
 
 

Satori: Open-source Course Management System 
 

 
 

A Technical Report submitted to the Department of Computer Science 
 
 

Presented to the Faculty of the School of Engineering and Applied Science 
University of Virginia • Charlottesville, Virginia 

 
In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 
 
 

Jelena Liu 
Spring, 2021 

 
 

Technical Project Team Members 
Madison Flynn 

Megan Marshall 
Daniel Mizrahi 

 
 
On my honor as a University Student, I have neither given nor received 
unauthorized aid on this assignment as defined by the Honor Guidelines 
for Thesis-Related Assignments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Satori: Open-source Course Management System
Madison Flynn

University of Virginia
mrf7pc@virginia.edu

Jelena Liu
University of Virginia
jl2gb@virginia.edu

Megan Marshall
University of Virginia
mem5ak@virginia.edu

Daniel Mizrahi
University of Virginia
drm7wb@virginia.edu

Figure 1. Satori Landing Page

Abstract
Satori is an open-source course management system that
targets instructors who utilize online tools to supplement
their teaching. The system includes capabilities for an office
hours queue and a ticketing system for support requests.
Infrastructure exists in the project that allows for the creation
of new tools in the future, allowing professors to modify
and personalize Satori to fit their needs. The development
of this system aims to help courses run smoother for both
students as well as course staff by providing an intuitive and
comprehensive platform.

1 Introduction
This project focuses on creating a course management sys-
tem that can be used in various subjects, but development
was targeted around a University of Virginia course: CS 2150:
Program and Data Representation. Currently, CS 2150 em-
ploys “Course Tools,” a platform made in the early 2000s,
which hosts an office hours queue and a support request
system. The new system, named Satori, will have the same
functionalities, with the possibility of additional features
being added in the future.
The current “Course Tools” system works properly, but

faces some issues. As the class size of CS 2150 continues
to grow, reaching over 500 students in the Fall 2020 semes-
ter, it has become more difficult for the initial office hours
queue to handle the sheer volume of students during busy

sessions. The system becomes glitchy, with problems includ-
ing students being kicked off the queue randomly, the queue
freezing at inconsistent times, and the website having a slow
response time during busy office hour times.
Furthermore, the support request tool also has a slow re-

sponse time when there is a large amount of student request
tickets in the system and is not compatible with Gradescope,
a system the instructors use for automatic assignment grad-
ing and feedback. Our group hopes to improve the experi-
ences of students in the course by mitigating problems the
current system has.

In the 2019-2020 academic year, another group began the
development of Satori, and created the overall architecture
as well as the office hours queue. This year, our group is
focused on the creation of the new ticketing/support request
feature, as well as creating tests and fixing bugs along the
way. In order to allow faculty to analyze office hours sessions
and adjust staffing, we are also working on incorporating
statistics into the system. The existing Satori platform was
created on Django 3.2 using Python 3.7 and MySQL is used
to create and manage the database. It is hosted in a docker
container and run on a UVA Computer Science department
server, Pegasus.

2 Related Work
As our group focused on developing a new ticketing feature
on Satori, we looked into the existing methods students
could use to request extensions or bring up other issues to
instructors and teaching assistants. Many of these are able to



Madison Flynn, Jelena Liu, Megan Marshall, and Daniel Mizrahi

accomplish what is necessary for student requests, but lack
cohesiveness ormay be harder to use.We hope to incorporate
the beneficial characteristics of similar systems into ours as
well as improve on disadvantages they may have.

2.1 Course Tools
As mentioned above, the existing system that has been used
was not built to support the growing enrollment size of CS
2150. In addition to the office hours queue and ticketing
system, it used to also contain gradebook and assignment
submission tools. However, the latter features have been re-
placed with Gradescope [1]. Approving extensions through
the ticketing system and actually granting them has become
less convenient due to the incompatibility between Grade-
scope and “Course Tools.” It is also written in PHP, which
is losing popularity, while Python has become one of the
most popular languages [2]. With our project, we hope to
replicate the capabilities of the “Course Tools” system and
continue to build on them. We also hope to improve on the
design of the platform.

2.2 Email
For many courses at UVA and other universities, the most
common method of communication between students and
course staff is through email. However, many instructors
have to go through many emails a day, and it may be hard
to sort through which pertain to extensions or issues stu-
dents bring up. Also, when students email a single instructor,
all responsibility of responding falls onto that individual,
while a ticketing system allows for multiple possible respon-
dents. Most students are already familiar with sending and
receiving emails, and we hope that our new system is as
straight-forward and intuitive as communicating through
email.

2.3 Kytos
Kytos is another system that was created by UVA faculty in
order to provide course tools to students for various courses
such as CS 1110: Introduction to Programming. It contains
features like the office hours queue, assignment submission
and a gradebook. However, there is no general ticketing
system that allows students to easily communicate with
course staff without making comments directly related to
a specific assignment. Our team hopes to make Satori as
cohesive as Kytos while providing additional features as well
as improving on the interface.

3 System Design
Our work on Satori can be spilt up into two primary sys-
tems: support requests and statistics. Support requests can
be further broken down into two sections: tickets and work-
flows. Careful consideration went into designing each of
these systems and their parts.

3.1 Tickets
One of the major features of our system is support requests.
This ticketing system should be user-friendly for students,
teaching assistants, and instructors to use. It also should be a
efficient for students to submit their issues and for the course
staff to respond to them. Tickets serve as an easier way for
students to communicate with the course staff rather than
using email as multiple staff members can answer tickets,
issues can be solved quickly, and it centralizes student’s
needs all in one place. Making support requests fast and
reliable is a top priority. This is important, especially when
there are a lot of tickets displaying on the web page that
need quick responses, because the more time students wait
for a response from the ticketing system, the more time they
waste not getting an answer to their question or a response
to their issue. Additionally, the more time the course staff
is waiting for a response from the ticketing system, the less
they are able to give quick feedback or extensions. Testing
was done to test permissions and to ensure that submitting
tickets are fast.

Two important considerations when designing the tickets
are the way in which tickets are ordered for course staff to
respond to and being able to see past tickets/responses. The
most straightforward solutions to the first consideration are
to order them by when the ticket was submitted or by ticket
ID. These both go hand in hand as a unique ID is given to
a ticket when it is created, thus the higher the ticket ID the
more recent the ticket was submitted and vice versa. We also
needed to take into account if a student replied on an already
resolved or stalled ticket, which our solution works for as
the course staff would want to completely resolve the issue
of an earlier ticket before a later one. At first, it could be a
possible solution to show all tickets regardless of their status,
which would work for students as they would at most submit
a dozen or so tickets, however as the number of tickets gets
larger throughout the semester, the web page would take
longer to load all of the tickets. Knowing this, a separate
table was created for resolved tickets and if the course staff
wanted to look back at these tickets they will load once a
dropdown for the table was opened.
As part of our larger goal of making this system easily

adopted by other courses, an intuitive user interface was a
priority in the development process. The ticketing system
should not require a lot of background experience or a tech-
nical background to operate. We designed the forms, buttons,
labels, tables, and links to be clear to know how to use.

3.2 Workflows
Workflows are the other integral part to support requests.
Once a ticket is submitted, the responses from the course
staff and students are called workflows. It needs to provide
information quickly and accurately so that the course staff
can tend to the issues of students. Making workflows quick



Satori: Open-source Course Management System

and reliable is a top priority. If a response is lost between a
student and the course staff, then the course staff are unable
to do their jobs and help the student. Also, if the course staff
are waiting for a web response to the workflows page, then
they are unable to help multiple students in a timely fashion.
This is important, especially as some workflows have a lot of
responses between a student and the course staff if their issue
is complex. Extensive tests were conducted to test course
permissions and accurate functionality of the workflows.
Some important decisions that we made when design-

ing the workflows are how to efficiently search for specific
course staff to assign tickets to, how to conduct emailing stu-
dents when a workflow is updated, how to submit automatic
extensions to Gradescope, and how to create comments that
are hidden from students. For finding course staff that tickets
can be assignable to, we first thought that iterating through
users with the permission to modify tickets was a good ap-
proach. We soon found out that approach took the workflow
web page about five more seconds to load than usual, making
the user of our system most likely wonder if the web page
will be unable to respond or not. After some digging into
the code, we found that the users with certain permissions
are pre-saved in the permissions model and we decided to
grab the course users with the ticket modify permission from
there instead of iterating through all users which made the
system much faster. For sending emails to students when a
workflow is updated, we first though to use Django’s email-
ing template which was not let in by the @virginia.edu’s fire-
wall. Instead, we decided to host the emails on our Virginia
CS server which solved the issue. For submitting automatic
extensions for students to Gradescope, we thought about
hooking our system up directly to Gradescope which sounds
great in theory, but Gradescope’s lack of an API makes it
challenging to integrate our project. We also thought about
adding submodules to our codebase to integrate the GitHub
repository our graduate teaching assistant created to extend
due dates on Gradescope for students, but we soon realized
this was going to be more of a headache on the development
side. Instead, we are integrating the GitHub repository on
our server, so we can just implement OS system commands
to update the repository with student extensions. One thing
to point out here is that the extensions only work for Grade-
scope and with our larger goal of making the project easily
adoptable by other courses, this should be a suitable solution
for University of Virginia CS courses as a lot of them have
migrated to Gradescope but for the ones who have not then
they could possibly plug-in a different GitHub repository
instead or this will be a future problem for us to figure out as
the project expands. For creating hidden comments, our first
quick thought that we had was to use course user permis-
sions to figure out if a user is a student who should not be
able to see the hidden comments about their ticket. However,
all the permissions that students have, the course staff, espe-
cially instructors, also have. We decided that adding a flag to

our model to indicate if a user can see the hidden comment
or not was the easiest and most efficient solution.
As part of our larger goal of making this system easily

adopted by other courses, an intuitive user interface was a
priority in the development process. Users should not need
a technical background or do not really need to know how
workflows work entirely to be able to operate this part of
the system. We designed the buttons and tables to be clear
and labeled well.

3.3 Statistics
One of our features that helps with the distribution of teach-
ing assistants during office hours and busy lab weeks is sta-
tistics. It needs to provide fast and accurate queue aggregate
data for a specific date and times throughout the day. This
is the top priority for the statistics system and is especially
important when there are a lot of students on the queue,
ranging from thirty to fifty students, and the wait times are
over an hour for students to receive help. If this system does
not give reliable information, then the necessary amount of
teaching assistant help needed for busy office hour times
will not be correctly allocated and students will not be able
to get the help they need to get their assignments done on
time. Office hours are usually busier when the assignments
are more difficult which means that most students are not
getting help when they need it most if the statistics system
is off. We have conducted testing on this system to see its
response to large amounts of queue data.
Two important design decisions when developing statis-

tics are how to aggregate the office hours queue data and
how best to represent the data to users. All the information
necessary to create average queue wait time statistics are
contained within each "QueueEntry" object. Each of these
objects contain the time the student entered the queue and
the time the student was helped, or if they were removed,
along with additional information. Thus, wait time for a
given student can be calculated by simply taking the dif-
ference between these two times. Using this information, a
running weighted average can also be calculated by some
fraction of the newest student’s wait time and the existing
wait time. Every time a new running average is calculated,
this average can be placed in a time category based on the
nearest half hour this running average was calculated in.
Once this process is complete for every QueueEntry on a
given day, each half hour category’s data points can be aver-
aged to get a single average wait time for a half hour period
of time. Then, a line graph can be created by plotting the
time of day in half hour increments on the x-axis which map
to average wait times in minutes.
A priority when designing statistics was that the user

interface was intuitive and that data was shown in a compre-
hensible way. The statistics system should not require any
technical background; the user just needs to know the date
that they want to observe the queue data for. We designed



Madison Flynn, Jelena Liu, Megan Marshall, and Daniel Mizrahi

the layout to be clearly labeled so that it can quickly be seen
where the most help is needed for office hours and to know
where teaching assistants should be redistributed to optimize
the amount of help and time given to students in the course.

Figure 2. Instructor view of the Statistics page

4 Procedure
Satori is very user-friendly so most actions are intuitive. The
support ticket system and queue statistics will be further
explained as the functionality varies significantly depending
on the user’s permissions.

4.1 Student Ticket Creation and Updates
The ticket creation form can be accessed on the Tickets
page. Students can enter a subject and body for their request
before submitting. Their previously submitted tickets are also
displayed on this page in the Submitted Tickets table. This
section of the page features a short summary of the ticket,
which quickly shows important information, including the
subject, time submitted, status, and the time it was resolved
if applicable. A student can provide an update message to
their ticket by clicking on the corresponding ID to open the
ticket’s workflow page. This new page provides all of the
original information about the ticket as well as a record of
all of the responses and updates to it. The student can also
fill out the form to submit their update or response for this
ticket. By submitting a response, the student changes the
status of the ticket to pending. The student can also upload
files to in their response. This feature can be used if late work
or documentation needs to be provided by the student.

4.2 Handling Tickets
Instructors can submit a ticket for a student on the Tickets
page. Their ticket creation form looks similar to the student
version except instructors also see a drop down containing

Figure 3. Student view of Tickets

the names of all of the students in the class. The instruc-
tor can select the appropriate student to submit the ticket
for. The Tickets page also shows all of the submitted tickets
to teaching assistants and instructors organized by ticket
status. The pending and stalled tickets are showed in the
Active Tickets table while the resolved tickets are shown
in the Resolved Tickets table. The ticket tables show all of
the information that the student can see as well as the ticket
owner, but the course staff can see this information for all
students. The Active Ticket table also allows teaching assis-
tants and instructors to assign any ticket to themselves or
another user with the correct permissions. They can also
release tickets that they are currently assigned to.

Clicking the ticket ID in the table redirects to the ticket’s
workflow page. On this page, instructors and teaching as-
sistants can see all of the original ticket information and
all updates/responses. Instructors can respond to the stu-
dent and change the status to pending, stalled, or resolved. If
teaching assistants and instructors want to converse about
the ticket without the student seeing the messages, there
is an option to mark the response as hidden to the student.
With this option, the responses do not appear when the
student views the ticket’s workflow page and they do not
receive an email. However, if the option is not selected (the
default), the student can view the response and will receive
an email notifying them of the update.
On the ticket’s workflow page, the instructor can also

give the student an extension. Underneath the text response
are drop downs to select the appropriate assignment. The
extension can be given until either a new due date or entered
as the number of days after the original deadline.



Satori: Open-source Course Management System

Figure 4. Teaching Assistant view of Ticket Workflow page

4.3 Statistics
The instructor can view statistics about the office hours
queue in the Statistics tab. The instructor needs to select
the date and then they can see the average student wait time
for every half hour for the office hour queue. The wait time
is calculated the same way as the one displayed on the queue
page. This information is provided in a graph from 8:00 am
to midnight Eastern Standard Time. The Statistics tab does
not appear for other users.

5 Results
Throughout the Spring 2021 semester, the Satori web appli-
cation was utilized at the University of Virginia by the CS
2150: Program and Data Representation course by over 500
faculty and students. The newest functionality of Satori is a
vast improvement over the respective existing technological
infrastructure. The ticketing system and workflows makes
organizing tickets and coordinating support requests with
student far easier than before. Likewise, the Statistics feature
gives instructors valuable insight into how to best allocate
office hours time and teaching assistant resources. Further-
more, with numerous fixes to existing bugs and problems,
Satori now runs better than ever.

All of the aforementioned changes and additions to Satori
are aimed at giving the students the most friction-less course
experience with respect to getting help. Given the circum-
stances, instructors and teaching assistant time and resources
are now more valuable to the students than ever before. A
more robust and capable Satori will now be able to keep pace
with the ever-increasing capacity of students enrolling in CS
and demand for more software tools and features. Therefore,
the new Satori has been and will continue to facilitate a more

seamless experience of students interacting with instructors
and teaching assistants.

6 Conclusions
The Satori web application was an existing course tool built
to replace the CS 2150 course management system. Although
it had many existing features and functionality, Satori was
far from complete. Our 4th year technical capstone project
picked up where Satori was left off and made several ro-
bust improvements to the existing system in the form of a
new Ticketing System, Statistics Insight, as well as countless
smaller fixes and improvements to existing code. Now, Satori
continues to play a crucial role in the students course expe-
rience and serves as an elegant solution to many difficult
problems.

7 Future Work
All of the major features of Satori have been included. How-
ever, there are a few smaller features that could help instruc-
tors customize the system to better fit their classes or make
some of these features easier to use. All of the functionality
for different users depends on their permissions. These per-
missions are initially assigned according to their course role
on the roster. While the permissions can be changed for each
user individually, a feature to update a role’s permissions
would make it much easier to change the default behavior. It
can also be tedious to make another role, such as Secondary
Instructor or Super Teaching Assistant, and assign permis-
sions and users to the new role. Allowing the course roles to
be better tailored could make it easier for instructors to set
up their classes with slightly different functionality.
The course creation process keeps track of the sections

of the course each student is enrolled in. However, very few
of the features on Satori use the course sections. This could
be better integrated to help divide lecture or lab sections
and would be especially helpful when multiple professors
are teaching a course. That would allow the course to be
managed as a whole as well as section by section.

More office hour queue statistics could be included. Right
now, it only displays the average waiting time but it could be
useful to see how many students were helped in each time
interval, the average amount of time it takes for a student to
be helped once they are taken off the queue, or the percentage
of the class that attends office hours. These statistics could
further help the instructor manage staffing during office
hours based on student demand. A class’s office hours are
typically scheduled in advance. The office hour queue could
be scheduled to automatically open and close at certain times
as opposed to having to be manually opened and closed by
a teaching assistant or instructor each time.



Madison Flynn, Jelena Liu, Megan Marshall, and Daniel Mizrahi

References
[1] 2021. Gradescope. Retrieved April 7, 2021 from https://www.gradescope.

com/

[2] 2021. TIOBE Index for April 2021. Retrieved April 7, 2021 from https:
//www.tiobe.com/tiobe-index/

https://www.gradescope.com/
https://www.gradescope.com/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Course Tools
	2.2 Email
	2.3 Kytos

	3 System Design
	3.1 Tickets
	3.2 Workflows
	3.3 Statistics

	4 Procedure
	4.1 Student Ticket Creation and Updates
	4.2 Handling Tickets
	4.3 Statistics

	5 Results
	6 Conclusions
	7 Future Work
	References

