the statistical tool of PLS to 

feature selection and classification scenarios (Nguyen & Rocke, 2002; Pérez-Enciso & Tenenhaus, 

2003). A PLS-DA was performed for each date of image collection for each species of interest. 

Data sampled from all fields and all dates were first recoded as a species of interest (A. altissima, 

E. umbellata, or R. davurica) or as “other” species in each image. Spectral signatures collected 

from the images of the two training fields were randomly split into 70% and 30% portions for 

calibration and validation, respectively. A PLS-DA classification model was generated based on 

the training calibration dataset, and then applied to the remaining 30% of validation training data 

to classify each pixel within a canopy. Because each canopy included 15 pixels, each with a 

classification, each canopy was classified as a unit, based on the percentage of pixels classified as 

the species of interest or “other.” In other words, even though a pixel-based classification was used 

in the first step, the classification of each pixel was combined for a single object-based 

classification for each individual tree or shrub. 

Rather than assuming a majority of pixels (>50%) as the best threshold for classification 

of an individual canopy, I searched for a “threshold percentage,” or the percentage of pixels in a 

canopy (out of 15) needed to be classified as a species of interest to maximize overall classification 

accuracy. User and producer accuracies were calculated for each species of interest using 

thresholds of 10 to 90% of pixels in a canopy. A threshold set too low or high increased the 
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probability of false positives and negatives, respectively. Thresholds of 35, 25, and 40% were 

selected for A. altissima, E. umbellata, and R. davurica, as they balanced false negatives and 

positives in the validation portion of the training dataset. The fact that all thresholds were below 

50% demonstrates that this approach is helpful to incorporate in classification methodology, 

particularly for invasive plant detection. 

After determining the optimal threshold of percent of pixels, all pixels in the training 

dataset were used to create a classification model to detect each species of interest on each of the 

seven dates in the testing dataset (the third field over which images were collected). Each of the 

15 pixels of each plant canopy in the testing field was classified. If the percentage of pixels in a 

canopy was greater than the threshold for each species of interest (35, 25, and 40% for A. altissima, 

E. umbellata, or R. davurica, respectively), that individual was classified as the species of interest. 

The classification of each of the 59 individual canopies in the testing field was compared to its 

true, field-referenced identity (Figure 2). User Accuracy, Producer Accuracy, Omission Error, and 

Commission Error were calculated for each species on each date.  
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Figure 2. Workflow for models to answer research questions. This process will be utilized for each 

species of interest (A. altissima, E. umbellata, and R. davurica) for each date in the growing season. 

This will allow for the assessment of which time(s) in the growing season are best for the detection 

of these plants in a heterogeneous field as well as what features allow for detection.   
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2.5 Assessing the importance of spectral features in detection 

The PLS-DA model not only serves to differentiate Ailanthus, Elaeagnus, and Rhamnus 

from other species via classification, but it also serves to determine what spectral features are 

important in their differentiation over the growing season. Wavelengths that loaded heavily (i.e. 

wavelengths with greater absolute magnitude loading factors) were most important in 

differentiating a species of interest from the others (Liland et al., 2022). Though PLS-DA is prone 

to overfitting (i.e. a model can misinterpret noise as relevant information), the classification 

accuracy of each PLS-DA model approximates model goodness. Key spectral regions seen in 

algorithms with detection accuracy >75% were examined to assess the importance of spectral 

features at given points in the growing season (phenology) and their consistency across the 

growing season. To assess the questions of important spectral regions on each date with good 

detection accuracy (>75%), loading values were smoothed using a 20 nm rolling window in the R 

zoo package (Zeileis & Grothendieck, 2005).  

To determine which spectral regions were consistently important, smoothed loading factors 

were used to rank bands for each species of interest, date, and PLS-DA component. I ranked bands 

within each component separately, as components tend to complement each other due to the 

orthogonal nature of PLS-DA. Then ranks >180 were selected and averaged across components 

for each species of interest on each date. Because there are 225 total bands considered in each 

component of each algorithm, ranking bands by loading value, then considering any bands with 

mean ranks >180 focuses on the top 45 (or top 20% of) bands in each component. There could 

theoretically be 45 bands with mean ranks >180 in each component over the growing season, 

which would necessitate that each band be consistently among the 45 top-loading bands. The less 

frequently a band is among the 45 top-loading bands, the less likely it is to have a mean rank >180. 
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Thus, more bands with mean rank >180 implies greater consistency across algorithms, whereas 

fewer bands implies less consistency.  

 

3. Results 

3.1 Phenology of spectral features 

Trait differences, as well as phenological differences, are apparent in the spectral data. 

Spectral differences among the three species of interest were more apparent in different parts of 

the reflectance spectra and at different points in the growing season. Over much of the growing 

season, E. umbellata had greater reflectance in blue and red spectral regions than R. davurica and 

A. altissima, with the greatest differences among them occurring around June 26 (DOY 178). The 

green reflectance peak on June 26 was similar for E. umbellata and R. davurica individuals, 

whereas it was lower in A. altissima. A. altissima and E. umbellata had similar reflectance at the 

green peak on June 8 and September 5 (DOY 160 and 249), while it was greater and lower in R. 

davurica individuals on each respective date. The most differentiable feature for A. altissima in 

the visible wavelengths occurred on October 2 (DOY 276), when reflectance in green to red 

wavelengths were greater than the other two species. A. altissima had greater reflectances in the 

NIR spectral region than R. davurica and E. umbellata, and R. davurica demonstrated the greatest 

decrease in NIR reflectances late in the growing season (Figure 3). 
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3.2 Seasonality of detection of invasive plant species of interest 

3.2.1 Detecting A. altissima 

All A. altissima individuals were correctly classified using PLS-DA models based on June 

26 and October 2 images (DOY 178 and 276, respectively), with the greatest overall accuracy in 

October (91% and 100% user and producer accuracy, respectively; Table S1). Though the detection 

rate of A. altissima in late June images was 100%, the commission error (false positive) rate of the 

PLS-DA classification was 34%, compared to only 9% in late season images from October. The 

two PLS-DA components used to differentiate A. altissima from all other species in October 

images explained a total of 71% of variability in the data (63% and 8% in components 1 and 2, 

respectively). Reflectances in the blue, yellow-orange, and red edge spectral regions 

(approximately 450 to 515, 560 to 630 nm, and 700 to 720 nm) loaded heavily in the October PLS-

DA classification, with positive associations with yellow-orange and red edge (i.e. greater 

reflectances in those regions were associated with greater classification probability) and negative 

associations with blue spectral regions (i.e. lower reflectances in that regions were associated with 

greater classification probability; Figure S2).  

Reflectances in the NIR spectral region, which were greater in A. altissima then in the other 

two species of interest (Figure 3), were important (loading values > 0.05) to algorithms over the 

growing season, though algorithms that accentuated the contributions of NIR reflectance 

performed less well (e.g. early June and September). The most accurate algorithm (October) had 

greater contributions of several spectral regions outside of the NIR (blue, yellow-orange, and red 

edge). The late June algorithm, which highlighted the yellow-orange spectral region (~570-600) 

also had good detection accuracy (Figure 4). 
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Figure 4. Magnitude of loading factors (the importance in separation) over all wavelengths for 

components 1 and 2 (left and right panels, respectively) in a partial least squares discriminant 

analysis (PLS-DA) to separate A. altissima from all other species over the course of its growing 

season. A 20 nm moving window was used to average and smooth the loading factors to remove 

noise and for digestibility. Wavelengths that are more important (loading values > 0.05) are in full 

color, while less important wavelengths are lighter in color. The prominence of each curve depicts 

the accuracy of each algorithm: dates with good overall accuracy (both user and producer 

accuracies > 75%) are solid, bold lines; dates with good detection but more than 25% false 

positives (labeled as “too sensitive”) are depicted with dashed lines; and dates with poor detection 

(< 75%) are dotted.  
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3.2.2 Detecting E. umbellata  

All E. umbellata individuals were correctly classified using a PLS-DA based on June 8 and 

26 and September 5 (DOY 160, 178, and 249, respectively) imagery, each with 100% accuracy. Its 

classification was also more consistently accurate than the other two species of interest, with the 

greatest omission error rates (indicating the lowest detection rates) seen early in the growing 

season (25% and 38% omission error rates on April 15 and May 13) and late in the growing season 

(25% omission error rate on November 4; Table S1). The two PLS-DA components used to 

differentiate E. umbellata from all other species explained a total of 72% of variability in the data 

(46% and 26% in components 1 and 2, respectively).  

Reflectances in the blue to blue-green, green-yellow, red, and red edge (approximately 450 

to 510, 530 to 585, 660 to 690, and 705 to 725 nm) loaded heavily in the late June PLS-DA 

classification, with positive associations with blue-green and red reflectance and negative 

associations with green-yellow and red edge reflectance (Figure S3). Loading values followed a 

similar pattern in algorithms based on adjacent sampling dates (e.g. June 8, June 26, and September 

5; Figure 5). Loading value results are consistent with spectral differences, in which E. umbellata 

had greater reflectance in blue-green (450 to 525 nm) and red spectral regions than R. davurica 

and A. altissima, with the greatest differences among them occurring around DOY 178 (Figure 3). 

The PLS-DA classification algorithms generated from earlier and later in the growing season (e.g. 

DOY 106 and 309) to detect E. umbellata, which had lower classification accuracies, had notable 

differences from those with greater classification accuracies; for example, the more accurate 

detection algorithms had lower loading values in the yellow-orange spectral region in component 

1 but greater loading values in component 2 (Figure 5). 
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Figure 5. Magnitude of loading factors (the importance in separation) over all wavelengths for 

components 1 and 2 (left and right panels, respectively) in a partial least squares discriminant 

analysis (PLS-DA) to separate E. umbellata from all other species over the course of its growing 

season. A 20 nm moving window was used to average and smooth the loading factors to remove 

noise and for digestibility. Wavelengths that are more important (loading values > 0.05) are in full 

color, while less important wavelengths are lighter in color. The prominence of each curve depicts 

the accuracy of each algorithm: dates with good overall accuracy (both user and producer 

accuracies > 75%) are solid, bold lines; dates with good detection but more than 25% false 

positives (labeled as “too sensitive”) are depicted with dashed lines; and dates with poor detection 

(< 75%) are dotted.  
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3.2.3 Detecting R. davurica 

The PLS-DA models used for each date to separate R. davurica from other species had the 

greatest accuracy mid-growing season (June 8 and 26), with 88% and 75% producer accuracies 

(detection rates). Algorithms from early (April and May) and late (October and November) in the 

growing season had low producer accuracies, ranging from 38% to 50% (Table S1). The two PLS-

DA components used to differentiate R. davurica from all other species explained a total of 76% 

of variability in the data (47% and 29% in components 1 and 2, respectively). 

Reflectances in the blue-green, green-yellow, red edge minimum, and NIR spectral regions 

(approximately 450 to 515, 540 to 580, 670 to 695, and 710 to 940 nm) loaded heavily in the early 

June PLS-DA, with positive relationships between probability of classification as R. davurica and 

reflectances in green-yellow and NIR, and negative relationships between probability of 

classification as R. davurica and reflectances in blue-green and red edge minimum (Figure S4). 

Loading values followed a similar pattern in the classification algorithm based on late June images 

(Figure 6). Loading value results are consistent with spectral differences (Figure 3), in which R. 

davurica had greater reflectance than A. altissima and E. umbellata at the green peak in June. 
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Figure 6. Magnitude of loading factors (the importance in separation) over all wavelengths for 

components 1 and 2 (left and right panels, respectively) in a partial least squares discriminant 

analysis (PLS-DA) to separate R. davurica from all other species over the course of its growing 

season. A 20 nm moving window was used to average and smooth the loading factors to remove 

noise and for digestibility. Wavelengths that are more important (loading values > 0.05) are in full 

color, while less important wavelengths are lighter in color. The prominence of each curve depicts 

the accuracy of each algorithm: dates with good overall accuracy (both user and producer 

accuracies > 75%) are solid, bold lines; dates with good detection but more than 25% false 

positives (labeled as “too sensitive”) are depicted with dashed lines; and dates with poor detection 

(< 75%) are dotted.  
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3.3 Consistent features used for detection 

The mean rank of loading factors in detection algorithms from different points in the 

growing season with producer accuracies >75% (a total of 2, 6, and 3 algorithms for A. altissima, 

E. umbellata, and R. davurica, respectively) summarizes how consistently a band is important 

across multiple algorithms. A total of 28, 58, and 6 bands had mean ranks >180 in A. altissima, E. 

umbellata, and R. davurica detection algorithms, respectively. Of the 28 bands consistently found 

to be important across reasonably accurate A. altissima algorithms, several were in blue, yellow, 

and red edge spectral regions. E. umbellata had the greatest number of bands found to be 

consistently important across reasonably accurate detection algorithms, which were seen in blue, 

green, red, and red edge spectral regions. Only a few bands in blue-green spectral region were 

consistently important in accurate R. davurica detection algorithms. 

 

 

Figure 7. Mean rank of loading factors over all wavelengths from PLS-DA detection algorithms 

for each species of interest, A. altissima (Ai_al), E. umbellata (El_um), and R. davurica (Rh_da), 

across the 2020 growing season with good (>75%) producer (detection) accuracies.  



 37 

4. Discussion 

4.1 The importance of phenology in detection 

Detection algorithms for A. altissima, E. umbellata, and R. davurica are likely driven by 

species-specific differences in leaf traits as well as the timing of changes in those traits over a 

growing season. The temporal and spectral differences seen in Figure 3 indicate not only the 

potential to use hyperspectral images for detection but also the importance of incorporating 

phenological features. Hyperspectral remote sensing studies in temperate broadleaf forests found 

that biochemical traits such as pigment and nutrient concentrations are associated with the visible 

and red edge spectral regions, while structural traits such as leaf type, LMA, and canopy structure 

are associated with the NIR spectral region (Hoeppner et al., 2020; Muraoka et al., 2013; J. Wang 

et al., 2016; Z. Wang et al., 2020; Yang et al., 2016). Thus, the spectral regions included in accurate 

detection algorithms likely indicate differences in traits at a given time in the growing season. 

4.1.1 A. altissima 

A. altissima, with a shorter growing season than the other two invasive plant species of 

interest, was best detected in June and October using the visible and red edge (450 to 515, 560 to 

630, and 700 to 720 nm). Despite greater reflectances in the NIR spectral region of A. altissima 

than the other species of interest and its high loading values in detection algorithms across the 

growing season, the most accurate algorithms highlighted spectral regions outside of the NIR. 

There is some overlap between the spectral regions I found to be important and those that 

others found. Burkholder et al. (2010) were able to identify Ailanthus using the red edge and NIR 

(as well as SWIR regions, which the spectrometer did not measure) from laboratory spectra in July. 

Aneece and Epstein (2017) also had success with classifying Ailanthus (75% accurate 

identification) using a handheld field spectrometer and found that bands in the ranges of 500-549 
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nm and 700-749 nm were important for differentiation. Though the visible and red edge spectral 

regions were found to be important across studies, the importance of NIR in detection was not 

shared. This could be due to differences in platforms and therefore differences in viewing angle 

(in the case of handheld field spectrometer) or the incorporation of canopy architecture features 

(in the case of laboratory spectra). 

These results illustrate the importance of leaf characteristics in differentiating A. altissima 

from a variety of native and nonnative plants during the mid- and late-growing season, however, 

leaf characteristics were not consistently important. A. altissima had only 28 bands (out of 90 

possible) with mean ranks over 180 from the two algorithms with decent detection accuracies (June 

8 and October 2), which indicates a lack of consistency. More importantly, these results illustrate 

the benefit of including dates outside of peak greenness in data collection and algorithm generation 

to incorporate species-specific phenological traits. 

Because female A. altissima trees are prolific seed producers, seed pods are highly visible 

in images due to their clumped nature. The fine resolution images allowed for a focus on foliar 

spectral signals with little to no interference from seed pods, however, coarser scale imagery may 

contain mixed pixels of foliage and seed pods, which will impact spectral signals. While the 

addition of the spectral signal from seed pods may improve differentiation, it is also possible it 

would hinder accuracy due to the phenology and variability of seed pod characteristics. 

4.1.2 Elaeagnus umbellata 

E. umbellata was detected with accuracies of at least 60% over the entire growing season, 

with 100% accuracy mid-growing season using the visible and red edge spectral regions (450 to 

510, 530 to 585, 660 to 690, and 705 to 725 nm). The main driver appeared to be greater 

reflectances in blue to blue-green (450 to 510) and red (660 to 690) wavelengths than other species. 
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Because chlorophyll b creates an absorbance feature near 450 nm, the greater blue reflectances 

and their importance in E. umbellata detection suggests lower chlorophyll b as a driver. Other 

species in the Elaeagnus genus had 45% higher concentrations of foliar chlorophyll a than 

chlorophyll b, which supports this finding (Carradori et al., 2020). The addition of reflectances in 

green-yellow (530 to 585 nm) and red edge (705 to 725 nm) in detection algorithms imply that 

foliar carotenoid concentration (with a maximum absorbance feature near 560 nm) and foliar N 

content are also important in E. umbellata detection in summer months. 

E. umbellata had the greatest number of bands (58 out of 90 possible) found to be 

consistently important across its six reasonably accurate detection algorithms. The spectral regions 

that were consistently important were blue, green, red, and red edge spectral regions. This indicates 

that timing may be less important for its detection, as the traits that allow for differentiation 

(pigments and nutrients) appear to be consistently different from other species over the growing 

season. 

4.1.3 Rhamnus davurica 

R. davurica was best detected mid-growing season using the visible and red edge spectral 

regions (450 to 515, 540 to 580, 670 to 695, and 710 to 940 nm), suggesting that both biochemical 

and structural traits are important to differentiating R. davurica at this time. The importance of 

NIR is consistent with the spectral range (900 to 999 nm) that Aneece and Epstein (2017) found 

most useful for differentiating R. davurica from other species using laboratory foliar spectra. The 

visible and red edge spectral regions were not found to be important in that study, possibly due to 

differences in platforms. R. davurica had only 6 bands (out of 90 possible) with mean ranks over 

180 from the two algorithms with decent detection accuracies, which indicates the greatest lack of 

consistency in differentiating spectral features across the growing season. 
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The low accuracies early and late in the growing season could be due to intraspecific foliar 

variability during leaf out and senescence. It is also possible that berry production late in the season 

on female plants is causing spectral differences among individuals, as R. davurica is a prolific 

producer of berries, which would impact the spectral signal. 

 

4.2 Conclusions and Implications 

The first two goals of this study were to determine when in the growing season A. altissima, 

E. umbellata, and R. davurica are most differentiable from other species in fine-scale hyperspectral 

imagery collected by UAV and which spectral features enabled their detection. Overall, A. 

altissima, E. umbellata, and R. davurica could be accurately detected in June. The detection 

algorithms for all three species of interest in June shared importance of blue-green, green-yellow, 

and red edge spectral regions (450 to 510, 560 to 580, and 710 to 720 nm), but each had additional 

important bands. In addition to detection in June, A. altissima was most accurately detected in 

early October, with fewer false positives. The yellow-orange spectral region was key to detection 

in June, and in October the yellow-orange spectral region was again important, in addition to the 

blue and red edge spectral regions. E. umbellata was most accurately detected in early and late 

June and September with 100% accuracy. Reflectances in the blue to blue-green, green-yellow, 

red, and red edge were important to the accurate detection of individuals. R. davurica was most 

accurately detected in both early and late June, and reflectances in the blue-green, green-yellow, 

red edge minimum, and NIR spectral regions were important.  

These results illustrate the usefulness of flexible sampling time, which incorporates 

phenological features into detection algorithms. For times when accuracy of detection is high 

(resulting in few false positives and negatives), such as June, single classification results can be 
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used independently with good results, however, the flexible sampling and multi-month nature of 

the drone-based dataset has the potential to improve accuracy by combining classifications across 

times. For example, classification in October could be used to complement results for A. altissima 

but not E. umbellata or R. davurica.  

My third goal was to determine how consistently spectral features allowed for detection 

across the growing season to elucidate the temporal flexibility of detection in this setting. The blue, 

yellow, and red edge spectral regions were consistently important to A. altissima detection. E. 

umbellata had the greatest number of bands found to be consistently important across reasonably 

accurate detection algorithms, which were in blue, green, red, and red edge spectral regions. Only 

a few bands in blue-green spectral region were consistently important in accurate R. davurica 

detection algorithms. The lack of consistency in algorithms across the growing season for A. 

altissima and R. davurica suggests that in situ or date-specific detection algorithms may be more 

useful than a standard algorithm across the entire growing season, though a standard algorithm 

may be applicable for E. umbellata detection.  

These results demonstrate that UAV hyperspectral imagery can be a useful tool in detecting 

and monitoring ecosystems invaded by A. altissima, R. davurica, and E. umbellata. These species 

are not only issues in Virginia, but across the U.S. Rather than attempting to classify all three 

species in concert with one another, I chose to detect each species of interest individually to create 

robust and more widely applicable algorithms that can be used in vegetation communities that do 

not necessarily include all three species. 

These methods can also be extended to other regions, ecosystems, and species. A large 

portion of natural resource management budgets are consumed by invasive species detection and 

control programs, for which there is high demand for technological innovations that increase 
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efficiency and reduce cost (Kirk et al., 2019; Martinez et al., 2020). Drone-based hyperspectral 

images can provide information about how much and where invasive plants have established in 

communities, including new occurrences and non-dominant populations. In cases where multi-

year data collection is possible, information on the rate of expansion of invasion can increase the 

usefulness of this UAV-based approach. These results demonstrate the potential usefulness of this 

tool for land managers and communities to prioritize invasive plant species management 

approaches.  

These methods can also be used to improve understanding of the ecological impact of 

invasive plants on vegetation communities, as high-resolution monitoring is key to assessing 

dynamics of modern-day ecosystems experiencing climate change and drastic biodiversity changes 

(Besson et al., 2022). Hyperspectral remote sensing provides the foundation to not only determine 

species composition of plant communities but also their structure and function (Dietze et al., 2018; 

Petchey et al., 2015). 

There are potentially broad-reaching benefits, including expanding the techniques to larger 

spatial extents, which would enhance regional strategies for invasive plant management far beyond 

what can be done with ground surveys alone. Successful applications using hyperspectral data 

collected by the National Ecological Observatory Network’s Airborne Observation Platform would 

increase spatial extent. Satellite sensors such as the ESA EnMap and NASA’s Surface Biology and 

Geology (SBG), which have potentially challenging coarser resolutions but the added benefit of 

frequent observations, can allow users to incorporate phenology into detection. Both the 

methodology and results of this study have important implications for ecology and environmental 

sciences, forest and park management, and individual landowners managing invasive species on 

their properties.  
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Chapter 3: Scaling fine-resolution drone-based hyperspectral algorithms to the landscape 

scale: A case study in invasive plant species detection 

 

 

 

 

 

Abstract 

Reducing the spread of invasive plants to minimize their ecological impacts requires extensive 

ecosystem monitoring. Different approaches to monitoring, from field-based to remote sensing 

observations, have trade-offs in terms of the details provided, spatial extent, and frequency of visits 

that can be accomplished. Because of these trade-offs, different approaches may be better suited 

for different applications, and different approaches may be able to complement each other.  

With the aim of assessing interoperability and scalability between platforms with different spatial 

resolutions, as well as the interannual variability in detection algorithms, I assessed how well a 

variety of detection algorithms could detect three invasive species of interest, Ailanthus altissima, 

Elaeagnus umbellata, and Rhamnus davurica in four years of aerial images in heterogeneous fields 

in northwestern Virginia. Detection algorithms were created for each species of interest based on 

three different training datasets, 1) reflectances from very fine (~3 cm) resolution and 2) coarser 

(~1 m) resolution drone images collected in 2020, and 3) reflectances from 1 m resolution fixed-

wing aircraft images collected in a single year by the National Ecological Observatory Network 

(NEON) in the same locations but across different years. Each training dataset was then applied to 

each year’s NEON image to assess accuracy of each approach. Both drone-based and NEON-based 
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approaches accurately detected each species of interest, with greater accuracy from NEON-based 

algorithms, as they eliminated temporal and scale differences among platforms. Transforming and 

resampling both increased the number of important spectral regions in detection algorithms, 

though neither guaranteed an increase in detection accuracy. Spectral features important to the 

accurate detection of A. altissima were consistent within each platform but not across platforms, 

which suggests that its spectral features are not universal across time and/or space. Spectral 

features key to the accurate detection E. umbellata were inconsistent, which suggested that they 

are resolution dependent. R. davurica had the most consistency in features that allowed for its 

detection at every level, although the features changed, which suggests at least some variability 

associated with time and space. This analysis of the inconsistencies across detection algorithms, 

however, also elucidates the importance of considering time and space, not only in the detection 

of invasive plant species, but also in answering ecological questions. 
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1. Introduction 

Reducing the spread of invasive plant species and minimizing their impacts on biodiversity 

is a high conservation priority. Understanding where invasions are under way requires extensive 

ecosystem monitoring, for which there are several viable approaches, however, each has caveats 

(Table 1). Satellite- and ground-based observations have traditionally been used for ecosystem 

monitoring. Satellite imagery provides information with large spatial extents but often with 

resolutions greater than the size of individual plants (Pettorelli et al., 2018). Ground-based 

observations can be used to detect individual plants, but the time and energy required for surveys 

make this approach cost-prohibitive for large spatial extents (Kays et al., 2015; Pimm et al., 2015). 

Fixed-wing aircrafts have also been used to survey landscapes to detect invasive plant species 

(Gregory P. Asner et al., 2008). Because of the proximity to the ground, this approach to monitoring 

provides finer resolution than satellites, often fine enough to detect individual plants. This 

approach, however, is also cost-prohibitive (Giordan et al., 2018). Unoccupied aerial vehicles 

(UAVs) or drones have become increasingly accessible to users as an additional approach to 

ecosystem monitoring (Sun & Scanlon, 2019). They provide very fine spatial resolution, high 

continuous coverage within the spatial extent, and are affordable and flexible to operate (Alvarez-

Vanhard et al., 2021). The high spatial resolution, at which spectral variability does not impede the 

detection of invasive plants (Huelsman et al., 2023), facilitates the detection of plants early in an 

invasion, increasing the possibility for mitigation of impacts (Reaser et al., 2020). Despite the 

benefits of high spatial resolution, it often means a lower spatial extent, which may not be ideal 

for mapping and monitoring invasive plants at the landscape scale (Royimani et al., 2018). 
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Table 1. A comparison of the strengths and limitations of four common approaches to ecosystem 

observation: satellite, ground surveys, fixed-wing aircraft, and drone (UAV). Spatial resolution 

(pixel size), level of continuous coverage within the spatial extent, spatial extent, and capacity for 

repeat visits are all considered. 

 Spatial 
resolution 

Continuous 
coverage 

Spatial extent Cost to 
researchers 

Capacity for 
repeat visits 

Satellite Low High High (global) Low High 

Ground 
surveys 

 

High Low Low (local) High Low 

Fixed-wing 
aircraft 

Intermediate High Intermediate 
(regional 

landscape) 
 

High Low 

Drone High High Low (local) Low High 

 

Spectroscopy, or hyperspectral imaging, can be used in concert with these approaches. 

Hyperspectral imaging includes reflectance information from many adjacent and narrow (< 10 nm 

in width) bands (Chance et al., 2016; Kaufmann et al., 2008). It provides spectral information 

driven by the biochemical and structural traits of plants (Matongera et al., 2016; Z. Wang et al., 

2020; Yang et al., 2016). Pigments, proteins, and structural molecules interact with light and impact 

spectra (Homolova et al., 2013). Thus, an “electromagnetic signature” provides information on a 

variety of functional and plant structural traits (Gregory P. Asner et al., 2015; Hill et al., 2019; 

Homolova et al., 2013). Because traits vary across plant species, individual species exhibit 

different spectra, which allows for species differentiation using spectroscopy (M. Clark et al., 

2005; Cochrane, 2000). Plant species with different evolutionary histories will differ more greatly 

in traits (and therefore spectra), which supports the differentiation of invasive plants from native 

plants. 



 47 

Drone-based spectroscopy has been used to successfully detect invasive plant species in 

plant communities (e.g. Diruit et al., 2022; Dmitriev et al., 2022; Gao et al., 2023; Papp et al., 

2021; Sabat-Tomala et al., 2020). In drone-based images, pixels can be about the size of a leaf (on 

the scale of a few cm, e.g., Huelsman et al. 2023), meaning they are “purer” (providing information 

about a single object) than coarser pixels. Thus, the fine resolution of this approach benefits the 

detection of invasive plants. This approach is also affordable to repeatedly operate, further 

supporting its use in invasive plant detection efforts (Singh et al., 2024). The limited spatial extent 

of UAV-based observation, however, suggests an intermediate spatial resolution (i.e., via fixed-

wing aircraft platforms) may improve monitoring efforts at the landscape scale. 

Within a single species, however, traits can vary across space and time, which can impact 

spectra (Ustin & Gamon, 2010). Additionally, linking canopy spectra to biochemical and structural 

traits is not as straightforward as doing so using spectra collected in an ideal laboratory setting 

(i.e., perpendicular to a single leaf in a controlled light environment). Scaling to the canopy level 

incorporates not only biochemical traits into spectra but also canopy structural traits and solar 

illumination (Gregory P. Asner, 1998) (also Goel 1988). Additionally, the spectral signals driven 

by leaf-level trait differences are amplified at the canopy level by 3D canopy architecture (Horn, 

1971, 1975). Although viewing angle, canopy geometry, and scale all impact spectra, hyperspectral 

signatures are linked with biochemical pigments at both leaf level and canopy level (Ewald et al., 

2018; Zarco-Tejada et al., 2004), supporting the use of aerial remote sensing for invasive plant 

species detection.  

Hyperspectral sensors on fixed-wing aircraft platforms such as NASA's Airborne 

Visible/InfraRed Imaging Spectrometer (AVIRIS), the Global Airborne Observatory (GAO; 

formerly Carnegie AO), and the National Ecological Network’s (NEON) Airborne Observatory 
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Platform (AOP) provide opportunities for regional invasive plant detection and monitoring. The 

coarser spatial resolution of images collected by fixed-wing aircraft (on the scale of meter(s), e.g. 

Marconi et al., 2022), however, results in pixels about the size of a branch or even an entire canopy. 

Branch-sized pixels are “mixed,” incorporating the spectral signatures of multiple leaves in 

addition to shadows in the canopy (Ewald et al., 2018; Zarco-Tejada et al., 2004). Despite the 

potential impacts of mixed pixels on detection, others have used hyperspectral images with 

moderate spatial resolutions to detect general assemblages of plants (Hochberg et al., 2015; 

Sanchez-Azofeifa et al., 2013; Schmidt & Skidmore, 2003). 

The extent of monitoring required for the regional detection and management of invasive 

plant species suggests the utilization of imagery with intermediate spatial resolution. Operating 

regional-scale platforms (e.g. fixed-wing aircrafts) is more costly and inflexible than operating a 

drone. A potential option for detection and management applications may combine both 

approaches: fine-scale drone-based imagery that is flexible and affordable to collect can be used 

to generate detection algorithms, and those algorithms can be applied to coarser-scale imagery 

with greater spatial extents. This scaling approach is theoretically possible; UAV survey data have 

been successfully scaled up and applied to 30 m resolution Landsat data to determine percent cover 

of plants (He et al., 2021). However, the spectral variability of individual species over space and 

time, in addition to scale-based spectral differences, may impede detection. 

I evaluate the effectiveness of this combined fine- and intermediate-resolution approach to 

invasive plant species detection by answering the following questions:  

1. How do mean spectral signatures of species differ in images collected by drone and by 

fixed-wing aircraft?  
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2. To what extent can detection algorithms created using fine-resolution drone imagery be 

used to accurately detect invasive plants species in coarser resolution images collected by 

the NEON AOP? 

3. To what extent can detection algorithms created using NEON AOP imagery be used to 

accurately detect invasive plants species within the same images? 

4. What features are used in each algorithm, and how do they differ with respect to detection 

accuracy?  

 

2. Methods 

2.1 Study site and aerial image data collection 

Aerial hyperspectral images were collected by fixed-wing aircraft and UAV at Blandy 

Experimental Farm (BEF) in northwestern Virginia, United States (39.06oN, 78.07oW). NEON 

collects data on a near-annual basis during times with at least 90% maximum greenness using their 

AOP, weather and logistics permitting. Peak greenness on average at BEF occurs on DOY 150 

(approx.. late May or early June). Images collected by NEON’s AOP were available for 2016, 

2017, 2019, and 2021. Drone-based images were collected using a DJI Matrice 600 Pro equipped 

with a Headwall HyperSpec imaging spectrometer (Nano-Hyperspec, Headwall Photonics, Bolton, 

MA) on June 26, 2020 (DOY 178) to approximate the date of NEON’s AOP data collection. 

NEON corrects their reflectance data for atmospheric and illumination effects caused by 

solar angle and atmospheric conditions using Atmospheric and Topographic Correction (ATCOR) 

and provides 1 km2 stitched tile images that have been orthorectified to a UTM projection, with 1 

m spatial resolution. 
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2.2 Image sampling 

Reflectances from 149 individuals of 15 different species, genera, or plant type across trees, 

shrubs, forbs, and graminoids (A. altissima, E. umbellata, Gleditsia triacanthos, Galium verum, 

Maclura pomifera, Juglans nigra, Juniperus virginiana, Lonicera japonica, Lonicera maackii, 

Pinus virginiana, Rhamnus davurica, Rubus spp., Solidago altissima, Symphoricarpos 

orbiculatus, and graminoids) were extracted from drone images. Spectral data cubes were 

downloaded from NEON’s Application Programming Interface using the neonUtilities R package 

(Lunch et al., 2024) for locations that overlapped with areas where drone data were collected at 

BEF. Reflectance data were extracted from data cubes using the rhdf5 R package (Fischer et al., 

2023). Non-vegetation and shadow pixels were removed from the images (51% of pixels). To 

reduce computing requirements, locations of 79 individual tree and shrub canopies, were extracted 

from each image, which would later be used to assess accuracy. Each canopy was approximated 

based on plant size (trees and shrubs with canopies of ~5 m and ~3 m diameters, respectively). 

Canopy sizes translated to polygons with 9 or 25 pixels centered on the coordinates of each 

individual location (Table 2). 

 

Table 2. Species identities of the 79 individual tree and shrub canopies considered in algorithm 

development and classification, including the number of each, the estimated size of each canopy, 

and number of pixels considered and extracted from NEON images. 

Species Number of 
individuals 

Simulated canopy 
diameter (m) 

Number of pixels 
in a canopy 
 

    

Ailanthus altissima 9 5 25 
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Elaeagnus umbellata 9 3 9 

Rhamnus davurica 10 3 9 

Gleditsia triacanthos 9 5 25 

Juglans nigra 9 5 25 

Juniperus virginiana 7 5 25 

Lonicera maackii 10 3 9 

Maclura pomifera 11 5 25 

 

2.3 Harmonizing and comparing data from different platforms 

Spectra sampled from NEON images were restricted to bands in the VNIR and resampled 

to match bands of drone-based data using the prospectr R package (Stevens & Ramirez-Lopez, 

2022). Because NEON imagery has coarser spatial resolution than the drone-based imagery (1 m 

compared to ~3 cm), spectral signatures were also extracted from drone images in ENVI using 25 

x 25 pixel squares to better match NEON’s coarser spatial resolution. Up to three squares were 

sampled from each canopy to serve as replicates.  

In addition to adjusting methods to harmonize the spatial and spectral resolution of the two 

platforms, all data were transformed with a convex hull continuum removal using the prospectr R 

package. Convex hull continuum removal is a common transformation applied to remotely sensed 

data to eliminate lighting effects. The approach creates a convex hull around a spectral signature 

by connecting local maxima with interpolated line segments, then normalizes the spectral signature 

relative to the convex hull (Stevens & Ramirez-Lopez, 2022). To evaluate the spectral similarities 

of the two platforms, the difference in reflectance of each band between the two platforms was 
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calculated. Spectral regions that differed least, with at least 75% of bands differing less than 0.01 

in at least two different years, were noted.  

 

2.4 Algorithm development and accuracy assessment 

Algorithms to detect each species of interest (A. altissima, E. umbellata, and R. davurica) 

were created by applying a two-component Partial Least Squares Discriminant Analysis (PLS-DA) 

to the drone-based data. Algorithms were developed using both the original, untransformed 

reflectances as well as a convex hull continuum removal-transformed version of both fine- and 

coarse-scale data, for a total of four approaches for each species of interest. Appropriate models 

(untransformed and transformed, respectively) were then applied to untransformed and 

transformed pixels extracted from each NEON image (2016, 2017, 2019, and 2021). 

Each model provided a classification for each PLS-DA component for each pixel in NEON images. 

This provided an opportunity to consider two approaches to pixel and canopy classification with 

different levels of “strictness.” A more lenient algorithm would allow a pixel to be classified as the 

species of interest with classification in only one PLS-DA component, whereas a stricter algorithm 

would require a pixel to be classified as the species of interest with classification in both 

components. Once pixels were classified at either level of strictness, canopies would also be 

classified.  A more lenient canopy classification approach would allow a canopy to be classified as 

the species of interest with a minimum of two pixels, whereas a stricter approach would require a 

majority (>50%) of pixels to be classified as the species of interest (Table 3). Each approach to 

detection strictness was used to evaluate the accuracy of each classification model for each species 

of interest, as the detection of each species of interest may benefit from different approaches. The 

combination of two different resolutions of drone images, two transformations, four years of 
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NEON data, and four strictness levels resulted in the evaluation of 64 different approaches for each 

species of interest.  

 

Table 3: The four categories of “strictness of detection” (most lenient, moderately lenient, 

moderately strict, and most strict) were based on the number of components (“components”) 

required in a PLS-DA for classification of a single pixel and the number of pixels required in a 

canopy for classification (“pixels”). 

Components Pixels Strictness of detection 

1 1 or more Most lenient 

1 Majority of pixels in canopy Moderately lenient 

2 1 or more Moderately strict 

2 Majority of pixels in canopy Most strict 

 

In addition to creating algorithms using reflectances in drone images, algorithms were also 

created using NEON images to detect each species of interest in each NEON image. A randomly 

selected 30% subset of untransformed and transformed data from each image was used to train 

each algorithm by applying a two-component PLS-DA. Each algorithm was then applied to the 

remaining 70% of data to evaluate the accuracy, using the same levels of strictness. The 

combination of two transformations, four years of NEON data, and four strictness levels resulted 

in evaluation of 32 different approaches for each species of interest. Last, the classification of each 

canopy was compared to its ground-truthed identity for each of the 79 individuals, allowing for 

the calculation of accuracy statistics for each of the 64 drone-based algorithms and 32 NEON-

based algorithms: user and producer accuracy, commission and omission error. 
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2.5 Assessment of spectral features 

The various PLS-DA models not only serve to differentiate each species of interest from 

other species, but they also determine what spectral features are important in their differentiation 

across time and scale. Wavelengths that loaded heavily (those with greater magnitude) were most 

important in differentiating a species of interest from the others (Liland et al., 2022). Though PLS-

DA is prone to overfitting (i.e. a model can misinterpret noise as relevant information), the 

classification accuracy of each PLS-DA model approximates model goodness. Therefore, key 

spectral regions in algorithms with both user and producer accuracies >50% were examined to 

assess the importance of spectral features for different platforms, scales, and time.  

Loading values of accurate algorithms were ranked by band for each component, and ranks 

>180 (out of 225 bands) were selected to focus on bands within the top 20% of loading values. For 

each species of interest, loading value ranks were averaged across all accurate detection algorithms 

and within each platform for each species of interest. This was done to evaluate the importance of 

time, platform, and resolution in species detection. Similarities across all accurate algorithms 

would indicate that spectral signals key to the detection of a species are consistent across time and 

space, and that algorithms are more likely to be applicable across time (e.g. across growing 

seasons) and space (e.g. resolution and viewing angle). Within drone-based algorithms, only those 

that used reflectances from both original fine-resolution drone images and those resampled to a 

coarser resolution were compared. Similarities across different resolutions within drone-based 

algorithms would suggest that differentiating spectral features are not resolution-dependent. 

Similarities across NEON-based algorithms would suggest that spectral features are not time-

dependent. 
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3. Results 

3.1 Spectral differences between platforms 

3.1.1 Original drone data vs. NEON data 

 Reflectances in fine-scale drone images were most consistently similar (across multiple 

years) to NEON images in the untransformed data. Across all eight species, reflectances in images 

from the two platforms were most consistently similar in spectral regions associated with 

chlorophyll absorption (blue and red). Reflectances of A. altissima and R. davurica were most 

consistently similar in images from the two platforms in the blue spectral region. Reflectances of 

E. umbellata were not consistently similar in any spectral regions between fine-scale drone images 

and NEON images. The greatest differences in reflectance of all eight species, A. altissima, E. 

umbellata, and R. davurica in fine-scale drone images and NEON images occurred in the red edge 

minimum and high NIR spectral regions. Transforming reflectances increased the number of 

spectral regions that differed most between the two platforms to include green (all 8  

species, and R. davurica) and blue (all 8 species, A. altissima) in addition to the red edge minimum 

and high NIR (Figure 1). 
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Figure 1. A) Mean reflectances of original, fine-scale drone data and NEON data. Columns left to 

right include all species in images, A. altissima, E. umbellata, and R. davurica, and rows top to 

bottom are for untransformed and transformed data. 
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Figure 1.B) Mean differences between reflectances in original, fine-scale drone and NEON 

images. Columns left to right include all species in images, A. altissima, E. umbellata, and R. 

davurica, and rows top to bottom are for untransformed and transformed data. 
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3.1.2 Resampled drone data vs. NEON data 

As in the fine-scale drone images, reflectances in resampled, coarser-resolution drone 

images were most consistently similar to NEON images (across multiple years) in untransformed 

data. Because resampling to a coarser resolution creates pixels that included shadows, the number 

of spectral regions with similar reflectances across platforms increased when drone images were 

resampled (Figure 2A).  

Across all eight species, reflectances in images from the two platforms were most 

consistently similar in blue, green, yellow, and orange spectral regions (rather than just blue and 

red for the finer-scale data). Resampling drone data to a coarser resolution changed reflectances in 

the blue and red spectral regions in E. umbellata and R. davurica more than they did in A. altissima, 

whereas resampling changed reflectances in the green more in A. altissima (Figure 2A). 

Reflectances of A. altissima were more similar in coarser-scale drone and NEON images in the 

green, yellow, and orange spectral regions; E. umbellata in the blue, orange, and red spectral 

regions; and R. davurica in the blue, orange, red, and low NIR spectral regions. The greatest 

differences in reflectances of all eight species, A. altissima, E. umbellata, and R. davurica in 

coarser-scale drone images and NEON images occurred in the red edge minimum and high NIR 

spectral regions, as they did in fine-scale drone images. Transforming reflectances increased the 

differences between reflectances of the two platforms in the blue spectral region. Transformed 

reflectances of E. umbellata differed most in the red edge minimum rather than the blue spectral 

region (Figure 2). 
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Figure 2. A) Mean reflectances of resampled, coarser-scale drone data and NEON data and B) 

differences between reflectances in resampled, coarser-scale drone and NEON images. Columns 

left to right include all species in images, A. altissima, E. umbellata, and R. davurica, and rows 

top to bottom are for untransformed and transformed data. 
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Figure 2. B) Mean differences between reflectances in resampled, coarser-scale drone and NEON 

images. Columns left to right include all species in images, A. altissima, E. umbellata, and R. 

davurica, and rows top to bottom are for untransformed and transformed data. 

 

3.2 Accurately detecting each species of interest using drone-based algorithms 

Using detection algorithms trained on drone imagery allowed for the accurate detection 

(>50% user and producer accuracy) of each species of interest in at least two years of NEON 

images. Overall, reflectances from fine resolution drone images were used more than those 

resampled to a coarser resolution (seven compared to five, of the 12 accurate algorithms). 

Untransformed reflectances were also used more than transformed reflectances (seven compared 

to five algorithms). Untransformed and transformed reflectances from original drone data were 
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used in three and four accurate algorithms, respectively. Untransformed and transformed 

reflectances from resampled drone data were used in four and one algorithm(s), respectively. 

A. altissima was accurately detected in three different years (2016, 2017, and 2021) using 

four different approaches (out of the 64 total approaches). Most (three of the four) accurate 

approaches used the most lenient detection standards, whereas one used moderately strict 

detection. Most (three of the four) used resampled, coarser-resolution drone data. Transformed and 

untransformed data were equally effective (each in two algorithms). All A. altissima detection 

algorithms used green and yellow spectral regions, regardless of resolution and transformation. 

The most accurate algorithm used transformed fine-resolution drone reflectances and had 100% 

producer accuracy (sensitivity) and 58% user accuracy (specificity) when used to detect A. 

altissima in transformed 2021 NEON imagery. 

E. umbellata was accurately detected twice (in 2017 and 2021 NEON images). Both 

algorithms used the original, fine-resolution drone data, and both used the strictest detection 

standard. Transformed and untransformed drone data were each used. The algorithm based on 

untransformed reflectances highlighted the blue, green, and red edge slope spectral regions. The 

algorithm based on transformed reflectances, which detected E. umbellata with the greatest 

accuracy, highlighted the blue, green, yellow, red, red edge minimum, and red edge slope. This 

algorithm had 86% producer accuracy (sensitivity) and 51% user accuracy (specificity) when used 

to detect E. umbellata in 2017 transformed NEON imagery. 

R. davurica was accurately detected in two different years (2017 and 2019) using six 

different approaches. Several exhibited equally good producer accuracies (67%) paired with 

varying degrees of user accuracies. Of the six approaches, four used untransformed drone data, 

and two used transformed data; four used the original, fine resolution drone data, and two used 
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drone data resampled to a coarser resolution. None of the accurate algorithms used the most lenient 

detection standard, and the other strictness levels were used equally. The blue spectral region was 

important in algorithms based on the original, fine-resolution and untransformed drone data. More 

spectral regions were important in the algorithm based on transformed fine-resolution drone data: 

blue, green, yellow, orange, and red edge slope all loaded heavily. When applied to transformed 

reflectances from 2019 NEON images, this was the most accurate algorithm to detect R. davurica, 

with 67% producer accuracy (sensitivity) and 88% user accuracy (specificity) (Table S1). 

 

3.3 Accurately detecting each species of interest using NEON-based algorithms 

A. altissima was accurately detected using NEON-based algorithms in three different years 

using 19 different approaches (out of the 32 total approaches), most of which used transformed 

reflectances (11 of the 19). More lenient approaches were used more frequently than stricter 

approaches, with 12 of the 19 algorithms using either moderately lenient or most lenient. The 

spectral regions that loaded heavily in accurate algorithms varied across years and transformations: 

in 2017 detection algorithms a combination of visible (both untransformed and transformed data) 

and high NIR (transformed data only) loaded heavily; in 2019 detection algorithms, the red edge 

(both untransformed and transformed data) and green (untransformed data only) loaded heavily; 

and in 2021 the red edge to low NIR loaded heavily. A. altissima was best detected (an accuracy 

of 98%) in transformed 2021 NEON images. 

E. umbellata was accurately detected using NEON-based algorithms in three different 

years using 14 different approaches, with approximately equal use of untransformed and 

transformed reflectances (six and eight, respectively). Stricter approaches were used more 

frequently to accurately detect E. umbellata (11 of the 14 approaches). When untransformed data 
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were used, the red edge minimum (in both 2016 and 2017) and red edge slope (2017 only) loaded 

heavily in accurate E. umbellata detection algorithms. When transformed data were used, 

combinations of spectral regions that loaded heavily varied more across years: in one algorithm 

the red edge slope and high NIR loaded heavily, while in the most accurate algorithm (using the 

2016 NEON images, with an accuracy of 77%) the green and red edge shoulder loaded heavily. 

R. davurica was accurately detected in two different years using 13 different approaches, 

with approximately equal use of untransformed and transformed reflectances (six and seven, 

respectively). Accurate detection of R. davurica was equally possible in all but the most lenient 

approach, and other levels of strictness were used equally. The spectral regions that loaded heavily 

in accurate algorithms varied across years and transformations: in 2017, reflectances in the blue, 

green, yellow, and red edge minimum spectral regions loaded heavily when untransformed data 

were used, whereas high NIR loaded heavily when transformed data were used; in 2019, the shorter 

wavelengths of the red edge loaded heavily in untransformed data, whereas the longer red edge 

wavelengths loaded heavily in transformed data. When untransformed data were used, the blue, 

green, yellow, and red edge minimum were important in 2017, and the red edge minimum and red 

edge slope were important in 2019. When transformed data were used, high NIR was important to 

detection in 2017, and the red edge slope and shoulder were important to detection in 2019. The 

most accurate detection algorithm (95%) for R. davurica used 2019 NEON images, in which the 

red edge region loaded heavily (Table S2) 
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3.4 Comparing drone-based and NEON-based detection algorithms 

3.4.1 Detection accuracy  

 Across the three species of interest, drone-based algorithms had lower accuracy and were 

less frequently accurate than NEON-based algorithms. Accurate drone-based algorithms (with user 

and producer accuracies > 50%) had a mean accuracy of 65 ± 1% and a mean maximum accuracy 

of 75 ± 3% across the three species, whereas accurate NEON-based algorithms had a mean 

accuracy of 77 ± 4% and a mean maximum accuracy of 90 ± 7% across the three species.  

 On average, accurate detection algorithms of A. altissima based on drone and NEON data, 

respectively, had mean accuracies of 62 ± 6% and 80 ± 4%. The best detection accuracies of A. 

altissima were 79% and 98% in drone-based and NEON-based algorithms, respectively. On 

average, accurate detection algorithms of E. umbellata based on drone and NEON data, 

respectively, had mean accuracies of 67 ± 1% and 70 ± 1, and the best detections were 68% and 

77%, respectively. R. davurica was accurately detected using drone and NEON images with mean 

accuracies of 66 ± 3% and 80 ± 2%, respectively, and maximum accuracies of 78% and 95%, 

respectively. 

3.4.2 Temporal sensitivity, strictness, and key spectral features 

 A. altissima could be accurately detected in three different years using either drone-based 

or NEON-based algorithms. Accurate drone-based algorithms were less flexible in approach 

(transformation, resampling, and detection strictness standards) than NEON-based algorithms; 

only four drone-based approaches were accurate, whereas 19 NEON-based approaches were 

accurate. More lenient standards were better than stricter standards for accurate A. altissima 

detection. Transformed reflectances were used slightly more often than untransformed reflectances 

in NEON-based algorithms (Figure 3, bottom panel).  
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The only spectral region that was important for accurate A. altissima detection across 

platforms was the green region. Spectral regions important in accurate drone-based detection 

algorithms were yellow and green (in both transformations and resolutions). More spectral  

regions were important in accurate NEON-based detection algorithms: the green, orange, red, and 

red edge minimum and slope in untransformed data, and the blue, green, red, red edge slope and 

shoulder, low and high NIR (Figure 3, Table 4). 
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Figure 3. Magnitudes of top (>0.1) loading values for the most accurate detection algorithms for 

A. altissima across all training and testing datasets. The top and bottom panels represent algorithms 

that used untransformed and transformed data, respectively. Each panel from left to right includes 

years of NEON images with good detection accuracies (>70%). Lines in each panel are colored 

by training data (fine-resolution drone image or each year’s NEON image) and are solid for 

algorithms with good detection (>70% user and producer accuracies) or dotted for algorithms with 

good detection (>70%) but higher than ideal false positive rates (between 30% and 50%). 

Algorithms with <70% accuracies were not included to simplify the figure. To aid in 

interpretability, the band at the bottom is colored by spectral regions, where blue, green, 

yellow/orange, and red are colored according to identity, the red edge is dark red, and the NIR is 

shades of grey. 
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Table 4. Training datasets (reflectances extracted from fine- or coarser-resolution drone images or 

NEON images) that most accurately detected A. altissima, to what degree (best user accuracy, UA, 

and producer accuracy, PA, across all strictness approaches), and the spectral regions that were 

important in each algorithm. For more details, see tables S1 and S2.  

Training Transformation Spectral regions UA PA 

NEON 2017 not transformed green, orange, red 69% 75% 

NEON 2017 transformed blue, green, red, high NIR 69% 100% 

NEON 2019 not transformed green, red edge minimum, red edge slope 69% 60% 

NEON 2019 transformed red edge slope, red edge shoulder 93% 100% 

NEON 2021 transformed red, red edge shoulder 97% 100% 

drone coarse res not transformed green, yellow 56% 60% 

drone coarse res transformed green, yellow 53% 60% 

drone fine res transformed green, yellow 58% 100% 

 

NEON-based algorithms for E. umbellata detection were also much more flexible than 

drone-based algorithms; only two drone-based approaches accurately detected E. umbellata, 

whereas 14 different NEON-based approaches did. In accurate algorithms developed from both 

platforms, untransformed and transformed reflectances were used equally, and stricter standards 

were better. Reflectance in the red edge slope was most consistently used across accurate drone-

based and NEON-based E. umbellata detection algorithms, followed by the green. Reflectance in 

the blue spectral region was key to detection in drone-based algorithms but not as frequently in 

NEON-based algorithms. Yellow and red were more important in transformed drone-based 

algorithms than in transformed NEON-based algorithms (Figure 4, Table 5).  
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Figure 4. Magnitudes of top (>0.1) loading values for the most accurate detection algorithms for 

E. umbellata across all training and testing datasets. The top and bottom panels represent 

algorithms that used untransformed and transformed data, respectively. Each panel from left to 

right includes years of NEON images with good detection accuracies (>70%). Lines in each panel 

are colored by training data (fine-resolution drone image or each year’s NEON image) and are 

solid for algorithms with good detection (>70% user and producer accuracies) or dotted for 

algorithms with good detection (>70%) but higher than ideal false positive rates (between 30% 

and 50%). Algorithms with <70% detection accuracies were not included to simplify the figure. 

To aid in interpretability, the band at the bottom is colored by spectral regions, where blue, green, 

yellow/orange, and red are colored according to identity, the red edge is dark red, and the NIR is 

shades of grey. 
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Table 5. Training datasets (reflectances extracted from fine- or coarser-resolution drone images or 

NEON images) that most accurately detected E. umbellata, to what degree (best user accuracy, 

UA, and producer accuracy, PA, across all strictness approaches), and the spectral regions that 

were important in each algorithm. For more details, see tables S1 and S2. 

 

Training Transformation Spectral regions UA PA 

NEON 2016 not transformed red edge minimum, red edge slope 81% 67% 

NEON 2016 transformed green, red edge slope, red edge shoulder 82% 80% 

NEON 2017 not transformed red edge minimum 79% 80% 

NEON 2017 transformed red edge slope, high NIR 83% 67% 

NEON 2021 transformed high NIR 69% 75% 

drone fine res not transformed blue, red edge slope 59% 71% 

drone fine res transformed blue, green, yellow, red, red edge slope 51% 86% 

 

R. davurica could be accurately detected in two different years using drone-based or 

NEON-based algorithms. Fewer approaches allowed for its accurate detection in drone-based 

algorithms (six compared to 13 with NEON-based). Accurate drone-based algorithms used 

untransformed reflectances slightly more often than transformed reflectances, whereas NEON-

based algorithms used them more equally. All but the strictest detection standard accurately 

detected R. davurica in drone-based approaches, whereas all but the most lenient detection 

standard resulted in accurate detection in NEON-based approaches. 
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Untransformed reflectance in the blue spectral region was important in both accurate 

drone-based and NEON-based R. davurica detection algorithms, though NEON-based algorithms 

incorporated several other spectral regions (green, yellow, and red edge minimum and slope). 

Transformed reflectance in the red edge slope was important in both drone-based and NEON-based 

algorithms, but drone-based algorithms incorporated several visible spectral regions (blue, green, 

yellow, orange), whereas NEON-based algorithms incorporated the red edge shoulder and high 

NIR (Figure 5, Table 6). 
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Figure 5. Magnitudes of top (>0.1) loading values for the most accurate detection algorithms for 

R. davurica across all training and testing datasets. The top and bottom panels represent algorithms 

that used untransformed and transformed data, respectively. Each panel from left to right includes 

years of NEON images with good detection accuracies (>70%). Lines in each panel are colored 

by training data (each year’s NEON image) and are solid for algorithms with good detection (>70% 

user and producer accuracies). Although there were algorithms with good detection (>70%) and 

false positive rates between 30% and 50%, their loading factors did not exceed 0.1. Algorithms 

with <70% detection accuracies were not included to simplify the figure. To aid in interpretability, 

the band at the bottom is colored by spectral regions, where blue, green, yellow/orange, and red 

are colored according to identity, the red edge is dark red, and the NIR is shades of grey. 
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Table 6. Training datasets (reflectances extracted from fine- or coarser-resolution drone images or 

NEON images) that most accurately detected E. umbellata, to what degree (best user accuracy, 

UA, and producer accuracy, PA, across all strictness approaches), and the spectral regions that 

were important in each algorithm. For more details, see tables S1 and S2. 

Training Transformation Spectral regions UA PA 

NEON 2017 not transformed blue, green, yellow, red edge minimum 80% 100% 

NEON 2017 transformed high NIR 85% 75% 

NEON 2019 not transformed red edge minimum, red edge slope 89% 100% 

NEON 2019 transformed red edge slope, red edge shoulder 80% 100% 

drone coarse res not transformed blue, red edge slope 62% 67% 

drone fine res not transformed blue 65% 67% 

drone fine res transformed blue, yellow, orange, red edge slope 88% 67% 

 

3.4.2 Consistency of important spectral features across algorithms 

 When ranks of loading values were averaged across all accurate detection algorithms 

(across all four years of NEON data and the two resolutions of drone data) for each species of 

interest, those that used untransformed data had more bands with means > 180 (or in the top 20%). 

A. altissima had 15 bands with mean ranks > 180 (17% of the maximum possible), all of which 

were in the green spectral region. E. umbellata had 11 bands (12%) with mean ranks >180, most 

of which were in the red edge. R. davurica had the greatest number of bands (29, or 32%) with 

mean ranks > 180, a majority of which were in the green and red edge minimum spectral regions.  

 There were only two cases in which both resolutions of drone-based algorithms accurately 

detected a species of interest (A. altissima using transformed data, and R. davurica using 
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untransformed data). When ranks of loading values from each accurate drone-based algorithm 

were averaged across the two resolutions, A. altissima had 17 bands (19%) with mean ranks > 180, 

a majority of which were in the red edge slope. R. davurica had 72 bands (80%) with mean ranks 

> 180, with several bands in the blue, green, red, red edge slope and red edge shoulder. 

 When ranks of loading values were averaged across all accurate NEON-based detection 

algorithms (across all four years of NEON data), E. umbellata had the fewest bands with mean 

ranks > 180 (10, or 11%). A. altissima had 25 bands (28%) with mean ranks > 180 for 

untransformed data, a majority of which were in the low NIR spectral region, and 37 bands (41%) 

with mean ranks > 180 for transformed data, which were mostly in the green and red spectral 

regions. R. davurica had 39 bands (43%) with mean ranks > 180 for untransformed data, most of 

which were in the green and red edge minimum, and 41 bands (46%) for transformed data, which 

were in the red, red edge minimum, and high NIR.   

  

4. Discussion  

4.1 Spectral differences between platforms 

4.1.1 Original drone data 

Untransformed reflectances in both fine- and coarser-resolution drone images were more 

similar to reflectances in NEON images than transformed reflectances for either resolution. The 

purpose of the transformation was to highlight certain wavelengths that I thought would lead to 

greater similarity between the platforms, however it increased the differences between them. 

Algorithms based on transformed fine-scale reflectances in drone images did, however, tend to 

include more spectral regions in algorithms than untransformed fine-scale reflectances.  
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4.1.2 Resampled drone data 

Resampling drone images from a fine-scale resolution to a coarser-scale resolution led to 

greater similarities in reflectances between the two platforms overall and to the greatest extent in 

the green, yellow, and orange spectral regions (across all eight species on average). This change in 

differences in reflectances between drone and NEON images most illustrates how resolution 

impacts reflectance values; in resampled images, mixed pixels incorporate shade, which reduces 

reflectances in drone images to better match reflectances in NEON images. Further supporting this 

harmonization of drone and NEON images through resampling is the impact that resampling had 

on accurate algorithms. Similar to how transforming reflectances of fine-scale drone images 

increased the number of spectral regions included in accurate algorithms, resampling to a coarser 

resolution had the same effect. Accurate algorithms that used untransformed reflectances from 

drone images resampled to a coarser resolution included blue, green, yellow, and orange, whereas 

those that used untransformed reflectances from fine-scale drone images only used blue and red 

reflectances.  

 

4.2 Accurately detecting each species using drone-based algorithms 

4.2.1 Implications of transforming and resampling drone data 

The balance of the disadvantage of transforming drone-based data (increasing differences 

in reflectances from NEON images) and the advantage (increasing the number of spectral features 

that may help detect individual species of interest) is illustrated by the fact that untransformed and 

transformed fine-scale drone reflectances were used in the same number of accurate detection 

algorithms for both A. altissima and E. umbellata. So even if reflectances differ more from the 

NEON data, transforming may accentuate these species differences in the visible spectrum, 
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increasing their differentiability from other species. For R. davurica, however, only two accurate 

algorithms used transformed data, whereas four used untransformed data. The better alignment 

between untransformed drone and NEON images (compared to transformed drone and NEON 

images) is confirmed by the consistency of accurate algorithms across all platforms that used 

untransformed data. 

Detection of A. altissima benefited from resampling drone-based images. Resampling to a 

coarser resolution changed reflectances most in the green spectral region, likely due to the 

incorporation of shade into the spectral signature. Resampling also increased the number of 

spectral regions with similar reflectances to NEON data to include the green, yellow, and orange. 

As a result, A. altissima was accurately detected using drone-based images three out of four times 

(two of which were untransformed reflectances). A. altissima was the only species of interest 

accurately detected in NEON images using a combination of resampled drone images and 

transformed reflectances. 

Although resampling drone images made reflectances of E. umbellata in the blue, orange, 

and red spectral regions approximately equal to those in NEON images, algorithms that used 

reflectances from resampled drone images did not accurately detect it in any of the NEON images. 

E. umbellata was instead only detected using fine-resolution drone images. The increase in 

similarity of reflectances in the blue spectral region to NEON images may be caused by a 

“dampening” of (or reducing the reflectance in) the blue spectral signal. E. umbellata had greater 

reflectances in the blue spectral region than other species in drone-based images, which would 

imply its importance in its differentiation. If that spectral feature is lost through a dampening via 

resampling, it would explain the decreased detection accuracy.  
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Resampling drone images also changed reflectances of R. davurica most in the blue and 

red spectral regions and increased the number of spectral regions with similar reflectances to 

NEON images from only blue to blue, orange, red, and low NIR. Despite more similar reflectances 

in resampled data, R. davurica was accurately detected by twice as many algorithms using fine-

resolution drone data than resampled drone data. Similar to what was seen in E. umbellata, the 

spectral features that allowed for differentiation of R. davurica from other species are likely 

dampened with resampling, which reduces the possibility of detection.  

4.2.2 Implications of detection strictness 

 Stricter detection approaches were used more often when applying drone-based algorithms 

to accurately detect species of interest in NEON images. This overall pattern can be explained by 

species-specific patterns. A. altissima benefitted from more lenient approaches, whereas E. 

umbellata and R. davurica tended toward stricter approaches (with E. umbellata only using the 

strictest, and R. davurica using all but the most lenient approach).  

This result is notable for two reasons; first, canopy size likely contributed to these patterns, 

and second, spectral characteristics of each species of interest also contributed. A. altissima, a tree 

species with a larger canopy than the shrub species, would require more pixels for accurate 

identification using stricter standards than with more lenient standards (i.e., half of the well-lit 

pixels classified in a canopy, compared to just one pixel). Therefore, its accurate detection 

benefitted from the requirement of fewer pixels for classification. The two shrub species, E. 

umbellata and R. davurica, had smaller canopies, which potentially resulted in the evaluation of 

additional, neighboring pixels or mixed pixels at the boundary of each canopy in NEON images. 

Therefore, accurate detection of the shrub species benefitted from the requirement of more pixels 

for classification, decreasing the possibility of false negatives. Canopies of female A. altissima 
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trees also include a high density of seed pods, which could make the spectral signatures of entire 

canopies more variable, as some pixels may include a signal from seed pods, and some may not. 

Therefore, accurate detection of A. altissima also likely benefitted from more lenient approaches, 

as fewer pixels would need to resemble the characteristics in each algorithm. 

 

4.3 Accurately detecting each species using NEON-based algorithms 

Reflectances in all aerial remotely sensed imagery are impacted by biological features in 

addition to features of the platform and sensor. Platform and sensor differences can impact spectra 

due to different spatial and spectral resolutions, viewing angles due to footprint differences, and 

atmospheric interference caused by water or gas absorption bands, depending on the elevation of 

image collection. Plant biochemical traits, which are not constant over either space or time, also 

impact spectra. Additionally, long- and short-term changes in canopy structure, including canopy 

architecture and leaf angle, can also interact with reflected light and therefore spectra. Thus, the 

greater number of accurate NEON-based algorithms and their greater accuracy were to be 

expected, as their use eliminates differences between training and testing data, in terms of space 

(resolution, viewing angle, differences in atmospheric depth) and time (across years). 
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4.4 Key spectral features and sensitivity to scale and time 

Accurate algorithms for the detection of A. altissima were somewhat consistent within each 

platform (drone or NEON) but not across all platforms (drone and NEON). The greatest overlap 

in important spectral features was among accurate NEON-based algorithms that used transformed 

data (41% overlap), which highlighted the green and red spectral regions. Because transformed 

reflectances accentuate absorption features, and those features were consistently important in 

NEON-based algorithms across years, this suggests a lack of temporal variability in those features 

key to detecting A. altissima. Although there were considerable similarities in key spectral regions 

across accurate NEON-based algorithms using transformed data, there was no similarity across 

algorithms from all platforms (NEON- and drone-based algorithms) using transformed data. This 

misalignment between features key to NEON- and drone-based detection is confirmed by the 

overlap between accurate transformed drone-based algorithms, which highlighted the red edge 

slope. 

E. umbellata had the least consistent algorithms both within each platform and across 

platforms. Unlike A. altissima and R. davurica, it was not accurately detected using resampled 

drone imagery. This suggests that reflectances of E. umbellata, and therefore spectral features key 

to its detection, are heavily resolution-dependent, as resampling to a coarser resolution tended to 

dampen the blue and red spectral signals in fine-scale drone imagery, which were key to its 

detection in drone-based algorithms. This is also supported by the lower number of accurate drone-

based algorithms, as well as their lower accuracy, compared to drone-based algorithms of the other 

two species of interest.  

Accurate R. davurica detection algorithms that used untransformed data had the most 

consistency across all algorithms (32%), across NEON-based algorithms (43%), and especially 
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across the two resolutions of untransformed drone-based algorithms (80%). The green and red 

edge minimum spectral regions were both important across all algorithms and all NEON-based 

algorithms, whereas the blue, green, red, and red edge slope and shoulder spectral regions were 

important in the drone-based algorithms. The red edge minimum was less important among the 

two resolutions of drone-based algorithms compared to the NEON-based algorithms. The 

consistency in important spectral regions among accurate NEON-based algorithms (46% overlap 

that highlighted the red, red edge minimum, and high NIR) that used transformed reflectances did 

not translate to overall consistency across all approaches.  

 

4.5 Conclusion 

The first question I explored in this study was how spectral signatures differed in drone-

based images and NEON images. Reflectances in fine-scale drone-based images were generally 

most consistently similar to those in NEON images in blue and red spectral regions across all 

species, except for E. umbellata. When drone images were resampled to a coarser resolution, 

reflectances were most similar in blue, green, yellow, and orange spectral regions. Reflectances 

were most different between the two platforms in the red edge and high NIR spectral regions. 

Transforming reflectances increased differences between the two platforms. 

I then examined how well invasive plants could be detected in coarse resolution images 

collected by the NEON AOP, first using detection algorithms created using fine-resolution drone 

imagery, then using detection algorithms created using NEON AOP imagery. Accurate drone-

based algorithms (with user and producer accuracies > 50%) had a mean accuracy of 65 ± 1% and 

a mean maximum accuracy of 75 ± 3% across the three species, whereas accurate NEON-based 

algorithms had a mean accuracy of 77 ± 4% and a mean maximum accuracy of 90 ± 7% across the 
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three species. NEON-based algorithms detected each with greater accuracy, as it eliminated both 

temporal and scale differences among platforms. 

The last goal of this study was to determine the most useful spectral features in detection. 

The green spectral region was important for accurate A. altissima detection across all platforms. 

Drone-based algorithms also included yellow, and NEON-based algorithms included blue, orange, 

red, and red edge, and NIR. Reflectance in the red edge slope was most consistently used across 

accurate drone-based and NEON-based E. umbellata detection algorithms, followed by the green. 

Reflectance in the blue spectral region was key to detection in drone-based algorithms but not as 

frequently in NEON-based algorithms. Untransformed reflectance in the blue spectral region and 

transformed reflectance in the red edge slope were important in both accurate drone-based and 

NEON-based R. davurica detection algorithms.  

The consistency of drone- and NEON-based algorithms can elucidate the importance of 

time or space; consistency among algorithms within each platform suggests that resolution and 

temporal variability, respectively, may not be issues, but that features of each platform (e.g. 

viewing angle) may affect applications across both. Spectral features that allowed for the accurate 

detection of A. altissima were consistent within each platform but not across platforms, which 

suggests that its spectral features are not universal across time and/or space. Spectral features that 

were key to accurately detecting E. umbellata were inconsistent, which suggested that they are 

resolution dependent. R. davurica had the most consistency in features that allowed for its 

detection at every level, although the features changed, which suggests at least some variability 

associated with time and space.  

Differences in reflectance signatures between fine and coarse resolution drone images, as 

well as the similarity of their accurate detection algorithms, highlight the importance of 
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observational scale. The similarities among accurate NEON-based detection algorithms across 

years can inform how temporally stable the spectral features are that allow for detection. The 

similarities among accurate detection algorithms across platforms can be used to assess their 

interoperability. Although the two platforms are not perfectly interoperable, due to variability 

across time and space, they nevertheless allowed for the detection of each invasive plant species. 

This analysis of the inconsistencies across detection algorithms, however, also elucidates the 

importance of considering time and space, not only in the detection of invasive plant species, but 

also in answering ecological questions. 
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 Chapter 4: Fine-scale ecological organization contributes substantively to spectral 

variability in Virginia successional forests 

 

 

 

 

 

Abstract 

Due to the relationship between biochemical and structural plant traits and spectra, greater spectral 

variation is associated with trait and thus species variation. The positive relationship between 

spectral variation and species richness, known as the spectral variation hypothesis (SVH), is 

supported in some cases but may not be consistent across ecosystems, time, and organizational 

scales (leaf, individual canopy, and community). To further elucidate potential temporal and scale-

based exceptions to the SVH, I utilized fine-scale (3 cm) hyperspectral images collected by an 

unoccupied aerial vehicle (UAV) equipped with a Nano-Hyperspec imager during early, mid-, and 

late growing season (DOY 134, 178, and 249, respectively). Spectral signatures of eight tree and 

shrub species were extracted from pixels within images of three 1-ha fields. I examined species-

specific intra-annual trends in spectral variability at different organizational scales: within 

individual canopies, among individual canopies of the same species, among species, and among 

communities. I found that variability among species was greatest early in the growing season, 

supporting the SVH. Among-species variability in some spectral regions increased then decreased 

over the growing season, suggesting divergence in photosynthetic pigments among species earlier 

in the growing season and convergence later in the growing season. As the growing season 



 83 

progressed, both within-individual and among-individual spectral variability increasingly 

exceeded among-species variability in more spectral regions and to a greater degree, which 

suggests that more traits become increasingly variable at finer organizational scales as leaves 

mature. The contribution of among-community spectral variation suggests that some observed 

species-specific among-individual spectral variability was likely caused by spatial heterogeneity. 

Later in the growing season, the total within- and among-individual spectral variability contributed 

to over half of the total observed spectral variability in spectral regions associated with 

biochemical traits, and among-individual variability was also >30% in spectral regions associated 

with canopy structure. These results suggest that differences within individual canopies and among 

individuals of a species are greater than differences among species, particularly in biochemical 

traits, from mid-growing season and into the start of fall senescence. Therefore, species-based 

assumptions about traits in mid- to late growing season may neglect considerable variability among 

individuals within species and within individuals. As functional traits can be used to make 

generalizable predictions across organizational and spatial scales, understanding trait variation at 

different scales and times can facilitate answering major questions in community ecology to further 

the understanding of plant communities and ecosystems. Spectroscopy can be used to this end and 

will benefit from increasingly available hyperspectral airborne data and new satellite missions. 
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1. Introduction 

Hyperspectral imaging, which includes a large number of narrow, contiguous bands, 

provides detailed spectral information (Chance et al., 2016; Kaufmann et al., 2008). Canopy 

reflectance spectra are strongly related to certain biochemical and structural plant traits and 

physiological responses to the environment (Jacquemoud et al., 2009; Kattenborn et al., 2019; 

Matongera et al., 2016; Ollinger, 2011; Z. Wang et al., 2020; Yang et al., 2016), including: pigments 

(Mahlein et al., 2010; Xiao et al., 2014), such as chlorophyll (Gregory P. Asner & Martin, 2008b; 

Chance et al., 2016; Thenkabail et al., 2014), anthocyanins, and carotenoids (Blackburn, 2007); 

leaf N, P, and K (Gregory P. Asner & Martin, 2008b; Chance et al., 2016; Mutanga et al., 2004; 

Thenkabail et al., 2014); and plant water and vegetation stress (Thenkabail et al., 2014). These 

characteristics impact spectra, as they create wavelength-specific absorption or reflectance features 

(Gregory P. Asner, 1998; Grant, 1987; D. A. Roberts et al., 2004; Woolley, 1971). 

Because spectral reflectance from vegetation is a function of physiological, biochemical, 

and structural differences, spectra should differ more among distantly related groups than among 

close relatives (Cavender-Bares et al., 2016; McManus et al., 2016; Schweiger et al., 2018). The 

positive relationship between spectral variability and species diversity, known as the spectral 

variation hypothesis (SVH; Palmer et al., 2002), is grounded in functional variation, with the 

assumption that functions and therefore spectra differ most among species. Though the SVH has 

been supported by positive relationships between spectral variation and species richness, in some 

cases, it has also been refuted (Aneece & Epstein, 2017; Schmidtlein & Fassnacht, 2017). 

Exceptions to the SVH are grounded in the concept of the phenotype, which is the physical 

expression of the combination of genetic and environmental information. A spectral signature is 

one form of phenotypic expression, the “spectral phenotype.” 
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The SVH is not consistent across ecosystems (Fassnacht et al., 2022; Schmidtlein & 

Fassnacht, 2017; Schweiger et al., 2018), seasons (Fassnacht et al., 2022; Rocchini et al., 2010; 

Schmidtlein & Fassnacht, 2017), or scales (Marks, 2007; Messier et al., 2010), as both time and 

space impact the balance of variability within and among species. Phenology, which impacts traits 

and thus spectral signatures, can increase spectral variability within and among species at certain 

points in a single growing season (Fassnacht et al., 2022). Trait variability within a species is 

sometimes similar to or greater than it is among species (Auger & Shipley, 2013; Jung et al., 2010; 

Messier et al., 2010; Siefert et al., 2015), particularly in leaf chemical traits (e.g. chlorophyll and 

N), which tend to vary more within species than leaf morphological traits (e.g. thickness). Trait 

variability also becomes more pronounced at certain scales. Canopy level traits are more sensitive 

to environmental conditions and thus more variable within species due to genetic adaptation and 

phenotypic plasticity, whereas leaf level traits tend to be conserved at the species level and vary 

more across species (Marks, 2007). 

Despite the clear evidence supporting considerable variability within species as well as its 

interesting implications, comparisons among species often focus on mean functional trait values 

with little to no attention to trait variation (Albert et al., 2010; McGill et al., 2006). According to 

Messier et al. (2010), functional trait variability within and among species are often examined 

independently of each other and not across spatial and temporal scales. Examining and quantifying 

spectral variability and placing it in an ecological context can reveal which spatial and temporal 

scales are most variable and most appropriate to answer questions about plant ecology and 

biodiversity (McGill et al., 2006; Schweiger et al., 2018). The very fine spectral resolution of 

hyperspectral imagery allows for the examination of spectral regions associated with leaf-level 

biochemical and structural characteristics of terrestrial vegetation. Using this technology in concert 
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with an unoccupied aerial vehicle (UAV), which collects very fine spatial resolution images over 

a continuous area, allows for the examination of variability at multiple organizational scales: 

within individual canopies, among individuals of the same species, and among species. Because 

UAV flights can take place readily at multiple points in the growing season, phenological 

differences in these features can be detected (Castro‐Esau et al., 2006). 

Relating observed spectral variability to plant traits is less straightforward in aerial images 

than it is in a laboratory setting. Although canopy structure influences spectral signatures and is 

considered a potentially confounding factor in estimating traits based on reflectances in aerial 

imagery, architecture and biochemistry do tend to covary (Kokaly et al., 2009; Ollinger, 2011; 

Townsend et al., 2013; Wright et al., 2004). Therefore frequently observed correlations between 

traits and reflectances should not be dismissed (Townsend et al., 2013). To increase confidence in 

the ecological context in which these results would be placed, I examined trait modeling studies 

with similar attributes (e.g. hyperspectral aerial remote sensing of temperate broadleaf forests; 

Table 1). 

The range of blue-green bands from 460 nm to 540 nm and orange-red bands 600 nm to 

690 nm are associated with canopy chlorophyll in temperate forests (Hoeppner et al., 2020; J. 

Wang et al., 2016). The range of green-yellow bands from 550 nm to 600 nm and red edge bands 

from ~690 nm to ~760 nm are associated with chlorophyll, in addition to carotenoids and nitrogen 

(Hoeppner et al., 2020; Muraoka et al., 2013; J. Wang et al., 2016; Z. Wang et al., 2020; Yang et 

al., 2016). This observed relationship between chlorophyll and N (and therefore overlap in relevant 

spectral regions) is also supported by several existing vegetation indices (Daughtry et al., 2000; 

Oppelt & Mauser, 2004). The red edge is particularly useful in estimating chlorophyll content, 

because it is less affected by leaf and canopy structure than other spectral regions (Sims & Gamon, 
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2002). Whereas the visible and red edge spectral regions can be used to model vegetation pigments 

and nutrients, the NIR spectral region is associated with vegetation structure. NIR bands from 800 

nm to 850 nm are linked to canopy structure (J. Wang et al., 2016) and near 940 nm to leaf mass 

per area (LMA) (Wang et al., 2020; Table 1). 

 

Table 1. Biochemical and structural traits that have been accurately modeled in temperate, 

broadleaf forests using spectral regions in aerial remotely sensed hyperspectral imagery were used 

to place variability results seen in this study in an ecological context.  

Spectral region Linked trait General trait Reference 

460-540 nm Chlorophyll, N 
Pigments & 

nutrients 

Hoeppner et al. 2020; 

Wang et al. 2016 

550-600 nm 
Chlorophyll, 

carotenoids, N (a) 

Pigments & 

nutrients 

Hoeppner et al. 2020 

Yang et al. 2016 

Wang et al. 2016 

Wang et al. 2020 

600-690 Chlorophyll 
Pigments & 

nutrients 
Hoeppner et al. 2020 

690-760 nm 
Chlorophyll, 

carotenoids, N (b) 

Pigments & 

nutrients 

Hoeppner et al. 2020 

Yang et al. 2016 

Wang et al. 2016 

Wang et al. 2020 

Muraoka et al. 2012 

800-850 Canopy structure 
Leaf & canopy 

structure 
Wang et al. 2016 

940 
Leaf mass per area 

(LMA) 

Leaf & canopy 

structure 
Wang et al. 2020 
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As young leaves are low in chlorophyll, phenological differences among species (e.g. 

timing of leaf out and therefore variable timing in increasing chlorophyll concentrations) will 

likely result in greater differences among species in spectral regions associated with chlorophyll, 

N, and other pigments (460-540 nm, 550-600, and 690-760 nm) early in the growing season. 

Because chlorophyll concentrations can be more variable within than across species (M. L. Clark 

et al., 2005), variability at finer organizational scales (within individuals and among individuals 

within a species) can be expected to increase once leaves have matured. Schweiger et al. (2018) 

found local maxima of the coefficient of variation (CV) among 17 species aligned closely with 

chlorophyll and carotenoid absorption features, which further supports this hypothesis. Young 

leaves are also thinner, resulting in a lower near-infrared (NIR) reflectance, compared to mature, 

thicker leaves (Buschmann & Nagel, 1993; Neuwirthová et al., 2021; Rapaport et al., 2014; Slaton 

et al., 2001). Leaf aging may depress or enhance species-level differences (D. A. Roberts et al., 

2004). As with anticipated changes in variability in pigment-associated spectral regions, variability 

will likely be greatest among species early in the growing season due to variable phenology but 

may increase over the growing season at finer organizational scales. 

To elucidate temporal (phenological) patterns in spectral variability at different 

organizational scales, I examine spectral variability within individuals, among individuals within 

a species, among species, and among communities at different points in the growing season and 

answer the following questions: 

1. In what spectral regions and at what times in a growing season does variability within 

individuals and among individuals within a species exceed variability among species? 



 89 

2. How does the total spectral variability partition across organizational scales (within 

individuals, among individuals of a species, among species, and among communities) for 

all wavelengths over a single growing season? 

3. What is the biological significance of spectral variability at different organizational scales 

over the growing season? 

 

2. Materials and Methods 

2.1 Study site 

Blandy Experimental Farm (BEF), a biological field station owned by the University of 

Virginia, is in the Shenandoah Valley in northwestern Virginia (39.06oN, 78.07oW). At 190 m 

elevation, BEF has a mean annual precipitation of 975 mm, a mean annual temperature of 12oC, 

and a mean July maximum temperature of 31.5oC. It contains 80 ha of old fields in various stages 

of succession (Bowers, 1997).  

Aerial hyperspectral data collection took place over three 1-ha fields at BEF. The fields are in early 

to mid-successional stages and are approximately 20, 25, and 30 years in age (Figure 1A; green, 

blue, and purple polygons, respectively). Each field is located on low-relief topography. The early 

successional field (E; green polygon in Figure 1a, Figure 1b) contains abundant non-native 

invasive shrubs, including Elaeagnus umbellata (autumn olive) and Rhamnus davurica (Dahurian 

buckthorn) within a heterogeneous matrix of forbs, graminoids, shrubs, and trees. Commonly 

occurring tree species include Maclura pomifera (Osage orange) and Gleditsia triacanthos (honey 

locust). The 25-year-old early-to-mid-successional field (EM; blue polygon in Figure 1a, Figure 

1c) contains abundant invasive shrubs, including E. umbellata, R. davurica, Lonicera maackii 

(bush or Amur honeysuckle) within a heterogeneous matrix of forbs, grasses,  
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Figure 1. a) Locations of fields in which hyperspectral data were collected during the 2020 growing 

season. A field in early secondary succession, an intermediate early-to-mid successional field, and 

a mid-successional field, shown in green, blue, and purple, respectively. b) The early successional 

field, which is about 20 years in age and contains abundant invasive shrubs, including E. umbellata 

and R. davurica. c) The early-to-mid successional field (EM), which is about 25 years in age and 

contains abundant invasive shrubs, including E. umbellata, R. davurica, and Lonicera maackii. d) 

The mid-successional field (M), which is about 30 years in age and contains abundant invasive 

shrubs, including R. davurica, and L. maackii, along with A. altissima. 

 

(a) (b) 

(c) (d) 
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shrubs, and trees, but with more prevalent trees and shrubs than the early successional field. 

Commonly occurring tree species include M. pomifera, G. triacanthos, Juniperus virginiana 

(eastern red cedar), and Ailanthus altissima (tree of heaven). The mid-successional field (M; purple 

polygon in Figure 1a, Figure 1d) contains abundant invasive shrubs, including R. davurica and L. 

maackii, along with abundant A. altissima and Juglans nigra (black walnut) among forbs. 

 

2.2 Hyperspectral data collection and image post-processing 

Spectroscopic images were collected using a DJI Matrice 600 Pro equipped with a high-

precision GPS system (nominal geolocation accuracy of 1 m) and an imaging spectrometer (Nano-

Hyperspec, Headwall Photonics, Bolton, MA). The imaging spectrometer has a spectral range of 

400 to 1000 nm, with a spectral resolution of 2 to 3 nm and 270 spectral bands. Flight plans over 

each field were created using Universal Ground Control Software (UgCS), in which the UAV 

would fly in straight lines at a consistent height of 48 m above the ground (an average of about 42 

m above vegetation) to obtain images with 3 cm pixels (ground level, or 2.6 cm pixels on sampled 

vegetation) that could later be pieced together to form a larger image. The imaging spectrometer 

was programmed to capture images along the flight plan using HyperSpec III software (Headwall 

Photonics, Bolton, MA). 

Images were collected at three points during the 2020 growing season: early (DOY 134; 

May 13), mid (DOY 178; June 26), and late (DOY 249; September 5), midday between 10h and 

15h to reduce the impacts of bidirectional reflectance distribution function (BRDF) effects and 

under a consistent clear sky, sunny conditions. Dates of data collection were chosen to capture 

seasonal variability and phenological characteristics but after leaves of all species had emerged 

and prior to the end of season senescence. 
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Reflectance was calculated for collected spectroscopic images by adjusting for incoming 

and scattered solar radiation using a sampled dark reference at the time of flight and a gray-scale 

reference tarp with known reflectance located in the flight scene using SpectralView software. 

Terrain and perspective effects were also removed using SpectralView software with a digital 

elevation model provided by the U.S. Geological Survey, and mosaics of multiple images in single 

rows were created. Though the bidirectional data collection lines on preplanned flights had 40% 

overlap, the images did not perfectly overlap due to prevailing winds, so only every other row in 

images was sampled. 

 

2.3 Image sampling 

Spectral signatures were collected from 3-cm resolution hyperspectral images for 

individuals of eight tree and shrub species (A. altissima, R. davurica, E. umbellata, G. triacanthos, 

M. pomifera, J. nigra, L. maackii, and J. virginiana) from the three fields (E, EM, and M) where 

present (Table 2). Individuals were identified in the field using a high-precision GPS and then 

catalogued within the imagery. If a given species was present in images of a field, up to five 

individuals were selected for analysis for each of the three dates. In cases where fewer than five 

individuals were present, as many as were present were sampled. 

From each collection date, 15 well-lit and representative pixels were selected for spectral 

sampling from each individual. To ensure 15 pixels adequately captured variability, I analyzed the 

variance of sequential sample sizes up to 15 and found that variance saturates with fewer than 15 

pixels (~8-10 pixels). To ensure that interpreted spectral variability was not due to sensor noise, I 

resampled and smoothed reflectances using 5 nm, 10 nm, and 15 nm moving windows. 
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Table 2. Total number (N) of each invasive (marked with *) and non-invasive shrub or tree species 

sampled from hyperspectral images for each date (early, mid- and late growing season) across all 

three fields, where present.  

Species Growth form N 

E. umbellata * Shrub 10 

R. davurica * Shrub 13 

L. maackii  * Shrub 7 

A. altissima * Tree 10 

G. triacanthos Tree 8 

M. pomifera Tree 9 

J. nigra Tree 5 

J. virginiana Tree 9 

 

2.4 Spectral analysis and biological significance 

Absolute and relative spectral variability were quantified using the standard deviation (SD) 

and coefficient of variation (CV; standard deviation divided by mean reflectance), which were 

calculated across all wavelengths, on each of the three dates, at four scales: within individual 

canopies, among individuals of a species, among species, and among communities. Variability was 

quantified using the original reflectance dataset as well as each of the three smoothed datasets. 

Within-individual spectral variability was calculated across all wavelengths for each individual on 

each of the three dates, and then a mean was taken across individuals of each of the eight species. 

Spectral variability among individuals of each species was calculated. Last, spectral variability 

among species was calculated.  
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To determine at which times and over which spectral regions variability within canopies 

and among individuals of a species exceeded variability among species, a ratio of variability at 

finer organizational scales (within individual canopies and among individuals of the same species) 

compared to among species was calculated by dividing the CV or SD for each wavelength at each 

scale by the among-species CV or SD, using the original and three smoothed datasets. Ratios of 

spectral variability were very similar for both CV and SD ratios in the 5 nm and 10 nm smoothed 

datasets, which increased confidence in interpreting a single metric (CV or SD ratio) in a single 

smoothed dataset (5 nm or 10 nm). 

To examine the composition of spectral variability, I used linear mixed-effects models with 

random intercepts for field, species, and individual to partition the variance into four different 

levels: among the plant communities across fields, among the species, among individuals within a 

species, and among the pixels within an individual canopy. A mixed-effects model was run for 

each wavelength on each date. Linear mixed-effects models do not require balanced groups and 

are ideal for nested data such as these. 

To associate spectral variability with spectral regions and biologically meaningful traits, I 

examined the patterns in variability in key spectral regions (blue, 450 to 495 nm; green, 495 to 570 

nm; yellow-orange, 570 to 620 nm; red 620 to 690 nm; red edge 690 to 760 nm; and NIR 760 to 

950 nm) and in spectral regions found to be important in empirical studies using aerial 

hyperspectral remote sensing to model traits in temperate, broadleaf forests (Table 1). 
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3. Results 

3.1 Comparing spectral variability at finer organizational scales to among-species variability 

3.1.1 Within individuals 

 Variability within individuals exceeded variability among species increasingly as the 

growing season progressed: for more species, in more spectral regions, and to a greater extent. 

Early in the growing season (DOY 134, top panel in Figure 2), only one species (J. virginiana) 

exhibited spectral variability among individuals that exceeded spectral variability among species, 

most of which was in the yellow-orange spectral region. The maximum CV ratio (1.1) occurred at 

694 nm. During mid-growing season (DOY 178, second panel in Figure 3), all but two species (E. 

umbellata and R. davurica) exhibited greater spectral variability among individuals than among 

species, most of which was in the green and yellow-orange spectral regions, and some of which 

was in the red edge. The maximum CV ratio (1.4) occurred at 703 nm in L. maackii. In late summer 

(DOY 249, bottom panel in Figure 2), spectral variability among individuals exceeded spectral 

variability among species in all eight species. Most of the variability was in the green, yellow-

orange, and red edge spectral regions, with fewer in the red region. The maximum CV ratio (1.7) 

occurred at 707 nm in A. altissima.  
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Figure 2. Ratio of within-individual to interspecific variability, averaged by species, quantified as 

ratios of CV (standard deviation normalized by the mean) over all wavelengths, 450 to 950 nm. 

Values >1 (marked with a solid black line) indicate greater variability within individuals than 

among species for a given wavelength. Each figure contains three rows, which represent early, 

mid- and late growing season. Each curve is for a single species: A. altissima (Ai_al), G. 

triacanthos (Gl_tr), J. virginiana (Ju_vi), M. pomifera (Ma_po), E. umbellata (El_um), J. nigra 

(Ju_ni), L. maackii (Lo_ma), and R. davurica (Rh_da). To aid in digestibility and interpretability, 

ratios were calculated using smoothed reflectances from the 10 nm window, and the band at the 

bottom is colored by biologically meaningful spectral regions. See Figure S1 for more details. 
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3.1.2 Among individuals (within a species) 

Variability among individuals of a species also exceeded variability among species 

increasingly as the growing season progressed: for more species, in more spectral regions, and to 

a greater extent. Early in the growing season (DOY 134, top panel in Figure 4), only three species 

(G. triacanthos, J. virginiana, and L. maackii) had greater spectral variability among individuals 

than among species, most of which occurred in the yellow-orange spectral region. The greatest CV 

ratio (1.3) occurred at 696 nm in J. virginiana. Mid-growing season (DOY 178, second panel in 

Figure 4), five species (A. altissima, G. triacanthos, J. nigra, J. virginiana, and M. pomifera) 

exhibited greater spectral variability among individuals than among species, most of which was in 

the green, yellow-orange, and red edge spectral regions. The greatest CV ratio (2.0) occurred at 

705 nm in J. virginiana. In late summer (DOY 249, bottom panel in Figure 4), all but two species 

(E. umbellata and J. nigra) exhibited spectral variability among individuals that exceeded spectral 

variability among species, most of which was in the blue, green, yellow-orange, red, and red edge 

spectral regions, and some of which was in the NIR spectral region. The greatest CV ratio (2.8) 

occurred at 707 nm in A. altissima.  
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Figure 3. Ratio of within-species (among individuals of a species) to among-species variability, 

quantified as ratios of CV (standard deviation normalized by the mean) over all wavelengths, 450 

to 950 nm. Values >1, which is marked with a solid black line, indicate greater variability within 

individuals than among species for a given wavelength. Each figure contains three rows, which 

represent early, mid- and late growing season (DOY 134, 178, and 249 respectively). Each curve 

is for a single species: A. altissima (Ai_al), G. triacanthos (Gl_tr), J. virginiana (Ju_vi), M. 

pomifera (Ma_po), E. umbellata (El_um), J. nigra (Ju_ni), L. maackii (Lo_ma), and R. davurica 

(Rh_da). To aid in digestibility and interpretability, ratios were calculated using smoothed 

reflectances from the 10 nm window, and the band at the bottom is colored by biologically 

meaningful spectral regions. See Figure S1 and Table S1 for a summary of species with greater 

variability at finer organizational scales. 
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3.1.3 Biological significance of variable spectral regions  

Within- and among-individual variability were greatest and often exceeded among-species 

variability in spectral regions that correspond with biochemical traits, and that have been used 

widely to accurately predict chlorophyll, carotenoids, and N (Hoeppner et al., 2020; J. Wang et al., 

2016; Z. Wang et al., 2020; Yang et al., 2016). Among-individual variability within some species 

exceeded among-species variability in spectral regions associated with biochemical traits, even 

early in the growing season. As the growing season progressed, additional spectral regions 

associated with chlorophyll, carotenoids, and N also became more variable, and spectral regions 

associated with canopy structure (Wang et al. 2016) also were more variable mid- and late growing 

season among individuals. 

 

3.2 Partitioning spectral variance 

The relative contribution of the four levels of organizational scale (among plant 

communities across fields, among species, among the individuals within a species, and among the 

pixels within an individual canopy) to total variance differed over time and across wavelengths. 

Early in the growing season (DOY 134), spectral variability among species was greater than 

spectral variability among communities, among individuals of a species, and within individuals 

across all wavelengths. Variability within individuals and species contributed approximately equal 

parts of the total variance (ranging from ~15 to 25%), although variability among individuals was 

greater in green and NIR regions, whereas variability within individuals was greater in the blue 

and red edge (Figure 7, left panel). 
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Mid-growing season (DOY 178), the contribution of within-individual variability to total 

variability exceeded variability among species in yellow-orange, red, and red edge spectral regions 

(~580-645 and ~695-705 nm), with a maximum contribution of 30% to total variability 

Figure 4. Contribution of intra-individual, intraspecific, interspecific, and inter-community 

variance to total variance over all wavelengths, 450 to 950 nm. Each panel, left to right, represents 

each date. 

 

in the red edge at 700 nm. For all wavelengths, variability within individuals comprised more of 

the total variability (ranging from 20 to 30%) than variability among individuals did (ranging from 

9 to 19%) across all wavelengths. Variability among the communities also exceeded variability 

among species in the same regions, with a maximum contribution of 33% to total variability in 

yellow-orange bands at 610 nm (Figure 7, center panel). 
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Late in the growing season (DOY 249), the contribution of among-species variability was 

greatest in the red bands ~680 nm (~62% contribution to total variance), but it was exceeded by 

both finer organizational scales in some other spectral regions. Variability within individuals 

ranged from 19 to 33% of the total variability, and exceeded variability among species in green, 

yellow-orange, and red edge spectral regions (~535 to 620 and 700 to 715 nm). Variability among 

individuals ranged from 12 to 30% across all bands and exceeded variability among species in the 

same spectral regions (~535 to 605 and 700 to 710 nm), with the greatest contribution to total 

variance in the red edge at 707 nm (Figure 7, right panel). 

 

4. Discussion 

4.1 Overview 

Both within-individual and among-individual spectral variability increasingly exceeded 

among-species variability as the growing season progressed. The finer organizational scales 

(within and among individual canopies) demonstrated similar temporal trends in spectral 

variability; the number of species with greater variability at fine scales, the number of bands with 

greater variability at fine scales, and the magnitude of the variability all increased from early to 

late in the growing season. This suggests that more traits become more variable at finer 

organizational scales as leaves mature from mid- to late growing season. The spectral regions in 

which the greatest variability occurred also exhibited similar trends for both organizational scales, 

shifting from shorter wavelengths to longer wavelengths in the red edge (695 nm to 707 nm). This 

shift in maximum variability could be linked to the shift in the red edge slope, caused by 

broadening (or narrowing) of the chlorophyll absorption feature ~680 nm as the growing season 

progresses (Boochs et al., 1990; Buschmann & Nagel, 1993; T. P. Dawson & Curran, 1998). 
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The large increase in variability within individuals from early to mid-growing season in 

spectral regions associated with biochemical traits suggests that canopies become more 

heterogeneous in N and photosynthetic pigments during the first half of the growing season. 

Although among-species variability was greatest compared to variability at finer organizational 

scales early in the growing season, due to phenological differences among species, photosynthetic 

pigments and canopy structure likely become more homogeneous among species toward mid-

growing season and peak greenness and biomass. The increased spectral variability at finer 

resolutions from mid- to late growing season was partly driven by a decrease in among-species 

variability in blue and red spectral regions, suggesting species did indeed become more 

homogeneous in some traits.  

Although the two organizational scales exhibited a similar overall increase in variability, 

which species and which spectral regions exhibiting those increases varied, as did the magnitude 

of variability. Generally, among-individual spectral variability exceeded among-species variability 

in more species, in more spectral regions (including canopy structural traits), and to a greater 

degree than within-individual spectral variability did. This is a logical extension of the spectral 

phenotype; individuals across a landscape are subjected to greater differences in conditions and 

resource availability compared to within a single canopy. The CV ratios suggest that chlorophyll, 

carotenoids, and N can vary nearly twice as much (1.7) within individuals as they do among species 

and nearly three times as much (2.8) among individuals.  

Canopy structure can also vary more among individuals within a species than among 

species in mid- and late growing season, though not to the same extent as biochemical traits (CV 

ratios of ~1.1 to 1.3). These results align with Siefert et al. (2015), who found that spectra 

associated with leaf nutrient concentrations tended to vary more among individuals, while those 
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associated with morphology tended to be more stable. This pattern of greater variability in leaf 

nutrient concentrations than morphology was also found in traits themselves (Kazakou et al., 2014; 

Rozendaal et al., 2006). 

 

4.2 Species-specific patterns in variability at finer organizational scales 

Early in the growing season, interspecific differences were expected to be greatest due to 

phenological differences among species, which result in differences in the timing of chlorophyll 

concentration increases. Although this was the case for most species and most spectral regions, 

both within-individual and among-individual variability in J. virginiana exceeded among-species 

variability in yellow-orange bands by up to ~10% and 30% (CV ratios of 1.1 and 1.3). As the only 

coniferous species in the plant community, this could potentially be explained by its evergreen 

traits and therefore a lack of young leaves and differing phenology compared to the other species. 

Two additional species also exhibited slightly greater (~10%) spectral variability among 

individuals across the landscape, G. triacanthos and L. maackii. The spectral variability observed 

among G. triacanthos individuals could be due to low leaf area index (LAI), which could lead to 

spectral interference from neighboring or understory plants, especially as its leaves emerge 

relatively late and may have not fully matured by the date of data collection. Although L. maackii 

leaves emerge much earlier, interference from neighboring or overstory plants may have led to the 

slightly elevated among-individual variability.  

Mid-growing season, spectral variability within and among individuals exceeded among-

species variability in some spectral regions for a majority of the species, however, two invasive 

shrub species, E. umbellata and R. davurica, exhibited less spectral variability at both finer 

organizational scales. A third invasive shrub species, L. maackii also exhibited less spectral 
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variability among individuals (although not within individuals). As invasive plants tend to be more 

tolerant of a wide range of conditions, their similarities among individuals across the landscape 

suggest that they may respond to environmental changes less than other species will (Treurnicht 

et al., 2020). The high intraspecific variabilities of A. altissima and M. pomifera relative to 

interspecific variability suggest these individuals are more variable across a landscape. These 

results make sense in the context that leaves emerge in A. altissima and M. pomifera later than 

most other species in these communities, and there is greater heterogeneity in leaf pigments in 

young leaves. 

Late growing season, all but E. umbellata and J. nigra exhibited greater spectral variability 

within individuals than among species in spectral regions associated with biochemical traits, and 

all eight species exhibited greater variability among individuals in spectral regions associated with 

biochemical traits and structural traits. As a canopy-level trait, canopy structure is more sensitive 

to environmental conditions than leaf-level traits. The increased variability in spectral regions 

associated with canopy structure among individuals within a species is expected due to phenotypic 

plasticity (Marks, 2007).  

 

4.2 Partitioning variability among organizational scales 

When among-community variability was incorporated into the analysis (through variance 

partitioning), spectral variability among species was greater than variability at all other 

organizational scales across all wavelengths early in the growing season. This suggests that the 

slightly greater spectral variability observed among individuals within J. virginiana, G. 

triacanthos, and L. maackii had a spatial component and was caused by variability among 

communities. The contributions of variability within and among individuals to total variance were 
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approximately equal, which implies that processes at each of these scales are equally important in 

determining trait values (Messier et al., 2010). 

Despite approximately equal contributions to total variance early in the growing season, 

there were differences in magnitudes of variability across bands. Blue and red regions were more 

variable within individuals, whereas green and NIR were more variable among individuals. This 

suggests that within-individual variability was caused by differences in chlorophyll content among 

leaves within canopies, whereas variability in structure also contributed to variability among 

individuals. These results elucidate functional variation at different ecological scales, which is a 

critical component of biodiversity research (Schweiger et al., 2018). Nevertheless, the spectral 

variabilities at each of these fine organizational scales were less than that of among-species early 

in the growing season. These results of overall greater among-species variability are consistent 

with the SVH and with those of Roberts et al. (2004), who also found low spectral variance within 

species in May. 

When mid-growing season variances were partitioned across organizational scales, and 

variability among communities was also considered, variability within individuals was greater than 

variability among individuals across all wavelengths. This suggests that leaf-level traits are more 

variable than canopy-level traits overall. It also suggests that the greater variability observed within 

individual species, especially in yellow-orange bands, was driven by environmental differences 

across the landscape. Because variability among communities did not contribute to total variance 

in the NIR, the structural differences observed among individuals of a species can be assumed to 

be driven by canopy-level traits rather than spatial variability in conditions. 

Later in the growing season, within-individual and among-individual spectral variability 

contributed to over half of the total observed spectral variation in the green, yellow-orange, and 
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red edge spectral regions, which are associated with biochemical traits. Additionally, among-

individual variability was very high in the NIR spectral region, which is associated with structure. 

The contribution of variability among species was greatest in blue and red spectral regions (~60% 

of total variability) but was otherwise exceeded by variability at finer organizational scales.  

The results of greater variability in some trait-associated spectral regions are aligned with 

those of others; Jónsdóttir et al. (2022) found that intraspecific trait variability ranged from 30 to 

71% of total trait variation. Globally, intraspecific trait variation accounts for ~25% of plant 

community trait variation (Siefert et al. 2015), with greater variation seen locally (Messier et al. 

2017; Thomas et al. 2020). This makes a strong case for trait-based rather than species-based 

approaches to ecological modeling, as intra-individual and intraspecific variability in leaf chemical 

traits have implications for ecosystem functions such as primary productivity, nutrient cycling, and 

decomposition rates (Quested et al. 2007; Cornwell et al. 2008).  

 

4.3 Potential issues and future work 

Roberts et al. (2004) found that interspecific variability was driven mostly by differences 

between broadleaf and conifer species. Because the common species occurring in these studied 

plant communities only included one conifer species (J. virginiana), interspecific variability may 

be lower than in other communities. Because the interspecific variability is not small, this indicates 

that there is strong variability, even in a largely broadleaf species community. 

Spectral signatures in aerial images are subject to the influence of several factors: 

illumination and viewing geometry impact absorption, reflectance, light-scattering, and shadows. 

These factors can be minimized but not entirely avoided. Viewing geometry variation is likely not 

a serious issue in this study, as the total field of view of the sensor was only 21.1 degrees (viewing 
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zenith angle of 10.55 degrees), and the data were collected within two hours of solar noon. 

Biochemical absorption features are accentuated by photon scattering among leaves, which 

changes with crown architecture. Therefore, biochemical properties may be differentially impacted 

across species, depending on canopy structure. Because of this possible confounding factor, using 

empirical spectra-trait relationships based on aerial hyperspectral remote sensing of temperate, 

broadleaf forests was key to examining the ecological implications of the ways in which variability 

was partitioned over the growing season. Future work could further examine the crown structure, 

its impacts on viewing geometry, and subsequent spectral patterns, as leaf arrangement in canopies 

may be driving some observed variability.  

 

5. Conclusion  

The first two goals of this study were to determine the times in the growing season and 

spectral regions in which variability within and among individuals exceeded variability among 

species, serving as exceptions to the SVH. I found that among-species variability was greatest 

early in the growing season, supporting the SVH, but as the growing season progressed, both 

within-individual and among-individual spectral variability increasingly exceeded among-species 

variability in several spectral regions. 

The third goal was to assess the biological significance of spectral variability at different 

organizational scales. The number of species and number of bands with greater variability at fine 

scales, as well as the magnitude of the variability, all increased from early to late in the growing 

season, which suggests that more traits become more variable at finer organizational scales as 

leaves mature from mid- to late growing season. The large increase in variability within individuals 

from early to mid-growing season in spectral regions associated with biochemical traits suggests 
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that canopies become more heterogeneous in N and photosynthetic pigments during the first half 

of the growing season. Phenological differences among species likely drove the greater variability 

among species early in the growing season, however, photosynthetic pigments and canopy 

structure likely become more homogeneous among species toward mid-growing season and peak 

greenness and biomass. Canopy structure also varied more among individuals within a species 

than among species in mid- and late growing season, though not to the same extent as biochemical 

traits, which is in agreement with more stable morphological traits. 

Understanding intra-individual and intraspecific trait variation can facilitate answering 

major questions in community ecology (Siefert et al., 2015), in which functional traits are used to 

make generalizable predictions across organizational and spatial scales (Adler et al., 2013). These 

results support that leaf-level and canopy-level traits are sensitive to variable environmental 

conditions across a landscape for most species. This work provides an additional framework for 

trait-based functioning by examining functional variability via spectroscopy at various ecological 

scales and at different times intra-annually. Spectral variability can serve as a novel lens through 

which to examine varied species responses to environmental changes (Bolnick et al., 2003; Milla 

et al., 2009; Vellend & Geber, 2005). 

I thus provide information regarding spectral phenotypes, the combination of genetic 

information and response to the environment of the plant over the course of its lifetime. The 

spectral phenotype varies among and within individuals, within a growing season, and over longer 

time periods. By identifying the importance of within-canopy and among canopy variation in 

visible and NIR wavelengths, particularly as the growing season progresses, I further highlight the 

importance of functional traits as opposed to species-based traits for ecosystem analyses. 
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Chapter 5: Spectral variability and biodiversity across scales in an early successional plant 

community 

 

 

 

 

 

Abstract 

The spectral variation hypothesis (SVH) is a logical connection between species and 

spectral diversity, by way of trait diversity. The SVH is, however, not universally supported, as 

both phenotypic plasticity and variability inherent to remote sensing affect spectral signals. Alpha 

and beta spectral and biological diversity can clarify the applicability of the SVH and elucidate 

ecosystem dynamics, including trait and functional diversity, community stability, habitat 

heterogeneity, and invasion. Spectral diversity is rarely compared to explicit biodiversity data at 

multiple scales, but the abundantly available biodiversity and spectral data provide the opportunity 

to do so. Linking spectral and biological diversity data also would improve their interoperability 

and complementary use to fill data gaps. I found that spectral variability within plots was greater 

in biochemical traits than in structural traits, but greater in structural traits than biochemical traits 

among plots. Overall, this invaded early successional plant community did not exhibit patterns 

consistent with the SVH. Invaded plots agreed with the SVH less often than non-invaded plots did. 

The lack of agreement in invaded plots was linked to a combination of misaligned biodiversity 

metrics (e.g. higher evenness with few species or low evenness with many species) and the low 

spectral diversity that tends to be seen in invaded plots. The two non-invaded plots that did not 
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agree with the SVH appeared to exhibit phenotypic plasticity (within canopy spectral variability) 

and scale exceptions. Despite the overall lack of agreement with the SVH at this scale in this early 

successional plant community, plot-specific patterns provide context for the lack of agreement. 

These methods also provide a framework through which the SVH can be evaluated and assessed 

across times and scales to improve applications. 
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1. Introduction 

Preserving plant biodiversity is a conservation priority, as its loss decreases ecosystem 

functioning and stability (Cardinale, 2011). Biodiversity preservation requires extensive 

ecosystem monitoring across the globe to identify conservation priorities (Barnosky et al., 2011). 

Ecosystem monitoring can be done on the ground or remotely from the air; each approach has its 

own benefits and limitations. Aerial imagery can provide information with large spatial extents but 

often with resolutions greater than the size of individual plants (Pettorelli et al., 2018). Ground-

based observations can be used to detect individual plants, but the time and energy required for 

large-scale surveys makes it cost-prohibitive for large spatial extents (Kays et al., 2015; Pimm et 

al., 2015). Imaging spectroscopy or hyperspectral remote sensing has become increasingly popular 

in aerial observations of ecosystems (Féret & Asner, 2014; R. Wang & Gamon, 2019). 

Hyperspectral remote sensing provides a unique opportunity to measure plant properties and gain 

better understanding of plant communities over large areas (G. P. Asner et al., 2017; Jetz et al., 

2016). Thus, a remote sensing approach to monitor biodiversity at the global level is a promising 

avenue (Geller et al., 2020; Pereira et al., 2013; Scholes et al., 2012; Turner, 2014) 

The long-term evolutionary history of a plant species, including the historical climate and 

disturbance regimes of its environment, are preserved through the genotype, which includes 

biochemical and structural properties that shape hyperspectral signatures. For example, traits 

associated with the leaf economic spectrum (Wright et al., 2004), such as specific leaf area or foliar 

N can be estimated with reasonable accuracy using hyperspectral remote sensing (Gregory P. Asner 

& Martin, 2008b; Azadnia et al., 2023; Chance et al., 2016; Ely et al., 2019; Kothari et al., 2023; 

Mahlein et al., 2010; Mutanga et al., 2004; Serbin et al., 2014; Thenkabail et al., 2014; Xiao et al., 

2014), which allows for the differentiation between fast-growing, opportunistic plant species and 
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slower-growing, conservative and competitive plant species (Cavender-Bares et al., 2020; Díaz et 

al., 2016; Reich, 2014). The Spectral Variation Hypothesis (SVH) argues that spectral diversity is 

correlated with trait diversity and is thus also correlated with species diversity (Palmer et al., 2002). 

A slightly different framing of the SVH is that spectral heterogeneity implies a greater number of 

available ecological niches and greater species diversity (Rocchini et al., 2004). Spectral diversity 

may indicate high diversity areas (high alpha biodiversity) or heterogeneous areas (high beta 

biodiversity), which are both useful criteria in assigning ecological value (Laliberté et al., 2020). 

Although genetics shape the spectral signatures of vegetation, other factors do as well. 

Short-term environmental drivers, such as changes in resource availability or species interactions, 

can also change characteristics, which then change signatures (Laliberté et al., 2020; Z. Wang et 

al., 2020). The physical expression of the genotype through spectroscopy, shaped by 

environmental conditions, is referred to as the spectral phenotype. Phenotypic plasticity, or varying 

phenotypes for a single genotype (Bradshaw, 1965; Marais et al., 2013; Scheiner, 1993), can occur 

across many temporal and spatial scales, e.g. over a growing season, across multiple growing 

seasons, within a single canopy, across multiple biomes, and globally (Dronova et al., 2021; J. 

Wang et al., 2023). Physical factors can also affect how vegetation reflects incoming solar radiation 

and how that reflected radiation is then perceived by a sensor. Varying illumination and sensor 

viewing geometry can both affect a spectral signature. The spatial resolution (pixel size) also 

affects a spectral signature (Huelsman et al. 2024, in preparation). 

The SVH is a logical connection between species diversity and spectral diversity, by way 

of trait diversity, and it has been supported over broad regions (Bush et al., 2017; Pereira et al., 

2013; Turner, 2014). The SVH is true if alpha spectral diversity and biodiversity are correlated in 

communities or ecosystems. Phenotypic plasticity and physical characteristics of remotely sensed 
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imagery suggest that the relationship between spectral variability and biodiversity is not universal, 

and exceptions to the SVH occur (Fassnacht et al., 2022; Marks, 2007; Rocchini et al., 2010; 

Schmidtlein & Fassnacht, 2017; Schweiger et al., 2018). Exceptions could include cases where 

characteristics differ more within a species than among species (i.e. phenotypic plasticity), the 

spatial resolution is greater than the size of individual plant canopies, or if the spatial resolution is 

greater than the grain size at which biological diversity varies (i.e. physical characteristics of 

images; Marconi et al., 2022). 

Alpha and beta spectral diversity and biodiversity can inform not only our understanding 

of the applicability of the SVH but also of ecosystem dynamics (Adler et al., 2013). In plant 

communities that adhere to the SVH, high alpha spectral diversity paired with high alpha 

biodiversity suggests trait or functional diversity, species diversity, and long-term coexistence 

(Adler et al., 2013; Rocchini et al., 2021). This is a spectral extension of the classic concept of 

niche partitioning, or the variability in traits and resource use within a community that minimize 

competitive forces (Chesson, 2000). Low alpha spectral diversity paired with low alpha 

biodiversity suggests plots may be dominated by a few plant species with similar traits (Rocchini 

et al., 2021). As invasive plants tend to dominate plant communities due to their competitive traits, 

which also impact spectra, this could be a sign of invasion (Cavender-Bares et al., 2020; Matongera 

et al., 2016). In cases where spectral diversity is not correlated with biodiversity, spectral 

variability both within plots (alpha) and among plots (beta) can still indicate details about 

community assembly and ecosystem functioning (Cadotte et al., 2009; C. M. Clark et al., 2012; 

Cornwell et al., 2006; Laliberté et al., 2020). For example, high spectral diversity paired with low 

biodiversity suggests within-species variability or phenotypic plasticity. Low alpha spectral 



 114 

diversity paired with high alpha biodiversity suggests more functionally similar plant communities 

that may be less stable due to overlap in strategies (e.g. traits and resource use). 

Although the magnitudes of alpha and beta spectral diversity cannot be directly compared, 

the variability of spectral regions relative to each other within each level can be compared. Greater 

beta spectral diversity in a spectral region suggests greater heterogeneity across the landscape in 

the associated trait (Jost, 2007; Whittaker, 1972). Trait heterogeneity can be considered in the 

context of heterogeneity of abiotic landscape conditions (e.g. differences in soil moisture and 

sunlight due to slight variations in topography and aspect, which would be very slight in this case, 

as these sites at BEF are on low-relief topography) or in the context of biodiversity. 

Spectral diversity is rarely compared to explicit biodiversity data at multiple scales (Gamon 

et al., 2020; Torresani et al., 2024), but linking them in a spatially explicit way would benefit global 

conservation efforts. Biodiversity repositories (e.g. the Global Biodiversity Information Facility) 

and available aerial hyperspectral images (e.g. NASA’s upcoming Surface Biology & Geology 

satellite) could be leveraged to fill gaps due to missing or incomplete data in either dataset with an 

improved understanding of the spectral diversity-biodiversity relationship. To evaluate the SVH 

and to elucidate patterns in plant community dynamics, I pair plot-level and community-level 

biodiversity data with aerial hyperspectral imagery collected at Blandy Experimental Farm and 

answer the following questions: 

1. How do alpha, beta, and gamma biodiversity and spectral diversity compare in an early 

successional plant community? 

2. How does integrating spectral variability inform our understanding of ecosystem dynamics 

in this system? 
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3. Do patterns in alpha spectral diversity and alpha biodiversity support the SVH at this scale 

in this ecosystem? 

 

Methods 

2.1 Study site 

Aerial imagery and vegetation composition data were collected in 2021 at the ~280 ha 

biological field station Blandy Experimental Farm (BEF) biological field station in northwestern 

Virginia (39.06oN, 78.07oW). The early successional vegetation communities surveyed were last 

disturbed ~25 years prior. Communities were located on low-relief topography within ~500 m of 

each other. Invasive plant species, including Elaeagnus umbellata (autumn olive) and Rhamnus 

davurica (Dahurian buckthorn), were present within a heterogeneous matrix of native and non-

native forbs, graminoids, shrubs, and trees. Commonly occurring forb and shrub species include 

Rubus spp. and Solidago altissima (tall goldenrod). Commonly occurring tree species include 

Maclura pomifera (Osage orange) and Gleditsia triacanthos (honey locust). Plots 5 m x 5 m in 

size were randomly selected in the landscape but stratified with either high (>25% relative plot 

cover) or low (<25% relative plot cover) levels of R. davurica invasion. 

 

2.2 Data collection & post processing 

2.2.1 Aerial hyperspectral imagery 

 Aerial hyperspectral images were collected by fixed-wing aircraft by the National 

Ecological Observatory Network (NEON) Aerial Observation Platform (AOP), which collects data 

on a near-annual basis during times with > 90% maximum greenness (> DOY 150 at BEF). 

Reflectance images were corrected by NEON for atmospheric and illumination effects using the 
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Atmospheric and Topographic Correction (ATCOR) and stitched together on an orthorectified 

UTM projection with 1 m spatial resolution.  

Spectral data cubes were downloaded from NEON’s Application Programming Interface 

using the neonUtilities R package (Lunch et al., 2024) for locations that overlapped with surveyed 

vegetation plots. Quadrats slightly larger than the surveyed plot size (6 m x 6 m rather than 5 m x 

5 m) were extracted from the reflectance data cubes to provide a slight buffer for plots not oriented 

perfectly parallel to compass directions. The final dataset included reflectance data restricted to 

VNIR bands (400 to 1100 nm) for 36 pixels centered on the coordinates of each individual plot 

location. Non-vegetation and shadow pixels were removed from the images, which resulted in a 

loss of pixels in several plots due to cloud cover. Last, all pixels were examined for irregularities 

that would suggest their removal. 

Because of variable cloud cover in images, the number of well-lit vegetation pixels from 

the aerial imagery in each plot differed. To ensure that spectral diversity would not be driven by 

the number of pixels (e.g. if more pixels would automatically demonstrate greater diversity), I 

assessed the relationship between sample size and variability. I found that when randomly selecting 

pixels from plots, variability saturated at 15 pixels (out of 36 maximum). Thus, any plots with 

fewer than 15 pixels were eliminated, which removed ten and left ten plots, five of which were 

highly invaded and five of which were not. 

2.2.2 Vegetation surveys   

Vegetation surveys were completed in each plot using a point-frame method to determine 

plant species composition. The point-frame method establishes a theoretical grid over the 25 m2 

plot with vertices at every 0.5 m, for a total of 121 vertices. Every plant species touching each 

vertex was recorded, and relative frequencies of each species were calculated (Bergman, 2022).   
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2.3 Calculating diversity metrics 

2.3.1 Spectral diversity 

The spectral diversities within and among plant communities were assessed using a 

common metric for spectral diversity, the coefficient of variation (CV), which is the standard 

deviation of reflectance in each band normalized by the mean reflectance (Gholizadeh et al., 2018; 

Hall et al., 2010; Oindo et al., 2002; R. Wang et al., 2018). Variance is used synonymously with 

spectral diversity and is not only argued to be the most direct route to quantifying spectral diversity, 

as it doesn’t require a priori decisions about the appropriate number of categories to use to classify 

pixels into “spectral species,” but it also allows for comparison across regions and ecotypes 

(Laliberté et al., 2020; Figure 1).  

 

Figure 1. A theoretical diagram of alpha (A), beta (B), and gamma (C) spectral diversity. Although this demonstrates 

spectral “categories” (seen as different colors), calculating the coefficient of variation (the normalized standard 

deviation) provides a similar summary but without requiring a priori decisions about the appropriate number of 

categories to use to classify.  
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The CV was calculated for every band within plots (alpha spectral diversity) and across all 

plots (gamma spectral diversity). Beta spectral diversity was derived by dividing gamma by the 

mean alpha spectral diversity. The wavelength-specific spectral diversity metrics at each scale 

(alpha, beta, and gamma) were compared. To simplify the analysis of spectral diversity, several 

summary statistics of CV were calculated (e.g. the mean, maximum, range, and percent of bands 

with variability in the 67th  percentile or greater) for several spectral regions (e.g. across all bands, 

grouped by spectral regions 100 nm in width, and grouped by biologically meaningful band 

ranges). The band ranges selected as biologically meaningful had been found to be associated with 

vegetation traits in aerial imagery in temperate forests (Table 1). 
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Table 1. Spectral regions as ranges of bands found to predict specific traits in empirical studies 

that used aerial hyperspectral remote sensing to model traits in temperate, broadleaf forests. 

Because these spectral regions were used in Table 2 their codes are included here for reference. 

Spectral 

region 

Linked trait Code Reference 

460-540 nm Chlorophyll, N CVchlor, N (Hoeppner et al., 2020; R.  

Wang et al., 2018) 

 

550-600 nm Chlorophyll, 

carotenoids, N  

CVchlor, car, N (GY) (Hoeppner et al., 2020; J. Wang et al., 

2016; Z. Wang et al., 2020;  

Yang et al., 2016) 

 

600-690 nm Chlorophyll CVchlor (Hoeppner et al., 2020) 

 

690-760 nm Chlorophyll, 

carotenoids, N  

CVchlor, car, N (RE) (Hoeppner et al., 2020; Muraoka et 

al., 2013; J. Wang et al., 2016;  

Z. Wang et al., 2020; Yang et al., 

2016) 

 

800-850 nm Canopy structure CVcanopy structure (J. Wang et al., 2016) 

 

940 nm Leaf mass per area 

(LMA) 

CVLMA (Z. Wang et al., 2020) 
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2.3.2 Biodiversity 

 Two biodiversity metrics were calculated from the species composition data: species 

richness (Equation 1; Whittaker 1960) and Shannon diversity (Equation 2; Shannon, 1948). 

Species richness does not consider the abundance of each species, whereas Shannon’s diversity 

index incorporates both richness and evenness into one metric. The total number of species in each 

plot and across all plots, representing alpha species richness and gamma species richness, 

respectively, were directly calculated from the species composition data. The beta species richness 

was calculated by dividing the gamma by the mean alpha. Shannon diversity was also calculated 

directly for the alpha level as the negative sum of the relative frequency of each species multiplied 

by the natural log of its relative frequency within each plot. 

 

Richness:   s     (Equation 1) 

Shannon diversity:  −∑ 𝑝!	ln	(𝑝!)#
!$%     (Equation 2) 

Where s is total number of species in a plot (alpha) or in the entire landscape (gamma) 

pi is the relative frequency of the ith species in the plot (alpha) or in the entire landscape (gamma) 

 

2.4 Comparing biodiversity and spectral diversity 

 The relationship between each spectral diversity metric and biodiversity metric within each 

plot (alpha) was examined for correlation using a linear regression to assess whether the SVH is 

supported at this scale in this ecosystem. The biodiversity metrics (richness and Shannon diversity) 

were also visually compared to all single-value spectral diversity metrics described in 2.3.1 for 

each plot to determine their agreement with the theoretical positive correlation of the SVH (Figure 

2).  
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Figure 2. The theoretical positive correlation between spectral diversity and biodiversity that 

would support the SVH. Regions above the line violate the SVH assumption with low spectral 

diversity and high biodiversity, which suggest overlap in functional traits and likely resource use. 

Regions below the line violate the SVH assumption with high spectral diversity but low 

biodiversity, which suggests phenotypic plasticity at the plot level. 
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3. Results 

3.1 Overall patterns in alpha, beta, and gamma biodiversity and spectral diversity 

Across all plots, alpha (plot-level) richness ranged from 7 to 16 species, with a mean alpha 

richness of 11.9 ± 0.74 species. Gamma richness (total species across all plots) was 43, and beta 

diversity was 3.61. Across all plots, alpha (plot-level) Shannon diversity ranged from 0.85 to 1.83, 

with a mean of 1.39 ± 0.1 (Table 2). The overall mean of alpha (plot-level) CV across all bands 

(CVmean in Table 2) ranged from 0.04 to 0.14, with a mean alpha CV across all plots of 0.09 ± 0.01. 

Gamma CV averaged across all bands was 0.14, and beta CV was 1.6. The alpha and beta spectral 

variability in specific spectral regions followed similar patterns to the overall mean across all 

bands, with means of alpha spectral variability ~0.08 to 0.11, means of gamma spectral variability 

~0.12 to 0.16, and means of beta spectral variability ~1.5 to 1.7 (Table 2). 

The lowest mean alpha spectral variabilities (0.08 mean across all plots) were observed in 

spectral regions associated with chlorophyll, carotenoids, N (Hoeppner et al., 2020; Muraoka et 

al., 2013; J. Wang et al., 2016; Z. Wang et al., 2020; Yang et al., 2016) and structural traits (canopy 

structure and LMA; J. Wang et al., 2016 and Z. Wang et al., 2020), or the green-yellow, red edge, 

and NIR spectral regions. The lowest beta spectral variabilities (<1.5) were also observed in 

spectral regions associated with chlorophyll, carotenoids, and N (Hoeppner et al., 2020; J. Wang 

et al., 2016; Z. Wang et al., 2020; Yang et al., 2016) or the green-yellow spectral region. The 

greatest mean alpha spectral variabilities (0.11 mean across all plots) were observed in spectral 

regions associated with chlorophyll (Hoeppner et al., 2020), or the orange-red spectral region. The 

greatest beta spectral variabilities were observed in spectral regions associated with LMA (Z. Wang 

et al., 2020; Table 2). 
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Table 2. Alpha, beta, and gamma biodiversity and spectral diversity. Biodiversity metrics, richness 

and Shannon diversity, were calculated from species composition data, and spectral diversity 

metrics were calculated from extracted quadrats in NEON aerial imagery as average CV across 

different ranges of bands: over all bands (CVmean) and over ranges of bands found to predict 

specific traits in empirical studies (see Table 1). 

Diversity metric Alphamean Alpharange Beta Gamma 

Biodiversity 

Richness 
11.90 ± 

0.74 
[7, 16] 3.61 43 

Shannon 

diversity 
1.39 ± .10 

[0.85, 

1.83] 
--- --- 

Spectral 

diversity 

Overall CVmean 0.09 ± 0.01 
[0.04, 

0.14] 
1.6 0.14 

Biologically 

meaningful 

regions 

CVchlor, N 0.09 ± 0.01 
[0.04, 

0.15] 
1.54 0.14 

CVchlor, car, N 

(GY) 

0.08 ± 0.01 
[0.03, 

0.14] 
1.46 0.12 

CVchlor 0.11 ± 0.1 
[0.06, 

0.17] 
1.53 0.16 

CVchlor, car, N 

(RE) 
0.08 ± 0.01 

[0.04, 

0.17] 
1.60 0.13 

CVcanopy 

structure 
0.08 ± 0.2 

[0.04, 

0.19] 
1.59 0.13 

CVLMA 0.08 ± 0.2 
[0.04, 

0.18] 
1.66 0.14 
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3.1.2 Alpha, beta, and gamma spectral diversity over spectral regions 
 

Alpha and gamma spectral variability were greater in the blue and orange-red spectral 

regions than other spectral regions, and gamma spectral variability was slightly greater than alpha 

spectral variability in the red edge. Beta spectral variability was greatest in the blue, red edge, low- 

and mid-NIR spectral regions (Table 2, Figure 3).  

 

 

Figure 3. Alpha, beta, and gamma spectral diversity, calculated as the coefficient of variation (CV) 

at each level for each band.  

 

3.2 Plot-level comparisons of spectral diversity and biodiversity a semi-invaded early successional 

plant community 

There were no significant relationships between plot-level (alpha) biodiversity metrics and 

their corresponding spectral diversity metric (p > 0.05). In plot-level comparisons of spectral 

diversity and both biodiversity metrics, four of the ten plots adhered to the theoretical positive 
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relationship between spectral diversity and biodiversity suggested by the SVH (Figure 2). Three 

of those four plots were less invaded (plots 6, 7, and 8), and the other (plot 4) was invaded by the 

invasive shrubs E. umbellata and R. davurica. 

Plots that fell outside of the theoretical positive spectral diversity- biodiversity relationship 

exhibited either low spectral diversity paired with high biodiversity or high spectral diversity 

paired with low biodiversity (Figure 4). Three plots supported the SVH in only one of the two 

biodiversity metrics; plot 1, which was heavily invaded by R. davurica (78% relative cover), 

showed agreement with Shannon diversity but not richness, and plots 9 and 10, which were also 

heavily invaded by R. davurica (32% and 29% relative cover), showed agreement with richness 

but not Shannon diversity. Two plots fell beyond the positive correlation range in both biodiversity 

metrics, one of which was highly invaded (plot 2), which fell above the range, and two of which 

were not, which respectively fell above and below the range (plots 3 and 5; Table S2). 
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Figure 4. Assessment of various spectral diversity values for each plot (1 through 10) compared to 

biodiversity values calculated from field-based species composition data. A diagonal segment 

through the middle of each relationship provided an estimate of plots that fell near the theoretical 

positive relationship of the SVH and those that did not. If a majority of spectral diversity values 

fell within the positive relationship boundary for either biodiversity metric, it was considered in 

agreement with the SVH (the region with a checkmark). Plots with a majority of metrics above or 

below the line were not in agreement with the SVH (regions with an X). Additional details about 

each plot can be found in Table S2.  
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4. Discussion 

4.1 Understanding ecosystem dynamics through the lens of alpha, beta, and gamma diversity 

Spectral diversity can elucidate dynamics of this landscape. Niche partitioning suggests ecosystem 

stability. Ecosystems can exhibit niche partitioning and therefore stability in some traits and not in 

others (Adler et al., 2013). Therefore, examining the spectral diversity of each spectral region 

relative to others can suggest which traits are more stable and how traits vary across the landscape. 

The greater alpha and gamma spectral variabilities observed in the orange-red and blue regions 

compared to other regions suggest that the traits associated with those regions (e.g. chlorophyll 

absorption bands) vary most among pixels, regardless of observation at the plot-level or at the 

landscape scale. This suggests plot- and landscape-level niche partitioning in chlorophyll traits. 

Both alpha and gamma spectral variabilities were lower in the green, red edge, and NIR 

than in other spectral regions. In the red edge, alpha spectral variability was least and less than that 

of gamma spectral variability. These results suggest lower variability in traits associated with those 

regions (e.g. structure, chlorophyll, carotenoids, and N). This suggests less niche partitioning in 

accessory photosynthetic traits and structure and therefore less stability (or more interspecific 

competition) in functions associated with those traits, either within plots (at the alpha or fine-scale 

level) or among individuals in the community (at the gamma or landscape-scale level). 

Additionally, the lower alpha spectral variability compared to gamma spectral variability in the red 

edge suggests that chlorophyll, carotenoids, and N are most similar at the plot level, with the least 

niche partitioning. This suggests that local plant community compositions may continue to change 

to maximize niche partitioning both in terms of structure and accessory pigments. The similar 

spectral patterns of within-plot (alpha) and landscape-level (gamma) spectral variability provide 

context for the spatial spectral heterogeneity (beta). The greatest beta spectral variability occurred 
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in the blue, red edge, and mid-NIR. This suggests that the traits that vary most across the landscape 

are also chlorophyll-related but also include accessory pigments (e.g. carotenoids), N (blue and 

red edge), and structure (NIR). This suggests that spatial environmental heterogeneity drives 

variability in community structural traits and accessory pigments. 

The patterns in spectral variability suggest that plants within communities differ more in 

photosynthetic properties than they do in structure. Conversely, communities differ more in 

structure than they do in photosynthetic properties. If some communities are compositionally 

similar, but structurally and functionally different along the lines of pigments, N, and structure, 

that further supports the role of phenotypic plasticity in creating spectral heterogeneity at different 

scales and in different traits.  

 
4.2 Evaluating plot-level agreement between diversity metrics and the SVH 
 

More plots exhibited either high biodiversity and low spectral diversity or low biodiversity 

and high spectral diversity than plots that exhibited a positive relationship between spectral 

diversity and biodiversity, and I therefore conclude that the SVH is not supported for these 

communities. Of the ten plots surveyed, four agreed with the SVH in both biodiversity metrics, 

three agreed in one biodiversity metric, and three did not agree in either metric. The four plots in 

agreement in both biodiversity metrics had moderate spectral diversity and biodiversity, and three 

of them were not highly invaded (plots 6, 7, and 8). The fourth (plot 4) was not only heavily 

invaded (>25% cover) by R. davurica but was also heavily invaded (>25% cover) by another 

invasive shrub, E. umbellata. These plant communities demonstrated relatively high spectral and 

biodiversity, which indicates functional diversity, species diversity, and long-term coexistence, due 

to niche partitioning (Rocchini et al., 2021). 
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Three plots (plots 1, 9, and 10) adhered to the SVH in only one of the two biodiversity 

metrics. Plot 1, which was heavily invaded by R. davurica (78% relative cover), showed agreement 

between spectral diversity and Shannon diversity but not richness. The lack of evenness in this 

plot likely made richness a less appropriate and potentially misleading biodiversity metric. 

Abundance- or evenness-based measures often better alignment with spectral heterogeneity, 

because, unlike richness as a metric, they acknowledge the stronger influence of dominant species 

on the landscape relative to rarer species (Madonsela et al., 2017; Oldeland et al., 2010; Torresani 

et al., 2018; R. Wang et al., 2018; Xu et al., 2022). In the case of plot 1, 13 of the 14 species 

comprised ~22% of the relative cover and therefore the overall spectral reflectance of the plot. The 

low Shannon diversity biodiversity metric did, however, agree with the low spectral diversity for 

plot 1. The combined low alpha spectral diversity and evenness-influenced biodiversity metric 

suggest that a few plant species with similar traits dominate this plant community (Rocchini et al. 

2021), which also aligns with the expected competitive traits of invasive plants (Cavender-Bares 

et al., 2020; Matongera et al., 2016), and which is supported by the species composition of this 

plot and dominant R. davurica cover.  

Plots 9 and 10, which were also heavily invaded by R. davurica (32% and 29% relative 

cover, respectively), had low spectral diversity and showed agreement with richness (also low) but 

not Shannon diversity (greater than richness due to relative evenness). This potentially suggests 

that very even, but less diverse (and potentially invaded), plots may not have good agreement with 

the SVH, especially when traits and resource use drive spectral similarities. The species 

compositions of these plots were more even than plot 1, with R. davurica cover at ~30%, the 

second most abundant species ~20%, and the third ~18%.  
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 Three plots exhibited patterns outside of the positive correlation range in both biodiversity 

metrics. One of the plots was highly invaded (plot 2) and two were not (plots 3 and 5). Whether 

each plot fell above or below the positive correlation area did not vary by level of invasion. Plots 

2 and 3, both of which had a single functional type or species with a near-majority or majority of 

relative cover (52% relative cover of R. davurica and 44% relative graminoid cover, respectively), 

both fell above the line due to low spectral diversity but high biodiversity. The relationships 

between biodiversity and spectral diversity across communities were likely driven by different 

mechanisms.  

Plot 2, with a high invasion of R. davurica had low spectral diversity because it was invaded 

by a shrub with homogenizing impacts (Bergman et al., in preparation). Plot 3, with a near majority 

of grass cover potentially had low spectral diversity because of the size and structure of grasses, 

which may not be well-suited for meter-sized pixels. Although forest environments have illustrated 

the SVH relatively frequently, grasslands may require finer spatial resolutions for spectral diversity 

to align with biodiversity (R. Wang et al., 2018). Plot 5, which had 74% M. pomifera cover, fell 

below the line due to high spectral diversity but low species diversity. This is the only plot in this 

study where phenotypic plasticity appears to drive a violation of the SVH, and that plasticity 

appears to occur within a single tree canopy.  

 

4.3 Other considerations 

 In addition to the mechanisms causing a lack of agreement with the SVH outlined above, 

there are other factors that could make this community contradict the SVH. Because the plant 

community is characterized by a mixture of grasses, forbs, shrubs, and trees, it is vertically 

complex, which may look less complex in remote sensing data due to taller vegetation obscuring 
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or shading lower-lying plants (Conti et al., 2021). Additionally, the sampling plots used in this 

study were small and relatively near each other. Larger sampling plots, which provide a broader 

range in species and heterogeneity, improve the SVH relationship (Gholizadeh et al., 2022; Hauser 

et al., 2021; Oldeland et al., 2010; Robertson et al., 2023).  

 
4.4 Future work 

Remote sensing and aerial imagery provide a relatively uniform, robust, and affordable 

approach to repeat Earth observation (Cavender-Bares et al., 2020; Foody & Cutler, 2003; 

Nagendra, 2001; Pettorelli et al., 2014; Rocchini et al., 2010; Skidmore et al., 2021). With increases 

in computing power, cloud storage, and the availability of abundant biodiversity data, evaluating 

the relationship between spectral diversity in remotely sensed images and plant diversity in 

different ecosystems, at different scales, and across time and space is not only increasingly possible 

but also increasingly important to biodiversity conservation efforts. Linking spectral and 

biodiversity data in a spatially explicit way will support complementary uses of biodiversity and 

spectral data (e.g. gap filling across datasets) and interoperability to answer ecological questions 

about community dynamics and broader ecosystem functioning. 

 

5. Conclusion 

The primary goals of this study were to assess alpha, beta, and gamma biodiversity and 

spectral diversity in this early successional plant community and how integrating spectral 

variability informs our understanding of ecosystem dynamics in this system. I found that alpha, 

beta, and gamma biodiversity metrics indicated that 7 to 16 species were found in each plot, with 

a mean of ~12 species, and 43 species were observed at the landscape level, and a beta biodiversity 

metric of 4 for variability among plots across the landscape. These traits may or may not align with 
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species diversity and compositional differences within and among plots, but they can still provide 

information about niche partitioning at different scales. The patterns in spectral variability suggest 

that biochemical traits vary more than structural traits do within plots, whereas structural traits 

vary more than biochemical traits among them. 

The third goal was to assess how well patterns of alpha spectral diversity and biological 

diversity support the SVH at this scale in this ecosystem. Overall, this invaded early successional 

plant community did not exhibit patterns consistent with the SVH. Invaded plots agreed with the 

SVH less often than non-invaded plots did. The lack of agreement in invaded plots was linked to 

a combination of misaligned biodiversity metrics (e.g. higher evenness with few species or low 

evenness with many species) and the low spectral diversity that tends to be seen in invaded plots. 

The two non-invaded plots that did not agree with the SVH appeared to exhibit phenotypic 

plasticity (within canopy spectral variability) and scale exceptions. Despite the overall lack of 

agreement with the SVH at this scale in this early successional plant community, plot-specific 

patterns provide context for the lack of agreement. These methods also provide a framework 

through which the SVH can be evaluated and assessed across times and scales to improve 

applications. 
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Chapter 6: Conclusion 

This dissertation applies the concept of spectral variability to two practical applications: 

first, to detect invasive plant species in remotely sensed imagery, and then, to elucidate ecological 

patterns of plant traits and communities. The variability among species at different points in the 

growing season, across years, and across scales can elucidate the best times and approaches to 

detect invasive plant species for management efforts. Spectral variability within species can be 

used to better understand when and which functional traits may vary. Variability in images can also 

be used to understand plant community dynamics across time and space. 

The results in chapters 2 and 3 demonstrate that using hyperspectral imagery in concert 

with both UAV and fixed-wing aircraft can be useful in detecting and monitoring ecosystems 

invaded by A. altissima, R. davurica, and E. umbellata. In Chapter 2, detection algorithms were 

generated and applied to fine-scale UAV (drone) images from seven different dates across the 

growing season. In Chapter 3, detection algorithms were generated using both fine-scale UAV 

images from 2020 and coarser-scale fixed-wing aircraft NEON images from four different years 

(2016, 2017, 2019, and 2021), then were applied to each year of NEON images. Detection was 

most accurate when applying drone-based algorithms to drone-based images and least accurate 

when applying drone-based algorithms to NEON-based images. Both accuracy and key 

differentiating spectral features varied across the growing season and across years. 

In drone images, all three species could be accurately detected in June using blue-green, 

green-yellow, and red edge spectral regions (450 to 510, 560 to 580, and 710 to 720 nm), along 

with additional species-specific spectral regions. For times when accuracy of detection is high, 

resulting in few false positives and negatives, such as June, single classification results can be used 

independently with good results, however, the flexible sampling and multi-month nature of drone-
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based data collection has the potential to improve accuracy by combining classifications across 

times. In addition to accurate detection in June, all three species were also detectable at other points 

in the growing season: R. davurica in September, A. altissima in October, and E. umbellata on 

nearly every collection date. The lack of consistency in drone-based algorithms across the growing 

season for A. altissima and R. davurica suggests that in situ or date-specific detection algorithms 

may be more useful than a standard algorithm across the entire growing season, though a standard 

drone-based detection algorithm may be more applicable for E. umbellata detection. These results 

illustrate the usefulness of the very fine spatial resolution of drone-based imagery as well as the 

flexible sampling time that drone-based observation allows, which incorporates phenological 

features into detection algorithms. 

In NEON images, all three species could be detected with >50% user and producer 

accuracies in at least two years using both drone-based detection algorithms and NEON-based 

detection algorithms. Transforming and resampling drone images both increased the number of 

important spectral regions in detection algorithms, though neither guaranteed an increase in 

detection accuracy. Classification algorithms developed from the NEON images themselves had 

greater detection accuracy than those developed from drone images, as they eliminated temporal 

and scale differences, but spectral features that were important to detection often varied across 

years. 

Spectral features important to the accurate detection of A. altissima were consistent within 

each platform but not across platforms, which suggests that its spectral features are not universal 

across time and/or space. Spectral features key to the accurate detection of E. umbellata were 

inconsistent, which suggests that they are resolution dependent. In addition to inconsistent spectral 

features, detection of E. umbellata was the least accurate of the three species in NEON images, 
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which is in stark comparison to the 100% detection accuracy in drone-based images during mid-

growing season, further highlighting the resolution dependence of E. umbellata detection. R. 

davurica had the greatest consistency in features that allowed for its detection using either 

platform, although the features changed, which suggests at least some variability associated with 

time and space.  

These UAV- and fixed-wing aircraft-based detection methods can be extended to other 

regions, ecosystems, and species for monitoring and management efforts. The inconsistencies 

within and across approaches highlight the importance of temporal and spatial variability in 

detecting invasive plant species, even within a single site. This highlights the need for further 

exploration of the range of reflectances that are possible across all bands in reflectance profiles, 

across time (e.g. growing seasons, years) and space (e.g. ecosystems, latitudes) (Ji et al., 2024; 

Yang et al., 2016). Understanding how hyperspectral reflectances vary across a growing season 

and among seasons will also be crucial in utilizing data from satellite missions with repeat visits, 

e.g. SBG and EnMap. It also highlights the importance of context and the need for more generally 

applicable detection algorithms. The analysis of the inconsistencies across detection algorithms 

also elucidates the importance of considering time and space, not only in the detection of invasive 

plant species, but also in answering ecological questions. 

Chapters 4 and 5 demonstrate temporal, spatial, and ecological exceptions to the SVH using 

fine-scale hyperspectral imagery. Chapter 4 examines spectral variability of organizational scales 

nested within vegetation communities, comparing among-species variability to within-species and 

within-canopy variability. Chapter 5 examines spectral variability of vegetation communities, 

comparing the spectral variability among and within differentially invaded plots. Each 

demonstrated temporal, spatial, and ecological exceptions to the SVH. 
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I found that variability among species was greatest early in the growing season, supporting 

the SVH. As the growing season progressed, however, both within-individual and among-

individual spectral variability increasingly exceeded among-species variability in more spectral 

regions and to a greater degree, which suggests that more traits become increasingly variable at 

finer organizational scales as leaves mature. The contribution of among-community spectral 

variation suggests that some observed species-specific among-individual spectral variability was 

likely caused by spatial heterogeneity. Later in the growing season, the total within- and among-

individual spectral variability contributed to over half of the total observed spectral variability in 

spectral regions associated with biochemical traits, and among-individual variability was also 

>30% in spectral regions associated with canopy structure. 

The results suggest that differences within individual canopies and among individuals of a 

species are greater than differences among species, particularly in biochemical traits, from mid-

growing season and into the start of fall senescence. Therefore, species-based assumptions about 

traits in mid- to late growing season may neglect considerable variability among individuals within 

species and within individuals. As functional traits can be used to make generalizable predictions 

across organizational and spatial scales, understanding trait variation at different scales and times 

can facilitate answering major questions in community ecology to further the understanding of 

plant communities and ecosystems. Spectroscopy can be used to this end and will benefit from 

increasingly available hyperspectral airborne data and new satellite missions. 

In the fifth chapter, I found that spectral variability within plots was greater in biochemical 

traits than in structural traits, but among plots was greater in structural traits than biochemical 

traits, which suggest stability in different traits at different scales. This ecosystem did not fully 

agree with the SVH. Plot-specific patterns provide context for the mechanisms resulting in the lack 
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of agreement with the SVH: a combination of misaligned biodiversity metrics (e.g. higher 

evenness with few species or low evenness with many species), the low spectral diversity that 

tends to be seen in invaded plots, phenotypic plasticity (within canopy spectral variability) and 

scale exceptions. The methods also provide a framework through which the SVH can be evaluated 

and assessed across times and scales to improve applications. 

Together, these two chapters highlight 1) the importance of variability within species over 

space and time, 2) the importance of evenness and trait variability in using remote sensing to 

examine ecological communities, and 3) the importance of scale. The spectral phenotype is the 

combination of genetic information and response to the environment of a plant over the course of 

its lifetime, which drives within-species spectral variability. Chapters 4 and 5 demonstrate that the 

spectral phenotype varies among and within individuals, within a growing season (over time) and 

within different vegetation communities (over space). These two chapters further highlight the 

need to explore the ways in which the spectral phenotype results in a range of reflectance signatures 

for both individual species as well as vegetation communities, to better apply remotely sensed 

imagery to ecological questions. 

There is also a connection between detecting invasive plant species and these violations of 

the SVH. Although spectral signatures can vary within a species to different degrees in different 

contexts, invasive plants could still often be detected with reasonable accuracy. An additional 

analysis (see Appendix E) determined that this could be attributed to two patterns: 1) the traits that 

differ, and therefore the associated spectral regions with the greatest variability, do not necessarily 

overlap with the spectral regions that are key to detection, and 2) the spectral features that 

differentiate a species of interest from all other species are not based on the entirety of among-

species variability. 
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Remote sensing provides us with an abundance of data, which can translate to ecological 

understanding when applied correctly. By identifying the importance of within-canopy and among-

canopy variability across a growing season, within-species variability in spectra across years, and 

varying relationships between biodiversity and spectral diversity, I highlight the importance of 

considering how time and space impact the range of traits and spectra within species in the context 

of a semi-invaded mid-Atlantic successional field. This analysis can and should be extended to 

additional contexts, including additional years, species, and ecosystems to improve our 

understanding of these relationships both in management applications and in answering ecological 

questions; I provide a methodological framework to do so. 
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Appendix A: Supplemental Figures Chapter 2 

Table S1: Errors (Omission and Commission) and Accuracies (User and Producer) for each 

detection algorithm for each species of interest. 

Species of 
interest DOY Omission Commission User 

Accuracy 
Producer 
Accuracy Accuracy Classification 

Ai_al 160 100% 29% 71% 0% poor detection 
Ai_al 178 0% 34% 66% 100% good detection but sensitive 
Ai_al 249 100% 37% 63% 0% poor detection 
Ai_al 276 0% 9% 91% 100% good overall accuracy 

El_um 106 25% 16% 84% 75% good overall accuracy 
El_um 134 38% 0% 100% 63% poor detection 
El_um 160 0% 0% 100% 100% good overall accuracy 
El_um 178 0% 0% 100% 100% good overall accuracy 
El_um 249 0% 0% 100% 100% good overall accuracy 
El_um 276 13% 10% 90% 88% good overall accuracy 
El_um 309 25% 23% 77% 75% good overall accuracy 
Rh_da 106 60% 44% 56% 40% poor detection 
Rh_da 134 63% 40% 60% 38% poor detection 
Rh_da 160 13% 22% 78% 88% good overall accuracy 
Rh_da 178 25% 24% 76% 75% good overall accuracy 
Rh_da 249 13% 57% 43% 88% good detection but sensitive 
Rh_da 276 63% 50% 50% 38% poor detection 
Rh_da 309 50% 22% 78% 50% poor detection 
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Figure S1: The number of samples (pixels) kept during outlier removal. On the x-axis is the percent 

difference allowed between each pixel’s overall mean reflectance (across all wavelengths) and the 

entire canopy. The shoulder occurs around 25-30%. 
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Figure S2. A) Location of all A. altissima training pixels (purple) and all other species (grey) in 

component space in PLS-DA for DOY 276. B) Shown below the x-axis is Component 1, and C) 

beside the y-axis are the loadings for each wavelength in Component 2.   
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Figure S3. A) Location of all E. umbellata training pixels (light green) and all other species (grey) 

in component space in PLS-DA for June 26 (DOY 178). B) Shown below the x-axis is Component 

1, and C) beside the y-axis are the loadings for each wavelength in Component 2.  
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Figure S4. A) Location of all R. davurica training pixels (black) and all other species (grey) in 

component space in PLS-DA for June 26 (DOY 178). B) Shown below the x-axis is Component 

1, and C) beside the y-axis are the loadings for each wavelength in Component 2.   
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Appendix B: Supplemental Figures Chapter 3 
 
Table S1: Classification accuracy results as user accuracy (UA) and producer accuracy (PA) for 

detection of each species of interest (A. altissima, E. umbellata, and R. davurica) in NEON images 

from 2016, 2017, 2019, and 2021 (listed in the “Testing (NEON)” column) using either fine- or 

coarser-resolution hyperspectral drone imagery (listed in the “Training (drone)” column as C for 

coarse or F for fine-resolution). Reflectance data were either transformed (“T” in the 

“Transformed” column) or untransformed (“NT” in the “Trans” column). The most accurate 

strictness level is also reported (“L+” is most lenient, “L” is moderately lenient, “S” is strict, and 

“S +” is most strict). 

 

Species of 

interest 

Testing 

(NEON) 

Training 

(drone) 
Trans 

Most accurate 

strictness level 
UA PA 

A. altissima 2016 C NT L + 52% 57% 

A. altissima 2017 C NT L + 56% 60% 

A. altissima 2017 C T S 53% 60% 

A. altissima 2021 F T L + 58% 100% 

E. umbellata 2017 F T S + 51% 86% 

E. umbellata 2021 F NT S + 59% 71% 

R. davurica 2017 C NT L 62% 60% 

R. davurica 2019 F NT L 65% 67% 

R. davurica 2019 F NT S 54% 67% 

R. davurica 2019 F T S 73% 67% 

R. davurica 2019 F T S + 88% 67% 

R. davurica 2019 C NT S + 54% 67% 
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Table S2: Classification accuracy results as user accuracy (UA) and producer accuracy (PA) for 

detection of each species of interest (A. altissima, E. umbellata, and R. davurica) in NEON images 

from 2016, 2017, 2019, and 2021 using that year’s images (listed in the “Testing & Training 

(NEON)” column). Reflectance data were either transformed (“T” in the “Transformed” column) 

or untransformed (“NT” in the “Transformed” column). The most accurate strictness level is also 

reported (“L+” is most lenient, “L” is moderately lenient, “S” is strict, and “S +” is most strict). 

Species of 
interest 

Testing & Training 
(NEON) Transformed 

Most 
accurate 
strictness 

level 

UA PA 

A. altissima 2017 NT L 69% 75% 
A. altissima 2017 NT L + 51% 75% 
A. altissima 2017 T L 69% 100% 
A. altissima 2017 T L + 63% 100% 
A. altissima 2019 NT S 56% 60% 
A. altissima 2019 NT S + 69% 60% 
A. altissima 2019 T L 67% 80% 
A. altissima 2019 T S 93% 60% 
A. altissima 2019 T L + 53% 100% 
A. altissima 2021 T L 78% 100% 
A. altissima 2021 T S 97% 100% 
A. altissima 2021 T L + 78% 100% 
A. altissima 2021 T S + 97% 100% 
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Species of 
interest 

Testing & Training 
(NEON) Transformed 

Most 
accurate 
strictness 

level 

UA PA 

E. umbellata 2016 NT S 73% 67% 
E. umbellata 2016 NT S + 81% 67% 
E. umbellata 2016 T L 53% 80% 
E. umbellata 2016 T S 74% 80% 
E. umbellata 2016 T S + 82% 60% 
E. umbellata 2017 NT L 58% 80% 
E. umbellata 2017 NT S 68% 60% 
E. umbellata 2017 NT S + 79% 60% 
E. umbellata 2017 T L 56% 67% 
E. umbellata 2017 T S 67% 67% 
E. umbellata 2017 T S + 83% 67% 
R. davurica 2017 NT S 63% 75% 
R. davurica 2017 NT S + 80% 75% 
R. davurica 2017 T L 64% 75% 
R. davurica 2017 T S 68% 75% 
R. davurica 2017 T S + 85% 75% 
R. davurica 2019 NT L 58% 100% 
R. davurica 2019 NT S 79% 100% 
R. davurica 2019 NT S + 89% 100% 
R. davurica 2019 T L 67% 100% 
R. davurica 2019 T S 65% 100% 
R. davurica 2019 T L + 57% 100% 
R. davurica 2019 T S + 80% 100% 
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Appendix C: Supplemental Figures Chapter 4 

 

Figure S1. CV at each organizational scale for each species. These values were presented in the 

body of the manuscript as a ratio of the finer-scale variability compared to among-species 

variability in each band. 
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Table S1. Summary of variability at each finer organizational scale (“scale”, within and among 

individuals of a species), compared to among-species variability for each day (“DOY”): which 

species had ratios > 1 (“Species with ratio > 1”). Then statistics about the greatest CV ratio: which 

species, band, and the magnitude (“Maximum CV ratio: Species (band), value”) 

scale DOY Species with ratio > 1 
Maximum CV ratio: 

Species (band), value 

within individuals 134 Ju_vi  Ju_vi (695 nm), 1.1 

within individuals 178 Ai_al, Ju_ni, Lo_ma, Ma_po, Gl_tr, Ju_vi Lo_ma (703 nm), 1.4 

within individuals 249 all Lo_ma (707 nm), 1.7 

among individuals 134 Gl_tr, Ju_vi, Lo_ma Ju_vi (697 nm), 1.3 

among individuals 178 Ai_al, Gl_tr, Ju_ni, Ju_vi, Ma_po Ju_vi (705 nm), 2.0 

among individuals 249 Ju_vi, Ai_al, Gl_tr, Lo_ma, Ma_po, Rh_da Ai_al (707 nm), 2.8 
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Appendix D: Supplemental Figures Chapter 5 

Table 1S. Alpha, beta, and gamma biodiversity and spectral diversity. Biodiversity metrics, richness and Shannon 

diversity, were calculated from species composition data, and spectral diversity metrics were calculated from extracted 

quadrats in NEON aerial imagery as average CV across all bands in 100 nm-wide spectral regions. 

Diversity metric Alphamean Alpharange Beta Gamma 

Biodiversity 

Richness 11.90 ± 0.74 [7, 16] 3.61 43 

Shannon 

diversity 
1.39 ± .10 [0.85, 1.83] 0.30 0.4 

Spectral diversity 

 

CVblue 0.10 ± 0.01 [0.04, 0.16] 1.62 0.16 

CVgreen-yellow 0.08 ± 0.01 [0.03, 0.14] 1.47 0.12 

CVorange-red 0.11 ± 0.01 [0.06, 0.17] 1.53 0.16 

CVred edge 0.08 ± 0.02 [0.04, 0.19] 1.59 0.13 

CVlow NIR 0.08 ± 0.02 [0.04, 0.19] 1.59 0.13 

CVmid NIR 0.08 ± 0.02 [0.03, 0.18] 1.62 0.13 

CVhigh NIR 0.08 ± 0.01 [0.03 0.17] 1.56 0.12 
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Table S2: Plot-level species composition details for each plot, (“Plot”, “Invasion level,” which is how invaded the plot 

is by R. davurica and E. umbellata, and “Top species (relative cover),” the most abundantly sampled species and its 

relative number of hits, which translates approximately to relative cover for use with the Shannon diversity index. The 

“Spectral diversity” reports the single metric of mean CV across all VNIR bands (“Overall CVmean”). The Richness 

and Shannon diversity indices are provided, along with an “X” if the plot’s spectral diversity values did not fall near 

the positive relationship line and instead fell above or below it, or a checkmark if the plot did fall on the positive 

relationship line.  

Plot details 
Spectral 
diversity 

Biodiversity metrics and SVH 
agreement 

Plot 
Invasion 
level 

Top species (relative 
cover) 

Overall 
CVmean 

Richness 
Shannon 
diversity 

1 high R. davurica (78%) 0.05 
14 

û 

0.85 

ü 

2 high R. davurica (52%) 0.05 
12 

û 

1.62 

û 

3 low graminoid spp (44%) 0.04 
12 

û 

1.33 

û 

4 high E. umbellata (34%) 0.09 
13 

ü 

1.30 

ü 

5 low M. pomifera (74%) 0.16 
7 

û 

0.90 

û 

6 low Rubus spp. (43%) 0.07 
12 

ü 

1.37 

ü 

7 low Rubus spp. (50%) 0.13 
16 

ü 

1.65 

ü 

8 low Rubus spp. (56%) 0.13 
11 

ü 

1.32 

ü 

9 high R. davurica (32%) 0.09 
11 

ü 

1.71 

û 

10 high R.davurica (29%) 0.04 
11 

ü 

1.83 

û 
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Appendix E: Spectral variability in fine-scale drone-based imaging spectroscopy does not 

impede detection of target invasive plant species  

This is a published manuscript in a special issue of Frontiers in Remote Sensing: Women in Remote 

Sensing and was a preliminary study for Chapter 2. 

 

 

Abstract:  

Land managers are making concerted efforts to control the spread of invasive plants, a task that 

demands extensive ecosystem monitoring, for which unoccupied aerial vehicles (UAVs or drones) 

are becoming increasingly popular. UAV imagery has high spatial resolution, which may positively 

or negatively affect plant species differentiation. We assessed this impact on detection of invasive 

plant species Ailanthus altissima (tree of heaven) and Elaeagnus umbellata (autumn olive) using 

fine-resolution images collected in northwestern Virginia in June 2020 by a UAV with a Headwall 

Hyperspec visible and near-infrared hyperspectral imager. Though E. umbellata had greater 

intraspecific relative to interspecific variability than A. altissima, the classification accuracy was 

greater for E. umbellata (95%) than for A. altissima (66%). This suggests that differences between 

species of interest and others are not necessarily obscured by intraspecific variability. Therefore, 

the benefits of UAV-based spectroscopy for species identification outweigh potential variability in 

fine resolution imagery. 
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1. Introduction 

Globally, invasive plants pose significant threats to natural ecosystems (Gurevitch & 

Padilla, 2004) and biodiversity (Gaertner et al., 2009; Kimothi & Dasari, 2010; Peerbhay et al., 

2016). Across the state of Virginia, invasive, non-native plants are radically altering natural 

environments by inhibiting the growth of native species upon which native wildlife and insects 

depend (Miller et al., 2013). These widespread changes in species composition also have broader 

impacts on soil chemistry and forest canopies, with effects on dynamics of carbon, nutrients, water, 

and energy (Liao et al., 2008; Lovett et al., 2016). 

Ailanthus altissima (tree of heaven) is a notably widespread and harmful invasive tree not 

only in Virginia but across the U.S. (Burkholder, 2010). It tends to impact the soil chemistry and 

species composition of ecosystems in which it is present by: increasing nutrient cycling rates; 

increasing soil C, N, K, and Mg; and encouraging the encroachment of other plant species that 

thrive in high nutrient environments (Gómez-Aparicio & Canham, 2008). Elaeagnus umbellata 

(autumn olive) is a common invasive shrub; as of 2017, it was found on 39,000 ha in the U.S. 

(Oliphant et al., 2017). It has a relationship with N-fixing endosymbionts and affects nitrifying 

(ammonium-oxidizing) microorganisms (Malinich et al., 2017; Naumann et al., 2010), and 

therefore is especially competitive in disturbed areas with N-poor soils (Malinich et al., 2017). In 

addition to its tolerance of nutrient-poor conditions, E. umbellata is also drought resistant and able 

to survive in a wide range of soil moisture conditions (Malinich et al., 2017; Naumann et al., 2010). 

Last, it can outcompete native plants after establishment due to its dense shading (Oliphant et al., 

2017). 

Land managers are making concerted efforts to control the spread of invasive plant species, 

a task that demands extensive ecosystem monitoring (Miller et al., 2013). Traditional approaches 
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to ecosystem observation and monitoring are satellite-based and ground-based. Each approach, 

however, has caveats. Satellite imagery covers large areas but cannot provide fine-scale details, 

whereas ground surveying, despite its ability to provide fine-scale details, is labor intensive, and 

is challenging for surveying broad areas. Unoccupied aerial vehicles (UAVs) provide data on an 

intermediate scale, with much higher spatial resolution than satellite data and with more spatial 

coverage than ground surveys (Alvarez-Vanhard et al., 2021). As UAVs merge the benefits of more 

traditional satellite-based and ground-based monitoring, they are becoming an increasingly 

popular means to observe ecosystems, including invasive plant species monitoring (Sun & 

Scanlon, 2019). 

Whereas UAVs are becoming increasingly popular as a vehicle for invasive plant species 

monitoring, spectroscopy has been and continues to be used for the remote sensing of plant and 

ecosystem observation. Spectroscopy, which includes a large number of narrow, contiguous bands, 

provides detailed spectral information (Chance et al., 2016; Kaufmann et al., 2008), which is 

influenced by differences in biophysical and biochemical characteristics of plants (Matongera et 

al., 2016; Z. Wang et al., 2020; Yang et al., 2016), including: pigments (Mahlein et al., 2010; Xiao 

et al., 2014), such as chlorophyll (Gregory P. Asner & Martin, 2008b; Chance et al., 2016; 

Thenkabail et al., 2014), anthocyanins, and carotenoids (Blackburn, 2007); plant water and 

vegetation stress (Thenkabail et al., 2014); and leaf N, P, and K (Gregory P. Asner & Martin, 2008b; 

Chance et al., 2016; Mutanga et al., 2004; Thenkabail et al., 2014). Thus, spectroscopic data, which 

serve as an indication of plant chemical and structural properties, vary within and across 

ecosystems (Martin & Aber, 1997; Ustin et al., 2004). 

Spectra are strongly related to certain biochemical and structural plant traits (Jacquemoud 

et al. 2009; Kattenborn et al. 2019; Ollinger 2010). Generally, greater spectral variation is 
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associated with species or trait variation (Palmer et al., 2002).  Certain wavelengths, such as those 

associated with upper-canopy pigments, water, and nitrogen, can be analyzed to differentiate 

among species. Intraspecific (within species) trait variability, however, is sometimes similar to or 

even greater than interspecific (among species) variation (Jung et al. 2010; Messier et al. 2010; 

Leps et al. 2011; Auger & Shipley 2013). 

Though imaging spectroscopy has been previously used to identify individual plant species 

(Mishra et al., 2017), particularly invasive species (Aneece & Epstein, 2017; Chance et al., 2016; 

Kganyago et al., 2017; Skowronek et al., 2017), using spectroscopic sensors in concert with UAVs 

is a relatively new application for these technologies. Whereas a few UAV-based studies have been 

successful in identifying individual plant species, this has been accomplished in large 

monocultures where the target plant is easily distinguished from the surrounding vegetation 

(Huang & Asner, 2009).   

Additionally, UAV imagery has much finer spatial resolution than satellites. It is not 

known, however, whether the very fine spatial resolution of data provided by UAVs is beneficial 

or detrimental to the process of differentiation. Smaller pixel size overcomes the challenge of 

averaged spectral properties of large pixel sizes over heterogeneous landscapes (Underwood et al., 

2007). Peña et al. (2013), for example, found that increased resolution from 2.4 m to 1.2 m 

increased the differentiability of tree species by 25%. Similarly, Roberts et al. (2004) found that 

plant species were least distinct at the stand scale and most distinct at the branch scale, a scale 

similar to that of Peña et al. (2013). Detection of invasive plant species is likely improved by the 

fine spatial resolution that a UAV can achieve, as it does not require large and homogeneous 

infestation stands. With very fine spatial resolution, however, spectral variation among pixels will 

be greater than with coarser spatial resolution, which yields a smoothing effect of extreme values 
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(Palmer 2000, 2002). It is expected, then, that spectral variation will be greater with decreasing 

spatial resolution. It is essential to understand the mechanisms that allow for the detection of target 

invasive plant species within these fine-resolution images. 

To explore the fundamental questions of whether variability caused by fine-resolution 

spectroscopy enhances or impedes the ability to differentiate plant species, we collected images 

during the 2020 growing season from forest canopies in northwestern Virginia at the Blandy 

Experimental Farm (BEF), where invasive species are present and common. We address the 

following questions: 

1. Over which wavelengths do intra-individual and intraspecific variability of target invasive 

plant species exceed interspecific variability? 

2. Can the spectral signal from individual pixels within a tree crown be used to effectively 

detect target invasive plant species in an image? 

3. How much does intra-individual and intraspecific variability of target invasive plant 

species impede the ability to differentiate among species? 

 

2. Methods 

2.1 Study Site 

Blandy Experimental Farm (BEF), a biological field station owned by the University of 

Virginia, is located in the Shenandoah Valley in northwestern Virginia (39.06oN, 78.07oW). At 190 

m elevation, BEF has a mean annual precipitation of 975 mm, a mean annual temperature of 12oC, 

and a mean July high temperature of 31.5oC. It contains 80 ha of old fields in various stages of 

succession (Bowers, 1997).  
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Aerial spectroscopic data collection took place over three 1-ha fields at BEF, based on their 

abundance of the invasive plant species of interest, A. altissima and E. umbellata, along with 

several other trees, shrubs, forbs, and grasses. The fields are in early- to mid-successional stages 

and are approximately 20, 25, and 30 years in age. Each field is located on low-relief topography.  

 

2.2 Data collection and image post-processing 

Spectroscopic images were collected using a DJI Matrice 600 Pro drone equipped with a 

high-precision GPS system and an imaging spectrometer (Nano-Hyperspec, Headwall Photonics, 

Bolton, MA). The imaging spectrometer has a spectral range of 400 to 1000 nm (in the visible and 

NIR portions of the electromagnetic spectrum), with a spectral resolution of 2 to 3 nm over 270 

spectral bands. Flight plans over each field were created using Universal Ground Control Software  

(UgCS), in which the UAV would fly in straight lines at a consistent height of 48 m above the 

ground to obtain images with 3 cm pixels. The imaging spectrometer was programmed to capture 

images along the flight plan using HyperSpec III software (Headwall Photonics, Bolton, MA).  

Images were collected in the middle of the growing season in late June (DOY 178), midday 

between 10h and 15h to reduce bidirectional reflectance distribution function (BRDF) effects and 

under consistent sky conditions. This date of collection was chosen for its proximity to when the 

National Ecological Observatory Network (NEON) collects spectroscopic images using a fixed-

wing aircraft with coarser resolution (approximately 1 m resolution, compared to 0.03 m 

resolution). Collected spectroscopic images were adjusted for incoming and scattered solar 

radiation using a sampled dark reference at the time of flight and a grey scale reference tarp with 

known reflectance located in the flight scene, respectively. Using HyperSpec III software, terrain 
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and perspective effects were removed with a 1-m digital elevation model provided by the US 

Geological Survey, and a mosaic of multiple images was created. 

 

2.3 Image sampling 

Individuals of 16 tree and shrub species and plant types (A. altissima, Celastrus 

orbiculatus, E. umbellata, Gleditsia triacanthos, Galium verum, Maclura pomifera, Juglans nigra, 

Juniperus virginiana, Lonicera japonica, Lonicera maackii, Pinus virginiana, Rhamnus davurica, 

Rubus sp., Solidago altissima, Symphoricarpos orbiculatus, and graminoids) were identified in 

each of the three fields (E, EM, and M) using a high-precision GPS and used to catalogue 

individuals within imagery. If a given species was present in images of a field, up to eight 

individuals were selected for analysis. In cases where fewer than eight individuals were present, 

as many as were present were sampled. 

Within the images, 15 well-lit and representative pixels were selected for spectral sampling 

from each individual. To remove outliers, a mean was taken across all wavelengths for each 

reflectance spectrum of a pixel, and a mean was calculated in a similar fashion for all 15 pixels 

from each individual. Any pixel within an individual that differed more than 25% from the mean 

of the individual was removed from the dataset. This removed approximately 1% of pixels from 

observation. 

 

2.4 Assessing variability due to fine-scale images 

Both relative and absolute intraspecific (among individuals within a species) spectral 

variability were calculated. Relative variability was determined using the coefficient of variation 

(CV), which compares the variability among the means of each individual to the grand mean of 
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the species. Absolute variability was determined using standard deviation (SD). CV and SD were 

calculated across all wavelengths for each species. Interspecific (among species) spectral 

variability was also quantified using CV and SD for comparison to intraspecific variability. 

To differentiate A. altissima and E. umbellata, individuals from Fields E and M were used 

to train an algorithm with Partial Least Squares Discriminant Analysis (PLS-DA) using the pls R 

package (Liland et al., 2022). To create an algorithm to detect A. altissima, pixels known to be 

species other than A. altissima were recoded into “other” and were separated from A. altissima. 

The same process was followed for E. umbellata. Once an algorithm was established using 

reflectance at each wavelength to separate A. altissima and E. umbellata pixels in the component 

space from other species, it was applied to a testing dataset using Field EM, to test the effectiveness 

of each algorithm. The algorithms to detect A. altissima and E. umbellata with PLS-DA on the 

training data were applied to each pixel in the testing dataset. Because the pls R package applies 

the PLS-DA algorithm to each pixel in both components, only pixels categorized as the species of 

interest in both components were classified as the species of interest, while pixels categorized as 

the species of interest in only one component were not. 

Then the percentage of pixels within each individual tree or shrub was calculated for each 

class, and if over half the pixels were classified as the species of interest, the individual was 

classified as the species of interest. If fewer than half the pixels were classified as the species of 

interest, the individual was classified as other species. This was done for all individuals using each 

algorithm to detect both A. altissima and E. umbellata. Following classification, omission error 

(false negatives), commission error (false positives), overall accuracy, and Matthew’s Correlation 

Coefficient (MCC; Equation 1) were calculated. MCC uses the balance of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) and can range from -1 to 1, where  
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-1 is entirely incorrect classification and 1 is entirely correct classification. An MCC value of 0 

represents classification due to chance. 

('(∗'*),(-(∗-*)
.('(/-()∗('(/-*)∗('*/-()∗('*/-*)

    (Equation 1) 

 

3. Results 

3.1 Intra-individual and intraspecific variability relative to interspecific variability 

The CV of intra-individual variability exceeded the CV of interspecific variability at 454 

nm, 514 to 663 nm and 694 to 714 nm in A. altissima, with the greatest ratio of intra-individual to 

interspecific variability of 1.42 occurring at 701 nm. The SD of intra-individual variability of E. 

umbellata did not exceed the SD of interspecific variability (Figure 1A). The SD of intra-individual 

variability exceeded the SD of interspecific variability in A. altissima at 530 nm, 570 nm, 574 nm, 

583 to 645 nm, 696 to 714 nm, and 940 nm and in E. umbellata from 450 to 530 nm and 585 to 

705 nm. The greatest ratio of intra-individual to interspecific variability of 1.18 in A. altissima 

occurred at 703 nm and at 459 nm with a ratio of 1.35 in E. umbellata (Figure 1B). 

The CV of intraspecific variability exceeded interspecific variability in A. altissima from 

527 to 641 nm and 699 to 719 nm and in E. umbellata from 516 to 521 nm, 603 to 667 nm, and 

690 to 703 nm. The greatest ratio of intraspecific to interspecific variability of 1.29 in A. altissima 

occurred at 703 nm and 1.29 in E. umbellata at 696 nm (Figure 2A). The SD of intraspecific 

variability in A. altissima exceeded the SD of interspecific variability at 603 nm, 607 nm, and from 

701 to 719 nm and in E. umbellata from 450 to 530 nm and 585 to 705 nm. The greatest ratio of 

intraspecific to interspecific variability of 1.16 in A. altissima occurred at 707 nm and 2.04 in E. 

umbellata at 690 nm (Figure 2B).  
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Figure 1. Ratio of intra-individual (within individuals, averaged for a single species) to 

interspecific (among species) coefficient of variation (CV; the variation normalized by mean, B) 

and standard deviation (SD, B) across all wavelengths. Spectra are split into visible, red edge, and 

near-infrared regions. Ratio values over 1 indicate variability that is greater on average within 

individuals of a species than among species. 

 

Figure 2. Ratio of intraspecific (within individuals, averaged for a single species) to interspecific 

(among species) coefficient of variation (CV; the variation normalized by mean, B) and standard 

deviation (SD, B) across all wavelengths. Spectra are split into visible, red edge, and near-infrared 

regions. Ratio values over 1 indicate variability that is greater on average among individuals within 

a species than among species. 
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3.2 Detection using pixel spectra 

The two components of the PLS-DA used to differentiate A. altissima pixels from all other 

species explained a total of 81% of variability in the training data (36% in component 1, and 45% 

in component 2). A. altissima separated most from other species in component 1 and overlapped 

considerably in the component space (Figure 3A). Wavelengths in the NIR region (763-935 nm) 

loaded heavily in component 1 (Figure 3B), and wavelengths in the green to yellow spectral region 

(525-590 nm) loaded heavily in component 2, with the greatest loading values occurring around 

540-550 nm (Figure 3C). The two components of the PLS-DA to differentiate E. umbellata pixels 

from all other species explained a total of 72% of variability in the training data (46% in component 

1, and 26% in component 2). Unlike A. altissima, which separated most in component 1, E. 

umbellata separated from other species in both components and overlapped much less in the 

component space (Figure 4A). Wavelengths in the blue to green spectral regions (450-510 nm) 

loaded heavily in component 1 in the negative direction, with a maximum magnitude occurring 

around 480 nm (Figure 4B). Wavelengths in the red edge region (705-725 nm) loaded most heavily 

in component 2 (Figure 4C).  

 

 

  



 191 

Figure 3. A) Location of all A. altissima training pixels (purple) and all other species (grey) in 

component space. B) Shown below the x-axis is Component 1, and C) beside the y-axis are the 

loadings for each wavelength in Component 2. 
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Figure 4. A) Location of all E. umbellata training pixels (light green) and all other species (grey) 

in component space. B) Shown below the x-axis is Component 1, and C) beside the y-axis are the 

loadings for each wavelength in Component 2. 

 

Applying the algorithm to the test field to detect A. altissima provided an overall accuracy 

of 66%, with all 3 A. altissima individuals (5% of all individuals) falsely classified as not A. 

altissima and 17 individuals (29% of individuals) falsely classified as A. altissima. Of the 17 

individuals incorrectly classified as A. altissima, 5 were Lonicera maackii, an invasive shrub, and 

3 were Maclura pomifera and Rhamnus davurica. Overall accuracy to detect E. umbellata was 
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95%, with 7 out of 8 individuals correctly classified as E. umbellata and 2 individuals falsely 

classified as E. umbellata (Table 1).  

 

Table 1. Accuracy of the algorithm to detect A. altissima and E. umbellata in a test field. 

Individuals were classified based on the classification in each component. True positives and 

negatives and false positives and negatives are given as number of individuals out of 59 total 

individuals. 

 

3.3 Variability and differentiation 

Wavelengths in the visible spectral region with a ratio of relative intra-individual to 

interspecific variability (CV) greater than 1 also loaded heavily in component 2 in the PLS-DA to 

separate A. altissima from other species in discriminant analysis (Figure 5A). Wavelengths in the 

visible and red edge spectral regions with a ratio of absolute intra-individual to interspecific 

variability (SD) greater than 1 also loaded heavily in component 1 to separate E. umbellata from 

other species in discriminant analysis (Figure 5B). 

 
True 

positive 

True 

negative 

Omission error 

(false negative) 

Commission 

error  

(false positive) 

Overall 

Accuracy 

(%) 

Matthew’s 

Correlation 

Coefficient 

A. altissima 0 39 3 17 66% -0.15 

E. umbellata 7 49 1 2 95% 0.96 
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Figure 5. Magnitude of loading values for a given wavelength plotted against the ratio of relative 

and absolute intra-individual to interspecific variability, given as CV (A) and SD (B), respectively, 

for that wavelength. Component 1 and component 2 are shown as circles and triangles, 

respectively, and A. altissima and E. umbellata are purple and green, respectively. Wavelengths 

that both load heavily and have high intra-individual variability relative to interspecific variability 

are shaded in yellow. 

 

Wavelengths in the visible spectral region with a ratio of relative intraspecific to 

interspecific variability (CV) greater than 1 also loaded heavily in component 2 to separate A. 

altissima from other species in discriminant analysis (Figure 6A). Wavelengths in the visible and 

red edge spectral regions with ratios of relative and absolute intraspecific to interspecific 

variability (CV and SD, respectively) greater than 1 also loaded heavily in component 1 to separate 

E. umbellata from other species in discriminant analysis (Figure 6B). 
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Figure 6. Magnitude of loading values for a given wavelength plotted against the ratio of relative 

and absolute intra-individual to interspecific variability, given as CV (A) and SD (B), respectively, 

for that wavelength. Component 1 and component 2 are shown as circles and triangles, 

respectively, and A. altissima and E. umbellata are purple and green, respectively. Wavelengths 

that both load heavily and have high intra-individual variability relative to interspecific variability 

are shaded in yellow. 

 

4. Discussion 

Regions in which both relative and absolute intra-individual variability exceed interspecific 

variability are of interest, as they may hinder differentiation of species. In the case of intra-

individual variability in A. altissima, those wavelengths would be: 530 nm, 570 nm, 574 nm, 583 

to 645 nm, 696 to 714 nm. As relative intra-individual variability of E. umbellata did not exceed 

interspecific variability, its greater absolute variability relative to interspecific variability can be 

attributed to its high reflectance in blue and red spectral regions relative to other species. 

Wavelengths with both relative and absolute intraspecific variability that exceeded interspecific 

variability were 603 nm, 607 nm, and 701 to 719 nm in A. altissima and 516 to 521 nm, 603 to 
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667 nm, and 690 to 703 nm in E. umbellata. These results imply that the combination of intra-

individual and intraspecific variability may impede classification of A. altissima, particularly 

around 603 nm, 607 nm, and 701 nm, in which both relative and absolute intra-individual and 

intraspecific variability exceed interspecific variability. Because relative intra-individual 

variability in E. umbellata did not exceed interspecific variability, overall variability may not 

impede classification to the same extent as with A. altissima.  

 Spectral signals from individual pixels detected E. umbellata better than A. altissima. 

Although E. umbellata demonstrated relative intraspecific variability about twice that of 

interspecific variability, the absolute variability among E. umbellata individuals exceeded 

interspecific variability over fewer wavelengths than A. altissima, and absolute variability within 

E. umbellata individuals did not exceed interspecific variability over any wavelengths. These 

patterns of variability do not definitively suggest that intra-individual or intraspecific variability 

impacted classification. The amount of overlap in locations of pixels in the component space, 

however, does suggest other factors impact classification. In the PLS-DA component space, A. 

altissima overlapped with other species more than E. umbellata did. This suggests that despite high 

intraspecific variability in E. umbellata, it was still differentiable from other species, while A. 

altissima had more in common with other species, particularly L. maackii, M. pomifera, and R. 

davurica. 

 The overlap between wavelengths with high variability and wavelengths with high loading 

values suggests some intra-individual and intraspecific variability may impede detection of these 

two invasive plant species, especially E. umbellata, which had greater variability relative to 

interspecific variability than A. altissima. The classification results, however, suggest that 

differences between the species of interest and all other species are more important than the 
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variability among all species, which is what the interspecific variability represents. These results 

suggest that intra-individual and intraspecific variability are not the only factors impacting 

detection, as classification of E. umbellata was more accurate.  

 Traditional hyperspectral data collection efforts are inadequate on the basis of either time 

or space. For example, satellite data, though temporally robust and therefore providing 

phenological data, are often too coarse in resolution to detect individual tree and shrub canopies. 

Collection by fixed-wing aircraft has a finer spatial resolution but is typically collected at much 

lower frequency, often on an annual basis. Fixed-wing aircraft data collection also requires an open 

field, which can be a challenge in some forest studies. UAV-based data collection combines the 

spatial and temporal benefits of each data collection method to provide data with high temporal 

and spatial resolution. These results suggest the very fine, leaf-scale resolution of hyperspectral 

data collected by UAV does not impede differentiation, but rather, the differences among the 

species of interest and all other species are most important. As these data were collected mid-

growing season when phenological differences are least noticeable, utilizing additional dates for 

differentiation will likely improve detection of invasive plant species. 

To my knowledge, this is the first effort to identify and map invasive plant species within 

heterogeneous vegetation communities of the northern Blue Ridge region in Virginia. From this 

project I will produce effective methodology in utilizing spectroscopy to identify and locate 

targeted invasive plants, particularly the invasive tree A. altissima and shrub E. umbellata from 

aerial images. The conclusion that differences among the species of interest and all other species 

is more important than intra-individual and intraspecific variability indicates that the temporal 

flexibility of sampling via UAV will aid this effort. 


